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Abstract

Given a graph with edge costs, the power of a node is the maximum cost of an edge incident

to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications

in wireless networks, we consider the following fundamental problem in wireless network design.

Given a graph G = (V,E) with edge costs and degree bounds {r(v) : v ∈ V }, theMinimum-Power

Edge-Multi-Cover (MPEMC) problem is to find a minimum-power subgraph J of G such that the

degree of every node v in J is at least r(v). Let k = maxv∈V r(v). For k = Ω(log n), the previous

best approximation ratio for MPEMC was O(log n), even for uniform costs [3]. Our main result

improves this ratio to O(log k) for general costs, and to O(1) for uniform costs. This also implies

ratios O(log k) for the Minimum-Power k-Outconnected Subgraph and O
(

log k log n

n−k

)

for the

Minimum-Power k-Connected Subgraph problems; the latter is the currently best known ratio for

the min-cost version of the problem. In addition, for small values of k, we improve the previously

best ratio k + 1 to k + 1/2.
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1 Introduction

1.1 Motivation and problems considered

Wireless networks are studied extensively due to their wide applications. The power consumption

of a station determines its transmission range, and thus also the stations it can send messages to;

the power typically increases at least quadratically in the transmission range. Assigning power

levels to the stations (nodes) determines the resulting communication network. Conversely, given a

communication network, the power required at v only depends on the farthest node reached directly

by v. This is in contrast with wired networks, in which every pair of stations that communicate

directly incurs a cost. An important network property is fault-tolerance, which is often measured

by minimum degree or node-connectivity of the network. Node-connectivity is much more central

here than edge-connectivity, as it models stations failures. Such power minimization problems were

vastly studied; see for example [1, 2, 5, 8, 9] and the references therein for a small sample of papers

in this area. The first problem we consider is finding a low power network with specified lower

degree bounds. The second problem is the Min-Power k-Connected Subgraph problem. We give

approximation algorithms for these problems, improving the previously best known ratios.

Definition 1.1 Let (V, J) be a graph with edge-costs {c(e) : e ∈ J}. For a node v ∈ V let δJ(v)

denote the set of edges incident to v in J . The power pJ(v) of v is the maximum cost of an edge

in J incident to v, or 0 if v is an isolated node of J ; i.e., pJ(v) = maxe∈δJ (v) c(e) if δJ(v) 6= ∅, and
pJ(v) = 0 otherwise. For V ′ ⊆ V the power of V ′ w.r.t. J is the sum pJ(V

′) =
∑

v∈V ′ pJ(v) of the

powers of the nodes in V ′.

Unless stated otherwise, all graphs are assumed to be undirected and simple. Let n = |V |.
Given a graph G = (V,E) with edge-costs {c(e) : e ∈ E}, we seek to find a low power subgraph

(V, J) of G that satisfies some prescribed property. One of the most fundamental problems in

Combinatorial Optimization is finding a minimum-cost subgraph that obeys specified degree con-

straints (sometimes called also “matching problems”) c.f. [10]. Another fundamental property is

fault-tolerance (connectivity). In fact, these problems are related, and we use our algorithm for the

former as a tool for approximating the latter.

Definition 1.2 Given degree bounds r = {r(v) : v ∈ V }, we say that an edge-set J on V is an

r-edge cover if dJ(v) ≥ r(v) for every v ∈ V , where dJ(v) = |δJ(v)| is the degree of v in the graph

(V, J).

Minimum-Power Edge-Multi-Cover (MPEMC):

Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, degree bounds r = {r(v) : v ∈ V }.
Objective: Find a minimum power r-edge cover J ⊆ E.

Given an instance of MPEMC, let k = maxv∈V r(v) denote the maximum requirement.
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We now define our connectivity problems. A graph is k-outconnected from s if it contains k

internally-disjoint sv-paths for all v ∈ V \ {s}. A graph is k-connected if it is k-outconnected from

every node, namely, if it contains k internally-disjoint uv-paths for all u, v ∈ V .

Minimum-Power k-Outonnected Subgraph (MPkOS):

Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, a root s ∈ V , and an integer k.

Objective: Find a minimum-power k-outconnected from s spanning subgraph J of G.

Minimum-Power k-Connected Subgraph (MPkCS):

Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E} and an integer k.

Objective: Find a minimum-power k-connected spanning subgraph J of G.

1.2 Our Results

For large values of k = Ω(log n), the previous best approximation ratio for MPEMC was O(logn),

even for uniform costs [3]. Our main result improves this ratio to O(log k) for general costs, and to

O(1) for uniform costs.

Theorem 1.1 MPEMC admits an O(log k)-approximation algorithm. For uniform costs, MPEMC

admits a randomized approximation algorithm with expected approximation ratio ρ < 2.16851, where

ρ is the real root of the qubic equation e(ρ− 1)3 = 2ρ.

For small values of k, the problem admits also the ratios k+1 for arbitrary k [2], while for k = 1

the best known ratio is k+1/2 = 3/2 [4]. Our second result extends the latter ratio to arbitrary k.

Theorem 1.2 MPEMC admits a (k + 1/2)-approximation algorithm.

For small values of k, say k ≤ 6, the ratio (k + 1/2) is better than O(log k) because of the

constant hidden in the O(·) term. And overall, our paper gives the currently best known ratios for

all values k ≥ 2.

In [5] it is proved that an α-approximation for MPEMC implies an (α + 4)-approximation for

MPkOS. The previous best ratio for MPkOS was O(log n) + 4 = O(logn) [5] for large values of

k = Ω(log n), and k + 1 for small values of k [9]. From Theorem 1.1 we obtain the following.

Theorem 1.3 MPkOS admits an O(log k)-approximation algorithm.

In [2] it is proved that an α-approximation for MPEMC and a β-approximation for Min-Cost

k-Connected Subgraph implies a (α + 2β)-approximation for MPkCS. Thus the previous best ratio

for MPkCS was 2β+O(logn) [3], where β is the best ratio for MCkCS (for small values of k better

ratios for MPkCS are given in [9]). The currently best known value of β is O
(

log k log n
n−k

)

[7],

which is O(log k), unless k = n− o(n). From Theorem 1.1 we obtain the following.

5



Theorem 1.4 MPkCS admits an O(β + log k)-approximation algorithm, where β is the best ratio

for MCkCS. In particular, MPkCS admits an O
(

log k log n
n−k

)

-approximation algorithm.

1.3 Overview of the techniques

Let the trivial solution for MPEMC be obtained by picking for every node v ∈ V the cheapest r(v)

edges incident to v. It is known and easy to see that this produces an edge set of power at most

(k + 1) · opt, see [2].

Our O(log k)-approximation algorithm uses the following idea. Extending and generalizing an

idea from [3], we show how to find an edge set I ⊆ E of power O(opt) such that for the residual

instance, the trivial solution value is reduced by a constant fraction. We repeatedly find and add

such an edge set I to the constructed solution, while updating the degree bounds accordingly to

r(v)← max{r(v)− dI(v), 0}. After O(log k) steps, the trivial solution value is reduced to opt, and

the total power of the edges we picked is O(log k) · opt. At this point we add to the constructed

solution the trivial solution of the residual problem, which at this point has value opt, obtaining

an O(log k)-approximate solution.

Our algorithm for uniform costs has two phases. In the first phase we compute an optimal

solution x to a certain LP-relaxation for the problem and round it to 1 with probability min{ρ·x, 1}.
In the second phase we add to the obtained partial solution the trivial solution to the residual

problem.

Our (k+1/2)-approximation algorithm uses a two-stage reduction. The first reduction reduces

MPEMC to a constrained version of MPEMC with k = 1, where we also have lower bounds ℓv on

the power of each node v ∈ V ; these lower bounds are determined by the trivial solution to the

problem. We will show that a ρ-approximation algorithm to this constrained version implies a

(k − 1 + ρ)-approximation algorithm for MPEMC. The second reduction reduces the constrained

version to the Minimum-Cost Edge Cover problem with a loss of 3/2 in the approximation ratio.

As Minimum-Cost Edge Cover admits a polynomial time algorithm, we get a ratio ρ = 3/2 for the

constrained problem, which in turn gives the ratio k − 1 + ρ = k + 1/2 for MPEMC.
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2 Proof of Theorem 1.1

2.1 Reduction to bipartite graphs

Let Bipartite MPEMC be the restriction of MPEMC to instances for which the input graph G =

(V,E) is a bipartite graph with sides A,B, and with r(a) = 0 for every a ∈ A (so, only the nodes

in B may have positive degree bound).

As in [3], we can reduce MPEMC to Bipartite MPEMC, by taking two copies A = {av : v ∈ V }
and B = {bv : v ∈ V } of V , for every edge e = uv ∈ E adding the two edges aubv and avbu of

cost c(e) each, and for every v ∈ V setting r(bv) = r(v) and r(av) = 0. It is proved in [3] that

this reduction invokes a factor of 2 in the approximation ratio, namely, that a ρ-approximation for

bipartite MPEMC implies a 2ρ-approximation for general MPEMC.

In the case of uniform costs, we can save a factor of 2 using a different reduction.

Proposition 2.1 Ratio ρ for Bipartite MPEMC with unit costs implies ratio ρ for MPEMC with

uniform costs.

Proof: Clearly, the case of uniform costs is equivalent to the case of unit costs. Now we show that

for unit costs, MPEMC can be reduced to Bipartite MPEMC. Let G = (V,E), r be an instance of

MPEMC with unit costs. If there is an edge e = uv ∈ E with r(u), r(v) ≥ 1 or with r(u) = r(v) = 0,

then we can obtain an equivalent instance by removing e from G, and in the case r(u), r(v) ≥ 1

also decreasing each of r(u), r(v) by 1. Hence we may assume that every e ∈ E has one end in

A = {a ∈ V : r(a) = 0} and the other end in B = {b ∈ V : r(b) ≥ 1}. The statement follows. �

2.2 An O(log k)-approximation algorithm for general costs

Let opt denote the optimal solution value of a problem instance at hand. For v ∈ V , let wv be the

cost of the r(v)-th least cost edge incident to v in E if r(v) ≥ 1, and wv = 0 otherwise. Given a

partial solution J to Bipartite MPEMC let rJ(v) = max{r(v)− dJ(v), 0} be the residual bound of v

w.r.t. J . Let

RJ =
∑

b∈B

wbrJ(b) .

The main step in our algorithm is given in the following lemma, which will be proved later.

Lemma 2.2 There exists a polynomial time algorithm that given an edge set J ⊆ E, an integer τ ,

and a parameter γ > 1, either correctly establishes that τ < opt, or returns an edge set I ⊆ E \ J
such that pI(V ) ≤ (1 + γ)τ and RJ∪I ≤ θRJ , where θ = 1−

(

1− 1
γ

)

(

1− 1
e

)

.

Lemma 2.3 Let J ⊆ E and let F ⊆ E \ J be an edge set obtained by picking rJ(b) least cost edges

in δE\J(b) for every b ∈ B. Then J∪F is an r-edge-cover and: pF (B) ≤ opt, pF (A) ≤ RJ ≤ k ·opt.
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Proof: Since F is an rJ -edge-cover, J ∪ F is an r-edge-cover. By the definition of F , for any

r-edge-cover I, pF (b) ≤ wb ≤ pI(b) for all b ∈ B. In particular, if I is an optimal r-edge-cover, then

pF (B) ≤
∑

b∈B

wb ≤
∑

b∈B

pI(b) = pI(B) ≤ opt .

Also,

RJ =
∑

b∈B

wbrJ(b) ≤ k ·
∑

b∈B

wb ≤ k · opt .

Finally, pF (A) ≤ RJ since

pF (A) =
∑

a∈A

pF (a) ≤
∑

a∈A

∑

e∈δF (a)

c(e) =
∑

e∈F

c(e) ≤
∑

b∈B

wbrJ(b) = RJ .

This concludes the proof of the lemma. �

Theorem 1.1 is deduced from Lemmas 2.2 and 2.3 as follows. We set γ to be constant strictly

greater than 1, say γ = 2. Then θ = 1 − 1
2

(

1− 1
e

)

. Using binary search, we find the least integer

τ such that the following procedure computes an edge set J satisfying RJ ≤ τ .

Initialization: J ← ∅.
Loop: Repeat ⌈log1/θ k⌉ times:

Apply the algorithm from Lemma 2.3:

- If it establishes that τ < opt then return “ERROR” and STOP.

- Else do J ← J ∪ I.

After computing J as above, we compute an edge set F ⊆ E \J as in Lemma 2.3. The edge-set

J ∪ F is a feasible solution, by Lemma 2.3. We claim that for any τ ≥ opt the above procedure

returns an edge set J satisfying RJ ≤ τ ; thus binary search indeed applies. To see this, note that

R∅ ≤ k · opt and thus

RJ ≤ R∅ · θ⌈log1/θ k⌉ ≤ k · opt · 1/k = opt ≤ τ .

Consequently, the least integer τ for which the above procedure does not return “ERROR” satisfies

τ ≤ opt. Thus pJ(V ) ≤ ⌈log1/θ k⌉ · (1 + γ) · τ = O(log k) · opt. Also, by Lemma 2.3, pF (V ) ≤
opt+RJ ≤ 2opt. Consequently,

pJ∪F (V ) ≤ pJ(V ) + pF (V ) = O(log k) · opt+ 2opt = O(log k) · opt .

In the rest of this section we prove Lemma 2.2. It is sufficient to prove the statement in the

lemma for the residual instance ((V,E \J), rJ) with edge-costs restricted to E \J ; namely, we may

assume that J = ∅. Let R = R∅ =
∑

b∈B wbr(b).

Definition 2.1 An edge e ∈ E incident to a node b ∈ B is τ -cheap if c(e) ≤ τγ
R · wbr(b).
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Lemma 2.4 Let F be an r-edge-cover, let τ ≥ pF (B), and let

I =
⋃

b∈B

{e ∈ δE(b) : c(e) ≤
τγ

R
· wbr(b)}

be the set of τ -cheap edges in E. Then RI∩F ≤ R/γ and pI(B) ≤ γτ .

Proof: Let D = {b ∈ B : δF\I(b) 6= ∅}. Since for every b ∈ D there is an edge e ∈ F \ I incident

to b with c(e) > τγ
R · wbr(b), we have pF\I(b) ≥ τγ

R · wbr(b) for every b ∈ D. Thus

τ ≥ pF (B) ≥ pF\I(B) =
∑

b∈D

pF\I(b) ≥ τ · γ
R

∑

b∈D

wbr(b) .

This implies
∑

b∈D wbr(b) ≤ R/γ. Note that for every b ∈ B \ D, δF (b) ⊆ δI(b) and hence

rI∩F (b) = rF (b) = 0. Thus we obtain:

RI∩F =
∑

b∈B

wbrI∩F (b) =
∑

b∈D

wbrI∩F (b) ≤
∑

b∈D

wbr(b) ≤ R/γ .

To see that pI(B) ≤ γτ note that

pI(B) =
∑

b∈B

pI(b) ≤
τγ

R

∑

b∈B

wbr(b) =
τγ

R
·R = τγ .

This concludes the proof of the lemma. �

In [3] it is proved that the following problem, which is a particular case of submodular function

minimization subject to matroid and knapsack constraint (see [6]) admits a
(

1− 1
e

)

-approximation

algorithm.

Bipartite Power-Budgeted Maximum Edge-Multi-Coverage (BPBMEM):

Instance: A bipartite graph G = (A ∪ B,E) with edge-costs {c(e) : e ∈ E} and node-

weights {wv : v ∈ B}, degree bounds {r(v) : v ∈ B}, and a budget τ .

Objective: Find I ⊆ E with pI(A) ≤ τ that maximizes

val(I) =
∑

v∈B

wv ·min{dI(v), r(v)} .

The following algorithm computes an edge set as in Lemma 2.2.

1. Among the τ -cheap edges, compute a
(

1− 1
e

)

-approximate solution I to BPBMEM.

2. If RI ≤ θR then return I, where θ = 1−
(

1− 1
γ

)

(

1− 1
e

)

;

Else declare “τ < opt”.
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Clearly, pI(A) ≤ τ . By Lemma 2.4, pI(B) ≤ γτ . Thus pI(V ) ≤ pI(A) + pI(B) ≤ (1 + γ)τ .

Now we show that if τ ≥ opt then RI ≤ θR. Let F be the set of cheap edges in some

optimal solution. Then pF (A) ≤ opt ≤ τ . By Lemma 2.4 RF ≤ R/γ, namely, F reduces R by

at least R
(

1− 1
γ

)

. Hence our
(

1− 1
e

)

-approximate solution I to BPBMEM reduces R by at least

R
(

1− 1
e

)

(

1− 1
γ

)

. Consequently, we have RI ≤ R−R
(

1− 1
e

)

(

1− 1
γ

)

= θR, as claimed.

The proof of Theorem 1.1 for the case of general costs is complete.

2.3 A constant ratio approximation algorithm for unit costs

Bipartite MPEMC with unit costs is closely related to the Set-Multicover problem, that can be casted

as follows.

Set-Multicover

Instance: A bipartite graph G = (A ∪B,E) and demands {r(b) : b ∈ B}.
Objective: Find a subgraph H of G with degH(b) ≥ r(b) for every b ∈ B; minimize |H ∩A|.

In fact, it is easy to see that Bipartite MPEMC with unit costs is equivalent to the following mo-

dification of Set-Multicover, where instead of minimizing |H ∩A| we seek to minimize |H ∩A|+ |B|;
namely, the problem we consider is as follows.

Set-Multicover+

Instance: A bipartite graph G = (A ∪B,E) and demands {r(b) : b ∈ B}.
Objective: Find a subgraph H of G with degH(b) ≥ r(b) for every b ∈ B; minimize |H ∩A|+ |B|.

Clearly, ratio ρ for Set-Multicover implies ratio ρ for Set-Multicover+. As Set-Multicover admits

ratio H(|B|), so is Set-Multicover+. On the other hand, Set-Multicover+ is APX-hard even for

instances with maxa∈A degG(a) = 3, by a reduction from 3-Set-Cover. If |A| = O(|B|) then the

problem is clearly approximable within a constant; but we may have |A| >> |B|, if k = maxb∈B r(b)

is large. We prove the following theorem that implies the second part of Theorem 1.1, and is also

of independent interest.

Theorem 2.5 Set-Multicover+ admits a randomized approximation algorithm with expected ap-

proximation ratio ρ, where ρ < 2.16851 is the real root of the qubic equation e(ρ− 1)3 = 2ρ.

Let Γ(a) denote the set of neighbors of a in G. Consider the following LP-relaxation for both

Set-Multicover and Set-Multicover+

min







∑

a∈A

xa :
∑

a∈Γ(b)

xa ≥ r(b) ∀b ∈ B, 0 ≤ xa ≤ 1 ∀a ∈ A







. (1)

The value of a solution x to LP (1) is x(A) =
∑

a∈A xa in the Set-Multicover case, and x(A)+ |B|
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in the Set-Multicover+ case. Given a partial cover S ⊆ A, the residual demand of b ∈ B is

rS(b) = max{r(b)−|Γ(b)∩S|, 0}. Let ρ > 1 be a parameter eventually set to be as in Theorem 2.5.

Let γ = γ(ρ) = (ρ−1)2

2ρ . Note that γ = 1 if, and only if, ρ = 2 +
√
3, and that the value of ρ in

Theorem 2.5 is less than 2+
√
3. Let x be a feasible solution to LP (1), and let S ⊆ A be obtained

by choosing every a ∈ A with probability min{ρ · xa, 1}.

Lemma 2.6 If xa < 1/ρ for all a ∈ A then Pr[rS(b) ≥ 1] ≤ e−γ·r(b) for every b ∈ B.

Proof: Let C(b) = Γ(b) ∩ S be a random variable that counts the number of times b is “covered”

by S. Clearly, rS(b) ≥ 1 if, and only if, C(b) < r(b). The expectation of C(b) is µb = E[C(b)] =
∑

a∈Γ(b) ρ · xa ≥ ρ · r(b). Since the nodes in Γ(b) are chosen independently, C(b) is a sum of

independent Bernoulli random variables. The statement now follows by applying the Chernoff

bound:

Pr[C(b) < r(b)] = Pr

[

C(b) <

(

1− ρ− 1

ρ

)

· ρ · r(b)
]

≤

≤ Pr

[

C(b) <

(

1− ρ− 1

ρ

)

· µb

]

≤

≤ e
− 1

2

(

ρ−1

ρ

)

2

µb ≤ e−γ·r(b) .

�

Corollary 2.7 E [rS(B)] ≤ f(ρ)|B|, where f(ρ) = 1
eγ if 1 < ρ ≤ 2 +

√
3. and f(ρ) = e−γ if

ρ ≥ 2 +
√
3.

Proof: Let S′ = {a : xa ≥ 1/ρ}, let r′(b) = rS′(b) = max{r(b)−|Γ(b)∩S′|, 0}, and let x′ be defined

by x′a = 0 if a ∈ S′ and x′a = xa otherwise. Note that x′ is a feasible solution to LP (1) with the

residual requirements r′, and that x′a < 1/ρ for all a ∈ A. Thus by Lemma 2.6 we have

E
[

r′(B)
]

=
∑

b∈B

E
[

r′(b)
]

≤
∑

b∈B

Pr
[

r′(b) ≥ 1
]

· r′(b) ≤
∑

b∈B

e−γ·r′(b) · r′(b) .

Let z = r′(b) ≥ 1 and f(z) = e−γz · z. Then f ′(z) = e−γz(1 − γz). Hence in the range z ≥ 1, the

function f(z) has maximum value:

• 1
eγ if γ ≤ 1 (namely, if 1 < ρ ≤ 2 +

√
3), attained at z = 1/γ.

• e−γ if γ ≥ 1 (namely, if ρ ≥ 2 +
√
3), attained at z = 1.

The statement follows. �

Now we finish the proof of Theorem 2.5. The algorithm is as follows. We compute an optimal

solution x to LP (1), and then an edge set S as in Corollary 2.7. For every b ∈ B let Ab be a set
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of rS(b) neighbors in Γ(b) \ S, and let S′ =
⋃

b∈B Ab. The solution returned is S ∪ S′. Note that

E[|S′|] ≤ E[rS(B)]. Thus by Corollary 2.7, the expected size of our solution is bounded by

E(|S|) + E(rS(B)) + |B| ≤ ρx(A) + f(ρ)|B|+ |B| ≤ max{ρ, f(ρ) + 1}(x(A) + |B|) .

Consequently, as x(A) + |B| is a lower bound on the optimal solution value, the approximation

ratio is bounded by max{ρ, f(ρ) + 1}. Solving the equation ρ = f(ρ) + 1 for f(ρ) = 1
eγ = 2ρ

e(ρ−1)2

gives the result.

The proof of Theorem 2.5, and thus also of Theorem 1.1 for the case of uniform cost, is complete.
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3 Proof of Theorem 1.2

We say that an edge set F ⊆ E covers a node set U ⊆ V , or that F is a U -cover, if δF (v) 6= ∅ for
every v ∈ U . Consider the following auxiliary problem:

Restricted Minimum-Power Edge-Cover

Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, U ⊆ V , and degree bounds

{ℓv : v ∈ U}.
Objective: Find a power assignment {π(v) : v ∈ V } that minimizes

∑

v∈V π(v), such that π(v) ≥ ℓv

for all v ∈ U , and such that the edge set F = {e = uv ∈ E : π(u), π(v) ≥ c(e)} covers U .

Later, we will prove the following lemma.

Lemma 3.1 Restricted Minimum-Power Edge-Cover admits a 3/2-approximation algorithm.

Theorem 1.2 is deduced from Lemma 3.1 and the following statement.

Lemma 3.2 If Restricted Minimum-Power Edge-Cover admits a ρ-approximation algorithm, then

Minimum-Power Edge-Multi-Cover admits a (k − 1 + ρ)-approximation algorithm.

Proof: Consider the following algorithm.

1. Let π(v) be the power assignment computed by the ρ-approximation algorithm for Restricted

Minimum-Power Edge-Cover with U = {v ∈ V : r(v) ≥ 1} and bounds ℓv = wv for all v ∈ U .

Let F = {e = uv ∈ E : π(u), π(v) ≥ c(e)}.

2. For every v ∈ V let Iv be the edge-set obtained by picking the least cost rF (v) edges in

δE\F (v) and let I = ∪v∈V Iv.

Clearly, F ∪I is a feasible solution to Minimum-Power Edge-Multi-Cover. Let opt denote the optimal

solution value for Minimum-Power Edge-Multi-Cover. In what follows note that π(V ) ≤ ρ · opt and
that

∑

v∈V wv ≤ opt.

We claim that

pI∪F (V ) ≤ π(V ) + (k − 1) · opt .

As π(V ) ≤ ρ · opt, this implies pI∪F (V ) ≤ (ρ+ k − 1) · opt.

For v ∈ V let Γv be the set of neighbors of v in the graph (V, Iv). The contribution of each edge

set Iv to the total power is at most pIv(Γv) + pIv(v). Note that π(v) ≥ pIv(v) and π(v) ≥ pF (v) for

every v ∈ V , hence pF∪Iv(v) ≤ π(v). This implies

pF∪I(V ) ≤
∑

v∈V

(π(v) + pIv(Γv)) = π(V ) +
∑

v∈V

pIv(Γv) .
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Now observe that |Γv| = |Iv| = rF (v) ≤ k − 1 and that pIv(u) ≤ wv for every u ∈ Γv. Thus

pIv(Γv) ≤ (k − 1) · wv ∀v ∈ V .

Finally, using the fact that
∑

v∈V wv ≤ opt, we obtain

pF∪I(V ) ≤ π(V ) +
∑

v∈V

pIv(Γv) ≤ π(V ) + (k − 1)
∑

v∈V

wv ≤ π(V ) + (k − 1) · opt .

This finishes the proof of the lemma. �

In the rest of this section we prove Lemma 3.1.

We reduce Restricted Minimum-Power Edge-Cover to the following problem that admits an exact

polynomial time algorithm, c.f. [10].

Minimum-Cost Edge-Cover:

Instance: A multi-graph (possibly with loops) G = (U,E) with edge-costs {c(e) : e ∈ E}.
Objective: Find a minimum cost edge-set F ⊆ E that covers U .

Our reduction is not approximation ratio preserving, but incurs a loss of 3/2 in the approxi-

mation ratio. That is, given an instance (G, c, U, ℓ) of Restricted Minimum-Power Edge-Cover, we

construct in polynomial time an instance (G′, c′) of Minimum-Cost Edge-Cover such that:

(i) For any U -cover I ′ in G′ corresponds a feasible solution π to (G, c, U, ℓ) with π(V ) ≤ c′(I ′).

(ii) opt′ ≤ 3opt/2, where opt is an optimal solution value to Restricted Minimum-Power Edge-Cover

and opt′ is the minimum cost of a U -cover in G′.

Hence if I ′ is an optimal (min-cost) solution to (G′, c′), then π(V ) ≤ c′(I ′) ≤ 3opt/2.

Clearly, we may set ℓv = 0 for all v ∈ V \ U . For I ⊆ E let

D(I) =
∑

v∈V

max{pI(v)− ℓv, 0} .

Here is the construction of the instance (G′, c′), where G′ = (U,E′) and E′ consists of the following

three types of edges, where for every edge e′ ∈ E′ corresponds a set I(e′) ⊆ E of one edge or of two

edges.

1. For every v ∈ U , E′ has a loop-edge e′ = vv with c′(vv) = ℓv + D({vu}) where vu is is an

arbitrary chosen minimum cost edge in δE(v).

Here I(e′) = {vu}.

2. For every uv ∈ E such that u, v ∈ U , E′ has an edge e′ = uv with c′(uv) = ℓu+ℓv+D(({uv}).
Here I(e′) = {uv}.
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3. For every pair of edges ux, xv ∈ E such that c(ux) ≥ c(xv), E′ has an edge e′ = uv with

c′(uv) = ℓv + ℓu +D({ux, xv}).
Here I(e′) = {ux, xv}.

Lemma 3.3 Let I ′ ⊆ E′ be a U -cover in G′, let I = ∪e∈I′I(e), and let π be a power assignment

defined on V by π(v) = max{pI(v), ℓv}. Then π(V ) ≤ c′(I ′), I is a U -cover in G, and π is a

feasible solution to (G, c, U, ℓ).

Proof: We have that I is a U -cover in G, by the definition of I and since I(e′) covers both endnodes

of every e′ ∈ E′. By the definition of π, we have that I ⊆ {e = uv ∈ E : π(u), π(v) ≥ c(e)}. Hence
π is a feasible solution to (G, c, U, ℓ), as claimed.

We prove that π(V ) ≤ c′(I ′). For e′ = uv ∈ E′ let ℓ(e′) = ℓv if e′ is a type 1 edge, and

ℓ(e′) = ℓu + ℓv otherwise. Note that π(v) = max{pI(v), ℓ(v)} = ℓv +max{pI(v)− ℓ(v), 0}, hence

π(V ) =
∑

v∈U

ℓv +
∑

v∈V

max{pI(v)− ℓ(v), 0} =
∑

v∈U

ℓv +D(I) .

By the definition of ℓ(e′) and since I ′ is a U -cover
∑

v∈U ℓv ≤
∑

e′∈I′ ℓ(e
′). Also,D(I) = D (∪e′∈I′I(e′)),

by the definition of I. Thus we have

∑

v∈U

ℓv +D(I) ≤
∑

e′∈I′

ℓ(e′) +D
(

∪e′∈I′I(e′)
)

.

It is easy to see that

D
(

∪e′∈I′I(e′)
)

≤
∑

e′∈I′

D(I(e′)) .

Finally, note that ℓ(e′) +D(I(e′)) = c′(e′) for every e′ ∈ I ′ (if e′ is a type 1 edge, this follows from

our assumption that ℓv ≥ min{c(e) : e ∈ δE(v)}). Combining we get

π(V ) =
∑

v∈U

ℓv +D(I) ≤

≤
∑

e′∈I′

ℓ(e′) +D
(

∪e′∈I′I(e′)
)

≤

≤
∑

e′∈I′

ℓ(e′) +
∑

e′∈I′

D(I(e′)) =

=
∑

e′∈I′

(

ℓ(e′) +D(I(e′))
)

=

=
∑

e′∈I′

c′(e′) = c′(I ′) .

�

Lemma 3.4 Let {π(v) : v ∈ V } be a feasible solution to an instance (G, c, U, ℓ) of Restricted

Minimum-Power Edge-Cover. Then there exists a U -cover I ′ in G′ such that c′(I ′) ≤ 3π(V )/2.
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Figure 1: Illustration to the definition of the U -cover I ′.

Proof: Let I ⊆ {e = uv ∈ E : π(u), π(v) ≥ c(e)} be an inclusion minimal U -cover. We may assume

that π(v) = max{pI(v), ℓv} for every v ∈ V . Since any inclusion minimal U -cover is a collection of

node disjoint stars, it is sufficient to prove the statement for the case when I is a star. Then I has

at most one node not in U , and if there is such a node, then it is the center of the star, if |I| ≥ 2;

in the case I consists of a single edge e, then we define the center of I to be the endnode of e in

V \ U if such exists, or an arbitrary endnode of e otherwise.

We define a U -cover I ′ in G′, and show that

c′(I ′) ≤ 3

2

∑

v∈V

max{pI(v), ℓv} =
3

2
π(V ) . (2)

Let v0 be the center of I and let {vi : 1 ≤ i ≤ d} be the leaves of I ordered by descending order of

costs c(v0vi) ≥ c(v0vi+1). The U -cover I ′ ⊆ E′ is defined as follows. We cover each pair v2i−1, v2i,

i = 1, . . . , ⌊d/2⌋, by a type 3 edge. This covers all the nodes except v0, and maybe vd if d is odd.

We add an additional edge f of type 1 or 2, if there are nodes in U (v0 and/or vd) that remain

uncovered by the picked type 3 edges. Formally, we have the following 4 cases, see Figure 1.

1. d is even and v0 /∈ U , see Figure 1(a). Then U is covered by type 3 edges.

2. d is odd, and v0 /∈ U , see Figure 1(b). Then we add a type 1 edge f to cover vd.

3. d is odd and v0 ∈ U , see Figure 1(c). Then we add a type 2 edge f to cover v0, vd.

4. d is even and v0 ∈ U , see Figure 1(d). Then we add a type 1 edge f to cover v0.

Consider a type 3 edge v2i−1v2i ∈ I ′. Let qi = max{c(v2i−1v0)−ℓv0 , 0}. Note that c′(v2i−1v2i) ≤
π(v2i−1) + π(v2i) + qi. The key point is that

qi ≤
1

2
(π(v2i−3) + π(v2i−2)) i = 2, . . . , ⌊d/2⌋ .
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This is since qi ≤ c(v0v2i−1) ≤ 1
2 (c(v0v2i−3) + c(v0v2i−2)) while c(v0vj) ≤ π(vj). Therefore,

d/2
∑

i=1

c′(v2i−1v2i) ≤
d/2
∑

i=1

[π(v2i−1) + π(v2i) + qi] ≤
2⌊d/2⌋
∑

i=1

π(vi) + q1 +
1

2

d−2
∑

i=1

π(vi)

Now, we prove that (2) hold in each one of our four cases.

1. v0 /∈ U and d is even. Note that q1 ≤ c(v0v1) ≤ π(v0). Then:

c′(I ′) =

d/2
∑

i=1

c′(ei) ≤
3

2

d
∑

i=1

π(vi) + q1 ≤
3

2

d
∑

i=1

π(vi) + π(v0) ≤
3

2

d
∑

i=0

π(vi)

2. v0 /∈ U and d is odd. In this case f = vdvd is a loop type 1 edge, so c′(f) ≤ π(vd) +

max(c(v0vd)− ℓv0 , 0). This implies

q1 + c′(f) ≤ c(v0v1) + c(v0vd) + π(vd) ≤ π(v0) +
1

2
[π(v0) + π(vd)] + π(vd)

=
3

2
(π(v0) + π(vd)) .

Thus

c′(I ′) =

d/2
∑

i=1

c′(ei) + c′(f) ≤ 3

2

d−1
∑

i=1

π(vi) + c′(f) + q1 ≤
3

2

d
∑

i=0

π(vi)

3. v0 ∈ U and d is odd. In this case f = v0vd, so c′(f) ≤ max(ℓv0 , c(v0vd)) + π(vd). This implies

q1 + c′(f) ≤ c(v0v1) + c(v0vd) + π(vd) ≤ 3
2 (π(v0) + π(vd)). Thus

c′(I ′) =

d/2
∑

i=1

c′(ei) + c′(f) ≤ 3

2

d−1
∑

i=1

π(vi) + c′(f) + q1 ≤
3

2

d
∑

i=0

π(vi) .

4. v0 ∈ U and d is even. In this case f = v0v0 is a loop type 1 edge, so c′(f) ≤ ℓv0 + c(v0vd) ≤
ℓv0 +

1
2 (π(vd−1) + π(vd)). This implies q1 + c′(f) ≤ c(v0v1) +

1
2 (π(vd−1) + π(vd)). Thus

c′(I ′) =

d/2
∑

i=1

c′(ei) + c′(f) ≤
d

∑

i=1

π(vi) +
1

2

d−2
∑

i=1

π(vi) + q1 + c′(f)

≤ 3

2

d
∑

i=1

π(vi) + π(v0) ≤
d

∑

i=0

π(vi) .

This concludes the proof of the lemma. �

As was mentioned, Lemmas 3.3 and 3.4 imply Lemma 3.1. Lemmas 3.1 and 3.2 imply Theo-

rem 1.2, hence the proof of Theorem 1.2 is now complete.
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4 Conclusions and open problems

The main results of this paper are two new approximation algorithm for MPEMC: one with ratio

O(log k) for general costs, and the other with constant ratio for uniform costs. This improves the

ratio O(log(nk)) = O(log n) of [3]. We also gave a (k + 1/2)-approximation algorithm, which is

better than our O(log k)-approximation algorithm for small values of k (roughly k ≤ 6).

The main open problem is whether for general costs, the ratio O(log k) shown in this paper is

tight, or the problem admits a constant ratio approximation algorithm.
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