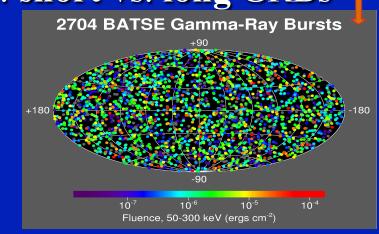

GRB Prompt Emission Physics

Jonathan Granot

Open University of Israel

Collaborators: P. Beniamini, R. Gill, Y. Lyubarsky, S. Komissarov, A. Spitkovsky, S. Guiriec,...

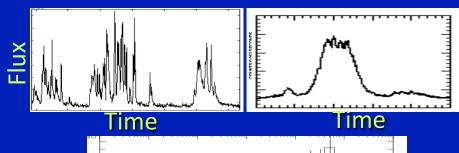


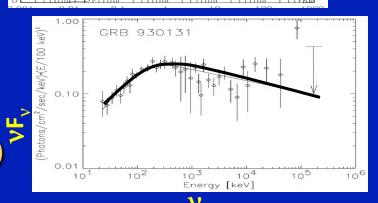

Workshop on Gamma-Ray Bursts: Prompt to Afterglow NCRA-TIFR, Pune, India, 4 July 2017

Outline of the Talk:

GRBs: brief historical overview, prompt GRB obs. Theoretical framework, prompt emission processes Acceleration & Dissipation: Fireball vs. Magnetic Magnetic acceleration: steady vs. impulsive, effect of external medium & multiple sub-shells GRB lightcurves from magnetic reconnection Reconnection + acceleration through K-S instability Prompt GRB spectrum: a phenomenological model

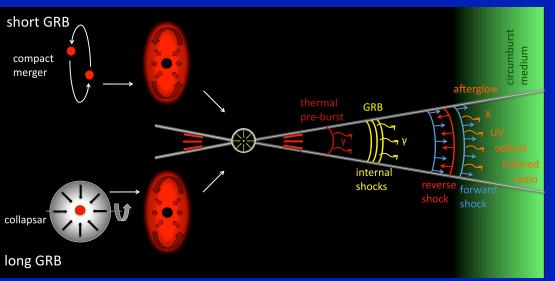
GRBs: Brief Historical Overview ■ 1967: 1st detection of a GRB (published in 1973) ■ In the early years there were many theories, most of which invoked a Galactic (neutron star) origin ■ 1991: the launch of CGRO with BATSE lead to significant progress in our understanding of GRBs ◆ Isotropic dist. on sky: favors a cosmological origin-**Bimodal duration** distribution: **short** vs. **long** GRBs


BeppoSAX (1996–2002): led to afterglow discovery (1997) in X-rays, optical, radio (for long GRBs) • This led to redshift measurements: clear determination of distance/energy scale (long GRBs) $E_{\gamma,iso} \sim 10^{52} - 10^{54}$ erg Afterglow observations provided information on beaming (narrow jets: $E_{\gamma} \sim 10^{51}$ erg), event rate, external density, supernova connection (\Rightarrow long GRB progenitors) **Swift** (2004-?): autonomously localizes GRBs, slews $(in \sim 1-2 min)$ and observes in X-ray + optical/UV Discovered unexpected behavior of early afterglow: rapid decay phase, plateaus, flares, chromatic breaks \diamond Led to the discovery of **afterglow** from **short** GRBs \rightarrow host galaxies, redshifts, energy, rate, clues for progenitors **Fermi** (2008-?): high-energy emission – delayed onset, long lived emission, distinct high-energy component^{*}, high Γ_{\min} , short GRBs show smaller delay + harder spectrum


Prompt GRB Observations (≤ MeV)

Duration: $\sim 10^{-2} - 10^3$ sec

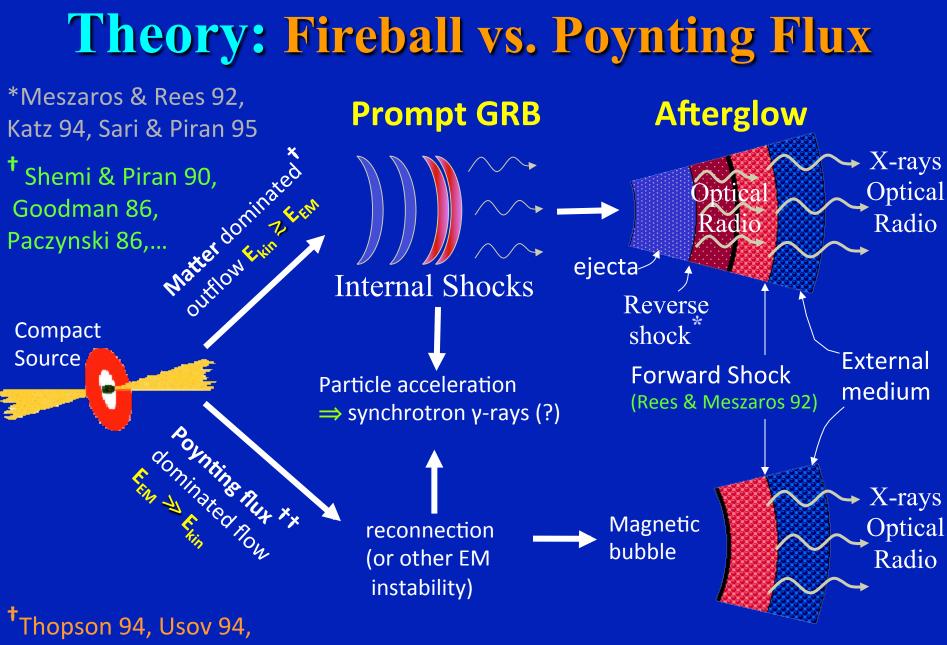
Spectrum: non-thermal
 vF_v peaks at ~ 0.1-1 MeV
 (well fit by a Band function*)



 Rapid variability, non thermal spectrum & z ~ 1
 ⇒ relativistic source (Γ ≥ 100) (compactness problem: Schmidt 1978; Fenimore et al. 1993; Woods & Loeb 1995;...)

GRB Theoretical Framework:

Progenitors:


- Long: massive stars
 Short: binary merger?
 Acceleration:
- fireball or magnetic?
- **Prompt γ-rays:**

Dissipation: internal shocks or magnetic reconnection? Emission mechanism?

Deceleration: the outflow decelerates (by a reverse shock for σ ≤ 1) as it sweeps-up the external medium
 Afterglow: from the long lived forward shock going into the external medium; as the shock decelerates the typical frequency decreases: X-ray → optical → radio

Candidate Prompt Emission Processes $(dN/dE \propto E^{\alpha} below E_{peak})$ Leptonic: • Synchrotron (optically thin: $\alpha \le -2/3$; fast cooling: $\alpha \le -3/2$) • Jitter (similar to synchrotron but from tangled B-field; $\alpha \leq 0$) Inverse-Compton or Synchrotron-Self Compton (HE?) ♦ Photospheric (not always BB, $-1 \leq \alpha \leq 1$; also from high- σ) **Hadronic** processes: photopair production ($p + \gamma \rightarrow p + e^+e^-$), proton synchrotron, pion production via p-w(photopion) interaction or p-p collisions 60 (Kaneko \diamond The neutral pions decay into high energy physican ref. $\rightarrow \gamma\gamma$ that can pair produce with lower energy photons 7998) producing a pair cascade 20 Still unclear – we are largely guided by **artions** composition \rightarrow acceleration \rightarrow dissipat

Meszaros & Rees 97, Katz 97,...

Lyutikov & Blandford 02,03

Outflow Acceleration & Dissipation:

Fireball: thermal acceleration (by radiation pressure)

- Fast ($\Gamma \propto R$), robust, allows efficient internal dissipation
- Baryon kinetic energy eventually dominates
- ♦ Requires a small baryon loading (~10⁻⁵ M_☉)
- Naturally produces internal shocks (dissipate $\leq 10\%$ of energy)
- n-p collisions in a neutron rich outflow

Magnetic acceleration: Poynting flux dominated jets

- Steady, axisymmetric, ideal-MHD: slow, not robust or efficient
- Can naturally produce a small baryon loading
- Gradual dissipation (of alternating fields or instability induced) can enhance the acceleration & contribute to the radiation
- Strong time dependence: enhances acceleration & dissipation
- Fast reconnection can accelerate particles, produce relativistic turbulence, spikes in lightcurve & high radiative efficiencies

 Composition: Fireball vs. Poynting flux
 Fireball: E_{thermal} → E_{kinetic} → E_{thermal} + E_{radiation} (thermal acceleration ; dissipation in internal shocks)
 Relatively well studied

■ Poynting flux dominated outflows:

 If no B-field reversal: E_{magnetic} ⇒ E_{kinetic} ⇒ E_{thermal} + E_{radiation} (steady + impulsive magnetic acceleration; internal shocks)
 Field reversals/striped wind: E_{magnetic} ⇒ E_{kinetic} + E_{thermal} + E_{radiation} (magnetic reconnection + acceleration)

 ■ Generally less studied

The "σ-problem": for a "standard" steady ideal MHD axisymmetric flow

In spherical flows $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ ($\sigma_0 = B_0^{2/4} \pi \rho_0 c^2$) but PWN obs. imply $\sigma \ll 1$ after the wind termination shock

In PWN the solution is dissipation of the striped wind

 However, this doesn't work well in relativistic jet sources, where a broadly similar σ problem persists

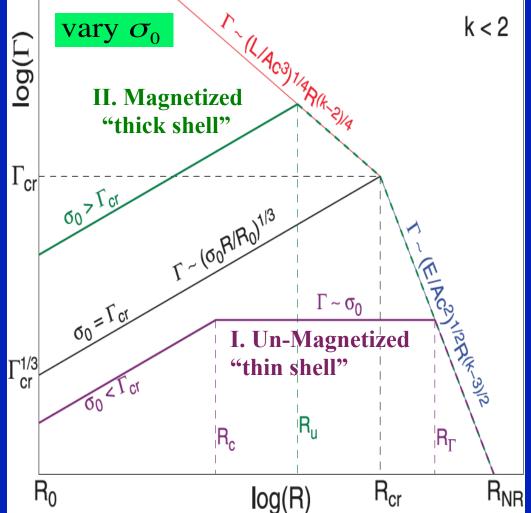

Jet collimation helps, but not enough: Γ_∞ ~ σ₀^{1/3}θ_{jet}^{-2/3}, σ_∞ ~ (σ₀θ_{jet})^{2/3} & Γθ_{jet} ≤ σ^{1/2} (~1 for Γ_∞ ~ Γ_{max} ~ σ₀)
 Still σ_∞ ≥ 1 ⇒ inefficient internal shocks, Γ_∞θ_{jet} ≫ 1 in GRBs
 Sudden drop in external pressure can give Γ_∞θ_{jet} ≫ 1 but still σ_∞ ≥ 1 (Tchekhovskoy et al. 2009) ⇒ inefficient internal socks

Alternatives to the "standard" picture
 Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field & lead to significant dissipation (Begelman; Spruit; Eichler; Lyubarsky; Giannios;...)

♦ If ⟨B_r²⟩ = α⟨B_φ²⟩ = β⟨B_z²⟩; α,β = const then the magnetic field behaves as an ultra-relativistic gas: p_{mag} ∝ V^{-4/3} ⇒ magnetic acceleration as efficient as thermal
 ■ Ideal MHD: a tangled magnetic field can reconnect (Drenkham 2002; Drenkham & Spruit 2002) magnetic energy ⇒ heat (+radiation) ⇒ kinetic energy

Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)

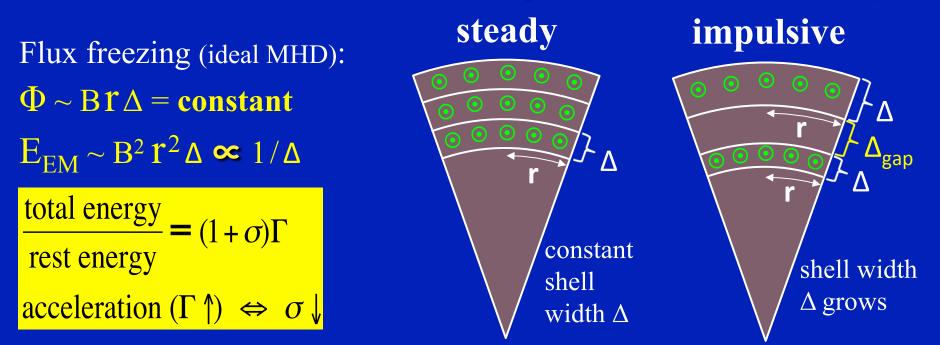
Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$



2. ⟨Γ⟩_E ∝ R^{1/3} between R₀~Δ₀ & R_c~σ₀²R₀ and then ⟨Γ⟩_E ≈ σ₀
3. At R > R_c the sell spreads as Δ ∝ R & σ ~ R_c/R rapidly drops
Complete conversion of magnetic to kinetic energy!
This allows efficient dissipation by shocks at large radii

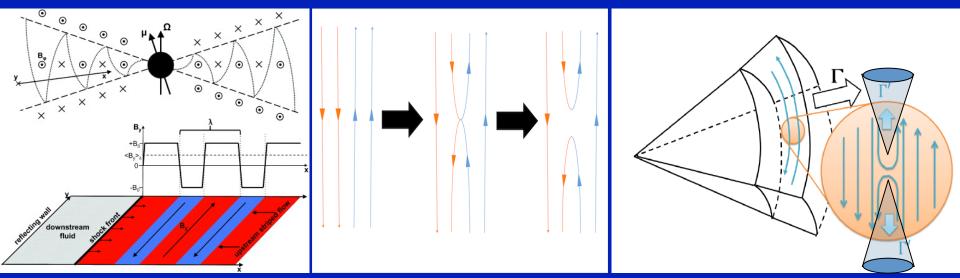
1st Steady then Impulsive Acceleration

- Our test case problem has no central engine: it may be, e.g., directly applicable for giant flares in SGRs; however:
- In most astrophysical relativistic (jet) sources (GRBs, AGN, μ -quasars) the variability timescale ($t_v \approx R_0/c$) islong enough (>R_{ms}/c) that steady acceleration operates & saturates (at R_s)
- **Then the impulsive acceleration kicks in & leads to \sigma < 1**

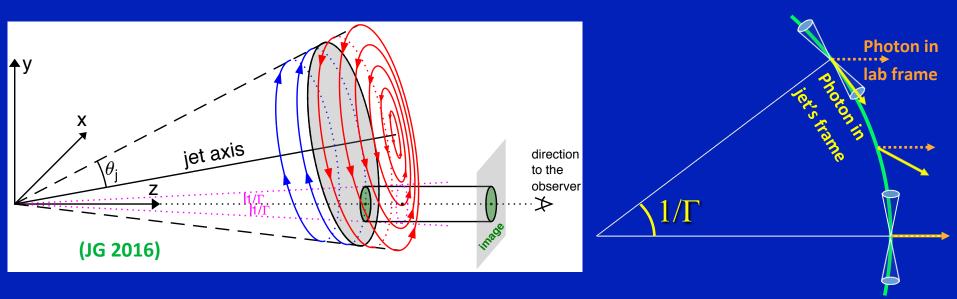

Impulsive Magnetic Acceleration: single shell propagating in an **external medium** acceleration & deceleration are tightly coupled (JG 2012)

$$\rho_{\text{ext}} = AR^{-k}$$
$$R_{\text{cr}} \sim R_0 \Gamma_{\text{cr}}^2 \sim \left(\frac{ER_0}{Ac^2}\right)^{\frac{1}{4-k}}$$

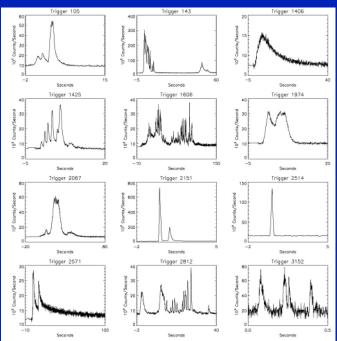
I. "Thin shell", low-o : strong reverse shock, peaks at **II.** "Thick shell", high-**-**: weak or no reverse shock, III. like II, but the flow becomes independent of a Newtonian flow (if is very high, e.g. inside a star) drops very sharply \mathbf{II}^* . if

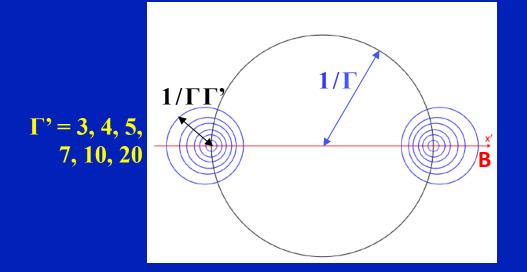

Sub-shells: acceleration, collisions (JG 2012b)

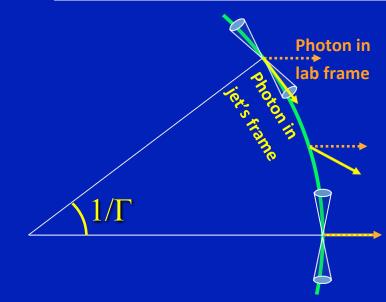
For a long lived variable source (e.g. AGN), each sub shell can expand by 1+Δ_{gap}/Δ₀ ⇒ σ_∞ = (E_{total}/E_{EM,∞}-1)⁻¹ ~ Δ₀/Δ_{gap}
 For a finite # of sub-shells the merged shell can still expand
 Sub-shells in GRBs can lead to a low-magnetization thick shell & enable the outflow to reach higher Lorentz factors
 σ<1 shocks: magnetic energy → kinetic → thermal (+radiation)
 σ >1 shocks: magnetic → thermal → kinetic (Komissarov 2012)


GRB Lightcurves from Magnetic Reconnection (Beniamini & JG 2015; JG 2016)

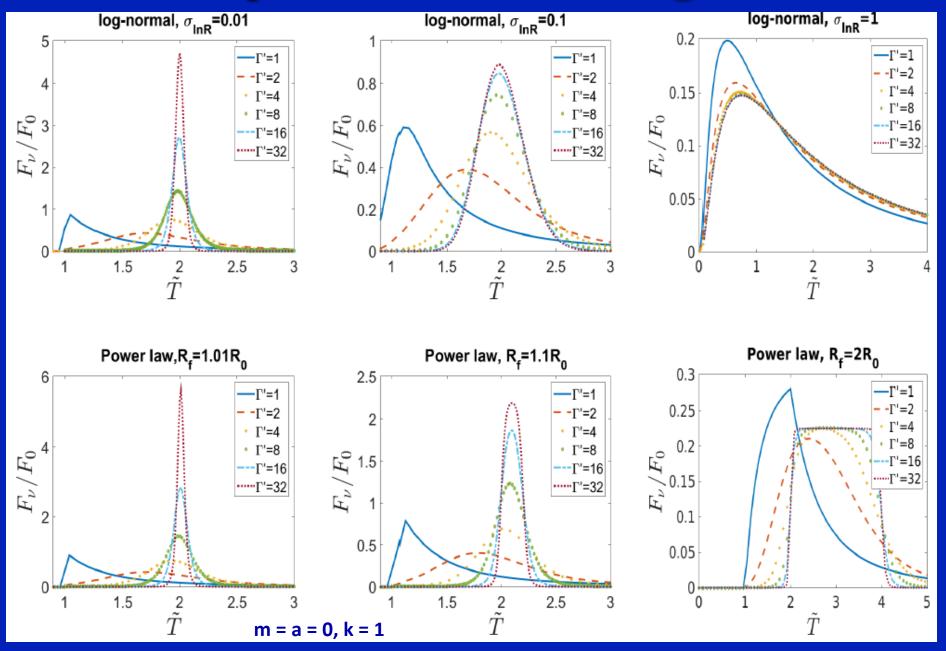
- Field reversals at the source can lead to reconnection at large distances millisecond-magnetar
 — millisecond quasi-periodic variability (
 accreting BH
 — stochastic field-reversal & lightcurve variability (
 //)
- Reconnection far from the source has a natural preferred direction
- For large ingoing σ reconnection leads to local relativistic outward bulk motion at $\Gamma' \sim \text{few}-\text{several} \Rightarrow$ anisotropic emission in jet's bulk frame
- Larger $\sigma \Rightarrow$ higher Γ ', larger rec. rate (v_{in}/v_A), harder particle spectrum

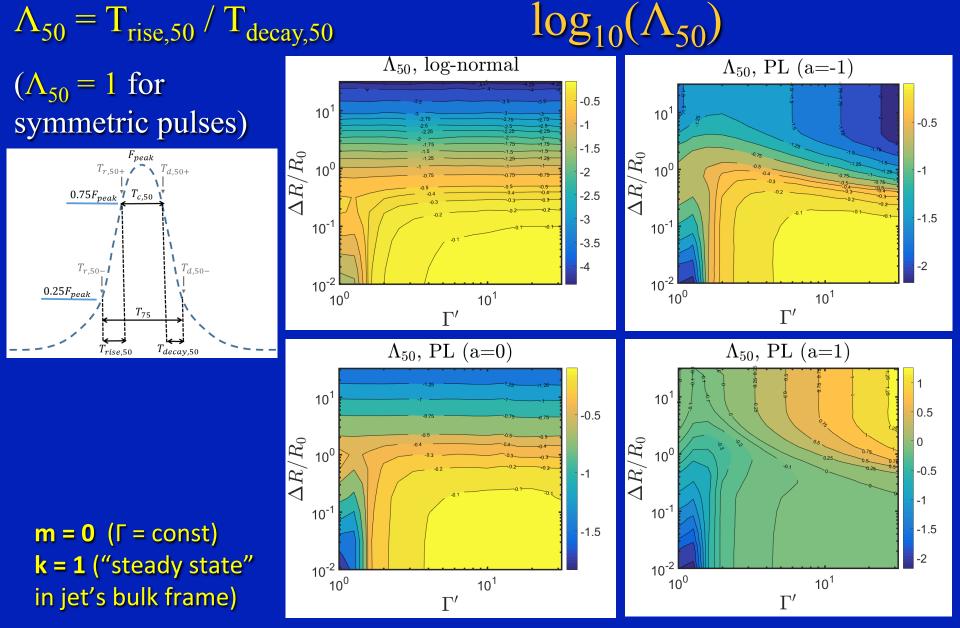

Model for GRB Lightcurves (Beniamini & JG 2015)


- Emission from thin locally quasi-spherical reconnection layers / shells
- Each shell moves at $\Gamma \gg 1$ & produces one pulse in the GRB lightcurve
- The emitting plasma moves in two opposite directions in the jet's bulk frame along the initial B direction (assumed uniform in visible region)
- Emission is either continuous (steady in the jet's frame), or blob-like
- Emitted spectrum: either a power-law or a Band function
- **\Gamma^2 \propto \mathbb{R}^{-m}**, Luminosity L evolves with R as a power-law or log-normal



Model for GRB Lightcurves (Beniamini & JG 2015)

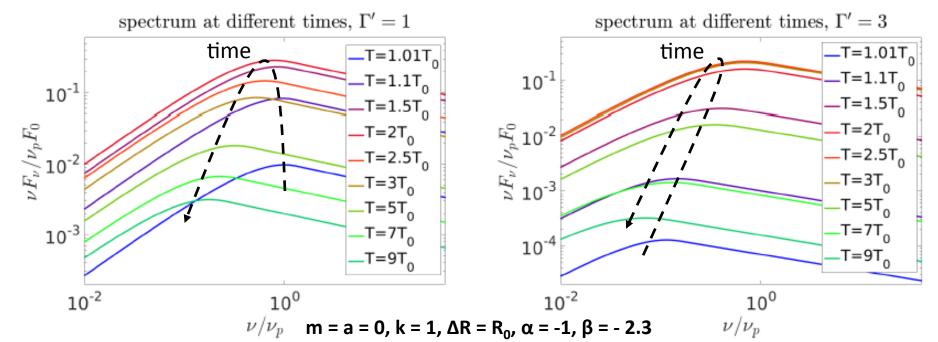

- Pulse width: $\Delta t \approx \Delta t_r + \Delta t_\theta$ & the angular time is reduced by a factor of Γ', to $\Delta t_\theta \approx R/2\Gamma^2\Gamma'$
- $\blacksquare \Rightarrow$ Fast variability is possible, limited by Δt_r
- For isotropic emission pulses tend to be asymmetric: $\Lambda = T_{rise} / T_{decay} < 1$
- While a fast rise & slower decay is typically observed, some pulses as rather symmetric



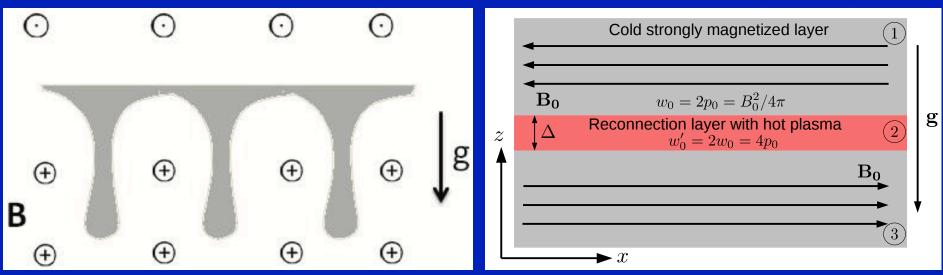
The Shape of Pulses in the Lightcurves

The Shape of Pulses in the Lightcurves

Some Other Pulse Properties


• An isotropic emission can explain the "rapid decay phase" at the end of the GRB prompt emission, or X-ray pulses that decay faster than expected for isotropic emission ("high-latitude" emission), thanks to the shorter angular time $\Delta t_{\theta} \approx R/2\Gamma^{2}\Gamma$ "

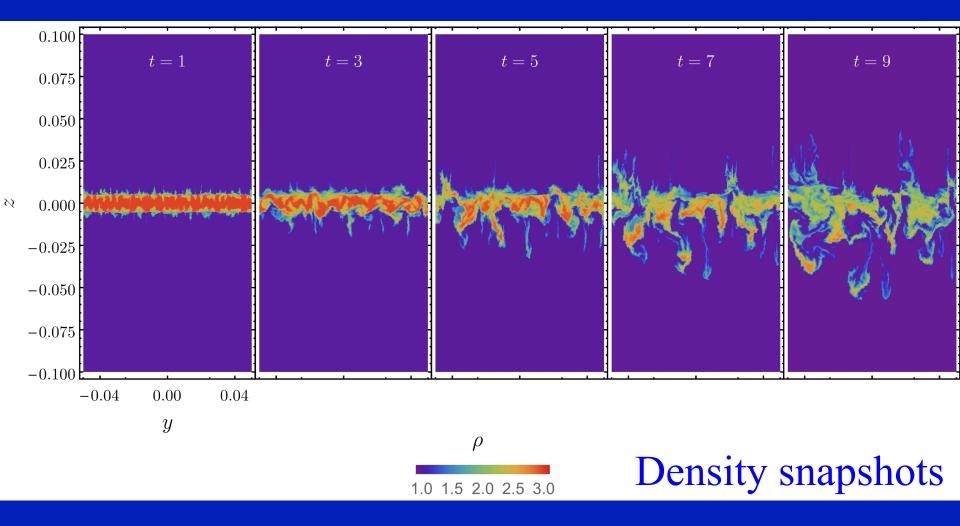
 Spectral evolution of pulses: Hard to soft for (Γ' < 2)


intensity tracking $(\Gamma' > 2)$

Photon in

lab frame

Kruskal-Schwarzchild Instability: (Lyubarsky 2010; Gill, JG & Lyubarsky 2017)

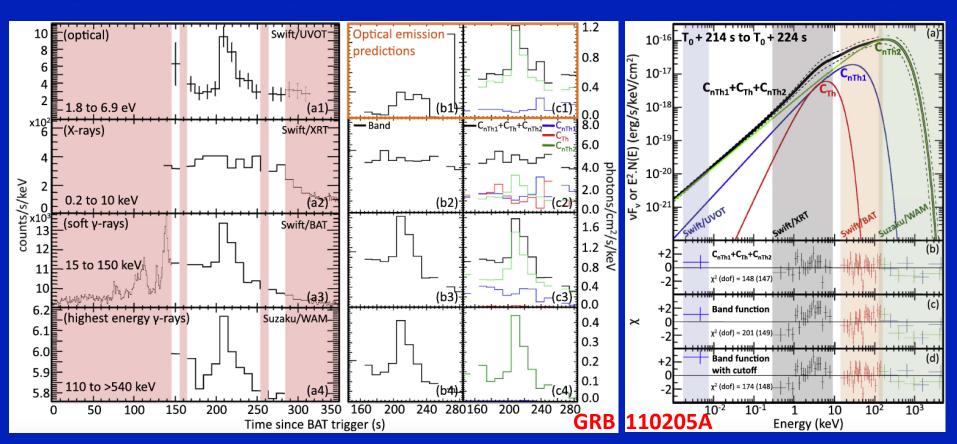


The Magnetized analog of the Rayleigh-Taylor instability

- Hot plasma accumulates in the reconnection layer, and can prevent further reconnection
- The heavier hot plasma is unstable in the effective gravity due to the outflow's acceleration & it drips out of the layer

➡ enhances reconnection rate ⇒ increases the acceleration
 & effective gravity ⇒ creates a positive feedback loop

Kruskal-Schwarzchild Instability: (Gill, JG & Lyubarsky 2017)

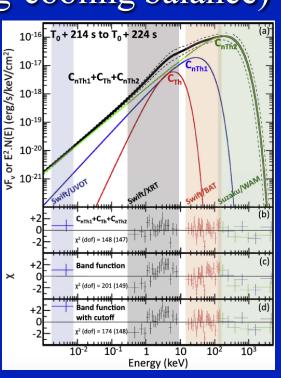


Initial results of 2D RMHD simulations

GRB Spectrum: Phenomenological Model (Guiriec, Kouveliotou, Hartmann, JG, Asano, Meszaros, Gill, Gehrels & McEnery 2016)

Some GRBs have correlated prompt optical+γ-ray emission
 Spectrum well fit by phenomenological 3-component model

• Optical – γ -ray lightcurves correlated \Rightarrow same emission region



GRB Spectrum: Phenomenological Model (Guiriec, Kouveliotou, Hartmann, JG, Asano, Meszaros, Gill, Gehrels & McEnery 2016)
C_{Th}: likely photospheric; α ≈ 0.6 slightly softer than thermal (α = 1 where dN/dE ∝ E^α) perhaps sum over BB with T(θ).
C_{nTh1}: partial correlation+slight delay w.r.t C_{Th} is natural for internal shocks at larger radius, R_{IS} > R_{ph}; α ≈ -0.7 suggests synchrotron from quasi-thermal electron dist. (10⁻³ < σ < 1 strong shocks+suppressed DSA, or heating-cooling balance)

• C_{nTh1} : strong variability \Rightarrow external shock uncorrelated w. C_{Th} , C_{nTh1} \Rightarrow different region maybe reconnection at $\sigma > 1$ parts of outflow

disk

