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Abstract

The Survivable Network Design (SND) problem seeks a minimum-cost subgraph that
satisfies prescribed node-connectivity requirement. We consider SND on both directed
and undirected complete graphs with G-metric costs, that is, c¢(zz) < Ble(xy) + c(yz)]
for all z,y,z € V, which varies from uniform costs (ﬂ =1/2) to metric costs (8 = 1).

For directed graphs our results are valid in the range 5 L<p< f Our approximation

ratios are: for undirected graphs and - 3 ﬁQ for dlrected graphs. For k-Connected
Subgraph (k: CS) our approximation ratios are: 1 + k( 5 for undirected graphs and
min{1 + W, W} for directed graphs. For undirected graphs this improves the
approximation nratios ;=5 of [2] and 2+ f % of [9] for all B> 3+ ﬁ
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1 Introduction

1.1 Problem definition

For a graph H let £y (u,v) denote the uv-connectivity of H, that is the maximum number

of internally disjoint uv-paths. We consider the following problem:

Survivable Network Design (SND)
Instance: A directed/undirected graph G = (V, E), edge-cost {c(e) : e € E}, and connecti-
vity requirements {r(u,v) : u,v € V'}.

Objective: Find a minimum-cost subgraph H of G satisfying

kp(u,v) > r(u,v) Yu,veV . (1)

A graph H is k-connected if kg (u,v) > k, Yu,v € V. An important particular cases of
SND is the k-Connected Subgraph (k-CS) problem, when r(u,v) = k for all u,v € V.

We consider instances of SND and k-CS with [g-metric costs, namely, when the input

graph is complete and the costs satisfy the (-triangle inequality:

c(wz) < Ble(xy) +clyz)) Vo,y,z eV (2)

When § = % the costs are uniform, and we have the “cardinality version” of the problem.
When § = 1 the costs satisfy the triangle inequality and we have the metric version of the
problem. Many practical instances of the problem may have costs which are between metric

and uniform.

Here is some notation used in the paper. Let & = max, ,ev r(u, v) denote the maximum
requirement of an SND instance. Given an SND instance G = (V, E),¢,r we will assume

that V' = {vq,...,v,}. For undirected graphs, the requirement r; of v; is the maximum

requirement of a pair containing v;. For directed graphs r* = max,, ey 1 (vi, v;) is the out-
requirement of v;, and ri" = max,,cv (v, v;) is the in-requirement of v;. Throughout the
paper we fix some optimal solution J. In the case of directed graphs let J* and Ji™ be the
set of edges in J leaving and entering v;, respectively. In the case of undirected graphs, let

J; be the set of edges in J incident to v;. We will often use the following statement:

Lemma 1 ([1, 3]) Let e, e’ be a pair of edges in a complete graph G with 3-metric costs.
o If G is undirected, and if e, €’ are adjacent then c(e) < %c(e’),

o If G is directed, and if 3 < 3 < \/Lg, then c(e) < %c(e’).



Costs | Requirements Approximability

Undirected Directed
general general O(min{k3logn,n?} [7], Q(k°) [6] Q(2ls"" ) [8]
general Ek-CS O(log "+ log k) [12] O(log -+ log k) [12]
metric general O(log k) [5] (210gl ) 8]
metric k-CS 24+ (k—1)/n[9] 2+ k/n 9]
[-metric general — —
B-metric k-CS 2+ 6% [9), < [2] -

Table 1: Approximation ratios and hardness results for SND and k-CS.

1.2 Previous work

k-CS (and thus also SND) is known to be APX-hard [1]. Approximation ratios and hardness

results for SND and k-CS are summarized in Table 1. We note that in [2] is also given a

(1+ 59((216 __ﬁl)) )-approximation algorithm for undirected 3-CS with G-metric costs. For a survey
on various min-cost connectivity problems see [10]. We also mention a recent result [11] that
for k = n/2 + k' the approximability of the undirected SND is the same as of the directed

SND with maximum requirement &’. This is so also for k-CS.

1.3 Our results

For (3-metric costs, we obtain the first algorithms for SND, and for k-CS on directed graphs.

For k-CS on undirected graphs, we improve the previously known ratios.

Theorem 2 SND with 6 metm’c costs admits the following approximation ratios: % for
undirected graphs, and ; ﬂQ for directed graphs with 1/2 < < 1/+/3.

We analyze the performance of the algorithm of Cheriyan & Thurimella [4] originally
suggested for k-CS with 1, co-costs, and show that for G-metric costs it achieves the following

ratios:

Theorem 3 k-CS with 3-metric costs admz’ts the following approximation ratios: 1+ k(f—ﬁﬁ)

for undirected graphs, and min{1+ T 3ﬂ2} for directed graphs and 1/2 < < 1/+/3.

k:(l 352



2 Proof of Theorem 2

The proof of the theorem is based on the following simple statement.

Lemma 4 Let V = {vy,...,v,} be a node set, and for i = 1,....n let ¢ rin < n —1
be non-negative integers. Let A" be the set of edges from v; to the first rout(vi) nodes in
V —{v;}, and A™ be the set of edges from the first r°“*(v;) nodes in V —{v;} to v;. Namely:

Aot {vw; 1 <j<r(v)} if rot(v) <
L vivi 1 < j3<r(v)+1,7F#1i} otherwise
j

o {vjui:1<j<r(v)} if ri(v) <
P {vui 1< <r(v)+1,j#i} otherwise
Then for any i # j, the graph H;; = (V, A;’“tUAé-”) contains at least min{r"*, rj-”} internally

disjoint v;v;-paths.

Proof: Note that there is a set C' of min{r(v;),r(v;)} — 1 nodes so that in H;; there is
an edge from v; to every node in C' and from every node in C' to v;; furthermore, either

vv; € H;j or v;v; there is one more node that can be added to C. The statement follows. [

The algorithm is as follows. In the case of directed graphs, we compute the edge sets A2*
and A" as in Lemma 4, and output their union graph H. In the case of undirected graphs,

we consider the directed problem on the bi-direction of G with the requirements r*(v;) = 0

out ( out (

for all ¢, r°(v;,v;) = max{r(v;,v;),r(v;,v;)} for i > j and r°(v;,v;) = 0 otherwise. For
both directed and undirected graphs we have kg (v;, v;) > min{r(v;), r(v;)} > r(v;, v;), hence

H is a feasible solution.

To establish the approximation ratio, we will use Lemma 1. In the case of directed
graphs, note that |J2*| > r?“* and ]Jm| > rin while |A%| = r? and |A"| = ri". Hence
c(Ag) < 3520((]"“’5) and c(A™) < 3/826(Jm) by Lemma 1. Thus

n ) 2 3 n . 4 3 4 3
H) < 30(6(A2) + e(AT) < 20 S el ) + el ) < _ﬁgﬁch) -2 SO
=1 i=1

In the case of undirected graphs, let A; be the set of edges in H corresponding to A%“* in

its directed variant. Note that |A;| = r(v;) and |J;| > r; for all i. Hence ¢(4;) < lﬁﬁ c(Jy),

by Lemma 1. Thus




3 Proof of Theorem 3

Let F' C F be an edge set defined as follows. In the case of undirected graphs, the degree
of every node in the graph (V,F') is at least k — 1; in the case of directed graphs, both
the indegree and the outdegree of every node is at least k£ — 1. Such F' of minimum costs
can be computed in polynomial time, for both directed and undirected graphs, c.f. [13].
Clearly, ¢(F') < opt. Now let I C E — F be an inclusion minimal augmenting edge set so
that H = (V, F + I) is k-connected. It is known that [ is a forest in the case of undirected
graphs, and |I| < 2n — 1 in the case of directed graphs.

In the case of undirected graphs, since [ is a forest, there exists an orientation D of [
so that the outdegree of every node w.r.t. D is at most 1. Let D; be the set of edges in D
leaving v;, so either D; = () or |D;| = 1 for all i. As J; > k, we have ¢(D;) < ¢(J;) by

Lemma 1. Hence

B
k(1-8)’

2 20
Zc _krl— Zc _kl—B)C(J>:mOpt'

Consequently, ¢(H) = ¢(F) + ¢(I) < opt + ( )Opt = (1+ ( )) opt.

In the case of directed graphs, |I| < 2n—1. As any fesible solution has at least kn edges,

we have

m—1 28 433
I < . copt < ——— - opt .
s = T P S pa s P
3 3
Consequently, ¢(H) = ¢(F) + ¢(I) < opt + % ~opt = (1 + %) - opt.
Our additional algorithm for directed k-CS returns a graph H as in the following lemma.

Lemma 5 Let V = {vy,...,v,} be a node set and let k < n — 1 be an integer. Let A; to
be the set of edges from v; to the nodes vii1, Vo, ..., Virx where the indices are modulo n.
Then the graph H = (V, E') where E' = J;_, A; is k-connected.

Proof:

Note that [J?*f| > k while |A;| = k for all i. Hence

n Qﬁ?’ n 2ﬁ3 253
c(H) = Zc(Ai) < 11— 33 ;C(Ji) 1 3520(J) —1_ 3620p




4 Improving k-CS

Lemma 6 There exists a minimum cost k-edge cover H such that k < d(v) < k+1 for all
(ONS VH

PROOF MISSING

Lemma 7 Let G, c be a graph with metric costs ¢ on the edges, if H is minimum cost k-edge

cover and F is a minimum cost (k — 1)-edge cover then c¢(F) < 2-c(H).

Proof: Let H be a minimum costs k-edge cover such that Yo € V k < d(v) < k + 1, the
following procedure will find a matching M such that F' = H — M is a (k — 1)-edge cover

such that ¢(F") < g,’z—i;c(H).

Start with and empty edge set M, and iteretively do the following: choose the most
expensive edge e € H add it to M and remove both incident nodes and all edges incident to
them.

Let F = H — M, M is clearly a matching, F’ is a (k — 1)-edge cover and ¢(F’) =
c¢(H) — ¢(M). For every edge added to M we removed at most 2k + 1 edges from H hence

c(M) > TLC(F') = ﬁ (¢c(H) —¢(M)), and therefore ¢(M) > TIHC(H) and

2k +1

c(FY=c(H)—c(M) < P

c(H)

[\)



5 Rooted Directed

The rooted-SND problem is the varient where all of the requierments are from a single node.

Let terminals 7" C V' be a set of nodes with positive requirement (excluding the root).

Lemma 8 Any solution for rooted directed SND has at least )
edges.

rin(v) +max(k, |T|) —|T)|

veV

Proof: If |T| > k then:

> rin(v) + max(k, [T)) — [T =Y rin(v)

veV veV
and clearly any node must have incoming degree > then it’s incoming requirement.
If |T| < k then again each node must have incoming degree > then it’s incoming requirement,
and the root must have at least k outgoing edges, |T'| of which can shared with the terminals
hence there are at least k — |T'| edges other then all the edges incident to the terminals:

S ran(v) + max(k, |T]) = |T] = 3 rin(v) + b — [7]

veV veV

[l

For a rooted-SND problem G, ¢, r, let V = {vg,...,v, 1}, and let assume w.l.o.g. that vy
is the root, r(v;) > 0 for 1 < ¢ < |T'| and r(v;) =0 for |T| <i < n.

We construct H = (V, E’) where £’ = UEO A;, where

o = 0 if |T|>k
o {vjv; : [T|+1<j<k+1} otherwise

And V1 < i <|T|, A; is defined as following:

A — {'U()Uj o1 < j < T’,m<'l}i>} if Tin(”i) <1
e {vovj : 1 < j <mrp(v;) + 1,7 # i} otherwise

Now |Ag| = max(k,|T|) — |T|, and V1 < ¢ < |T|, |Ai| = 7in(v;). So by definition
|E'| = > ey rin(v) + max(k, |T]) — |T].
And V1 <@ < |T|, kg (vo,v;) > r(vg,v;), since the following k disjoint vov; paths exists in H:
<U0,Uj,vi> fOI‘ 1 S] S T(U’navi)‘

Applying the gap in directed graphs with S-T| we have:

’ 25° 23
c(E) < 1——3526( ) = 1_—3520Pt



6 subset k-CS

Let T'C V be the set of terminals, and ¢ = |T'|. The case where ¢ > k can be solved as if
it was k-CS due to the 5-TI costs. So in this section we will allways refer to the case where
t<k.

Lemma 9 e For directed graphs, any solution must have at least 2kt — t> + 1 edges.

e For undirected graphs, any solution must have at least kt — £t edges, and every node

2
18 1ncident to at least k —t + 1 nodes in' V —T.

Proof:

e In any solution each node is incidet to at least k£ outgoing edges and k incoming edges, a
total of 2kt edges. Since between the terminals there can be only #(t — 1) edges then at
most ¢(t—1) where counted twice, hence there must be at least 2kt —t(t—1) = 2kt —t>+t
edges.

e In any solution each node is incidet to at least k£ edges, a total of kt edges. Since
between the terminals there can be only #(¢ — 1)/2 edges then at most @ where
counted twice, hence there must be at least kt — @ = 2kt — ﬁ% edges. And since
each node have k£ edges and can incidet to no more then ¢ — 1 terminals then it is

incidet to at least K — ¢+ 1 nodesin V —T.
OJ

To solve subset k-CS we choose an arbitrary set of edges U C V, such that 7' C U and
|U| = k+1, and we connect each terminal to all the other nodes in U. In the directed version

we add edges for each terminal to and from any other node in U.

For the directed graphs the solution contains exactly 2kt — t? 4+ t edges and therefore

costs at most ﬂo t
1—beta? pt.

For the undirected version, each node is incident to k — ¢ + 1 which can be compared to
similar kK —t + 1 edges incident to that node. And the t — 1 edges which can be counted half
since they appear twice which can be compared to the t — 1 edges incident to that edge that

left in the optimal solution.



7 Conclusions

We have analized and shown that the algorithm of Cheriyan & Thurimella [4] achives 1 +
k(f—fﬂ) — 12k —1,and 1 + M%;BQ) — 12k — 1 for undirected and directed k-CS with 8 quasi
metric costs.

We used Harrary construction for undirected k-CS, and provided explicit construction
for directed k-CS, undirected subset k-CS, directed subset k-CS. and directed rooted SND.
All of which gives an optimal solution when the edge costs are uniform. For the general case

of SND we provided an explicit consturction that achives 2-approximation for unifrom costs.

Using those construction, and properties of 3 quasi metric we provided approximation
ratios for subset k-CS, SND, and an improvment for rooted SND with directed graphs.

Still some questions remains unanswered. Is there any explicit construction for SND with
uniform costs that provide an optimal solution?, and if not is there a better approximation
then 27. Are there any better approximation for the problems of subset k-CS, k-CS, and
SND?. And for the directed SND, is there any approximation for 3 > LS?, note that for
3 =1 there is a lower bound of Q(2!°8" ") [1].

10
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