
MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 0

Project report: Malware
detection based on system

events trace
Advisor: Ehud Gudes

Author: Alex Korthny, t.z. 308911635

8/11/2020

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 1

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 2

Contents
1. Introduction .. 4

2. Background.. 4

3. Proposed project ... 4

4. Methodology and performed work... 5

4.1. Experimentation .. 5

4.1.1. Approach ... 5

4.1.2. Extracted features ... 5

4.1.3. Collected events distribution .. 6

4.1.4. Helper software ... 7

4.1.5. Benign programs ... 8

4.1.6. Malware .. 8

5. Features extraction and classification methodology .. 10

6. Features extraction details .. 11

7. Classification algorithms overview .. 12

7.1.1. Ridge classification algorithm .. 12

7.1.2. Perceptron classification algorithm ... 12

7.1.3. Passive-Aggressive classification algorithm ... 13

7.1.4. Multinomial Naïve Bayes classification algorithm .. 13

7.1.5. Linear SVM classification algorithm ... 13

8. Python implementation details ... 13

9. Experimental evaluation ... 19

10. Comparison with the related works .. 22

10.1. Review of related works .. 22

10.2. Results comparison ... 24

11. Summary and conclusions ... 25

12. References ... 25

13. Appendix A – list of events .. 26

14. Appendix B – executed programs ... 31

15. Appendix C – classification algorithms .. 35

15.1. Ridge classification algorithm.. 36

15.2. Perceptron classification algorithm .. 36

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 3

15.3. Passive aggressive classification algorithm ... 37

15.4. Multinomial Naïve Bayes classification algorithm ... 39

15.5. Linear SVM classification algorithm .. 40

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 4

1. Introduction
The document describes a proposal for malware detection solution based on Machine learning (ML)

approach applied to system event traces collected during execution of the malware program.

2. Background
There are many published works related to the usage of called API traces to train an ML model and use it for

malware detection. Usually such solutions use dedicated VM (Cuckoo, for example) to collect called API

traces, extract features from it and use it for model training and/or malware detection.[1] Other articles

deal with API call traces for malware detection too [1,2,3,4]

Such approach showed in the past, very good level of accuracy, but , at the same time, it’s hardtop use in

the real world because it’s not applicable to execute day to day real world programs in isolated VM

environment or apply other invasive methods (detours, API monitor) to perform called API traces collection.

Also, the API traces are susceptible to code morphing techniques that can mislead ML based detection

solutions.

The current project proposes an alternative approach to get insight into the program activities and collect

information that can be used to train an ML model and use it for malware detection.

3. Proposed project
The project proposes to collect per program event traces for ML model training and malware detection.

While called API trace show one specific path of the executed program control flows, matching event trace

shows events that happened in the monitored system as the result of a given program execution (example:

file opened, registry entry read, image loaded, etc.).Each such event may represent multiple API calls thus

they are at a higher level of abstraction.

In terms of variety, called API trace have greater degree of it, while, event trace shows greater resilience vs.

code morphing because it’s output does not depend on the order or the nature of called API (as far those

API working toward the same goal) and not reacting to an empty or failed API calls.

Also, contrary to called API traces, event traces are created and maintained by the OS itself (via Event Trace

for Windows (ETW) subscription model) and do not require a Virtual Machine (VM) or any other costly

invasive method to collect data.

This difference makes event traces a good candidate to be used as a source for training and malware

detection with help of ML. The project selects most accurate ML method for classification from 5 algorithms

that are briefly described in Appendix C.

mailto:koral01@gmail.com
https://cuckoosandbox.org/
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 5

4. Methodology and performed work

4.1. Experimentation

4.1.1. Approach

Some experimentation of the proposed approach has already been done. Experiments were performed on a

VM (Hyper-V based) running windows 8.1 x86 OS.

Dedicated software was used to

 Execute selected program (with command line arguments, if required)

 Collect and store system events (ETW) traces during execution

 Extract and aggregate features from saved traces

ETW traces were collected for the next types of events:

 Process – process related events, i.e. process creation\termination, etc.

 Thread – thread related events (thread creation, termination)

 Win32 subsystem – win32 subsystem events

 Registry – registry events (registry keys and values accesses)

 Networking – networking events (connection events, inbound\outbound data events, etc)

 WMI – Windows Management Instrumentation component events

 Powershell – powershell application related events

 File – file events (example: open, create, read, write, etc.)

 Image – executable file (image) events, example: load of image

 ALPC – Asynchronous light weighted process communication subsystem events (used as backbone

of remote procedure calls, for example)

 Memory – memory usage events (heap allocations, etc.)

4.1.2. Extracted features

Collected traces contain the valuable information in binary format. To apply machine learning (ML) methods

to the collected data, data need to be filtered and converted to format that can be used with ML methods.

The procedure of data filtering and conversion is often called “features extraction”. In our case it works as

follows:

 Events associated with the reviewed process are filtered out

 Per each filtered event, source of the event (ETW channel that produced the event, like “process”,

“memory”, etc.), event name, recorded followed by event specific id number and event specific sub

id are taken.

 Combination of channel name, event name, event id and sub id (secondary event identifier field

used to identify event subclass) is used to create feature type (in terms of ML) that will be recorded.

Example: “fileio_operationend_0_3”:

o “Fileio” marks ETW source

o “Operationend” stands for event name

o “0” stands for event id

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 6

o “3” stands for event sub id

4.1.3. Collected events distribution

The collected data contains 207 different types of events.

The table that shows distribution of collected system events, sorted by weight of event (event frequency

divided by the number of processes where the event was detected) is presented in Appendix A of the

document.

Figure 1 shows ETW events distribution (across all executed processes):

Figure 1: Events occurrence general distribution

Figure 2 shows events distribution map when event appearance per process is taken into account:

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 7

Figure 2: Events occurrence per process distribution

Comparison of the events distribution diagrams shows difference between overall events distribution (

Figure 1) and events distribution per process (Figure 2) – which is a promising indication for our goal: it

shows that processes indeed can be distinguished one from another based on events patterns.

The full list of events is presented in Appendix A.

4.1.4. Helper software

To perform experimentation a helper program was developed. The program does the following:

 Start ETW events recording

 Execute given executable (including supplied command line arguments, if present)

 Wait for preconfigured period (2 minutes as a default)

 Terminate executed program (if not terminated by itself)

 Stop ETW session and writes to the storage the PID of the executed program (to be used in filters)

To extract features from the collected ETW traces (stored in Event Trace Log (ETL) format), two utilities

were used.

 tracerpt utility was used to aggregate ETL traces and convert them to CSV format.

 Dedicated application was used to parse given collection of CSV files

o Collected data was filtered, events not related to the experimentation scope are dropped

o Features were extracted from the remaining data records

o Output was produced in a form that can be used to apply ML algorithms (space separated

format with each feature represented by a unique name)

mailto:koral01@gmail.com
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/tracerpt_1

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 8

o Summary report was produced

4.1.5. Benign programs

The table that shows benign and malicious programs that are used during experimentation (so far) is

presented in Appendix B, the table contains only first 100 benign and 100 malware programs, as an

illustration.

The experimentation was performed on well-known Windows applications, web browsers and generally

avail utilities. In total 291 benign programs were executed.

Figure 3 illustrates the process of features extraction for benign applications:

Figure 3: Features extraction for benign case

4.1.6. Malware

Malware programs were retrieved from multiple sources, including

 theZoo GitHub repository

 VxHeaven repository archive

Contrary to benign applications, safe execution of malware samples requires additional measures

 Isolated execution environment (no network connectivity)

 Disable AV software

 Extraction of execution recording after each malware sample execution (to avoid data loss)

 Reset of execution environment (testing VM) after each malware sample execution (to avoid impact

of one malware sample on another)

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 9

 Additional virtual hard disk volume was used to prepare each malware sample for execution and

extraction of the results. The following steps were used to execute the malicious programs:

o Prior to malware sample execution the volume was mounted on the master PC (PC that

hosted the test VM)

o One-time preparation (done once per all tests): encrypted storage with malware samples

created on the mounted volume. Encryption was needed to avoid accidental execution of

malware sample and prevent sample removal by AV software

o Execution script with path to the executed sample of malware copied to the volume

o In context of the script selected sample of malware being decrypted and executed by the

trace collection helper program mentioned above. Results of the execution preserved at the

volume.

o Prior to the execution of the testing VM, the virtual volume with the execution script is

detached from the master PC

o Execution time of VM instance with malware sample execution script set to 5 minutes, it is

enough to load the VM, execute the script (set to be limited by 2 minutes) and preserve

execution results on the virtual volume

o After 5 minutes of execution, the test VM being forcefully shut down by the master PC

o The virtual volume attached to the master PC and the execution results (trace logs) were

copied over to the master PC

o The testing VM was reset to the initial state (to ensure that executed malware won’t leave

any trace on it) and ready for tests with next malware sample

Malware samples from theZoo collection were represented by single example per each malware family,

overall, about 55 samples. Malware examples from VxHeaven collection belonged to the following malware

families:

 Backdoor-Win32-Poison

 Backdoor-Win32-SdBot

 Trojan-Downloader-Win32-Banload

 Trojan-Downloader-Win32-FraudLoad

 Trojan-Downloader-Win32-Small

 Trojan-Downloader-Win32-VB

 Trojan-PSW-Win32-LdPinch

 Trojan-Win32-Delf

From each family there were about 100 different samples (with different hash values) taken for

experimentation.

Figure 4 illustrates the process of features extraction for malware samples:

mailto:koral01@gmail.com
https://threats.kaspersky.com/en/threat/Backdoor.Win32.Poison/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor%3aWin32%2fSdbot.SO
https://www.f-secure.com/v-descs/trojan-downloader_w32_banload.shtml
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3aWin32%2fFraudload.A
https://www.f-secure.com/v-descs/trdlsmal.shtml
https://threats.kaspersky.com/en/threat/Trojan-Downloader.Win32.VB/
https://threats.kaspersky.com/en/threat/Trojan-PSW.Win32.LdPinch/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan%253aWin32%252fDelf.ME

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 10

Start

Stop

Have malicious
process to execute?

Reset isolated VM
execution

environment

Prepare recording
of execution script

for given executable

Record execution of
given executable

Suspend execution
environment
(suspend VM)

Extract execution
record from

suspended VM

Yes

Extract features
from aggregated

execution records

No

Figure 4: Features extraction for malware case

Results were collected from more than 800 malware samples, after removal of duplicates (removal of

execution traces that are similar), classification was performed on 587 unique malware execution traces.

Note: at this point we already can state that usage of ETW for event tracing showed good results vs. non-

essential malware modifications: more than 100 malware samples (13%) were detected as duplicates on

another malware samples despite different hash values of executables.

5. Features extraction and classification methodology
Features extraction and classification of the collected features was performed based on similar API call

tracing methods that were adopted to achieve above 90% accuracy of detection.

Specifically, the method suggested by article [4] was used for features extraction and classification of

malware samples vs. benign programs.

Figure 5 describes the control flow:

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 11

Figure 5: Features extraction and Classification procedure

The detailed description of the features extraction methodology is presented in the next section.

The detailed description of the classification methodology is presented in Appendix C.

6. Features extraction details
The features extraction methodology uses the following definitions based on referred article [4].

D = {d1,d2,…,dn}
V = {w1,w2,…,wn}
fd(w)= frequency of the word w∈V in d∈D
t⃑d=(fd(w1), fd(w2),…, fd(wn))

D is the corpus and d represent a document.
V is the vocabulary and w represent each word that appears in the corpora

The algorithm uses the “bag of words model” described in article [4]: in context of the model we take in
account presence of a certain word in a document, the exact location of the word not important.
The article author substituted OS API traces for words, we use a similar approach and substitute extracted
ETW events for words.
As a result, for us, set V represents the vocabulary set of all unique ETW events (represented by wn where n
is the index of the ETW event in the vocabulary).
Each document (in our case it’s event trace) is represented by how many times every wn occurs in the
document, as represented by t⃑d, where fd(wn) represents the frequency of the ETW event of index n in the
log d.

By analogy with article [4], we use the same n-gram model as demonstrated in the article.
We also use the same consideration for TF-IDF and TF weighting (cited from the article [4]):

“Term Frequency (TF) refers to the number of times a certain word occurs in a corpus. Inverse Document

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 12

Frequency (IDF) refers to the amount of times the word occurs throughout the document D. The TF-IDF
weight of a term is computed as following:

tf(w,d)=fd(w): frequency of w in document d

idf(w,D)=𝑙𝑜𝑔
1+|𝐷|

1+𝑑𝑓(𝑑,𝑤)

Where df(d,w) is the number of documents the word w appears in.

This is a logarithmically scaled value of the number of documents in the corpus divided by the number of
times word w appears throughout the corpus.

tfidf(w,d,D)=tf(w,d) x idf(w,D)

The tfidf value increases proportionally by the frequency of w in a document, decreases proportionally by the
log of the frequency of w in the corpus. The assumption is that a word that is more prevalent
throughout the corpus is more likely to be less significant. The resulting vectors comprised of raw tfidf values
that represent each document are normalized using the Euclidean norm:

vnorm=
𝑣

√𝑣1
2+𝑣2

2+⋯+𝑣𝑛
2

”
Next, the gives set of event traces is transformed with help of either tf (CountVectorized) or tfidf
(TfidfVectorized) to features vectors. This vector is supplied as input for a classification method (several
well-known methods were used to find out best result)

7. Classification algorithms overview
See details in Appendix C.

7.1.1. Ridge classification algorithm

This algorithm first converts binary targets to {-1, 1} and then treats the problem as a regression task,

optimizing the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients. The

predicted class corresponds to the sign of the regressor’s prediction. For multiclass classification, the

problem is treated as multi-output regression, and the predicted class corresponds to the output with the

highest value.

7.1.2. Perceptron classification algorithm

The Perceptron is a simple classification algorithm suitable for large scale learning. By default:

 It does not require a learning rate.
 It is not regularized (penalized).
 It updates its model only on mistakes.

mailto:koral01@gmail.com
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 13

7.1.3. Passive-Aggressive classification algorithm

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are like the

Perceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a

regularization parameter C.

7.1.4. Multinomial Naïve Bayes classification algorithm

The multinomial Naive Bayes classification algorithm is suitable for classification with discrete features (e.g.,

word counts for text classification). The multinomial distribution normally requires integer feature counts.

However, in practice, fractional counts such as tf-idf may also work.

7.1.5. Linear SVM classification algorithm

Support Vector Machines belong to the discriminant model family: they try to find a combination of samples

to build a plane maximizing the margin between the two classes. Regularization is set by the C parameter: a

small value for C means the margin is calculated using many or all of the observations around the separating

line (more regularization); a large value for C means the margin is calculated on observations close to the

separating line (less regularization).

All the classifiers above were implemented by the Python machine learning libraries.

8. Python implementation details
The following python script (parts of it) was used to perform classification of programs based on the

collected data:

#Python code sample parts to demonstrate preprocessing and classification of the project

def benchmark(clf, vecdesc, ncolumns, train_labels, test_labels, showTopFeatures=False):

 print('_'*60)

 print("Training: ")

 print(clf)

 t0 = time()

 clf.fit(X_train, train_labels)

 train_time = time() - t0

 t0 = time()

 pred = clf.predict(X_test)

 test_time = time() - t0

 score = metrics.accuracy_score(test_labels, pred)

mailto:koral01@gmail.com
https://scikit-learn.org/0.16/modules/svm.html#svm

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 14

 if hasattr(clf, 'coef_'):

 print("dimensionality: %d" % clf.coef_.shape[1])

 print("density: %f" % density(clf.coef_))

 print()

 clf_descr = str(clf).split('(')[0]

 mCount = 0

 for i in test_labels:

 if i != 'Bening':

 mCount+=1

 maliciosTestRate = mCount/len(test_labels)

 predictaments = pred.tolist()

 return vecdesc, clf_descr, ncolumns, score, maliciosTestRate, train_time, test_time

#================================== End of Utility code

#================================== Calculation start line

results = [] # future storage of results

raw data location

dataset_url = os.getcwd() + '//data//alltraces_100p_average_unmapped.csv'

read the input data set

data = pd.read_csv(dataset_url, delimiter=' ', dtype=str)

y_names = data.pop('FileName')

data_length = len(data.columns)

data.drop_duplicates(inplace=True)

rng = RandomState() # random seed

Perform 100 iterations to ensure that results are statistically reliable

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 15

for iteration in range(100):

 # randomly split 70% to train, 30% to test

 train = data.sample(frac=0.7, random_state=rng)

 test = data.loc[~data.index.isin(train.index)]

 # Prepare train data

 X = train.to_numpy()[:, 1:]

 y = train.to_numpy()[:, 0]

 X = X.astype(str)

 X = np.char.lower(X) # normalize by char case

 X_list = X.tolist()

 X = flatten_list_of_lists(X_list) # transform data format (flatten) to form that acceptable by classifier

 y = y.tolist()

 # Prepare test data

 X_t = test.to_numpy()[:, 1:]

 y_t = test.to_numpy()[:, 0]

 X_t = X_t.astype(str)

 X_t = np.char.lower(X_t)

 X_list = X_t.tolist()

 X_t = flatten_list_of_lists(X_list) # transform data format (flatten) to form that acceptable by classifier

 y_t = y_t.tolist()

 # collect results per each supported features extraction method

 for vectorizer in (

 TfidfVectorizer(token_pattern='(?u)\\b\\w+\\b', ngram_range=(nGRAM1, nGRAM2), min_df=1,

use_idf=True,smooth_idf=True),

 CountVectorizer(ngram_range=(nGRAM1, nGRAM2))):

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 16

 vec_descr = str(vectorizer).split('(')[0]

 analyze = vectorizer.build_analyzer()

 X_train = vectorizer.fit_transform(X)

 X_test = vectorizer.transform(X_t)

 clf_LSVC = Pipeline([

 ('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False,

 tol=1e-3))),

 ('classification', LinearSVC(penalty="l2"))])

 # collect results per each supported classification method

 for clf, name in (

 (RidgeClassifier(tol=1e-2, solver="sparse_cg"), "Ridge Classifier"),

 (Perceptron(n_iter_no_change=50), "Perceptron"),

 (PassiveAggressiveClassifier(n_iter_no_change=50), "Passive-Aggressive"),

 (MultinomialNB(alpha=.01),"MultinomialNB"),

 (clf_LSVC,"LSVC")):

 print('=' * 80)

 print(name)

 results.append(benchmark(clf,vec_descr,data_length, y, y_t))

list_header = ["Preprocessing", "Classification", "Trace Size", "Score", "Malicious rate", "Train time",

"Test time"]

using list comprehension, convert tupple to list

out = [list(ele) for ele in results]

write to output file

outputPath = os.getcwd() + '//output//calculation_results.csv'

with open(outputPath, 'w') as myfile:

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 17

 wr = csv.DictWriter(myfile, fieldnames=list_header)

 wr.writeheader()

 for ele in out:

 wr.writerow({"Preprocessing":ele[0], "Classification":ele[1], "Trace Size":ele[2], "Score":ele[3],

"Malicious rate":ele[4], "Train time":ele[5], "Test time":ele[6]})

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 18

Figure 6 illustrates the workflow of the script:

Figure 6: Python code control flow diagram

Following Python classes were used for collected features preprocessing:

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 19

 CountVectorized

 TfidfVectorized

Classification of the collected and preprocessed data was performed with the help of the next Python

classification classes:

 Ridge

 Perceptron

 Passive-Aggressive

 MultinomialNB

 Linear SVC

9. Experimental evaluation

We use the next set of definitions in our work:

 Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 Precision =
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑇𝑃+𝐹𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

 ROC (receiver operating characteristic curve) is a graph showing the performance of a
classification model at all classification thresholds. This curve plots two parameters:

o True positive rate (TPR)
o False positive rate (FPR)

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁

FPR =
𝐹𝑃

𝑇𝑃+𝐹𝑁

A ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the classification
threshold classifies more items as positive, thus increasing both False Positives and True
Positives.

 AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-dimensional
area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1).
AUC provides an aggregate measure of performance across all possible classification thresholds.
One way of interpreting AUC is as the probability that the model ranks a random positive
example more highly than a random negative example.

Figure 7 demonstrates the accuracy comparison between different classification methods used in the
experiment:

mailto:koral01@gmail.com
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 20

Figure 7: Accuracy of different classification methods

Figure 8 demonstrates the training time comparison between the different methods:

Figure 8: Training time per classification method

Figure 9 demonstrates the testing time comparison between the methods:

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 21

Figure 9: Testing time per classification method

Figure 10 shows ROC curve and AUC value for the PassiveAggressive method case:

Figure 10: ROC curve example

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 22

Figure 11 illustrates the relation between classification accuracy and percentage of malicious code in the

training set:

Figure 11: Relation between malicious rate and accuracy

From Figure 11 we can learn that MultinomialNB classification method produces the best results, but taking

into account the training and testing times too, we choose PassiveAggressive method with TfidfVEctorized

based features preprocessing as the solution that shows the best combination of precision (99%), training

(0.06) and testing (0.0007) times.

10. Comparison with the related works

10.1. Review of related works
 Article [1] collects API traces and uses them as input to create signatures. The work creates several

families (classes) of malware and uses created signatures to find out degree of membership of a

given sample (by generated signature) to each malware family. On base of the results (calculated

degree of membership) a database for malware’s behaviors classes (and its membership degrees to

each classes) was constructed.

At signatures generation phase the work uses the term of “Critical API calls” defined as:

“Critical API calls contain all API calls that can lead to security infraction, changes to the operating
system's behavior or API calls used for communication (modification of the system registry value,
Input/Output, API functions for network resources access, etc.).”

The signature of program behavior based on API call tracing can be presented as a set of two
components: the call frequency and the interaction of the critical API calls. An analysis of the first
component allows determining the distribution of the critical API calls by groups concerning their
malicious activity and displays the quantitative component of the signature. The second component
of the signature implies the mapping nature of the interaction of malware’s critical API calls into the
vector space and describes their interactions.

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 23

The work uses a preset of 26 API categories (Hooking, file and directory, etc.) to map critical API
calls at features extraction phase.
Extracted features were used as input to the MultonomialNB classifier.

In comparison with this work we can note the following:

o The work [1] maps collected API into one of 26 hardcoded categories which limits API
variety appearing in logs to subset of APIs that are enlisted in those 26 categories only

o The critical API call term allows to reduce part of non-important API calls from the trace log,
still , in our opinion, traces based on ETW events are more reliable in this case, because
non-important API are not expected to produce meaningful ETW events

 Article [2] uses the Detours library to collect API call traces. Like the work [1], collected API calls
being categorized to one out of 26 API categories. The work uses both Critical API calls (like in [1])
and Longest Common Subsequence (LCS) is defined as follows:
In the formula, 𝑋𝑖 and 𝑌𝑖 represent the 𝑖th character of sequences 𝑋 and 𝑌, respectively. For
example, the LCSs of ABCD and ACB are AB and AC:

LCS(Xi,Yj)={

0 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0,

𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗−1) + 𝑐𝑜𝑚𝑚𝑜𝑛 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑖𝑓 𝑥𝑖 = 𝑦𝑗 ,

𝑙𝑜𝑛𝑔𝑒𝑠𝑡(𝐿𝐶𝑆(𝑋𝑖 , 𝑌𝑗−1)𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗))𝑖𝑓 𝑥𝑖 ≠ 𝑦𝑗

Since the LCS shows the longest malware API call sequence pattern, it can be treated as a malware’s
signature.
Authors of the work stated that extraction of LCS is an NP-hard problem, authors also used DNA
sequence alignment algorithms to compare extracted signatures with database of known threats,
which also was resource and time-consuming task.
As a result, we can state that, in comparison with our project, the work has same limitation as
article [1] and also have high cost of implementation due to the complex algorithms being used.

 Article [3] also uses API call traces as input. Authors of the work extract features from collected
traces in the form of patterns:
Definition 1 (Pattern Instance):
Given a pattern P<e1, e2, …, en>, a consecutive series of events SB (sb1, sb2,…, sbn) in an API call
sequence S in API call database (APIDB) is an instance of P if it is of the following Quantified
regular expression (QRE):
e1; [-e1, …, en]*; …; [-e1, …, en]*; en

For each malware, the authors extract a feature vector from its behavior. Assume MB
and Fv are consecutive representatives of a malware behavior and feature vector
for each malware. Fs is a feature set that is extracted from the previous part.
Then:

Fvi={
𝑡𝑜𝑡𝑎𝑙 𝐹𝑠𝑖 𝑖𝑛 𝑀𝑏, 𝑖𝑓 𝑀𝑏 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝐹𝑠𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

Additionally, the authors select features that are more discriminative between malware and benign
samples with help of statistical measure – the Fisher score that indicates the discriminative power
of the features.

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 24

Resulting features vectors were used with classifier method of RandomForest to get classification
results.
From our point of view, this is interesting work that invested lot of efforts to raise the quality of the
extracted features.
Since the work based on API call traces, our comparison with the work will point to the same
conclusion as in case of article [1] and [2].

 Article [4] proposes to collect API traces and treat collected data as “bag of words”, sending it to
either tf (CountVectorized) or tfidf (TfidfVectorized) features extractor. Resulting features were
used with several classifiers in order to find a classifier that produces the best accuracy result.
Our project is quite similar to this article: it uses the same approach to extract features and finds
the best classifier method. The major difference comes in the type of the input: we use ETW data
instead of API call traces.

10.2. Results comparison

Table 1 summarizes the comparison between the results described in the referenced works and the results

received from our project:

Work Accuracy Our results

Dynamic Signature-
based Malware

Detection Technique
Based on API Call

Tracing [1]

96.56% 99%

A Novel Approach to
Detect Malware

Based on API Call
Sequence Analysis

[2]

100% 99%

Malware detection
by behavioral
sequential patterns
[3]

98.4% 99%

NtMalDetect: A
Machine Learning

Approach to
Malware Detection

Using Native API
System Calls [4]

96% 99%

Table 1: Comparison table with referenced works

Note: this comparison should be taken carefully because each of the articles uses different data sets for

testing.

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 25

11. Summary and conclusions

Based on the achieved results we can conclude that usage of Windows Event logs as source of features for

malware classification looks like a promising path for further investigation.

Specifically, in future work next items should be addressed:

 Use up to date set of malware samples

 Use up to date Windows OS version

 Increase the number of benign and malware samples to 10000 at least

Additional paths of research that worth to note:

 Verify that amount of collected traces per process can be reduced significantly (currently it’s on the

average equal to 6558) to ~100 without loss of accuracy

 Adaptation of benign/malware features collection tool chain to work with next cases

o Scripts

o Execution scenarios that spawn across several processes (example: malware dropper

download payload and executes it or scenario of process hollowing)

Known limitation of the suggested method:

 The method relies on OS specific (Windows) built in tracing facility, making the method applicable

for Windows OS only

12. References
1. Oleg Savenko, Andrii Nicheporuk , Ivan Hurman and Sergii Lysenko, “Dynamic Signature-based

Malware Detection Technique Based on API Call Tracing” Proceeding ICTERI Workshops 2019: 633-

643

2. Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. “A Novel Approach to Detect Malware Based on API

Call Sequence Analysis”, International Journal of Distributed Sensor Networks Volume 2015, Article ID

659101

3. Ashkan Sami, Mansour Ahmadi “Malware detection by behavioural sequential patterns.” Computer

Fraud & Security · August 2013

4.Chan Woo Kim. “NtMalDetect: A Machine Learning Approach to Malware Detection Using Native API

System Calls”. arXiv:1802.05412 (2018)

5. Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. “Multinomial Naive Bayes
for Text Categorization Revisited” G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 488–499,
2004.

6. Thorsten Joachim. “Text Categorization with Support Vector Machines: Learning with Many Relevant

Features” Informatik LS8, Baroper Str. 301 44221 Dortmund, Germany, 1998

mailto:koral01@gmail.com
https://dblp.org/db/conf/icteri/icteri2019w.html#SavenkoNHL19
https://arxiv.org/abs/1802.05412

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 26

7. Vapnik V. The Nature of Statistical Learning Theory. Springer,New York, 1995

8. Vapnik V. Estimation of Dependencies Based on Empirical Data.Springer Series in Statistics.

Springer-Verlag, 1982

13. Appendix A – list of events

EventName
Even
tId

EventOccu
rance

EventPerProcessO
ccurance

image_load_0_3 2 19196 878

microsoftwindowswin32k_stop_85_0 63 619 619

microsoftjscript_methodunload_10_0 172 58 2

microsoftwindowswin32k_info_49_0 39 196 61

fileio_delete_0_3 73 164 56

fileio_mapfile_0_2 1 119985 878

registry_create_0_2 28 156055 259

fileio_fscontrol_0_3 8 1745 137

fileio_cleanup_0_3 7 234473 873

fileio_close_0_3 10 215236 873

fileio_read_0_3 6 74996 832

microsoftwindowswin32k_info_53_0 40 79578 59

fileio_create_0_3 3 263644 873

45d8cccd539f4b72a8b75c683142609a_38_0_2 13 2741 868

fileio_operationend_0_3 4 1144230 878

microsoftwindowstcpip_info_1229_0 136 636 2

image_unload_0_3 64 18914 871

microsoftwindowstcpip_info_1324_0 98 3 1

registry_open_0_2 18 641461 868

fileio_queryinfo_0_3 5 288141 878

microsoftjscript_stop_130_0 196 24 2

fileio_setinfo_0_3 9 2027 278

microsoftwindowswin32k_start_60_0 50 13923 60

registry_enumeratevaluekey_0_2 26 16257 573

pagefault_virtualalloc_0_2 11 81451 878

microsoftwindowswin32k_stop_70_0 51 13923 60

microsoftwindowspowershell_stop_40962_1 156 1 1

pagefault_virtualfree_0_2 12 59754 878

microsoftwindowswin32k_info_181_0 46 79714 57

microsoftwindowswin32k_start_86_0 25 879 625

alpc_alpcsendmessage_0_2 14 101686 878

thread_end_0_3 57 1998 870

alpc_alpcunwait_0_2 15 67208 878

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 27

registry_queryvalue_0_2 19 400405 868

microsoftjscript_start_78_0 197 24 2

microsoftwindowstcpip_info_1169_0 84 32 5

alpc_alpcreceivemessage_0_2 16 70606 878

45d8cccd539f4b72a8b75c683142609a_39_0_2 17 2453 868

registry_close_0_2 20 581996 868

microsoftwindowswin32k_stop_91_0 151 62 3

microsoftwindowstcpip_info_1223_0 135 1 1

microsoftwindowskernelmemory_info_8_0 21 20248 755

fileio_unmapfile_0_2 22 123365 878

microsoftwindowswin32k_info_2_0 42 117 58

microsoftwindowswin32k_start_84_0 23 625 625

microsoftwindowswin32k_info_169_0 55 12058 157

microsoftwindowswin32k_info_59_0 35 8112 144

microsoftwindowswin32k_info_187_0 24 2129 625

fileio_dirnotify_0_3 83 5 3

registry_kcbcreate_0_2 27 15831 369

microsoftwindowswin32k_info_203_0 31 15152 112

microsoftwindowswin32k_info_1_0 29 12103 112

alpc_alpcwaitforreply_0_2 30 64099 368

microsoftwindowswin32k_info_52_0 32 9518 149

registry_query_0_2 33 392547 304

microsoftwindowswin32k_info_28_0 61 122 61

registry_enumeratekey_0_2 34 28398 198

microsoftwindowswin32k_info_65_0 36 11971 122

microsoftwindowswin32k_info_27_0 37 122 61

microsoftwindowswin32k_info_29_0 38 196 61

microsoftjscript_sourceunload_42_0 173 30 2

microsoftwindowswin32k_info_26_0 41 117 58

microsoftjscript_stop_66_0 170 250 2

microsoftwindowswin32k_info_189_0 43 929 87

microsoftwindowswin32k_info_31_0 44 74 61

microsoftwindowswin32k_apprenderingupdate_41_0 45 70630 54

fileio_direnum_0_3 69 41116 286

microsoftwindowswin32k_apprenderingtightupdate_42_0 47 9067 52

microsoftwindowswin32k_stop_77_0 48 19378 178

microsoftjscript_stop_132_0 190 18 2

microsoftwindowswin32k_start_62_0 49 13801 58

microsoftwindowswin32k_info_50_0 59 196 61

microsoftwindowswin32k_stop_83_0 52 13801 58

microsoftwindowswin32k_info_61_0 53 8647 125

microsoftwindowswin32k_start_76_0 54 19339 168

microsoftwindowswin32k_info_168_0 56 13275 64

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 28

microsoftwindowstcpip_info_1039_0 145 1 1

microsoftwindowswin32k_info_45_0 58 870 619

microsoftwindowswin32k_info_30_0 60 122 61

microsoftwindowswin32k_stop_87_0 62 870 619

process_end_0_4 65 869 869

45d8cccd539f4b72a8b75c683142609a_41_0_2 66 2715 861

microsoftjscript_stop_91_0 176 18 2

registry_deletevalue_0_2 67 243 61

microsoftjscript_allocatefunction_110_0 171 240 2

microsoftwindowstcpip_info_1194_0 125 1 1

registry_setvalue_0_2 68 2137 200

registry_querysecurity_0_2 70 386 19

registry_kcbdelete_0_2 71 1113 4

microsoftjscript_allocateobject_108_0 205 2 2

registry_delete_0_2 100 3 3

fileio_write_0_3 72 25199 296

fileio_dletepath_0_3 74 164 56

fileio_rename_0_3 75 87 8

fileio_renamepath_0_3 76 87 8

process_terminate_0_2 77 764 753

thread_start_0_3 78 1272 342

microsoftjscript_info_103_0 203 18 2

microsoftwindowstcpip_info_1331_0 144 637 2

microsoftwindowswin32k_info_64_0 79 8635 51

microsoftwindowswin32k_start_92_0 80 8592 33

microsoftjscript_stop_75_0 192 24 2

microsoftwindowswin32k_stop_93_0 81 8592 33

microsoftwindowskernelmemory_info_1_1 82 69 16

microsoftwindowstcpip_info_1170_0 85 28 5

registry_setsecurity_0_2 86 627 6

microsoftwindowswin32k_start_205_0 87 1 1

microsoftwindowswin32k_info_88_0 88 164 12

microsoftwindowswin32k_info_63_0 89 273 9

microsoftwindowswin32k_info_33_0 90 6 2

microsoftwindowswin32k_info_225_0 91 147 5

microsoftwindowspowershell_start_40961_1 153 1 1

microsoftwindowswin32k_info_204_0 92 3 3

microsoftwindowswin32k_info_6_0 93 1 1

microsoftwindowswin32k_oldtonewrendering_40_0 94 8 3

microsoftwindowswin32k_info_151_0 95 7 2

pagefault_memresetinfo_0_2 96 530 10

process_start_0_4 97 314 189

systemconfig_codeintegrity_0_2 116 1 1

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 29

fileio_flush_0_3 99 73 14

microsoftwindowstcpip_info_1127_0 101 16 3

thread_dcend_0_3 102 18 6

microsoftwindowswin32k_info_35_0 103 4 4

microsoftwindowswin32k_info_38_0 104 9 7

systemconfig_cpu_0_3 105 1 1

systemconfig_logdisk_0_2 117 2 1

systemconfig_dpi_0_2 106 1 1

systemconfig_nic_0_2 107 3 1

systemconfig_phydisk_0_2 108 2 1

systemconfig_idechannel_0_2 109 3 1

systemconfig_opticaldisk_0_2 110 1 1

systemconfig_pnp_0_5 111 90 1

systemconfig_irq_0_3 112 13 1

systemconfig_services_0_3 113 171 1

image_dcend_0_3 118 139 1

systemconfig_power_0_2 114 1 1

systemconfig_platform_0_2 115 1 1

registry_flush_0_2 119 17 2

microsoftwindowswin32k_info_3_0 120 1 1

microsoftwindowstcpip_info_1013_0 121 167 137

microsoftwindowstcpip_info_1001_0 122 167 137

microsoftwindowstcpip_info_1191_0 123 33 14

microsoftwindowstcpip_info_1008_0 124 33 14

microsoftwindowstcpip_info_1123_0 126 1 1

microsoftwindowstcpip_info_1009_0 127 167 137

microsoftwindowstcpip_info_1051_0 128 27 9

microsoftwindowstcpip_info_1192_0 129 1 1

microsoftjscript_stop_87_0 202 14 2

microsoftwindowstcpip_info_1002_0 130 1 1

microsoftwindowstcpip_info_1003_0 131 12 9

microsoftwindowstcpip_info_1004_0 132 1 1

microsoftwindowstcpip_info_1031_0 133 1 1

microsoftwindowswin32k_info_67_0 152 1 1

microsoftwindowstcpip_info_1332_0 134 2 1

microsoftwindowstcpip_info_1074_0 137 1286 2

microsoftwindowswin32k_start_89_0 150 62 3

microsoftwindowstcpip_info_1033_0 138 1 1

microsoftwindowstcpip_info_1105_0 139 3 1

microsoftwindowstcpip_info_1104_0 140 1 1

microsoftwindowstcpip_info_1193_0 141 45 14

microsoftwindowstcpip_info_1159_0 142 637 2

microsoftwindowstcpip_info_1157_0 143 635 2

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 30

microsoftwindowstcpip_info_1044_0 146 13 9

microsoftwindowstcpip_info_1184_0 147 1 1

microsoftwindowstcpip_info_1040_0 148 1 1

microsoftwindowstcpip_info_1038_0 149 2 1

microsoftwindowspowershell_tobeusedwhenoperationisjust
executingamethod_7939_1 154 6 1

microsoftwindowspowershell_tobeusedwhenoperationisjust
executingamethod_7938_1 155 2 1

microsoftwindowspowershell_tobeusedwhenoperationisjust
executingamethod_7937_1 157 14 1

microsoftwindowstcpip_info_1100_0 158 2 1

microsoftjscript_usedpagesize_105_0 164 1408 2

microsoftwindowstcpip_info_1156_0 159 1 1

microsoftwindowstcpip_info_1158_0 160 1 1

registry_querymultiplevalue_0_2 161 514 257

microsoftwindowstcpip_info_1021_0 162 11 8

microsoftwindowstcpip_info_1034_0 163 11 8

microsoftjscript_scriptcontextload_11_0 165 10 2

microsoftjscript_sourceload_41_0 166 30 2

microsoftjscript_start_65_0 167 280 2

microsoftjscript_info_67_0 168 270 2

microsoftjscript_methodload_9_0 169 58 2

microsoftjscript_scriptcontextunload_12_0 174 10 2

microsoftjscript_start_90_0 175 18 2

microsoftjscript_start_68_0 177 24 2

microsoftjscript_stop_69_0 178 24 2

microsoftjscript_start_70_0 179 24 2

microsoftjscript_stop_71_0 180 24 2

microsoftjscript_start_72_0 181 24 2

microsoftjscript_stop_73_0 182 24 2

microsoftjscript_start_88_0 183 18 2

microsoftjscript_start_153_0 184 18 2

microsoftjscript_stop_89_0 185 18 2

microsoftjscript_start_143_0 186 18 2

microsoftjscript_stop_144_0 187 18 2

microsoftjscript_stop_154_0 188 18 2

microsoftjscript_start_131_0 189 18 2

microsoftjscript_start_74_0 191 24 2

microsoftjscript_start_139_0 193 24 2

microsoftjscript_stop_140_0 194 24 2

microsoftjscript_start_129_0 195 24 2

microsoftjscript_freememory_106_0 198 66 2

microsoftjscript_freememoryblock_107_0 199 116 2

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 31

microsoftjscript_stop_79_0 200 24 2

microsoftjscript_start_86_0 201 14 2

microsoftjscript_start_100_0 204 2 2

microsoftjscript_stop_104_0 206 2 2

14. Appendix B – executed programs
Following table includes examples of 100 benign and 100 malicious programs that were exeuted:

Executable name Type

accessenum Benign

aitagent Benign

aitstatic Benign

alg Benign

append Benign

appidcertstorecheck Benign

appidpolicyconverter Benign

ARP Benign

at Benign

AtBroker Benign

attrib Benign

audiodg Benign

auditpol Benign

AuthHost Benign

autoruns Benign

autorunsc Benign

AutoWorkplace Benign

AxInstUI Benign

baaupdate Benign

backgroundTaskHost Benign

BackgroundTransferHost Benign

bcdboot Benign

bcdedit Benign

bdechangepin Benign

BdeHdCfg Benign

BdeUISrv Benign

bdeunlock Benign

BitLockerDeviceEncryption Benign

BitLockerWizard Benign

BitLockerWizardElev Benign

bitsadmin Benign

bootcfg Benign

bootim Benign

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 32

bootsect Benign

bridgeunattend Benign

bthudtask Benign

BulkOperationHost Benign

ByteCodeGenerator Benign

cacls Benign

calc Benign

CameraSettingsUIHost Benign

CertEnrollCtrl Benign

certreq Benign

certutil Benign

change Benign

changepk Benign

charmap Benign

CheckNetIsolation Benign

chglogon Benign

chgport Benign

chgusr Benign

chkdsk Benign

chkntfs Benign

choice Benign

chrome Benign

cipher Benign

cleanmgr Benign

cliconfg Benign

clip Benign

clockres Benign

CloudNotifications Benign

CloudStorageWizard Benign

cmd Benign

cmdkey Benign

cmdl32 Benign

cmmon32 Benign

cmstp Benign

cofire Benign

colorcpl Benign

comp Benign

compact Benign

CompMgmtLauncher Benign

ComputerDefaults Benign

conhost Benign

consent Benign

control Benign

convert Benign

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 33

coreinfo Benign

CredentialUIBroker Benign

credwiz Benign

cscript Benign

ctfmon Benign

cttune Benign

cttunesvr Benign

dasHost Benign

dccw Benign

dcomcnfg Benign

ddodiag Benign

debug Benign

Defrag Benign

DeviceEject Benign

DevicePairingWizard Benign

DeviceProperties Benign

DFDWiz Benign

dfp Benign

dfrgui Benign

dialer Benign

diskext Benign

diskmon Benign

diskpart Benign

1002 Malware

1003 Malware

131 Malware

21 Malware

3_4 Malware

5a765351046fea1490d20f25 Malware

798_abroad Malware

aapt Malware

Backdoor-Win32-Poison-a Malware

Backdoor-Win32-Poison-ac Malware

Backdoor-Win32-Poison-adi Malware

Backdoor-Win32-Poison-aec Malware

Backdoor-Win32-Poison-ahm Malware

Backdoor-Win32-Poison-apv Malware

Backdoor-Win32-Poison-atk Malware

Backdoor-Win32-Poison-ats Malware

Backdoor-Win32-Poison-att Malware

Backdoor-Win32-Poison-atz Malware

Backdoor-Win32-Poison-auc Malware

Backdoor-Win32-Poison-avd Malware

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 34

Backdoor-Win32-Poison-avh Malware

Backdoor-Win32-Poison-ax Malware

Backdoor-Win32-Poison-azx Malware

Backdoor-Win32-Poison-bad Malware

Backdoor-Win32-Poison-bcr Malware

Backdoor-Win32-Poison-bd Malware

Backdoor-Win32-Poison-bep Malware

Backdoor-Win32-Poison-bet Malware

Backdoor-Win32-Poison-bex Malware

Backdoor-Win32-Poison-bey Malware

Backdoor-Win32-Poison-bfa Malware

Backdoor-Win32-Poison-bfk Malware

Backdoor-Win32-Poison-bfm Malware

Backdoor-Win32-Poison-bfn Malware

Backdoor-Win32-Poison-bfp Malware

Backdoor-Win32-Poison-bfq Malware

Backdoor-Win32-Poison-bfw Malware

Backdoor-Win32-Poison-bfz Malware

Backdoor-Win32-Poison-bgv Malware

Backdoor-Win32-Poison-bgw Malware

Backdoor-Win32-Poison-bhf Malware

Backdoor-Win32-Poison-bhg Malware

Backdoor-Win32-Poison-bhm Malware

Backdoor-Win32-Poison-bhs Malware

Backdoor-Win32-Poison-bia Malware

Backdoor-Win32-Poison-bib Malware

Backdoor-Win32-Poison-big Malware

Backdoor-Win32-Poison-bkd Malware

Backdoor-Win32-Poison-bke Malware

Backdoor-Win32-Poison-bkj Malware

Backdoor-Win32-Poison-bkr Malware

Backdoor-Win32-Poison-bky Malware

Backdoor-Win32-Poison-blk Malware

Backdoor-Win32-Poison-bls Malware

Backdoor-Win32-Poison-blu Malware

Backdoor-Win32-Poison-blz Malware

Backdoor-Win32-Poison-bmc Malware

Backdoor-Win32-Poison-bmd Malware

Backdoor-Win32-Poison-bmf Malware

Backdoor-Win32-Poison-bmh Malware

Backdoor-Win32-Poison-bmv Malware

Backdoor-Win32-Poison-bmw Malware

Backdoor-Win32-Poison-bmx Malware

Backdoor-Win32-Poison-bnb Malware

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 35

Backdoor-Win32-Poison-bnc Malware

Backdoor-Win32-Poison-bng Malware

Backdoor-Win32-Poison-bnk Malware

Backdoor-Win32-SdBot-02 Malware

Backdoor-Win32-SdBot-04-a Malware

Backdoor-Win32-SdBot-04-c Malware

Backdoor-Win32-SdBot-04-d Malware

Backdoor-Win32-SdBot-04-f Malware

Backdoor-Win32-SdBot-04-g Malware

Backdoor-Win32-SdBot-05-aa Malware

Backdoor-Win32-SdBot-05-ar Malware

Backdoor-Win32-SdBot-05-d Malware

Backdoor-Win32-SdBot-05-e Malware

Backdoor-Win32-SdBot-05-f Malware

Backdoor-Win32-SdBot-05-g Malware

Backdoor-Win32-SdBot-05-m Malware

Backdoor-Win32-SdBot-05-n Malware

Backdoor-Win32-SdBot-05-o Malware

Backdoor-Win32-SdBot-05-p Malware

Backdoor-Win32-SdBot-05-q Malware

Backdoor-Win32-SdBot-05-s Malware

Backdoor-Win32-SdBot-05-v Malware

Backdoor-Win32-SdBot-05-w Malware

Backdoor-Win32-SdBot-05-z Malware

Backdoor-Win32-SdBot-12 Malware

Backdoor-Win32-SdBot-a Malware

Backdoor-Win32-SdBot-aa Malware

Backdoor-Win32-SdBot-aac Malware

Backdoor-Win32-SdBot-aaj Malware

Backdoor-Win32-SdBot-aap Malware

Backdoor-Win32-SdBot-aav Malware

Backdoor-Win32-SdBot-aay Malware

Backdoor-Win32-SdBot-abc Malware

Backdoor-Win32-SdBot-abe Malware

Backdoor-Win32-SdBot-abf Malware

Backdoor-Win32-SdBot-abh Malware

Backdoor-Win32-SdBot-abo Malware

15. Appendix C – classification algorithms

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 36

15.1. Ridge classification algorithm
The Ridge classifier first converts binary targets to {-1, 1} and then treats the problem as a regression task.

The predicted class corresponds to the sign of the regressor’s prediction. For multiclass classification, the

problem is treated as multi-output regression, and the predicted class corresponds to the output with the

highest value.

 In mathematical notation if �̂� is the predicted value, then:

�̂� (w,x)=w0+w1x1+...+wpxp
Across the module, we designate the vector w=(w1,...,wp) as coefficients and w0 as intercept.

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the
size of the coefficients.The ridge coefficients minimize a penalized residual sum of squares:

𝑚𝑖𝑛
𝑤

 ||Xw−y||
2
2

+α||w||
2
2

The complexity parameter α≥0 controls the amount of shrinkage(Figure 12): the larger the value of α, the
greater the amount of shrinkage and thus the coefficients become more robust to collinearity.

Figure 12: Ridge coefficients as function

15.2. Perceptron classification algorithm
The perceptron is an algorithm for learning a binary classifier called a threshold function: a function that

maps its input x (a real-valued vector) to an output value f(x) (a single binary value):

f(x)={
1 𝑖𝑓 𝑤▪𝐱 + 𝐛 > 𝟎,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

mailto:koral01@gmail.com
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://en.wikipedia.org/wiki/Linear_classifier#Definition
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Binary_function

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 37

where w is a vector of real-valued weights, w▪x is the dot product ∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 , where m is the number of

inputs to the perceptron, and b is the bias. The bias shifts the decision boundary away from the origin and

does not depend on any input value.

The value of f(x) (0 or 1) is used to classify x as either a positive or a negative instance, in the case of a

binary classification problem. If b is negative, then the weighted combination of inputs must produce a

positive value greater than |b| in order to push the classifier neuron over the 0 threshold. Spatially, the

bias alters the position (though not the orientation) of the decision boundary. The perceptron learning

algorithm does not terminate if the learning set is not linearly separable. If the vectors are not linearly

separable learning will never reach a point where all vectors are classified properly. The most famous

example of the perceptron's inability to solve problems with linearly not separable vectors is the

Boolean exclusive-or problem.

In the context of neural networks, a perceptron is an artificial neuron using the Heaviside step function as

the activation function. The perceptron algorithm is also termed the single-layer perceptron, to distinguish

it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear

classifier, the single-layer perceptron is the simplest feedforward neural network.

15.3. Passive aggressive classification algorithm
Let’s suppose that we have a dataset:

The index t has been chosen to mark the temporal dimension. In this case, in fact, the samples can continue

to arrive for an indefinite time. Of course, if they are drawn from same data generating distribution, the

algorithm will keep learning (probably without large parameter modifications), but if they are drawn from a

completely different distribution, the weights will slowly forget the previous one and learn the new

distribution. For simplicity, we also assume we are working with a binary classification based on bipolar

labels.

Given a weight vector w, the prediction is simply obtained as:

All these algorithms are based on the Hinge loss function (the same one used by SVM):

The value of L is bounded between 0 (meaning perfect match) and K depending on f(x(t),θ) with K>0

(completely wrong prediction). A Passive-Aggressive algorithm works generically with this update rule:

mailto:koral01@gmail.com
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Decision_boundary
https://en.wikipedia.org/wiki/Linearly_separable
https://en.wikipedia.org/wiki/Exclusive-or
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Feedforward_neural_network

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 38

To understand this rule, let us assume the slack variable ξ=0 (and L constrained to be 0). If a sample x(t) is

presented, the classifier uses the current weight vector to determine the sign. If the sign is correct, the loss

function is 0 and the argmin is w(t). This means that the algorithm is passive when a correct classification

occurs. Let’s now assume that a misclassification occurred:

Figure 13

The angle θ > 90°, therefore, the dot product is negative, and the sample is classified as -1, however, its

label is +1. In this case, the update rule becomes very aggressive, because it looks for a new w which must

be as close as possible as the previous (otherwise the existing knowledge is immediately lost), but it must

satisfy L=0 (in other words, the classification must be correct).

The introduction of the slack variable allows to have soft-margins (like in SVM) and a degree of tolerance

controlled by the parameter C. In particular, the loss function must be L <= ξ, allowing a larger error. Higher

C values yield stronger aggressiveness (with a consequent higher risk of destabilization in presence of

noise), while lower values allow a better adaptation. In fact, this kind of algorithms, when working online,

must cope with the presence of noisy samples (with wrong labels). A good robustness is necessary,

otherwise, too rapid changes produce consequent higher misclassification rates.

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 39

After solving both update conditions, we get the closed-form update rule:

This rule confirms our expectations: the weight vector is updated with a factor whose sign is determined by

y(t) and whose magnitude is proportional to the error. Note that if there is no misclassification the

nominator becomes 0, so w(t+1) = w(t), while, in case of misclassification, w will rotate towards x(t) and

stops with a loss L <= ξ. In the next figure, the effect has been marked to show the rotation, however, it is

normally as smallest as possible:

Figure 14

After the rotation, θ < 90° and the dot product becomes negative, so the sample is correctly classified as +1.

15.4. Multinomial Naïve Bayes classification algorithm
Based on article [5]:

Let the set of classes be denoted by C. Let N be the size of our vocabulary. Then MNB assigns a test

document ti to the class that has the highest probability Pr(c|ti), which, using Bayes’ rule, is given by:

Pr(c|ti) =
Pr(c)Pr(𝑡𝑖|c)

Pr (𝑡𝑖)
 , c ∈ C (1)

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 40

The class prior Pr(c) can be estimated by dividing the number of documents belonging to class c by the total

number of documents. Pr(ti|c) is the probability of obtaining a document like ti in class c and is calculated

as:

Pr(ti|c)=(∑ 𝑓𝑛𝑖𝑛)!∏
Pr (𝑤𝑛|𝑐)𝑓𝑛𝑖

𝑓𝑛𝑖!𝑛 , (2)

where fni is the count of word n in our test document ti and Pr(wn|c) the probability of word n given class c.

The latter probability is estimated from the training documents as:

𝑃�̂�(wn|c) =
1+𝐹𝑛𝑐

𝑁+∑ 𝐹𝑥𝑐
𝑁
𝑥=1

, (3)

where Fxc is the count of word x in all the training documents belonging to class c, and the Laplace estimator

is used to prime each word’s count with one to avoid the zero-frequency problem. The normalization factor

Pr(ti) in Equation 1 can be computed using

Pr(ti)=∑ Pr(𝑘) Pr (𝑡𝑖|𝑘)
|𝐶|
𝑘=1 . (4)

Note that that the computationally expensive terms (∑ 𝑓𝑛𝑖𝑛)! and ∏ 𝑓𝑛𝑖!𝑛 in Equation 2 can be deleted

without any change in the results, because neither depends on the class c, and Equation 2 can be written as:

Pr(ti|c) = α ∏ Pr (𝑤𝑛|𝑐)𝑓𝑛𝑖
𝑛 , (5)

where α is a constant that drops out because of the normalization step.

15.5. Linear SVM classification algorithm
Based on article [6]: Support vector machines (SVM) are based on the Structural Risk Minimization principle
[7] from computational learning theory. The idea of structural risk minimization is to find a hypothesis h for
which we can guarantee the lowest true error. The true error of h is the probability that h will make an error
on an unseen and randomly selected test example. The following upper bound connects the true error of a
hypothesis h with the error of h on the training set and the complexity of h [7].

P(error(h))≤train_error(h)+2√𝑑(𝑙𝑛
2𝑛

𝑑
+1)−𝑙𝑛

𝑛

4

𝑛
 (6)

The bound holds with probability at least 1-n. n denotes the number of training examples and d is the VC-
Dimension (VCdim) [7], which is a property of the hypothesis space and indicates its expressiveness.
Equation (6) reflects the well-known trade-off between the complexity of the hypothesis space and the
training error. A simple hypothesis space (small VCdim) will probably not contain good approximating
functions and will lead to a high training (and true) error. On the other hand, a too rich hypothesis space
(high VCdim) will lead to a small training error, but the second term in the right-hand side of (7) will be
large. This situation is commonly called “overfitting". We can conclude that it is crucial to pick the
hypothesis space with the “right" complexity.
In Structural Risk Minimization this is done by defining a structure of hypothesis spaces Hi, so that their
respective VC-Dimension di increases.

H1 ⊂ H2 ⊂ H3 ⊂ … ⊂ Hi ⊂ … and ⩝i: di≤ di+1 (7)

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 41

The goal is to find the index i* for which (6) is minimum. How can we build this structure of increasing
VCdim? In the following we will learn linear threshold functions of the type:

h(�̃�) = sign{�̃�▪�̃� + b} = {
+1, 𝑖𝑓 �̃�▪�̃� + 𝑏 > 0

−1, 𝑒𝑙𝑠𝑒
 (8)

Instead of building the structure based on the number of features using a feature selection strategy,
Support vector machines uses a refined structure which acknowledges the fact that most features in text
categorization are relevant.

Lemma 1. [8] Consider hyperplanes h(�̃�) = sign{�̃�▪�̃� + b} as hypotheses. If all example vectors �̃�i are

contained in a ball of radius R and it is required that for all examples �̃�i

|�̃�▪�̃�i + b|≥1, with ||�̃�|| = A (9)
then this set of hyperplane has a VCdim d bounded by

d ≤ min([R2A2], n)+1 (10)

Please note that the VCdim of these hyperplanes does not necessarily depend on the number of features!
Instead the VCdim depends on the Euclidean length ||�̃�|| of the weight vector �̃� . This means that we can
generalize well in high dimensional spaces, if our hypothesis has a small weight vector.
In their basic form support vector machines find the hyperplane that separates the training data, and which
has the shortest weight vector. This hyperplane separates positive and negative training examples with
maximum margin. Finding this hyperplane can be translated into the following optimization problem:

Minimize: ||�̃�|| (11)

so that: ⩝i: yi[�̃�▪�̃�i + b] ≥1 (12)

yi equals +1 (-1), if document di is in class + (-). The constraints (12) require that all training examples are
classified correctly. We can use the lemma from above to draw conclusions about the VCdim of the
structure element that the separating hyperplane comes from. A bound similar to (10) [Shawe-Taylor et al.,
1996] gives us a bound on the true error of this hyperplane on our classification task.
Since the optimization problem from above is difficult to handle numerically, Lagrange multipliers are used
to translate the problem into an equivalent quadratic optimization problem [7].

Minimize: -∑ 𝛼𝑖
𝑛
𝑖=1 +

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗�̃�𝑖 ∙ �̃�𝑗

𝑛
𝑖,𝑗=1 (13)

So that: ∑ 𝛼𝑖
𝑛
𝑖=1 yi=0 and ⩝i: 𝛼𝑖≥ 0 (14)

For this kind of optimization problem efficient algorithms exist, which are guaranteed to find the global
optimum . The result of the optimization process is a set of coefficients 𝛼i* for which (13) is minimum.
These coefficients can be used to construct the hyperplane fulfilling (11) and (12).

�̃�▪�̃� = (∑ 𝛼∗𝑖𝑦𝑖�̃�𝑖
𝑛
𝑖=1)▪�̃� =∑ 𝛼∗𝑖𝑦𝑖(�̃�𝑖 ∙ �̃�)𝑛

𝑖=1 and b =
1

2
(�̃�▪�̃�++�̃�▪�̃�-) (15)

Equation (15) shows that the resulting weight vector of the hyperplane is constructed as a linear
combination of the training examples. Only those examples contribute for which the coefficient
𝛼i is greater than zero. Those vectors are called Support Vectors. They are those training examples which

have minimum distance to the hyperplane. To calculate b, two arbitrary support vectors �̃�+ and �̃�- (one from
the class + and one from -) can be use.

mailto:koral01@gmail.com

MS CS degree project proposal, semester 2020b by Alex Korthny, 308911635

 Page 42

mailto:koral01@gmail.com

