
Transition-Based Morphological Disambiguation

Amir More
School of Computer Science

Interdisciplinary Center (IDC) Herzliya, Israel
habeanf@gmail.com

Reut Tsarfaty
Mathematics and Computer Science

Open University of Israel
reutts@openu.ac.il

Abstract

In Morphologically Rich Languages
(MRLs), sentences are composed of
ambiguous space-delimited tokens that
ought to be disambiguated with respect
to their constituent morphemes. Previous
work on Morphological Disambiguation
(MD) of MRLs has had variable success,
with Semitic languages having sub-par
results for downstream applications. Here
we propose novel MD transition-based
systems, both word-based and morpheme-
based, and tackle the challenge introduced
by the variable length of hypothesized
morpheme sequences. Our experiments
show that transition-based morpheme-
based MD consistently outperforms the
word-based variant, while providing new
state of the art results on Hebrew MD.

1 Problem Statement

In MRLs, each input space-delimited token may
have multiple different morphological analyses,
where only one is relevant in context. This mor-
phological ambiguity of a token is represented by a
word-lattice describing the various morpheme se-
quences that may combine to form it, with only
one sequence (or, path) that is suited in the context
of the sentence. Morphological Disambiguation
(MD) in Semitic languages is particularly difficult,
due significant morphological richness. (Adler,
2007; Bar-haim et al., 2008; Shacham and Win-
ter, 2007; Pasha et al., 2014; Habash and Ram-
bow, 2005). Figure 1, for example, shows the
morphologically ambiguous lattices representing
the Modern Hebrew phrase הנעים בצלם (literally:
in-shadow-of-them the-pleasant, meaning: in their
pleasant shadow). In the context of הנעים ,בצלם
the correct path of the first token is ב־צל־(של)־הם
- “in-shadow-(of)-them”. Note that in the context

Figure 1: An example of morphological
ambiguity lattice in transliterated Hebrew. Edges
mark morphemes, and double circles mark word

boundaries. Note the variable length of paths.

of another sentence, the token בצלם may be “Bet-
zelem” — the name of a famous organization.

Morphological disambiguation is more subtle
than choosing a segmentation of agglutinated mor-
phemes. Semitic MRLs are fusional; morphemes
may be fused to the host, as can be seen in ב־צל־
,(של)־הם where the possessive של is fused into the
pronoun .הם This results in an ambiguity of the
number of morphemes, impacting downstream ap-
plications. Downstream applications such as syn-
tactic parsing require a correct disambiguation in
order to correctly predict their outputs.

In this paper we present new, novel systems for
morphological disambiguation in MRLs. Our ap-
proach to disambiguation extends the transition-
based framework for structure prediction of Zhang
and Clark (2011a). We define two different sys-
tems, word-based and morpheme-based, and show
that morpheme-based variant consistently outper-
forms the word-based one, while improving state-
of-the-art results on full-fledge, fine-grained, mor-
phological disambiguation of Hebrew.

Our motivation and ultimate goal is joint mor-
phological and syntactic disambiguation, an ap-
proach advocated for constituency parsing by
Tsarfaty (2006; Goldberg and Tsarfaty (2008; Co-
hen and Smith (2007; Green and Manning (2010),
in dependency-based frameworks. To this end,
we hereby offer an MD transition system compat-
ible with and complementing the various state-of-



the-art frameworks available for dependency pars-
ing nowadays (Nivre and Hall, 2005; Bohnet and
Nivre, 2012a; Zhang and Nivre, 2011; Zhang and
Clark, 2011b).

2 Formal Preliminaries

Transition-Based Parsing. A transition system
is an abstract machine consisting of a set of
configurations and transitions between configura-
tions (Kübler et al., 2009). Formally, a transition
system is a quadruple S = (C, T, cs, Ct), whereC
is a set of configurations, T is a set of transitions,
cs is an initialization function, and Ct ⊆ C is a set
of terminal configurations. A transition sequence
starts with an initial configuration given by cs for
any sentence x, and ends with a configuration in
Ct. In a data-driven approach, a parametric model
is defined as a means of predicting which transi-
tion to apply at each step.

The Objective Function. Zhang and
Clark (2011a) describe a statistical frame-
work for structure prediction based on beam
search decoding complemented with supervised
statistical learning based on the generalized
perceptron. The framework defines the following
objective function, where x is an input to be
decoded and GEN(x) denotes the set of possible
transition sequences for input x:

F (x) = argmaxy∈GEN(x)Score(y) (1)

To compute Score(y), y ∈ GEN(x) is mapped
to a global feature vector Φ(y) ∈ Nd, where each
feature is a count of occurrences of a pattern de-
fined by a set of d feature functions {φi}. Given
this vector, Score(y) is computed by multiplying
Φ(y) with a weights vector ~ω ∈ Rd. The weights
vector defines the model parameters.

Score(y) = Φ(y) · ~ω =
d∑

i=1

ωiφi(y) (2)

Learning The weights of the feature vector ~ω ∈
Rd are learned by a supervised learning algorithm
called the generalized perceptron1, using a set of
sentences paired with corresponding correct anal-
yses (a corpus), the algorithm iterates through the
corpus parsing the sentences one by one; each sen-
tence is first parsed (decoded) with the last known

1We use the early-update averaged perceptron vari-
ant (Collins and Roark, 2004).

weights, and the result is compared to the man-
ually parsed tree (gold standard). If the parsed
result differs from the gold standard, the weights
are updated. This process is usually stopped when
overfitting begins to occur. The way Φ is defined
can determine the performance of the parser, since
the feature model captures the linguistic informa-
tion used to compute Score.

Decoding Decoding in our framework is based
on the beam search algorithm. In beam search, a
number of possible parsing sequences are evalu-
ated concurrently to mitigate irrecoverable predic-
tion errors. The beam search algorithm maintains
a list of candidates. At each step, each candidate is
evaluated by the transition system, which reports
the valid applicable transitions, passed on to the
prediction model and scored. The B highest scor-
ing transitions for all candidates are maintained in
the candidate list and passed on to the next step.

3 Our Proposed Systems

3.1 Design Principles

The Transition System There are two conceiv-
able ways to make morphological disambiguation
decisions, in a word-based, and in a morpheme-
based, fashion (Tsarfaty and Goldberg, 2008). In
word-based models, the disambiguation decision
determines a complete path of morphemes be-
tween word-boundaries. In the lattice, this refers
to selecting a path between two word-boundary
nodes. In morpheme-based disambiguation, deci-
sions occur at the morpheme level. In the lattice,
at any node with more than one outgoing edge,
a transition is the decision of choosing a specific
morpheme given a set of possible outgoing edges
at a given node in the lattice.

Parametrized Transitions We define a mor-
pheme m = (s, e, f, t, g) in the lattice as a 5-tuple
with start and end nodes s and e respectively, form
f , part-of-speech tag t, and set g of morphologi-
cal properties. A transition system is required to
distinguish between all possible decisions it can
make; meaning that every two paths, or two nodes,
must be distinguishable from one another. At the
same time, the model should be able to generalize
from seen decision sequences to unseen ones, and
efficiently learn to handle open-class elements and
out-of-vocabulary items.

To address both matters, we define the
parametrized projection of a morpheme. If the



POS tag t belongs to an open-class category, the
morpheme is parameterized as ( , t, g). if t is a
close class category, the morpheme is lexicalized
as (f, t, g). Applying this projection to all mor-
phemes allows the transition system to distinguish
between any two morphemes (or paths of mor-
phemes) with the same starting node, while pro-
viding an opportunity to generalize the in-context
behavior of forms with different morphemes.

3.2 Word-Based Modeling

The Transition System The configuration of a
word-based transition system is an ordered pair
(b,M): b - a buffer of morphologically ambigu-
ous tokens, represented by word-lattices, and a set
of morphemes M . The initial configuration cs
function sets the buffer to all tokens in the sen-
tence, and M = ∅. The transition system is a set
of parametrized transitions MDx : ([b|l],M) →
(b,M ∪ Fp(l, x)), where Fp(l, x) is a sequence
s of morphemes in word-lattice l such that s =
m0m1...mi ∈ l, x = p(m0)p(m1)...p(mi), s is a
path in word-lattice l, and p is the parametrized
morpheme projection function. The resulting
set of sequences for a terminal configuration,
s0, s1, ... ∈ M , together form a contiguous path
through all word-lattices in the input sentence.

Learning We define three types of word-lattice
properties: t - the token itself, a - the projected
lattice (all morphemes projected by the parame-
ter function), and i - a chosen disambiguated path,
which only exists for previously processed lat-
tices. Using these properties, we define baseline
feature templates modeled after POS tagging: un-
igram, bigram, and trigram combinations of t and
a, and i based features, which predict the next dis-
ambiguation decision based on the previous one.

3.3 Morpheme-Based Modeling

The Transition System The configuration of
a morpheme-based transition system is a triple
(b,M, n), extending the word-based system,
where b and M are the same but with n indicat-
ing a node in a word-lattice. The initial configura-
tion cs function sets the buffer to all tokens in the
sentence, n = bottom(l0), where l0 is the head
of b, and M = ∅. The transition system is an
open class of transition MDx : ([b, l],M, n) →
(b′,M ∪m, o) where x = p(m),m is a morpheme
(n, o, f, t, g) ∈ l, and p is the parameterized mor-
pheme projection function. If o is the top of the

word-lattice l at the head of b, then b′ = b, other-
wise b′ = [b|l].

Learning When making at morpheme-based
transition we can access more relevant and spe-
cific information. We define the morpheme prop-
erties m, p and f , corresponding to morphemes’
form, part-of-speech and morphological proper-
ties. We use these properties in various unigram,
bigram, and trigram combinations, in parallel with
the word-based model. As in word-based disam-
biguation, we use the property i as a a path of pre-
viously a disambiguated word-lattices. Similarly,
we define the property n to be the set of projected
morphemes of the current node, like the property
a of word-lattices at morpheme granularity. We
use unigram, bigram, and trigram combinations of
these two properties as well.2

Decoding Since the number of morphemes in
lattices’ paths may vary, so do the number of tran-
sitions of a morpheme-based transition systems.
This violates a basic assumption of standard beam
search decoding — that the number of transitions
is a deterministic function of the input. There
are two inherent biases in varied-length transition
sequences driven by the general perceptron algo-
rithm. First, the beam search algorithm tests the
best candidate after each step for goal fulfillment.
A short sequence may temporarily be the best can-
didate and fulfill the goal, while longer (and possi-
bly correct) sequences are incomplete. Secondly,
and more importantly, long sequences have more
features, therefore their score may be arbitrarily
higher than shorter ones, even though the shorter
ones may be correct.

To solve these problems we introduce a special
transition, POP, occurring at word-lattice bound-
aries. Set aside from other transitions, POP has its
own set of features. POP has no effect on config-
urations, but results in a re-ordering of candidates
in the beam during parsing, for equal-length can-
didates in terms of the number of tokens. While
the number of morphemes, and therefore transi-
tions, can vary wildly, the number of POPs is equal
to the number of word-lattices. Using this an-
chor, the features of the POP transition provide a
counter-balance to the effects of varied-length se-
quences by scoring fully disambiguated paths of
each word-lattice individually.

2The supplementary material contains our complete list
of features templates, for all models.



Word-Based
unigram +bigram +trigram +next unigram +next with bigram + next with trigram

86.43 (87.73) 86.79 (87.62) 87.51 (87.07) 91.88 (91.53) 91.99 (91.42) 91.98 (91.41)
+POP 88.67 (88.52) 89.41 (89.3) 89.01 (89.85) 92.45 (92.64) 91.98 (91.64) 91.05 (91.64)

Morpheme-Based
unigram +bigram +trigram +next unigram +next with bigram +next with trigram

90.20 (91.19) 91.27 (91.96) 91.00 (91.74) 92.19 (92.85) 92.21 (92.79) 91.92 (92.52)
+POP 91.95 (92.42) 92.57 (92.94) 92.36 (92.65) 92.99 (93.37) 92.49 (92.77) 92.28 (92.50)

Table 1: (a)Word-Based and (b)Morpheme-based MD: F1 for full morphological disambiguation (form,
part of speech, morphological properties). In parenthesis: form and POS only

4 Experiments

Data We use the Hebrew Treebank version from
the SPMRL 2013 Shared Task (Seddah et al.,
2013), derived from the Hebrew Treebank V2
(Sima’an et al., 2001; Guthmann et al., 2009), with
the standard split. The gold training analyses of
the original Hebrew Treebank uses morphologi-
cal analysis theories different from those used to
generate the morphological lattices. Therefore, we
train our structure perceptron using morphological
analyses previously predicted by (Adler, 2007) ac-
cording to the same theory. We discard 1011 sen-
tences in the training data due to bugs and errors
in morphological lattices. To evaluate our results,
we adapt the dev gold data to the relevant morpho-
logical analysis theory.

The Input: Morphological Analysis The input
sentences are converted into morphological lat-
tices using the wide-coverage morphological an-
alyzer of MILA (Itai and Wintner, 2008), with a
simple heuristic for dealing with unknown tokens.
We apply a few transformations to the lattices to
fix various bugs in the morphological analysis, and
infuse correct paths from the disambiguation so
that the correct path exists in the input.

Parser We implement yap3, a general-purpose
parser based on the generalized perceptron and
beam search, and extends it with the transition-
based MD systems described herein. We im-
plement the word-based and morpheme-based
falvours, with and without POP transitions, and
compare different feature templates settings.

Metrics We report the F1 measure for full mor-
phological disambiguation (segmentation, POS

3yap is yet another parser https://github.com/
habeanf/yap

tags, and all morphological properties) as our pri-
mary measure. We also report the F1 of segmenta-
tion and POS, for comparison with previous work.

Results Tables 1 (a),(b) show the performance
of our word-based and morpheme-based models,
respectively. Our results show that morpheme-
based disambiguation consistently outperforms
word-based disambiguation, in various settings.
Also, the POP transition consistently improves
performance, with best results yielding state-of-
the-art for Modern Hebrew — F1 scores of 92.99
and 93.37 for full MD and form/POS only, respec-
tively. For comparability, using our evaluation and
measures for (Adler, 2007)’s HMM-based MD on
our data, we observe F1 of 85.74 and 87.95 for
full and form/POS disambiguation, respectively.4

Note that it is unrealistic to expect the correct dis-
ambiguation to always exist in the morphological
lattice, since any morphological analyzer will en-
counter unseen tokens, resulting in incomplete lat-
tices. To evaluate this scenario, we disable infu-
sion of the correct disambiguations into the am-
biguous lattices for the dev data set. In this condi-
tion, we observe a drop to F1 scores of 87.43 and
90.42 for full MD and form/POS, respectively.

5 Conclusion

We introduce a general framework for transition-
based MD, with both word-based and morpheme-
based variants, along with an effective solution to
the biases of variable-length analyses. Our best
model provides the best results on full-fledge mor-
phological analysis and MD of Hebrew so far. The
framework is compatible with transition-based de-
pendency parsing, making it amenable to the
implementation of joint, dependency-based mor-

4We introduce an additional bulk of previous MD studies
on Semitic MD in the supplementary material.

https://github.com/habeanf/yap
https://github.com/habeanf/yap


phosyntactic parsers — which we address next.

References
Meni Adler and Michael Elhadad. 2006. An unsu-

pervised morpheme-based hmm for Hebrew mor-
phological disambiguation. In Proceedings of
COLING-ACL.

Meni Adler. 2007. Hebrew Morphological Disam-
biguation: An Unsupervised Stochastic Word-based
Approach. Ph.D. thesis, Ben-Gurion University of
the Negev, Beer-Sheva, Israel.

Roy Bar-Haim, Khalil Simaan, and Yoad Winter. 2005.
Part-of-speech tagging for Hebrew and other semitic
languages. Master’s thesis, Technion, Haifa, Israel.

Roy Bar-haim, Khalil Sima’an, and Yoad Winter.
2008. Part-of-speech tagging of Modern Hebrew
text. Natural Language Engineering, 14(2):223–
251.

Bernd Bohnet and Joakim Nivre. 2012a. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL ’12, pages 1455–1465, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Bernd Bohnet and Joakim Nivre. 2012b. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL ’12, pages 1455–1465, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajic. 2013.
Joint morphological and syntactic analysis for richly
inflected languages. TACL, 1:415–428.

S. B. Cohen and N. A. Smith. 2007. Joint morphologi-
cal and syntactic disambiguation. In Proceedings of
EMNLP.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42Nd Annual Meeting on Association for
Computational Linguistics, ACL ’04, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Yoav Goldberg and Reut Tsarfaty. 2008. A sin-
gle framework for joint morphological segmentation
and syntactic parsing. In Proceedings of ACL.

Spence Green and Christopher D. Manning. 2010.
Better Arabic parsing: Baselines, evaluations, and
analysis. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING

’10, pages 394–402, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Noemie Guthmann, Adi Milea Milea, and Yoad Winter.
2009. Automatic annotation of morpho-syntactic
dependencies in a modern Hebrew treebank. Pro-
ceedings of TLT.

Nizar Habash and Owen Rambow. 2005. Arabic to-
kenization, part-of-speech tagging and morphologi-
cal disambiguation in one fell swoop. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics, ACL ’05, pages 573–
580, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Matthew Honnibal and Mark Johnson. 2014. Joint
incremental disfluency detection and dependency
parsing. Transactions of the Association of Compu-
tational Linguistics – Volume 2, Issue 1, pages 131–
142.

Alon Itai and Shuly Wintner. 2008. Language re-
sources for Hebrew. Language Resources and Eval-
uation, 42(1):75–98, March.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Number 2 in Synthesis
Lectures on Human Language Technologies. Mor-
gan & Claypool Publishers.

Joakim Nivre and Johan Hall. 2005. Maltparser: A
language-independent system for data-driven depen-
dency parsing. In In Proc. of the Fourth Workshop
on Treebanks and Linguistic Theories, pages 13–95.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of Ara-
bic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014). European Language Resources Asso-
ciation (ELRA).

Djame Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, D. Jinho Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Villemonte Eric
de la Clergerie. 2013. Proceedings of the fourth
workshop on statistical parsing of morphologically-
rich languages. pages 146–182. Association for
Computational Linguistics.

Danny Shacham and Shuly Winter. 2007. Morpho-
logical disambiguation of Hebrew: A case study in
classifier combination. In Proceedings of ACL.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and N. Nativ. 2001. Building a tree-bank of Modern
Hebrew text. Traitment Automatique des Langues,
42(2).



Peter Smit, Sami Virpioja, Stig-Arne Grönroos, and
Mikko Kurimo. 2014. Morfessor 2.0: Toolkit for
statistical morphological segmentation. In Proceed-
ings of the Demonstrations at the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 21–24. Association for
Computational Linguistics.

Reut Tsarfaty and Yoav Goldberg. 2008. Word-based
or morpheme-based? annotation strategies for mod-
ern Hebrew clitics. In Proceedings of LREC.

Reut Tsarfaty. 2006. Integrated morphological and
syntactic disambiguation for modern Hebrew. In
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguis-
tics: Student Research Workshop, COLING ACL
’06, pages 49–54, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Yue Zhang and Stephen Clark. 2011a. Syntactic pro-
cessing using the generalized perceptron and beam
search. Comput. Linguist., 37(1):105–151, March.

Yue Zhang and Stephen Clark. 2011b. Syntactic pro-
cessing using the generalized perceptron and beam
search. Comput. Linguist., 37(1):105–151, March.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Short Papers - Volume 2, HLT
’11, pages 188–193, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level chinese dependency
parsing. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1326–1336, Bal-
timore, Maryland, June. Association for Computa-
tional Linguistics.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Com-
putational Linguistics, ACL 2013, 4-9 August 2013,
Sofia, Bulgaria, Volume 1: Long Papers, pages 434–
443. The Association for Computer Linguistics.



Transition-Based Morphological Disambiguation
Supplementary Material

Appendix 1: Feature Properties

Morpheme-based properties, addressed by Mk, where k is the k-th disambiguated morpheme.
m - morpheme’s form
f - morpheme’s morphological properties
p - morpheme’s part-of-speech tag
n - the set of projected ambiguous morphemes of the current node
Lattice-based properties, addressed by Lk, where k is the k-th word-lattice5 in the lattice buffer b.
t - lattice’s token
a - lattice’s set of all possible paths/spellouts, with projected morphemes
i - sequence of a lattice’s spellout with projected morphemes - exists only for disambiguated lattices

Appendix 2: Word-Based Features

Lattice Unigram:L0a, L0t
Lattice Bigram: L0tL−1t, L0tL−1a, L0aL−1t, L0aL−1a
Lattice Trigram:
L0tL1tL−1t, L0tL1aL−1t, L0aL1tL−1t, L0aL1aL−1t,
L0tL1tL−1a, L0tL1aL−1a, L0aL1tL−1a, L0aL1aL−1a
Previously Disambiguated Lattice Unigram: L−1i
Previously Disambiguated Lattice Bigram:
L−1iL0a, L−1iL0t, L−1iaL0a, L−1iaL0t, L−1itL0a, L−1itL0t
Previously Disambiguated Lattice Trigram:
L−2iL−1iL0a, L−2iL−1iL0t, L−2iL−1iaL0a, L−2iL−1iaL0t, L−2iL−1itL0a, L−2iL−1itL0t
L−2iaL−1iL0a, L−2iaL−1iL0t, L−2iaL−1iaL0a, L−2iaL−1iaL0t, L−2iaL−1itL0a, L−2iaL−1itL0t
L−2itL−1iL0a, L−2itL−1iL0t, L−2itL−1iaL0a, L−2itL−1iaL0t, L−2itL−1itL0a, L−2itL−1itL0t
POP6:L−1i, L−1it, L−1ia

Appendix 3: Morpheme-Based Features

Disambiguated Morphemes Unigram: M0m,M0p,M0mp,M0f,M0mf,M0pf,M0mpf
Disambiguated Morphemes Bigram:
M0mM1m,M0mfM1m,M0mpM1m,M0mpfM1m
M0mM1mp,M0mfM1mp,M0mpM1mp,M0mpfM1mp
M0pM1p,M0pfM1pf,M0pfM1p,M0fM1p,M0fM1p
Disambiguated Morphemes Trigram:
M0mM1mM2m,M0pM1pM2p,M0mpM1mpM2mp
M0mpfM1mpM2mp,M0mpfM1mpfM2mpf,M0fM1pM2p
Next Ambiguous Morphemes Unigram: L0n,L0na, L0nt
Next Ambiguous Morphemes with Previous Lattice Disambiguation Bigram:
L−1iL0n,L−1iL0na, L−1iL0nt, L−1iaL0n,L−1iaL0na, L−1iaL0nt, L−1itL0n,L−1itL0na, L−1itL0nt
Next Ambiguous Morphemes with Previous Lattice Disambiguation Trigram:
L−2iL−1iL0n,L−2iL−1iL0na, L−2iL−1iL0nt, L−2iL−1iaL0n
L−2iL−1iaL0na, L−2iL−1iaL0nt, L−2iL−1itL0n,L−2iL−1itL0na
L−2iL−1itL0nt, L−2iaL−1iL0n,L−2iaL−1iL0na, L−2iaL−1iL0nt
L−2iaL−1iaL0n,L−2iaL−1iaL0na, L−2iaL−1iaL0nt, L−2iaL−1itL0n
L−2iaL−1itL0na, L−2iaL−1itL0nt, L−2itL−1iL0n,L−2itL−1iL0na
L−2itL−1iL0nt, L−2itL−1iaL0n,L−2itL−1iaL0na, L−2itL−1iaL0nt

5Negative values of k address previous word-lattices, relative to the head of the lattice buffer b, so L−1 addresses the
word-lattice occurring in the input sentence, before the word-lattice at the head of b.

6POP feature templates are restricted to fire when predicting a POP transition, all other feature templates are not applied.



L−2itL−1itL0n,L−2itL−1itL0na, L−2itL−1itL0nt
POP7:L−1i, L−1it, L−1ia

Related Work and Future Work

Previous work tackled matters of MD in MRLs and in Semitic languages in particular, both in isolation
and in the context of joint processing. Both Adler ((Adler and Elhadad, 2006), (Adler, 2007)) and .
(Bar-Haim et al., 2005) used generative models based on HMM. Adler used HMMs for morphological
disambiguation in semi supervised settings, where morphological properties are combined into a so-
called dense morpheme model allowing for learning both segmentation and tagging together. (Bar-Haim
et al., 2005) uses HMM for separate segmentation and POS tagging only (without disambiguation mor-
phological properties). (Shacham and Winter, 2007) use a hierarchy of classifiers to obtain fine-grained
MD in Hebrew. For Modern Standard Arabic (MSA), MADAMIRA and its predecessor MADA use
SVM to predict morphological properties (Pasha et al., 2014). For generic morphological segmenta-
tion, Morfessor (Smit et al., 2014) uses a max-likelihood in a semisupervised setting. Niether of these
frameworks are adequate for joint transition-based morphosyntactic processing.

Goldberg and Tsarfaty (2008) have shown that in a generative setting, joint morphological segmen-
tation and syntactic parsing of Modern Hebrew improves accuracy for both tasks, yielding state-of-the-
art results. Bohnet et al. propose joint morphological and syntactic analysis in (Bohnet et al., 2013)
and (Bohnet and Nivre, 2012b) of richly inflected languages, yielding results supporting the joint hy-
pothesis, however the languages they process do not have variable length segmentations as a result of
morphological disambiguation.

Variable-length sequences in beam search also exist in the structured prediction of constituency trees.
Zhu et al (Zhu et al., 2013) introduced an IDLE transition (adopted in (Honnibal and Johnson, 2014)
and (Zhang et al., 2014)) that, like POP, has no effect, but unlike POP occurs only at the end of parsing
and has a non-deterministic number of occurrences. The IDLE transition likely solves the bias of only
slightly varying length sequences, but would not be applicable to wildly varying lengths, such as is the
case in morphological disambiguation of MRLs.

In the future, we intend to embed our morpheme-based MD in a joint framework for morphological
and syntactic disambiguation, that is amendable to deal with variable length morpheme sequence – as is
the case in Semitic languages. In the context of joint processing, a morpheme-based transition system
is more suitable because it allows the dependency parser earlier access to disambiguated morphemes.
In turn, the dependency parser can attempt to attach the morphemes to existing syntactic structures.
Moreover, none of our definition is language-specific, and hence, our model is potentially suitable for
cross-linguistic MD, which we are going to instantiate and evaluate in future work.

7POP feature templates are restricted to fire only when predicting a POP transition, all other feature templates are not
applied


