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Abstract

Vose’s dynamical systems model of the simple genetic algorithm (SGA) is
an exact model that uses mathematical operations to capture the dynamical
behavior of genetic algorithms. The original model was defined for a simple ge-
netic algorithm. This thesis suggests how to extend the model and incorporate
two kinds of learning, Darwinian and Lamarckian, into the framework of the
Vose model. The extension provides a new theoretical framework to examine
the effects of lifetime learning on the fitness of a population. We analyze the
asymptotic behavior of different hybrid algorithms on an infinite population
vector and compare it to the behavior of the classical genetic algorithm on
various population sizes. Our experiments show that Lamarckian-like inheri-
tance - direct transfer of lifetime learning results to offsprings - allows quicker
genetic adaptation. However, functions exist where the simple genetic algo-
rithms without learning as well as Lamarckian evolution converge to the same
local optimum, while genetic search based on Darwinian inheritance converges
to the global optimum. The main results of this thesis are included in a paper
that was accepted in the Genetic and Evolutionary Computation Conference
(GECCO 2010).



Chapter 1

Introduction

Genetic algorithms (GA) have been shown to be very efficient at exploring
large search spaces. However, they are often incapable of finding the precise
local optima in the region where the algorithm converges. A hybrid genetic
algorithm uses local search to improve the solutions produced by the genetic
operators. Local search in this context can be regarded as a kind of learning
that occurs during the lifetime of an individual string.

Evolution and learning are two forms of biological adaptation that differ
in space and time. Evolution is a process of selective reproduction and muta-
tions occurring within a geographically-distributed population of individuals
over long periods of time. Learning, however, is a set of modifications taking
place within each single individual during its own life time.

Learning can guide and accelerate the evolutionary process in different as-
pects. First, learning allows the maintenance of more genetic diversity in the
population, since different genes have more chances to be preserved in the
population if the individuals who incorporate these genes are able to learn the
same fit behaviors. Second, learning provides the evolutionary process with
rich amount of information from the environment to rely upon when deciding
whether the individual is fit to its environment. Whereas evolutionary adap-
tation relies on a single value which reflects how well an individual coped with
its environment (the number of offspring in the case of natural evolution and
the fitness value in the case of artificial evolution), learning can rely on a huge
amount of feedback from the environment that reflects how well an individual
is doing in different moments of its life.

However, learning has some costs. Learning individuals may suffer from a
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sub-optimal behavior during the learning phase. As a result, they will collect
less fitness than individuals who have the same behavior genetically inherited.
Moreover, since learned behavior is determined mostly by the environment, if
a vital behavior-defining stimulus is not encountered by a particular individ-
ual, then it may hamper its development.

Another important aspect of combining learning and evolution is known
as the Baldwin effect [1]. Baldwin’s argument was that learning accelerates
evolution because sub-optimal individuals can reproduce by acquiring dur-
ing life necessary features for survival. However, since learning requires time,
evolution tends to select individuals who have already at birth those useful
features which would otherwise be learned. Hence, Baldwin’s effect explains
the indirect genetic assimilation of learned traits, even when those traits are
not coded back into the genome. A number of researches have replicated the
Baldwin effect in population of artificial organisms [2, 3, 4].

Our goal in this research was to find a mathematical model that would help
us understand the effects of combining lifetime learning and genetic search on
population fitness. We have chosen Vose’s dynamical systems model for the
simple genetic algorithm [5] as the theoretical framework for our analysis. A
detailed description of the model will follow.

We compare two forms of hybrid genetic search. The first uses Darwinian
evolution, in which the improvements an individual acquired during its life-
time contribute to its fitness, but are not transformed back into the genetic
encoding of the individual. The second uses Lamarckian evolution, in which
the results of the learning process (i.e. the acquired features) are coded back
onto the strings processed by the genetic algorithm. We also compare these
two approaches to a simple genetic algorithm without any learning.

1.1 Related Work

Hinton and Nowlan [6] were among the first researchers to describe a simple
computational model that shows how learning could help and guide evolution.
They illustrate the Baldwin effect using a genetic algorithm and a simple
random learning process that develops a simple neural network.

In their experiment individuals have genotypes with 20 genes which encode
a neural network with 20 potential connections. Only a neural network that is
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connected in exactly the right way can provide added reproductive fitness to an
organism. Genes can have three alternative values: 1, 0, or ?, which specifies,
respectively, the presence of a connection between two neurons in the network,
the absence of a connection, and a modifiable state (presence or absence of
a connection) that can be changed according to a learning mechanism. The
learning mechanism is a simple random process that keeps changing modifi-
able connections until a good combination (if any) is found during the lifetime
of the individual. Any guessed values are lost at the end of the individual’s life.

The experiments compared the performance of a population endowed with
learning to one without. Results showed that the non-learning population was
not capable of finding optimal solutions to the problem. In contrast, once
learning was applied, the population converged on the problem solution. The
addition of learning made the fitness surface area smoother around the good
combination which could be discovered and easily climbed by the genetic al-
gorithm. As can be seen in figure 1.1, without learning the fitness surface is
flat, with a thin spike corresponding to the good combination of alleles (the
thick line). When learning is enabled, the fitness surface has a nice hill around
the spike which includes the alleles’ combinations which have some right fixed
values and some unspecified (learnable) values.

combinations of alleles

fit
ne

ss

Figure 1.1: Fitness surface with and without learning. Redrawn from Hinton
and Nowlan [6].

The model also showed that once individuals which have part of their genes
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fixed on the right values and part of their genes unspecified are selected, indi-
viduals with less and less learnable genes tend to be selected. In other words,
characters that were first acquired through learning tend to become genetically
specified later on, which is supported by the Baldwin effect.

Number of other researchers have since explored the interactions between
evolution and learning, showing that the addition of individual lifetime learn-
ing can improve the population’s fitness and diversity [7, 8, 9, 10].

Some of the researchers also compared the performance of Lamarckian evo-
lution to Darwinian evolution on various test sets [11, 12]. In some cases, when
the problems were relatively easy to solve using stochastic hill-climbing meth-
ods, Lamarckian learning led to quicker convergence of the genetic algorithm
and to better solutions than by leaving the chromosome unchanged after eval-
uation. However, in more complex, non-linear problem domains, forcing the
genotype to equal the phenotype caused the algorithm to converge prematurely
to one of the local optima, and consequently in those domains the Lamarck-
ian search has suffered from inferior performance relative to the Darwinian
learning.

Houck et al. [13] have shown that neither a pure Lamarckian nor a pure
Darwinian search strategy was found to consistently lead to quicker conver-
gence of the GA to the best known solution for a series of test problems, in-
cluding the location-allocation problem and the cell formation problem. Only
partial Lamarckianism search strategies (i.e., updating the genetic represen-
tation for only a percentage of the individuals) yielded the best mixture of
solution quality and computational efficiency.

Sasaki and Tokoro [14] found when evolving artificial neural networks that
Lamarckian inheritance of weights learned in a lifetime was harmful in chang-
ing environments or when different individuals were exposed to different learn-
ing experiences, but beneficial in stationary environments. Recently, Paenke
et al. [15] developed a simple stochastic model of evolution and learning that
explains why Lamarckian inheritance should be less common in environments
that oscillate rapidly compared to stationary environments. However, their
model was limited to a genotype consisting of only one gene and two possible
phenotypes.
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1.2 Theoretical Models of GA

One of the earliest theoretical models which was devised to explain the be-
havior of genetic algorithms was the schemata theory, originally introduced
by Holland [16] and further developed by Goldberg [17]. A schema is a simi-
larity pattern describing a subset of strings with similarities at certain string
positions. For example, the schema *11*0, represents all strings that have
1 at positions 2 and 3, and 0 at position 5. The schema theory provides a
mathematical model which estimates how the number of individuals in the
population belonging to a certain schema can be expected to grow in the next
generation.

The fundamental schema theorem states that short, low-order, fitter-than-
average schemata are allocated exponentially increasing trials over time. How-
ever, the conventional schema theorem provides us with only a lower bound for
the expected number of schemata at the next generation, because it accounts
only for schema disruption and survival, not schema creation (by genetic opera-
tors such as crossover). Thus its predictions may be difficult to use in practice.

In contrast, the Vose model [5] is an exact mathematical model that cap-
tures every detail of the simple genetic algorithm in mathematical operators,
and thus enables us to prove certain theorems about properties of these oper-
ators. The model defines a matrix G as the composition of the fitness matrix
F and a recombination operator M that mimics the effects of crossover and
mutation. By iterating G on the population vector, it is possible to give an
exact description of the expected behavior of the Simple Genetic Algorithm
(SGA). Our goal in this work was to extend the Vose model by adding a learn-
ing operator L that mimics the effects of lifetime learning on the population
vector and to investigate its influence on the evolutionary process. A formal
definition of the model will follow.

The Vose model assumes an infinite population size. In any finite popula-
tion, sampling errors will cause deviations from the expected values. However,
since the infinite population vector is equivalent to the sampling distribution
probabilities used by finite Markov models of the SGA, a general agreement
between the behavior of the infinite population vector and the behavior of
random finite population vectors is observed in experiments in a reasonable
population size.

We have found that the Vose dynamical systems model has several advan-
tages over other theoretical models of the genetic algorithms:
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• The schema theory makes predictions about the expected change in fre-
quencies of genetic patterns from one generation to the next, but it does
not directly make predictions regarding the population composition, the
speed of population convergence or the distribution of the fitnesses in the
population over time. The Vose model, by predicting the exact evolution
of an infinite population vector, enables us to explore these aspects of
the genetic algorithm.

• Traditional schema theory does not support Lamarckian learning, since
Lamarckian learning disrupts the schema processing of the genetic algo-
rithm. In contrast, it is possible to model the integration of both forms
of lifetime learning (Darwinian and Lamarckian) within the framework
of the Vose model using the same basic approach.

• The mathematical framework of the Vose model enables us to use tech-
niques of matrix calculus to explore the asymptotic behavior of the hy-
brid genetic algorithms without relying on specific settings of the algo-
rithm parameters (such as population size, random generator seed, etc.).

This thesis also builds on earlier work by Whitley, Gordon and Mathias
[11], which explored the behavior of hybrid genetic algorithms using a model
of a genetic algorithm developed by Whitley [18]. However, the Vose model we
use in this thesis takes a more general approach, which includes both crossover
and the mutation operators and also considers finite population models of the
genetic search. Furthermore, we extend Vose’s analysis of the behavior of the
simple genetic algorithm near its stationary points, to include the effects of
lifetime learning.

The rest of this thesis is organized as follows: Chapter 2 reviews the Vose
dynamical systems model of the simple genetic algorithm, chapter 3 shows how
the two forms of the hybrid genetic algorithm can be modeled in the context
of the Vose model, chapter 4 describes a series of experiments performed on a
binary optimization problem, chapter 5 compares the behavior of the classical
genetic algorithm with the predictions of the Vose model, chapter 6 analyzes
the asymptotical behavior of the SGA around its fixed points, chapter 7 tests
the results on a numerical function optimization problem and chapter 8 draws
some conclusions and suggests future work.
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Chapter 2

Vose Model of Simple Genetic
Algorithm

2.1 Representation

Let the search space Ω be defined over l-digit binary representations of integers
in the interval [0, 2l−1]. n = 2l is the number of points in the search space. For
example, if l = 3 then n = 8 and Ω = {000, 001, 010, 011, 100, 101, 110, 111}

Define the simplex to be the set Λ = {p = (p0, ..., pn−1) : 1T p = 1, pj ∈
<, pj ≥ 0}, where 1 denotes the vector of all 1s. A vector pt ∈ Λ represents a
population vector at generation t, where pt

i is the proportion of the ith element
of Ω in pt.

For example, if l = 3 then the population {010, 000, 111, 000, 000} is repre-
sented by the vector p = (0.6, 0, 0.2, 0, 0, 0, 0, 0.2). Note that tuples in round
brackets (...) will be regarded as column vectors in this thesis.

Given the current population vector p, the next population vector is derived
from the genetic algorithm using some transition rule τ . Thus, an evolutionary
run can be described as a sequence of iterations beginning from some initial
population vector p:

p, τ(p), τ 2(p), ...

Let G be a probability function which, given a population vector p, pro-
duces a vector whose ith component is the probability that the ith element of
Ω is chosen for the next generation (with replacement). That is, G(p) is the
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probability vector which specifies the sampling distribution for the next gener-
ation. If the population is infinitely large, then G(p) is the exact distribution
of the next population.

For example, let Ω be the set {00, 01, 10, 11} and suppose the function G
is

G(p) =
(p0, 2p1, 5p2, 0)

p0 + 2p1 + 5p2

Let the initial population be p = (0.25, 0.25, 0.25, 0.25). Thus, G(p) =
(1/8, 1/4, 5/8, 0), and the probability of sampling 00 is 1/8, of sampling 01
is 1/4, and of sampling 10 is 5/8. If population size is r = 100, the tran-
sition rule corresponds to making 100 independent samples, with replace-
ment, according to these probabilities. A plausible next generation is therefore
τ(p) = ( 12

100
, 25

100
, 63

100
, 0) = (0.12, 0.25, 0.63, 0).

Genetic algorithms can be classified according to the behavior of G. In par-
ticular, a genetic algorithm is called focused if G is continuously differentiable
and for every p the sequence

p,G(p),G2(p), ...

converges. If we denote ω = liml→∞ Gl(p), then by the continuity of G,

G(ω) = G( lim
l→∞

Gl(p)) = lim
l→∞

Gl+1(p) = ω

Such points ω that satisfy G(ω) = ω are called fixed points of G. These
points have great influence on both the short-term and asymptotic behavior
of focused genetic algorithms. One of the purposes of our research is to under-
stand the effects of incorporating learning into the genetic algorithm on these
fixed points and the behavior of the algorithm around those points.

The simple genetic algorithm model is now realized by defining the function
G through steps analogous to the classical genetic algorithm. In the follow-
ing sections we describe how the genetic operators of selection, mutation and
crossover are defined, and then how these elements are combined in the simple
genetic algorithm.

Before starting off the detailed description of the genetic operators, it is
convenient to mention the algebraic notation that will be used throughout this
thesis:
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⊕ is the bitwise exclusive-or operator and ⊗ is the bitwise and operator,
for example:

5⊕ 3 = 101⊕ 011 = 111 = 6

4⊗ 6 = 100⊗ 110 = 100 = 4

k is the bitwise complement of k, i.e. k = 1⊕ k. For example, 101 = 010.

2.2 Selection

Let the vector st represent the population vector at generation t after selection
but before any other operators (e.g. mutation and crossover) are applied.

The computation of st from pt is based on a fitness function f : Ω → R.
The value f(i) is called the fitness of i. Through the identification fi = f(i),
the fitness function may also be regarded as a vector. We also define diag(f)
as the diagonal matrix whose (i, i)th element is given by fi.

Proportional selection is then defined for each x ∈ Λ by the following
selection function:

F(x) =
diag(f)x

fT x

Thus the population vector at generation t after selection is:

st = F(pt) =
diag(f)pt

fT pt

where diag(f)pt = (f0p
t
0, f1p

t
1, ..., fn−1p

t
n−1) and the population fitness weighted

average is given by fT pt = f0p
t
0 + f1p

t
1 + ... + fn−1p

t
n−1.

2.3 Mutation

Let the vector µ be a mutation vector in which the component µi is the prob-
ability with which i ∈ Ω is selected to be a mutation mask. The effect of
mutating a vector x using mutation mask i is to alter the bits of x in those
positions where the mutation mask i is 1, i.e. the result is x⊕ i.

When mutation is determined by a mutation rate µ ∈ [0, 0.5), the proba-
bility of selecting mask i depends only on the number of 1s that i contains,
i.e. the distribution µ is defined by the following rule:
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µi = (µ)the number of 1s in i(1− µ)the number of 0s in i

= (µ)1
T ·i(1− µ)l−1T ·i

where 1T · i denotes the inner product of the vector of 1s with the mask i, and
l denotes the length of i.

The function Fµ corresponding to mutating the result of selection is defined
by

Fµ(p)i = Pr[i results | population p]

=
∑

j

Pr[j selected | population p] Pr[j mutates to i]

=
∑

j

F(p)jµj⊕i

where µj⊕i denotes the probability to choose the mutation mask j ⊕ i, which
transforms vector j to vector i, since j ⊕ (j ⊕ i) = (j ⊕ j)⊕ i = 0⊕ i = i.

2.4 Crossover

Let the vector χ be a crossover vector in which the component χi is the prob-
ability with which i ∈ Ω is selected to be a crossover mask. The application
of a crossover mask i to parent vectors x, y produces offsprings by exchanging
the bits of the parents in those positions where the crossover mask i is 1. The
result is the pair (x⊗ i)⊕ (i⊗ y) and (y⊗ i)⊕ (i⊗x), each created with equal
probability. The application of χ to x, y is referred to as recombining x and y.

When crossover is determined by a crossover rate χ ∈ [0, 1], the distribution
χ is specified according to the following rule:

χi =

{
χci i > 0

1− χ + χc0 i = 0

Classical crossover types include 1-point crossover, for which:

ci =

{
1

l−1
∃k ∈ (0, l)| i = 2k − 1

0 otherwise

2.5 Mixing

Obtaining child z from parents x and y via the process of mutation and
crossover is called mixing and has probability denoted by mx,y(z).
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By theorem 4.3 in [5], if mutation is performed before crossover, then

mx,y(z) =
∑

i,j,k

µiµj
χk + χk

2
[((x⊕ i)⊗ k)⊕ (k ⊗ (y ⊕ j)) = z]

The right hand side sums the probabilities of choosing mutation masks i, j
and a crossover mask k such that the result of mutating x, y using i, j and
then recombining x⊕ i and y ⊕ j using k produces offspring z.

By theorem 4.4 in [5],

mx,y(z) = my,x(z) = mx⊕z,y⊕z(0)

It was also shown by Vose that as long as the mutation rate is independently
applied to each bit in the string, it makes no difference whether mutation is
applied before or after crossover.

The matrix M with (i, j)th entry mi,j(0) is called the mixing matrix. The
mixing matrix can provide mixing information for any string z just by changing
how M is accessed.

Let σk be the permutation matrix defined by

(σk)i,j = [i⊕ j = k]

The permutation σk corresponds to applying the mapping i 7→ i⊕ k to the
subscripts of a given vector, that is

σk(x0, ..., xn−1) = (x0⊕k, ..., x(n−1)⊕k)

The mixing function M is now defined by the component equations

M(x)i = (σix)T M(σix)

M(x)i represents the probability that the string i is produced after muta-
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tion and crossover are applied to a population vector x, which follows from:

M(x)i = (x0⊕i, ..., x(n−1)⊕i)
T M(x0⊕i, ..., x(n−1)⊕i)

=
∑

u

xu⊕i(
∑

v

Mu,vxv⊕i)

=
∑
u,v

xu⊕iMu,vxv⊕i

=
∑
u,v

xuxvMu⊕i,v⊕i

=
∑
u,v

xuxvmu⊕i,v⊕i(0)

=
∑
u,v

xuxvmu,v(i)

=
∑
u,v

xuxv Pr[i is the child | parents u, v]

Thus, the expected population vector at time t + 1 can be computed from
st by:

pt+1 = M(st) = ( (σ0s
t)T M(σ0s

t), ..., (σn−1s
t)T M(σn−1s

t) )

2.6 The SGA

Following the previous sections, the function G, defining the simple genetic
algorithm, can be formulated as the composition of the mixing and selection
functions:

G = M◦F
Although the heuristic functions F and M can be shown to be focused

under quite general conditions and formulas can be derived for their fixed
points, the situation for G is considerably more complex. It is yet unknown
when G is focused, although empirical evidence shows that this is often the
typical case.

In section 6 we derive formulae for the differential dGx to be used as the
main analytical tool to explore the behavior of the genetic algorithm around
its stationary points.

A computer program that computes G for any given mutation rate µ and
crossover rate χ is included in Appendix A.
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Chapter 3

Adding Learning to the Simple
Genetic Algorithm

In this thesis we model the learning algorithm as a steepest ascent of each
binary string in the population to the string with the highest fitness among
its neighbors in the Hamming space. Each improvement changes at most one
bit in the string being processed.

The learning algorithm is applied to the initial population processed by the
genetic algorithm and to all successive generations just before the mutation
and recombination operators are applied to obtain the next generation.

There are two learning strategies corresponding to Darwinian and Lamar-
ckian evolution. In Darwinian evolution, lifetime events occurred to individual
change its fitness but such changes are not incorporated back into its genome.
In Lamarckian evolution, acquired changes are incorporated back into the
genome and will be inherited to the offspring of the organism.

For both Darwinian and Lamarckian evolution, the learning algorithm can
be outlined as follows:

For each vector x representing a binary string in the current population p:

1. Evaluate the fitness values of x and all its neighbors in the Hamming
space.

2. Find the vector max with the best fitness out of all x’s neighbors.

3. If x = max, no changes are applied to x.
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4. If Lamarckian search strategy is used, replace x with max.

5. If Darwinian search strategy is used, change the fitness of x to equal
f(max).

3.1 Defining Learning Matrix

Let d(x, y) be the Hamming distance between binary strings x and y. Let us
now define L as a learning matrix of size n × n, which represents one step of
local search by:

Li,j =

{
1 if i = argmax{k|d(j,k)≤1} f(k)
0 otherwise

For example, let f be the following 4 bit fitness function:

f(0000) = 14 f(0100) = 10 f(1000) = 6 f(1100) = 2
f(0001) = 13 f(0101) = 9 f(1001) = 5 f(1101) = 1
f(0010) = 12 f(0110) = 8 f(1010) = 4 f(1110) = 0
f(0011) = 11 f(0111) = 7 f(1011) = 3 f(1111) = 15

In this fitness landscape 1111 is the global maximum while 0000 is a local
maximum. In this case, the matrix L is defined as follows:

L =




1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1




Note that the first row of the matrix has a 1 bit in those positions that
represent strings that are attracted to string 0000, i.e. all strings that are
different from 0000 by 1 bit for which the value of the function at 0000 is the
highest compared to all other 1 bit changes. And in general, row i of the ma-
trix flags those strings that are attracted to string i under one step of steepest
ascent.

Let us define the learning rate η as the number of steps of local search
applied to each population. The learning function L is now defined by:

L(x) = Lηx
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3.2 Darwinian Evolution

To model the Darwinian evolution, only the fitness function needs to be
changed. A new fitness function fD will be constructed from f by the fol-
lowing rule:

fD,i = max
{k|d(i,k)≤1}

f(k)

For example, the following function fD is constructed from the 4-bit fitness
function described in section 3.1:

fD(0000) = f(0000) = 14 fD(1000) = f(0000) = 14
fD(0001) = f(0000) = 14 fD(1001) = f(0001) = 13
fD(0010) = f(0000) = 14 fD(1010) = f(0010) = 12
fD(0011) = f(0001) = 13 fD(1011) = f(1111) = 15
fD(0100) = f(0000) = 14 fD(1100) = f(0100) = 10
fD(0101) = f(0001) = 13 fD(1101) = f(1111) = 15
fD(0110) = f(0010) = 12 fD(1110) = f(1111) = 15
fD(0111) = f(1111) = 15 fD(1111) = f(1111) = 15

Running a simple genetic algorithm on function fD produces results identi-
cal to running a simple genetic algorithm on function f and using one iteration
of steepest ascent to change the evaluation of each vector.

Therefore, in the case of Darwinian evolution the learning process is incor-
porated into the selection function F , and the whole evolutionary process is
described by the function G = M◦F .

3.3 Lamarckian Evolution

Under the Lamarckian strategy, the population distribution is altered at the
beginning of each generation to model the effects of the local search.

Let pt,L be the population vector at time t after the learning process. This
vector can be computed from pt by

pt,L = L(pt) = Lηpt

For the example fitness function described in the previous section and learn-
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ing rate η = 1, the redistribution of points in the search space occurs as follows:

pt,L
0000 = pt

0000 + pt
0001 + pt

0010 + pt
0100 + pt

1000

pt,L
0001 = pt

0011 + pt
0101 + pt

1001

pt,L
0010 = pt

0110 + pt
1010

pt,L
0100 = pt

1100

pt,L
1111 = pt

0111 + pt
1011 + pt

1101 + pt
1110 + pt

1111

The probabilities of all the other vectors become 0. These vectors lie be-
tween basins of attraction, and thus have no representation after one iteration
of steepest ascent.

Now we can extend the function G to include the effects of Lamarckian
learning. GL will be defined as the simple genetic algorithm function where a
learning process defined by L is applied to each generation, i.e.

GL = M◦F ◦ L
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Chapter 4

Experiments

4.1 Empirical Results

At this stage, the hybrid genetic algorithms were used to track the expected
string representation in an infinitely large population. We used the same fit-
ness function described in section 3.1. In all experiments a one-point crossover
was used, the crossover rate was 0.5 and mutation rate was 0.01. The algo-
rithm was run until convergence was reached.

Figure 4.1 illustrates the results obtained using the SGA, SGA with Lamar-
ckian learning and SGA with Darwinian learning. Each graph shows the pro-
portions of strings 0000 (a local optimum) and 1111 (the global optimum) in
the population during the evolutionary process.

The results indicate that both the simple genetic algorithm without learn-
ing and the Lamarckian evolution converge to a local optimum, whereas the
Darwinian search strategy converges to the global optimum, but in a slower
pace. The plain SGA converged after 75 generations, while SGA with Lamar-
ckian learning converged after 60 generations and SGA with Darwinian learn-
ing converged after 95 generations.

One possible reason for the slow convergence of the Darwinian search strat-
egy is that there is less variation in the fitness of strings in the space under the
function fD (all strings have a fitness between 10 and 15). A one-time scaling
of the fitness was performed by subtracting 10 from each fitness value, which
caused the genetic algorithm to converge faster (see last graph on Figure 4.1).
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Figure 4.1: The proportion of the strings 0000 (local optimum) and 1111
(global optimum) in the population during the evolutionary process with and
without Lamarckian and Darwinian learning.
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4.2 Random Fitness Function

Next we created a random fitness function by assigning a random value be-
tween 0 and 20 to all points in space. Then we ran each of the three algorithms
50 times using the same fitness function, but starting from different random
initial populations p. Figure 4.2 shows the number of times each of the algo-
rithms has found the optimal solution, out of 50 runs.
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Figure 4.2: The percentage of times each of the algorithms converged to the
global optimum and to a local optimum out of 20 times. The left graph
represents SGA, the middle graph represents SGA with Lamarckian learning
and the right graph represents SGA with Darwinian learning.

As we can see, the Darwinian strategy consistently converged to the opti-
mal solution, while the Lamarckian strategy consistently converged to a sub-
optimal solution, and the GA without learning converged most of the times to
a sub-optimal solution.

4.3 Structured Fitness Function

In addition we wanted to compare the different models on a more structured
fitness function, thus we chose a fitness function which gives a higher score to
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strings that contain more 1 bits, i.e.

fi = 2 ∗ the number of 1s in i

for example, f0011 = 4 and f1110 = 6.
This function has only one local maximum, which is also its global maxi-

mum, at the point 1111. Figure 4.3 illustrates the results obtained using the
SGA, SGA with Lamarckian learning and SGA with Darwinian learning av-
eraged over 20 runs. Each graph shows the proportion of the string 1111 in
the population during a typical evolutionary process, starting from a random
initial population vector.
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Figure 4.3: The proportion of the string 1111 (global optimum) in the pop-
ulation during the evolutionary process with and without Lamarckian and
Darwinian learning, averaged over 20 runs.

In this case, since the fitness function contains only one global optimum,
the simple genetic algorithm and the Lamarckian algorithm don’t get trapped
in a local minimum, and thus all three strategies converge to the global max-
imum in all the experiments. As in the previous experiment, the convergence
rate of the Lamarckian strategy is much higher than the Darwinian strategy
and the algorithm with no learning (it took only 4 generations on the average
for it to converge).
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The reason that the string 1111 has only 54% proportion in the final popu-
lation vector of the Darwinian strategy is that all its that all its four neighbors
in the Hamming space (the strings 0111, 1011, 1101 and 1110) receive the
same fitness value as the vector at the global maximum, which makes the fit-
ness function’s surface flatter around this point.

Nevertheless, the vector at the global maximum receives a significantly
higher share than its neighbors (see figure 4.4), due to Baldwin’s effect dis-
cussed previously, which suggests that evolution tends to select individuals who
have already at birth those useful features which would otherwise be learned
during their lifetime.
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Figure 4.4: The proportion of the 16 possible strings in the final population
vector of the Darwinian evolutionary process.
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Chapter 5

Finite Population Model

Our next goal was to study how the standard GA converges to the analytical
Vose model by exploring the behavior of the hybrid genetic algorithm on a
finite population size. As defined in chapter 2, the finite genetic algorithm is
represented in the Vose model by the transition rule τ . τ can be computed by
sampling the function G using the following algorithm:

1. Select an initial random population vector x.

2. Compute the distribution represented by G(x).

3. Select i ∈ 0, ..., n− 1 for the next generation with probability G(x)i.

4. Repeat the previous step until the next generation is complete.

5. Replace x by the population vector describing the new generation just
formed.

6. If termination criterion not met, return to step 2.

This algorithm was implemented to compare the orbit p, τ(p), τ 2(p), ... and
the theoretical SGA orbit p,G(p),G2(p), ... for increasing population sizes un-
der the different variants of SGA.

Figures 5.1 and 5.2 show the differences between the trajectories deter-
mined by τ and G, as measured by the sum of squared distance between the
vectors, for population sizes r = 100 and r = 1000, using a random fitness
function.
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Figure 5.1: The Euclidean distance between the finite population vector τ and
the infinite population vector G for population size r = 100.
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Figure 5.2: The Euclidean distance between the finite population vector τ and
the infinite population vector G for population size r = 1000.
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When the population size is 100, a general agreement between τ and G is
observed for both plain SGA and SGA with Lamarckian learning, while the
SGA with Darwinian learning does not converge to its asymptotical fixed point.
When the population size is 1000, all three methods converge. The same exper-
iment has been repeated for increasing population sizes r = 3000, 10000, 100000.
As r →∞, the trajectories of τ and G become close to each other and all three
algorithms converge to their asymptotical fixed points.

These results suggest that in small population sizes the Lamarckian evolu-
tion outperforms the Darwinian evolution, while the Darwinian evolution has
a clear advantage in larger population sizes. This can be explained by the
observation that low genetic diversity in small populations helps Lamarckian
evolution reach its theoretical fixed point faster, while large population variety
helps the Darwinian algorithm explore the search space more efficiently.
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Chapter 6

The Spectrum of dG

In this chapter we obtain the formulas for calculating the differential dG for
the hybrid genetic algorithms described earlier.

The importance of the differential dG lies in the fact that it represents the
best linear approximation to G near a given point. Therefore, the asymptotical
behavior of G in the areas near its fixed points can often be determined by the
eigenvalues of the differential dG at the stationary point. For instance, in a
stable fixed point we expect all eigenvalues of dG to be less than 1. The fixed
points of G indicate areas where there is little pressure for change, thus it is
expected that the SGA will spend more time near such regions of the search
space.

We will first obtain the formulas for the derivative of G for the non-
Lamarckian case (i.e. plain SGA or SGA with Darwinian learning) and then
we will develop the formula for dGL for the Lamarckian case. Finally, we will
use these formulas to compare the behavior of the different genetic algorithms
in the vicinity of their fixed points.

6.1 Non-Lamarckian Evolution

From section 2.6 we have the following formula for the function G:

G = M◦F

For proportional selection,

F(x) =
diag(f)x

fT x
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Let us denote the Jacobian matrix of the function F(x) by dFx.
By theorem 7.1 in [5]:

dFx =
fT x · diag(f)− diag(f)xfT

(fT x)2

By theorem 6.13 in [5], considered as a function M : RN → RN , the
Jacobian matrix of M(x) is:

dMx = 2
∑

u

σT
u M∗σuxu

where M∗ is the twist of matrix M , i.e. its i, jth entry is Mi⊕j,i.

According to the chain rule of multivariate functions, the Jacobian matrix
of a composite function is the product of the Jacobian matrices of the two
functions. Thus, the differential dG may be calculated using the following
formula:

dGx = dMF(x) · dFx

6.2 Lamarckian Evolution

As defined in section 3.2, the formula for GL incorporates the learning operator
L, thus:

GL = M◦F ◦ L
Since the learning matrix L represents a linear transformation, the Jacobian

of the function L(x) is precisely L. Thus, the differential dGL may be calculated
by the following formula:

dGL
x = dMF(L(x)) · dFL(x) · L

6.3 Fixed Points Analysis

We used the formulas for dG to compare the asymptotic behavior of the dif-
ferent genetic algorithms near their fixed points. We conducted a series of
experiments using a random fitness function and the same crossover and mu-
tation settings as in the previous sections.

In all experiments the differential dG at the initial point had some eigen-
values greater than 1 whereas at the fixed point all eigenvalues were smaller

26



than 1, which means that in all experiments the algorithms converged to a
stable fixed point.

Let us denote the vector of eigenvalues of the Jacobian matrix dG at gen-
eration i by spec(dG)i. A typical example for the spectrum of dG at the be-
ginning (generation 0) and at the end of the evolutionary process (generation
n) is illustrated below:

spec(dG)0 = (0.000, 1.802, 1.661, 1.582, 1.406, 1.172, 1.063,
0.829, 0.793, 0.513, 0.323, 0.249, 0.000, 0.068, 0.085, 0.076)

spec(dG)n = (0.000, 0.943, 0.734, 0.754, 0.581, 0.564, 0.525,
0.387, 0.333, 0.281, 0.176, 0.000, 0.010, 0.049, 0.027, 0.028)

As evident, all eigenvalues have modulus less than 1 at the fixed point, i.e.
the spectral radius of the matrix is: ρ(dG) = max |λ| < 1, which means that
in the area of the fixed point, dG is a convergent matrix and limn→∞(dG)n = 0.

Comparing the spectrums of dG at the fixed points has revealed some
differences between the different algorithms, as illustrated in figure 6.1. This
figure shows that the most significant change in the spectrum of dG occurs
within the genetic algorithm without learning. This can be explained by the
fact that the distance the SGA has to travel in order to reach a fixed point is
much greater than the algorithms which use learning as a guidance.

It should also be noted that the Lamarckian evolution has the smallest
eigenvalues at the fixed point. This view supports the results obtained in
the previous sections which showed that the Lamarckian evolution had the
strongest attraction to its fixed points and thus the fastest convergence rate.
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Chapter 7

Numerical Function
Optimization Test

Finally, we wanted to test if the results obtained earlier, mainly that the
Lamarckian evolution works faster but Darwinian evolution works better on
the long run, hold for other examples and for regular GA not only in the Vose
model. Thus, we tested the effects of adding Darwinian and Lamarckian search
strategies to a simple genetic algorithm in a numerical function optimization
test. For this test we have chosen the Schwefel numerical function [19], which
has been widely used as a benchmark problem in evolutionary optimization
literature:

f(x) = 418.989 ∗ n +
n∑

i=1

−xisin(
√
|xi|) xi ∈ [−512, 511]

where n indicates the number of variables.
The surface of Schwefel’s function is composed of a great number of peaks

and valleys (figure 7.1 shows the function for n = 2). The function has a
second best minimum far from the global minimum where many search al-
gorithms are trapped. Moreover, the global minima are located near the
bounds of the domain - at the points x = (−420.9687, ...,−420.9687) and
x = (420.9687, ..., 420.9687), where f(x) = 0.

We have used the Schwefel function with n = 20 to compare the perfor-
mance of the standard genetic algorithm, Lamarckian learning and Darwinian
learning. We used real-valued representations, i.e. an alphabet of floats, with
uniform mutation and simple crossover. Local optimization was employed in
the form of steepest descent.

Figure 7.2 shows the evolutionary graphs for each genetic algorithm, using a
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Figure 7.1: The Schwefel function for n = 2. The global minima are located
at (-420.9687, -420.9687), (420.9687, 420.9687).

population size of 100. Similar results were observed for larger population sizes.
The graph shows that the Lamarckian search results in faster improvement in
the early stages of the evolutionary run, however the average best solution
for the Darwinian search gains superiority after a certain period of time. This
supports our earlier conclusions that if one wishes to obtain results quickly, the
Lamarckian strategy is the favorable choice, however the Darwinian strategy
tends to have better long-term effects.
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Chapter 8

Conclusions

In this thesis we have shown how learning algorithms can be integrated into
the Vose dynamical systems model of the simple genetic algorithm. We have
succeeded in using the integrated model to demonstrate some differences in
the behavior of the SGA under different learning schemes.

The results clearly indicate that a Darwinian search strategy as defined
in this thesis can be more effective in the long run than a Lamarckian strat-
egy employing the same local search strategy, especially in large population
sizes. However, in most cases, the Darwinian search strategy is slower than
the Lamarckian search.

We have also supplied new mathematical formulas to analyze the asymp-
totic behavior of the different genetic algorithms near their fixed points. Using
these formulas we have shown that the attraction of the Lamarckian strategy to
its fixed points is much stronger than the attraction of the Darwinian strategy.
This allows the Lamarckian strategy to make faster improvements, whereas it
gives the Darwinian strategy the opportunity to explore more extensive areas
of the search space, thus enabling it to reach the global optimum in cases
where the Lamarckian strategy converges to a local optimum.

In future we would like to extend the analysis model in order to cover other
aspects of the interaction between evolution and learning, such as changing the
environmental conditions during the evolution, and including cost of learning.
Another interesting aspect of the model to investigate is whether it can be
used to predict on which types of functions or problems learning can accelerate
evolution, and how various parameters such as mutation rate, learning rate, or
population size can affect the performance of both Lamarckian and Darwinian
evolutions.
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Appendix A

Matlab code

% SGA.m

%

% The main function of the algorithm - it runs the SGA on an initial

% population distribution vector until convergence is reached.

function SGA()

len = 4; % length of the binary strings

n = len ^ 2; % the dimension of the search space

max_iterations = 1000; % max number of iterations

epsilon = 0.0000001; % convergence criterion

mutation_rate = 0.01; % mutation rate

crossover_rate = 0.5; % crossover rate

learning_rate = 1; % learning rate

learning_type = 1; % a flag indicating which type of learning to use

% 0 - no learning, 1 - Lamarckian, 2 - Darwinian

% create an initial distribution vector

p = ones(n, 1);

p = p / n;

f = fitness(n, len)

% compute the mixing matrix (includes mutation and recombination)

mixing_mat = MixingMatrix(len, mutation_rate, crossover_rate);

% compute the learning matrix

if learning_type == 1 % Lamarckian

34



learning_mat = LearningMatrix(len, f, learning_rate)

elseif learning_type == 2 % Darwinian

f = DarwinianFitnessFunction(len, f)

end

% run the algorithm

for i = 1:max_iterations

display([’generation #’ int2str(i)]);

% store the proprotion of the optimum points

y(1, i) = p(1);

y(2, i) = p(n);

% apply selection scheme to the population vector

p_after_selection = selection(p, f);

% apply the mixing matrix to the population vector

p_after_mixing = mix(mixing_mat, p_after_selection, len);

% apply learning

if learning_type == 1 % Lamarckian

p_after_learning = learn(learning_mat, p_after_mixing);

else

p_after_learning = p_after_mixing;

end

new_p = p_after_learning;

p_new = new_p’ % for printing

% check for convergence

diff_p = sum((p - new_p) .^ 2);

if (diff_p < epsilon)

break;

end

p = new_p;

end

if i == max_iterations

display(’no convergence’);

else

35



display([’converged after ’ int2str(i) ’ generations’]);

end

% display graph with the proportion of the optimum points

gen = [0:1:length(y)-1];

plot(gen, y(1,:), ’-b’, gen, y(2,:), ’-.r’);

axis([0, length(y) - 1, 0, 1]);

legend(’0000’, ’1111’);

xlabel(’Generations’);

if learning_type == 0

title(’SGA’);

elseif learning_type == 1

title(’SGA with Lamarckian Learning’);

else

title(’SGA with Darwinian Learning’);

end

% Define the fitness function

function f = fitness(n, len)

curr_fitness = 14;

for i = 1: n - 1

f(i) = curr_fitness;

curr_fitness = curr_fitness - 1;

end

f(n) = 15;
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% MixingMatrix.m

%

% This function computes the mixing matrix for a given mutation rate

% and crossover rate

function M = MixingMatrix(len, mutation_rate, crossover_rate)

n = 2 ^ len;

% compute the mutation vector

u = mutation_vector(mutation_rate, len);

% compute the crossover vector

c = crossover_vector(crossover_rate, len);

M = zeros(n, n);

% iterate over all the possible pairs in the population (x, y)

for x = 0:n-1

xb = dec2binvec(x, len);

for y = 0:n-1

yb = dec2binvec(y, len);

% iterate over all the possible mutation masks

for j = 0:n-1

jb = dec2binvec(j, len);

% iterate over all the possible crossover masks

for m = 0 : len - 1

k = 2 ^ m - 1;

kb = dec2binvec(k, len);

% if any of the children created after mutation and crossover

% are applied to the pair x,y is the zero vector, add the

% probability of the event to M

child1 = xor(xor(xb .* kb, not(kb) .* yb), jb);

if isequal(child1, zeros(1, len))

M(x+1, y+1) = M(x+1, y+1) + u(j+1) * c(k+1) / 2;

end
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child2 = xor(xor(xb .* not(kb), kb .* yb), jb);

if isequal(child2, zeros(1, len))

M(x+1, y+1) = M(x+1, y+1) + u(j+1) * c(k+1) / 2;

end

end

end

end

end

% This function computes the mutation vector

function u = mutation_vector(mutation_rate, len)

for i = 0 : 2 ^ len - 1

ib = dec2binvec(i, len);

u(i+1) = (mutation_rate) ^ (ones(1, len) * ib’) *

(1 - mutation_rate) ^ (len - ones(1,len) * ib’);

end

% This function computes the crossover vector

function c = crossover_vector(crossover_rate, len)

c = zeros(1, 2 ^ len);

c(1) = 1 - crossover_rate;

for k = 1 : len - 1

c(2 ^ k) = crossover_rate * (1 / (len - 1));

end
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% LearningMatrix.m

%

% Build the learning matrix according to the fitness vector and the

% learning rate

function L = LearningMatrix(len, f, learning_rate)

n = len ^ 2;

L = zeros(n, n);

for i = 0: n - 1

ib = dec2binvec(i, len);

% Find the maximum among all neighbors of string i with hamming

% distance 1

max = f(i + 1);

max_index = i + 1;

for j = 1: len

nb = ib;

nb(j) = xor(nb(j), 1);

n = binvec2dec(nb, len);

if f(n + 1) > max

max = f(n + 1);

max_index = n + 1;

end

end

L(max_index, i + 1) = 1;

end

L = L ^ learning_rate;
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% DarwinianFitnessFunction.m

%

% Build the fitness function induced by the Darwinian learning algorithm

function fd = DarwinianFitnessFunction(len, f)

n = len ^ 2;

for i = 0: n - 1

ib = dec2binvec(i, len);

% Find the maximum among all neighbors of string i with hamming

% distance 1

max = f(i + 1);

for j = 1: len

nb = ib;

nb(j) = xor(nb(j), 1);

n = binvec2dec(nb, len);

if f(n + 1) > max

max = f(n + 1);

end

end

fd(i + 1) = max;

end
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% selection.m

%

% This function returns the result of applying proportional selection

% on x using fitness function f

function F = selection(x, f)

F = diag(f) * x / (f * x);

% mix.m

%

% This function returns the result of applying mutation and crossover

% to the vector x using the mixing matrix

function M = mix(mixing_mat, x, len)

n = 2 ^ len;

M = zeros(n, 1);

for i = 1 : n

% compute the permutation (x0,...,x[n-1]) -> (x(0 xor i),...,

% x(n-1 xor i))

perm_x = zeros(n, 1);

for j = 1 : n

k1 = dec2binvec(i - 1, n);

k2 = dec2binvec(j - 1, n);

k = xor(k1, k2);

perm_x(j) = x(binvec2dec(k, n) + 1);

end

% compute the ith component of the vector after mixing

M(i) = perm_x’ * mixing_mat * perm_x;

end

% learn.m

%

% This function applies the learning matrix on a given vector p

function L = learn(learning_mat, p)

L = learning_mat * p;
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%F_Derivative.m

%

%This function computes the derivative of the fitness function f at

%point x

function dF = F_Derivative(f, x)

a = f’ * x * diag(f) - diag(f) * x * f’;

b = (f’ * x) ^ 2;

dF = a / b;

%M_Derivative.m

%

%This function computes the derivative of mixing matrix M at point x

function dM = M_Derivative(tM, x, len)

n = 2 ^ len;

sum_mat = zeros(n, n);

for u = 0:n-1

P = PermutationMatrix(u, len);

sum_mat = sum_mat + (P * tM * P .* x(u + 1));

end

dM = 2 * sum_mat;

%G_Derivative.m

%

%This function computes the derivative of function G at point x

%using the chain rule.

function dG = G_Derivative(f, x, len, tM)

dF = F_Derivative(f, x);

Fx = selection(x, f);

dM = M_Derivative(tM, Fx, len);

dG = dM * dF;
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%G_Lamarckian_Derivative.m

%

%This function computes the derivative of function G at point x

%taking into account the learning matrix L.

function dGL = G_Lamarckian_Derivative(f, x, len, tM, L)

Lx = learn(L, x);

dF = F_Derivative(f, Lx);

FLx = selection(Lx, f);

dM = M_Derivative(tM, FLx, len);

dGL = dM * dF * L; % Jacobian of Lx = L since L is a linear map

43


