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Abstract

In morphologically rich languages words are ambiguous, complex and
consist of sub-token units referred to as morphemes.

Such cases often requires Morphological Disambiguation (MD), i.e., the
prediction of the correct morphological decomposition of tokens into mor-
phemes. Morphemes are used as the actual input to downstream tasks,
and consequently any disambiguation errors made are hard to recover
from and might have adverse impact on the performance of the entire
pipeline.

There are two possible strategies for achieving MD. The first is to structure
this task as a two-step process known as Morphological Analysis and Dis-
ambiguation (MA&D). In this case words are morphologically analyzed
first, transforming every word into a set of morphological analyses rep-
resenting different out-of-context syntactic interpretation that follow the
rules of the language and the disambiguation component is designed to
choose the most likely analysis in context. The alternative is to perform
MD as an End-to-End (E2E) process that directly operates on the words
(i.e. without going through an intermediate representation). On the one
hand, E2E models directly predict morphological information from the
raw words but do not enjoy explicit access to morphemes. On the other
hand, MA&D frameworks depend on the quality of the morphological
analyses generated for each word – the analyzer must cover all possible
interpretations in order to give the disambiguator a chance to choose the
correct one.

In this work we apply 3 different morphological disambiguation models,
2 of them designed for MA&D while the third works E2E. By covering the
different design choices of each model we track the impact of deep learn-
ing breakthroughs in NLP as they have contributed to Hebrew MD over
the last years. The case studies presented in this work focus on Modern
Hebrew, but all three disambiguation models can be applied to any lan-
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guage.

We start by applying a pre-neural joint morpho-syntactic framework, AKA
YAP, on all 82 languages of the CONLL 2018 UD SHARED TASK and
provide a deep analysis of the results in Modern Hebrew. We then pro-
pose a novel deep learning approach for disambiguation based on the
Pointer Network topology - applied on both Turkish and Hebrew - achiev-
ing significant accuracy improvement over the YAP standalone Hebrew
MD component. Both of these efforts highlight the contribution of broad
coverage lexical resources for substantially limiting morphological errors,
leading to high accuracy in downstream tasks. Finally we acknowledge
the downside of these MA&D frameworks involved with constructing a
language-specific broad-coverage MA component. Driven by this recog-
nition we investigate an alternative solution that benefits from a differ-
ent type of broad coverage linguistic resource which does not require lin-
guistic expertise or manual annotation effort. We offer AlephBERT, a Pre-
trained Language Model (PLM) trained in unsupervised learning settings
over a large corpus composed of nearly 100M sentences in Modern He-
brew. We use this PLM to compose an E2E MD for Hebrew that achieves
outstanding state-of-the-art results without the need for labor-intensive
manual generation of lexical resources or feature engineering.
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1 Introduction

Natural language processing (NLP) is a sub-branch of Computer Science
concerned with processing and automatically extracting linguistic structure
from free - i.e. unstructured - texts expressed in natural human language
such as English or Hebrew. Once extracted, these structures serve down-
stream processing tasks for Information Extraction, Text Analytics, and
diverse Data Science applications. As such, NLP stands at the foundation
of Artificial Intelligence.

Deep learning is driving major breakthroughs in a wide range of NLP
tasks ranging from basic low level tasks such as Part-of-Speech (POS) Tag-
ging, Named Entity Recognition (NER) and Dependency Parsing all the
way to high level Machine Translation and Question Answering appli-
cations. Recently, large Pre-trained Language Models (PLMs) have be-
come ubiquitous in the development of language understanding technol-
ogy and lie at the heart of many artificial intelligence advances. Notably,
advances have been demonstrated mostly on English and other highly re-
searched languages, while reported advances in Hebrew are few and far
between.

The problem is twofold. First, Hebrew resources for training large lan-
guage models are not at the same order of magnitude as their English
counterparts. Secondly, Hebrew is a Morphologically Rich Language (MRL)
in which significant information is expressed morphologically, via intra
word-level variation, leading to diverse and ambiguous structures, ac-
companied with huge lexica, which in turn make MRLs notoriously hard
to parse (Nivre et al., 2007; Tsarfaty, 2013). English, on the other hand,
is a language with simple morphology in which syntactic information is
expressed via inter word relationships.

English has a broad support of annotation pipelines successfully serving
Artificial Intelligence (AI) and Data Science projects in academia and the
industry. But when applied to MRLs, these pipelines show sub-optimal
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CHAPTER 1. INTRODUCTION 2

performance that limits their applicability for text analysis. The reason be-
ing that MRLs often required Morphological Disambiguation (MD), i.e.,
prediction of correct morphological decomposition of tokens into mor-
phemes, early in the pipeline and the sub-optimal performance is mainly
due to errors in early morphological disambiguation decisions, which can-
not be recovered later in the pipeline, yielding incoherent annotations on
the whole.

As we will see, in order to improve processing performance in MRLs in
general and Hebrew in particular we need to address 3 strategical chal-
lenges as defined by Tsarfaty, Bareket, Klein, and Seker [70]:

(i) The Architectural Challenge: What input units are adequate for
processing MRLs?

(ii) The Modeling Challenge: What modeling assumptions are ade-
quate for MRLs?

(iii) The Lexical Challenge: How can we cope with extreme data
sparseness in MRLs lexica?

1.1 Morphologically Rich Languages

The term Morphologically Rich Languages (MRLs) [69] refers to languages
such as Hebrew, Arabic and Turkish in which significant grammatical in-
formation and syntactic relations are expressed at word-level as opposed
to via word-order and inter-word constructions as in English. Words in
MRLs tend to consist of a sequence of sub-word segments each assigned
its own Part-of-Speech (POS) tag and other grammatical features such as
gender, number, tense, etc. These sub-token units are referred to as mor-
phemes.1

A morpheme is defined as a tuple containing several types of syntactic
information. The full morphological signature defines the syntactic role of
morphological segments and contains the following:

(1) Form - orthographic representation of the surface segment.

(2) Lemma - canonical representation of the form.

1In Universal Dependencies terms, these are called syntactic words, to be distinguished
from raw input words.
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(3) Part-of-Speech Tag

(4) Features - various grammatical features such as: gender, number,
person, tense, etc.

1.1.1 Syntactic Differences Between English and Hebrew

English adheres to a certain morpho-syntactic set of rules - it obeys word
order and uses auxiliary verbs, adpositions and other inter-word relation-
ships to express the grammar that governs the language. Space delimited
words are (mostly) self-contained, i.e. with no internal structure, represent
a single syntactic as well as semantic interpretation and therefore serve as
the basic processing units in NLP. This in turn affects the design and im-
plementation of downstream NLP tasks - the input sequence is well de-
fined and known in advance and the output is some word-based structure
depending on the task. So for example when performing Part-of-Speech
(POS) Tagging each word by itself may have more than a single possible
tag and it is up to the tagger to choose the most likely sequence of POS
tags, one per word, in the context of the sentence. Likewise a Named En-
tity Recognition (NER) task generates a list of NER labels one per word
and a Dependency Parser infers syntactic relations between words and
constructs the most likely parse tree associated with the sentence.

In Hebrew, words are morphologically ambiguous, complex, carry many
possible interpretations and therefor should be broken down before fur-
ther processing. This gets even more complicated by the lack of diacritics
in standardized texts, meaning that most vowels are not present, and thus
out of context no reading is a-priory more likely than the others. Only in
context the correct interpretation and segmentation into morphemes be-
come apparent, and it is in fact the morphological segments that serve as
the basic processing units in downstream applications. So in this case,
before choosing the most likely sequence of POS tags or NER labels in
context it is required to first identify the morphological segments and only
then assign each segment with a label. Similarly a dependency parser gen-
erates a parse tree on segmented forms.

Let’s look at the following example:

Hebrew Phrase: הלבן״ לבית ״הלכנו

Transliterated: ”hlknv lbit hlbn”2

2Using the transliteration of Sima’any et al. [60]
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Figure 1.1: A parse tree for English - POS tags and dependency relations
are word-level.

Figure 1.2: A parse tree for Hebrew - POS tags and dependency relations
are morpheme-level.

Translated: ”We walked to the white house”

The parse tree for the English sentence is depicted Figure 1.1 in which
words are used as tree nodes with edges between them defining the parsed
syntax. Compare this with Figure 1.2 depicting the same phrase in He-
brew, expressed with 3 words but broken into 6 sub-word units depicting
the dependency tree associated with the morpheme sequence.

The overall ambiguity level in Hebrew, and MRLs in general, is com-
pounded - words are ambiguous with regard to their segmentation and
segments are ambiguous by themselves in various aspects such as POS
tags, dependency relations, etc.

To make things worse, some of these sub-word morphological units might
be implicit in the orthographic word form as seen in the Hebrew word
“lbit”. In this case the word might break into 3 morphological segments,
“l”, “h” and “bit” corresponding to the English counterparts “to” “the”
“house” where the determiner “h” segment is not visible in the word form.

The high level of ambiguity built into words in MRLs present a major ob-
stacle to the entire NLP pipeline. As shown by Goldberg and Elhadad [20],
any errors made during morphological segmentation early on are critical
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to the overall performance of the entire Hebrew NLP pipeline, because
they are hard to recover from in the downstream tasks.

The fact that in English it is space-delimited tokens that are employed as
the basic processing units, has significant impact on the advancements
made in numerous NLP tasks in English. Many MRLs, and Hebrew in
particular, do not benefit from these advancements due to the fundamen-
tal differences at the input level which pose several challenges as described
next.

1.2 Hebrew Resources

Labeled and unlabeled textual resources stand at the core of NLP. Labeled
datasets serve as the backbone for various supervised statistical parsers.
Supervised methods rely on labeled data to learn from and fit model pa-
rameters (i.e. train), find the best training and model meta-parameters
(e.g. learning rate, model size, number of training epochs, etc.) as well
as provide accuracy performance measure (i.e. test). Unlabeled datasets
are heavily used in unsupervised tasks, such as word embedding and lan-
guage modeling, that are driving the successful application of deep learn-
ing in NLP.

In English, creating word-level labeled resources do not require further
pre-processing before annotation, and unlabeled space-separated texts are
(relatively) straight forward to extract. Consequently, English is a resource-
rich language with a large number of available datasets.

Hebrew, besides being morphologically rich, is also known to be resource
poor. Not only is the amount of available texts available for Hebrew is
smaller, using these texts in NLP tasks that require morphological infor-
mation require a pre-step to segment words into morphological units.

Even today after decades of NLP research, the number of available an-
notated resources which can benefit Hebrew NLP is minimal. The first
morphologically-aware resource for Hebrew have been developed during
the early 2000s, by the MILA knowledge center. Namely they are the He-
brew treebank [60] and the Hebrew Lexicon [26]. Over the years these
resources have been expanded and improved upon and have served as
the building blocks for statistical taggers [1, 6] and parsers [20, 43] in He-
brew. The Hebrew treebank was included in the SPMRL 2013 SHARED
TASK [53] and SPMRL 2014 SHARED TASK [54] that introduced to the
NLP community the unique processing challenges associated with MRLs.
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Most recently More and Tsarfaty [39] has automatically transformed the
Hebrew treebank into the UD scheme and added it to the UD dataset
which is part of the CONLL 2018 UD SHARED TASK . Contrary to the
SPMRL tasks, the latest Universal Dependencies (UD) initiative aims to
provide cross-linguistic morpho-syntactic data sets under a unified, har-
monized annotation scheme [46].

Data Sparseness Hebrew datasets exhibit word-level sparseness that fol-
lows from the highly complex and compositional structure of words. Con-
sequently many words are not seen during training even though their con-
stituent morphological segments might have been present in the data.

In addition, we point out that the Hebrew Treebank is a small-sized dataset
- the training partition is about 4000 sentences which is considered to
be relatively modest for training syntactic models such as POS tagging,
NER and dependency parsing. Even though the treebank does contain
morpheme-level information, due to the small training partition size many
morphological forms are not seen during training.

To build NLP models that can effectively handle texts in Hebrew we must
account for the fact that many words and many sub-word segments are not
seen during training and therefore considered out-of-vocabulary (OOV).
To overcome data spareness we set out to test 3 mechanisms that introduce
additional information beyond labeled data, augmenting systems with ex-
tensive linguistic knowledge.

First we demonstrate the effectiveness of injecting wide-coverage Mor-
phological Analyzer (MA) component in parsing Hebrew texts. Specif-
ically we take advantage of the CoNLL-U and CoNLL-UL datasets that
constitutes the MA output complementing the train/dev/test partitions
of the Hebrew SPMRL and UD Treebank respectively and use them as in-
put into a morpho-syntactic parsing system.

Secondly, we experiment with pre-trained FastText Hebrew model that
can generate embedded vectors for any input by using character ngrams,
thus handling any out-of-vocabulary form [9].

Finally, we build a large BERT language model capturing syntactic and se-
mantic information learned from massive amounts of Hebrew texts. We
deploy this language model in a morphological disambiguation compo-
nent and demonstrate its ability cover any Hebrew text thus overcoming
the OOV problem.
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1.3 Morphological Modeling

As previously mentioned, models that are applied successfully to English
fail when applied as is on MRLs. These models implicitly assume the
space-delimited input word sequence is known in advance and do not take
into consideration the internal structure of words. In Hebrew, however,
morphological segments serve as the basic processing units. Consequently
when designing text processing solutions in MRLs, we are faced with a de-
cision. If we choose to ignore the morphological issue and process words
directly we might run into performance issues for various processing tasks
[28]. On the other hand, dealing directly with morphological segments in-
troduces further challenges in designing morphologically-aware models
and evaluation pipelines.

It is therefore no surprise that MRLs have been known to be notoriously
hard to parse ([45, 68]). The results in SPMRL 2014 SHARED TASK and
CONLL 2018 UD SHARED TASK clearly indicate that the performance
on many MRLs, and in particular Semitic languages, is not on par with
the performance on English. For Hebrew this performance gap has long
been a show-stopper for advancing Language Technology and Artificial
Intelligence for the Hebrew-speaking community.

In this work we focus on the Morphological Disambiguation (MD) task which
we identify as the most critical component in MRLs. We investigate 3 dif-
ferent MD approaches and compare the performance gained by each one
on various tasks in Hebrew.

We start by presenting our contribution to the CONLL 2018 UD SHARED
TASK on MULTILINGUAL PARSING FROM RAW TEXT TO UNIVERSAL DE-
PENDENCIES. Our contribution is based on a pre-neural transition-based
parser called yap: yet another parser which includes a standalone morpho-
logical disambiguation model, a standalone dependency model, and a
joint morpho-syntactic model. In the task we used yap’s standalone de-
pendency parser to parse morphologically disambiguated input and ob-
tained the official score of 58.35 LAS. In a follow up investigation we use
yap to show how the incorporation of morphological and lexical resources
may improve the performance of end-to-end raw-to-dependencies pars-
ing in the case of a morphologically-rich and low-resource languages, such
as Modern Hebrew. Our results on Hebrew underscore the importance
of CoNLL-UL, a UD-compatible standard for accessing external lexical re-
sources, for enhancing end-to-end UD parsing.

We then move on to a neural-MD architecture that combines the symbolic
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knowledge of morphemes with the learning capacity of end-to-end deep-
learning modeling. We propose a new, general and easy-to-implement
Pointer Network disambiguation model where the input is a morpholog-
ical lattice and the output is a sequence of indices pointing at a single
disambiguated path of morphemes. We demonstrate the efficacy of the
model on segmentation and tagging, for Hebrew and Turkish texts, based
on their respective Universal Dependencies (UD) treebanks. Our experi-
ments show that with complete lattices, our model outperforms all shared-
task results on segmenting and tagging these languages. On the SPMRL
treebank, our model outperforms all previously reported results for He-
brew MD in realistic scenarios.

Last but not least, we pursue the latest advancements in NLP spearheaded
by Pre-trained Language Models (PLM). We present AlephBERT, a large pre-
trained language model for Modern Hebrew, which is trained on larger
vocabulary and a larger dataset than any Hebrew PLM before. Using Ale-
phBERT we present new state-of-the-art results on multiple Hebrew tasks
and benchmarks, including: Segmentation, Part-of-Speech Tagging, full
Morphological Tagging, Named-Entity Recognition and Sentiment Anal-
ysis. Crucially, evaluating PLMs on morpheme-level tasks is non triv-
ial. Current PLM implementations output word-level embedded vectors,
while sub-word morpheme-level vectors which are required for morpheme
based tasks are not readily available. To address this we introduce a neu-
ral MD component that operates on contextualized word vectors, extracts
morphological segments and outputs vector representations that can be
used to further label each morphological segment with various properties
such as POS tags, NER labels and morphological features.



2 Background and Formal Prelim-
inaries

Here we provide an overview of the main morphological processes in-
volved in the formation of words in MRLs (2.1), we formally define the
morphological analyzer function that maps words to a set of possible mor-
phological analyses (2.2) and describe the Lattice data structure that con-
cisely represents morphological ambiguity (2.3). We then go over two
possible strategies for performing the morphological disambiguation task
(2.4) and conclude by covering the differences between the 3 modeling
choices surveyed in this work (2.5). Finally we describe embedded word
vectors and their contribution to the successful adaption of deep learning
in NLP (2.6).

2.1 Morphological Typology

Every language can be described in terms of the processes involved in
forming words. On the one end of the spectrum are isolative or analytic
languages in which most words tend to comprise of a single morpheme.
Analytic languages, such as Chinese and English, have a lower morpheme-
to-word ratio and higher use of auxiliary verbs and word order to convey
syntactic relationships. As we move away toward the other end of the
spectrum we find synthetic languages whose words tend to contain mul-
tiple morphemes. Synthetic languages can be further described according
to their agglutinative (concatenative) and inflectional (fusional) properties.

Agglutination is a derivational process that concatenates two or more mor-
phemes into a single word without modifying spelling or phonetics. Inflec-
tion on the other hand, adds functional affixes to a root morpheme which
assigns grammatical properties to the root. In the former, the morphemes

9
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tend to have clear boundaries between them whereas in the latter, the mor-
phemes tend to be indistinguishable. The following Hebrew phrase illus-
trates the difference between agglutination and fusion:

Hebrew phrase: הנעים״ ״בצלם

Transliterated: ”bclm hneim”

Disambiguated: b/ADP,h/DET,cl/NOUN, f l/POS,hm/PROPN,h/DET,neim/ADJ

Literally: ”In-the-shadow-of-them the-pleasant”

Translated: ”In their pleasant shadow”

The first word, ”bclm”, can break down into five morphemes where three
of them - the second, fourth and fifth, corresponding to the segments: ”h”,
”fl” and ”hm” - are fused and have no visible boundaries in the surface
word form. The second word, ”hneim”, can be segmented into two mor-
phemes ”h + neim”, with clear boundaries between the two.

In this work we focus on Hebrew, a highly synthetic language where word
form ambiguity is common, i.e. words can be segmented in different ways
depending on context. As reflected by the above example, words can ex-
hibit both agglutinative and fusional properties to various degrees and
may contain covert segments making it more challenging to recover.

2.2 Morphological Analysis

Morphemes A morpheme is defined as a tuple holding lexical informa-
tion, such as the form and lemma, as well as non-lexical categorical in-
formation including POS tag and other features that convey grammatical
attributes such as gender, number, person, tense, etc. Formally we define
a morpheme as a tuple

m = ( f , l, t, g) (2.1)

with f and l the form and lemma, t a tag, and g a set of (possibly empty)
’attribute=value’ grammatical properties.

The form is the surface appearance of the morphological segment, and
can replace the word as the orthographic unit used by downstream tasks
such as NER or parsing. Lemma is the canonical representation of mean-
ing of the form, it is based on the normalized version of the word as male,
singular, third person, past tense (if it is a verb). For example the Hebrew
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word which represents the phrase ”I walked” is composed of a single mor-
pheme:

m = (”hlkti”,”hlk”,VERB,gender=Male|number=Singular|person=First|Tense=Past)

In the above, the form is identical to the surface word and the lemma is
obtained by inflecting the word as male, singular, third person, past tense.

An analysis is defined as a list of morphemes representing the entire de-
composition of the word into its constituent components:

Analysisi(w) = [m1, m2, ...] (2.2)

E.g. the phrase ”in the houses”, represented by the transliterated word
”bbtim” and its full breakdown into morphological components is:

Analysis(”bbtim”) = [(”b”,”b”,ADP, ),(”h”,”h”,DET, ),
(”btim”,”bit”,NOUN,gender=Male|number=Plural)]

A Morphological Analyzer (MA) converts each word to a set of morpholog-
ical decompositions, licensed by the rules of the language, each equally
likely out of context:

MA(w) = {a1, a2, ...}, ai = Analysisi(w) (2.3)

For example, the word ”hlbn” by itself (i.e. out-of-context) is ambiguous
because there are several possible ways to interpret this word in the He-
brew language:

a1(”hlbn”) = [(”h”,”h”,DET, ),
(”lbn”,”lbn”,ADJ,gender=Male|number=Singular)]

a2(”hlbn”) = [(”h”,”h”,DET, ),
(”lbn”,”lbn”,NOUN,gender=Male|number=Singular)]

a3(”hlbn”) = [(”hlbn”,”hlbin”,VERB,
gender=Male|number=Singular|person=First|tense=Past)]

Lexicon Implementing a broad-coverage MA involves a language spe-
cific, manually generated set of rules, stored in a designated linguistic re-
source, i.e. lexicon. A lexicon is a data structure storing lexical entries that
are used to map every word to the set of all possible analyses governed by
the rules of the language.

For example, table 2.1 lays out the lexical entries applied in order to cover
all of the valid morphological analyses associated with the Hebrew word
״הלבן״ (transliterated ”hlbn”) according to the rules of the Hebrew lan-
guage.
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Lemma Tag gender number person tense binyan Suf Tag Suf gender Suf number Suf person
h DET

lbn ADJ Male Single
lbn NOUN Male Single
lbn PROPN Male Single
libn VERB Male Single 3rd Past Piel
lb NOUN Male Single PRON Female Plural 3rd

Table 2.1: Lexical entries relevant for the morphological analysis of the
word ״הלבן״ (”hlbn”).
”Suf *” stands for grammatical properties associated with the suffix units.

Some words might not be covered by the lexicon, in which case the MA
need to generate a default list of possible analyses as a fall back strategy.

2.3 Morphological Ambiguity

We’ve established the fact that input tokens in MRLs are internally com-
plex, and bear multiple units of meaning. Morphological Analysis (MA) is
aimed to convert each of the tokens to a set of all possible morphological
decompositions licensed by the rules of the language. Every decomposi-
tion represents one possible interpretation of the token being analyzed.

For every word in the language, MA outputs multiple, ambiguous, mor-
phological analyses which can be stored in a lattice data structure. A lattice
is Directed Acyclic Graph (DAG) often used to encode ambiguity in NLP. In
a morphological lattice, every node represents a segment boundary, and
every edge represents a morpheme. Every path through the lattice repre-
sents a single possible analysis of the entire sentence.

Formally, we define for each word xi its word-lattice:

Li = MA(xi) (2.4)

where each lattice-edge in Li corresponds to a morpheme with internal rep-
resentation as defined in equation 2.1.

The complete sentence lattice is obtained by concatenating the word lat-
tices. L is now a data structure that encodes all possible analyses applica-
ble to the sentence x1...xk:

L = MA(x) = MA(x1) ◦ ... ◦MA(xk) (2.5)

Consider again the Hebrew phrase “bbit hlbn”. A partial lattice represen-
tation of the analyses is illustrated in Figure 2.1.
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Figure 2.1: Lattice of the Hebrew tokens ”bbit hlbn”. Edges are morphemes.
Nodes are segmentation boundaries. Bold nodes are token boundaries.
Every path through the lattice represents a single morphological analysis.

In chapter 4 and chapter 5 of this work we cover 2 modeling choices that
directly represent morphological ambiguity in the form of a Lattice data
structure which is consumed as input by the respective disambiguation
components.

2.4 Morphological Disambiguation Strategies

Morphological Disambiguation (MD) is the task of selecting a single most-
likely analysis for each token in the context of the sentence. The result-
ing morpheme sequence may then serve as the input processing units for
downstream tasks (similarly to space-delimited words in English).

The Morphological Disambiguation (MD) task is defined to take a sequence
of (space-delimited) words as input and output a sequence of morphemes
where the length of the output sequence may differ from the length of the
input sequence. In order to extract a sequence of morphemes from words
we need to overcome the two types of ambiguities - morphological seg-
mentation ambiguity and syntactic ambiguity. The former rises whenever
words may be decomposed into different candidate sequences of segments
while the latter is a consequence of multiple plausible syntactic roles that
can be assigned to each of the segments.

Traditionally MD has been addressed by two different disambiguation
methods. The first operates on the raw word sequence to directly pre-
dict morphological information. The second method involves a two-step
process, transforming the word sequence into a morphological lattice (as
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defined in the previous section) before proceeding to choose the single
most likely path through the lattice, which represents the most likely mor-
phological analysis of the sentence. The former method is referred to as
End-to-end (E2E) while the latter is referred to as Morphological Analysis
and Disambiguation (MA&D).

2.4.1 End-to-End Morphological Disambiguation

The most straightforward E2E approach views MD as a morphological
segmentation task. In this case, the disambiguation model takes a se-
quence of words as input and predicts the most likely sequence of seg-
mented morphological forms. Once predicted, the new sequence of seg-
ments can now be used as input to other downstream tasks such as POS
tagging, NER and dependency parsing. As previously mentioned, each
word may break down into a number of segments corresponding to the
morphological composition of the word, and as a consequence the length
of the resulting segmented sequence is unknown in advance and may vary
depending on the context.

This segmentation-first approach is, in essence, an attempt to mimic NLP
in English, replacing space-separated words with the predicted sequence
of forms. The idea of this approach is that once the segmented forms are
predicted, it is possible to benefit from applying the same models that
work so well for English.

In actuality, however, such pipeline architectures are prone to error prop-
agation which undermines the accuracy of almost any task down the NLP
pipeline [7, 28, 70]. NLP models that are optimized for English do not
expect and have no capacity to deal with errors in the input stream.

Formally, MD pipeline is realized as a composition of functions:

MD(x) = g( f (x)) (2.6)

where f (x) = y is a segmentation function taking a sequence of words
and generating a sequence of segments. and g(y) = z is a grammatical
function taking a sequence of segments and enriching each segment to
construct a sequence of morphemes.

A second conceivable E2E approach is implemented in terms of a sequence-
to-sequence model that consumes a sequence of words and produces a se-
quence of morphological signatures. For example, it is possible to jointly
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predict both segmented forms and POS tags in a multi-task setup facili-
tating the interaction between the orthographic and grammatical signals
to benefit in both learning as well as decoding. Defined this way, the MD
training objective is to optimize both segmentation and tagging together
as opposed to the pipeline regime where each model is trained indepen-
dently and without being affected by quality of the other model.

To clear up the difference between pipeline and multi-task E2E approaches
let’s consider again the example ”bbit hlbn”. In a pipeline, MD is applied
first and it breaks down this phrase into segmented forms: ”b h bit h lbn”,
then this five-segment sequence can be passed as input to the next task.
Downstream models for POS tagging or NER will process this sequence
of segments as if they are the original sequence of raw words:

MDpipeline([bbit,hlbn]) = g( f ([bbit,hlbn]))
= g([b,h,bit,h,lbn])
= ([b,h,bit,h,lbn], [ADP,DET,NOUN,DET,ADJ])

In multi-task settings, on the other hand, MD directly and simultaneously
predicts both morphological segments as well as other grammatical prop-
erties associated with each segment:

MDmultitask([bbit,hlbn]) = [b/ADP,h/DET,bit/NOUN,h/DET,lbn/ADJ]

Both Pipeline and Multitask approaches are considered end-to-end be-
cause they operate directly on the input sequence of words.

The drawback of E2E MD lies in lack of access to morphological infor-
mation in the raw token input stream. Tokens in MRLs are lexically and
syntactically ambiguous, and carry many possible interpretations.

There is an alternative that combines symbolic knowledge of morphemes,
encoded as a lattice, with the learning capacity of machine learning and
deep learning models, as described next.

2.4.2 Morphological Analysis and Disambiguation

Statistical approaches for MA&D typically use weighted finite-state ma-
chines to unravel the possible morphological decompositions, and ma-
chine learning models to select the most likely decomposition. Every raw
token in the input sequence first goes through Morphological Analysis (MA)
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exposing all possible morphological decompositions as a lattice (see Fig-
ure 2.1). The ambiguous morphological lattice is then passed to a disam-
biguation component selecting a sequence of arcs which represents the
most likely analysis in the context of the sentence being processed. Since
every lattice arc contains rich information made available by the MA —
namely, segmentation boundaries, lemma, POS tag and a set of morpho-
logical features — this MA&D framework jointly predicts rich morpholog-
ical layers while avoiding the pipeline pitfall.

Enjoying rich grammatical information does come at a price incurred by
relying on a language specific MA component. Under the MA&D regime,
not only is it necessary to consume ambiguous lattices as input, the correct
analysis must be represented in the lattice otherwise the MD would not be
able to choose it. MA&D cannot be applied if either a language-specific
MA is not available, or if the analyzer provides a narrow lexical coverage
resulting in small and partial lattices from which the MD cannot learn and
generalize.

Since the advent of Neural Network models in NLP [19], many tasks rely
on pre-trained dense vector representations of words, aka word embed-
ding. Word embedding encode multiple aspects of structure and mean-
ing which shift the focus from modeling various linguistic complexities to
fine-tuning models that extract task-specific signals from the embedded
vectors. Similar to a lexically driven MA component, having embedded
vectors at hand increases the capacity of both E2E and MA&D frameworks
to overcome word spareness and better handle morphological segments
that are OOV.

2.5 Neural MD and Word Embeddings

Classical NLP models rely heavily on carefully hand-crafted features (or
feature-templates). In contrast, neural networks (a.k.a deep learning mod-
els) for NLP are designed to encode raw sequences of words free from any
manual and time-consuming feature engineering. In particular, in such ar-
chitectures, words are first transformed into dense vector representations,
referred to as word embedding.

Embedded vectors are learned in an unsupervised fashion from large vol-
umes of textual corpora without requiring manual annotation. They im-
plicitly encode syntactic and semantic features exhibited by words based
on their distributional properties found in the training data. The abil-
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ity of supervised networks to generalized and decode input sequences is
dramatically improved even when they include out-of-vocabulary (OOV)
words - words that were not seen in the annotated training data but might
be similar (i.e. close in embedding vector space) to other words that were
observed in training.

Initially, word embedding layers were provided as a static mapping from
words to their corresponding dense vector representations. The work
of Mikolov, Chen, Corrado, and Dean [37] (Word2Vec) and Pennington,
Socher, and Manning [48] (GloVe) are such examples. The latest language
models, such as BERT [16], offer contextualized embedding by dynami-
cally assigning dense vectors to occurrences of words (so different vec-
tors could be assigned to occurrences of the same word in different con-
texts). While advances reported for English using such models are un-
precedented, in Hebrew previously reported results using BERT-based
models are far from impressive. Specifically, the BERT-based Hebrew sec-
tion of multilingual-BERT [16] (henceforth, mBERT), did not provide a
similar boost in performance to what is observed for the English section
of mBERT. In fact, for several reported tasks, the mBERT model results are
on a par with pre-neural models [28, 70].

2.5.1 Word Embedding in MRLs

Unsupervised pre-training techniques are applied to raw words rather
than morphemes, and deliver word-embedding vectors agnostic to inter-
nal word structure. Word embedding was expected to provide a language-
independent representation of the input which potentially should elimi-
nate the need to model different languages differently. In reality though,
applying neural models that work well in English led to sub-optimal per-
formance when applied on MRLs. While some morphological structure
may be implicitly encoded in these vectors, the morphemes themselves
remain inaccessible [15, 71].

In this work we introduce 2 solutions that provide morphologically-aware
embedding layers (static and dynamic) and demonstrate their effective-
ness in capturing morphological level features that benefit downstream
tasks.



3 Previous Work

3.1 E2E Morphological Disambiguation

Historically, Morphological Disambiguation (MD) has been viewed in several
ways by researchers depending on task goals. Earlier work on MD con-
centrated on the specific task of morphological segmentation only. Morfes-
sor [61] performs morphological segmentation across many languages by
supporting a family of generative probabilistic machine learning methods
for finding the morphological segmentation from raw text. Wang, Cao,
Xia, and de Melo [73] tackled the segmentation challenge by taking an
unsupervised approach for learning segment boundaries. Recently, Shao,
Hardmeier, and Nivre [57] modeled the segmentation task as a character-
level sequence labeling problem. While improving segmentation results
across many languages, Arabic and Hebrew accuracy remained low. We,
on the other hand, incorporate linguistic information in frameworks that
can predict both segments as well as other morphological layers.

Another popular MD scenario is commonly known as morphological tag-
ging where every word is assigned a single morphological signature. In
other words, every word is assigned a single lemma, a single main POS
tag, and all other information (including affixes and clitics) is represented
as features. So, for example, the word ”hbit”, which represents the phrase
”the house”, would get assigned the single morpheme (”hbit”, ”bit”, NOUN,
gender = Male|number = Singular|de f = true), where the definite arti-
cle information is represented as an extra feature as opposed to a sepa-
rate morpheme. Morphological tagging has been applied using generative
probabilistic frameworks in Turkish [23] and Arabic [18]. Mueller, Schmid,
and Schütze [44] used a discriminative feature-based high order CRF tag-
ging models, in a coarse-to-fine paradigm and ran tagging experiments on
Arabic, Czech, Spanish, German and Hungarian. Our work is concerned
with morpheme level tagging as opposed to word level tagging.

18
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In order to extract morpheme level tags, Straka and Straková [64] devel-
oped UDPipe which, as the name implies, is a processing pipeline compati-
ble with the UD schema. They offered a trainable pipeline which performs,
among other tasks, tokenization, lemmatization and POS tagging. By tak-
ing the pipeline approach, they suffered from error propagation as evident
from the POS tagging results of MRLs in the CONLL 2018 UD SHARED
TASK . Like UDPipe we identify both morphological segments as well as
assign a single POS tag to each segment. In fact we consider the UDPipe
results from the CONLL 2018 UD SHARED TASK as the segmentation and
tagging baselines in some of our experiments.

3.2 MA&D Morphological Disambiguation

A Morphological Analyzer maps words into all possible out-of-context
analyses according to word formation rules in a specific language. Con-
sequently, MA&D frameworks are forced to focus either on a specific lan-
guage or family of languages depending on the analyzer component.

Yildiz, Tirkaz, Sahin, Eren, and Sonmez [75] implemented MA&D frame-
work for for Turkish and applied it on German and French as well. They
first embed various morphological properties of each analysis, pass it to
Convolutional (CNN) layer that encoded each candidate analysis along
with a context window of correct embedded analyses. Finally, a binary
classification layer was used to calculate the likelihood that the analysis
is correct or not given the window of previously disambiguated analyses,
repeated for every analysis provided by the MA. Decoding was done us-
ing the Viterbi algorithm to pick the most likely sequence of analyses. The
morphological embedding layer proposed in chapter 5 of this work is de-
signed similarly, however we use a different topology in the second layer,
and our final softmax layer is designed to compute the likelihood of each
analysis as opposed to a binary classification score.

Shen, Clothiaux, Tagtow, Littell, and Dyer [59] utilized a compatibility
function between the representation of each candidate analysis and the
representation of the context. They encoded each analysis by concatenat-
ing character level BiLSTM over the stem with a LSTM encoding of all the
grammatical features. The compatibility function computed a dot prod-
uct between a matrix representation of the analyses and the context of the
word being disambiguated before passing it to a softmax layer for com-
puting the likelihood of each analysis given the context. They also experi-
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mented with using the dot product as the emission value to a Conditional
Random Field (CRF) which can make better global predictions. In chap-
ter 5 among the various neural components we also apply the Attention
mechanism which acts very similarly to the compatibility function.

3.2.1 Hebrew MA&D

Initial work on MD in Hebrew viewed it as a special case of POS tag-
ging. Bar-haim et al. [6] implemented MorphTagger – Hidden Markov
Model (HMM) trained under supervision augmented with a unsupervised
smoothing using a large unlabeled corpus. Adler and Elhadad [1] showed
tagging models whose terminal symbols are morphological segments are
advantageous over word-level models for Modern Hebrew. They trained
a semi-supervised HMM model supported by a morphological analyzer to
help in word segmentation and a large unlabeled corpus to compute the
probability distribution of tags over segments. Both of these works ap-
plied generative disambiguation models taking the morphological analy-
ses of Segal [55] as input and computing for each sequence of morphemes
the probability distributions of lexical word emissions as well as tag tran-
sitions. While the performance was adequate for some applications, Gold-
berg and Elhadad [20] showed that consuming the predicted MD output of
Adler and Elhadad [1] as input to dependency parsing significantly reduced
parsing performance on Hebrew.

Recently More and Tsarfaty [39] presented a standalone transition-based
MA&D which jointly solves morphological segmentation, tagging and fea-
ture assignment in a discriminative feature-based framework, presenting
new state-of-the-art for Hebrew MD. To overcome error propagation in-
herent in the pipeline approach, More et al. [43] proposed joint morpho-
syntactic framework which enable interaction between the morphological
and syntactic layers. Our submission to the CONLL 2018 UD SHARED
TASK described in chapter 4 is based on this joint framework. While prov-
ing to be state-of-the-art for both MD and dependency parsing on Hebrew,
this solution involved massive time-consuming hand-crafted feature engi-
neering. Our proposal in chapter 5 follows the MA&D framework solving
for segments and POS tags by applying a neural model fit for choosing the
most likely morphological analysis provided by a MA component.
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3.2.2 Arabic MA&D

Arabic is a Semitic language with rich morphology closely related to He-
brew. As such we survey here alternative approaches for MA&D that
work on Arabic. Both Habash and Rambow [21], Roth, Rambow, Habash,
Diab, and Rudin [50] used Arabic MA output and applied a set of classifi-
cation and language models to make grammatical and lexical predictions.
A ranking component then scored the analyses produced by the MA using
a weighted sum of matched predicted features.

Zalmout and Habash [76] presented a neural version of the above sys-
tem using LSTM networks in several configurations and embedding lev-
els to model the various morphological features and use them to score and
rank the MA analyses. In addition, they incorporated linguistic features
based on the analyses from the MA into the MD component. By enriching
the input word embedding with these additional morphological features
they increased MD accuracy drastically. This ranking technique requires
building several models - language models to predict form and lemma
and sequence labeling models to predict non-lexical features such as POS,
gender, number etc. Most recently Khalifa, Zalmout, and Habash [27]
provided further validation on the hypothesis that in low settings, mor-
phological analyzers help boost the performance of the full morphological
disambiguation task.

In chapter 5 we present a solution involving ambiguous morphological
analyses in both Hebrew on Turkish which are considered low resource
languages. We then apply a single disambiguation model to score each
analysis and choose the best one. Our neural MD component is language
agnostic and doesn’t depend on any language specific resource, and as a
result can be easily applied to any language.

3.2.3 Lattice Disambiguation

As previously mentioned, lattice structures encode ambiguity and used
in a number of NLP tasks where the input might be ambiguous. MA&D
essentially turns the MD problem into a lattice disambiguation problem.

Recently there have a been a number of neural networks that were de-
signed specifically for lattice disambiguation in voice-to-text tasks which
might also be applicable to MD. Ladhak, Gandhe, Dreyer, Mathias, Ras-
trow, and Hoffmeister [31], Sperber, Neubig, Niehues, and Waibel [62] de-
veloped a lattice disambiguation architecture which encodes lattice struc-
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tures by modifying LSTM cells to keep track of the history of multiple
node children. More recently, Sperber, Neubig, Pham, and Waibel [63] ap-
plied self-attention layers coupled with reachability masks and positional
embedding to efficiently handle lattice inputs. All of these lattice-aware
networks were applied on speech recognition tasks, where the segmenta-
tion of the input stream refers only to overt elements, with no covert ele-
ments as in morphology. In chapter 5 we describe a lattice disambigua-
tion model that copes with fusional (i.e. non-concatenative) morphologi-
cal phenomena. Our system is easy to apply and simple to understand —
instead of non-trivial modification to the internals of the neural model, we
parse and encode the lattice as a sequence to be fed into an existing neural
component.

3.3 Morphologically-Aware Datasets

Acknowledging the difference between English and MRLs, in recent years
the NLP community has shown increasing interest in parsing typologi-
cally different languages, as evident, for instance, by the SPMRL initia-
tive (spmrl.org) and its successor the Universal Dependencies (UD) initiative
(universaldependencies.org). The UD datasets contain manually annotated
treebanks in 82 languages, where the annotation scheme explicitly decom-
pose the raw words into sub-word units, each of which gets assigned its
own morphological signature. Both SPMRL 1 formats include annotated
information of word segmentation and morphological properties as well
as syntax.

Following the development of the UD framework, the CoNLL-UL project
[41] addresses the need for a universal representation of morphological
analysis which on the one hand can capture a range of different alterna-
tive morphological analyses of surface words, and on the other hand is
compatible with the segmentation and morphological annotation guide-
lines prescribed for UD treebanks. The project’s website2 provides static
lattice files generated for the CoNLL18 shared task [77].

To further facilitate MA for the UD treebanks, Sagot [51] produced a col-
lection of multilingual lexicons in the CoNLL-UL format covering many of
the UD languages. These lexicons are available on the project’s website3

1CoNLL-X [10] and CoNLL-U (https://universaldependencies.org/format.html
2https://github.com/conllul/conllul.github.io
3http://atoll.inria.fr/ sagot/UDLexicons.0.2.zip
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and can be used by Finite-State-Transducer MA to generate morphological
lattices as was also done for the CONLL 2018 UD SHARED TASK .

The Universal Morphology (UniMorph) project4 is another collaborative
effort to improve how NLP handles complex morphology in the world’s
languages. It contains morphological data annotated in a canonical schema
available in many languages which have been shown to improve low re-
source machine translation [58]. Unfortunately the UniMorph schema cur-
rently is not compatible with the UD schema.

3.4 Sequence Labeling Architectures

In recent years, deep learning approaches have obtained very high perfor-
mance on many NLP tasks, without requiring the traditional task-specific
feature engineering.

Recurrent Neural Networks RNN in general, and Long Short-Term Mem-
ory (LSTM) [24] models in particular, have been proven very successful
for various NLP tasks, especially those involving sequential data labeling.
These models have the capacity of capturing syntactic and semantic fea-
tures through word-level embedding [14], and subword features through
character level embedding [52]. In addition they can capture linguistic
relationships between the elements in the input sequence and be used to
output a sequence of labels, one label per input element.

As previously mentioned, for MRLs, the sequence length of the morpho-
logical segments can differ from the length of the raw input words. The
input length depends on the number of words and the output lengths
depends on the number of morphemes which might vary depending on
context and this fact should be reflected in the modeling choices. When
the output sequence length differs from the input sequence length, RNN-
based classifiers are not a natural modeling choice. Another important
point to notice is that for MA&D, the input to the MD is not a sequence
but rather a lattice which is by definition a partial order and so does not
naturally lend itself to be encoded by an LSTM-based classifier.

4https://unimorph.github.io
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3.5 Word Embedding and Language Modeling

Pre-trained word representations have become an integral part of modern
neural NLP models. Word embedding is a popular vector representation
capturing syntactic and semantic information learned from large collec-
tions of unlabeled text.

Word embedding techniques such as Word2Vec [37], and GloVe Penning-
ton et al. [48] generate word representations used in standard components
of NLP models. These approaches for learning word vectors suffer from
OOV cases, that is they cannot assign vectors to words that were unseen in
the training data. Hebrew, with its rich morphology and complex orthog-
raphy, has a higher probability to encounter OOV words because these
word embedding techniques do not try to take into account sub-token in-
formation. Unsupervised sub-word based word embedding techniques
[9] attempt to remedy this situation but with mixed results; while these
models learn orthographic similarities between seen and unseen words,
they fail to learn the functions of sub-word units [4, 71]. In this work we
propose 2 methods that can produce morphologically aware dense vec-
tors – the first combines the output of a MA to generate morpheme level
embedding (chapter 5), while the second approach extracts morphological
segment representations from a word-level language model (chapter 6).

A drawback of the word embedding techniques described above is they
generate static vectors. Peters, Neumann, Iyyer, Gardner, Clark, Lee, and
Zettlemoyer [49] introduced ELMo – a method for generating dynamic
contextualized word representation. They introduced a novel approach,
learning the internal states of a deep bidirectional LSTM, pre-trained on
a large text corpus thus extracting context-sensitive feature representa-
tion of words. Following ELMo, Devlin, Chang, Lee, and Toutanova [17]
inroduced BERT. They applied a masked language model objective in a
bidirectional transformer based architecture and demonstrated significant
improvement on a wide range of NLP tasks that require real word knowl-
edge. Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, and Stoy-
anov [34] carefully searched and evaluated the impact for various hyper-
parameter values used in training BERT models. In chapter 6 we deploy
their published set of hyper-parameters for optimizing our BERT model.

Pre-trained language models encode real world information which needs
to be extracted before used by real world applications. Howard and Ruder
[25] propose an effective and efficient transfer learning method (ULMFiT)
that can be applied to any NLP task. They also present several fine-tuning
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techniques providing robust learning in many tasks. In chapter 6 we fol-
low some of the steps that are relevant to our use case namely, we pre-train
a large language model which we then fine-tune to fit a morphological dis-
ambiguation task (referred to as ”Target task classifier fine-tuning” in [25])
with gradual unfreezing.

Recently, Minh Van Nguyen and Nguyen [38] developed a multilingual
Transformer-based NLP toolkit (Trankit) that combined a pre-trained multi-
lingual model (XML-Roberta) with task specific Adaptors in a plug-and-
play framework thus sharing the same language model while learning to
perform tokenization, joint morpho-syntactic parsing and named entity
recognition. In our work we focus on a language model specifically for
Hebrew and use fine-tuning to develop task specific models that performs
better on morphological-level tasks in Hebrew as our chapter 6 results in-
dicate.



4 Universal Morpho-syntactic Pars-
ing

The Universal Dependencies (UD) initiative1 is an international, cross-
linguistic and cross-cultural initiative aimed at providing annotated data
sets for over 80 languages under a unified, harmonized, morpho-syntactic
annotation scheme.

The UD scheme [46] adheres to two main principles: (i) there is a single
set of POS tags, morphological properties, and dependency labels for all
treebanks, and their annotation obeys a single set of annotation principles,
and (ii) the text is represented in a two-level representation, clearly map-
ping the written space-delimited source tokens to the (morpho)syntactic
words which participate in the dependency tree.

The CONLL 2018 UD SHARED TASK is a multilingual parsing evalu-
ation campaign wherein, contrary to previous shared tasks corpora are
provided with raw text, and the end goal is to provide a complete morpho-
syntactic representation, including automatically resolving all of the token-
word discrepancies. Contrary to the previous SPMRL shared tasks [53, 54]
the output of all systems obeys a single annotation scheme, allowing for
reliable cross-system and cross-language evaluation.

We investigate the contribution of an external lexicon and a standalone
morphological component, and show that inclusion of such lexica can lead
to above 10% LAS improvement in dependency parsing.

Our investigation demonstrates the importance of sharing not only syntac-
tic treebanks but also lexical resources among the UD community, and we
propose the UD-compatible CoNLL-UL standard [42] for sharing broad-
coverage lexical resources in the next UD shared tasks, and in general.

1universaldependencies.org
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4.1 CoNLL 2018 UD Shared Task Submission

The parsing system presented for this task is based on yap — yet another
parser, a transition-based parsing system that relies on the formal frame-
work of Zhang and Clark [78], an efficient computational framework de-
signed for structure prediction and based on the generalized perceptron
for learning and beam search for decoding. This section briefly describes
the formal settings and specific models available via yap.2

4.1.1 Formal Settings

Formally, a transition system is a quadruple (C, T, cs, Ct) where C is a set
of configurations, T a set of transitions between the elements of C, cs an
initialization function, and Ct ⊂ C a set of terminal configurations. A
transition sequence y = tn(tn−1(...t1(cs(x)))) for an input x starts with an
initial configuration cs(x) and results in a terminal configuration cn ∈ Ct.

In order to determine which transition t ∈ T to apply given a configuration
c ∈ C, we define a model that learns to predict the transition that would
be chosen by an oracle function O : C → T, which has access to the gold
output.

We employ an objective function

F(x) = argmaxy∈GEN(x)Score(y)

which scores output candidates (transition sequence in GEN(x)) such that
the most plausible sequence of transitions is the one that most closely re-
sembles the one generated by an oracle.

To compute Score(y), we map y to a global feature vector Φ(y) = {φi(y)}
where each feature φi(y) is a count of occurrences of a pattern defined
by a feature function. Given this vector, Score(y) is calculated as the dot
product of Φ(y) and a weights vector ~ω:

Score(y) = Φ(y) · ~ω = ∑
cj∈y

∑
i

ωiφi(cj)

Following Zhang and Clark [78], we learn the weights vector ~ω via the gen-
eralized perceptron, using the early-update averaged variant of Collins and

2https://github.com/OnlpLab/yap

https://github.com/OnlpLab/yap


CHAPTER 4. UNIVERSAL MORPHO-SYNTACTIC PARSING 28

Roark [13]. For decoding, the framework uses the beam search algorithm,
which helps mitigate otherwise irrecoverable errors in the transition se-
quence.

4.1.2 Morphological Analysis

The input to the morphological disambiguation (MD) component, and to
the yap parsing system in general, is a lattice L representing all of the mor-
phological analysis alternatives of k surface tokens of the input stream
x = x1, ..., xk, such that each Li = MA(xi) is generated by a morpholog-
ical analysis (MA) component, the lattice concatenate the lattices for the
whole input sentence x. Each lattice-arc in L has a morpho-syntactic repre-
sentation (MSR) defined as m = (b, e, f , t, g), with b and e marking the start
and end nodes of m in L, f a form, t a universal part-of-speech tag, and g
a set of attribute=value universal features. These lattice-arc correspond to
potential nodes in the intended dependency tree.

4.1.3 Morphological Disambiguation

The morphological disambiguation (MD) component of our parser is based
on More and Tsarfaty [40], modified to accommodate UD POS tags and
morphological features. We provide here a brief exposition of the transi-
tion system, as shall be needed for our later analysis, and refer the reader
to the original paper for an in-depth discussion.

A configuration for MD CMD = (L, n, i, M) consists of a lattice L, an index
n representing a node in L, an index i s.t. 0 ≤ i < k representing a specific
token’s lattice, and a set of disambiguated morphemes M.

The initial configuration function is defined as cs(x) = (L, bottom(L), 0, ∅)
where L = MA(x1) ◦ ... ◦MA(xk), and n = bottom(L), the bottom of the
lattice. A configuration is terminal when n = top(L) and i = k.

To traverse the lattice and disambiguate the input, we define an open set
of transitions using the MDs transition template:

MDs : (L, p, i, M)→ (L, q, i, M ∪ {m})

Where p = b, q = e, and s relates the transition to the disambiguated
morpheme m using a parameterized delexicalization s = DLEXoc(m):

f (x) =

{
( , , , t, g) t ∈ OC
( , , f , t, g) otherwise

(4.1)
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In words, DLEX projects a morpheme either with or without its form de-
pending on whether or not the POS tag is an open-class with respect to the
form. For UD, we define:

OC = {ADJ,AUX,ADV,PUNCT,NUM,INTJ,NOUN,PROPN,VERB}

We use the parametric model of More and Tsarfaty [40] to score the transi-
tions at each step. Since lattices may have paths of different length and we
use beam search for decoding, the problem of variable-length transition
sequences arises. We follow More and Tsarfaty [40], using ENDTOKEN
transition to mitigate the biases induced by variable-length sequences.

4.1.4 Syntactic Disambiguation

A syntactic configuration is a triplet CDEP = (σ, β, A) where σ is a stack,
β is a buffer, and A a set of labeled arcs. For dependency parsing, we
use a specific variant of Arc Eager that we call Arc Zeager, that was first
presented by [79]. The differences between plain Arc-Eager and the Arc-
Zeager variant are detailed in the appendix.

The features defined for the parametric model also follows the definition
of non-local features by Zhang and Nivre [79], with one difference: we cre-
ated one version of each feature with a morphological signature (all fea-
ture values of the relevant node) and one without. this allows to capture
phenomena like agreement.

4.1.5 Joint Morpho-Syntactic Processing

Tsarfaty [67] hypothesised that joint morpho-syntactic parsing, where mor-
phological information may assist syntactic disambiguation and vice versa,
may be better suited to address the tight interaction between morphology
and syntax. Although not applied in this task, we point out that, given the
standalone morphological and syntactic disambiguation described above,
it is possible to embed the two models into a single joint morpho-syntactic
transition system with a “router” that decides which of the transition sys-
tems to apply in a given configuration, and train the morpho-syntactic
model to maximize a single objective function.

We implement such joint parser in yap but we have not used it in the
task, and we thus leave its description out of this exposition. For further
discussion and experiments with the syntactic and joint morpho-syntactic
variants in yap we refer the reader to More et al. [43].
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Model Lexicon Sentence Morphological Parser Results on dev
Segmentation Disambiguation LAS / MLAS / BLEX

UDPipe full – UDPipe UDPipe UDPipe 61.95 / 49.28 / 51.45
yap DEP – UDPipe UDPipe yap 59.19 / 49.19 / 33.75
yap full Basline UDPipe yap yap 52.25 / 37.85 / 29.59

HebLex 60.94 / 39.49 / 33.85
HebLex-Infused 71.39 / 61.42 / 41.86

yap GOLD – Gold Gold yap 79.33 / 72.56 / 47.62

Table 4.1: The contribution of lexical resources: analysis of the case for
Modern Hebrew

4.2 A Detailed Analysis for Modern Hebrew

It is well known, as well as observed in this particular task, that morpho-
logically rich languages are most challenging to parse in the raw to depen-
dencies parsing scenarios. This is because the initial automatic segmenta-
tion and morphological disambiguation may contain irrecoverable errors
which will undermine parsing performance.

In order to investigate the errors of our parser we took a particular MRL
that is known to be hard to parse (Modern Hebrew, ranked 58 in the LAS
ranking, with basline 58.73 accuracy) and contrasted the Baseline UDPipe
results with the results of our parser, with and without the use of external
lexical and morphological resources.

Table 4.1 lists the results of the different parsing models on our dev set. In
all of the parsing scenarios, we used UDPipe’s built in sentence segmenta-
tion, to make sure we parse the exact same sentences. We then contrasted
UDPipe’s full pipeline with the yap output for different morphological set-
tings. We used the Hebrew UD train set for training and the Hebrew UD
dev set for analyzing the empirical results.

Initially, we parsed the dev set with the same system we used for the
shared task, namely, yap dependency parser which parses the morpholog-
ically diambiguated output by UDPipe (yap DEP). Here we see that yap
DEP results (59.19) are lower than the full UDPipe pipeline (61.95).

We then moved on to experiment with yap’s complete pipeline, includ-
ing a data-driven morphological analyzer (MA) to produce input lattices,
transition-based morphological disambiguation and transition-based pars-
ing. The results now dropped relative to the UDPipe baseline and relative
to our own yap DEP system, from 59.19 to 52.25 LAS. Now, interestingly,
when we replace the baseline data-driven MA learned from the treebank
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alone with an MA backed with an external broad-coverage lexicon called
HebLex (adapted from Adler and Elhadad [1]), the LAS results arrive at
60.94 LAS, outperforming the results obtained by yap DEP (UDPipe mor-
phology with yap dependencies) and close much of the gap with the UD-
Pipe full model. This suggests that much of the parser error stems from
missing lexical knowledge concerning the morphologically rich and am-
biguous word forms, rather than parser errors.

Finally, we simulated an ideal morphological lattices, by artificially infus-
ing the path that indicates the correct disambiguation into the HebLex lat-
tices in case it has been missing. Note that we still provide an ambiguous
input signal, with many possible morphological analyses, only now we
guarantee that the correct analysis exists in the lattice. For this setting, we
see a significant improvement in LAS, obtaining 71.39 (much beyond the
baseline) without changing any of the parsing algorithms involved. So,
for morphologically rich and ambiguous languages it appears that lexi-
cal coverage is a major factor affecting task performance, especially in the
resource scarce case.

Note that the upper-bound of our parser, when given a completely dis-
ambiguated morphological input stream, provides LAS of 79.33, which is
a few points above the best system (Stanford) in the raw-to-dependencies
scenario.

4.3 Summary

In this chapter we present our CONLL 2018 UD SHARED TASK sub-
mission. Our submitted system assumed UDpipe up to and including
morphological disambiguation, and employed a transition based parsing
model to successfully parse 81 languages in the UDv2 set, with the average
LAS of 58.35, ranked 22 among the shared task participants.

A detailed post-task investigation of the performance that we conducted
on Modern Hebrew, has shown that for the MRL case much of the parser
errors may be attributed to incomplete morphological analyses or a com-
plete lack thereof for the source tokens in the input stream.

Next we turn to a deep learning solution for morphological lattice dis-
mabiguation, replacing the hand-crafted feature model with neural net-
work based feature extraction mechanisms while still injecting symbolic
linguistic knowledge provided by MA component.



5 Pointer Network Based MD

In the previous chapter we put forward a pre-neural parsing framework
composed of two transition systems that can be used stand alone, sepa-
rately performing MD and dependency parsing, as well as combine into
a morpho-syntactic parser jointly choosing most likely sequence of mor-
phemes and dependency relations. Remarkably, the input to the parser
is an ambiguous morphological lattice, which both standalone as well as
joint components disambiguate by choosing the most likely lattice path.
By doing so the problem is framed as a Morphological Analysis and Dis-
ambiguation (MA&D) task. Several methods for MD in the pre-neural era
[1, 6, 22, 32] applied a similar strategy, using weighted finite-state ma-
chines to first unravel the possible morphological decompositions, and
classic machine learning models to select the most likely decomposition.

We now propose a similar architecture performing MA&D, that enjoys the
power of end-to-end neural modeling while maintaining access to mor-
phemes. Every raw token in the input sequence first goes through Mor-
phological Analysis (MA) that exposes all of its possible morphological de-
compositions as a lattice (see Figure 2.1). This morphological lattice is then
passed to the MD component, based on a Pointer Network, which selects a
sequence of most likely arcs in the context of the sentence being processed.
Since every lattice arc contains rich information that is made available by
the MA — namely, segmentation boundaries, lemma, Part-of-Speech tag
and a set of morphological features — this MA&D framework can jointly
predict rich morphological layers.

Based on this architecture, we perform segmentation and tagging and apply
it to two MRLs, Hebrew and Turkish. In realistic circumstances, the lexical
coverage of the lattice may be partial, and we report MD results in both
ideal and realistic scenarios. Our results on the Hebrew and Turkish UD
treebanks show state-of-the-art performance for complete morphological
lattices, and on the Hebrew SPMRL treebank we outperform all previous
results in realistic scenarios. Our MA&D solution is generic and can be

32
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applied to any language, e.g., assuming MA components as provided in
More et al. [41]. In addition, our proposed architecture is suitable for any
other task that encodes information in a lattice towards further disam-
biguation.

5.1 Proposed Method

Given an input lattice, we frame MD as a lattice disambiguation task. We
modify the lattice representation and feed it to a pointer network (PtrNet)
architecture. The key idea, in a nutshell, is to linearize the lattice into a se-
quence of partially-ordered analyses, and feed this partial order sequence
to a pointer network. For each token, the network will learn to point to (se-
lect) the most likely analysis, preserving the linear constraints captured in
the lattice structure. In other words, the input to the MD is a sequence of
partially ordered morphological analyses and the goal is to pick one anal-
ysis per word. The PtrNet architecture by design captures this goal, and
to the best of our knowledge we are the first to apply it in on the task of
Morphological Disambiguation. Hence we propose PtrNetMD as a neural
disambiguation model in a MA&D framework.

Lattice Serialization The MA lattice, as previously defined, is a graph
representation of the ambiguous morphological analyses for each word in
the input sentence. However, PtrNet takes a sequence as the input there-
fore our first step involves transforming the lattice into a sequence which
can then get fed to the PtrNet. Given a lattice we serialize it by going over
each token and listing all of its analyses. The linearization function maps
a sequence of n tokens into a sequence of m analyses while preserving the
partial order of the tokens, and where m is the sum of all token analyses.
That is, for input tokens t1, ...tn, let ai

j denote the i’th analysis of the j’th
token. Then the following holds, such that ∑n

i=1 ki = m.

linearize(t1, t2, t3, ..., tn) = a1
1, ..., ak1

1 , a1
2, ..., ak2

2 , ..., a1
n, ..., akn

n (5.1)

An analysis ai
j is expressed as a list of morphemes where each morpheme

is represented as a tuple of morphological properties. Both the SPMRL and
UD scheme specify four properties Form, Lemma, POS Tag, Morphological
Features. For example, (3) is an analysis composed of three morphemes:
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ai
j := [ ( f orm1, lemma1, tag1, f eatures1),

( f orm2, lemma2, tag2, f eatures2),
( f orm3, lemma3, tag3, f eatures3)]

Morphological Analysis Embedding Each analysis in the linearized in-
put sequence is embedded into a vector representation. To that end we
design a Morphological Embedding layer which can be thought of as an
interface between the symbolic MA and the neural MD. Figure 5.1 describes
the encoding of a single morphological analysis into an embedded vector:
Each property is embedded and averaged across all the morphemes in a
single analysis, and all of the averaged embedded properties are concate-
nated to form a single embedded vector of a fixed size.

Sequence to Sequence Seq2Seq networks are designed to produce out-
puts which may differ from the inputs in length and vocabulary [66].
Seq2Seq is composed of an encoder and a decoder. The encoder consumes
and encodes the entire (embedded) input sequence. Then, the decoder
is fed the entire encoded input representation and step by step produces
discrete outputs which are fed back as input to the next decoding step [11].

Pointer Networks PtrNet are designed as a special case of Seq2Seq net-
works [72] with an additional copy attention layer. Attention was pre-
sented by Bahdanau, Cho, and Bengio [5] that reads as a natural exten-
sion of their previous work on the Encoder-Decoder model. It enables
the network to focus on specific elements from the input sequence at each
decoding step thus helping it identify long sequence relationships. Copy
attention is a special attention case where the weights determine which in-
put element the decoder’s state is most aligned with, allowing the network
to output an indices pointing back at the input sequence.

Morphological Analysis Disambiguation The sequence of embedded
analyses is encoded and then in a step by step decoding process the analy-
ses weights are computed conditioned on the entire (ambiguous) encoded
context. The entire MA&D process is depicted in Figure 5.2 - given the
linearized lattice as input, individual analyses in the lattice can be pointed,
selected and copied into the output sequence, while respecting the lattice
ordering constraints. The full output sequence contains a list of indices,
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one per token, pointing to the selected analyses from the input lattice (Fig.
5.1).

5.2 Experimental Setup

The Data The PtrNetMD architecture we propose does not depend on
any specific definition of morphological signature. To showcase this, we
experiment with data from two different languages and two different an-
notation schemes. We use the Universal Dependencies v2.2 dataset [46]
from the CONLL 2018 UD SHARED TASK .1 In addition we download the
corresponding lattice files of each treebank from the CoNLL-UL project.2

Since our approach is sensitive to the lexical coverage of the MA lattices,
we focus on the Hebrew (he htb) and Turkish (tr imst) treebanks. Unlike
other languages in the shared task, Hebrew and Turkish provided lattice
files generated by broad-coverage analyzers (HEBLEX and TRMorph2).3

For comparability with previous work on Modern Hebrew, we also train
and test our model on the Hebrew SPMRL treebank standard split.4

Lattice Embedding We use pre-trained FastText [9] models to embed
the lexical morphological properties - forms and lemmas. FastText mod-
els generate vectors for any word using character ngrams, thus handling
Out-of-Vocabulary forms and lemmas. For non-lexical properties we in-
stantiate and train from scratch two embedding modules - one embedding
module for POS tags and one for all other grammatical features. Together,
these 4 embedded properties are combined to produce a single morpho-
logical analysis vector.

Lattice Encoding The above-mentioned morphological embedding layer
turns the input analysis sequence into an embedded sequence. The par-
tially ordered sequence of embedded analyses is fed to a BiLSTM encoder

1The treebanks from the shared task are available at
lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2837

2https://conllul.github.io/
3The Arabic (ar padt) Calima-Star lattice files exhibited a number of incompatibilities

with the corresponding gold UD annotations and therefore cannot be considered
4The treebank is publicly available as open source at

https://github.com/OnlpLab/HebrewResources/
tree/master/HebrewTreebank
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Figure 5.1: Morphological Embedding Layer Architecture. An analysis
composed of 3 morphemes is transformed into a single embedded vector.

layer thus encoding the entire embedded lattice. Next a step-by-step de-
coding process begins in which a LSTM layer decodes the current analysis
and an Attention mechanism scores the alignment between each of the rel-
evant encoded word-analyses and the analysis currently being decoded.
Our copy attention module is the global dot-product of Luong, Pham, and
Manning [36] using masking mechanism to make sure each decoding step
is focused only on the corresponding input word analyses (in figure 5.2 the
masks are represented by the grouped arrows pointing from the decoder
back to the encoded sequence). To choose the most likely analysis, the
decoder chooses the highest score provided by the Attention component.

5.2.1 Baseline Models

Our experiments are set up to compare our PtrNetMD with various base-
line models on different MD tasks. As previously discussed, MD has been
considered in different ways defined by the type of output generated by
the MD model. In this section we consider the four different MD tasks:

(1) Morpheme Segmentation Each word is segmented into surface forms,
one form per morpheme.
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Figure 5.2: Our Proposed MA&D Architecture. A sequence of tokens is
transformed into a sequence of analyses while preserving the token order.
The sequence of analyses is embedded and fed into an encoder. Then at
each decoding step the entire encoded representation along with the cur-
rent decoded state are used as input to an attention layer, and the attention
weights are used to choose an element from the input sequence.

(2) Word Multi-tagging The output sequence contains a single multi-tag
per word.

(3) Morpheme Tagging The output sequence contains a single POS tag per
morpheme.

(4) Morpheme Segmentation & Tagging Each word is segmented into sur-
face forms, one form per morpheme, and each segment is assigned a
single POS tag.

To compare our PtrNetMD architecture to existing modeling solutions we
consider the following baseline end-to-end (E2E) neural MD models.

Segmentation & Tagging Pipeline Straka and Straková [65] approach
the MD problem as a two-phased pipeline, first performing segmentation
of the input words followed by sequence tagging on the morpheme se-
quence. This approach mimics the way English POS tagging is performed,
with the exception that the tagging is done on the morphological forms as
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opposed to directly on input words. On the one hand it is straight forward
to design such disambiguation pipeline and apply it to many languages.
On the other hand, POS tagging accuracy suffers from error propagation
from the earlier segmentation. To gauge the effect of error propagation
we compare tagging accuracy provided by gold (oracle) segments as op-
posed to predicted segments (using UDPipe), for Turkish, Hebrew, Arabic
and English showing the drop in the accuracy of MRLs in comparison to
English. In order to avoid error propagation we implement 2 baseline neu-
ral tagging-only models, each aimed at a different granularity level of the
output as described next.

Word sequence multi-tagging The first tagging baseline predicts word-
level multi-tag labels (as opposed to single tag prediction on the morpheme-
level). That is, we assign a single complex label composed of multiple POS
tags to each raw word. We define a multi-tag as a concatenated list of ba-
sic tags, one per morpheme. In training, a word such as bbit, which is
gold-segmented into the basic tag sequence b/IN, h/DET, bit/NOUN, is as-
signed a single multi-tag bbit/IN-DET-NOUN. Notice that the output space
is sparse and most complex tags are seen only a few times (or not at all)
during training. Also note, that once predicted the multi-tags can be de-
composed into the single tags that make up the multi-tag parts thus pro-
viding a way to compare the multi-tag output with morpheme tagging
sequences (such as produced by PtrNetMD as well as our next baseline
described below). We exploit the fact that the input and output sequence
length are identical and use the output of a BiLSTM layer before assign-
ing a multi-tag to each word. We use FastText for embedding the input
word sequence. In addition, in order to inform the model about sub-token
information, we combine each embedded token with a vector encoding
the sequence of characters in the token, as suggested by Ling, Dyer, Black,
Trancoso, Fermandez, Amir, Marujo, and Luı́s [33]. A notable disadvan-
tage of this model compared to the pipeline, and the proposed PtrNetMD
model, is that it does not provide any information concerning segmenta-
tion boundaries.

Morpheme sequence tagging Our multi-tagging model has the draw-
back of operating on a large and non-compositional output-labels space.
So, it cannot assign previously unseen tag compositions to previously un-
seen tokens. To overcome this, we implement a morpheme-level base-
line in which the input consists of raw tokens but the output is a tag se-
quence, of a possibly different length, predicted (decoded) one at a time by
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MD Task Example E2E Model
Morph Seg b h bit h lbn Language Model (form/character)
Word Multi-Tag bbit/ADP DET NOUN Sequence Labeling - LSTM

hlbn/DET ADJ
Morph Tag bbit/[ADP,DET,NOUN] Sequence Labeling - Seq2Seq

hlbn/[DET,ADJ]
Morph b/ADP/ h/DET/ Language Model + Sequence Labeling
Seg&Tag bit/NOUN/M,S

h/DET/ lbn/ADJ/M,S

Table 5.1: MD tasks implemented E2E. MD task definition varies from
segmentation-only, to tagging-only, to joint segmentation and tagging.
Each task is realized with E2E model architecture that fit its task definition.
Segmentation is considered a language modeling task realized on the form
and character level. Word tagging is most naturally realized with LSTM
where each input word is assigned a single output label. Morpheme tag-
ging may produce an output sequence which differs in length from the
raw word input sequence and therefore is realized with a Seq2Seq net-
work. Morph segmentation & tagging is easily realized as a 2-step pipeline –
segmentation followed by labeling each segment with a POS tag.

sequence-to-sequence (Seq2Seq) model. Note that the output tag sequence
can vary in length, potentially predicting the number of morphological
segments in each token. Hence in this case we actually use a Seq2Seq
model which is able to predict output labels the differ in length from the
length of the input word sequence. We again use the combined word and
character embedding layer as described in the previous paragraph. This
model too, does not provide explicit segmentation boundaries. Table 5.1
show examples as well as specifies the E2E model type used for each task.

In addition to E2E baselines applied on the 4 MD tasks, we also com-
pare our PtrNetMD with state-of-the-art results on the Turkish and He-
brew portions of the UD treebanks. Finally we compare our MA&D solu-
tion head to head with the state-of-the-art Hebrew MA&D applied on the
SPMRL treebank.
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5.2.2 Evaluation

Aligned Segment The CONLL 2018 UD SHARED TASK evaluation cam-
paign5 reports scores for segmentation and POS tagging6 for all participat-
ing languages. The shared task provides an evaluation script producing
various levels of F1 scores, based on aligned token-level segments. Since
the focus of the shared task was to reflect word segmentation and relations
between segmented words, the script discards unmatched word segments,
so in effect the POS tagging scores are in fact joint segmentation-and-tagging.
With this script we evaluate the performance of all baseline models in
Turkish, Hebrew, Arabic and English and use these results to compare
aligned segment tagging scores between oracle (gold) segmentation and
realistic (predicted) segmentation in a pipeline model. In addition, since
our PtrNetMD jointly predicts both segments and tags, we can evaluate
our proposed PtrNetMD against the shared task leaders for Hebrew and
Turkish.

Aligned Multi-Set The shared task evaluation script computes aligned
segment scores by finding the longest common subsequence (LCS) of the gold
and predicted word-segments, for every token in the raw input. In addi-
tion to the shared task scores, we compute F1 scores similar to the afore-
mentioned with a slight but important difference. Word counts are based
on multi-set intersections of the gold and predicted labels. In general, a
multi-set (mset) is a modification of the set concept allowing multiple in-
stances of its set items. In our case we use a multi-set to count intersections
of morphological signatures in each word. To illustrate the difference be-
tween aligned segment and aligned mset, let us take for example the gold
segmented tag sequence: b/IN, h/DET, bit/NOUN and the predicted seg-
mented tag sequence b/IN, bit/NOUN. According to aligned segment, the
first segment (b/IN) is aligned and counted as a true positive, the second
segment however is considered as a false positive (bit/NOUN) and false
negative (h/DET) while the third gold segment is also counted as a false
negative (bit/NOUN). The aligned mset on the other hand is based on set
difference which acknowledges the possible undercover of covert mor-
phemes by the disambiguator. In this case both b/IN and bit/NOUN exist
in the gold and predicted sets and counted as true positives, while h/DET
is mismatched and counted as a false negative. In both cases the total

5https://universaldependencies.org/conll18/results.html
6respectively referred to as ’Segmented Words’ and ’UPOS’ in the CoNLL18 evalua-

tion script
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counts across the entire datasets are then incremented accordingly and fi-
nally used for computing Precision, Recall and F1.

Formally, aligned mset F1 metric is calculated as follows: For each token we
first create a multi-set based on the morphological signatures (morpholog-
ical signature is defined by the properties of interest: Segments only, POS
tag only, joint segment and tag, etc.) for both the predicted (Pred) and gold
(Gold) morphemes:

(4) Predtoken = ](p1, p2, ..., pk)
Goldtoken = ](g1, g2, ..., gl)
]: multi-set addition operator

We then calculate the token level true and false positives (TP, FP) as well
as false negatives (FN):

(5) TPtoken = Predtoken ∩ Goldtoken
FPtoken = Predtoken − Goldtoken
FNtoken = Goldtoken − Predtoken

Finally we add up the token counts over the entire dataset to produce the
F1 metric:

(6) TPtotal = ∑(TPtoken)
FPtotal = ∑(FPtoken)
FNtotal = ∑(FNtoken)
Precision = TPtotal/(TPtotal + FPtotal)
Recall = TPtotal/(TPtotal + FNtotal)

F1 = 2×Precision×Recall)
Precision+Recall

Having morphemes available even if out of order or partially, has merit
to downstream tasks that consume and further process them. Aligned
mset accounts for this quality. Furthermore, both our multi-tagging and
sequence-to-sequence tagging baseline models produce a tag sequence with-
out segmentation boundaries, and aligned mset can be used to compare
them against our PtrNetMD model. Finally since this computation was
also used by More et al. [43] we are able to compare our results to their
non-neural MA&D framework applied to the Hebrew SPRML treebank,
which is so far considered the current state-of-the-art for Hebrew segmen-
tation and tagging.
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Ideal vs Realistic Analysis Scenarios Following More et al. [43] we dis-
tinguish between two evaluation scenarios. An Infused scenario is an ide-
alised scenario in which the input lattice to our model has complete lex-
ical coverage, and is guaranteed to include the correct analysis as one of
its many internal paths. An Uninfused scenario is a realistic case in which
the lexical coverage might be partial, and might lack certain gold analyses.
7

5.3 Results

CoNLL18 UD Shared Task Table 5.2 shows aligned segment F1 scores for
joint segmentation-and-tagging on four languages that exhibit different
degrees of morphological richness. The top two models are variants of the
UDPipe pipeline system — UDPipe Oracle scores were obtained by run-
ning the UDPipe tagger on gold segments, and UDPipe Predicted scores
were obtained by segmenting the raw text first and then tagging the pre-
dicted segments.8

The top two rows in Table 5.2 allow us to gauge the effect of error prop-
agation for different languages, as reflected in the performance difference
between tagging gold (Oracle) segments and tagging predicted segments.
These results are remarkable — in an ideal (gold-oracle) scenario there is no
significant difference in the tagging accuracy between English and MRLs,
but in the realistic scenarios where segmentation precedes tagging, the dif-
ference is large.

The bottom three models in Table 5.2 report the leading scores from the
CONLL 2018 UD SHARED TASK as well as our PtrNetMD results. The
PtrNetMD achieves state-of-the-art results for joint segmentation-tagging,
on both Hebrew and Turkish, in infused settings. Moreover, the PtrNetMD
ties state-of-the-art on the Hebrew UD treebank even with uninfused (re-
alistic) lattices with partial lexical coverage.

In Table 5.3 we see aligned segment F1 scores for segmentation-only on the
same four languages. The results clearly indicate that segmenting Hebrew
is harder than segmenting Arabic, which is harder to segment than Turk-

7Like More et al. [43] we refer to the idealized scenario as infused since we make sure
the gold annotation is present in each token lattice or else we manually infuse it. The
realistic scenario is thus referred to as uninfused.

8The UDPipe Predicted model served as the baseline model for the CoNLL18 UD
Shared Task participants.
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English Turkish Arabic Hebrew
UDPipe Oracle 94.62 93.24 95.30 95.13
UDPipe Predicted 93.62 91.64 89.34 80.87
Shared Task Leader 95.94 94.78 93.63 91.36
PtrNetMD Infused 96.6 94.41
PtrNetMD Uninfused 89.54 91.3

Table 5.2: Joint Segmentation-and-Tagging F1, Aligned Segment, CONLL
2018 UD SHARED TASK Test Set. Top two rows are pipeline baseline.
Bottom three rows are PtrNetMD compared to shared task leaders.

English Turkish Arabic Hebrew
UDPipe Oracle 100.00 100.00 100.00 100.00
UDPipe Predicted 99.03 97.92 93.71 85.16
Shared Task Leader 99.26 97.92 96.81 93.98
PtrNetMD Infused 99.41 96.36
PtrNetMD Uninfused 97.78 94.74

Table 5.3: Segmentation-only F1, Aligned Segment, CONLL 2018 UD
SHARED TASK Test Set. Top two rows are pipeline baseline. Bottom three
rows are PtrNetMD compared to shared task leaders.

ish, and English requires essentially no segmentation. As in Table 5.2,
we see similar behavior comparing PtrNetMD to shared task leaders on
the segmentation task — PtrNetMD with infused lattices outperforms the
shared-task leader on Turkish, and it outperforms the shared-task leader
in both infused and uninfused scenarios on Hebrew.

There are two possible explanations for prediction errors in uninfused sce-
narios. Either the correct analysis (gold annotation) is part of the lattice
and the model makes a wrong selection, or, the correct analysis is not in the
lattice. Acknowledging the notable gap in Table 5.2 between PtrNetMD
infused and uninfused scores on Turkish, we compared the number of
prediction errors with the number of missing analyses in the uninfused
lattices. Out of 1028 wrong predictions, in 652 the correct analysis was
missing from the lattice, so the MD had in fact no chance to make the right
choice. In other words, 60% of MD errors can be accounted by lacking cov-
erage of the MA component. Interestingly there is a 60% error reduction
when moving to infused lattices, suggesting that the missing analyses ac-
count for the difference between infused and uninfused scores. The same
holds for Hebrew as well: out of 850 wrong predictions, in 330 cases the
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Turkish Arabic Hebrew
Word Multi-Tag 92.57 94.2 93.82
Morpheme Tag 92.77 95.05 93.75
PtrNetMD infused 96.76 96.40
PtrNetMD uninfused 90.01 94.02

Table 5.4: Tagging F1, Aligned MSet, CONLL 2018 UD SHARED
TASK Test Set

correct analysis was missing in the lattice which is also very close to the
difference between the infused and uninfused scores. In both Turkish and
Hebrew, PtrNetMD is very likely to choose the correct analysis when one
is available in the input lattice.

Another insight into the coverage difference between the Turkish and He-
brew lattices is revealed by the fact that the average number analyses per
token on the Turkish is 2.6 while the Hebrew average number analyses per
token is 10. So even with larger levels of ambiguity present in the Hebrew
lattices, PtrNetMD benefits from the broad coverage offered by the MA
supporting our hypothesis that PtrNetMD has the capacity to identify the
correct analysis as long as it is present in the ambiguous lattice.

Table 5.4 contains the aligned mset scores of two baselines — word multi-
tag and morpheme tag — as well as the PtrNetMD infused and uninfused
settings (since both baselines don’t predict segments they are inapplicable
for aligned segment evaluation). In both Turkish and Hebrew, the infused
PtrNetMD performs much better than E2E tagging models. The Hebrew
PtrNetMD even outperforms both baselines in uninfused circumstances.
The high infused scores on both treebanks suggest that the PtrNetMD
model is more than capable to select the correct analysis as long as one
is present in the lattice. The difference between infused and uninfused
scores highlight the importance of generating full coverage lattices by the
MA component.

These results suggests that a good strategy for MA&D would be to pro-
vide high coverage MA component which while generating large lattices
covering many possibilities, they include with high probability the correct
analysis. Based on the above results, our PtrNetMD has the capacity to
discriminate and choose the correct analysis as long as one is present in
the lattice.
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Dev-Inf Dev-Uninf Test-Inf Test-Uninf
MoreMD 94.09 90.83 92.92 87.53
MoreMD-DEP 95.49 92.36 93.92 89.08
PtrNetMD 95.09 93.9 93.51 90.49

Table 5.5: Joint Segmentation-and-Tagging F1, Aligned MSet, Hebrew
SPMRL treebank

SPMRL Hebrew Treebank To put our results in context, Table 5.5 com-
pares PtrNetMD on the Hebrew SPMRL treebank with the state of the art
results of More et al. [43], who used the same aligned mset scores for per-
forming joint segmentation-and-tagging evaluation. The MoreMD lattice
disambiguation approach is similar to our PtrNetMD, albeit non-neural,
using feature-based structured perceptron for disambiguation. As can be
seen in the table, the PtrNetMD outperforms the MoreMD model in all
settings. The MoreMD-DEP model, jointly performs MD and dependency
parsing, taking advantage of additional syntactic information that is pre-
dicted jointly with the segmentation and tags. The syntactic information
contributes to the MD performance as can be seen in the Infused columns.
However, our PtrNetMD handles incomplete morphological information
better than MoreMD-DEP, as can be seen in the Uninfused columns.

5.4 Summary and Discussion

In this chapter we addressed the challenge of morphological disambigua-
tion for MRLs. We design a general framework that consumes lattice files
and output a sequence of disambiguated morphemes, each containing
the segmentation boundary, lemma, part-of-speech tag and morphologi-
cal features. Our solution is language agnostic and we apply it on two
different languages and two different annotation schemes. We show that
access to symbolic morphological information aids the neural disambigua-
tion model, compared to end-to-end strong baselines that only have access
to the raw tokens.

We empirically evaluate our model using two evaluation methods. The
CONLL 2018 UD SHARED TASK evaluation, and a multi-set evaluation,
which is a more informative metric for downstream tasks that operate di-
rectly on morpheme sequences. In ideal scenarios, where full lexical cov-
erage is assumed, our model outperformed the shared task leaders of the
word segmentation task as well as the joint segmentation and tagging task,
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in both Turkish and Hebrew. Furthermore, we match the leading joint seg-
mentation and tagging scores in realistic scenario with only partial lexical
coverage on Hebrew. We further show superior performance of our model
compared to previous models on the Hebrew SPMRL treebank.

Our proposal shows great promise in performing lattice disambiguation
and combined with a broad-coverage MA component can offer state-of-
the-art morphological segmentation and tagging. This MA&D framework,
however, comes at a price — the performance of the system depends on a
language-specific MA component. Building high quality MA usually en-
tails many hours of manual work that covers all the words in the language
and specifying for each one all possible morphological breakdowns. In
many cases, this cost is too high resulting in low quality MA which affect
the overall quality of the MA&D.

In the next chapter we take a different approach saving us from relying
on manually built linguistic resources. Instead we will introduce an al-
ternative linguistic resource in the form of a language model, trained in
an unsupervised settings using enormous amounts of texts. We will then
exploit the linguistic information encoded in this language model by in-
cluding it as a component in a morphological disambiguation framework
that performs disambiguation E2E, without the intermediate lattice repre-
sentation generated by an MA.



6 Pre-trained Language Model Based
MD

Contextualized representations, provided by models such as BERT [16]
and RoBERTa [34], has been shown in recent years to be critical for ob-
taining state-of-the-art performance on a wide range of Natural Language
Processing (NLP) tasks — such as syntactic and semantic parsing, ques-
tion answering, natural language inference, text summarization, natural
language generation, and more. Contextualized word embedding is ob-
tained by pre-training a large language model on massive quantities of
unlabeled data, aiming to maximize simple yet effective language model-
ing objectives such as masked word prediction and next sentence prediction.

While advances for English using such models are unprecedented, re-
ported results in Hebrew using BERT-based models are far from impres-
sive. Specifically, the BERT-based Hebrew section of multilingual-BERT
[16] (henceforth, mBERT), did not provide a similar boost in performance
to what is observed for the English section of mBERT. In fact, for sev-
eral reported tasks, mBERT results are on a par with pre-neural models,
or neural models based on non-contextualized embedding [29, 70]. An
additional Hebrew BERT-based model, HeBERT [12], has been released,
yet there is no reported evidence on performance improvements on key
component of the Hebrew NLP pipeline — which includes, at the very
least: morphological segmentation, full morphological tagging, and full
(token/morpheme-based) named entity recognition.

Current implementations of BERT models employ sub-word tokenization
schemes that facilitate dynamic generation of sub-word embedded vec-
tors which elegantly solves the problem for OOV words. It is important
to keep in mind though, that the sub-word tokenization used by BERT is
not informed by or related to morphological-level information. Crucially,
evaluating BERT-based models on morpheme-level tasks is non trivial.

47
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These models output word-level embedded vectors, however sub-word
morpheme-level vectors which are required for morpheme based tasks are
not readily available.

We first present AlephBERT, a Hebrew pre-trained language model, larger
and more effective than any Hebrew PLM before. Moreover, we intro-
duce a novel language-agnostic Morphological Disambiguation architec-
ture that extracts all of the sub-word morphological segments encoded in
contextualized word embedding vectors. In doing so we are taking a dif-
ferent direction than the MA&D solutions described in the previous two
chapters. Our MD model is operating directly on word vectors, i.e. with-
out going through an intermediate MA step, performing disambiguation
End-to-End (E2E), directly extracting morphological information from the
contextualized word vectors provided by the PLM. Equipped with this
new MD component we unlock a new PLM evaluation pipeline of multi-
ple Hebrew tasks and benchmarks, that cover sentence level, word-level and
sub-word level tasks.

We show substantial improvements on all essential tasks in the Hebrew
NLP pipeline, tasks tailored to fit a morphologically-rich language, includ-
ing: Segmentation, Part-of-Speech Tagging, full morphological tagging,
Named Entity Recognition and Sentiment Analysis. Since previous He-
brew NLP studies used varied corpora and annotation schemes, we con-
firm our results on all existing Hebrew benchmarks and variants. For
morphology and POS tagging, we test on both the Hebrew section of the
SPMRL shared task [54], and the Hebrew UD corpus which was part of
the CONLL 2018 UD SHARED TASK [77]. For Named Entity recognition,
we test on both the corpus of Ben Mordecai and Elhadad [8] and that of
Bareket and Tsarfaty [7]. For sentiment analysis we test on the facebook
corpus of Amram et al. [2], as well as a newer (fixed) variant of this bench-
mark.

We make our pre-trained model publicly available1. In the near future we
will release the complete AlephBERT-geared pipeline we developed, con-
taining the aforementioned tasks, as means for evaluating and comparing
future Hebrew PLMs, and as a starting point for developing further down-
stream applications and tasks. We also plan to showcase AlephBERT’s ca-
pacities on downstream language understanding tasks such as: Informa-
tion Extraction, Text Summarization, Reading Comprehension, and more.

1huggingface.co/onlplab/AlephBERT-base

huggingface.co/onlplab/AlephBERT-base
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6.1 The Resource Challenge

We present a case study for PLM development for Hebrew – a morphologi-
cally rich and resource poor language, long known to be notoriously hard to
parse.

The resource-scarce setting is problematic for PLM development in at least
two ways. First, there are insufficient amounts of free unlabeled text for
pre-training. To wit, the Hebrew Wikipedia that was the source for train-
ing multilingual BERT is of orders of magnitude smaller than the En-
glish Wikipedia (See Table 6.1 ).2 Secondly, there are no large-scale open-
access commonly accepted benchmarks for fine-tuning and/or evaluat-
ing the performance of Hebrew PLMs on NLP/NLU downstream tasks.
Previous studies on various tasks on Hebrew data do exist, each rely-
ing on disparate data sources, with varied evaluation metrics and anno-
tation schemes even for the same task. To investigate Hebrew PLMs and
probe their ability to capture linguistic structure, we introduce and eval-
uate Hebrew PLMs on the full set of tasks, sentence-based, token-based
and morpheme-based tasks, including specific task variants and evalua-
tion metrics.

Language Oscar Size Wikipedia Articles
English 2.3T 6,282,774
Russian 1.2T 1,713,164
Chinese 508G 1,188,715
French 282G 2,316,002
Arabic 82G 1,109,879
Hebrew 20G 292,201

Table 6.1: Corpora Size Comparison: High-resource (and Medium-
resourced) languages vs. Hebrew.

6.2 AlephBERT Pre-Training

Data One of the most important factors driving the success of PLMs in
other languages is the availability of enormous amounts of text to learn
from. The PLM termed here AlephBERT is trained on a larger dataset and

2Of course, ample Hebrew data does exist online, but most of it is closed due to copy-
right issues and paywalls.
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Corpus File Size Sentences Words
Oscar (deduped) 9.8GB 20.9M 1,043M
Twitter 6.9GB 71.5M 774M
Wikipedia 1.1GB 6.3M 127M
Total 17.9GB 98.7M 1.9B

Table 6.2: Data Statistics for AlephBERT’s training sets.

a larger vocabulary than any Hebrew BERT instantiation before. The He-
brew portions of Oscar and Wikipedia provides us with a training set size
which is an order of magnitude smaller compared with resource-savvy
languages, as shown in Table 6.1. In order to build a strong PLM we need
a considerable boost in the amount of text that the PLM can learn from,
which in our case comes form massive amounts of tweets added to the
training set. The textual utterances provided by the Twitter sample API
tend be short and diverge from valid syntax and canonical language use
for the most part. While the free form language expressed in tweets might
differ significantly from the text found in Oscar and Wikipedia, the sheer
volume of tweets helps us close the resource gap substantially with mini-
mal effort. Data statistics are provided in Table 6.2.

Specifically, we employ the following datasets for pre-training:

• Oscar: A deduplicated Hebrew portion of the OSCAR corpus, which
is “extracted from Common Crawl via language classification, filter-
ing and cleaning” [47].

• Twitter: Texts of Hebrew tweets collected between 2014-09-28 and
2018-03-07. We slightly cleaned up the texts by removing retweet
signals “RT:”, user mentions (e.g. “@username”), and URLs.

• Wikipedia: The texts in all of Hebrew Wikipedia, extracted using
Attardi [3]3

Configuration We used the Transformers training framework from Hug-
gingface [74] and trained two different models — a small model with 6
hidden layers learned from the Oscar portion of our dataset, and a base
model with 12 hidden layers which was trained on the entire dataset. The

3We make the corpus available on
https://github.com/OnlpLab/AlephBERT/tree/main/data/wikipedia.
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Figure 6.1: BERT is based on a fixed-sized vocabulary hence the raw in-
put space-separated words are first transformed into word-pieces. The
sequence of word pieces is then processed by the BERT model producing
a sequence contextualized vectors, one per word-piece.

processing units used are wordpieces generated by training BERT tokeniz-
ers over the respective datasets with a vocabulary size of 52K in both cases.
Traditionally, BERT models are optimized with an objective function opti-
mized using both masked token prediction as well as next sentence predic-
tion losses. Following the work on RoBERTa [34] we optimize AlephBERT
with a masked-token prediction loss. We deploy the default masking con-
figuration which is described in the appendix. Our choice of dataset forces
us to ignore next sentence prediction optimization because a large por-
tion of our data comprises of tweets which are unrelated and independent
of each other (we did not attempt to reconstruct the discourse threads of
retweets and replies).

Operation To optimize GPU utilization and decrease training time we
split the dataset into 4 chunks based on the number of tokens in a sentence
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as described in the appendix.

By limiting the number of tokens in a chunk it is possible to increase the
number of samples loaded to each GPU. Consequently we are able to sig-
nificantly increase the batch sizes, resulting in dramatically shorter train-
ing times

We trained for 5 epochs with learning rate set to 1e-4 followed by an ad-
ditional 5 epochs with learning rate set to 5e-5 for a total of 10 epochs. We
trained AlephBERTbase over the entire dataset on an NVidia DGX server
with 8 V100 GPUs which took us 8 days. AlephBERTsmall was trained over
the Oscar portion only using 4 GTX 2080ti GPUs taking 5 days in total.

6.3 Experiments

Goal We set out to pre-train Hebrew PLMs and evaluate them empiri-
cally on a range of Hebrew NLP tasks. We evaluated the two AlephBERT
variants (small and base) on the different tasks, in order to empirically
gauge the effect of model size and data size on the quality of the language
model. In addition, we compared the performance of our models to ex-
isting Hebrew BERT-based instantiations (mBERT [16] and HeBERT [12]).
We evaluated the PLMs on all key tasks of the Hebrew NLP pipeline.

Benchmarks We evaluate our BERT-based models on various Hebrew
NLP tasks using the following benchmarks:

• Word Segmentation, Part-of-Speech Tagging, Full Morphological
Tagging:

– The Hebrew Section of the SPMRL Task [54]

– The Hebrew Section of the UD4 treebanks collection [46]

• Named Entity Recognition:

– Token-based NER evaluation based on the corpus of
Ben-Mordecai and Elhadad [8]

– Token-based and Morpheme-based NER evaluation based on
the Named Entities and MOrphology (henceforth NEMO) cor-
pus [7]

4https://universaldependencies.org

https://universaldependencies.org
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• Sentiment Analysis:

– Sentiment Analysis evaluation based on the corpus of Amram
et al. [2].

– The aforementioned corpus is reported to leak between the test
and train partitions, thus we provide a cleaned up version and
evaluate on the updated split.

6.4 Tasks and Modeling Strategies

A key question when assessing BERT-based PLM performance for Hebrew
concerns how to develop models for the different levels of granularity.
Here we briefly sketch our modeling strategies, starting with the easiest
(classification) tasks and continuing to the more challenging setups, in-
volving the use of PLMs to predict the tokens’ internal structures.

6.4.1 Sentence-Based Modeling

Sentiment Analysis The first task we report on is a simple sentence clas-
sification task, predicting the sentiment of a given sentence to one of three
values: negative, positive, neutral. We trained and evaluated BERT-based
sentence classification on two variants of the Hebrew Sentiment dataset of
Amram et al. [2].

The first variant is the original sentiment dataset with an additional split
to create a dev set (the original paper had only train and test split, and
the test set remains the same). The dev set contains 10% of the train data
which leaves us with a split of 70-10-20.

Unfortunately, the original dataset had a significant data leakage between
the splits, with duplicates in the data samples. After removing the dupli-
cates out of the original 12,804 sentences, we are left with a dataset of size
8,465.5

Training sentiment models entails adding a classification head on top of
our AlephBERT PLM and running 15 fine-tuning epochs using each of the
sentiment datasets.

5https://github.com/OnlpLab/Hebrew-Sentiment-Data

https://github.com/OnlpLab/Hebrew-Sentiment-Data
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Raw input lbit hlbn
Space-delimited tokens hlbn lbit
Segmentation lbn h bit h l
POS ADJ DET NOUN DET ADP
Morphology Gender=Masc|Number=Sing PronType=Art Gender=Masc|Number=Sing PronType=Art -
Token-level NER E-ORG B-ORG
Morpheme-level NER E-ORG I-ORG I-ORG B-ORG O

Table 6.3: Illustration of Evaluated Token and Morpheme-Based Down-
stream Tasks. The input is the two-word input phrase “lbit hlbn” (to the
white house).

6.4.2 Token-Based Modeling

Named Entity Recognition For the NER task, we initially assume a to-
ken based sequence labeling model. The input comprises of the sequence
of tokens in the sentence, and the output contains BIOES tags indicating
entity spans. The token-based model is a simple fine-tuned model using
the Transformer’s token-classification script of Wolf et al. [74].

We evaluate this model on two corpora. The first is by Ben Mordecai and
Elhadad [8], henceforth, the BMC corpus, who annotated entities at token
level. This means that a Hebrew token containing both a preposition and
an entity mention will not deliver the entity mention boundaries. The
BMC contains 3294 sentences and 4600 entities, and has seven different
entity categories (DATE, LOC, MONEY, ORG, PER, PERCENT, TIME). To
remain compatible with the original work we train and test the models on
the 3 different splits as in Bareket and Tsarfaty [7].6 For the BMC corpus
we report token-based F1 scores on the detected entity mentions.

The second corpus is an extension of the SPMRL dataset with Named Enti-
ties annotation, also marked by BIOSE tags, respecting the precise (token-
internal) morphological boundaries of NEs (henceforth, NEMO, standing
for Named Entities and MOrphology) [7]. This corpus provides both a
token-based and a morpheme-based annotation of the entities, where the
latter contains the accurate (token-internal) entity boundaries. The NEMO
corpus has nine categories (ANG, DUC, EVE, FAC, GPE, LOC, ORG, PER,
WOA). It contains 6220 sentences and 7713 entities, and we used the stan-
dard SPMRL Train-Dev-Test, as in Bareket and Tsarfaty [7].

We trained each NER model over 15 epochs and report token-based F1
scores on the detected entity mentions.

6https://github.com/OnlpLab/HebrewResources/tree/master/BMCNER

https://github.com/OnlpLab/HebrewResources/tree/master/BMCNER
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6.4.3 Morpheme-Based Modeling

Modern Hebrew is a Semitic language with rich morphology and com-
plex orthography. As a result, the basic processing units in the language
are typically smaller than a given token’s span. To probe AlephBERT’s
capacity to accurately predict such token-internal linguistic structure, we
test our models on four tasks that require knowledge of the internal mor-
phology of the raw tokens:

• Segmentation
Input: A Hebrew sentence containing raw space-delimited tokens
Output: A sequence of morphological segments representing basic
processing units.7

• Part-of-Speech Tagging
Input: A Hebrew sentence containing raw space-delimited tokens
Output: Segmentation of tokens into basic processing units as above,
where segments are tagged with single disambiguated POS tag.

• Morphological Tagging
Input: A Hebrew sentence containing raw space-delimited tokens
Output: Segmentation of tokens into basic processing units as above,
where each segment is tagged with a single POS tag and a set of
morphological features.8

• Morpheme-Based NER
Input: A Hebrew sentence containing raw space-delimited tokens
Output: Segmentation of the tokens to basic processing as above
where segment is tagged with a BIOSE tags indicating entity spans,
along with the entity-type label.

An illustration of these tasks is given in Table 6.3.

As opposed to fine-tuning the PLM model parameters, as done in sentence
based and token based classification tasks, segmented morphemes are not
readily available in the BERT representation. In order to provide proper

7Complying with 2-level representation of tokens defined by UD – each unit corre-
sponds to a single POS tag. https://universaldependencies.org/u/overview/
tokenization.html

8Equivalent to the AllTags evaluation metric defined in the CoNLL18 shared task.
https://universaldependencies.org/conll18/results-alltags.html

https://universaldependencies.org/u/overview/tokenization.html
https://universaldependencies.org/u/overview/tokenization.html
https://universaldependencies.org/conll18/results-alltags.html
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segmentation and labeling for the four aforementioned tasks we devel-
oped a model designated to produce the morphological segments of each
token in context.

Figure 6.2: Given a word in the original sentence, we first combine the
embedded vectors associated with the word-pieces (v3 and v4 represent-
ing the word-piece vectors generated in Figure 6.1) thus generating the
required word context vector. This context vector is used as the initial hid-
den state of the BiLSTM which encodes the characters of the origin word.
The decoder is an LSTM which outputs a sequence of characters, where
the special symbol ’ ’ indicates a morphological segment boundary (we
use ’ ’ in this figure as a representation of the space symbol which we ac-
tually use to signal segment boundaries in our implementation).

The morphological segmentation model which we designed is composed
of a PLM responsible for transforming input tokens into contextualized
embedded vectors, which we then feed into a char based seq2seq module
that extracts the output segments. The seq2seq module is composed of
an encoder implemented as a simple char-based BiLSTM, and a decoder
implemented as a char-based LSTM generating the output character sym-



CHAPTER 6. PRE-TRAINED LANGUAGE MODEL BASED MD 57

bols, or a space symbol signalling the end of a morphological segment.
The morphological segmentation model architecture is illustrated in Fig-
ure 6.2. We train the model for 15 epochs, optimizing next-character pre-
diction loss function.

Figure 6.3: Based on the segmentation model, whenever the decoder pre-
dicts a morphological segment boundary, the current state of the decoder
is used as input into a linear layer that is acting a multi-label classifier, as-
signing a score to each label. In this example we are performing Part of
Speech Tagging for each predicted segment.

For the other tasks, involving both segmentation and labeling we deploy
an MTL (multi-task learning) setup. That is, when generating an end-of-
segment symbol, the model then predicts task labels which can be one or
more of the following: POS-tag, NER-tag, morphological features. In or-
der to guide the training to learn we optimize the combined segmentation
and label prediction loss values. The morphological multitask model ar-
chitecture is illustrated in Figure 6.3.

Currently we simply add together the loss values, but we note that as a
future improvement it is likely that assigning different weights to the dif-
ferent loss values could prove to be beneficial. All morphological labeling
models are evaluated on the Hebrew portions of the CONLL 2018 UD
SHARED TASK [77] and SPMRL shared task [54].

In addition, we design another setup for morphological NER sequence la-
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beling task in which we first segment the text (using the above-mentioned
segmentation model) and then perform fine-tuning with a token classifi-
cation attention head directly applied to the PLM (similar to the way we
fine-tune the PLM for the token-based NER task described in the previous
section). In this pipeline setup we utilize the PLM twice; as part of the
segmentation model to generate segments, which we then feed directly
into the PLM (augmented with a token classification head) which is fine-
tuned for the specific labeling task. We acknowledge the fact that we are
fine-tuning the PLM using morphological segments even though it was
originally pre-trained without any knowledge of sub-token units. But, as
we shall see shortly, this seemingly unintuitive strategy performs surpris-
ingly well.

6.5 Results

Sentence-Based Tasks The Sentiment analysis experimental results are
provided in Table 6.4. As can be seen, all BERT-based models substan-
tially outperform the original CNN Baseline reported by Amram et al.
[2]. Interestingly, both AlephBERTsmall and AlephBERTbase outperform
all BERT-based variants, with BERT-base setting new SOTA results on the
new (fixed) dataset.

Token-Based Tasks For our two NER benchmarks, we report the NER
F1 scores on the token-based fine-tuned model in Table 6.5.

Here, we see noticeable improvements for the mBERT and HeBert vari-
ants over the current SOTA, but the most significant increase is in the
AlephBERTbase model. We also see a substantial difference between the
AlephBERTsmall and AlephBERTbase models, with the latter providing a
new SOTA results on these both data sets. Crucially, this holds for the
token-based evaluation metrics (as defined in Bareket and Tsarfaty [7]).

Morpheme-Based Tasks As a particular novelty of this work, we re-
port BERT-based results on sub-token (segment-level) information. Specif-
ically, we evaluate segmentation F1, POS F1, Morphological Features F1
and morphem-base NER F1, compared against the disambiguated labeled
segments. In all cases we use raw space-delimited tokens as input, letting
the BERT-based models perform both the segmentation and labeling.
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Old(leak) token Old(leak) morph New(fixed) token New(fixed) morph
Previous SOTA 89.2 87.5 NA NA

mBERT 92.12 92.18 84.21 85.58
HeBERT 92.48 92.27 87.13 86.88

AlephBERTsmall 93.15 92.70 88.3 87.38
AlephBERTbase 91.63 92.01 89.02 88.71

Table 6.4: Sentiment Analysis Scores on the Facebook Corpus. Previous
SOTA is reported by Amram et al. [2].

NEMO BMC
Previous SOTA 77.75 85.22

mBERT 79.07 87.77
HeBERT 81.48 89.41

AlephBERTsmall 78.69 89.07
AlephBERTbase 84.91 91.12

Table 6.5: Token-Based NER Results on the NEMO and the Ben-Mordecai
Corpora. Previous SOTA on both corpora has been reported by the NEMO
models of Bareket and Tsarfaty [7].

Table 6.6 presents the segmentation, POS tags, and morphological tags F1
for the SPMRL dataset, all evaluated at the granularity of morphological
segments. We report the aligned multiset F1 Scores as in previous work
on Hebrew [43].

We see that segmentation results for all BERT-based models are similar,
and they are already at the higher range of 97-98 F1 scores, which are
hard to improve further.9 For POS tagging and morphological features, all
BERT-based models significantly outperform the previous SOTA provided
by [56] (referred to as PtrNet) for POS tags and [43] (referred to as YAP) for
morphological features. With respect to all BERT-based variants, we see an
improvement for AlephBERT on all other alternatives, but on a small scale.
That said, we do notice a repeating trend that places AlephBERTbase as the
best model for all of our morphological tasks, indicating that the improve-
ment provided by the depth of the model and a larger dataset does also
improve the ability to capture token-internal structure.

These trends are replicated on the UD Hebrew corpus, for two different
evaluation metrics — the Aligned MultiSet F1 Scores as in previous work
on Hebrew [43], [56], and the Aligned F1 scores metrics in the UD shared
task [77] — as reported in Tables 6.7 and 6.8 respectively. AlephBERT ob-

9Some of these errors are due to annotation errors, or truly ambiguous cases.
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Segmentation POS Morph Features
Previous SOTA NA 90.49 85.98
mBERT-morph 97.36 93.37 89.36

HeBERT-morph 97.97 94.61 90.93
AlephBERTsmall-morph 97.71 94.11 90.56
AlephBERTbase-morph 98.10 94.90 91.41

Table 6.6: Morpheme-Based Aligned MultiSet (mset) F1 Results on the
SPMRL Corpus. Previous SOTA is as reported by Seker and Tsarfaty [56]
(POS) and More et al. [43] (morphological features)

Segmentation POS Morph Features
Previous SOTA NA 94.02 NA
mBERT-morph 97.70 94.76 90.98

HeBERT-morph 98.05 96.07 92.53
AlephBERTsmall-morph 97.86 95.58 92.06
AlephBERTbase-morph 98.20 96.20 93.05

Table 6.7: Morpheme-Based Aligned MultiSet (mset) F1 Results on the UD
Corpus. Previous SOTA is as reprted by Seker and Tsarfaty [56] (POS)

Segmentation POS Morph Features
Previous SOTA 96.03 93.75 91.24
mBERT-morph 97.17 94.27 90.51

HeBERT-morph 97.54 95.60 92.15
AlephBERTsmall-morph 97.31 95.13 91.65
AlephBERTbase-morph 97.70 95.84 92.71

Table 6.8: Morpheme-Based Aligned (CoNLL shared task) F1 Results on
the UD Corpus. Previous SOTA is as reported by Minh Van Nguyen and
Nguyen [38]

tains the best results for all tasks, even if not by a large margin.

Morpheme-Based NER Earlier in this section we considered NER as
a token-based task that simply requires fine-tuning on the token labels.
However, this setup is not accurate enough and less useful for down-
stream tasks, since the exact entity boundaries are often token internal [7].
We hence also report here morpheme-based NER evaluation, respecting
the exact boundaries of the Entity mentions. To obtain morpheme-based
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Architecture Pipeline Pipeline MultiTask
Segmentation (Oracle) (Predicted)

Scores (aligned mset) Seg NER Seg NER Seg NER
Previous SOTA (NEMO) 100.00 79.10 95.15 69.52 97.05 77.11

mBERT 100.00 77.92 97.68 72.72 97.24 72.97
HeBERT 100.00 82 98.15 76.74 97.92 74.86

AlephBERTsmall 100.00 79.44 97.78 73.08 97.74 72.46
AlephBERTbase 100.00 83.94 98.29 80.15 98.19 79.15

Table 6.9: Morpheme-Based NER F1 Evaluation on the NEMO Corpus.
Previous SOTA is as reported by Bareket and Tsarfaty [7] for the Pipeline
(Oracle), Pipeline (Predicted) and a Hybrid (almost-joint) Scenarios, re-
spectively.

labeled-span of Named Entities as discussed above we could either em-
ploy a pipeline, first predicting segmentation and then applying a fine
tuned labeling model directly on the segments, or we can use the MTL model
and predict NER labels while performing the segmentation.

Table 6.9 presents segmentation and NER results for three different sce-
narios: (i) a pipeline assuming gold segmentation (ii) a pipeline assuming
the best predicted segmentation (as predicted above) (iii) obtaining the
segmentation and NER labels jointly in the MTL setup.

As our results indicate, AlephBERTbase consistently scores highest in both
pipeline (oracle and predicted) and multi-task setups. Pipeline-Predicted
scores show clear correlation between a higher segmentation quality of a
PLM and its ability to produce better NER results. Moreover, the differ-
ences in NER scores between the models are considerable (unlike the sub-
tle differences in segmentation, POS and morphological features scores)
and draw our attention to the relationship between the size of the PLM,
the size of the pre-training data and the quality of the final NER models.
Specifically, HeBERT and AlephBERTsmall were pre-trained with similar
datasets and comparable vocabulary sizes. HeBERT, with its 12 hidden
layers, performs significantly better compared to AlephBERTsmall which
is composed of only 6 hidden layers. It thus appears that semantic infor-
mation is learned in those deeper layers which helps in both learning to
discriminate entities and improve the overall morphological segmentation
capacity.

Comparing HeBERT to AlephBERTbase we point to the fact that they are
both modeled with the same 12 hidden layer architecture, the only dif-
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ferences between them are in the size of their vocabularies (30K vs 52K
respectively) and the size of the training data. The improvements exhib-
ited by AlephBERTbase, compared to HeBERT, suggests that it is a result of
the large amounts of training data and larger vocabulary available in our
setup. By exposing AlephBERTbase to an amount of text which order of
magnitude larger we increased its NER capacity.

Finally, our NER experiments curiously suggest that a pipeline composed
of the near-to-perfect MD followed by AlephBERTbase augmented with a
token classification head applied on the disambiguated segments is the
best strategy for generating morphologically-aware NER labels.

6.6 Summary

In this chapter we build and use a large pre-trained language model for
Modern Hebrew. Most importantly, with our AlephBERTbase we are able
to provide an E2E MD component that obtains state-of-the-art results on
the tasks of segmentation, Part of Speech Tagging, Named Entity Recog-
nition, and Sentiment Analysis. We outperform both general multilingual
PLMs (mBERT) as well as language specific instantiations (HeBERT). Us-
ing the new AlephBERT model we are now gaining similar benefits as
achieved in high resource languages from PLMs.



7 Conclusion

Modern Hebrew, a morphologically rich and resource-scarce language,
has for long suffered from a gap in the resources available for NLP applica-
tions, and lower level of empirical results than observed in other, resource-
rich languages. This work steps towards remedying the situation by ad-
dressing the challenges involved with morphological disambiguation for
MRLs.

We describe 3 different approaches – feature-engineered joint morpho-
syntactic parser (chapter 4), neural pointer network MD (chapter 5), and
pre-trained language model (a.k.a AlephBERT) fine-tuning (chapter 6) –
each taking a different path to modeling morphologically-aware tasks. We
empirically evaluate our models on morphological level benchmarks us-
ing two evaluation methods. The CONLL 2018 UD SHARED TASK eval-
uation script provides an evaluation based on aligned morphemes. In
addition we advocate for an aligned token multi-set intersection evalua-
tion which is more informative to downstream tasks that operate on mor-
pheme sequences.

Chapters 4 and 5 both deploy MA&D strategy to morphological disam-
biguation by exploiting morphological information provided by a broad-
coverage lexicon-backed MA component. In both cases the task is framed
as a lattice disambiguation problem – given an ambiguous morphologi-
cal lattice containing all possible analyses for each word provided by a
Morphological Analyzer (MA), a Morphological Disambiguation (MD) model
chooses the most likely sequence of morphemes for the given sentence.

The pre-neural dependency parser described in chapter 4 takes a disam-
biguated morphological sequence as input to a transition-based depen-
dency parser that chooses the most likely set of dependency relations be-
tween the input morphemes. In such a pipeline, the ability of the parser to
generate optimal parse trees depends on the quality of the disambiguated
sequence of morphemes (wrong morphological segmentation will neces-
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sarily lead to a sub-optimal parse tree). The accuracy of the MD compo-
nent depends on the lexical coverage offered by the MA component that
comes before it. Our investigation into the impact of the MA on the final
dependency parser accuracy establishes the impact of incomplete lattices
produced by the MA on the overall degraded accuracy of the generated
parse trees. Thus we recommend the UD community to invest in broad
coverage lexicons that would back high quality MA components which in
turn would improve the overall dependency parsing performance espe-
cially in MRLs.

Chapter 5 follows the same lines – deploying a lexicon-backed MA compo-
nent to generate ambiguous morphological lattices which are then passed
as input to a neural MD model. Combining rich morphological informa-
tion available via MA with the power of deep learning provided by a
Pointer Network MD proved to be very powerful. We design a general
framework that consumes lattice files and output a sequence of disam-
biguated morphemes, each containing segmentation boundary, lemma,
part-of-speech tag and morphological features. The neural MD is lan-
guage agnostic and our analysis of the results on both Hebrew and Turkish
suggest that with a broad-coverage (i.e. high recall) MA, our MD has the
capacity to find the correct analysis for each word (i.e. high precision). We
show that access to symbolic morphological information aids the neural
disambiguation model compared to strong baselines that only have access
to the raw tokens. Additionally our MA&D solution achieved better re-
sults compared to the non-neural MD framework mentioned in chapter
4.

For over 15 years, having access to lexical resources has served Hebrew
MD frameworks well. These frameworks were able to learn from rich mor-
phological information explicitly provided by the MA. They transformed
the raw token sequence into an ambiguous lattice and framed the prob-
lem as a lattice disambiguation task. The MA&D approach does come
at a price though – it depends heavily on building and maintaining high
quality lexicons as well as supporting various annotation schemes (e.g.
SPMRL, UD) which is labor intensive, time consuming and costly.

In chapter 6 we take a different approach capitalizing on the latest algo-
rithmic achievements in language modeling, freeing us from manually-
generated lexicon-based MA as well as allowing us to develop MD frame-
work processing directly on the sequence of raw tokens. Our pre-trained
language model, named AlephBERT, specifically trained for Hebrew en-
codes the relevant morphological signal, thus enabling E2E state-of-the-art
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solutions that outperforms all previous models on a variety of tasks that
cover sentence level, token level and morphological level tasks. Specif-
ically for E2E MD we take advantage of the contextualized word em-
bedding vectors provided by AlephBERT and use them as input into a
sequence-to-sequence neural network that extracts the morphological seg-
ments. We then combine this MD framework with various classifiers that
can assign to each segment other grammatical labels thus enriching the
morphological signatures.

The 3 works chronologically highlight the algorithmic advancements con-
tributing to NLP in general and specifically to the MD task. Ever since the
introduction of deep learning in NLP we have been witnessing a grow-
ing trend in training general purpose neural networks that can learn from
large amounts of unlabeled text and integrated into task specific super-
vised models.

This revolution has shifted the focus of NLP researchers from modeling
task-specific linguistic complexities to learning general language models
that can generate contextualized word vectors capturing various linguistic
signals. Given such a language model, a small annotated dataset is then
needed to train a relatively simple network that is able to extract the spe-
cific information required for each task. This approach serves us well to
overcome the small amounts of labeled data available at our disposal for
the various tasks in the Hebrew NLP pipeline.

Besides uploading AlephBERT and making it publicly available, we will
publish both data and code used to implement, train and evaluate the
models described in this work. Looking ahead we are now working on
developing a complete language processing framework for automatic an-
notation of Modern Hebrew Texts. We intend to release it as a python
library which would be easy to install and to use. The framework will at
first cover the basic most significant linguistic layers – morphological seg-
mentation, POS tags, grammatical features as well as NER labels. Pending
further research we will then enrich the output with deeper sentence-level
annotations such as dependency parsing and semantic parsing. We hope
the availability of an open-source, accurate, and easy to-use system for
NLP in Hebrew will benefit the local NLP open-source community and
greatly advance Hebrew language technology research and development,
in academia and in the industry.



8 Appendix

8.1 Hebrew Transliteration

a b g d h v z x t i k l m n s e p c q r f t
א ב ג ד ה ו ז ח ט י כ ל מ נ ס ע פ צ ק ר ש ת

Table 8.1: Transliteration mapping of Hebrew letters as defined by
Sima’any et al. [60]

8.2 Treebank Statistics

We use the train/dev/test split provided by the UD treebanks (as well
as the Hebrew SPMRL treebank) The number of sentences in each split is
described in Table 8.2

English UD Turkish UD Arabic UD Hebrew UD Hebrew SPMRL
Train Sentences 12543 3685 6075 5241 4937
Development Sentences 2002 975 680 484 500
Test Sentences 2077 975 909 491 716

Table 8.2: Dataset splits

Table 8.3 gives some insight into the morphological degree of each lan-
guage based on the respective UD test sets. For Turkish and Hebrew we
delve deeper into the lattices to get a sense of the lexical coverage provided
by the UD language MA component.
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English Turkish Arabic Hebrew
Avg. Tokens per Sentence 12.08 10.26 41.56 25.01
Avg. Disambiguated Morphemes per Token 1.0 1.03 1.17 1.4
Avg. Ambiguous Analyses per Token 2.6 7.19

Table 8.3: UD Test Set Statistics

8.3 YAP

The joint transition systems implemented by the YAP morpho-syntactic
parser is illustrated in Figure 8.1

Arc Eager:

Conf. c = (σ, β, A) σh = A second, ’head’ stack
Initial cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal Ct = {c ∈ C|c = ([0], [], A)}
Transitions (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ ([σ|i|j], β, A ∪ {(i, l, j)}) (ArcRightl)
if (k, l′, i) /∈ A and i 6= 0 then
([σ|i], [j|β], A)→ ([σ], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)
if (k, l′, i) ∈ A then
([σ|i], β, A)→ (σ, β, A ∪ {(i, l, j)}) (REDUCE)

Arc ZEager:

Conf. c = (σ, σh, β, A) σh = A second, ’head’ stack
Initial cs(x = x1, ..., xn) = ([]σ, []h, [1, ..., n], ∅) Note: no root
Terminal Ct = {c ∈ C|c = ([]σ, σh, [], A)} For any σh, A
Transitions ([i]σ, σh, []β, A)→ ([]σ, σh, []β, A) (POPROOT)

([σ|i], σh, []β, A)→ (σ, σh, []β, A) (REDUCE2)
if TL! =REDUCE then TL = Last Transition
(σ, σh, [i|β], A)→ ([σ|i], [σh|i], β, A) (SHIFT)
if |β| > 0 and (|σ| > 1 and (|β| > 1 or |σh| = 1)) then
([σ|i], σh, [j|β], A)→ ([σ|i|j], σh, β, A ∪ {(i, l, j)}) (ArcRightl)
if |β| > 0 and |σ| > 0 then
([σ|i], σh, β, A)→ ([σ], σh, β, A ∪ {(i, l, j)}) (REDUCE1)
if |β| > 0 and |σ| > 0 and (k, l′, i) /∈ A and i = k then
([σ|i], [σh|k], [j|β], A)→ ([σ], [σh], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)

Figure 8.1: Arc-Eager [30, Chapter 3] and Arc-ZEager [79] Systems.

8.4 Pointer Network MD

8.4.1 PtrNetMD Validation Performance

Table 8.4 and Table 8.5 show Segmentation-only and Joint Segmentation-and-
Tagging scores on the CONLL 2018 UD SHARED TASK validation sets.

Table 8.6 shows F1 aligned-mset scores on the UD treebank validation sets.



CHAPTER 8. APPENDIX 68

English Turkish Arabic Hebrew
UDPipe Oracle 100.00 100.00 100.00 100.00
UDPipe Predicted 99.09 97.93 93.64 84.69
Shared Task Leader
PtrNetMD Infused 99.57 96.61
PtrNetMD Uninfused 97.77 95.22

Table 8.4: Segmentation-only F1, Aligned Segment, CoNLL18 UD Shared
Task Validation Set. Top two rows are pipeline baseline. Bottom three
rows are PtrNetMD compared to shared task leaders.

English Turkish Arabic Hebrew
UDPipe Oracle 94.57 92.52 95.61 96.03
UDPipe Predicted 93.72 91.02 89.81 84.69
Shared Task Leader
PtrNetMD Infused 96.68 94.18
PtrNetMD Uninfused 89.59 92.05

Table 8.5: Joint Segmentation-and-Tagging F1, Aligned Segment,
CoNLL18 UD Shared Task Validation Set. Top two rows are pipeline base-
line. Bottom three rows are PtrNetMD compared to shared task leaders.

8.4.2 PtrNetMD Runtime Speeds

The average runtime of PtrNetMD on the test sets is 22.3 sentences per
second on a GPU (GTX TITAN X). The token multi-tag processed 32 sen-
tences per second while the token sequence-2-sequence processed 23 sen-
tences per second. Processing was performed serially, one sentence at a
time.

8.4.3 PtrNetMD and Baselines Implementation Details

We used PyTorch (v1.5) as the framework for all our models (token multi-
tagging, token sequence-to-sequence and PtNetMD) We used the latest
FastText (v0.9.2) models to produce embedding vectors for tokens (used
by the baseline models) as well as forms and lemmas (used by PtrNetMD).
All encoding and decoding layers in each of our models are based on a



CHAPTER 8. APPENDIX 69

Turkish Arabic Hebrew
Token Multi-Tag 91.9 95.06 94.84
Token Seq-Tag 92.36 95.47 93.59
PtrNetMD infused 96.74 96.21
PtrNetMD uninfused 89.65 94.97

Table 8.6: Tagging F1, Aligned MSet, CoNLL18 UD Shared Task Validation
Set

LSTM module. In all experiments we used AdamW [35] optimizer with
a 0.001 learning rate. We trained each model for a total of 18 epochs,
and selected the checkpoint that got the highest aligned mset evaluation
score on the development set. PtrNetMD checkpoints were selected based
on the uninfused joint segmentation and tagging aligned mset scores. We
searched for hyper-parameters manually by trying out various combina-
tions of standard values:

(1) LSTM layers: 1,2,3

(2) LSTM hidden size: 32,64,100,200,300

(3) LSTM Dropout: 0.0,0.1,0.3,0.5,0.7

One configuration detail we found useful was freezing (i.e. not updating
the weights during the optimization step) the FastText embedding vectors
used for tokens, lemmas and forms. The thought behind this decision is to
make sure to avoid overfitting to the specific textual elements in the data
which improved the generalization capabilities in all models.

The optimal values used by all models are:

(1) LSTM layers: 2

(2) LSTM hidden size: 64

(3) LSTM Dropout: 0.0

(4) FastText embedding: Freeze.
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PtrNetMD Model Parameters

(lattice_emb): AnalysisEmbedding(
(form_emb): Embedding(20267, 300, padding_idx=0)
(form_dropout): Dropout(p=0.0, inplace=False)
(lemma_emb): Embedding(9601, 300, padding_idx=0)
(lemma_dropout): Dropout(p=0.0, inplace=False)
(tag_emb): Embedding(20, 32, padding_idx=0)
(feats_emb): Embedding(109, 32, padding_idx=0)

)
(lattice_encoder): LSTM(984, 64, num_layers=2,

batch_first=True, bidirectional=True)
(analysis_decoder): LSTM(984, 128, batch_first=True)
(analysis_attn): SequenceStepAttention()

Token Mulit-Tag Model Parameters

(input_emb): TokenCharEmbedding(
(token_emb): Embedding(19115, 300, padding_idx=0)
(token_dropout): Dropout(p=0.0, inplace=False)
(char_emb): Embedding(89, 300, padding_idx=0)
(char_lstm): LSTM(300, 32, batch_first=True)

)
(encoder): BatchEncoder(

(rnn): LSTM(332, 32, num_layers=2,
batch_first=True, bidirectional=True)

)
(dropout): Dropout(p=0.0, inplace=False)
(classifiers): ModuleList(

(0): Linear(in_features=64, out_features=44,
bias=True)

)

Token Sequence-to-Sequence Parameters

(enc_emb): TokenCharEmbedding(
(token_emb): Embedding(19115, 300, padding_idx=0)
(token_dropout): Dropout(p=0.0, inplace=False)
(char_emb): Embedding(89, 300, padding_idx=0)
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(char_lstm): LSTM(300, 32, batch_first=True)
)
(encoder): LSTM(332, 64, num_layers=2,

batch_first=True, bidirectional=True)
(dec_emb): Embedding(18, 32, padding_idx=0)
(decoder): SequenceStepDecoder(

(rnn): LSTM(364, 128, batch_first=True)
(output): Linear(in_features=128, out_features=18,

bias=True)
)

8.5 AlephBERT Pre-training Details

For reference and to make our work reproducible we specify here the main
steps taken and parameters used during training of AlephBERT. We uti-
lized the Huggingface Transformers framework with most of the default
training parameter values. Table 8.7 lists all of the training parameters that
we have manually specified in our code. We also list the values used by
the other models.

Training our AlephBERT-base model using the entire dataset proved to
be technically challenging due to the model size and data size. Train-
ing the entire dataset without splitting it into chunks did not utilize the
full processing capacity of the GPUs and would have taken several weeks
to complete. To overcome this issue we followed the advice to split the
dataset into chunks based on the number of tokens in a sentence. The first
chunk consisted of 70M senetences with 32 or less tokens. By limiting the
maximum number tokens we consequently limit the size of the training
matrices used by this chunk which consequently allowed for significantly
increasing the batch size which resulted in dramatically shorter training
time - these 70M sentences took only 2.5 days to complete 5 epochs. The
second chunk consisted of sentences having between 32 and 64 tokens, the
third chunk between 64 and 128 and the final last chunk all sentences with
more than 128 tokens:

chunk1 chunk2 chunk3 chunk4
max num tokens 0>32 32>64 64>128 128>512
num sentences 70M 20M 5M 2M
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AlephBERT-base AlephBERT-small HeBERT mBERT-cased
max position embeddings 512 512 512 512

num attention heads 12 12 12 12
num hidden layers 12 6 12 12

vocab size 52K 52K 30K 120K†

Table 8.7: Huggingface BERT Configurations Comparison. †Only 2450
vocabulary entries contain Hebrew letters

8.5.1 Masked Language Model (MLM)

To train a deep bidirectional representation, we use MLM to mask 15% of
the input tokens at random and then predict those masked tokens. MLM is
like ”fill in the blanks” where we randomly mask 15% of the input tokens
to predict the original vocabulary id. We use [MASK] tokens only for pre-
training, and they are not used for fine-tuning.

Of the 15% randomly chosen masked tokens

• 80% of the time masked words are replaced with [MASK] token

• 10% of the time, masked words are replaced with with a random
token

• Remaining 10% of the time, masked words are unchanged

8.5.2 Fine Tuning

The fine-tuning method allows the language model to be tweaked through
backpropagation. For fine-tuning the AlephBERT model, all of the pa-
rameters are fine-tuned using labeled data from the downstream tasks.
Pre-training is expensive and is a one-time procedure, but fine-tuning is
inexpensive. Pre-trained AlephBERT already encodes a lot of semantics,
syntactic as well as morphological information about the language. Hence,
it takes less time to train the fine-tuned model. Using pre-trained Aleph-
BERT, we need very minimal task-specific fine-tuning and hence need less
data for better performance for any of the NLP tasks.
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Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar, October 2014. Association for Com-
putational Linguistics. doi: 10.3115/v1/D14-1179. URL https:
//www.aclweb.org/anthology/D14-1179.

[12] Avihay Chriqui and Inbal Yahav. Hebert —& hebemo: a hebrew bert
model and a tool for polarity analysis and emotion recognition, 2021.

[13] Michael Collins and Brian Roark. Incremental parsing with the per-
ceptron algorithm. In Proceedings of the 42Nd Annual Meeting on
Association for Computational Linguistics, ACL ’04, Stroudsburg, PA,
USA, 2004. Association for Computational Linguistics. doi: 10.3115/
1218955.1218970.

[14] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
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רחבים לקסיקלים משאבים של תרומתם את מדגישים הללו המאמצים שני
במשימות גבוה לדיוק שמוביל מה מורפולוגיות, שגיאות של מהותית להגבלת
עמימות והפגת הניתוח מסגרות של בחיסרון מכירים אנו לבסוף הצנרת.
לשפה. רחב כיסוי בעל מורפולוגי ניתוח רכיב בבניית העוסקות מורפולוגית
משאב של אחר מסוג הנהנה חלופי פיתרון בוחנים אנו זו הכרה בעקבות
את מציעים אנו ידני. מאמץ או לשונית מומחיות מצריך שאינו רחב לשוני
גבי על פיקוח ללא למידה במסגרת מראש שאומן שפה מודל אלף־ברט
אנו מודרנית. בעברית משפטים מיליון 100 מכמעט המורכב גדול קורפוס
מורפולוגית עמימות מפיג לבנות כדי זה מראש מאומן במודל משתמשים
ידנית בעבודה צורך ללא ביותר גבוהות תוצאות שמשיג לקצה קצה ממומש
במודלים. לשימוש מאפיינים הנדסת או מילוניים משאבים ליצירת ויקרה

ii



תקציר

תת מיחידות מורכבות משמעיות, דו הן מילים מורפולוגית עשירות בשפות
מורפמות. המכונות מילים

נכון ניבוי כלומר מורפולוגי פירוק קרובות לעיתים דורשים כאלה מקרים
בצינור הבסיסיות העיבוד כיחידות במורפמות ושימוש למורפמות מילים של
העיבוד, למשימות כקלט בפועל משמשות מורפמות טבעיות. שפות העיבוד
תהיה המורפולוגית העמימות הפגת במהלך שתעשה שגיאה כל מכך וכתוצאה

המשימות. כל ביצועי על לרעה ותשפיע בהמשך לתיקון אפשרית בלתי

הוא הראשון מורפולוגית. עמימות להפגת אפשריות אסטרטגיות שתי ישנן
ועיצוב סריג נתונים כמבנה מילים המייצג שלבי דו כתהליך זו משימה לבנות
בשם ידועה זו שיטה ביותר. הסביר הניתוח לבחירת העמימות הפגת רכיב
עמימות להפיג היא החלופית האפשרות מורפולוגית. עמימות והפגת ניתוח
מבלי (כלומר המלים על ישירות הפועל לקצה קצה כתהליך מורפולוגית
ישירות חוזים לקצה קצה של מודלים אחד, מצד ביניים). לייצוג לעבור
מפורשת מגישה נהנים אינם אך הגולמיות, המילים מתוך מורפולוגי מידע
תלויות מורפולוגית עמימות והפגת ניתוח מסגרות שני, מצד למורפמות.
יהיו שלא ובכך האפשריים הניתוחים כל כיסוי מבחינת הסריגים באיכות
עמימות הפגת של שונים מודלים 3 מיישמים אנו זו בעבודה ניתוחים. חסרים
ואילו מורפולוגית עמימות והפגת לניתוח מיועדים מהם שניים מורפולוגית,

לקצה. קצה עובד השלישי

שהושגו השדרוגים את מדגימים אנו השונות העיצוב בחירות כיסוי ידי על
ההשפעה עם האחרונות בשנים בעברית מורפולוגית עמימות הפגת במשימת
בעבודה המוצגים המקרה מחקרי טבעית. שפה בעיבוד עמוקה למידה של
אנו תחילה שפה. בכל ליישמם ניתן אך מודרנית, בעברית מתמקדים זו
הידוע טרום־ניורונית משותפת מורפו־תחבירית מסגרת ביישום מתמקדים
טבעית שפה למידת בכנס המשותפת במשימה השפות 82 כל על ״יאפ״ בשמו
מכן לאחר מודרנית. בעברית התוצאות של מעמיק ניתוח ומספקים מ2018
הצבעה רשת של בטופולוגיה עמוקה למידה מבוססת גישה מציעים אנו
בהפגת משמעותי דיוק שיפור ומשיגה ־ בעברית והן בטורקית הן המיושמת

.בעברית המורפולוגית העמימות
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