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1. Introduction 
The document describes a proposal for malware detection solution based on Machine learning (ML) 

approach applied to system event traces collected during execution of the malware program. 

2. Background 
There are many published works related to the usage of called API traces to train an ML model and use it for 

malware detection. Usually such solutions use dedicated VM (Cuckoo, for example) to collect called API 

traces, extract features from it and use it for model training and/or malware detection.[1] Other articles 

deal with API call traces for malware detection too [1,2,3,4] 

Such approach showed in the past, very good level of accuracy, but , at the same time, it’s hardtop use in 

the real world because it’s not applicable to execute day to day real world programs in isolated VM 

environment or apply other invasive methods (detours, API monitor) to perform called API traces collection. 

Also, the API traces are susceptible to code morphing techniques that can mislead ML based detection 

solutions. 

The current project proposes an alternative approach to get insight into the program activities and collect 

information that can be used to train an ML model and use it for malware detection. 

3. Proposed project 
The project proposes to collect per program event traces for ML model training and malware detection. 

While called API trace show one specific path of the executed program control flows, matching event trace 

shows events that happened in the monitored system as the result of a given program execution (example: 

file opened, registry entry read, image loaded, etc.).Each such event may represent multiple API calls thus 

they are at a higher level of abstraction. 

In terms of variety, called API trace have greater degree of it, while, event trace shows greater resilience vs. 

code morphing because it’s output does not depend on the order or the nature of called API (as far those 

API working toward the same goal) and not reacting to an empty or failed API calls. 

Also, contrary to called API traces, event traces are created and maintained by the OS itself (via Event Trace 

for Windows (ETW) subscription model) and do not require a Virtual Machine (VM) or any other costly 

invasive method to collect data. 

This difference makes event traces a good candidate to be used as a source for training and malware 

detection with help of ML. The project selects most accurate ML method for classification from 5 algorithms 

that are briefly described in Appendix  C. 
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4. Methodology and performed work 

4.1. Experimentation 

4.1.1. Approach 

Some experimentation of the proposed approach has already been done. Experiments were performed on a 

VM (Hyper-V  based) running windows 8.1 x86 OS. 

Dedicated software was used to 

 Execute selected program (with command line arguments, if required) 

 Collect and store system events (ETW) traces during execution 

 Extract and aggregate features from saved traces 

ETW traces were collected for the next types of events: 

 Process – process related events, i.e. process creation\termination, etc. 

 Thread – thread related events (thread creation, termination) 

 Win32 subsystem – win32 subsystem events  

 Registry – registry events (registry keys and values accesses) 

 Networking – networking events (connection events, inbound\outbound data events, etc) 

 WMI – Windows Management Instrumentation component events 

 Powershell – powershell application related events 

 File – file events (example: open, create, read, write, etc.) 

 Image – executable file (image) events, example: load of image 

 ALPC – Asynchronous light weighted process communication subsystem events (used as backbone 

of remote procedure calls, for example) 

 Memory – memory usage events (heap allocations, etc.) 

4.1.2. Extracted features 

Collected traces contain the valuable information in binary format. To apply machine learning (ML) methods 

to the collected data, data need to be filtered and converted to format that can be used with ML methods. 

The procedure of data filtering and conversion is often called “features extraction”. In our case it works as 

follows: 

 Events associated with the reviewed process are filtered out 

 Per each filtered event, source of the event (ETW channel that produced the event, like “process”, 

“memory”, etc.), event name, recorded followed by event specific id number and event specific sub 

id are taken. 

 Combination of channel name, event name, event id and sub id (secondary event identifier field 

used to identify event subclass) is used to create feature type (in terms of ML) that will be recorded. 

Example: “fileio_operationend_0_3”: 

o “Fileio” marks ETW source 

o “Operationend” stands for event name 

o “0” stands for event id 
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o “3” stands for event sub id 

4.1.3. Collected events distribution 

The collected data contains 207 different types of events. 

The table that shows distribution of collected system events, sorted by weight of event (event frequency 

divided by the number of processes where the event was detected) is presented in Appendix A of the 

document. 

Figure 1 shows ETW events distribution (across all executed processes): 

 

Figure 1: Events occurrence general distribution 

Figure 2 shows events distribution map when event appearance per process is taken into account: 
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Figure 2: Events occurrence per process distribution 

Comparison of the events distribution diagrams shows difference between overall events distribution ( 

Figure 1) and events distribution per process (Figure 2) – which is a promising indication for our goal: it 

shows that processes indeed can be distinguished one from another based on events patterns. 

The full list of events is presented in Appendix A. 

4.1.4. Helper software 

To perform experimentation a helper program was developed. The program does the following: 

 Start ETW events recording 

 Execute given executable (including supplied command line arguments, if present) 

 Wait for preconfigured period (2 minutes as a default) 

 Terminate executed program (if not terminated by itself) 

 Stop ETW session and writes to the storage the PID of the executed program (to be used in filters) 

To extract features from the collected ETW traces (stored in Event Trace Log (ETL) format), two utilities 

were used. 

 tracerpt utility was used to aggregate ETL traces and convert them to CSV format. 

 Dedicated application was used to parse given collection of CSV files 

o Collected data was filtered, events not related to the experimentation scope are dropped 

o Features were extracted from the remaining data records 

o Output was produced in a form that can be used to apply ML algorithms (space separated 

format with each feature represented by a unique name) 
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o Summary report was produced 

4.1.5. Benign programs 

The table that shows benign and malicious programs that are used during experimentation (so far) is 

presented in Appendix B, the table contains only first 100 benign and 100 malware programs, as an 

illustration. 

The experimentation was performed on well-known Windows applications, web browsers and generally 

avail utilities. In total 291 benign programs were executed.  

Figure 3 illustrates the process of features extraction for benign applications: 

 

Figure 3: Features extraction for benign case 

4.1.6. Malware 

Malware programs were retrieved from multiple sources, including 

 theZoo GitHub repository 

 VxHeaven repository archive 

Contrary to benign applications, safe execution of malware samples requires additional measures 

 Isolated execution environment (no network connectivity) 

 Disable AV software 

 Extraction of execution recording after each malware sample execution (to avoid data loss) 

 Reset of execution environment (testing VM) after each malware sample execution (to avoid impact 

of one malware sample on another) 
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 Additional virtual hard disk volume was used to prepare each malware sample for execution and 

extraction of the results. The following steps were used to execute the malicious programs: 

o Prior to malware sample execution the volume was mounted on the master PC (PC that 

hosted the test VM) 

o One-time preparation (done once per all tests): encrypted storage with malware samples 

created on the mounted volume. Encryption was needed to avoid accidental execution of 

malware sample and prevent sample removal by AV software 

o Execution script with path to the executed sample of malware copied to the volume 

o In context of the script selected sample of malware being decrypted and executed by the 

trace collection helper program mentioned above. Results of the execution preserved at the 

volume. 

o Prior to the execution of the testing VM, the virtual volume with the execution script is 

detached from the master PC 

o Execution time of VM instance with malware sample execution script set to 5 minutes, it is 

enough to load the VM, execute the script (set to be limited by 2 minutes) and preserve 

execution results on the virtual volume 

o After 5 minutes of execution, the test VM being forcefully shut down by the master PC 

o The virtual volume attached to the master PC and the execution results (trace logs) were 

copied over to the master PC 

o The testing VM was reset to the initial state (to ensure that executed malware won’t leave 

any trace on it) and ready for tests with next malware sample 

Malware samples from theZoo collection were represented by single example per each malware family, 

overall, about 55 samples. Malware examples from VxHeaven collection belonged to the following malware 

families: 

 Backdoor-Win32-Poison 

 Backdoor-Win32-SdBot 

 Trojan-Downloader-Win32-Banload 

 Trojan-Downloader-Win32-FraudLoad 

 Trojan-Downloader-Win32-Small 

 Trojan-Downloader-Win32-VB 

 Trojan-PSW-Win32-LdPinch 

 Trojan-Win32-Delf 

From each family there were about 100 different samples (with different hash values) taken for 

experimentation. 

Figure 4 illustrates the process of features extraction for malware samples: 
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Figure 4: Features extraction for malware case 

Results were collected from more than 800 malware samples, after removal of duplicates (removal of 

execution traces that are similar), classification was performed on 587 unique malware execution traces. 

Note: at this point we already can state that usage of ETW for event tracing showed good results vs. non-

essential malware modifications: more than 100 malware samples (13%) were detected as duplicates on 

another malware samples despite different hash values of executables. 

5. Features extraction and classification methodology 
Features extraction and classification of the collected features was performed based on similar API call 

tracing methods that were adopted to achieve above 90% accuracy of detection. 

Specifically, the method suggested by article [4] was used for features extraction and classification of 

malware samples vs. benign programs. 

Figure 5 describes the control flow: 
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Figure 5: Features extraction and Classification procedure 

The detailed description of the features extraction methodology is presented in the next section. 

The detailed description of the classification methodology is presented in Appendix C. 

6. Features extraction details 
The features extraction methodology uses the following definitions based on referred article [4]. 

D = {d1,d2,…,dn} 
V = {w1,w2,…,wn} 
fd(w)= frequency of the word w∈V in d∈D 
t⃑d=(fd(w1), fd(w2),…, fd(wn)) 
 
D is the corpus and d represent a document. 
V is the vocabulary and w represent each word that appears in the corpora 
 
The algorithm uses the “bag of words model” described in article [4]: in context of the model we take in 
account presence of a certain word in a document, the exact location of the word not important. 
The article author substituted OS API traces for words, we use a similar approach and substitute extracted 
ETW events for words. 
As a result, for us, set V represents the vocabulary set of all unique ETW events (represented by wn where n 
is the index of the ETW event in the vocabulary). 
Each document (in our case it’s event trace) is represented by how many times every wn occurs in the 
document, as represented by t⃑d, where fd(wn) represents the frequency of the ETW event of index n in the 
log d. 
 
By analogy with article [4], we use the same n-gram model as demonstrated in the article. 
We also use the same consideration for TF-IDF and TF weighting (cited from the article [4]): 
 
“Term Frequency (TF) refers to the number of times a certain word occurs in a corpus. Inverse Document 
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Frequency (IDF) refers to the amount of times the word occurs throughout the document D. The TF-IDF 
weight of a term is computed as following: 
 
tf(w,d)=fd(w): frequency of w in document d 

idf(w,D)=𝑙𝑜𝑔
1+|𝐷|

1+𝑑𝑓(𝑑,𝑤)
 

 
Where df(d,w) is the number of documents the word w appears in. 
 
This is a logarithmically scaled value of the number of documents in the corpus divided by the number of 
times word w appears throughout the corpus. 
 
tfidf(w,d,D)=tf(w,d) x idf(w,D) 
 
The tfidf value increases proportionally by the frequency of w in a document, decreases proportionally by the 
log of the frequency of w in the corpus. The assumption is that a word that is more prevalent 
throughout the corpus is more likely to be less significant. The resulting vectors comprised of raw tfidf values 
that represent each document are normalized using the Euclidean norm: 
 

vnorm=
𝑣

√𝑣1
2+𝑣2

2+⋯+𝑣𝑛
2
 

” 
Next, the gives set of event traces is transformed with help of either tf (CountVectorized) or tfidf 
(TfidfVectorized) to features vectors. This vector is supplied as input for a classification method (several 
well-known methods were used to find out best result) 
 

7. Classification algorithms overview 
See details in Appendix C. 

7.1.1. Ridge classification algorithm 

This algorithm first converts binary targets to {-1, 1} and then treats the problem as a regression task, 

optimizing the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients. The 

predicted class corresponds to the sign of the regressor’s prediction. For multiclass classification, the 

problem is treated as multi-output regression, and the predicted class corresponds to the output with the 

highest value. 

7.1.2. Perceptron classification algorithm 

The Perceptron is a simple classification algorithm suitable for large scale learning. By default: 

 It does not require a learning rate. 
 It is not regularized (penalized). 
 It updates its model only on mistakes. 
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7.1.3. Passive-Aggressive classification algorithm 

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are like the 

Perceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a 

regularization parameter C. 

7.1.4. Multinomial  Naïve Bayes classification algorithm 

The multinomial Naive Bayes classification algorithm is suitable for classification with discrete features (e.g., 

word counts for text classification). The multinomial distribution normally requires integer feature counts. 

However, in practice, fractional counts such as tf-idf may also work. 

7.1.5. Linear SVM classification algorithm 

Support Vector Machines belong to the discriminant model family: they try to find a combination of samples 

to build a plane maximizing the margin between the two classes. Regularization is set by the C parameter: a 

small value for C means the margin is calculated using many or all of the observations around the separating 

line (more regularization); a large value for C means the margin is calculated on observations close to the 

separating line (less regularization). 

All the classifiers above were implemented by the Python machine learning libraries. 

8. Python implementation details 
The following python script (parts of it) was used to perform classification of programs based on the 

collected data: 

#Python code sample parts to demonstrate preprocessing and classification of the project 

def benchmark(clf, vecdesc, ncolumns, train_labels, test_labels, showTopFeatures=False): 

    print('_'*60) 

    print("Training: ") 

    print(clf) 

    t0 = time() 

    clf.fit(X_train, train_labels) 

 

    train_time = time() - t0 

    t0 = time() 

    pred = clf.predict(X_test) 

    test_time = time() - t0 

    score = metrics.accuracy_score(test_labels, pred) 

mailto:koral01@gmail.com
https://scikit-learn.org/0.16/modules/svm.html#svm


MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635 

 Page 14 
 

    if hasattr(clf, 'coef_'): 

        print("dimensionality: %d" % clf.coef_.shape[1]) 

        print("density: %f" % density(clf.coef_)) 

        print() 

    clf_descr = str(clf).split('(')[0] 

    mCount = 0 

    for i in test_labels: 

        if i != 'Bening': 

            mCount+=1 

    maliciosTestRate = mCount/len(test_labels) 

    predictaments = pred.tolist() 

    return vecdesc, clf_descr, ncolumns, score, maliciosTestRate, train_time, test_time 

#================================== End of Utility code  

 

#================================== Calculation start line  

results = [] # future storage of results 

# raw data location 

dataset_url = os.getcwd() + '//data//alltraces_100p_average_unmapped.csv' 

 

# read the input data set 

data = pd.read_csv(dataset_url, delimiter=' ', dtype=str) 

y_names = data.pop('FileName') 

data_length = len(data.columns) 

data.drop_duplicates(inplace=True) 

rng = RandomState()  # random seed 

 

# Perform 100 iterations to ensure that results are statistically reliable 

mailto:koral01@gmail.com


MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635 

 Page 15 
 

for iteration in range(100): 

    # randomly split 70% to train, 30% to test 

    train = data.sample(frac=0.7, random_state=rng) 

    test = data.loc[~data.index.isin(train.index)] 

 

    # Prepare train data 

    X = train.to_numpy()[:, 1:] 

    y = train.to_numpy()[:, 0] 

    X = X.astype(str) 

    X = np.char.lower(X) # normalize by char case 

    X_list = X.tolist() 

    X = flatten_list_of_lists(X_list) # transform data format (flatten) to form that acceptable by classifier 

    y = y.tolist() 

 

    # Prepare test data 

    X_t = test.to_numpy()[:, 1:] 

    y_t = test.to_numpy()[:, 0] 

    X_t = X_t.astype(str) 

    X_t = np.char.lower(X_t) 

    X_list = X_t.tolist() 

    X_t = flatten_list_of_lists(X_list) # transform data format (flatten) to form that acceptable by classifier 

    y_t = y_t.tolist() 

 

    # collect results per each supported features extraction method 

    for vectorizer in ( 

        TfidfVectorizer(token_pattern='(?u)\\b\\w+\\b', ngram_range=(nGRAM1, nGRAM2), min_df=1, 

use_idf=True,smooth_idf=True), 

        CountVectorizer(ngram_range=(nGRAM1, nGRAM2))): 
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        vec_descr = str(vectorizer).split('(')[0] 

        analyze = vectorizer.build_analyzer() 

        X_train = vectorizer.fit_transform(X) 

        X_test = vectorizer.transform(X_t) 

        clf_LSVC = Pipeline([ 

          ('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False, 

                                                          tol=1e-3))), 

          ('classification', LinearSVC(penalty="l2"))]) 

 

        # collect results per each supported classification method 

        for clf, name in ( 

                (RidgeClassifier(tol=1e-2, solver="sparse_cg"), "Ridge Classifier"), 

                (Perceptron(n_iter_no_change=50), "Perceptron"), 

                (PassiveAggressiveClassifier(n_iter_no_change=50), "Passive-Aggressive"), 

                (MultinomialNB(alpha=.01),"MultinomialNB"), 

                (clf_LSVC,"LSVC")): 

            print('=' * 80) 

            print(name) 

            results.append(benchmark(clf,vec_descr,data_length, y, y_t)) 

 

list_header = ["Preprocessing", "Classification", "Trace Size", "Score", "Malicious rate", "Train time", 

"Test time"] 

# using list comprehension, convert tupple to list 

out = [list(ele) for ele in results] 

 

# write to output file 

outputPath = os.getcwd() + '//output//calculation_results.csv' 

with open(outputPath, 'w') as myfile: 
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    wr = csv.DictWriter(myfile, fieldnames=list_header) 

    wr.writeheader() 

    for ele in out: 

        wr.writerow({"Preprocessing":ele[0], "Classification":ele[1], "Trace Size":ele[2], "Score":ele[3], 

"Malicious rate":ele[4], "Train time":ele[5], "Test time":ele[6]}) 
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Figure 6 illustrates the workflow of the script: 

 

Figure 6: Python code control flow diagram 

Following Python classes were used for collected features preprocessing: 

mailto:koral01@gmail.com


MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635 

 Page 19 
 

 CountVectorized 

 TfidfVectorized 

Classification of the collected and preprocessed data was performed with the help of the next Python 

classification classes: 

 Ridge 

 Perceptron 

 Passive-Aggressive 

 MultinomialNB 

 Linear SVC 

9. Experimental evaluation 
 
We use the next set of definitions in our work: 

 Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 Precision = 
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑇𝑃+𝐹𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

 ROC (receiver operating characteristic curve) is a graph showing the performance of a 
classification model at all classification thresholds. This curve plots two parameters: 

o True positive rate (TPR) 
o False positive rate (FPR) 

TPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

FPR = 
𝐹𝑃

𝑇𝑃+𝐹𝑁
 

A ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the classification 
threshold classifies more items as positive, thus increasing both False Positives and True 
Positives.  

 AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-dimensional 
area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1). 
AUC provides an aggregate measure of performance across all possible classification thresholds. 
One way of interpreting AUC is as the probability that the model ranks a random positive 
example more highly than a random negative example. 
 

Figure 7 demonstrates the accuracy comparison between different classification methods used in the 
experiment: 
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Figure 7: Accuracy of different classification methods 

 
Figure 8 demonstrates the training time comparison between the different methods: 

 
Figure 8: Training time per classification method 

 
Figure 9 demonstrates the testing time comparison between the methods: 
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Figure 9: Testing time per classification method 

 

Figure 10 shows ROC curve and AUC value for the PassiveAggressive method case: 

 

Figure 10: ROC curve example 
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Figure 11 illustrates the relation between classification accuracy and percentage of malicious code in the 

training set: 

 

Figure 11: Relation between malicious rate and accuracy 

From  Figure 11 we can learn that MultinomialNB classification method produces the best results, but taking 

into account the training and testing times too, we choose PassiveAggressive method with TfidfVEctorized 

based features preprocessing as the solution that shows the best combination of precision (99%), training 

(0.06) and testing (0.0007) times. 

10. Comparison with the related works 

10.1. Review of related works 
 Article [1] collects API traces and uses them as input to create signatures. The work creates several 

families (classes) of malware and uses created signatures to find out degree of membership of a 

given sample (by generated signature) to each malware family. On base of the results (calculated 

degree of membership) a database for malware’s behaviors classes (and its membership degrees to 

each classes) was constructed. 

At signatures generation phase the work uses the term of “Critical API calls” defined as: 

“Critical API calls contain all API calls that can lead to security infraction, changes to the operating 
system's behavior or API calls used for communication (modification of the system registry value, 
Input/Output, API functions for network resources access, etc.).” 
 
The signature of program behavior based on API call tracing can be presented as a set of two 
components: the call frequency and the interaction of the critical API calls. An analysis of the first 
component allows determining the distribution of the critical API calls by groups concerning their 
malicious activity and displays the quantitative component of the signature. The second component 
of the signature implies the mapping nature of the interaction of malware’s critical API calls into the 
vector space and describes their interactions. 
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The work uses a preset of 26 API categories (Hooking, file and directory, etc.) to map critical API 
calls at features extraction phase. 
Extracted features were used as input to the MultonomialNB classifier. 
 
In comparison with this work we can note the following: 

o The work [1] maps collected API into one of 26 hardcoded categories which limits API 
variety appearing in logs to subset of APIs that are enlisted in those 26 categories only 

o The critical API call term allows to reduce part of non-important API calls from the trace log, 
still , in our opinion, traces based on ETW events are more reliable in this case, because 
non-important API are not expected to produce meaningful ETW events 
 

 Article [2] uses the Detours library to collect API call traces. Like the work [1], collected API calls 
being categorized to one out of 26 API categories. The work uses both Critical API calls (like in [1]) 
and Longest Common Subsequence (LCS) is defined as follows: 
In the formula, 𝑋𝑖 and 𝑌𝑖 represent the 𝑖th character of sequences 𝑋 and 𝑌, respectively. For 
example, the LCSs of ABCD and ACB are AB and AC: 
 

LCS(Xi,Yj)={

0 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0,

𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗−1) + 𝑐𝑜𝑚𝑚𝑜𝑛 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑖𝑓 𝑥𝑖 = 𝑦𝑗 ,

𝑙𝑜𝑛𝑔𝑒𝑠𝑡(𝐿𝐶𝑆(𝑋𝑖 , 𝑌𝑗−1)𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗))𝑖𝑓 𝑥𝑖 ≠ 𝑦𝑗

 

 

Since the LCS shows the longest malware API call sequence pattern, it can be treated as a malware’s 
signature. 
Authors of the work stated that extraction of LCS is an NP-hard problem, authors also used DNA 
sequence alignment algorithms to compare extracted signatures with database of known threats, 
which also was resource and time-consuming task. 
As a result, we can state that, in comparison with our project, the work has same limitation as 
article [1] and also have high cost of implementation due to the complex algorithms being used. 
 

 Article [3] also uses API call traces as input. Authors of the work extract features from collected 
traces in the form of patterns: 
Definition 1 (Pattern Instance): 
Given a pattern P<e1, e2, …, en>, a consecutive series of events SB (sb1, sb2,…, sbn) in an API call 
sequence S in API call database (APIDB) is an instance of P if it is of the following Quantified 
regular expression (QRE): 
e1; [-e1, …, en]*; …; [-e1, …, en]*; en  

 
  

For each malware, the authors extract a feature vector from its behavior. Assume MB 
and Fv are consecutive representatives of a malware behavior and feature vector 
for each malware. Fs is a feature set that is extracted from the previous part. 
Then: 

Fvi={
𝑡𝑜𝑡𝑎𝑙 𝐹𝑠𝑖 𝑖𝑛 𝑀𝑏, 𝑖𝑓 𝑀𝑏 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝐹𝑠𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

Additionally, the authors select features that are more discriminative between malware and benign 
samples with help of statistical measure – the Fisher score that indicates the discriminative power 
of the features. 
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Resulting features vectors were used with classifier method of RandomForest to get classification 
results. 
From our point of view, this is interesting work that invested lot of efforts to raise the quality of the 
extracted features. 
Since the work based on API call traces, our comparison with the work will point to the same 
conclusion as in case of article [1] and [2]. 
 

 Article [4] proposes to collect API traces and treat collected data as “bag of words”, sending it to 
either tf (CountVectorized) or tfidf (TfidfVectorized) features extractor. Resulting features were 
used with several classifiers in order to find a classifier that produces the best accuracy result. 
Our project is quite similar to this article: it uses the same approach to extract features and finds 
the best classifier method. The major difference comes in the type of the input: we use ETW data 
instead of API call traces. 
 

 

10.2. Results comparison 
 

Table 1 summarizes the comparison between the results described in the referenced works and the results 

received from our project: 

Work Accuracy Our results 

Dynamic Signature-
based Malware 

Detection Technique 
Based on API Call 

Tracing [1] 

96.56% 99% 

A Novel Approach to 
Detect Malware 

Based on API Call 
Sequence Analysis 

[2] 

100% 99% 

Malware detection 
by behavioral 
sequential patterns 
[3] 

 

98.4% 99% 

NtMalDetect: A 
Machine Learning 

Approach to 
Malware Detection 

Using Native API 
System Calls [4] 

96% 99% 

Table 1: Comparison table with referenced works 

Note: this comparison should be taken carefully because each of the articles uses different data sets for 

testing. 
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11. Summary and conclusions 
 

Based on the achieved results we can conclude that usage of Windows Event logs as source of features for 

malware classification looks like a promising path for further investigation. 

Specifically, in future work next items should be addressed: 

 Use up to date set of malware samples  

 Use up to date Windows OS version 

 Increase the number of benign and malware samples to 10000 at least 

Additional paths of research that worth to note: 

 Verify that amount of collected traces per process can be reduced significantly (currently it’s on the 

average equal to 6558) to ~100 without loss of accuracy 

 Adaptation of benign/malware features collection tool chain to work with next cases 

o Scripts 

o Execution scenarios that spawn across several processes (example: malware dropper 

download payload and executes it or scenario of process hollowing) 

Known limitation of the suggested method: 

 The method relies on OS specific (Windows) built in tracing facility, making the method applicable 

for Windows OS only 
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13. Appendix A – list of events 

EventName 
Even
tId 

EventOccu
rance 

EventPerProcessO
ccurance 

image_load_0_3 2 19196 878 

microsoftwindowswin32k_stop_85_0 63 619 619 

microsoftjscript_methodunload_10_0 172 58 2 

microsoftwindowswin32k_info_49_0 39 196 61 

fileio_delete_0_3 73 164 56 

fileio_mapfile_0_2 1 119985 878 

registry_create_0_2 28 156055 259 

fileio_fscontrol_0_3 8 1745 137 

fileio_cleanup_0_3 7 234473 873 

fileio_close_0_3 10 215236 873 

fileio_read_0_3 6 74996 832 

microsoftwindowswin32k_info_53_0 40 79578 59 

fileio_create_0_3 3 263644 873 

45d8cccd539f4b72a8b75c683142609a_38_0_2 13 2741 868 

fileio_operationend_0_3 4 1144230 878 

microsoftwindowstcpip_info_1229_0 136 636 2 

image_unload_0_3 64 18914 871 

microsoftwindowstcpip_info_1324_0 98 3 1 

registry_open_0_2 18 641461 868 

fileio_queryinfo_0_3 5 288141 878 

microsoftjscript_stop_130_0 196 24 2 

fileio_setinfo_0_3 9 2027 278 

microsoftwindowswin32k_start_60_0 50 13923 60 

registry_enumeratevaluekey_0_2 26 16257 573 

pagefault_virtualalloc_0_2 11 81451 878 

microsoftwindowswin32k_stop_70_0 51 13923 60 

microsoftwindowspowershell_stop_40962_1 156 1 1 

pagefault_virtualfree_0_2 12 59754 878 

microsoftwindowswin32k_info_181_0 46 79714 57 

microsoftwindowswin32k_start_86_0 25 879 625 

alpc_alpcsendmessage_0_2 14 101686 878 

thread_end_0_3 57 1998 870 

alpc_alpcunwait_0_2 15 67208 878 
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registry_queryvalue_0_2 19 400405 868 

microsoftjscript_start_78_0 197 24 2 

microsoftwindowstcpip_info_1169_0 84 32 5 

alpc_alpcreceivemessage_0_2 16 70606 878 

45d8cccd539f4b72a8b75c683142609a_39_0_2 17 2453 868 

registry_close_0_2 20 581996 868 

microsoftwindowswin32k_stop_91_0 151 62 3 

microsoftwindowstcpip_info_1223_0 135 1 1 

microsoftwindowskernelmemory_info_8_0 21 20248 755 

fileio_unmapfile_0_2 22 123365 878 

microsoftwindowswin32k_info_2_0 42 117 58 

microsoftwindowswin32k_start_84_0 23 625 625 

microsoftwindowswin32k_info_169_0 55 12058 157 

microsoftwindowswin32k_info_59_0 35 8112 144 

microsoftwindowswin32k_info_187_0 24 2129 625 

fileio_dirnotify_0_3 83 5 3 

registry_kcbcreate_0_2 27 15831 369 

microsoftwindowswin32k_info_203_0 31 15152 112 

microsoftwindowswin32k_info_1_0 29 12103 112 

alpc_alpcwaitforreply_0_2 30 64099 368 

microsoftwindowswin32k_info_52_0 32 9518 149 

registry_query_0_2 33 392547 304 

microsoftwindowswin32k_info_28_0 61 122 61 

registry_enumeratekey_0_2 34 28398 198 

microsoftwindowswin32k_info_65_0 36 11971 122 

microsoftwindowswin32k_info_27_0 37 122 61 

microsoftwindowswin32k_info_29_0 38 196 61 

microsoftjscript_sourceunload_42_0 173 30 2 

microsoftwindowswin32k_info_26_0 41 117 58 

microsoftjscript_stop_66_0 170 250 2 

microsoftwindowswin32k_info_189_0 43 929 87 

microsoftwindowswin32k_info_31_0 44 74 61 

microsoftwindowswin32k_apprenderingupdate_41_0 45 70630 54 

fileio_direnum_0_3 69 41116 286 

microsoftwindowswin32k_apprenderingtightupdate_42_0 47 9067 52 

microsoftwindowswin32k_stop_77_0 48 19378 178 

microsoftjscript_stop_132_0 190 18 2 

microsoftwindowswin32k_start_62_0 49 13801 58 

microsoftwindowswin32k_info_50_0 59 196 61 

microsoftwindowswin32k_stop_83_0 52 13801 58 

microsoftwindowswin32k_info_61_0 53 8647 125 

microsoftwindowswin32k_start_76_0 54 19339 168 

microsoftwindowswin32k_info_168_0 56 13275 64 
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microsoftwindowstcpip_info_1039_0 145 1 1 

microsoftwindowswin32k_info_45_0 58 870 619 

microsoftwindowswin32k_info_30_0 60 122 61 

microsoftwindowswin32k_stop_87_0 62 870 619 

process_end_0_4 65 869 869 

45d8cccd539f4b72a8b75c683142609a_41_0_2 66 2715 861 

microsoftjscript_stop_91_0 176 18 2 

registry_deletevalue_0_2 67 243 61 

microsoftjscript_allocatefunction_110_0 171 240 2 

microsoftwindowstcpip_info_1194_0 125 1 1 

registry_setvalue_0_2 68 2137 200 

registry_querysecurity_0_2 70 386 19 

registry_kcbdelete_0_2 71 1113 4 

microsoftjscript_allocateobject_108_0 205 2 2 

registry_delete_0_2 100 3 3 

fileio_write_0_3 72 25199 296 

fileio_dletepath_0_3 74 164 56 

fileio_rename_0_3 75 87 8 

fileio_renamepath_0_3 76 87 8 

process_terminate_0_2 77 764 753 

thread_start_0_3 78 1272 342 

microsoftjscript_info_103_0 203 18 2 

microsoftwindowstcpip_info_1331_0 144 637 2 

microsoftwindowswin32k_info_64_0 79 8635 51 

microsoftwindowswin32k_start_92_0 80 8592 33 

microsoftjscript_stop_75_0 192 24 2 

microsoftwindowswin32k_stop_93_0 81 8592 33 

microsoftwindowskernelmemory_info_1_1 82 69 16 

microsoftwindowstcpip_info_1170_0 85 28 5 

registry_setsecurity_0_2 86 627 6 

microsoftwindowswin32k_start_205_0 87 1 1 

microsoftwindowswin32k_info_88_0 88 164 12 

microsoftwindowswin32k_info_63_0 89 273 9 

microsoftwindowswin32k_info_33_0 90 6 2 

microsoftwindowswin32k_info_225_0 91 147 5 

microsoftwindowspowershell_start_40961_1 153 1 1 

microsoftwindowswin32k_info_204_0 92 3 3 

microsoftwindowswin32k_info_6_0 93 1 1 

microsoftwindowswin32k_oldtonewrendering_40_0 94 8 3 

microsoftwindowswin32k_info_151_0 95 7 2 

pagefault_memresetinfo_0_2 96 530 10 

process_start_0_4 97 314 189 

systemconfig_codeintegrity_0_2 116 1 1 

mailto:koral01@gmail.com


MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635 

 Page 29 
 

fileio_flush_0_3 99 73 14 

microsoftwindowstcpip_info_1127_0 101 16 3 

thread_dcend_0_3 102 18 6 

microsoftwindowswin32k_info_35_0 103 4 4 

microsoftwindowswin32k_info_38_0 104 9 7 

systemconfig_cpu_0_3 105 1 1 

systemconfig_logdisk_0_2 117 2 1 

systemconfig_dpi_0_2 106 1 1 

systemconfig_nic_0_2 107 3 1 

systemconfig_phydisk_0_2 108 2 1 

systemconfig_idechannel_0_2 109 3 1 

systemconfig_opticaldisk_0_2 110 1 1 

systemconfig_pnp_0_5 111 90 1 

systemconfig_irq_0_3 112 13 1 

systemconfig_services_0_3 113 171 1 

image_dcend_0_3 118 139 1 

systemconfig_power_0_2 114 1 1 

systemconfig_platform_0_2 115 1 1 

registry_flush_0_2 119 17 2 

microsoftwindowswin32k_info_3_0 120 1 1 

microsoftwindowstcpip_info_1013_0 121 167 137 

microsoftwindowstcpip_info_1001_0 122 167 137 

microsoftwindowstcpip_info_1191_0 123 33 14 

microsoftwindowstcpip_info_1008_0 124 33 14 

microsoftwindowstcpip_info_1123_0 126 1 1 

microsoftwindowstcpip_info_1009_0 127 167 137 

microsoftwindowstcpip_info_1051_0 128 27 9 

microsoftwindowstcpip_info_1192_0 129 1 1 

microsoftjscript_stop_87_0 202 14 2 

microsoftwindowstcpip_info_1002_0 130 1 1 

microsoftwindowstcpip_info_1003_0 131 12 9 

microsoftwindowstcpip_info_1004_0 132 1 1 

microsoftwindowstcpip_info_1031_0 133 1 1 

microsoftwindowswin32k_info_67_0 152 1 1 

microsoftwindowstcpip_info_1332_0 134 2 1 

microsoftwindowstcpip_info_1074_0 137 1286 2 

microsoftwindowswin32k_start_89_0 150 62 3 

microsoftwindowstcpip_info_1033_0 138 1 1 

microsoftwindowstcpip_info_1105_0 139 3 1 

microsoftwindowstcpip_info_1104_0 140 1 1 

microsoftwindowstcpip_info_1193_0 141 45 14 

microsoftwindowstcpip_info_1159_0 142 637 2 

microsoftwindowstcpip_info_1157_0 143 635 2 
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microsoftwindowstcpip_info_1044_0 146 13 9 

microsoftwindowstcpip_info_1184_0 147 1 1 

microsoftwindowstcpip_info_1040_0 148 1 1 

microsoftwindowstcpip_info_1038_0 149 2 1 

microsoftwindowspowershell_tobeusedwhenoperationisjust
executingamethod_7939_1 154 6 1 

microsoftwindowspowershell_tobeusedwhenoperationisjust
executingamethod_7938_1 155 2 1 

microsoftwindowspowershell_tobeusedwhenoperationisjust
executingamethod_7937_1 157 14 1 

microsoftwindowstcpip_info_1100_0 158 2 1 

microsoftjscript_usedpagesize_105_0 164 1408 2 

microsoftwindowstcpip_info_1156_0 159 1 1 

microsoftwindowstcpip_info_1158_0 160 1 1 

registry_querymultiplevalue_0_2 161 514 257 

microsoftwindowstcpip_info_1021_0 162 11 8 

microsoftwindowstcpip_info_1034_0 163 11 8 

microsoftjscript_scriptcontextload_11_0 165 10 2 

microsoftjscript_sourceload_41_0 166 30 2 

microsoftjscript_start_65_0 167 280 2 

microsoftjscript_info_67_0 168 270 2 

microsoftjscript_methodload_9_0 169 58 2 

microsoftjscript_scriptcontextunload_12_0 174 10 2 

microsoftjscript_start_90_0 175 18 2 

microsoftjscript_start_68_0 177 24 2 

microsoftjscript_stop_69_0 178 24 2 

microsoftjscript_start_70_0 179 24 2 

microsoftjscript_stop_71_0 180 24 2 

microsoftjscript_start_72_0 181 24 2 

microsoftjscript_stop_73_0 182 24 2 

microsoftjscript_start_88_0 183 18 2 

microsoftjscript_start_153_0 184 18 2 

microsoftjscript_stop_89_0 185 18 2 

microsoftjscript_start_143_0 186 18 2 

microsoftjscript_stop_144_0 187 18 2 

microsoftjscript_stop_154_0 188 18 2 

microsoftjscript_start_131_0 189 18 2 

microsoftjscript_start_74_0 191 24 2 

microsoftjscript_start_139_0 193 24 2 

microsoftjscript_stop_140_0 194 24 2 

microsoftjscript_start_129_0 195 24 2 

microsoftjscript_freememory_106_0 198 66 2 

microsoftjscript_freememoryblock_107_0 199 116 2 
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microsoftjscript_stop_79_0 200 24 2 

microsoftjscript_start_86_0 201 14 2 

microsoftjscript_start_100_0 204 2 2 

microsoftjscript_stop_104_0 206 2 2 

 

14. Appendix B – executed programs 
Following table includes examples of 100 benign and 100 malicious programs that were exeuted: 

Executable name Type 

accessenum Benign 

aitagent Benign 

aitstatic Benign 

alg Benign 

append Benign 

appidcertstorecheck Benign 

appidpolicyconverter Benign 

ARP Benign 

at Benign 

AtBroker Benign 

attrib Benign 

audiodg Benign 

auditpol Benign 

AuthHost Benign 

autoruns Benign 

autorunsc Benign 

AutoWorkplace Benign 

AxInstUI Benign 

baaupdate Benign 

backgroundTaskHost Benign 

BackgroundTransferHost Benign 

bcdboot Benign 

bcdedit Benign 

bdechangepin Benign 

BdeHdCfg Benign 

BdeUISrv Benign 

bdeunlock Benign 

BitLockerDeviceEncryption Benign 

BitLockerWizard Benign 

BitLockerWizardElev Benign 

bitsadmin Benign 

bootcfg Benign 

bootim Benign 
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bootsect Benign 

bridgeunattend Benign 

bthudtask Benign 

BulkOperationHost Benign 

ByteCodeGenerator Benign 

cacls Benign 

calc Benign 

CameraSettingsUIHost Benign 

CertEnrollCtrl Benign 

certreq Benign 

certutil Benign 

change Benign 

changepk Benign 

charmap Benign 

CheckNetIsolation Benign 

chglogon Benign 

chgport Benign 

chgusr Benign 

chkdsk Benign 

chkntfs Benign 

choice Benign 

chrome Benign 

cipher Benign 

cleanmgr Benign 

cliconfg Benign 

clip Benign 

clockres Benign 

CloudNotifications Benign 

CloudStorageWizard Benign 

cmd Benign 

cmdkey Benign 

cmdl32 Benign 

cmmon32 Benign 

cmstp Benign 

cofire Benign 

colorcpl Benign 

comp Benign 

compact Benign 

CompMgmtLauncher Benign 

ComputerDefaults Benign 

conhost Benign 

consent Benign 

control Benign 

convert Benign 
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coreinfo Benign 

CredentialUIBroker Benign 

credwiz Benign 

cscript Benign 

ctfmon Benign 

cttune Benign 

cttunesvr Benign 

dasHost Benign 

dccw Benign 

dcomcnfg Benign 

ddodiag Benign 

debug Benign 

Defrag Benign 

DeviceEject Benign 

DevicePairingWizard Benign 

DeviceProperties Benign 

DFDWiz Benign 

dfp Benign 

dfrgui Benign 

dialer Benign 

diskext Benign 

diskmon Benign 

diskpart Benign 

  

1002 Malware 

1003 Malware 

131 Malware 

21 Malware 

3_4 Malware 

5a765351046fea1490d20f25 Malware 

798_abroad Malware 

aapt Malware 

Backdoor-Win32-Poison-a Malware 

Backdoor-Win32-Poison-ac Malware 

Backdoor-Win32-Poison-adi Malware 

Backdoor-Win32-Poison-aec Malware 

Backdoor-Win32-Poison-ahm Malware 

Backdoor-Win32-Poison-apv Malware 

Backdoor-Win32-Poison-atk Malware 

Backdoor-Win32-Poison-ats Malware 

Backdoor-Win32-Poison-att Malware 

Backdoor-Win32-Poison-atz Malware 

Backdoor-Win32-Poison-auc Malware 

Backdoor-Win32-Poison-avd Malware 
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Backdoor-Win32-Poison-avh Malware 

Backdoor-Win32-Poison-ax Malware 

Backdoor-Win32-Poison-azx Malware 

Backdoor-Win32-Poison-bad Malware 

Backdoor-Win32-Poison-bcr Malware 

Backdoor-Win32-Poison-bd Malware 

Backdoor-Win32-Poison-bep Malware 

Backdoor-Win32-Poison-bet Malware 

Backdoor-Win32-Poison-bex Malware 

Backdoor-Win32-Poison-bey Malware 

Backdoor-Win32-Poison-bfa Malware 

Backdoor-Win32-Poison-bfk Malware 

Backdoor-Win32-Poison-bfm Malware 

Backdoor-Win32-Poison-bfn Malware 

Backdoor-Win32-Poison-bfp Malware 

Backdoor-Win32-Poison-bfq Malware 

Backdoor-Win32-Poison-bfw Malware 

Backdoor-Win32-Poison-bfz Malware 

Backdoor-Win32-Poison-bgv Malware 

Backdoor-Win32-Poison-bgw Malware 

Backdoor-Win32-Poison-bhf Malware 

Backdoor-Win32-Poison-bhg Malware 

Backdoor-Win32-Poison-bhm Malware 

Backdoor-Win32-Poison-bhs Malware 

Backdoor-Win32-Poison-bia Malware 

Backdoor-Win32-Poison-bib Malware 

Backdoor-Win32-Poison-big Malware 

Backdoor-Win32-Poison-bkd Malware 

Backdoor-Win32-Poison-bke Malware 

Backdoor-Win32-Poison-bkj Malware 

Backdoor-Win32-Poison-bkr Malware 

Backdoor-Win32-Poison-bky Malware 

Backdoor-Win32-Poison-blk Malware 

Backdoor-Win32-Poison-bls Malware 

Backdoor-Win32-Poison-blu Malware 

Backdoor-Win32-Poison-blz Malware 

Backdoor-Win32-Poison-bmc Malware 

Backdoor-Win32-Poison-bmd Malware 

Backdoor-Win32-Poison-bmf Malware 

Backdoor-Win32-Poison-bmh Malware 

Backdoor-Win32-Poison-bmv Malware 

Backdoor-Win32-Poison-bmw Malware 

Backdoor-Win32-Poison-bmx Malware 

Backdoor-Win32-Poison-bnb Malware 
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Backdoor-Win32-Poison-bnc Malware 

Backdoor-Win32-Poison-bng Malware 

Backdoor-Win32-Poison-bnk Malware 

Backdoor-Win32-SdBot-02 Malware 

Backdoor-Win32-SdBot-04-a Malware 

Backdoor-Win32-SdBot-04-c Malware 

Backdoor-Win32-SdBot-04-d Malware 

Backdoor-Win32-SdBot-04-f Malware 

Backdoor-Win32-SdBot-04-g Malware 

Backdoor-Win32-SdBot-05-aa Malware 

Backdoor-Win32-SdBot-05-ar Malware 

Backdoor-Win32-SdBot-05-d Malware 

Backdoor-Win32-SdBot-05-e Malware 

Backdoor-Win32-SdBot-05-f Malware 

Backdoor-Win32-SdBot-05-g Malware 

Backdoor-Win32-SdBot-05-m Malware 

Backdoor-Win32-SdBot-05-n Malware 

Backdoor-Win32-SdBot-05-o Malware 

Backdoor-Win32-SdBot-05-p Malware 

Backdoor-Win32-SdBot-05-q Malware 

Backdoor-Win32-SdBot-05-s Malware 

Backdoor-Win32-SdBot-05-v Malware 

Backdoor-Win32-SdBot-05-w Malware 

Backdoor-Win32-SdBot-05-z Malware 

Backdoor-Win32-SdBot-12 Malware 

Backdoor-Win32-SdBot-a Malware 

Backdoor-Win32-SdBot-aa Malware 

Backdoor-Win32-SdBot-aac Malware 

Backdoor-Win32-SdBot-aaj Malware 

Backdoor-Win32-SdBot-aap Malware 

Backdoor-Win32-SdBot-aav Malware 

Backdoor-Win32-SdBot-aay Malware 

Backdoor-Win32-SdBot-abc Malware 

Backdoor-Win32-SdBot-abe Malware 

Backdoor-Win32-SdBot-abf Malware 

Backdoor-Win32-SdBot-abh Malware 

Backdoor-Win32-SdBot-abo Malware 
 

 

15. Appendix C – classification algorithms 
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15.1. Ridge classification algorithm 
The Ridge classifier first converts binary targets to {-1, 1} and then treats the problem as a regression task. 

The predicted class corresponds to the sign of the regressor’s prediction. For multiclass classification, the 

problem is treated as multi-output regression, and the predicted class corresponds to the output with the 

highest value. 

 In mathematical notation if �̂� is the predicted value, then: 

�̂� (w,x)=w0+w1x1+...+wpxp 
Across the module, we designate the vector w=(w1,...,wp) as coefficients and w0 as intercept. 

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the 
size of the coefficients.The ridge coefficients minimize a penalized residual sum of squares: 

𝑚𝑖𝑛
𝑤

 ||Xw−y||
2
2

+α||w||
2
2

 

The complexity parameter α≥0 controls the amount of shrinkage(Figure 12): the larger the value of α, the 
greater the amount of shrinkage and thus the coefficients become more robust to collinearity. 

 

Figure 12: Ridge coefficients as function 

15.2. Perceptron classification algorithm 
The perceptron is an algorithm for learning a binary classifier called a threshold function: a function that 

maps its input  x (a real-valued vector) to an output value f(x) (a single binary value): 

f(x)={
1 𝑖𝑓 𝑤▪𝐱 + 𝐛 > 𝟎,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where w is a vector of real-valued weights, w▪x is the dot product ∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 , where m is the number of 

inputs to the perceptron, and b is the bias. The bias shifts the decision boundary away from the origin and 

does not depend on any input value. 

The value of f(x) (0 or 1) is used to classify x as either a positive or a negative instance, in the case of a 

binary classification problem. If b is negative, then the weighted combination of inputs must produce a 

positive value greater than  |b| in order to push the classifier neuron over the 0 threshold. Spatially, the 

bias alters the position (though not the orientation) of the decision boundary. The perceptron learning 

algorithm does not terminate if the learning set is not linearly separable. If the vectors are not linearly 

separable learning will never reach a point where all vectors are classified properly. The most famous 

example of the perceptron's inability to solve problems with linearly not separable vectors is the 

Boolean exclusive-or problem.  

In the context of neural networks, a perceptron is an artificial neuron using the Heaviside step function as 

the activation function. The perceptron algorithm is also termed the single-layer perceptron, to distinguish 

it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear 

classifier, the single-layer perceptron is the simplest feedforward neural network. 

 

15.3. Passive aggressive classification algorithm 
Let’s suppose that we have a dataset: 

 

The index t has been chosen to mark the temporal dimension. In this case, in fact, the samples can continue 

to arrive for an indefinite time. Of course, if they are drawn from same data generating distribution, the 

algorithm will keep learning (probably without large parameter modifications), but if they are drawn from a 

completely different distribution, the weights will slowly forget the previous one and learn the new 

distribution. For simplicity, we also assume we are working with a binary classification based on bipolar 

labels. 

Given a weight vector w, the prediction is simply obtained as: 

 

All these algorithms are based on the Hinge loss function (the same one used by SVM): 

 

The value of L is bounded between 0 (meaning perfect match) and K depending on f(x(t),θ) with K>0 

(completely wrong prediction). A Passive-Aggressive algorithm works generically with this update rule: 
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To understand this rule, let us assume the slack variable ξ=0 (and L constrained to be 0). If a sample x(t) is 

presented, the classifier uses the current weight vector to determine the sign. If the sign is correct, the loss 

function is 0 and the argmin is w(t). This means that the algorithm is passive when a correct classification 

occurs. Let’s now assume that a misclassification occurred: 

 

Figure 13 

The angle θ > 90°, therefore, the dot product is negative, and the sample is classified as -1, however, its 

label is +1. In this case, the update rule becomes very aggressive, because it looks for a new w which must 

be as close as possible as the previous (otherwise the existing knowledge is immediately lost), but it must 

satisfy L=0 (in other words, the classification must be correct). 

The introduction of the slack variable allows to have soft-margins (like in SVM) and a degree of tolerance 

controlled by the parameter C. In particular, the loss function must be L <= ξ, allowing a larger error. Higher 

C values yield stronger aggressiveness (with a consequent higher risk of destabilization in presence of 

noise), while lower values allow a better adaptation. In fact, this kind of algorithms, when working online, 

must cope with the presence of noisy samples (with wrong labels). A good robustness is necessary, 

otherwise, too rapid changes produce consequent higher misclassification rates. 
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After solving both update conditions, we get the closed-form update rule: 

 

This rule confirms our expectations: the weight vector is updated with a factor whose sign is determined by 

y(t) and whose magnitude is proportional to the error. Note that if there is no misclassification the 

nominator becomes 0, so w(t+1) = w(t), while, in case of misclassification, w will rotate towards x(t) and 

stops with a loss L <= ξ. In the next figure, the effect has been marked to show the rotation, however, it is 

normally as smallest as possible: 

 

Figure 14 

After the rotation, θ < 90° and the dot product becomes negative, so the sample is correctly classified as +1. 

 

15.4. Multinomial  Naïve Bayes classification algorithm 
Based on article [5]: 

Let the set of classes be denoted by C. Let N be the size of our vocabulary. Then MNB assigns a test 

document ti to the class that has the highest probability Pr(c|ti), which, using Bayes’ rule, is given by:  

Pr(c|ti) = 
Pr(c)Pr(𝑡𝑖|c) 

Pr (𝑡𝑖)
 , c ∈ C                                                                                                                           (1)  
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The class prior Pr(c) can be estimated by dividing the number of documents belonging to class c by the total 

number of documents. Pr(ti|c) is the probability of obtaining a document like ti in class c and is calculated 

as:  

Pr(ti|c)=(∑ 𝑓𝑛𝑖𝑛 )!∏
Pr (𝑤𝑛|𝑐)𝑓𝑛𝑖

𝑓𝑛𝑖!𝑛 ,                                                                                                                   (2)  

where fni is the count of word n in our test document ti and Pr(wn|c) the probability of word n given class c. 

The latter probability is estimated from the training documents as:  

𝑃�̂�( wn|c) = 
1+𝐹𝑛𝑐

𝑁+∑ 𝐹𝑥𝑐
𝑁
𝑥=1

,                                                                                                                                   (3)  

where Fxc is the count of word x in all the training documents belonging to class c, and the Laplace estimator 

is used to prime each word’s count with one to avoid the zero-frequency problem. The normalization factor 

Pr(ti) in Equation 1 can be computed using  

Pr(ti)=∑ Pr(𝑘) Pr (𝑡𝑖|𝑘)
|𝐶|
𝑘=1 .                                                                                                                          (4)  

Note that that the computationally expensive terms (∑ 𝑓𝑛𝑖𝑛 )! and ∏ 𝑓𝑛𝑖!𝑛  in Equation 2 can be deleted 

without any change in the results, because neither depends on the class c, and Equation 2 can be written as:  

Pr(ti|c) = α ∏ Pr (𝑤𝑛|𝑐)𝑓𝑛𝑖
𝑛 ,                                                                                                                        (5)  

where α is a constant that drops out because of the normalization step. 

15.5. Linear SVM classification algorithm 
Based on article [6]: Support vector machines (SVM) are based on the Structural Risk Minimization principle 
[7] from computational learning theory. The idea of structural risk minimization is to find a hypothesis h for 
which we can guarantee the lowest true error. The true error of h is the probability that h will make an error 
on an unseen and randomly selected test example. The following upper bound connects the true error of a 
hypothesis h with the error of h on the training set and the complexity of h [7]. 
 

P(error(h))≤train_error(h)+2√𝑑(𝑙𝑛
2𝑛

𝑑
+1)−𝑙𝑛

𝑛

4

𝑛
                                                                                           (6) 

 
The bound holds with probability at least 1-n. n denotes the number of training examples and d is the VC-
Dimension (VCdim) [7], which is a property of the hypothesis space and indicates its expressiveness. 
Equation (6) reflects the well-known trade-off between the complexity of the hypothesis space and the 
training error. A simple hypothesis space (small VCdim) will probably not contain good approximating 
functions and will lead to a high training (and true) error. On the other hand, a too rich hypothesis space 
(high VCdim) will lead to a small training error, but the second term in the right-hand side of (7) will be 
large. This situation is commonly called “overfitting". We can conclude that it is crucial to pick the 
hypothesis space with the “right" complexity.  
In Structural Risk Minimization this is done by defining a structure of hypothesis spaces Hi, so that their 
respective VC-Dimension di increases.  
 

H1 ⊂ H2 ⊂ H3 ⊂ … ⊂ Hi ⊂ …  and  ⩝i: di≤ di+1                                                                                             (7) 
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The goal is to find the index i* for which (6) is minimum. How can we build this structure of increasing 
VCdim? In the following we will learn linear threshold functions of the type:  
 

h(�̃� ) = sign{�̃�▪�̃� + b} = {
+1, 𝑖𝑓 �̃�▪�̃� + 𝑏 > 0

−1, 𝑒𝑙𝑠𝑒
                                                                                    (8)  

 
Instead of building the structure based on the number of features using a feature selection strategy, 
Support vector machines uses a refined structure which acknowledges the fact that most features in text 
categorization are relevant. 
 

Lemma 1. [8] Consider hyperplanes h(�̃� ) = sign{�̃�▪�̃� + b} as hypotheses. If all example vectors �̃�i   are 

contained in a ball of radius R and it is required that for all examples �̃�i   

|�̃�▪�̃�i + b|≥1, with ||�̃�|| = A                                                                                                                (9)  
then this set of hyperplane has a VCdim d bounded by  

d ≤ min([R2A2 ], n)+1                                                                                                                                (10)  
 

Please note that the VCdim of these hyperplanes does not necessarily depend on the number of features! 
Instead the VCdim depends on the Euclidean length ||�̃�|| of the weight vector �̃� . This means that we can 
generalize well in high dimensional spaces, if our hypothesis has a small weight vector.  
In their basic form support vector machines find the hyperplane that separates the training data, and which 
has the shortest weight vector. This hyperplane separates positive and negative training examples with 
maximum margin. Finding this hyperplane can be translated into the following optimization problem:  
 

Minimize: ||�̃�||                                                                                                                                      (11)  

so that: ⩝i: yi[�̃�▪�̃�i + b] ≥1                                                                                                                      (12)  
 

yi equals +1 (-1), if document di is in class + (-). The constraints (12) require that all training examples are 
classified correctly. We can use the lemma from above to draw conclusions about the VCdim of the 
structure element that the separating hyperplane comes from. A bound similar to (10) [Shawe-Taylor et al., 
1996] gives us a bound on the true error of this hyperplane on our classification task.  
Since the optimization problem from above is difficult to handle numerically, Lagrange multipliers are used 
to translate the problem into an equivalent quadratic optimization problem [7].  
 

Minimize: -∑ 𝛼𝑖
𝑛
𝑖=1 +

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗�̃�𝑖 ∙ �̃�𝑗

𝑛
𝑖,𝑗=1                                                                                      (13)  

So that: ∑ 𝛼𝑖
𝑛
𝑖=1 yi=0 and ⩝i:  𝛼𝑖≥ 0                                                                                                        (14) 

 
For this kind of optimization problem efficient algorithms exist, which are guaranteed to  find the global 
optimum . The result of the optimization process is a set of coefficients 𝛼i* for which (13) is minimum. 
These coefficients can be used to construct the hyperplane fulfilling (11) and (12).  
 

�̃�▪�̃� = (∑ 𝛼∗𝑖𝑦𝑖�̃�𝑖
𝑛
𝑖=1 )▪�̃� =∑ 𝛼∗𝑖𝑦𝑖(�̃�𝑖 ∙ �̃�)𝑛

𝑖=1  and b = 
1

2
(�̃�▪�̃�++�̃�▪�̃�-)                                                 (15)  

 
Equation (15) shows that the resulting weight vector of the hyperplane is constructed as a linear 
combination of the training examples. Only those examples contribute for which the coefficient  
𝛼i is greater than zero. Those vectors are called Support Vectors. They are those training examples which 

have minimum distance to the hyperplane. To calculate b, two arbitrary support vectors �̃�+ and �̃�- (one from 
the class + and one from -) can be use. 
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