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Abstract

Hebrew and Arabic are typically written without
diacritics, leading to ambiguity and posing a ma-
jor challenge for core tasks like speech recogni-
tion. Previous approaches to automatic diacriti-
zation used a variety of machine learning tech-
niques. However, they typically rely on existing
tools like morphological analyzers and therefore
cannot be easily extended to new genres and lan-
guages. We develop a recurrent neural network
with long short-term memory layers that is trained
solely from diacritized text yet rivals state-of-the-
art methods that have access to external resources.

1 Introduction

Hebrew, Arabic, and other languages based on
Arabic script usually represent only consonants in
writing and do not mark vowels. In such writ-
ing systems, diacritics (Hebrew Nikkud, Arabic
Harakat) are used for short vowels, gemination,
and other phonetic units. In practice, diacritics
are usually restricted to language teaching or to
religious texts. Faced with a non-diacritized word,
readers infer missing diacritics based on their prior
knowledge and the context of the word in order to
resolve ambiguities. For example, Maamouri et al.
(2006) mention several types of ambiguity for the

Arabic string Elm, and a morphological an-
alyzer produces at least 13 different diacritized
forms (a subset is shown in Table 1).!

The ambiguity in Arabic orthography presents
a problem for many language processing tasks, in-
cluding acoustic modeling for speech recognition,
language modeling, and morphological analysis.
Automatic methods for diacritization aim to re-
store diacritics in a non-diacritized text. While
earlier work used rule-based methods, more re-
cent studies attempted to learn a diacritization

!Arabic transliteration follows the Buckwalter scheme:
http://www.gamus.org/transliteration.htm.

Word Gloss

Ealima he knew

Eulima it was known
Eal~ama | he taught

Eilomu knowledge (def.nom)
EalamK | flag (indef.gen)

Table 1: Possible diacritized forms for (é—i— Elm.

model from diacritized text. A variety of methods
have been used, including hidden Markov models,
finite-state transducers, and maximum entropy —
see the review in (Zitouni and Sarikaya, 2009) —
and more recently, deep neural networks (Al Sal-
lab et al., 2014). In addition to learning from
diacritized text, these methods typically rely on
external resources such as part-of-speech taggers
and morphological analyzers (Habash and Ram-
bow, 2007). However, building such resources is
labor-intensive and cannot be easily extended to
new languages, dialects, and domains.

In this work, we propose a diacritization method
based solely on diacritized text. We treat the prob-
lem as a sequence classification task, where each
character has a corresponding diacritic label. The
sequence is modeled with a recurrent neural net-
work whose input is a sequence of characters and
whose output is a probability distribution over the
diacritics. Any RNN architecture can be used in
this framework; here we focus on long short-term
memory (LSTM) networks, which had recent suc-
cess in a number of tasks. We experiment with
several architectures and show that we can ap-
proach the state-of-the-art, without relying on ex-
ternal resources.

2 Approach

We define the following sequence classification
task, similarly to (Zitouni and Sarikaya, 2009).



Let ¢ = (cy, ..., c) denote a sequence of charac-
ters, where each character c¢; is associated with a
label /;. A label may represent 0, 1 or more diacrit-
ics, depending on the language. Assume further
that each character c in the alphabet is represented
as a real-valued vector z.. This letter embedding
may be learned during training or fixed.

Our neural network has the following structure:

* Input layer: mapping the letter sequence c to
a vector sequence X.

* Hidden layer(s): mapping the vector se-
quence x to a hidden sequence h.

* Output layer: mapping each hidden state vec-
tor h; to a probability distribution over labels.

During training, each sequence is fed into this
network to create a prediction for each character.
As errors are back-propagated down the network,
the weights at each layer are updated. During test-
ing, the learned weights are used in a feed-forward
step to create a prediction over the labels. We al-
ways take the best predicted label for evaluation.

2.1 Implementation details

The input layer maps the character sequence to a
sequence of letter vectors (initialized randomly).
It also stacks previous and future letter vectors, so
the model can learn contextual information. We
experiment with several types of hidden layers,
from one feed-forward to multiple bidrectional
LSTM layers. We also add a linear projection
layer after the input layer, which has the effect of
learning a new representation for the letter embed-
dings. The output layer is a Softmax over labels.

Training is done with stochastic gradient de-
scent with momentum, optimizing the cross-
entropy objective function. Our implementation
is based on Currennt (Weninger et al., 2015).

3 Experiments

We test our approach on Arabic data ex-
tracted from the Arabic treebank, following the
train/dev/test split in  (Zitouni and Sarikaya,
2009).2 As Table 2 shows, LSTM models pre-
form better than traditional feed-forward net-
works, even when the latter have a similar num-
ber of parameters. A 2-layer LSTM achieves the
best results. On the test set (Table 3), this model

2Other papers report work on a train/test split, without a
dedicated dev set (Al Sallab et al., 2014); we will test our
model in this setting in future experiments.

DER | # parameters
Feed-forward 11.76 | 63K
Feed-forward (large) | 11.55 | 908K
LSTM 6.98 838K
B-LSTM 6.16 518K
2-layer B-LSTM 5.77 916K

Table 2: Results (DER) on the Arabic dev set.

MaxEnt (only lexical) | 8.1
MaxEnt (full) 5.1
2-layer B-LSTM 5.61

Table 3: Results (DER) on the Arabic test set.
MaxEnt results from (Zitouni and Sarikaya, 2009)

beats the lexical variant of Zitouni and Sarikaya
(2009) and approaches the performance of their
best model, which used also a segmenter and part-
of-speech tagger. This shows that our model can
effectively learn to diacritize without relying on
any resources other than diacritized text.

Finally, we are currently incorporating our dia-
critization system in a speech recognizer. Recent
work has shown improvements in Arabic speech
recognition by diacritizing with MADA (Al Hanai
and Glass, 2014). Since creating such tools is a
labor-intensive task, we expect our diacritization
approach to promote the development of speech
recognizers for other languages and dialects.
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