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Abstract

In an environment with dynamic arrivals of players who wish to purchase only one of multiple
identical objects for which they have a private value, we analyze a sequential auction mechanism
with an activity rule. If the players play undominated strategies then we are able to bound the
efficiency loss compared to an optimal mechanism that maximizes the total welfare. We have no
assumptions on the underlying distribution from which the players’ arrival times and valuations
for the object are drawn. Moreover we have no assumption of common prior on this distribution.
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1 Introduction

Models of dynamic mechanism design are attracting much attention in recent years, partly be-
cause of the new electronic markets over the Internet, that are much more dynamic than classic
marketplaces. For example, Athey and Segal (2007) and Bergemann and Välimäki (2007) study
a general multi-period allocation model, in which a designer needs to perform allocation decisions
in each period t = 1, 2, ..., and players have private values for the different allocations, that may
be stochastic and time-dependent. This model includes the possibility that players may arrive
dynamically over time, by setting their valuations to zero until their “arrival time”. This property
of dynamic arrivals seems to be particularly appealing when one considers the model of sequential
auctions, which is a special case of the general model. Indeed, the assumption of a static set of
players throughout the sequence of auctions, which is the prevailing assumption in the classic lit-
erature on sequential auctions (a long sequence of works, initiated by Milgrom and Weber (2000)),
seems to be problematic for the Internet reality. A recent paper by Said (2008) shows explicitly
the connection between the general results of Bergemann and Välimäki (2007) and the model of
sequential ascending auctions. These results show that full efficiency can be achieved under the
assumption that the mechanism has correct information about future arrivals1.

Another problematic aspect of the classic works on sequential auctions is the common-belief
assumption, used to construct a Bayesian-Nash equilibrium. It has long been argued that assuming
common knowledge of a prior (let alone a common belief) is problematic, see for example Wilson
(1987) and Bergemann and Morris (2005). Requiring the players to be coordinated with respect
to their beliefs about the types (and number) of players that will arrive in the future seems like an
unacceptably strong and unrealistic assumption. Moreover, such an assumption critically affects the
nature of the results regarding the efficiency of the mechanism. With common beliefs, full efficiency
can be achieved. In reality, conflicting beliefs, and perhaps even contradicting beliefs (i.e. that
cannot be derived from a common prior) do exist in many dynamic settings. This obviously leads
to efficiency loss. An important question in such settings is therefore how much efficiency may be
lost, and what is the effect of the specifics of the mechanism on reducing this loss.

This work describes an analysis of sequential auctions with dynamic arrivals, allowing players
to have different, even contradicting, beliefs. As an example, let us consider the following scenario.
A seller conducts two ascending (“English”) auctions, one after the other. There are two players
that participate in the first auction, each player desires one of the two items. The players do not
discount time, and they are indifferent between the two items. There is a certain probability that
a high-value bidder will join the second auction, and in this case the loser in the first auction will
also lose the second auction. Clearly, if a player assigns a high probability to this event, she will be
willing to compete (almost) up to her value in the first auction while if she assigns a low probability

1In Bergemann and Välimäki (2007) this is achieved by assuming that players report, before they arrive, the
probability of their future arrival, while Said (2008) abstracts this from the mechanism by assuming a common-prior.
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to this event, she will stop competing in the first auction at a low price. If the two players have
significantly different beliefs regarding this event, one will retire early and the other one will win.
This has a negative effect on the social welfare when the player with the higher value incorrectly
under estimates the probability of the new second-period arrival. This loss of efficiency is inherent
to the dynamic setting, a real phenomena that we do not wish to ignore, but rather to highlight
and analyze. Thus, an important conceptual motivation of our work is the exploration of a way to
correctly quantify the efficiency loss experienced in dynamic settings with incomplete information
and no common priors.

To describe our exact results, let us state our model slightly more formally: an auctioneer
conducts a sequence of K ascending auctions. Players have quasi-linear utilities and private values,
with unit-demand, and are indifferent between the K items that are being sold. Each player has an
“arrival time”, and cannot participate in the auction (or communicate with the auctioneer) before
that time. The efficient outcome maximizes the sum of values of players that receive an item (under
the requirement that a player cannot be allocated an item before her arrival time). We ask how
low can the sum of values be (w.r.t. the optimum) when the allocation is a result of the sequential
auction game of incomplete information. As we do not make any assumptions on the priors of the
players, we cannot hope to obtain equilibrium strategies in this dynamic setting (as the example
above demonstrates). Instead, our analysis reasons about the efficiency loss in two steps: first, we
characterize the set of all undominated strategies and, second, we bound the efficiency loss over all
tuples of undominated strategies. To obtain a “nice” characterization of all undominated strategies,
we add a simple activity rule to the ascending auction – players that drop out “too early” in the
auction cannot continue to participate in future auctions (clearly, one has to be careful about what
is “too early”, as disqualifying high-value players will intensify the efficiency loss).

The efficiency loss over this set of undominated strategies is bounded using a worst-case analysis:
imagine an adversary that is allowed to determine the number of players, their arrival times, their
values, and their (undominated) strategies, in order to “fail” the auction. We ask what is the
lowest possible ratio between the actual sum of values and the optimal sum of values that such
an adversary can achieve. We show that no matter how the parameters are set, as long as the
chosen strategies are undominated, the sequential auction will obtain at least 50% of the optimal
efficiency, i.e. the above mentioned ratio is at least one-half.

What to make of this number - is it low or high? One possible intuitive answer is that, since
the worst-possible case is a 50% loss, then on average the loss should be much smaller. To make
this intuition more rigorous, we perform the following analysis, for the case of two items. Assume
an adversary with powers almost as before, except that, instead of assigning arbitrary worst-case
values to the players, the adversary now has to choose (any) probability distribution, and draw the
values independently from this distribution. She can set all other parameters freely, as before. We
show that, now, the ratio between the expected welfare of the sequential auction and the expected
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welfare of the optimal allocation is at least 70%. Of-course, this bound is achieved only for the
worst possible distribution. For example, if we take the uniform distribution over some interval
then the ratio will increase to 80%. One can continue further, and obtain the other parameters in
a distributional way, and this will most probably decrease the efficiency loss even further.

This average-case analysis seems to strengthen the basic intuition, that a worst-case bound of
50% is a “good” bound, but we do not argue that the sequential ascending auction obtained is the
“best” auction; this is a matter of further study. Our main argument is that the issue of different
and conflicting beliefs and its influence on the nature of results in the dynamic setting, should be
given more weight, and that our analysis is a necessary first step in this direction.

The results are based on our ability to identify a simple property that holds for every undomi-
nated strategy of a player: if a player plays an undominated strategy she will never drop out “too”
early. In order to achieve this property we must introduce an activity rule. We leave for future
research the question whether the activity rule defined here is an “optimal” activity rule in this set-
ting. We wish to highlight the fact that it allows us to analyze the players’ behavior and to bound
the efficiency loss. Many researchers have argued in favor of using activity rules (e.g. Ausubel and
Milgrom (2002)), for different reasons, and we show how this helps to bound the efficiency loss.

Our set of results is different than most results in the auction theory literature in two aspects:
(i) it does not obtain equilibrium behavior, and (ii) it does not produce a dichotomic judgement,
whether the outcome is efficient or not, but rather it produces a quantitative judgement, of how
much efficiency is lost. In the context of first-price single-item auctions, a recent line of research
by Battigalli and Siniscalchi (2003), Dekel and Wolinsky (2003), and Cho (2005) advocates the shift
from equilibrium analysis to an analysis that is based on more fundamental assumptions. They
assume that bidders are rational and strategically sophisticated, but they avoid the assumption
that bidders share common beliefs. The first difference mentioned above follows their footsteps.
However, these works still produce a dichotomic distinction, whether the outcome is efficient or
not. We argue that, at least in the context of dynamic settings, such a distinction is too coarse. To
differentiate between the many popular auction methods that we see in the real world, we advocate
a quantitative assessment of the efficiency loss, as exemplified here.

While we analyze an existing (popular and natural) method to auction a set of items, a different
approach would be to design a new mechanism that exhibits dominant strategies (or ex-post equilib-
rium) and a small efficiency loss in that detail-free equilibrium. This approach was largely adopted
in the computer science literature, starting with Lavi and Nisan (2004). For example, Hajiaghayi,
Kleinberg, Mahdian and Parkes (2005) show that if prices are charged only after all auctions end
(and depend on all the sequence of the auctions) then dominant-strategies can be recovered. Cole,
Dobzinski and Fleischer (2008) show that if we can restrict each player to participate in only one
particular auction, then a certain choice rule of the “right” auction in which to participate will
guarantee a total efficiency loss of at most 50%. Cavallo, Parkes and Singh (2007) suggest an im-
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provement to the marginal contribution mechanism of Bergemann and Välimäki (2007), enabling
players to be completely inaccessible before their arrival time. This current paper is mostly related
to the work of Lavi and Nisan (2005), who perform a worst-case analysis over a large class of
strategies (in contrast to all the previous papers in the CS literature), in a job-scheduling model
that is a generalization of our sequential auctions model. Our focus here on the special case of
sequential auctions enables us to give a significantly tighter game-theoretic justification to the set
of strategies we analyze, as well as to significantly improve the bounds on the efficiency loss that
we obtain.

Another modelling approach to dynamic mechanism design is taken by Gershkov and Moldovanu
(2007). In their setting, players appear according to some fixed and known stochastic process (e.g. a
Poisson arrival rate), and are impatient, i.e. must either be served upon their arrival, or not be
served at all. This structure enables Gershkov and Moldovanu (2007) to characterize optimal
dynamic mechanisms, with respect to both the social welfare and the seller’s revenue.

The remainder of this paper is organized as follows. In section 2 we define our sequential
auctions model, and analyze the resulting set of undominated strategies. Section 3 describes an
analysis of the worst possible ratio between the resulting welfare in the sequential auction vs. the
optimal welfare, assuming players play undominated strategies. Section 4 shows, for the case of
two items, that this bound is significantly higher if players’ values are drawn independently from
some fixed distribution.

2 Strategic Analysis

2.1 Preliminaries

We study a setting where a seller sells K identical and indivisible items using a sequence of K

single-item ascending auctions. The set of bidders is I = {1, .., N}.2 Each bidder has unit demand,
i.e. desires exactly one item out of the K items. We assume the standard model of private values
and quasi-linear utilities: a bidder has value vi for receiving an item; her utility is vi−pi if she wins
an item and pays pi, and 0 if she loses. Bidders do not discount time – they are indifferent between
winning the object at auction t or at any other auction in which they participate. The dynamic
character of our setting allows bidders to arrive over time. Thus bidders (physically) cannot all
participate in all auctions. Formally, bidder i’s type includes, besides her value vi, an arrival time
ri which is an integer between 1 and K, indicating that bidder i participates only in the auctions
for items ri, ...,K. The interpretation is that bidder i becomes aware of her need for an item just
before auction ri starts, or that some physical limitations prevent her from participating prior to
that.

Thus, a bidder’s type is a pair θi = (ri, vi), and the set of possible types for bidder i is denoted
2It will be convenient, and more interesting, to assume that N >> K, though our results hold for any N .
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by Θi. In this section and in section 3 we make no assumptions as to how the bidders’ types are
drawn, i.e. they can be drawn from any joint distribution over all tuples of types, or even be set
by an adversary so as to create the worst possible scenario. Moreover we do not assume a common
prior belief for the bidders – they can have different beliefs regarding the underlying distribution
of types. In section 4 we will add the assumption that bidders’ values are drawn independently
from some fixed distribution, as will be detailed there. We will evaluate the auction mechanism
by comparing the resulting social welfare to the maximal possible social welfare, where the social
welfare (also called social efficiency) of a specific allocation is the sum of the winners’ values.

Each ascending auction is formally assumed to be a “Japanese” auction, where a “price clock”
increments continuously and each bidder is free to drop at any price. The last bidder that remains
is the winner, and she pays the price at which the second to last bidder dropped out. If some
bidder drops at a certain price, then other bidders may respond by dropping as well. It will be
convenient to structure the drops so that the bidders drop one at a time, in a well defined order,
as formally described below. We use a “Stopping the Clock” assumption, as in Ausubel (2004),
to describe this cascade of dropping decisions: whenever a bidder drops, the price clock pauses
to enable other bidders’ dropping. The clock then resumes its ascent at the same price where it
stopped. The order in which bidders drop at a given price is important in the description of the
history, and may determine the winner in case all bidders drop one after the other when the price
clock is stopped. During the price ascent, bidders are able to observe how many bidders remain in
the auction, at any price. This property will have a particular importance, as will become clear in
the sequel. Thus, our auction model is of an extensive form game, and a strategy of a bidder is a
function from her type, the history of all previous auctions, and the history of the current auction
up to the current price, that outputs a binary decision whether to drop or to remain.

As a concrete example to this process, consider a single auction with four bidders, that have
values v1 = 5, v2 = 10, v3 = v4 = 8. Assume the bidders are using the following strategies. Bidder
1 remains until her value, bidder 2 remains until her value, or until there remain at most two other
bidders (the earliest of the two events), and bidders 3 and 4 remain until their value, or until there
remain at most one other bidder. Given these strategies, the auction will proceed as follows. The
price clock will ascend until it reaches a price of 5. Bidder 1 will then drop. The clock will stop to
allow other bidders to drop, and indeed, bidder 2 will consequently drop (as after bidder 1 dropped
only two other bidders, 3 and 4, still remain). Immediately after bidder 2 drops, both bidder 3
and bidder 4 will announce that they wish to drop. One of them will be chosen to actually drop,
depending on the tie-breaking rule that is being used. The winner will be the remaining player.
Her price will be 5. Note that, although all bidders dropped at 5, the tie-breaking rule affects the
outcome only with respect to the choice between bidders 3 and 4.

The next subsection gives a more formal description of this process. Section 2.3 discusses the
possible strategic choices of the bidders, showing that early drops (before one’s value) may be a
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reasonable strategic choice. We introduce an activity rule to enable a tighter set of undominated
strategies in section 2.4, and give the analysis itself in section 2.5.

2.2 Formalities

Recall that we conduct K sequential auctions, one for each item. The t’th auction (for any t =
1, ...,K) can be described by the sequence of bidder drops, as follows. The price clock ascends
continuously until a bidder (or several bidders) announce that they wish to drop, at a price clock p.
In this case the price clock is stopped, and one of these players is chosen to be the first “dropper”
at price p. More bidders may wish to drop, either as a consequence of this drop, or independently
of this event, because they already declared they wish to drop, but were not chosen by the tie-
breaking rule. To capture this, the auctioneer asks all bidders simultaneously if they now wish to
drop. All bidders reply simultaneously with a “yes” or “no”, and again if more than one bidder
wishes to drop the tie-breaking rule chooses one of them. The second bidder who dropped out is
termed the second “dropper” at price p. This continues until no more players wish to drop, and the
price clock then resumes its ascent. We assume that the number of droppers and their identities are
public information, but the announcements themselves are not public (and so if a player announced
that she wants to drop, but was not chosen to do so, the other players do not observe this). The
tie-breaking rule is a total preference order on the set of bidders (i.e. a binary relation on the set
of bidders which is reflexive, antisymmetric, transitive and complete) and is assumed to be public
information as well.3

We denote by Dt(p, k) the k’th dropper at price p in the t’th auction (this is a singleton set).
Consider for example the scenario from above. Then D1(5, 1) = {1}, D1(5, 2) = {2}, D1(5, 3) = {3}.
The total number of droppers at price p is denoted by st

p (note that this is always smaller than
the number of players). We have that st

p = 0 if and only if no bidder dropped at p, and then
Dt(p, 0) = ∅. If st

p > 0 then Dt(p, k) 6= ∅ for every k = 1, ..., st
p.

Let Xt denote the set of bidders that participate in auction t, and xt = |Xt|.4 The entire
information on a single auction can be described by the prices at which Dt(·, ·) is nonempty (a
finite number of prices), the values of Dt(·, ·) in these prices and the preference order that was used
to determine the identity of Dt(·, ·). The process of the t’th auction up to price p for which the

3A deterministic tie-breaking rule is using the same preference order throughout the auction while a random tie-
breaking rule is also allowed and is using a (possibly randomly chosen) different preference order each block. However
we assume that the auctioneer makes public the order that was chosen at every step (after the dropper was chosen).

4Later on we impose an activity rule which will cause this set to be possibly different than the set of all non-winners
with ri ≤ t.
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price clock stopped, and block k within p is fully described by the tuple (history) 5,6

ht(p, k) = (t, Xt, (p′, (Dt(p′, k′),�(p′,k′))k′=1,...,st
p′

)p′∈< s.t. st
p′>0 and p′<p ,

(
Dt(p, k′),�(p,k′)

)
k′=1...k

)

By slightly abusing notations we write (p′, k′) ∈ ht(p, k) to denote the fact that the history
ht(p, k) contains a k′ dropper at price p′. The set of bidders that are active in the t’th auction, when
the price is p and after k players dropped at p is defined as It(p, k) = Xt \ ∪(p′,k′)∈ht(p,k)Dt(p′, k′).
Auction t ends when exactly one bidder remains (even if she is just about to drop next). Thus, if
we let p∗t denote the end price of auction t, then p∗t is the price p for which there exists an index
k ≥ 1 such that |It(p, k)| = 1. The winner at auction t is the last player to remain, and we denote
this player by i∗t ; she pays p∗t for the object.

A history of the entire game up to a point (t, p, k) fully summarizes the game and is the tuple
h(t, p, k) = ((h1(p∗1, s

1
p∗1

), ..., ht−1(p∗t−1, s
t−1
p∗t−1

), ht(p, k))). Let H denote the set of all (non-terminal)
histories. A pure strategy for bidder i is a function bi(θi, h) : Θi×H → {D,R} that determines for
any history h whether bidder i drops or remains. Note that even if the bidder’s strategy tells her
to drop at a certain point she might not be chosen to be the dropper at that point.

2.3 Early drops

At this point it may be useful to illustrate the fact that bidders may indeed find it beneficial to
drop, in a certain auction, well before the price reaches their value. Consider an instance with two
items (K = 2) and three bidders that arrive at time 1 (i.e. r1 = r2 = r3 = 1). One bidder has a
low value, v1 = L, and the other two bidders have much higher values, say both have a value of
v2 = v3 = H >> L. Assume that bidder 1 plays the strategy “in both auctions remain until your
value” i.e. for every p, t, k, b1(θ1, h(t, p, k)) = D if and only if p ≥ v1. If the two high bidders 7 will
remain in the first auction until their value, the utility of the bidder who wins the first item will
be zero: they will both want to drop at price H, and one of them will be determined the winner
according to the tie-breaking rule. She will pay H. If that one will drop out earlier, while the other
one continues to play the same strategy, she will lose the first auction, but will win the second
auction for a price of L, if in the second auction she remains until her value (bidder 1 will lose the
first auction and will participate in the second). In fact, under the simplifying assumption that the
high bidders have almost complete information about the above situation, and the only unknown is
the value L, the symmetric equilibrium strategy (there are other nonsymmetric equilibria) of each

5If the tie-breaking rule is deterministic, then it is part of the description of the mechanism and can be omitted
from the detailed description of the histories.

6If p is a price for which no player announced her will to drop out, then the history at p is given by

ht(p, 0) = (t, Xt, (p
′, (Dt(p

′, k′),�(p′,k′))k′=1,...,st
p′

)
p′∈< s.t. st

p′>0 and p′<p
, p)

7Throughout, we use “high bidders” instead of high-value bidders to shorten notation.
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of the high bidders would be “drop out in the first auction when exactly one other bidder remains,
then in the second auction, remain until your value”. Playing this will enable both high bidders to
win, each for a price of L, as explained above.

On the other hand, since we assume incomplete information, a bidder that drops early in the
first auction faces the risk of losing in the second auction because additional high-value bidders
may join in. For example, suppose there are four bidders in the above example, and that the fourth
bidder arrives at time 2 (r4 = 2). Suppose that there is some uncertainty about v4: with some
probability p, v4 = 2 ·H, and with probability 1− p the value is v4 = L. Then it is no longer clear
when bidders 2 and 3 should choose to drop in the first auction, since if bidder 4 indeed has a high
value, bidders 2 and 3 will not win the second auction. This point can be made even sharper since
we do not assume common priors. If bidder 2’s belief assumes a very small p, then it seems likely
that she will drop out early in the first auction. If bidder 3 assumes a very large p, then it seems
likely that she will remain almost until her value in the first auction. One can complicate things
much further by increasing the level of uncertainty.

This example shows that a bidder can rationalize any dropping point, in the first auction, lower
than her value and higher than the point where exactly one other bidder remains active. We
intentionally emphasize these two strategies since later on we show that, if bidders indeed restrict
themselves to such strategies, then the loss of efficiency (as a result of the incomplete information)
can be bounded. However, clearly, some strategic choices of the bidders will cause an unbounded
efficiency loss. In particular, this will happen if bidders drop very early in the auction. In the
extreme, if we have K items and all bidders drop at price 0 in all but the last auction, clearly
the obtained welfare cannot be satisfactory. Unfortunately (and quite surprisingly) such extreme
strategies can be weakly undominated in the most basic format of sequential auctions as described
above. To rule them out, we introduce a certain “activity rule”, as described next.

2.4 Adding an activity rule

The above discussion shows that there are at least two undominated strategies in the sequential
auction: at each auction t, either: (1) drop when price reaches value, or (2) drop when the number
of remaining bidders is equal to the number of remaining auctions, or when price reaches value,
the earliest of the two. Unfortunately, there may be other undominated strategies, that result in
an even earlier drop, even when the price is 0, and many players are still present (see Appendix A
for a concrete example). These strategies will clearly damage the obtained social efficiency, as if
many players drop at a price of 0, there is no way to guarantee that the high players win. A
simple activity rule can fix this problem of the original formulation. We want to force the bidders
to compete at least until the point where the number of remaining players is equal to the number
of remaining items. We achieve this by basically saying that when the t’th auction ends, only the
K − t + 1 highest bidders are qualified to participate in the next auction (note that after auction t
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there remain K − t additional auctions):

A sequential auction with an activity rule. Let (par
t , kar

t ) be the first point in auction t

where there remain at most K−t+1 active bidders. In other words, |It(par
t , kar

t )| ≤ K−t+1,
and for any other point (p, k), |It(p, k)| > K − t + 1 if and only if p < par

t or p = par
t and

k < kar
t . We modify the starting condition for the next auction (auction t + 1), as follows:

• The price clock at auction t + 1 starts from price par
t .

• Bidders not in It(par
t , kar

t ) are disqualified from participating in auction t + 1. Equiva-
lently,

Xt+1 = It(par
t , kar

t ) \ {i∗t } ∪ {j | rj = t + 1}.

Note that if xt < K − t + 1, then the activity rule does not have any effect, i.e. Xt+1 = Xt \ {i∗t } ∪
{j | rj = t + 1}. However, if xt > K − t + 1, then some players will be disqualified from continuing
to the next auction, and the cutoff point (par

t , kar
t ) will have |It(par

t , kar
t )| = K − t + 1.

We denote by Qt = It(par
t , kar

t ) the set of players at auction t that are qualified to continue to
auction t + 1. This set contains also the winner of auction t that will eventually not participate in
auction t + 1.

We will show that this activity rule enables a good characterization of the set of undominated
strategies: in every auction t = ri, ...,K, bidder i does not drop before there remain at most K−t+1
active bidders, unless the price reaches her value before that. As a consequence, we get that the
bidders with the K − t + 1 highest values among all the bidders that arrived up to time t and have
not won yet are qualified to continue on to auction t + 1 (besides of course the winner, that also
belongs to this set). In the next sections we show that this property is sufficient to bound the
efficiency loss of the auction.

The purpose of setting the start price of auction t + 1 to par
t is to preserve the results of the

past competition in future rounds. By disqualifying all but the K − t + 1 highest bidders, we
reduce future competition in the following auctions. The price par

t is the exact price at which the
disqualified bidders stopped competing, while the qualified bidders were still willing to compete.
Thus, the start price of auction t + 1 reflects the competition at auction t, and we do not lose by
disqualifying some bidders. Moreover, as our analysis shows, the activity rule actually increases the
competition at time t, since players that do not compete at this auction will not be allowed to enter
the next auction. This enhanced competition will prevent the social welfare from deteriorating
towards an infinitesimal fraction of the optimal one, no matter what undominated strategies the
players choose to play.

Given this, one may be tempted to claim that a more demanding activity rule will yield an even
better result. For example, one can disqualify all participants of auction t from participating in
auction t + 1. This will clearly yield a higher price in auction t. However, by this, we may end up
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with many unsold items. For example, if all bidders arrive at time 1, this alternative rule will result
in K − 1 items being unsold, while with our activity rule all items will always be sold8. Therefore,
if we care about social efficiency, our cutoff point seems to be the correct one.9

Another justification for this exact cutoff point comes from looking at the case where all bidders
are known to arrive at time 1. Suppose that all bidders play the strategy that in each auction t, the
bidder drops when there remain exactly K − t + 1 bidders, or when the price reaches the bidder’s
value (the earlier event of the two). Notice that when all bidders arrive at time 1, the end result
of this strategy will be equivalent to Vickrey’s result: the K highest bidders win, each pays the
(K + 1)’th highest value. Thus, if it is common knowledge that all bidders arrive at time 1, then
the strategy of dropping out when exactly K − t + 1 bidders remain or when the price reaches the
value (the earlier) is an ex-post equilibrium. Putting this differently, our cutoff point is the highest
cutoff that does not rule out the possibility of Vickrey prices. As explained earlier, when bidders’
arrivals are scattered throughout the different auctions, and their arrival times are unknown to the
other bidders, it may be rational for a bidder to remain in auction 1 even when less than K − 1
other bidders remain active. Our analysis quantifies the possible efficiency loss in this case.

One immediate property of the activity rule, that will become important later, is:

Proposition 1 If |Xt| < K − t + 1 then no player was disqualified at any auction s ≤ t.

Proof. We will prove that, if a player is disqualified at auction s then, for every t ≥ s, |Xt| ≥
K − t + 1. We prove this by induction on t. For t = s, since some player was disqualified, then by
definition |Xs| ≥ K − s + 1. Assume the claim is true for t, and let us verify it for t + 1. Since
|Xt| ≥ K−t+1 then by definition |Qt| = K−t+1; hence |Xt+1| ≥ |Qt|−1 = K−t = K−(t+1)+1,
and the claim follows.

2.5 Analysis of undominated strategies

We start by showing that the sequential auction with our activity rule reduces the possible strategic
choices of the bidders, so that the weakly undominated strategies are of the following form: in
auction t = ri, ...,K, bidder i does not drop before there remain at most K − t + 1 active bidders,
unless the price reaches her value before that.

Proposition 2 Suppose bidder i plays some weakly undominated strategy bi(·). Then, in any
auction t = ri, ...,K, bidder i does not drop before there remain at most K − t + 1 active bidders,
unless the price reaches her value before that. More formally, if bi(·) is undominated, then it
satisfies:

bi((ri, vi), h(t, p, k)) = D implies |It(p, k)| ≤ K − t + 1 or p ≥ vi.
8Unless no player shows up for some auction and all players that arrived previously are already winners.
9An interesting question, that we leave for a later study, is whether a higher cutoff point can increase the seller’s

revenue.
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Proof. Suppose by contradiction that for some history h′, at some point (t′, p′, k′), we have
bi((ri, vi), h′(t′, p′, k′)) = D, but It′(p′, k′) > K − t′ + 1 and p′ < vi. We will argue that, if player i

indeed dropped as a result of this strategy, then clearly she could have stayed until her value, and
if she did not drop out (because she was not chosen by the tie-breaking rule), then her action was
ignored; declaring R will make no difference.

Formally, let Dh
t (p, k) denote the player who dropped at the point (t, p, k) in history h, and let

i �(p,k) Dh
t (p, k) denote the fact that the tie-breaking rule at (p, k) prefers i to Dh

t (p, k). We will
argue that the following strategy b̄i(·) weakly dominates bi(·):

b̄i((ri, vi), h(t, p, k)) =



R h′(t′, p′, k′) = h(t, p, k)

R h′(t′, p′, k′) is a prefix of h(t, p, k)
and i �(p,k) Dh

t (p, k) and p < vi

D h′(t′, p′, k′) is a prefix of h(t, p, k)
and i �(p,k) Dh

t (p, k) and p ≥ vi

bi((ri, vi), h(t, p, k)) otherwise

In words, on histories that do not start with h′(t′, p′, k′), b̄ is identical to b. For the history
h′(t′, p′, k′), b̄ announces ”remain” instead of ”drop”, and from then on it follows one of the two
options: (1) if player i is preferred over the player that actually dropped at t′, p′, k′ (i.e. player i

would have dropped if she would have announced “drop”) then b̄ remains if and only if the price is
smaller than the value, in auction t and in all following auctions, or (2) if the player that actually
dropped at t′, p′, k′ is preferred over player i (i.e. player i would not have dropped even if she would
have announced “drop”), then b̄ is identical to b. (In addition, b̄ is identical to b for all types
different than (ri, vi)).

Let us verify that b̄i(·) weakly dominates bi(·). For any history such that h′(t′, p′, k′) is not a
prefix of h(t, p, k), the strategies are identical. For a history with a prefix h′(t′, p′, k′), we have two
cases: (1) if Dh

t′(p
′, k′) is preferred over i, then b̄ will yield an identical result to b’s result, as the

only difference is at the point (t′, p′, k′), and i’s announcement at this point is completely ignored
by the auction and by the other players; (2) if i is preferred over Dh

t′(p
′, k′), then in bi(·) player i

will be disqualified, and will thus obtain a zero utility, while b̄i(·) yields a nonnegative utility, since
it never remains above vi. A strictly positive utility is obtained, e.g. in the situation where vi is the
maximal value among all remaining players, and they all remain exactly until their price reaches
their value.

Proposition 3 Any undominated strategy bi(·) satisfies:

|It(p, k)| > K − t + 1 and p ≥ vi implies bi((ri, vi), h(t, p, k)) = D

12



for any history h.

Proof. Suppose by contradiction that the above condition is violated, and consider the following
strategy:

b̄i((ri, vi), h(t, p, k)) =

{
D |It(p, k)| > K − t + 1 and p ≥ vi

bi((ri, vi), h(t, p, k)) otherwise

We argue that b̄i weakly dominates b: on any history such that the condition of the claim is not
violated, the two strategies are identical. On any history in which the condition of the claim is
violated, say at auction t, note that by the definition of the activity rule, the price will be larger
than vi throughout all remaining auctions. Thus the best possible utility for player i is zero, and the
strategy b̄ will indeed yield a zero utility, since it will announce ”drop” when the price at auction
t will reach vi.10

These two propositions imply that, as long as there exist more than K−t+1 remaining players,
a player will drop if and only if the price reaches her value (assuming players play some tuple of
undominated strategies). As a result, the winner’s value is one of the (K − t + 1)-highest values of
the bidders in Xt, and, moreover, the other (K − t)-highest values belong to the bidders that are
qualified to participate in the next auction. We next wish to claim something slightly stronger – that
Qt contains the (K−t+1)-highest values among all bidders that have arrived up to time t and have
not won yet. This is (possibly) a larger set than Xt, since it also contains all the disqualified bidders
from previous auctions. Formally, for the following, we assume any fixed profile of types and fixed
tuple of undominated strategies. Denote by Λt the set of all bidders that arrived at or before auction
t and did not win any of the items 1, .., t−1, i.e. Λt = {j ∈ I | rj ≤ t and j 6= i∗k for k = 1, ..., t−1 }.

Proposition 4 Suppose all bidders play an undominated strategy. Then, for any two players
i ∈ Λt \Qt and j ∈ Qt, we have vj ≥ vi.

Proof. We first show that for i ∈ Xt \Qt and j ∈ Qt the claim holds: by the above propositions,
in any undominated strategy, while more than K − t + 1 players remain, a player drops if and only
if her value is equal to the price. Thus all players not in Qt have values smaller or equal to par

t ,
and all players in Qt have values greater or equal to par

t , hence vj ≥ vi. Note that this also implies
that the K − t + 1 highest-value bidders in Xt belong to Qt.

We now prove the claim by induction on t. For t = 1, Λt = Xt and the claim follows from the
above argument. Assume the claim is correct for any t′ < t, and let us prove it for t. If i ∈ Xt

then again the above argument holds. Otherwise i ∈ Λt \Xt, which implies that i arrived strictly
before time t and was disqualified at or before time t− 1. Note that by proposition 1 we have that

10With a random tie-breaking rule, b may sometimes yield a negative utility, as it can be that all players will drop
before i, forcing her to pay more than her value. A deterministic rule is less effective in this respect.
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|Qt−1| = K − (t − 1) + 1. Since player i was disqualified, we have i ∈ Λt−1 \ Qt−1. Let j′ be the
player with minimal value in Qt−1. By the induction assumption we have that vj′ ≥ vi. There are
K − t + 2 players in Qt−1, out of them K − t + 1 continue to auction t (i.e. belong to Xt), all with
values larger or equal to vj′ . Thus, again by the argument in the first paragraph, any player j ∈ Qt

has vj ≥ vj′ ≥ vi, and the claim follows.

Corollary 5 If all bidders play a weakly undominated strategy then at each auction t the K− t+1
highest-value bidders in Λt have the same set of values as the bidders in Qt.

3 Worst-Case Analysis

We now turn to analyze the social efficiency of the sequential auction mechanism, under the assump-
tion that players may choose to play any tuple of undominated strategies. To rephrase this more
formally, consider the following definitions. Fix any realization of players’ types θ = (θ1, ..., θn),
where θi = (ri, vi). A subset of players W is a valid set of winners, for a given θ, if there exists an
assignment of items to all players in W such that no item is assigned to more than one player, and
if item t is assigned to player i then t ≥ ri. Let W(θ) denote the set of all valid sets of winners.
The value of some W ∈ W(θ) is v(W, θ) =

∑
i∈W vi. We say that OPT ∈ W(θ) is socially efficient

if v(OPT, θ) = maxW∈W(θ)v(W, θ). Note that a socially efficient assignment is independent of the
profile of strategies of the bidders.

For example, suppose three players and two items, and r1 = r2 = 1, r3 = 2, v1 = ε, v2 = 1, v3 =
1 + ε where 0 < ε < 1. In other words, two players arrive at time 1, with values ε and 1. At time
2 another player arrives with value 1 + ε. Consider the following strategies, in the first auction:
player 1 continues up to her value, while player 2 drops immediately. Recall that for each of these
strategies the property in proposition 2 holds.11 By the auction rules, if these strategies are played,
then player 1 wins the first item and pays zero, while player 2 continues on to the next auction. In
the next auction, both players 2 and 3 remain until their value (assuming they play an undominated
strategy). Thus player 3 wins and pays 1. The winners of the auction are thus A = {1, 3}, and
v(A) = 1 + 2 · ε. The efficient set of winners is OPT = {2, 3}, and v(OPT ) = 2 + ε. Consequently,
when ε approaches zero, the auction results in a loss of half of the optimal social efficiency or,
equivalently, the auction obtains half of the optimal social efficiency.

Is there any other combination of types and undominated strategies that can lead to a lower
ratio (for two items)? In particular, can we decrease this ratio to zero, by appropriately setting
types and strategies? It turns out that this is not possible. To see this, we use the following fact:
for any realization of players’ types, and for any tuple of undominated strategies, the player with
the highest value wins the auction. If this player arrived for the first auction but was not a winner,

11As explained above, player 2 may rationalize such a strategy by the belief that player 1 has a high value, while
player 3 has a low value.
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then by corollary 5 she was qualified for the second auction. In the second auction, since all players
remain up to their values, the highest player wins. In other words, the highest player always wins
one of the items in the auction. Now, denote her value as x. Let A be the set of winners in the two
auctions, and let OPT be a set of winners with maximal social efficiency. By the above argument,
for any profile of undominated strategies, v(A) ≥ x. Since we have two items, |OPT | ≤ 2, and
since for all i, vi ≤ x, we get v(OPT ) ≤ 2 · x. Therefore v(A)/v(OPT ) ≥ 1/2, as claimed.

What happens if we consider more than two items? Can we then find a combination of types
and undominated strategies that leads to a lower ratio? The answer is again no, and the analysis
is slightly more subtle. Recall that the key observation in the two items case is that the highest
player of OPT must win, if all players play undominated strategies. For three items, this is still
true. Unfortunately, the second highest player of OPT need not necessarily win. Nevertheless, we
show that if she does not win, then the third highest must win instead. This structure can be
generalized to any number of items, as follows.

Fix any tuple of types θ. For simplicity of notation we omit repeating θ throughout. Let
OPT be a valid assignment with maximal efficiency, and let A be an assignment that results from
the sequential auction with the activity rule, when all players play some tuple of undominated
strategies. Let vOPT

1 , ..., vOPT
K be the values of the winners of OPT, ordered in a non-increasing

order (i.e. vOPT
1 ≥ vOPT

2 ≥ · · · ≥ vOPT
K ). (we also set vOPT

K+1 = 0 for notational purposes). Similarly,
let vA

1 , ..., vA
K be the values of the winners of A, again in a non-increasing order.

Lemma 6 Fix any index 0 ≤ l ≤ bK
2 c. Then vA

l+1 ≥ vOPT
2·l+1.

Proof. Assume by contradiction that there are at most l winners in A with values that are larger
or equal to vOPT

2·l+1. Let K− t be the last auction at which the winner in A has value strictly smaller
than vOPT

2·l+1. After this auction there remain exactly t more auctions, hence there are at least t

players in A with value at least vOPT
2·l+1. Thus, by the contradiction assumption, we have that t ≤ l.

Let X be the set of players in OPT with the 2 · l + 1 highest values. Let Y = {i ∈ X | ri ≤ K−t}.
Note that |Y | ≥ (2 · l + 1) − t: there are only t auctions after time K − t, so there are at least
(2 · l+1)− t players in X that receive an item in OPT at or before time K− t, and these must have
an arrival time smaller or equal to K − t. Let Z be the set of players in Y that win in A before
auction K − t. Thus Y \ Z ⊆ ΛK−t.

Now, note that |Z| ≤ l − t: from the definition of t, after auction K − t, all winners in A

have values at least vOPT
2·l+1, all players in Z are winners in A and they also have values at least

vOPT
2·l+1; by the contradiction assumption there are at most l such winners in A. Thus |Y \ Z| ≥

(2 · l + 1− t)− (l − t) = l + 1 ≥ t + 1.
Since Y \ Z ⊆ ΛK−t and |Y \ Z| ≥ t + 1, then the (t + 1)-highest-value in ΛK−t is larger or

equal than the minimal value in Y \ Z. By corollary 5, the winner in A at auction K − t (which
belongs to QK−t) must have value at least as large as the (t + 1)-highest-value in ΛK−t (note that
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K − (K − t) + 1 = t + 1). Thus the winner in A at auction K − t has value at least as large as
the minimal value in Y \ Z. But all players in Y \ Z have values at least vOPT

2·l+1, hence this is a
contradiction to our assumption that the winner in A at auction K − t has value strictly smaller
than vOPT

2·l+1.

This lemma immediately implies that v(OPT ) is at most twice v(A): it shows that vOPT
1 , vOPT

2 ≤
vA
1 , and that vOPT

3 , vOPT
4 ≤ vA

2 , and so on and so forth, and thus v(OPT ) ≤ 2·
∑bK

2
c+1

k=1 vA
k ≤ 2·v(A).

We get:

Theorem 7 Fix any tuple of types θ, and any tuple of undominated strategies. Let A be the
resulting set of winners in the sequential auction, and let v(OPT, θ) be the optimal social efficiency
with respect to θ. Then it must be the case that v(A, θ) ≥ 1

2v(OPT, θ).

We point out that the factor one-half lower bounds the actual ratio between the resulting
efficiency of the auction, and the optimal efficiency for any realization of types. While, as the
example in the beginning of the section shows, our analysis is tight in the sense that it is not
possible to replace the factor one-half with a larger factor, it is not clear if such a low ratio will
indeed be achieved for most realizations of types. Indeed, the example involved a specific tuple
of types, and the adversarial choice of the parameter ε and the strategies of the bidders, greatly
influenced the ratio of the resulting efficiency of the auction, to the optimal efficiency. It seems
that, as the worst-case ratio is one-half, the average-case ratio should be much larger. To examine
this conjecture, in the next section we engage in a distributional analysis that verifies this rough
intuition, at least for the case of two items.

4 Average-Case analysis for K = 2

The analysis of the previous section is worst-case in the sense that even if we have an adversary
that chooses the number of players, their arrival times, their values, and their strategies (restricted
to the set of undominated strategies), the bounds on the efficiency loss still hold. Clearly, this
is a very pessimistic viewpoint, and it would be more reasonable to assume that some of these
variables are determined according to some underlying probability distribution. In this section we
will concentrate on the special case where there are only two items for sale, and demonstrate that
even a minor shift from the worst-case setting towards the average-case setting will improve the
efficiency guarantee quite significantly.

Formally, we assume an adversary that is allowed to choose the number of players, n, and their
arrival times. Thus, the adversary determines a number r ≤ n, such that the first r players arrive
for the first auction, and the remaining n− r players arrive for the second auction. The adversary
then chooses a cumulative probability distribution F with some support in [0,∞], and draws the
values of the players from this distribution, i.e. the values are i.i.d. The adversary then determines
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the strategy of each player (as before, the choice of the strategy may depend on the random result
of the players’ values, as to “fail” the auction). Comparing this setup to the setup of the previous
section, we can see that the only change is that now the adversary must draw the players’ values
from some fixed distribution (but the adversary can choose what distribution to use). We will show
that this small modification towards an average-case setup implies a significant increase in the
efficiency of the sequential auction: the auction will obtain at least 70% of the optimal efficiency,
no matter the number of players, their arrival times, the chosen distribution of the players’ values,
and any choice of undominated strategies. Moreover, we will show that this bound is tight, i.e. that
there exists a sequence of distributions that approach this efficiency guarantee in the limit.

The analysis is carried out in the following way. Fix any number of players, n. If n = 1, 2 then
the auction must choose the optimal outcome, and so we assume that n ≥ 3. Fix any number r ≤ n

of players that arrive for the first auction. Again, if r = 1 then the auction must choose the optimal
outcome, and so we assume that r ≥ 2. Now fix any cumulative distribution F . Given these, we
define two random variables: OPTr,n is equal to the highest value among all players that arrive at
time 1 plus the highest value among all the remaining players (including those that arrive at time
2). Note that OPTr,n is indeed equal to the optimal efficiency, given a specific realization of the
values. The second random variable, Ãr,n, is equal to the second highest value among all players
that arrive at time 1 plus the highest value among all the remaining players (including those that
arrive at time 2). By corollary 5 the winner in the first auction has a value larger or equal to the
second highest value among all players present in the first auction, and the winner in the second
auction has the largest value among all remaining players (assuming all players play some tuple of
undominated strategies). Thus, A’s value (the sum of the values of the winners) is always larger or
equal than the value of Ã. Using these settings, the main result of this section is that the expected
efficiency of the sequential auction is at least 70% of the expected optimal efficiency:

Theorem 8 For any choice of the parameters n, r, F , EF [Ãn,r]
EF [OPTn,r] ≥ 0.707.

We prove this in two parts. We first concentrate on the case of a Bernoulli distribution over the
values {0, 1}, and bound the ratio of expectations over all such possible distributions. The second
step is to show that the case of a Bernoulli distribution is, in some sense, the worst possible case.
We show, in a formal way, how to use the obtained bound for the Bernoulli distribution to bound
any other distribution.

4.1 A bound on any Bernoulli distribution

We have n players with i.i.d. values drawn from a Bernoulli distribution such that Pr(vi = 0) = p

and Pr(vi = 1) = 1 − p for some 0 ≤ p < 1. Players 1, ..., r arrive for the first auction (at time
1), and players r + 1, ..., n arrive for the second auction, at time 2, where p, n, r are parameters.12

12Since players are a priori symmetric it does not matter which players arrive at time 1 and which arrive at time
2; the only important parameter is the number of arrivals for each auction.
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We ask what p, n, r will minimize the ratio
EFp [Ãn,r]

EFp [OPTn,r] , where Fp denotes the above-mentioned
Bernoulli distribution.

Observe that, since a player’s value is either zero or one, the random variables OPTn,r and Ãn,r

can take only the values 0, 1, 2. We calculate:

Pr(Ãn,r = 0) = pn,

Pr(Ãn,r = 1) = pr(1− pn−r) + r(1− p)pr−1,

Pr(Ãn,r = 2) = 1− pr − r(1− p)pr−1.

For example, Ã = 1 if all values at auction 1 are 0 and at least one value at auction 2 is 1 (this
happens with probability pr(1 − pn−r)), or if there exists exactly one value that is equal to 1 at
auction 1, and then it does not matter what the values are at the second auction (this happens
with probability r(1− p)pr−1). Similarly, we also have:

Pr(OPTn,r = 0) = pn,

Pr(OPTn,r = 1) = pr(1− pn−r) + r(1− p)pn−1,

Pr(OPTn,r = 2) = 1− pr − r(1− p)pn−1.

Using this, a lengthy calculation, detailed in appendix B, gives us:

Proposition 9 For any n, r, and 0 ≤ p < 1,

EFp [Ãr,n]
EFp [OPTr,n]

=
2− pr − pn − r(1− p)pr−1

2− pr − pn − r(1− p)pn−1
≥ 0.70711.

The calculations first show that this ratio decreases with n (for any r, p), so it suffices to compute
a lower bound on the limit of the ratio of expectations when n → ∞. In that case, a minimum is
achieved for r = 2 and p = 2−

√
2. Note that for p = 1, the two expectations become zero and the

ratio is undefined.
While the worst-case scenario of section 3 requires only three players, here, to approach the

minimal ratio of 0.7 we need the number of players to approach infinity, and these additional players
should arrive only for the second auction. This is quite puzzling, at first, since we know that in
the second auction the player with the highest value wins the sequential auction. So what is the
effect of adding more players to the second auction? Looking at the probability distributions of
Ãn,r and of OPTn,r, one can see that as n increases, the probability of OPT and Ã to be equal
to 0 or 1 decreases, and the probability to be equal to 2 increases. However, the probability to
have a value of 1 decreases faster for OPT. The events that explain this are those in which, at the
first auction, exactly one player gets value 1 and the other players get value 0, and at the second
auction there exists at least one additional player with value 1. This is a “good” scenario for OPT
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and a “bad” scenario for Ã. In fact, these are the only events that differentiate OPT from Ã. As
the number of players, n increases (while keeping r constant), these events get more probability,
hence the above-mentioned effect. This is not the only difference between the worst-case and the
average-case settings, e.g. r = 2 is not necessarily the choice that minimizes the expectation ratio,
given n and p. For some distributions, a larger r may actually decrease the ratio between the two
expectations.13

4.2 Generalizing to any other distribution

To explore the case of a general distribution F with a support in [0,∞), we must take a closer look
at the expression for the expectation of OPT and Ã. We denote by Xn−j:n the j’th order statistic
of the random variables v1, ..., vn (the players’ values), which denotes the (j +1)’th highest value of
the players, i.e., Xn:n is a random variable that takes the maximal value among v1, ..., vn; Xn−1:n

is a random variable that takes the second largest value among v1, ..., vn, and so on. If the highest
value at time 1 is the j +1’th highest value among all the n players, then OPTn,r = Xn−j:n +Xn:n.
Hence

E[OPTn,r| highest at time 1 is (j+1)-highest overall ] = E[Xn−j:n + Xn:n].

Denote by qn,r
j the probability that the highest value at time 1 is the j + 1’th highest value among

all the n players. It follows that:

EF [OPTn,r] = qn,r
0 (EF [Xn−1:n] + EF [Xn:n]) +

n∑
j=1

qn,r
j (EF [Xn−j:n] + EF [Xn:n]). (1)

We remark that the highest player among the players that arrive at time 1 is at least the n−r+1
highest player among all players; therefore qn,r

j = 0 when j > n − r. It will be important for the
sequel to verify that the probability qn,r

j does not depend on the distribution F . First, note that
since the values are drawn i.i.d. then each value-ordering of the players has equal probability. Thus,
the probability of any specific order of all the players is 1/n!, and the probability that the order of
values will satisfy any specific property is simply the number of orderings that satisfy this property,
divided by n!. To find qn,r

j , we thus ask in how many orderings, the highest player among the first
r players is exactly the j + 1 highest among all players. To get one such ordering, one needs to
choose one player (say i) out of the r players of time 1 (this is the highest player at time 1), to
choose j players out of the n− r players of time 2 (these are the players that are higher than i), to
order them in one of the j! orderings, then to place i, and then to order the remaining n − j − 1
players. Thus, for any 0 ≤ j ≤ n− r,

qn,r
j =

1
n!
· r ·

(
n− r

j

)
· j! · (n− j − 1)!

13E.g. for a Bernoulli distribution with n = 7 and p = 0.9, r = 2 yields a lower ratio than r = 3.
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(and we set qn,r
j = 0 for any n− r + 1 ≤ j ≤ n), which does not depend on F .

Similarly, given that the second-highest player at time 1 is the j +1’th highest player among all
the n players, the expected welfare of Ã is E[Xn−j:n +Xn:n]. Denoting by pn,r

j the probability that
the second-highest player at time 1 is the j + 1’th highest player among all the n players (where
again this probability does not depend on F ), it follows that:

EF [Ãn,r] =
n∑

j=1

pn,r
j (EF [Xn−j:n] + EF [Xn:n]) (2)

(and we set qn,r
j = 0 for any n− r + 2 ≤ j ≤ n).

We now consider the terms E[Xn−j:n]. Let Fn−j:n(x) be the probability distribution of Xn−j:n.
The probability that Xn−j:n ≤ x is the probability that at most j values will be higher than x, and
the remaining n− j values will be smaller than x, or, in other words,

Fn−j:n(x) = Pr(Xn−j:n ≤ x) =
j∑

k=0

(
n

k

)
(1− F (x))k(F (x))n−k.

Therefore, Fn−j:n(x) is a polynomial in F (x), where the constants of the polynomial do not
depend on the distribution F . A well-known formula for the expectation of an arbitrary nonnegative
random variable Y with cumulative distribution G is E[Y ] =

∫∞
0 (1 − G(y))dy. In particular,

E[Xn−j:n] =
∫∞
0 (1− Fn−j:n(x))dx. In other words, the expectation of the j’th order statistic is an

integration over a polynomial in F (x), i.e. there exist constants w
(j)
l for l = 0, ..., n and j = 1, ..., n

(that does not depend on the distribution F ) such that

EF [Xn−j:n] =
∫ 1

0
[

n∑
l=0

w
(j)
l (F (x))l]dx.

Combining this equation with equations (2) and (1), we get that both EF [OPTn,r] and EF [Ãn,r]
are an integration over a polynomial in F (x), i.e. there exist constants β

(n,r)
0 , ..., β

(n,r)
n and γ

(n,r)
0 , ..., γ

(n,r)
n ,

that do not depend on the distribution F , such that

EF [OPTn,r] =
∫ ∞

0
[

n∑
l=0

β
(n,r)
l (F (x))l]dx

and

EF [Ãn,r] =
∫ ∞

0
[

n∑
l=0

γ
(n,r)
l (F (x))l]dx.

One additional important observation is that
∑n

l=0 β
(n,r)
l =

∑n
l=0 γ

(n,r)
l = 0. To see this,

take some distribution F with a bounded support, say [0, 1]. The above equality implies that
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EF [OPTn,r] >
∫∞
1 [
∑n

l=0 β
(n,r)
l ]dx, which is unbounded if

∑n
l=0 β

(n,r)
l 6= 0. But clearly EF [OPTn,r]

is a finite number since the support is bounded; hence it must be that
∑n

l=0 β
(n,r)
l = 0. The same

argument implies that
∑n

l=0 γ
(n,r)
l = 0.

The Bernoulli distribution Fp (0 ≤ p < 1) gives a fixed function over the interval [0, 1), specif-
ically Fp(x) = p for any 0 ≤ x < 1, and Fp(x) = 1 for x ≥ 1. Thus for this distribution the
integration cancels out, and we get:

EFp [OPTn,r] =
n∑

l=0

β
(n,r)
l pl , EFp [Ãn,r] =

n∑
l=0

γ
(n,r)
l pl. (3)

As an aside, we remark that when plugging the exact terms for all these constants, most terms
cancel out, and it is possible to get a simple exact formula for the two expectations:

EF [OPTn,r] =
∫ ∞

0
[2− r(F (x))n−1 + (r − 1)(F (x))n − (F (x))r]dx

and
EF [Ãn,r] =

∫ ∞

0
[2− (F (x))n + (r − 1)(F (x))r − r(F (x))r−1]dx,

where one may compare this with the explicit formula for the expectations in the case of the
Bernoulli distribution, detailed in the previous subsection.

We next show how all the above implies:

Proposition 10 Fix any α such that
EFp [Ãn,r]

EFp [OPTn,r] ≥ α, for any n, r and 0 ≤ p < 1. Then, for any

other cumulative distribution F with EF [OPTn,r] > 0, it must be that EF [Ãn,r]
EF [OPTn,r] ≥ α.

Proof. We need to show that EF [Ãn,r]
EF [OPTn,r] ≥ α, or, equivalently, that EF [Ãn,r]− αEF [OPTn,r] ≥ 0.

Using the above equations, this term becomes∫ ∞

0
[

n∑
l=0

γ
(n,r)
l (F (x))l − α

n∑
l=0

β
(n,r)
l (F (x))l]dx.

We will show that, for every x ≥ 0,
∑n

l=0 γ
(n,r)
l (F (x))l − α

∑n
l=0 β

(n,r)
l (F (x))l ≥ 0, which

implies the above inequality. Fix some x ≥ 0, if F (x) = 1 then indeed
∑n

l=0 γ
(n,r)
l (F (x))l −

α
∑n

l=0 β
(n,r)
l (F (x))l = 0− α · 0 = 0. Otherwise, denote p = F (x) < 1. Thus

n∑
l=0

γ
(n,r)
l (F (x))l − α

n∑
l=0

β
(n,r)
l (F (x))l = EFp [Ãn,r]− αEFp [OPTn,r] ≥ 0,

where the equality follows Eq. 3, and the inequality follows from the assumption in the claim.
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Corollary 11 For any cumulative probability distribution F , and any n, r, EF [Ãn,r]
EF [OPTn,r] ≥ 0.707.

This completes the proof of theorem 8.
We wish to remark that this bound is achieved only for the worst distribution, and for most

distributions the bound would be higher. For example, we have obtained that, for the uniform
distribution over [0, 1], the ratio of expectations is minimized for r = 2 and n = 16. For these
parameters the ratio is slightly higher than 80%. For a uniform distribution on any other interval
[a, b] the ratio will be higher.

5 Conclusions

We have analyzed a common sequential auction structure. The results bound away from zero the
efficiency loss in such a setting, without making any distributional assumptions. By imposing a
simple to understand and to implement activity rule, we were able to characterize the undominated
strategies of the players. The activity rule states that at a given auction t (out of K total auctions),
only the K − t highest bidders who did not win at auction t are qualified to continue to the
next auction. Regardless of the underlying distribution from which the players’ arrival times and
valuations are drawn, and of their beliefs about this distribution, we show that a player does not
drop out before there remain at most K − t + 1 other active bidders in the auction, unless the
price reaches her value (assuming that players play any undominated strategy). This provides a
sufficient level of competition, among the players, regardless of their beliefs about future auction,
and allows us to give bounds on the efficiency loss.

The bounds that we provide hold both for a “worst case” scenario and for an “average case”
scenario for two items. For the “worst-case” analysis, an adversary is allowed to determine the
number of players, their arrival times, their values, and their (undominated) strategies, in order to
“fail” the auction. When this is the case, we show that the sequential auction mechanism achieves
at least 50% of the optimal efficiency. The efficiency (social welfare) of an allocation is the sum of
values of players that won an item after their arrival. For the “average-case” analysis, an adversary
is again allowed to determine the number of players, their arrival times, and their (undominated)
strategies. However, here the adversary is forced to determine a distribution on [0,∞) from which
she will independently choose the values of the players. In this case, for K = 2, we show that
the expected efficiency of the mechanism is at least 70% of the expected optimal efficiency (when
choosing the worst such possible distribution) and, for example, at least 80% of the total efficiency
when the chosen distribution is the uniform distribution on some interval.

Our goal was to analyze a “real world” mechanism using as little as possible assumptions on
the players’ beliefs and behavior, and to give a quantitative assessment of its efficiency loss. Rather
than constructing a mechanism and finding its equilibrium strategies, we characterize the set of
undominated strategies of a real, common mechanism, and obtain bounds on the efficiency loss
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incurred when players choose arbitrary undominated strategies. We did not perform any revenue
considerations in this work, and possible future research may wish to address this point. For
example, one may compare the seller’s revenue in our setting versus the revenue of the optimal
(revenue-maximizing) allocation scheme described by Gershkov and Moldovanu (2007).

A The need for an activity rule via an example

To exemplify the need to add an activity rule to the auction, consider a setting of two items and
three bidders that arrive in time 1. In the second auction, it is rather immediate that the strategy
of “remaining until price reaches value” weakly dominates all other strategies14. As the example
in section 2.3 shows, there are at least two weakly undominated strategies:

1. In both auctions, remain until price reaches value, i.e. for t = 1, 2

bvalue
i ((ri, vi), h(t, p, k)) = D iff p ≥ vi.

2. In the first auction, remain until exactly one other bidder remains, and in the second auction,
remain until your value. Formally,

bEPD
i ((ri, vi), h(1, p, k)) = D iff {|I1(p, k)| = 1 or p ≥ vi},

and
bEPD
i ((ri, vi), h(2, p, k)) = D iff p ≥ vi

(where EPD stands for Earliest Possible Dropping).

We show that these two strategies do not weakly dominate all other strategies, in the sequential
auction without the activity rule. Suppose three bidders 1, 2, 3 arrive at time 1, with v1 > v2 > v3,
and let us consider the strategy b0

1 for bidder 1, in which she drops at price 0 in the first auction,
and remains until her value in the second auction15. None of the above two strategies dominates
b0
1, due to the following reasoning.

Consider first the strategy bvalue
1 . This strategy performs strictly worse than b0

1 in case both 2
and 3 choose to do the same (remain until their value in both auctions, i.e. play bvalue

2 , bvalue
3 ), due

to the following. By playing bvalue
1 , bidder 1 will win the first auction and will pay v2. By playing

b0
1, bidder 1 will lose the first auction and will win the second auction for a lower price of v3.

Consider next the strategy bEPD
1 . This strategy performs strictly worse than b0

1 when bidder 3
plays the strategy bvalue

3 and 2 uses the following strategy: In the first auction, if bidder 1 drops at
14Formally, any strategy b0

i is weakly dominated by the strategy b∗i ((ri, vi), h1(p, k)) = b0
i ((ri, vi), h1(p, k)), and

b∗i ((ri, vi), h1(p
∗
1, s

1
p∗1

), h2(p, k)) = D if and only if p ≥ vi.
15Formally, b0

1((1, v1), h(t = 1, p, k)) = D for all p, k, and b0
1((1, v1), h1(p

∗
1, s

1
p∗1

), h2(p, k)) = D iff p ≥ v1.
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price 0 then bidder 2 continues until her value, and if bidder 1 does not drop at price 0 then bidder
2 drops immediately after that. In the second auction, bidder 2 remains until her value16. In this
case, if bidder 1 follows b0

1 and drops at 0 then bidder 2 will win the first auction, bidder 1 will win
the second auction, and will pay v3. If bidder 1 follows bEPD

1 then bidder 2 drops, and bidder 1
drops immediately after that (since now only bidder 3 remains besides 1). Thus, bidder 3 wins the
first auction, bidder 1 again wins the second auction, but this time pays v2 which is larger than v3.

B Proof of Proposition 9

We need to show that, for any n, r, and 0 ≤ p < 1,

EFp [Ãr,n]
EFp [OPTr,n]

=
2− pr − pn − r(1− p)pr−1

2− pr − pn − r(1− p)pn−1
≥ 0.70711. (4)

We first derive this expression by n, to show that it decreases as n increases.

d

dn

((
2− pr − pn − r (1− p) pr−1

)
(2− pr − pn − r (1− p) pn−1)

)
= rpn−2 (ln p) (1− p)

(
2p− prr + pr+1 (r − 2)

)
(−rpn−1 − pr + (r − 1) pn + 2)2

.

We concentrate on the term
G (p, r) = 2p− prr + pr+1(r − 2)

and claim that it is nonnegative for every 2 ≤ r ≤ n and p ∈ [0, 1]. For p = 0 we have G(0, r) = 0
and for p = 1 we have G(1, r) = 0. Moreover

d2

dp2
G (p, r) = rpr−2 ((r + 1) (r − 2) p− r (r − 1))

and since
r (r − 1)

(r + 1) (r − 2)
> 1

for every r ≥ 2 we know that d2

dp2 G (p, r) ≤ 0 and G (p, r) is concave in p. We thus conclude that

G (p, r) ≥ 0 for every 2 ≤ r ≤ n and p ∈ [0, 1] and consequently that d
dn

(
(2−pr−pn−r(1−p)pr−1)
(2−pr−pn−r(1−p)pn−1)

)
≤ 0.

We take n to infinity and get that

lim
n→∞

((
2− pr − pn − r (1− p) pr−1

)
(2− pr − pn − r (1− p) pn−1)

)
= 1− r (1− p) pr−1

(2− pr)

16Formally, b2((1, v2), h(t = 1, p, k)) = R iff [p = 0 or (0 < p < v3 and 1 /∈ I1(0, s1
0))].
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We wish to find the minimum of

1− r (1− p) pr−1

(2− pr)

which will give us a lower bound for (4), for every n, since we obtained that (4) decreases towards
the limit as n increases.

Equivalently, we look for the maximum of

H (p, r) =
r (1− p) pr−1

(2− pr)
.

Now
d

dr
H (p, r) = −pr−1 (1− p) (−2r ln p + pr − 2)

(2− pr)2

d

dp
H (p, r) = rpr−2 (2r (1− p) + pr − 2)

(2− pr)2
.

Therefore if there exists a global maximum at 0 < p < 1 and 2 < r then we must have

−2r ln p = 2− pr

and
2r (1− p) = 2− pr

but this is not possible since for every 0 < p < 1 we have − ln p > 1 − p. We thus conclude that
the maximum is achieved on the boundary. Now for p = 0, we have H (0, r) = 0 and for p = 1,
we have H (1, r) = 0; therefore we conclude that the maximum is achieved on the boundary where
r = 2. We find p that solves

max
p∈(0,1)

H (p, 2) = max
p

2 (1− p) p

(2− p2)

and the solution is
p∗ = 2−

√
2.

Finally, for r = 2, p∗ = 2−
√

2 and n →∞ we have

EFp [Ãr,n]
EFp [OPTr,n]

=
1
2

√
2 ' 0.707 11.
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Bergemann, D. and J. Välimäki (2007). “Dynamic marginal contribution mechanism.” Working
paper.

Cavallo, R., D. Parkes and S. Singh (2007). “Efficient online mechanisms for persistent, periodically
inaccessible self-interested agents.” Working paper.

Cho, I.-K. (2005). “Monotonicity and rationalizability in a large first price auction.” Review of
Economic Studies, 72(4), 1031 – 1055.

Cole, R., S. Dobzinski and L. Fleischer (2008). “Prompt mechanisms for online auctions.” In Proc.
of the 1st International Symposium on Algorithmic Game Theory (SAGT’08).

Dekel, E. and A. Wolinsky (2003). “Rationalizable outcomes of large private-value first-price dis-
crete auctions.” Games and Economic Behavior, 43(2), 175–188.

Gershkov, A. and B. Moldovanu (2007). “The dynamic assignment of heterogenous objects: A
mechanism design approach.” Working paper.

Hajiaghayi, M., R. Kleinberg, M. Mahdian and D. Parkes (2005). “Online auctions with re-usable
goods.” In Proc. of the 6th ACM Conf. on Electronic Commerce (ACM-EC’05).

Lavi, R. and N. Nisan (2004). “Competitive analysis of incentive compatible on-line auctions.”
Theoretical Computer Science, 310, 159–180.

Lavi, R. and N. Nisan (2005). “Online ascending auctions for gradually expiring items.” In Proc.
of the 16th Symposium on Discrete Algorithms (SODA).

Milgrom, P. and R. Weber (2000). “A theory of auctions and competitive bidding, ii.” In P. Klem-
perer, ed., The Economic Theory of Auctions, pp. 179 – 194. Edward Elgar Publishing, Cheltnam,
UK.

Said, M. (2008). “Information revelation and random entry in sequential ascending auctions.”
Working paper.

Wilson, R. (1987). “Game-theoretic analyses of trading processes.” In T. Bewley, ed., Advances in
Economic Theory: Fifth World Congress, pp. 33 – 70. Cambridge University Press.

26


