GRB Jet Dynamics Jonathan Granot Open University of Israel

Future Directions of Relativistic Jets, Skokloster, Sweden, 31 August 2013

Outline of the talk:

Background, jet angular structure & evolution stages

- Magnetic acceleration: overview & recent results
- Jet propagation inside the progenitor star
- Jet dynamics during the afterglow:
 - ◆ Recent numerical & analytic results: finally agree
 - ♦ Simulations of an afterglow jet propagating into a stratified external medium: $\rho_{ext} \propto R^{-k}$ for k = 0, 1, 2

◆ Implications for GRBs: jet breaks, radio calorimetry

Differences between GRB jets & other Astrophysical Relativistic Jets: GRB jets are not directly angularly resolved • Typically at $z \ge 1$ + early source size ≤ 0.1 pc ◆ Only a single radio afterglow (GRB 030329) was marginally resolved after 25 days (+monitored for years) ◆ The jet structure is constrained indirectly GRB jets are Impulsive: most observations are long after the source activity GRBs are transient events, making the observations much more difficult

Observational Evidence for Jets in GRBs The energy output in \gamma-rays assuming isotropic emission approaches or even exceeds $M_{\odot}c^2$ $\diamond \Rightarrow$ difficult for a stellar mass progenitor • True energy is much smaller for a narrow jet Some long GRBs occur together with a SN \Rightarrow the outflow would contain $>M_{\odot}$ if spherical \Rightarrow only a small part of this mass can reach $\Gamma \ge 100$ & it would contain a small fraction of the energy Achromatic break or steepening of the afterglow light curves ("jet break")

Examples of Smooth & Achromatic Jet Breaks

The Angular Structure of GRB Jets:

Jet structure: unclear (uniform, structured, hollow cone,...)
 Affects E_{γ,iso} → E_γ & observed GRB rate → true rate
 Viewing-angle effects (afterglow & prompt - XRF)
 Can also affect late time radio calorimetry

Stages in the Dynamics of GRB Jets: **Launching** of the jet: magnetic (B-Z?) neutrino annihilation? Acceleration: magnetic or thermal? For long GRBs: propagation inside progenitor star **Collimation:** stellar envelope, accretion disk wind, magnetic Coasting phase that ends at the deceleration radius R_{dec} • At $R > R_{dec}$ most of the energy is in the shocked external medium: the composition & radial profile are forgotten, but the angular profile persists (locally: BM76 solution)

• Once $\Gamma < 1/\theta_0$ at $R > R_{jet}$ jet lateral expansion is possible

Eventually the flow becomes Newtonian & spherical: selfsimilar Sedov-Taylor solution

Relativistic Magnetic Acceleration:
 Relativistic (v≈c) outflows/jets are very common in astrophysics & involve strong gravity at the source: PWN (NS), GRBs, AGN (SMBH), μ-quasars (BH/NS)
 Most models assume a steady flow for simplicity, despite observational evidence for time variability

Crab Nebula: X-ray in blue, optical in red

Circinus X-1: an accreting neutron star (shows orbital modulation & Type I X-ray bursts)

Relativistic Magnetic Acceleration: Is the acceleration magnetic? ? ? ? ? PWN (NS), GRBs, AGN (SMBH), μ-quasars (BH/NS) Most models assume a steady flow for simplicity, despite observational evidence for time variability

Crab Nebula: X-ray in blue, optical in red

Circinus X-1: an accreting neutron star (shows orbital modulation & Type I X-ray bursts)

Thermal vs. Magnetic Acceleration:

*Most of the acceleration is in the supersonic regime

Key difference between thermal and magnetic steady state acceleration of relativistic supersonic flows:

Thermal: fast, robust & efficient

■ Magnetic: slow, delicate & less efficient

The σ-problem: for a "standard" steady ideal MHD axisymmetric flow $\Gamma_{\infty} \sim \sigma_0^{1/3} \& \sigma_{\infty} \sim \sigma_0^{2/3} \gg 1$ for a spherical flow; $\sigma_0 = B_0^2 / 4\pi \rho_0 c^2$ However, PWN observations (e.g. the Crab nebula) imply $\sigma \ll 1$ after the wind termination shock – the σ problem!!! • A broadly similar problem persists in relativistic jet sources ■ Jet collimation helps, but not enough: $\Gamma_{\infty} \sim \sigma_0^{1/3} \theta_{\text{iet}}^{-2/3}$, $\sigma_{\infty} \sim (\sigma_0 \theta_{\text{iet}})^{2/3} \& \Gamma \theta_{\text{iet}} \leq \sigma^{1/2} (\sim 1 \text{ for } \Gamma_{\infty} \sim \Gamma_{\text{max}} \sim \sigma_0)$ ■ Still $\sigma_{\infty} \ge 1 \Rightarrow$ inefficient internal shocks, $\Gamma_{\infty} \theta_{iet} \gg 1$ in GRBs Sudden drop in external pressure can give $\Gamma_{\infty}\theta_{iet} \gg 1$ but still $\sigma_{\infty} \ge 1$ (Tchekhovskoy et al. 2009) \Rightarrow inefficient internal shocks

Alternatives to the "standard" model

- Axisymmetry: non-axisymmetric instabilities (e.g. the current-driven kink instability) can tangle-up the magnetic field (Heinz & Begelman 2000)
- If $\langle B_r^2 \rangle = \alpha \langle B_{\phi}^2 \rangle = \beta \langle B_z^2 \rangle$; $\alpha, \beta = \text{const}$ then the magnetic field behaves as an ultra-relativistic gas: $p_{mag} \propto V^{-4/3}$ \Rightarrow magnetic acceleration as efficient as thermal Ideal MHD: a tangled magnetic field can reconnect (Drenkham & Spruit 2002; Lyubarsky 2010 - Kruskal-Schwarzschild instability (like R-T) in a "striped wind") magnetic energy \rightarrow heat (+radiation) \rightarrow kinetic energy Steady-state: effects of strong time dependence (JG, Komissarov & Spitkovsky 2011; JG 2012a, 2012b)

Impulsive Magnetic Acceleration: $\Gamma \propto \mathbb{R}^{1/3}$

2. ⟨Γ⟩_E ∝ R^{1/3} between R₀~Δ₀ & R_c~σ₀²R₀ and then ⟨Γ⟩_E ≈ σ₀
3. At R > R_c the sell spreads as Δ ∝ R & σ ~ R_c/R rapidly drops
Complete conversion of magnetic to kinetic energy!
This allows efficient dissipation by shocks at large radii

1st Steady then Impulsive Acceleration

- Our test case problem may be directly relevant for giant flares in SGRs (active magnetars); however:
- In most astrophysical relativistic (jet) sources (GRBs, AGN, μ-quasars) the variability timescale((t_v≈R₀/c) is long enough (>R_{ms}/c) that steady acceleration operates & saturates (at R_s)
 Then the impulsive acceleration kicks in, resulting in σ < 1 Log(Γ)₁

Impulsive Magnetic Acceleration: single shell propagating in an **external medium** acceleration & deceleration are tightly coupled (JG 2012)

$$\rho_{\text{ext}} = AR^{-k}$$

$$R_{\text{cr}} \sim R_0 \Gamma_{\text{cr}}^2 \sim \left(\frac{ER_0}{Ac^2}\right)^{\frac{1}{4-k}}$$

 \mathbf{L} "Thin shell", low- σ : strong reverse shock, peaks at $\gg T_{GRB}$ **Π**. "Thick shell", high-σ: weak or no reverse shock, $T_{dec} \sim T_{GRB}$ III. like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if ρ_{ext} is very high, e.g. inside a star) II^{*}. if ρ_{ext} drops very sharply

Impulsive Magnetic Acceleration: single shell propagating in an external medium acceleration & deceleration are tightly coupled (JG 2012)

Dynamical Regimes:

I. "Thin shell", low-**σ**: strong reverse shock, peaks at $\gg T_{GRB}$ **II.** "Thick shell", high-**o**: weak or no reverse shock, T_{dec}~T_{GRB} **III.** like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if p_{ext} is very high, e.g. inside a star) II^* . if ρ_{ext} drops very sharply $\sigma_0 = B_0^2 / 4\pi \rho_0 c^2$

$$f_0 = \rho_0 / \rho_{\text{ext}}(R_0) , \ \rho_{\text{ext}} = A R^{-k}$$

 $\Gamma_{\text{cr}} \sim (f_0 \sigma_0)^{1/(8-2k)}$

Dynamical Regimes:

I. "Thin shell", low-**σ**: strong reverse shock, peaks at $\gg T_{GRB}$ **II.** "Thick shell", high-**o**: weak or no reverse shock, T_{dec}~T_{GRB} **III.** like II, but the flow becomes independent of σ_0 IV. a Newtonian flow (if ρ_{ext} is very high, e.g. inside a star) II^* . if ρ_{ext} drops very sharply $\sigma_0 = B_0^2 / 4\pi \rho_0 c^2$

$$f_0 = \rho_0 / \rho_{\text{ext}}(R_0) , \quad \rho_{\text{ext}} = AR^{-k}$$

$$\Gamma_{\text{cr}} \sim (f_0 \sigma_0)^{1/(8-2k)}$$

Many sub-shells: acceleration, collisions (JG 2012b)

For a long lived variable source (e.g. AGN), each sub shell can expand by 1+Δ_{gap}/Δ₀ ⇒ σ_∞ = (E_{total}/E_{EM,∞}-1)⁻¹ ~ Δ₀/Δ_{gap}
 For a finite # of sub-shells the merged shell can still expand
 Sub-shells can lead to a low-magnetization thick shell & enable the outflow to reach higher Lorentz factors

Jet propagation inside the progenitor star

- The Jet develops a slowly moving 'head'
- At the head matter decelerates by a reverse shock & flows sideways forming a high-pressure cocoon that collimates the jet
- At the head there is a pressure balance between the shocked jet material & external medium
- The engine must continuously work until the jet breaks out
- After the jet breaks out it can freely accelerate & form the GRB

Jet propagation inside the progenitor star

- The Jet develops a slowly moving 'head'
- At the head matter decelerates by a reverse shock & flows sideways forming a high-pressure cocoon that collimates the jet
- At the head there is a pressure balance between the shocked jet material & external medium

Breakout time (Bromberg et al. 2011)

Jet propagation inside the progenitor star highly magnetized vs. hydrodynamics jets

- The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \Rightarrow the jet converges near its head
- Narrower head \Rightarrow larger head velocity \Rightarrow faster jet breakout
- Relativistic head \Rightarrow less energy into cocoon & supernova
- The head velocity is independent of the detailed jet structure
 ⇒ simplifies the model & allows (semi-) analytic solutions

Jet propagation inside the progenitor star highly magnetized vs. hydrodynamics jets

- The flow must decelerate to match it's head velocity, but for high- σ a shock can't do it \Rightarrow the jet converges near its head
- Narrower head \Rightarrow larger head velocity \Rightarrow faster jet breakout
- Relativistic head \Rightarrow less energy into cocoon & supernova
- The head velocity is independent of the detailed jet structure simplifies the model & allows (semi-) analytic solutions
- Levinson & Begelman (2013): current-driven instabilities dissipate most of the magnetic field → a hydrodynamic jet
 This is still unclear & strongly effects the jet dynamics

Afterglow Jet Dynamics: Analytic vs. Numerical

 Analytic results (Rhoads 1997, 99; Sari, Piran & Halpern 99): exponential lateral expansion at R > R_{jet} e.g. Γ~ (c_s/cθ₀)exp(-R/R_{jet}), θ_{jet} ~ θ₀(R_{jet}/R)exp(R/R_{jet})
 Supported by a self-similar solution (Gruvinov 2007)
 Hydro-simulations: very mild (logarithmic) lateral expansion while jet is relativistic (JG et al. 2001)

Generalized Analytic model (JG & Piran 2012) Lateral expansion: 1. new recipe: $\beta_{\theta}/\beta_{r} \sim 1/(\Gamma^{2}\Delta\theta) \sim 1/(\Gamma^{2}\theta_{i})$ (based on $\hat{\beta} = \hat{n}$) 2. old recipe: $\beta_{\theta} = u_{\theta}/\Gamma = u_{\theta}^{\prime}/\Gamma \sim \beta_{r}/\Gamma$ (assumes $u_{\theta}^{\prime} \sim \beta_{r} \sim c_{s}$) Generalized recipe: $\frac{d\theta_{j}}{d\ln R} = \frac{\beta_{\theta}}{\beta_{r}} \approx \frac{1}{\Gamma^{1+a}\theta_{j}^{a}}, \quad a = \begin{cases} 1 & (\beta = \hat{n}) \\ 0 & (u_{\theta} \sim 1) \end{cases}$ • New recipe: lower β_{θ} for $\Gamma > 1/\theta_0$ but higher β_{θ} for $\Gamma < 1/\theta_0$ Does not assume $\Gamma \gg 1$ or $\theta_i \ll 1$ (& variable: $\Gamma \rightarrow u = \Gamma \beta$) Sweeping-up external medium: trumpet vs. conical models

Comparison to Simulations (JG & Piran 2012)
Main effect of relaxing the Γ ≫ 1, θ_j < 1 approximation: quasi-logarithmic (exponential) lateral expansion for θ₀ ≥ 0.05
There is a reasonable overall agreement between the analytic generalized models and the hydro-simulations
Analytic models: over-simplified, but capture the essence

2D hydro-simulation by F. De Colle et al. 2012, with $\theta_0 = 0.2$, k = 0

Afterglow jet in stratified external media (De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

Previous simulations were all for k = 0 where ρ_{ext} ∝ R^{-k}
 Larger k (e.g. k =1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

Afterglow jet in stratified external media (De Colle, Ramirez-Ruiz, JG & Lopez-Camara 2012)

Previous simulations were all for k = 0 where ρ_{ext} ∝ R^{-k}
 Larger k (e.g. k =1, 2) are motivated by the stellar wind of a massive star progenitor for long GRBs

At the same Lorentz factor larger k show larger sideways expansion since they sweep up mass and decelerate more slowly (e.g. M ∝ R^{3-k}, Γ ∝ R^{(3-k)/2} in the spherical case) and spend more time at lower Γ (and β_θ decreases with Γ)

The shape of the jet break

- Jet break becomes smoother with increasing k (as expected analytically; Kumar & Panaitescu 2000 – KP00)
- However, the jet break is significantly sharper than found by KP00 ⇒ better prospects for detection
- Varying $\theta_{obs} < \theta_0$ dominates over varying $k \leq 2$

Lightcurves

Temporal index

Late time Radio emission & Calorimetry

- The bump in the lightcurve from the counter jet is much less pronounced for larger k (as the counter jet decelerates & becomes visible more slowly) \Rightarrow hard to detect
- The error in the estimated energy assuming a spherical flow depends on the observation time t_{obs} & on k

Radio Lightcurves

Conclusions:

Magnetic acceleration: likely option worth further study Jet propagation in star: can help probe jet magnetization **Jet lateral expansion:** analytic models & simulations agree • For $\theta_0 \ge 0.05$: quasi-logarithmic (exponential) lateral expansion • For $\theta_0 \ll 0.05$: an early exponential lateral expansion phase (but such narrow GRB jets appear to be rare) ◆ Jet becomes first sub-relativistic, then (slowly) spherical I Jet in a stratified external medium: $\rho_{ext} \propto R^{-k}$ for k = 0, 1, 2larger k jets sweep-up mass & slow down more slowly \Rightarrow sideways expansion is faster at $t < t_i \&$ slower at $t > t_i$ \Rightarrow become spherical slower; harder to see counter jet \blacklozenge Jet break is smoother for larger k but possibly detectable • Jet break sharpness affected more by $\theta_{obs} < \theta_0$ than $k \leq 2$ Radio calorimetry accuracy affected both by t_{obs} & k