
Bringing Textual Descriptions to Life:
Semantic Parsing of Requirements Documents into Executable Scenarios

Ilia Pogrebezky
IDC Herzliya

Smadar Szekely
Weizmann Institute

Reut Tsarfaty
The Open University

David Harel
Weizmann Institute

Abstract

We present an end-to-end framework for
translating natural language (NL) require-
ments into executable systems. Specifi-
cally, we implement semantic parsers for
two sorts of input: (i) requirements docu-
ments written in a controlled natural lan-
guage (CNL), and (ii) requirements doc-
uments written in NL. For each require-
ments document, we output the system
model (SM) architecture along with a set
of live sequence charts (LSCs) that cap-
ture the dynamic behavior of the speci-
fied system. Our parsers are embedded
in PlayGo, a development environment
for specifying (playing-in) requirements
as LSCs and executing (playing-out) the
resulting behavior. Thus, our output sys-
tems may be depicted visually, executed
interactively, or provided as a standalone
Java executable. PlayGo further allows
for post-editing the predicted output via a
friendly GUI, thus enabling the rapid de-
velopment of parallel text:code data for
statistical natural language programming.

1 Introduction

Ever since the early days of computer science, re-
searchers have been fascinated by the idea of au-
tomatically turning natural language (NL) require-
ments into executable programs. This challenge,
termed natural language programming, lies at the
intersection of two CS disciplines: software en-
gineering (SE) on the one hand and natural lan-
guage processing (NLP) on the other hand.

In SE, programming relies on formal languages
that enjoy strict interpretation rules. NL require-
ments involve far more complex utterances, which
suffer from ambiguities at all levels of structure —
syntax, senses, co-references — making the map-
ping between meaning and form a complex matter.

Early attempts to approach NL programming in
SE resorted to the development of formal speci-
fication languages that resemble English. These
languages are called control natural languages
(CNL), which are in fact subsets of English with
strict grammars and limited expressivity. The
main drawback of CNLs is that it is not trivial
nor intuitive for humans to describe system in it.
When expanding CNLs to be more intuitive, ex-
pressive and natural, painful ambiguities arise.

In recent years, NLP researchers working on se-
mantic parsing successfully addressed partial as-
pects of the NL programming challenge, by offer-
ing algorithms that assign a single formal interpre-
tation to an input (potentially ambiguous) NL ut-
terance. Relevant studies include the translation of
NL commands into database queries (Wong and
Mooney, 2007; Zettlemoyer and Collins, 2009;
Poon and Domingos, 2009; Liang et al., 2011)
mapping NL instructions into Windows command
sequences (Branavan et al., 2009; Branavan et al.,
2010), creating input parsers based on NL def-
initions (Barzilay et al., 2013), and translating
NL descriptions into regular expressions (Kush-
man and Barzilay, 2013). Most of these studies
focus on domain-specific languages, and perform
semantic interpretation on a sentence-by-sentence
basis. In all cases, the presented output does not
go all the way towards an executable system.

Here we present an end-to-end system for au-
tomatically translating a requirements document
consisting of a sequence of NL requirements into
a complete, executable, code-base that is repre-
sented by a system model architecture and a set
of live sequence charts (LSCs) (Damm and Harel,
2001; Harel and Marelly, 2003) — formal, un-
ambiguous, multimodal charts that capture the dy-
namic system behavior. Our system is embedded
in PlayGo (Harel et al., 2010), an interactive de-
velopment environment that allows for playing-in
(specifying) requirements by specifying live se-



quence charts and playing out (executing) the be-
havior captured by the LSCs. Through PlayGo,
the predicted system can be visualized graphically,
executed interactively, or delivered as a standalone
Java implementation.

Our parser for CNL requirements documents
relies on the joint sentence-discourse decoder of
Tsarfaty et al. (2014). The parser for NL require-
ments extends the joint dependency parser and se-
mantic role labelers of Roth et al. (2014) with
further linguistic reasoning that sorts out binding
(should the expression refer to an existing entity
or create a new one?), verbal aspect (should the
action bring about to a change of state?) modali-
ties (is the action mandatory or optional?) and the
linear ordering of events depicted in the text.

We showcase natural language programming
capacity by parsing the requirements data pro-
vided by Roth et al. (2014). These data contain
system descriptions written by humans, and we
parse them into executable systems. Our frame-
work further supports post-editing of output in-
terpretations via a visual GUI that can alter the
LSC depiction of the predicted system model and
LSCs. This post-editing capacity may be critical
for the rapid development of gold standards for
statistical text-to-code translation.

Our contribution is hence manifold. We present
a semantic representation that supports an effec-
tive alignment and translation of texts into code.
We present a system for automatically parsing re-
quirements documents — provided in a CNL form
or in reasonably rich English – into a complete, ex-
ecutable, scenario-based system. We further pro-
vide a tool for rapidly creating LSCs, annotating
requirements, and enhancing the predicted output,
in support of the development of sophisticated sta-
tistical parsers for natural language programming.

2 Formal Preliminaries

2.1 The Semantic Representation

The first contribution of this paper is our proposal
that the LSC formal language (Damm and Harel,
2001), previously proposed for manual scenario-
based programming, makes for a viable semantic
representation for automatic (and statistical) text-
to-code translation. We introduce this formal rep-
resentation via two concepts: a system model, rep-
resenting the static (architectural) aspects of sys-
tem design and live sequence charts, representing
the dynamic (behavioral) aspects of system flow.

Figure 1: The LSC graphical depiction of the sce-
nario: “When the user clicks the button, the dis-
play color must change to red.”

Figure 2: A System Model Representing the Sys-
tem Architecture: Classes and Objects Views.

A System Model (SM) represents the static ar-
chitecture of a proposed system. It consists of
classes (types), objects (instances), methods, and
properties, along with their default and actual val-
ues. Figure 2 provides a screenshot of the Classes
and Objects views of a specified system. These
views also allow to expand a class or an object
down to its properties and methods. Every system
to be developed using our framework is assumed
to also have special classes and objects of one of
the following types: Env that represents the envi-
ronment, Clock that accounts for time operations,
and User that simulates an interactive user.

A Live Sequence Chart (LSC) is a formal dia-
gram that describes the possible, forbidden or nec-
essary interactions between the entities (classes
and objects) that make up the system. Entities
in LSC diagrams are represented as vertical lines
called lifelines, and interactions between entities
are represented by horizontal arrows between life-
lines (or a self-pointing arrow) called messages.



Figure 3: An LSC and a System Model (SM) during play-out. Note the blue traces manifesting the
system behavior on the LSC in real time, and the real-time properties of the Objects in the SM.

Messages connect the sender and the receiver,
where the head of the arrow points to the receiver.
Time in LSCs proceeds from top to bottom on each
lifeline, imposing a partial order on the execution
of all messages. An LSC message can be “hot”
(obligatory), represented by a red color, or “cold”
(optional), colored in blue. Every message has an
execution status: solid arrows represent methods
to be executed, and dash arrows represent methods
to be monitored. The LSC specification language
also contains control structures such as if condi-
tions, switches and bounded loops. The negation
of flows can designate forbidden scenarios. To il-
lustrate, Figure 1 shows the LSC for a scenario that
defines a simple dynamic aspect involving two ob-
jects from the architecture presented in Figure 2.

2.2 The PlayGo Tool

From a practical point of view, our algorithms for
translating textual requirements into the aforemen-
tioned semantic representation are integrated into
and executed through PlayGo, a comprehensive
tool for behavioral, scenario-based, programming
(Harel et al., 2010). The PlayGo environment sup-
ports two basic processes: play-in and play-out
(Harel and Marelly, 2003).

Playing-in a requirement means demonstrating
a desired behavioral scenario of the desired sys-
tem. PlayGo standardly supports manual play-in
via (i) editing of the LSC diagrams by dragging
and dropping the relevant LSC elements, (ii) inter-
active play-in, where a user demonstrates the de-
sired behavior by “playing it in” on a GUI, or (iii)
a CNL interface, based on subset of English, for
specifying scenarios, prompting for manual dis-

ambiguation when ambiguities arise.

The complement process of playing in require-
ments is playing them out. Play-out refers to the
execution of the system behavior described by the
LSCs as a scenario-based program. Every execu-
tion of an operation is considered a step. Follow-
ing a user action, the system executes a superstep
— a sequence of the steps that follows the user ac-
tion — which terminates either at a stable situation
or when the entire execution terminates (Harel and
Marelly, 2003). The execution can be visually de-
picted as a set of traces, which can be observed to
verify the desired behavior. In Figure 3 we show a
PlayGo screenshot during play-out, where execu-
tion traces are marked in blue on the LSC, and the
system model shows real-time objects.

2.3 NL Play-In

Our departure point in this paper is the work of
Gordon and Harel (2009), which defines a CNL
and a respective grammar for turning utterances
into LSCs. That CNL play-in interface of PlayGo
requires users to manually enter CNL require-
ments, on a sentence-by-sentence basis, prompt-
ing for manual interpretations whenever an ambi-
guity arises. In this work we lift two fundamen-
tal restrictions from this mode of play-in. First,
we discard the focus on sentences and provide in-
terpretations of complete requirements documents,
where local disambiguation decisions take global
document context into account. Furthermore, we
make a significant step towards lifting the con-
trolled restriction, and parse NL requirements via
a similar play-in interface.



3 Programming in a Controlled Natural
Language (CNL)

To overcome the need for manual, tedious,
sentence-by-sentence disambiguation efforts, we
implemented a statistical parser that can accept a
complete requirements document, written in the
ambiguous CNL of Gordon and Harel (2009), as
input and return the disambiguated SM and cor-
responding LSCs as output. Based on this parser,
our newly added operation import description now
allows PlayGo users to play in requirements by
automatically uploading a whole sequence of re-
quirements describing a single system at once.

Our statistical parser is based on the joint
sentence-discourse model of Tsarfaty et al. (2014),
that takes the form of a Hidden Markov Model
(HMM). In this model, emission probabilities
reflect the grammaticality of individual require-
ments and transition probabilities model the pro-
cess of creating a global system model (SM) out of
local SM snapshots associated with the individual
requirements. Using Viterbi decoding, the parser
searches for the best sequence of SM snaphots that
has most likely generated the document.

In order to learn the emission probabilities, we
assume a generative probabilistic grammar that
assigns probability mass to all (and only) sen-
tences generated by the CNL context-free gram-
mar (CFG) of Gordon and Harel (2009). In or-
der to train the CFG model parameters, for which
hardly any real-world parallel text-to-code data
exist, we generated over 10000 sentences by sam-
pling rules from the CNL CFG and generating
valid parse trees (no syntactic priors are assumed).

With about 10100 annotated sentences (10000
automatically generated and about five case stud-
ies provided by Tsarfaty et al. (2014)) we induced
a PCFG that can parse CNL utterances to trees that
have a direct translation into an LSC on the one
hand, and into a system model snapshot on the
other hand. We use simple maximum likelihood
estimates, smooth lexical probabilities via basic
unknown-words distribution, and smooth syntac-
tic distributions via interpolating the seed parame-
ters with parameters learned from the sampled dis-
tributions.

Our experiments with the framework contribute
two important insights. First, interpolating the
small seed of annotated real-world requirements
we have at our disposal with a large set of sam-
pled trees boosts accuracy results significantly.

Secondly, context consistently matters. As we
increase the number of alternative analyses that
our model can assign to an individual require-
ments, context-based modeling successfully alters
the LSC disambiguation choice and our accuracy
results improve further.1

4 Programming in Rich Natural
Language

Having lifted the manual, sentence-by-sentence
restriction on play in, we are ready to tackle a
greater question: can we lift the restriction to use a
controlled fragment of NL? That is, can we auto-
matically interpret requirements documents writ-
ten in reasonably rich and natural English? Here,
we implemented a pipeline parsing system that can
accept a requirements document written in unre-
stricted English as input and provide its SM-and-
LSCs interpretation as output.

Our departure point is the joint dependency
parser and semantic-roles labeler of Roth and
Klein (2015). The representation this parser de-
livers .is an extension of the CoNLL 2009 depen-
dency format which also identifies for each parse
tree the actors, objects , actions and properties2

mentioned therein.3

We designed a rule-based algorithm that con-
structs, for each requirement, a set of feature
structures that captures the lifelines (objects), ac-
tions (methods) and themes (method arguments)
which are required for executing the scenario.
For each of these feature-structures we extract
attributed:value pairs that add additional dimen-
sions of semantic interpretation, as we specify
shortly. Based on these feature-structures and
attribute:value pairs, our algorithm constructs an
LSC that represents the dynamic flow of the re-
quirement, and, as side effect, takes the additional
static information that is discovered via this re-
quirement to expand the global system model for
the entire document.

The attribute:value pairs we extract include the
semantic value (i.e., the reference) of each fea-
ture structure, the type of binding of each refer-
ence (should we use an existing instance or create
a new one?) the role of each argument (should the

1A technical reference omitted here for anonymity rea-
sons.

2where ‘properties’ is a cover term for various sorts of
verbal and nominal modification.

3The ontology of semantic roles that are provided by this
parser is described in details in (Roth et al., 2014).



Figure 4: A feature structure for the NL require-
ment: “A user must be able to create a user account
by providing a username and a password.”

argument be a property or a theme?), the modal-
ity of the different actions (whether they can, may,
or must happen) and the implied linear ordering of
actions (by default this order coincides with the
order of the verbs, but this is no necessarily so
— see Figure 5). We further use a co-reference
component to determine the particular values of
the property “ownership”. For example: in the re-
quirement “A user must be able to login to his ac-
count by providing his username and password.”
, “his” points to “user”, and so we can determine
the value of the property “owner”. The designated
feature structure and the corresponding LSC for
the first requirement in Roth et al. (2014) are pro-
vided in Figures 4 and 5.

As a critical step towards unrestricted NL pro-
gramming, we now focus on gathering data for
training and testing different statistical models for
the task. The data set of Roth et al. (2014) con-
tains 320 syntactically parsed and SR-labeled re-
quirements. In order to exploit context within co-
herent requirements documents, we divided this
data into disjoint specified systems and created 25
distinct documents with an average of 12 require-
ments per system. We used our algorithm to create
a parallel corpus of NL requirements aligned with
LSC/SM representations. This corpus is intended
facilitate the development of statistical models for
translating unrestricted NL requirements directly
into LSC/SM representations (and hence to exe-
cutable code).

Figure 5: An LSC scenario: ”A user must be able
to create a user account by providing a username
and a password.”

5 Related Work

Natural language programming research inter-
sects two disciplines in computer science, soft-
ware engineering (SE) and NL processing (NLP).

In earlier SE days, Abbott (1983) extracted data
types, objects, variables and operators from in-
formal English texts based on a rule-based algo-
rithm. Later, Booch (1986) extended Abbott’s
approach to object-oriented terms. Saeki et al.
(1989) automatically extracted nouns and verbs
for identifying model entities, and observed that
in order to attain diagrams of reasonable qual-
ity, human intervention is required. Mich (1996)
later employed a full NLP pipeline that contains
a semantic analysis module, dispensing with ad-
ditional post-processing. More recenty Harmain
and Gaizauskas (2003) and Kof (2004) relied on a
combination of NLP tools and human interaction.

Recently, NL programming has also been at-
tended to by NLP researchers. Roth et al. (2014)
proposed to utilize annotated data to learn seman-
tic parsers for requirements automatically, assign-
ing ontology-based semantic roles to them. Others
aimed to go beyond assigning a linguistic repre-
sentation. Examples include analyzing API doc-
uments to infer API library specifications (Zhong
et al., 2009), and generating parser programs from
input format descriptions (Barzilay et al., 2013).

Here we automatically assigns to each require-
ment document a dynamic semantic representation
that is based on the LSC visual programming lan-



guage. In contrast with the aforementioned stud-
ies, our system exploits and benefits from dis-
course context, rather than interpreting one sen-
tence at a time. Moreover, our output goes beyond
a formal linguistic representation and returns an
executable system as output, which can be visu-
alized, played out, or post-edited via the PlayGo
interface.

6 Conclusion

We present an end-to-end system for NL program-
ming extending the PlayGo architecture with ad-
vanced statistical semantic parsing algorithms. We
showcased the NL programming capacity for two
types of input: CNL requirements, and reason-
ably rich, uncontrolled, NL requirements. In both
cases, the output is a system model accompanied
with all relevant LSCs. In the future we intend
to develop more sophisticated models for statisti-
cal natural language programming. We conjecture
that the representation, tool, and data we provide
herein will prove immensely valuable for future
successful implementations.
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