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Abstract

Given a graph H = (U,E) and connectivity requirements r = {r(u, v) : u, v ∈ R ⊆

U}, we say that H satisfies r if it contains r(u, v) internally disjoint uv-paths for all

u, v ∈ R. We consider the Survivable Network with Minimum Number of Steiner Points

(SN-MSP) problem: given a finite set V of points in a normed space (M, ‖·‖), and

connectivity requirements, find a minimum size set S ⊆ M − V of additional points,

such that the unit disc graph induced by V ∪ S satisfies the requirements. In the

Survivable Network Design Problem (SNDP) we are given a graph G = (V,E) with edge

costs and connectivity requirements, and seek a min-cost subgraph H of G that satisfies

the requirements. Let k = max
u,v∈V

r(u, v) denote the maximum connectivity requirement.

Given a normed space, (M, ‖·‖), let ∆ be the minimum number so that for every set

V ⊆ M contained in a unit ball, the unit disc graph induced by V has a dominating

set of size at most ∆ (∆ = 5 in the Euclidean plane R
2, ∆ is at most the Hadwiger

Number in R
ℓ, and ∆ is a constant for any normed space of finite dimension). We

will show a natural transformation of an SN-MSP instance V, r into an SNDP instance

G = (V,E), c, r so that an α-approximation for the SNDP instance implies an α · ρ(k)-

approximation algorithm for the SN-MSP instance, where ρ(k) = O(∆k2) = O(k2).

Specifically, using known approximation algorithms for SNDP, we obtain the following

approximation ratios for SN-MSP:

• O(k2 ln k)·ρ(k) = O(k4 ln k) for subset uniform requirements, when there is R ⊆ V

such that r(u, v) = k for all u, v ∈ R, and r(u, v) = 0 otherwise. In the case

of uniform requirements, when R = V , our ratio is O
(

ln |V |
|V |−k · ln k

)

· ρ(k) =

O(k2 ln k). In particular, this solves an open problem from [3] for the Euclidean

plane.

• O(k2) · ρ(k) = O(k4) for rooted (single source/sink) requirements, when there is

s ∈ V so that r(u, v) > 0 implies u = s or v = s. In the case r(s, v) = k for all

v ∈ R \ {s} ⊆ V the ratio is O(k ln k) · ρ(k) = O(k3 ln k), and in the case R = V

the ratio is just 2ρ(k).

We also obtain the ratio O(k3 ln |R|) · ρ(k) = O(k5 ln |R|) for arbitrary requirements.
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1 Introduction and motivation

In the past several decades, the area of wireless communication has developed rapidly, and

the uses of wireless networks have grown significantly. They range from civilian cellular

networks through battlefield military applications, and disaster relief communication (see

[20], [5]).

However, wireless networks are affected by various constraints which do not affect wired

networks. Signal quality and intensity decays with inverse ratio of the square of the distance

(in free space) [17], and in other media may decay with inverse ratio to the distance to the

power of 4 [7]. In addition, wireless transmission is subject to interference by environmental

factors such as electromagnetic interruption and physical obstacles, both natural and man-

made (widely discussed in [17]).

We consider our networks to be ad hoc, i.e. networks consisting of mobile units communi-

cating via radio transceivers. Each radio transceiver is assigned transmission and reception

power, along with transmission and reception orientation. For two transceivers, u and v, u

can transmit to v if v is in the transmission radius of u, u is in the reception radius of v, and

their transmission and reception orientations are correlated.

In most networks, if v cannot directly receive the transmission from u, the transceivers

are able to cooperate in order to transmit the message from u to v. In this case we say the

network is multi hop.

For simplicity of the model, we also assume that the transceivers cannot relocate once

placed, and that transmission and reception are equally powerful in all directions, i.e. the

network is static, symmetric and omnidirectional.

The model of an ad hoc, static, symmetric, multi hop wireless network with omnidirec-

tional transmitters and receivers was considered in [2], [13], [1] and [3]. One known way

to increase connectivity is power assignment. Given the set of terminals, V , we wish to

assign each terminal with transmission and reception power to satisfy the connectivity re-

quirements. This problem was considered and studied in [18], [21] and [10]. Recall, however,

that the power needed to transmit through a given distance, d, has at least the growth order

of d2, and might be proportional with d4.

Since energy budget and battery time is a primary constraint in designing wireless net-

works, one might prefer adding sensors rather than increasing power [7]. Thus the problem of

adding sensors to increase connectivity arises. We therefore assume transceivers are assigned

constant power for both transmission and reception. In our model, we translate fixed power
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to a fixed transmission radius.

Given the previous characterization, the model is well described by the unit disc graph

in a metric space, in which two distinct nodes are adjacent if and only if their distance is

no grater than 1. Given a metric space, (M,d), and finite set V ⊆ M with connectivity

requirements {r (u, v) | u, v ∈ V }, we think of elements of V as terminals of a wireless

network and wish to adjust the network to satisfy these requirements.
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2 Preliminaries

2.1 Connectivity Problems in Wired Networkss

Let H = (U,E) be an undirected graph, possibly with parallel edges. For u, v ∈ U let

κH(u, v) denote the maximum number of pairwise internally vertex disjoint uv-paths in H.

Given a set of non-negative integer connectivity requirements r = {r(u, v) : u, v ∈ R ⊆ U},

we say that H satisfies r if κH(u, v) ≥ r(u, v) for all u, v ∈ R. Let k = max
u,v∈R

r(u, v) denote

the maximum connectivity requirement.

In wired networks, connecting two terminals, if possible, incurs a cost. Therefore an

inherent optimization problem for wired networks is the following.

Survivable Network Design Problem (SNDP):

Instance: A multi-graph G = (V,E) with edge costs {ce : e ∈ E} and pairwise connectivity

requirements r = {r(u, v) : u, v ∈ R ⊆ V }.

Objective: Find a minimum cost subgraph H of G that satisfies r.

Several important types of requirements are considered in the literature.

• Subset uniform requirements: there is R ⊆ V , such that r(u, v) = k for all u, v ∈ R,

and r(u, v) = 0 otherwise;

Requiremenrs are called uniform if R = V .

• Rooted requirements: there is s ∈ V so that r(u, v) > 0 implies u = s or v = s;

Requirements are called rooted subset uniform if there is R ⊆ V such that r(s, v) = k

for all v ∈ R \ {s}, and r(u, v) = 0 otherwise; If R = V requirements are called

rooted-uniform.

The problem is widely studied, and several approximation results have been achieved.

Let k = max
u,v∈V

r(u, v). For simple graphs, the currently best known approximation ratios for

SNDP are O(k3 ln |R|) for general requirements [4] and:

• O(k2 ln k) for subset uniform requirements [16], and O(ln |V |
|V |−k

· ln k) (which is O(ln k)

unless k = |V | − o(|V |)) for uniform requirements [15].

• O(k2) for rooted requirements, O(k ln k) for rooted subset-uniform requirements [16],

and 2 for rooted-uniform requirements [9].
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However, as will be explained in Section 2.3, we are interested in approximation ratios on

multigraphs. The following statement shows that most of known approximation algorithms

for simple graphs extend to multigraphs.

Lemma 2.1 For SNDP, an α-approximation algorithm on simple graphs implies an α-

approximation algorithm on multigraphs; this is so also for subset uniform, uniform, rooted,

and rooted subset uniform requirements. In the case of rooted uniform requirements, SNDP

on multigraphs admits a 2-approximation algorithm.

Lemma 2.1 is proved later in Section 3.

2.2 Problems Considered - Connectivity in Wireless Networks

Definition 2.1 Given a finite set of points V ⊂ M in a metric space (M,d), the unit disc

graph induced by V , denoted by G[V ], has node set V and edge set

{uv : 0 < d(u, v) ≤ 1, u, v ∈ V }.

As stated earlier, in wireless networks, adding relay stations incurs a cost. Therefore a

natural optimization problem in wireless networks is the following.

Survivable Network with Minimum Number of Steiner Points (SN-MSP)

Instance: A finite set V of points in a metric space (M,d) and pairwise connectivity

requirements r = {r(u, v) : u, v ∈ R ⊆ V }.

Objective: Find a minimum size set of points S ⊂ M − V such that G[V ∪ S] satisfies r.

We consider the problem with every special type of requirement mentioned for SNDP.

As in practical networks k is rather small, we focus on obtaining approximation ratios that

depend on k only. For k = 1, SN-MSP with uniform requirements is the Steiner Tree with

Minimum Number of Steiner Points problem (ST-MSP). In the Euclidean plane, this problem

admits a 2.5-approximation algorithm [6]. On graphs with unit edge lengths ST-MSP includes

the Set-Cover problem [14], and thus has an Ω(ln |V |)-approximation threshold. Hence for

SN-MSP one cannot expect in arbitrary metric spaces a ratio that depends on k only. We

will consider instances of SN-MSP defined on a normed space (M, ‖·‖), when the metric

d is induced by the norm ‖·‖. Obtaining a non-trivial (with ratio depending on k only)

approximation algorithm for SN-MSP with uniform requirements and k ≥ 2 in the Euclidean

plane was posed as an open problem in [3].
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2.3 Our Results

We will prove a much more general result than the open problem presented in [3], that

resolves this open problem as a particular case.

2.3.1 The Covering Parameter ∆

Our approximation ratios are expressed in terms of k and the following parameter that

depends on the normed space. Let ∆ = ∆(M, ‖·‖) be the minimum number such that for

every V ⊆ M contained in a unit ball, G[V ] has a dominating set of size at most ∆. For R2

with the Euclidean norm, it is well known that ∆ = 5. For R3 with the Euclidean norm, it

is well known that ∆ = 11.

For ℓ, p ∈ N, let Rℓ
p be the normed space induced on R

ℓ by the norm ‖(x1, x2, . . . , xℓ)‖p =
(

∑ℓ
i=1 |xi|

p
)1/p

. A collection of open convex subsets of Rℓ is called a packing if the sets are

mutually pairwise disjoint. Two sets in a packing which share a boundry point are called

neighbours. Let B be an open convex subset of Rℓ. The Hadwiger Number of B is the

maximum number of neighbours of B over all packings composed of translations of B. In

[19], Robins and Salowe proved that for Rℓ
p, ∆ is upper bounded by the Hadwiger Number of

the unit ball in R
ℓ
p; in particular, for Rℓ

2 (i.e. R
ℓ with the Euclidean Norm), ∆ ≤ 20.401ℓ(1+o(1)),

by [12].

2.3.2 The Main Theorem

Let ρ(k) = (∆ + 3)k2 + 7k + 2. Our main result is:

Theorem 2.2 An α-approximation algorithm for SNDP on multigraphs implies an α · ρ(k)-

approximation algorithm for SN-MSP, and this is so also for subset uniform, uniform, rooted,

rooted subset uniform, and rooted uniform requirements.

Using Lemma 2.1, and substituting the currently best known values of α in Theorem 2.2,

we obtain:

Corollary 2.3 SN-MSP admits the following approximation ratios:

• O(k2 ln k) · ρ(k) = O(k4 ln k) for subset uniform requirements and O
(

ln |V |
|V |−k

· ln k
)

·

ρ(k) = O(k2 ln k) for uniform requirements.

• O(k2) · ρ(k) = O(k4) for rooted requirements, O(k ln k) · ρ(k) = O(k3 ln k) for rooted
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subset uniform requirements, and 2ρ(k) ≤ 2∆k2 = O(k2) for rooted uniform require-

ments.

Theorem 2.2 together with the O(k3 ln |R|)-approximation algorithm for SNDP of [4]

implies the ratio O(k3 ln |R|) · ρ(k) = O(k5 ln |R|) for SN-MSP with arbitrary requirements.

But in this case we conjecture that a ratio O(k3) · ρ(k) can be achieved.
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3 Proof of the Main Result

3.1 The Main Lemma

We will prove the following statement that implies Theorem 2.2.

Lemma 3.1 There exists a polynomial time algorithm that given an instance V, r of SN-MSP

constructs an instance G = (V,E), c, r of SNDP so that: any solution of cost C to SNDP

can be converted in polynomial time to a solution of size ≤ C to SN-MSP, and for every

solution S to SN-MSP there exists a solution of cost ≤ |S| · ρ(k) to SNDP. Furthermore, the

construction preserves the requirement type (subset uniform, uniform, rooted, rooted subset

uniform, and rooted uniform).

Claim 3.2 Lemma 3.1 implies Theorem 2.2.

Proof: Assuming validity of Lemma 3.1, consider the following approximation algorithm

for SN-MSP:

Algorithm 1 Approximation algorithm for SN-MSP

Approximate-SN-MSP(V ⊂ M, r = {r(u, v) : u, v ∈ R ⊆ V })

1. Let G, c be the SNDP instance constructed from V, r.

2. Let J ⊆ G be a subgraph satisfying r with cost not greater than α times the

optimal value of the SNDP problem.

3. Let S ⊆ G be the feasible solution to SN-MSP constructed from J .

By Lemma 3.1, the algorithm runs in polynomial time. In addition, the Lemma ensures

that the constructed set S is a feasible solution to SN-MSP on V, r. It remains to show the

approximation ratio. To see this, let J∗ be a minimum cost subgraph of G satisfying r, and

let S∗ be a minimum size set of points so that G[V ∪ S∗] satisfies r. By the Lemma, there

is a feasible solution J0 ⊆ G such that c(J0) ≤ ρ(k) · |S∗|. Since J∗ is a solution of minimal

cost, we get

c(J∗) ≤ ρ(k) · |S∗|

In the notaion of the algorithm, J is a feasible solution constructed using an α-approximation

algorithm. Therefore

c(J) ≤ α · c(J∗) .
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Since |S| ≤ c(J), we get

|S∗| ≤ |S|α · |S∗| · ρ(k) .

�

In the rest of this section we prove Lemma 3.1. We divide the proof into three parts:

1. First we show how to build the SNDP instance in polynomial time.

2. The second part show how to cunstruct an SN-MSP feasible solution from an SNDP

solution of no lesser cost.

3. The third part proves the lower bound on SN-MSP guaranteed by the lemma.

3.1.1 Instance Construction

Definition 3.1 Given a finite set of points V ⊂ M and an integer k ≥ 1, the graph KV is

obtained by connecting every u, v ∈ V by k parallel edges, one of cost ⌈d(u, v)⌉− 1 the others

of cost ⌈d(u, v)⌉.

Clearly, given an SN-MSP instance, V, r, the graph KV with the corresponding costs c

can be constructed in polynomial time. The triple KV , c, r will serve as the SNDP instance

guaranteed in Lemma 3.1. The construction preserves each of the requirement types listed

in Lemma 3.1.

3.1.2 Solution Construction

Let J be a subgraph of KV . Let u, v ∈ V be adjacent in J by j + 1 ≤ k edges. Place

⌈d(u, v)⌉−1 new points uniformly on the line segment between u and v, dividing the segment

to ⌈d(u, v)⌉ subsegments, each of length d(u,v)
⌈d(u,v)⌉

≤ 1. On each subsegment, place uniformly

j new points. Denote the set of added nodes S(u, v). Denote by S(J) the union over all

adjacent pairs u, v ∈ V of S(u, v). An example for the process with j = 2 and 2 < d(u, v) ≤ 3

is shown in Figure 1. The following statement is straightforward.

Claim 3.3 |S(J)| ≤ c(J) holds for any subgraph J of KV . Furthermore, if H = G[V ∪S(J)]

is the unit disc graph induced by V ∪ S(J) then κH(u, v) ≥ κJ(u, v) for all u, v ∈ V .

Clearly, S(J) can be computed from J in polynomial time.

11



3
2

3
u v

(a) Edges of J between two nodes u and v.

Here 2 < d(u, v) ≤ 3.

3

3
u v

(b) Replacing the short edge with addi-

tional points.

u v

(c) Replacing the rest of the edges.

Figure 1: Construction of S(u, v)

3.1.3 Lower Bounding SN-MSP

For a subset C of nodes of a graph G let ΓG(C) denote the set of neighbors of C in G. We

need the following lemma on connectivity of graphs.

Lemma 3.4 Let V be a subset of nodes of a graph G, let k ≥ 1 be an integer, and let C

be a connected component of G − V . Let JC be a set of new edges on ΓG(C) such that the

following holds:

(i) If |ΓG(C)| ≤ k then JC has min{ℓuv, k − |Iuv|} uv-edges for any u, v ∈ ΓG(C), where

Iuv is the set of uv-edges in G and ℓuv is the maximum number of internally disjoint

uv-paths in the subgraph of G induced by {u, v} ∪ C.

(ii) If |ΓG(C)| ≥ k + 1 then the graph induced by ΓG(C) in G+ JC is k-connected.

Let J = G− C + JC. Then κJ(u, v) ≥ min{κG(u, v), k} for all u, v ∈ V .

Proof: The case |ΓG(C)| ≤ k easily follows from the following construction. Let u, v ∈ G−C.

Given a set Π of at most k internally disjoint uv-paths in G, for every P ∈ Π do the following.

For every maximal u′v′-subpath of P that visits C and has all its internal nodes in C, replace

this subpath by a u′v′-edge e not used by any other path in Π. Such e is chosen to be an

edge of G if {u′, v′} 6= {u, v} and Iu′v′ 6= ∅ or if {u′, v′} = {u, v} and P is composed of only

u and v. Otherwise, e is a new edge added to G. This gives a set of |Π| internally disjoint

uv-paths that do not visit C. Since the paths in Π are internally disjoint, the set of edges

added to G may have parallel edges only between u and v, and by the construction, the

number of uv-edges added, if any, can be at most min{ℓuv, |Π| − |Iuv|} ≤ min{ℓuv, k− |Iuv|}.

Now suppose that |ΓG(C)| ≥ k+1, so ΓG(C) induces in G+JC a k-connected graph. Let

u, v ∈ G−C. Let Iuv be a set of uv-edges in J . Let A be a minimum size subset of nodes of

12



(a) Original Graph (b) Replacing Points with Edges

Figure 2: Replacing Steiner points with edges while maintaining relevant connectivity

J so that J− (A+ Iuv) has no uv-path. By Menger’s Theorem κJ(u, v) = |A|+ |Iuv|. Thus if

|A|+ |Iuv| ≥ k then κJ(u, v) ≥ k ≥ min{κG(u, v), k}. We claim that if |A|+ |Iuv| ≤ k−1 then

G− (A+ Iuv) has no uv-path, hence by Menger’s Theorem κJ(u, v) = |A|+ |Iuv| ≥ κG(u, v).

Suppose to the contrary that G − (A + Iuv) has a uv-path P . Going along P from u to v,

let u′ be the first and v′ the last node in ΓG(C); such u′, v′ exist since P must contain at

least one node from C, as P is not a uv-path in J − (A+ Iuv). As J has k internally disjoint

u′v′-paths and |A| + |Iuv| ≤ k − 1, the graph J − (A + Iuv) has at least one u′v′-path P ′.

Replacing the u′v′-subpath of P by P ′ gives a uv-path in J − (A + Iuv), contradicting the

definition of A. �

Let S be a feasible solution to an SN-MSP instance, so G = G[V ∪ S] satisfies r. The

key step in constructing a solution J to SNDP of cost c(J) ≤ |S| · ρ(k) is replacing every

connected component C of G−V by an edge set JC as in Lemma 3.4. Obviously, ΓG(C) ⊆ V ,

and thus JC ⊆ KV . A general example of this process is shown in Figure 2. The following

lemma shows that there exists such JC of low cost.

Lemma 3.5 For every connected component C of G − V there exists a subset JC of edges

of KV as in Lemma 3.4 of cost c(JC) ≤ ρ(k) · |C|.

The proof of Lemma 3.5 is somewhat long, so we prove it after the following corollary,

which easily implies the last part of Lemma 3.1.

Corollary 3.6 Let C be the set of connected components of G− V . For C ∈ C let JC be as

in Lemma 3.5. Then J = G−S+(
⋃

C∈C

JC) is a subgraph of KV of cost c(J) ≤ ρ(k) · |S| that

satisfies r.
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Proof: It is easy to see that for any u, v ∈ V the number of uv-edges in J is at most k. Hence

J is a subgraph of KV . As C is a partition of S, we have by Lemma 3.5 c(J) = c(
⋃

C∈C

JC) ≤
∑

C∈C

c(JC) ≤
∑

C∈C

ρ(k) · |C| = ρ(k) · |S|. To prove that J satisfies r, let C = {C1, C2, . . . , Cm}.

For 1 ≤ j ≤ m let Gj = G− (
j
⋃

i=1

Ci)+ (
j
⋃

i=1

JCi
). Using Lemma 3.4, a simple induction shows

that for all 1 ≤ j ≤ m, Gj satisfies r. In particular, this is so for J = Gm. �

Now we prove Lemma 3.5. Let C ∈ C. We start with the easier case |ΓG(C)| ≤ k. Then

JC consists of min{ℓuv, k} edges for every u, v ∈ ΓG(C). Let u, v ∈ ΓG(C). Since there are

ℓuv internally disjoint uv-paths in the subgraph of G induced by {u, v} ∪ C, there is one

such path containing no more than ⌊|C|/ℓuv⌋ points in C. Therefore d(u, v) ≤ |C|/ℓuv + 1.

Consequently, the total cost of uv-edges in JC is bounded by ℓuv ·(
|C|
ℓuv

+1) = |C|+ℓuv ≤ 2|C|.

Thus as |ΓG(C)| ≤ k we have

c(JC) ≤

(

k

2

)

· 2|C| ≤
1

2
k(k − 1) · 2|C| ≤ k2 · |C| ≤ ρ(k) · |C| .

This finishes the proof of Lemma 3.5 for the case |ΓG(C)| ≤ k.

We now turn to prove Lemma 3.5 for the case |ΓG(C)| ≥ k+1. We will use the following

two easy claims (Claim 3.7 is well known and therefore its proof is omitted):

Claim 3.7 Let H be a k-connected graph on at least k + 1 nodes. Then the graph obtained

from H by adding a new node and joining it to some k nodes of H is also k-connected.

Claim 3.8 Let U ′, U ′′ be two subsets of the node set V of a graph H so that their union is

V , and so that each of U ′, U ′′ has at least k+1 nodes and induces in H a k-connected graph.

If H contains a matching M between U ′ −U ′′ and U ′′ −U ′ of size at least k− |U ′ ∩U ′′| then

H is k-connected.

Proof: By a theorem of Whitney (c.f. [8]), a graph H on at least k+1 nodes is k-connected

if, and only if, κH(u, v) ≥ k for every u, v ∈ V so that uv /∈ H. Therefore, it is sufficient to

prove that if u, v ∈ V and uv /∈ H then H − A contains a uv-path for any A ⊆ V − {u, v}

so that |A| ≤ k − 1. If u, v ∈ U ′ or if u, v ∈ U ′′ then the statement is obvious, since both U ′

and U ′′ induce in H a k-connected graph. Therefore assume u ∈ U ′ − U ′′ and v ∈ U ′′ − U ′.

If there is w ∈ (U ′ ∩ U ′′) − A, then, by the previouse argument, there exist a uw-path and

a wv-path in H − A. Therefore there is a uv-path in H − A. Otherwise, U ′ ∩ U ′′ ⊆ A, and

in particular |U ′ ∩ U ′′| ≤ k − 1. Thus H − A has an edge e = w′w′′ ∈ M . We then obtain a

uv-path in H − A by the same argument as before. �
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Figure 3: Bounding Cost on Matching Edges

d(x, ui) ≤ 1, d(ui, ui+1) ≤ |Pi|, d(ui+1, y) ≤ 1

Lemma 3.9 Let CU = {u ∈ C : |ΓG(u) ∩ V | ≥ k + 1} and CW = {w ∈ C : |ΓG(w) ∩ V | ≤

k} = C − CU . Let U =
⋃

u∈CU
ΓG(u) ∩ V and W =

⋃

w∈CW
ΓG(w) ∩ V .

(i) If U is non-empty then |U | ≥ k+1 and there is a subset EU of edges of KV on U such

that the graph (U,EU) is k-connected and c(EU) ≤ |CU | (∆k2 + 2k + 2) + 2k|C|.

(ii) If |W | ≥ k + 1 then there is a subset EW of edges of KV on W such that the graph

(W,EW ) is k-connected and c(EW ) ≤ |CW |(2k2 + 2k) + |C|(3k2 + 2k)− k.

Proof: Let T be a spanning tree in the subgraph induced in G by C. Order the nodes

in CU and in CW in the order of some Eulerian tour of T , say CU = {u1, . . . , up} and

CW = {w1, . . . , wq}. Let Ui = ΓG(ui) ∩ V and Wi = ΓG(wi) ∩ V . Let Pi be the part of the

Eulerian Tour from ui to ui+1, and let Qi be the part of the Eulerian Tour from wi to wi+1,

Clearly,
∑p−1

i=1 |Pi| = 2|C| − 2 ≤ 2|C| and
∑q−1

i=1 |Qi| = 2|C| − 2 ≤ 2|C|.

To prove part (i) of the lemma, assume U is non-empty. By the definition of CU , |U | ≥

k + 1. For every 1 ≤ i ≤ p, |Ui| ≥ k + 1, and we will construct a k-connected graph on

Ui of cost ≤ ∆k2 + 2. Then we will add a matching Mi between Ui − Ui+1 and Ui+1 − Ui

so that |Mi| ≥ k − |Ui ∩ Ui+1|. By the triangle inequality, every matching edge is of cost

no greater than |Pi| + 2 as described in figure 3, thus c(Mi) ≤ k(|Pi| + 2). The union

of the constructed graphs will be a k-connected graph, by Claim 3.8. The total cost of

the matchings is ≤ 2k|C| + 2kp. Consequently, we get a k-connected graph on U of cost

≤ p(∆k2 + 2) + 2k|C|+ 2kp ≤ |CU | (∆k2 + 2k + 2) + 2k|C| as required.

Fix 1 ≤ i ≤ t. We now construct a k-connected graph on Ui. By the definition of

∆, since Ui ⊆ ΓG(ui), there is a dominating set U1
i of size at most ∆ in G[Ui]. By the

same arguments, if Ui − U1
i is non-empty, there is a dominating set U2

i of size at most ∆ in

G[Ui−U1
i ]. Repeating the process k times, and accumulating the dominating sets, we obtain

a set U ′
i , so that |U ′

i | ≤ ∆k and for every u ∈ Ui − U ′
i , u has at least k neighbors from U ′

i
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(a) Evaluating the cost of a single edge
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(b) Qi is shortened by all edges from lefthand to righthand side.

Figure 4: Bounding cost of clique edges of one block.

in G[Ui]. By a theorem of Harary (c.f. [11]), there is a k-connected graph on U ′
i containing

⌈∆k2/2⌉ edges. Since Ui ⊆ ΓG(ui), and by the triangle inequality, every such edge has cost

≤ 2. We get a k-connected graph on U ′
i of cost ≤ 2⌈∆k2/2⌉ ≤ ∆k2 + 2. Every node in

Ui − U ′
i is connected to at least k nodes in the constructed graph, therefore by Claim 3.7,

the constructed graph is a k-connected graph on Ui.

Assume |W | ≥ k + 1. We construct a k-connected graph on W . The construction is

as follows. Let W ′
i = Wi −

i
⋃

j=1

Wj. Then the nonempty sets from W ′
1, . . . ,W

′
q partition W .

Traversing the sequence W ′
1,W

′
2, . . . ,W

′
q from left to right, we can partition it into blocks,

each consisting of consecutive sets from the sequence, such that: the number of nodes in the

union of the sets in each block is between k+1 and 2k, except maybe that the last block has

less than k + 1 nodes. We will construct a clique on the nodes of each block. We then add

a matching Mt as in Claim 3.8 between each block t and block t+ 1, except that if the last

block has less than k+ 1 nodes, then we connect each of its nodes to the preceding block as

described in Claim 3.7.

Consider the first block, say W ′
1, . . . ,W

′
ℓ, and let B1 be the union of the sets in this block.

Note that k + 1 ≤ |B1| ≤ 2k. We bound the cost of a clique on B1 as follows. In G, each

W ′
i is connected by a star with center wi, and wi is joined to wi+1 by the path Qi. An edge

connecting a node in W ′
i to a node in W ′

i+j shortcuts at most one edge from the star of each

of W ′
i ,W

′
i+j , and each of the paths Qi, . . . , Qi+j−1, as in figure 4(a). Thus by the triangle

inequality, each such edge adds at most 2 + |Qi| + · · · + |Qi+j−1| to the cost. Clearly, over

all edges, we shortcut every Qi at most

(

i
∑

j=1

|W ′
j |

)(

ℓ
∑

j=i+1

|W ′
j |

)

≤
1

4

(

ℓ
∑

j=1

|W ′
j |

)2

=
1

4
|B1|

2
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Figure 5: Bounding cost of matching edges between blocks (here k = 3).

times, as described in figure 4(b). In addition, every edge adds at most 2 to the cost, which

sums to at most 2
(

|B1|
2

)

≤ |B1|
2 for all edges. Denoting L1 =

ℓ
∑

i=1

|Qi| and recalling that

|B1| ≤ 2k we obtain that the cost of a clique on B1 is bounded by

|B1|
2

4
·
ℓ−1
∑

i=1

|Qi|+ |B1|
2 ≤ k2L1 + 2k|B1| .

A similar argument applies on every block t. Since
∑

t Lt = 2|C| − 2 and
∑

t |Bt| ≤ |W | ≤

k|CW |, the overall cost of the cliques on the blocks is bounded by

k2
∑

t

Lt + 2k
∑

t

|Bt| ≤ 2k2|C| − 2k2 + 2k2|CW |.

For every t, we choose a set B′
t of k nodes from Bt arbitrarily. Next we construct

consecutive matchings between B′
t and B′

t+1 for all t. For all i, Qi is shortened at most k

times as shown in figure 5. In addition, by previous arguments, each edge may shortcut at

most one edge from the stars around some w′
i and w′

j. Thus the cost of all matchings is

bounded by

k

q
∑

i=1

|Qi|+ 2k|CW | ≤ 2k|C| − 2k + 2k|CW | .

Finally, if the last block has at most k nodes, we connect every its node to k nodes from

the preceding block, thus constructing a k connected graph on W by Claim 3.7. By the

triangle inequality, for every u, v ∈ ΓG(C), d(u, v) ≤ |C| + 1, thus every edge is of cost no

greater than |C|+ 1, and the added edges add a cost of at most

k2(|C|+ 1) ≤ k2|C|+ k2 .

The total cost of the edges added is bounded by

|CW |(2k2 + 2k) + |C|(3k2 + 2k)− k2 − 2k ≤ |CW |(2k2 + 2k) + |C|(3k2 + 2k)− k

This completes the proof of Lemma 3.9. �
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Now we finish the proof of Lemma 3.5. If |W | ≥ k+1 and U is non-empty, then there is a

matching EUW of size k between U and W . By the triangle inequality c(EUW ) ≤ k(|C|+1).

By Lemma 3.9 and Claim 3.8, the edge set JC = EU ∪EW ∪EUW forms a k-connected graph

on ΓG(C), of cost at most (assuming ∆ ≥ 2):

c(EU) + c(EW ) + c(EUW ) ≤ |CU |(∆k2 + 2k + 2) + |CW |(2k2 + 2k) + |C|(3k2 + 5k) ≤

≤ (|CU |+ |CW |)(∆k2 + 2k + 2) + |C|(3k2 + 5k) ≤

≤ |C|
(

(∆ + 3)k2 + 7k + 2
)

= ρ(k)|C| .

If |W | ≤ k, then U is non-empty, since U ∪ W = ΓG(C) and |ΓG(C)| ≥ k + 1. Then in

addition to EU , we connect every node in W to k arbitrary nodes in U . This gives a k-

connected graph on ΓG(C), by Claim 3.7. By the triangle inequality, the cost of added edges

is ≤ k2(|C|+ 1) ≤ 2k2|C|. Thus the total cost is ≤ ρ(k)|C|.

This finishes the proof of Lemma 3.5, and thus also the proof of Lemma 3.1 is complete.

A tight example: The following example shows that our bound ρ(k) = O(k2) is tight

(up to constants). Given k points in a ball of radius 1/2 with uniform requirements as an

instance for SN-MSP, an optimal solution size is 1 – add one Steiner point in the ball. An

optimal solution for the SNDP instance has cost
(

k
2

)

, as it is a union of two cliques on V :

in one clique every edge uv has cost ⌈d(u, v)⌉ − 1 = 0, while in the other every edge uv has

cost ⌈d(u, v)⌉ = 1.

3.2 Approximating SNDP on Multigraphs

Finally, we will prove Lemma 2.1, which is restated here for the convenience of the reader.

Lemma 1.2 For SNDP, an α-approximation algorithm on simple graphs implies an α-

approximation algorithm on multigraphs; this is so also for subset uniform, uniform, rooted,

and rooted subset uniform requirements. In the case of rooted uniform requirements, SNDP

on multigraphs admits a 2-approximation algorithm.

Proof: Given an SNDP instance (with parallel edges), insert a new node into every edge, and

divide (arbitrarily) the cost of the edge between the corresponding two new edges. Clearly,

the obtained graph is simple. It is easy to see that an α-approximation for the modified

instance implies an α-approximation for the original instance, and that this transforma-

tion is requirement type preserving for subset uniform, rooted, and rooted subset uniform

requirements. It remains therefore to consider uniform and rooted uniform requirements.

We now consider the case of uniform requirements, where feasible solutions of the problem
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are k-connected spanning subgraphs of G. LetH = (V,E) be a minimally k-connected multi-

graph (so H − e is not k-connected for every e ∈ E). We claim that if |V | ≥ k + 1 then H

is simple (thus we can keep for every maximal set of pairwise parallel edges of G only the

cheapest one), and if |V | ≤ k then H has exactly k+2−|V | edges between every of it nodes

(thus an optimal solution is found by taking the k + 2 − |V | cheapest edges in G between

every pair of nodes). Assume that |V | ≥ k + 1. Then the simple underlying graph H ′ of H

is k-connected by a theorem of Whitney (c.f. [8]): If κH′(u, v) ≥ k for every u, v ∈ V so that

uv /∈ E ′, then H ′ is k-connected. This holds in our case, since k pairwise internally disjoint

uv-paths in H have no parallel edges. If |V | ≤ k, then note that if H has exactly k+2− |V |

edges between every pair of its nodes then H is k-connected. Hence it is sufficient to prove

that there are at least k+2− |V | edges between every two nodes of H. To see this, consider

a set of k internally disjoint uv-paths in H. At most |V |−2 of these paths may not be edges

between u, v, thus at least k − (|V | − 2) of these paths are edges between u, v.

Finally, for rooted uniform requirements, we note that the existing 2-approximation al-

gorithms do not have the restriction that G is simple, and hence work also for multi-graphs.

�
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4 Conclusions and Open Problems

We have presented a polynomial time approximation algorithm for SN-MSP in normed spaces

with variouse connectivity requirements types, using known approximation algorithms for

SNDP as a subroutine.

The approximation ratio achieved are a multiplication of two factors. One is the approxi-

mation ratio of the corresponding SNDP algorithm, which we denoted by α, and the other is

a ”reduction fee”, denoted as ρ(k) = O(k2). Finding better approximation ratios for SNDP

problems will improve the ”α” factor of our approximation ratios.

As shown earlier, using a feasible solution of SNDP on KV incurs an Ω(k2) reduction

fee. Along with the analysis of our approximation algorithm, we get that the reduction fee

is Θ(k2). Constructing a less natural instance of SNDP from the SN-MSP instance may

improve this threshold.
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