The Cedalion Workbench

BoAz ROSENAN

22997: Graduate Project in Computer Science
Software Engineering Lab
Dept. of Mathematics and Computer Science
The Open University

Supervisor: PROF. D. H. LORENZ

Contents

Introduction

1.1 Background
1.2 The Cedalion Programming Language
1.3 Development Status L.

2.1 Scope

Requirements

2.2 Cedalion Workbench Overview
2.3 Functional Requirements

23.1
2.3.2
233
234
2.3.5
2.3.6
2.3.7

Projectional Editing
The Text Bar
Auto-completion L Lo
Allases e e
Context Menu
Adapters
Definition Search

Software Design

3.1 Software Architecture

3.1.1

3.1.2

Client: The Eclipse Plug-in
3.1.1.1 Eclipse
3.1.1.2 The Cedalion Workbench Plug-in
3.1.1.3 Figures and Commands
Server: The Logic Engine
3121 SWIProlog.
3.1.2.2 The Cedalion Logic Engine
3.1.2.3 The Cedalion Base Code
3.1.2.4 User DSLs and Programs

3.2 Functionality

3.2.1

3.2.2

Design Principles: Client/Server Approach
3.2.1.1 Client/Server Examples
3.2.1.2 Procedures and Commands
Requirements Walkthrough
3.2.2.1 Projectional Editing

CONTENTS

3222 TheTextBar.
3.2.2.3 Auto-Completion
3.2.24 Aliases
3.2.2.5 Context Menu
3.22.6 Adapterso Lo
3.2.2.7 Definition Search

Bibliography

A Communication Protocols
A.1 The Cedalion Public Interface (CPI)
A.2 Built-in Predicates o
A.3 Service Predicates

21
21
22
22
23
23

24

Abstract

Cedalion is a programming language designed as a host for internal domain
specific languages (DSLs). It features syntactic freedom and composability of
DSLs, thanks to the use of projectional editing.

This software project provides a projectional editor for the Cedalion pro-
gramming langauage, named the Cedalion Workbench. It is developed in Java,
Prolog and Cedalion, as a plugin for the Eclipse platform.

Chapter 1

Introduction

This paper describes the design and implementation of the Cedalion Workbench,
which is a significant part of my research. The implementation itself is an open-
source project hosted in SourceForge (http://cedalion.org). The source-code to
this project is accessible through the Mercurial repository, and there are regural
releases containing new features and bug-fixes.

1.1 Background

Cedalion is a Language-Oriented Programming Language [6]. As such, it is
a programming language designed for the Language Oriented Programming
paradigm. To our knowledge, this is the first language with this attribute.

Language-Oriented Programming (LOP) is, at least by name, a relatively
new software development paradigm. In the traditional approach, the program-
ming language is selected first, and then the software design process translates
the concepts of the problem domain into the concepts of that programming
language (such as identifying “problem-domain objects” in OOD and building
class diagrams based on them). In contrast to that, with LOP we first design
the programming-language to suite our needs, and then write the software using
that language. In other words, instead of bringing the problem-domain to the
language, LOP brings the language to the problem-domain.

The “programming languages” we end up with when using the LOP ap-
proach are usually oriented at a specific problem-domain, i.e., these are ususally
Domain-Specific Languages (DSLs). However, the term problem-domain here
is not restricted to a end-user problems. For example, in a billing system for a
Telecom carrier, the problem-domain is not restricted to the domain of billing
phone conversations. The analysts building the billing schemes are indeed most
interested in that problem domain, but there is much more into this kind of
system than just that. Querying the system logs for relevant (billable) informa-
tion, communicating with internal and external servers to collect information,
formatting the bills and providing user interface can all be considered “problem-

CHAPTER 1. INTRODUCTION)

domains”| in the wider sense. As such, they all “deserve” their own DSLs for
effective implementation & la LOP.

The contemporary LOP approach [2, 3] advocates the use of multiple, in-
teroperable DSLs, each one focused on one problem-domain, such that together
they can cooperate to address large multiparadigm software. This approach is
very favorable for code reuse, since DSLs dealing with globally-relevant problem-
domains, such as user-interface or networking, can be shared in a very wide scope
(e.g., posted on the Internet).

Indeed, LOP seams promising, but there are challenges to overcome. The
main challenge associated with LOP is the need to effectively define and imple-
ment DSLs. This is especially difficult when we need these DSLs to be inter-
operable with one another, that is, allow code in one DSL be wrapped around
code in another. Traditional language implementation techniques, such as the
use of Lex and Yacc will not provide us with a solution for that problem.

Currently, there are two approaches that allow effective and modular DSL
development: Internal DSLs and Language Workbenches.

Internal DSLs These are DSLs that are defined from within an existing pro-
gramming language', named the host language. Lisp and its dialects, Ruby,
Smalltalk and Haskell are known to be good hosts for internal DSLs. For ex-
ample, Ruby-on-Rails [1] is a web-development platform that makes extensive
use of internal DSLs.

Language Workbenches These are Integrated Development Environments
(IDEs) for defining, implementing and using External DSLs [3]. Their power is
in the fact they do not pose any limitations in terms of syntax and semantics
on the DSLs they support. Semantic freedom is inherent to the use of external
DSLs. The syntactic freedom is provided by the use of projectional editing [4],
which can be seen as the Model /View/Controller (MVC) Architecture, applied
to a textual programming language. With projectional editing, the code is being
edited through a view, displaying an underlying model, where the projection
(the “controller”) is determined as part of the language definition. Projectional
editing allows such DSLs to have any syntax, regardless of the limitations of
a certain parsing algorithm (parsing does not take place), and even syntactic
ambiguity. Disambiguation is done when entering code, by selecting the correct
construct from a menu. This way, while two different phrases may look similar,
they are different down at the model level.

LOP Languages There are significant trade-offs between these two approaches.
On the one hand, internal DSLs are easier to implement than external DSLs
(even when using language workbenches), but they are bound by the syntax and

IThe term internal DSLs was coined by Fowler [3]. Others [5] use the term Embedded DSLs
to describe the same thing. We follow Fowler’s terminology to avoid confusion with languages
such Embedded SQL, languages implemented using pre-processors on the host language. These
languages are actually external DSLs.

CHAPTER 1. INTRODUCTION 6

semantics of the host language. On the other hand, language workbenches pro-
vide freedom to create better DSLs, but implementing them is harder relative
to internal DSLs.

To overcome these trade-offs, our research introduces the concept of LOP
Languages. These are programming languages designed to take the best of both
worlds, providing a good solution for LOP.

LOP Languages are good hosts for internal DSLs, allowing easy DSL im-
plementation. However, they import two important features from language
workbenches:

1. Projectional Editing, as a way to provide syntactic freedom; and

2. DSL Schema, a method to allow formal definition of the validity of DSL
code.

Cedalion is an instance in this class of languages, providing a proof of concept.
The rest of this document will focus on Cedalion specifically, where the discussion
brought in this section provides the motivation.

1.2 The Cedalion Programming Language

In Section 1.1 we explored the motivation for Cedalion. In this section we provide
a brief overview of the Cedalion programming language.

Following the description in Section 1.1 and in [8], to qualify as an LOP
language, Cedalion needs to be able to host internal DSLs and support DSL
schema and projectional editing.

Cedalionis a logic-programming langauge, mostly based on Prolog. As such,
it can host internal DSLs following the method described by Menzies [7].

To support DSL schema, Cedalion provides a static type-system, based on
Hindley /Milner type inference. This provides the basic mechanism for defining
and enforcing schemata for DSLs. Each new construct needs to have a type-
signature defined, defining the construct’s type in terms of the types of its
arguments. Collecting the type-signatures of all the constructs of a certain
DSL can be seen as its schema. They provide a set of rules for the structural
validity of DSL code. The type-system will then enforce these rules, so that any
well-typed piece of DSL code will be considered “valid” in the eyes of the DSL
schema. In addition to the type-system, DSL developers can define their own
“checkers” to check for domain-specific terms of validity. This allows Cedalion
to report errors in a way that makes sense to its DSL users.

Finally, to support projectional editing, Cedalion includes projection defini-
tions, which are statements that transform language constructs to visualization
objects. These objects are supported by the Cedalion Workbench, which displays
them to the user.

A complete definition of a language construct in Cedalion consists of a type-
signature, a projection definition (optional, defaults to a Prolog-like syntax),
and a semantic definition. The semantic definition depends on the type of

CHAPTER 1. INTRODUCTION 7

« declare Say hello to TTerm with varnames VNs :: procedure where TTerm :: typedTerm , VNs : list (varName)
- display Say hello to TTerm with varnames VNs :: procedure *
as" "Sayhelloto" {TTerm :typedTerm } " with varnames" { VNs :: list (varName)}
= procedure Say hello to Term :: Type with varnames VNs
showView (* " Hello, " { immediateDescriptor (Term , VNs | :: Type })
» Context menu entry Say hello for TTerm with varnames VINs at path Path
do Say hello to TTerm with varnames VNs

Figure 1.1: A screenshot of a Hello, World program in Cedalion

language construct being defined. In Cedalion parlance, such a construct is
called a concept.?

Figure 1.1 shows a “Hello, World” program in Cedalion. The program con-
tributes a context-menu entry labeled “Say Hello”, that once clicked it shows
the object that was right-clicked (to receive the context menu) in the Cedalion
View, to the right of the word “Hello”. The code begins with a definition of a
new concept - the “Say hello to” procedure. It begins with a type signature (the
declare/where statement), followed by a projection definition (the display/as
statement), followed by a semantic definition (the procedure statement), and fi-
nally, the definition of the context menu entry, associating the label “Say Hello”
with the procedure.

1.3 Development Status

The Cedalion implementation is an open-source project hosted in SourceForge.
Its declared state of maturity is “pre-alpha”, meanning it is a work-in-progress
and is not yet ready for prime-time use. Nevertheless, Cedalion gets around ten
downloads per week from different countries around the globe. Judging by the
reported statistics, some of these downloads are made by random visitors to the
website, while a few of them seem to be made by repeating users, coming to get
a newer version. The on-site documentation includes a “hello, world” tutorial,
introducing the concepts of projectional editing to the users. However, judging
from the number of views on that page, it has not been tried by too many
people.

The main challenge in the implementation of Cedalion is stability. Cedalion’s
projectional editing allows for user code to run from within the projectional
editor, as it is being edited. Buggy code, even ill-typed code can still run in
this context. The key in stabilizing such software is to localize the effect of
bugs. The effect of bugs resulting in an exception is easy to localize (catch the
exception and move on). However, some bugs result in non-termination, which
is significantly harder to contain.

2The same term is also used in [2].

Chapter 2

Requirements

This chapter describes the requirements from the Cedalion Workbench.

2.1 Scope

The scope of this project (and thus of its requirements) is the Cedalion Workbench,
an Eclipse plug-in desinged as a dedicated editor for the Cedalion programming
language.

2.2 Cedalion Workbench Overview

Cedalion code cannot be edited using traditional text editors and can only be
edited using a special projectional editor, a dedicated editor for projectional
editing. The Cedalion Workbench [?], an Eclipse-based IDE, implements such a
projectional editor. Projectional editing offers an alternative to the traditional
parsing approach. With projectional editing, instead of editing the code in a
text editor and then parsing it to form an abstract syntax tree (AST) of the
code, we edit the AST directly, and present it to the user using a projection, that
is, a transformation to some human readable representation, which is usually
(but not necessarily) textual.

Figure 2.1 is a screenshot of the Cedalion workbench. The editor screen
is structured similar to the user interface of a Web browser. The top of the
window contains a text bar (similar to the address bar of a Web browser) with
a few action buttons to its left. The text bar displays the text representation of
the currently selected Cedalion code. The rest of the window’s real-estate (code
area) is dedicated to projecting the content of the file being edited. The tab
label indicates the name of the file.

Even at first glance, one can see that the Cedalion workbench differs from
a text editor. The projected Cedalion code contains special symbols, and it is
displayed using varying font sizes and unorthodox layout. The code comprises
a hierarchy of rectangular elements (we call terms), nested inside one another.

8

CHAPTER 2. REQUIREMENTS 9

Java - Test/bnf/bnf-ops.ced - Eclipse

Edit Source Refactor Navigate Search Project Run Window Help

[% Package Expl 3= = O|| A *bnf-ops.ced ¥ A repeat.ced W A concat.ced W»lﬁ

=&
0%lw < [prod(Symbol, Pattern) | B E
A

o= | b 52 CedalionDB A s declare £ :: pattern
— 57 com.pany.entities « display € :: pattern as €
njg =7 draw2d 9

« Text = Text :- true

> = FBNF
> = Functional + declare * Token :: pattern where Token :: token
& g glht@ » display ‘ Token :: patternas” "' '{ Token :: token }
ogic
A e Blogicl « use ' Token :: pattern as adapter for Token :: token
b = LWC « | First Rest | = Rest :- true
i M BTES; . « declare P; P, :: pattern :
v
Z & bn where P ;:: pattern, P ; :: pattern
B A anbn.ced .
A bnf-ops.ced « display P ; P, :: pattern 1
7 3 bnf.ced as" (P;upatterny " " {P;:pattern}
= A ebnf.ced « Before = After: °
2 A expr.ced P P

Before = Middle ,

D

& JsomeThingWrong
+ dec s tfarn .- ctatemaent 3
Missing signature: declare someThingWrong :: pred where (]|

WrteTe SYTITOUT L PaleETIT , T ailer T .. PJAatleETTT

A schedQuery.ced
A schedQuerylLang
A schedQuerylLang

A biotest.ced

A boolean.ced

A boolScreenshots.cel

» display [Symbol ::= Pattern| :: statement :

4 as" { Symbol :: pattern 3 " =" { Pattern :: pattern }

bnf-ops.ced - Test/bnf

Figure 2.1: A screenshot of the Cedalion workbench

CHAPTER 2. REQUIREMENTS 10

When the user clicks on a term, a selection box appears around it, and the
content of the text bar is replaced with a textual “Prolog-like” projection of
that term. This textual representation can be edited, and when hitting Enter,
the changes are applied to the code area, assuming the text complies with the
simple Prolog-like syntax.

The edited code can be either valid or invalid Cedalion code. Unlike many
syntax driven editors, Cedalion does allow invalid code to be edited. For example,
an undefined term can be used. In such a case, Cedalion will mark this term
with an error marker (a red rectangle with a small red warning sign symbol at
its top left), and provide the details of the error as a tooltip. As can be seen
in Figure 2.1, in the case of an undefined concept, Cedalion claims a missing
signature, and uses type inference to suggest what this signature might be.
Indeed, double clicking the red warning sign will suggest inserting such a type
signature before the current statement. This is the way new concepts can be
introduced. Concepts and type signatures are discussed in [6].

2.3 Functional Requirements

2.3.1 Projectional Editing

Cedalion’s syntax is based on projectional editing. Supporting this is the essence
of what the Cedalion Workbench is made to do. To support projectional editing,
the Cedalion Workbench provides an editor. This editor supports a model-view-
controller behavior, where:

e The model is the Cedalion program.
e The wview is a visual, human readable representation of that program, and

e The controller consists of a set of rules defined in the Cedalion program
itself, defining how nodes in the model are translated to a view.

Applying the controller rules on the model provides the human readable rep-
resentation of the program. However, the view provides more than that. To
allow editing, the editor maintains traceability between view elements and their
underlying model elements. Each portion of the view representing a node in the
model is selectable. Editing operations made when such a view element effects
the underlying model node. Such operations replace the current node with a
different one. After the editing operation has been performed, the modified
model is re-projected to a view, synchronizing the view and the model.

The view consists of several types of elements (figures), providing different
visualization abilities. These include:

e Labels, displaying plain text.
e Symbols, displaying a single unicode character.

e Horizontal flow, displaying its contained figures horiozntally.

CHAPTER 2. REQUIREMENTS 11

o Vertical flow, displaying its containd figures vertically.

e Font modifiers, modifying the style of the font in the figures they contain.
o Text-color modifier, modifying the color of the contained text.

e Line-border, displaying a solid rectangle around the contained figure.

e Background, providing a colored background for the contained figure.

o Raized / Lowered border: display a raized/lowered border around the con-
tained figure.

e Fzxpand figure: contains two figures: expanded and collapsed. Switches
between them when clicking the collapse/expand icon displayed next to
the figure.

e Action figure: performs some action when the contained figure is double-
clicked.

e Brackets: surrounds the contained figure with “brackets”, made of two
Unicode characters, for which the font size is adapted to match the height
of the contained figure.

2.3.2 The Text Bar

At the top of the Cedalion Workbench editor window there is a text box, named
the Cedalion text bar. This text bar provides a textual representation of the
selected element. When the user selects a node in the projectional editor, the
content of the text bar is replaced with its textual representation. This textual
representation uses a Prolog-like syntax. The user can edit the content of the
text in the text bar. When the user presses the Enter key, if the content of the
text bar is valid with regard to the Prolog-like syntax, the selected node and all
the nodes below it are replaced with the content of the text bar, parsed.

The user can select nodes with a lot of content below them. To avoid very
long text in such cases, the sub-tree displayed in the text bar is trimmed to
a fixed depth. Trimmed nodes are represented with a dollar sign ($) followed
by a number. When parsing the text in the text bar, the Cedalion Workbench
replaces the dollar-sign-number sequences with the sub-trees they represent.
The trimmed sub-trees are stored for the duration of the editor’s operation, to
allow text-level copy and paste of large trees.

2.3.3 Auto-completion

Plain use of the text bar as described in Subsection 2.3.2 is good when creating a
new language or creating new language constructs, as demonstrated in the Hello,
World example [?]. However, most of the time, when using existing language
constructs, auto-completion can be used to help the users find the constructs
they want, and avoid misspelled names.

CHAPTER 2. REQUIREMENTS 12

When entering text in the text bar, the user can press a key combination
(Control+Space) to get a list of suggestions. The Cedalion Workbench should
query the collection of concepts that can be used in the selected location, and
finds ones which have aliases (explained next) starting with the string entered.
The list is then presented to the user for choosing the appropriate concept,
which is then inserted as a new term.

2.3.4 Aliases

Aliases are strings associated with concepts. Each concept has a “natural” alias,
which is its internal identifier (the name Cedalion uses internally, regardless of
projection), without namespace prefixing. Additional aliases can be defined
by the user. The Cedalion Workbench also infers aliases in some cases from
projection definitions (e.g., when the projection is a label, the content of the
label is used as an alias for this concept). Concepts and aliases have a many-
to-many relationship, where a single concept can have multiple aliases (e.g.,
its internal name and something based on its projection), and several concepts
can share the same alias. In the latter case, disambiguation should be done by
choosing the desired entry from the auto-completion list of choices.

2.3.5 Context Menu

The Cedalion Workbench provides a context menu for every term (a code element,
represented as a rectangular feature by the projectional editor). Right clicking
a term causes a pop-up menu to appear, listing operations relevant to this term.
Selecting this operation executes it, performing an action such as modifying
code or displaying content in the Cedalion view (a part of the Cedalion Workbench
made for displaying information and interacting with the user). User code can
contribute context menu entries by using context menu entry statements. These
statements associate the caption of the entry with an action. They also specify
a pattern for the term to be matched, in a form of a typed term. This allows
entries to be specified for specific concepts, or specific types, thus making the
menu context-dependent.

2.3.6 Adapters

An adapter of type T to type 15 is a concept of type 75, which takes one
argument of type 77, and semantically acts as a proxy, adding no additional
meaning to its argument. Cedalion has a special declaration for declaring a
concept as an adapter. This allows the Cedalion Workbench to reconcile concepts
of type 17 in the context where a concept of type 15 is needed. Adapters
allow the Cedalion Workbench’s auto-completion to offer concepts of type T; in
these cases, and when a type mismatch between 77 and T, is presented, the
Cedalion Workbench automatically inserts the adapter to fix this error.

CHAPTER 2. REQUIREMENTS 13

2.3.7 Definition Search

Concepts are centric to the way Cedalion software is programmed. Concepts are
introduced in Cedalion in both the DSL definition and the DSL code. To allow
Cedalion users to be able to understand the different concepts and be able to
track their definitions, the Cedalion Workbench provides a mechanism for search-
ing concept definitions. When selecting a compound term, Cedalion’s context
menu displays the option “Show Definitions.” Selecting this option will display
the full story behind the concept associated with the selected term. This “story”
includes all aliases assigned to this concept, the type signature, projection defi-
nition and all semantic definitions. The nature of the semantic definitions for a
concept depend on the concept type. For example, for predicates, the semantic
definition includes all clauses contributing results to that predicate. A semantic
definition of a statement includes all rewrite rules translating this statement
into others. For a type, it includes all type signatures of concepts of that type.
The user can relate new defining statements to concepts using “defines” state-
ments. Each defining statement is displayed along with the file name in which it
is defined. Clicking that definition will open that file, and highlight the relevant
definitions with a green background.

Chapter 3

Software Design

3.1 Software Architecture

This chapter we describe the “anatomy” of the Cedalion Workbench implementa-
tion, identifying its main componenets, describing the role of each of them and
the interactions between them.

Cedalion is designed to be used in client/server settings, where the “client” is
responsible for interacting with the outer world, and the “server” contains the
Cedalion program, and provides the client with guidance as to how to perform
its job. The Cedalion Workbench is no exception for this. Here we describe its
structure, which is presented graphically in Figure 3.1.

3.1.1 Client: The Eclipse Plug-in

In the Cedalion Workbench, the “client” side consists of an Eclipse Plug-in imple-
mented in Java. This plug-in contributes the Cedalion Editor, the projectional
editor for Cedalion, and the Cedalion View, which allows Cedalion code to display
visuals. In addition, the plug-in conatins a collection of Java classes, that can
be used to perform client-side operations. The client side is depicted at the right
side of Figure 3.1.

3.1.1.1 Eclipse

At the bottom of the client stack is Eclipse, a third-party piece of software
that was initially developed by IBM, and then became open-source and is now
developed by a large group of voulenteers, sponsored by IBM. Eclipse is almost
entirely implemented in Java.

3.1.1.2 The Cedalion Workbench Plug-in

On top of Eclipse, is the Cedalion Workbench Plug-in. It is implemented in Java,
with an XML configuration file (plugin.xml) describing the contributions of this

14

CHAPTER 3. SOFTWARE DESIGN 15

Cedalion Architecture

< “aueries]
< modifications |

SWI Prolog (C)

Server Stack Client Stack

Figure 3.1: The Cedalion Workbench Client/Server Architecture

CHAPTER 3. SOFTWARE DESIGN 16

plug-in to the Eclipse environment. As stated above, the two main contributions

provided by this part are the Cedalion Editor (class net.nansore.cedalion.eclipse.CedalionEditor),
and the Cedalion View (class net.nansore.cedalion.eclipse.CedalionView). The

editor is associated with the file extension “.ced”, so that files holding this ex-

tension will be opened using this editor, and will display the Cedalion logo in

the file browser. In addition to the editor and view, the Cedalion plug-in is also

responsible for scanning the Eclipse workspace for files with the “.ced” exten-

sion, and loading them into the server. This is how the user determines what

program runs on their system.

3.1.1.3 Figures and Commands

The Cedalion Workbench plug-in is an extension to the Eclipse platform, and it
is extensible by itself. Two kinds of extensions exist for the Cedalion Workbench
plug-in: Figures and Commands.

Figures are visual objects used for displaying Cedalion code. Figures are the
most basic elements, providing the basic display capabilities. Combining several
figures together allows us to display complex terms.

Commands are objects providing the actions a Cedalion program can per-
form. Since Cedalion is a pure declarative language, the server side (containing
the Cedalion program) cannot do anything on its own. Instead, the client can
query it to get answers. These answers may include, which commands need
to be executed. The client holds a collection of commands available. These
include commands for manipulating the display (e.g., showing something in the
Cedalion View), modifying the Cedalion program (load a file, add or remove a
statement), etc. Some of these commands, such as the ones for manipulating
the Cedalion program, require the assistance of the server. There are also control
commands, such as doAll (class net.nansore.cedalion.cmd.DoAll), which takes
a list of commands and executes them sequentially.

Both collections of commands and figures are extensible, meanning that a
third-party user can add an Eclipse plugin containing their own implementa-
tions, and write a Cedalion program that makes use of the new figures/commands.

3.1.2 Server: The Logic Engine

The server side’s role is to contain the Cedalion program, and to allow the client
to query it. It is depicted at the left hand side of Figure 3.1.

3.1.2.1 SWI-Prolog

As can be seen at the left side of Figure 3.1, the server stack begins with SWI-
Prolog, a Prolog interpreter developed at the University of Amsterdam as an
open-source project. The choice of SWI-Prolog was rather arbitrary, based on
its popularity. Another candidate to consider is YAP (Yet Another Prolog),
developed at the University of Porto, Portugal, and the University of Rio De-
jenero, Brasil. YAP is also open-source, it is not as popular and probably less

CHAPTER 3. SOFTWARE DESIGN 17

stable, but provides siginificantly better performance. Replacing one Prolog
implementation with another requires a reasonable amount of porting work.

3.1.2.2 The Cedalion Logic Engine

Above SWI-Prolog, a Prolog program implements the Cedalion Logic Engine.
This is actually the implementation of the “core” of Cedalion. Contained in the
file service.pl, this layer provides implementation for a communication proto-
col between the client and the server, providing access to its predicates. These
predicates include services for manipulating the Cedalion program, and the pred-
icates of the Cedalion program themselves. The services provided by the logic
engine include:

1. Loading (or re-loading) a Cedalion file into the Cedalion Program.
2. Adding / Removing a statement from the Cedalion program.
3. Loading / Saving a Cedalion file into / from an in-memory representation.

The Cedalion Logic Engine is also responsible for Cedalion’s module system.
When loading Cedalion program files, it adds module-specific prefixes to names,
thus preventing collision between concepts with the same local name. Modules
can still access concepts defined in other modules by explicitly adding their
prefix.

In addition, the Cedalion Logic Engine provides Cedalion with its builtin
predicates. These are Prolog predicates that are exported to the Cedalion en-
vironment by naming them within the builtin namespace. At present there are
around thirty such predicates.

3.1.2.3 The Cedalion Base Code

The Cedalion Logic Engine is capable of loading and running a Cedalion program,
but at this point, it cannot do much. The “core” Cedalion has its extensible core,
but it does not have a type-system and does not support projectional editing.
These features (and more) are provided by the Cedalion Base Code, the bootstrap
module. It has the following roles:

1. Provides implementation for the predicates in the Cedalion Public In-
terface (CPI) namespace. These are interface predicates used by the
Cedalion Workbench Plug-in. They answer questions such as “how do I
open a file?” or “how do I visually display a construct?”. These predicates
complete the implementation of the Cedalion Workbench.

2. Provide Cedalion programmers the ability to control these predicates (and
thus, the Workbench’s behavior), by providing language constructs that
manipulate the results of these predicates. This includes, for example, a
statement for defining projection definitions. Through rewrite rules these
statements effect the answer to the visualization predicate (cpi:visualizeDescriptor).

CHAPTER 3. SOFTWARE DESIGN 18

» Context menu entry Say hello for TTerm with varnames VNs at path Path
do 4 sayHelloTo (TTerm , VNs ||

Figure 3.2: Cedalion code with an error

Another example is a statement that defines a context-menu entry. It ma-
nipulates the results of the query for context-menu entries for a certain
selection (cpi:contextMenuEntry).

3. Implement the Cedalion type-system. The type-system is implemented
as a collection of checkers, logic clauses contributing error messages in
certain situations. Checkers are queried by the predicates facilitating the
projectional editing, to provide decorations over the visuals. The most
common kind of such decorations is an error marker, a red rectangle with
a warning sign at its left. These inform the user that the code is invalid.
Recall that the type-system (a provider of such error markers) is used for
enforcing a schema for DSLs. Another kind of marker, also comming from
the type-system, is a tooltip associated with variables. These tooltips
display the inferred type for each variable. Figure 3.2 shows Cedalion code
from the Hello, World example in Figure 1.1, this time where the “Say
hello to” (or sayHello, as it appears here) procedure is not defined. The
screenshot shows the error marker around the undefined concept.

4. Implement basic language constructs and basic languages to allow users to
start programming in Cedalion. This includes the procedural programming
constructs, and some simple language constructs for handling sets.

3.1.2.4 User DSLs and Programs

With the base-code (the bootstrap package) in place, users have all they need
to start working. Typically, this will start with defining DSLs, and continue to
implementing the software using these DSLs. However, following the Cedalion
philosophy, there is no strict destinction between the two. As in traditional
programming, where programming can be seen as defining more and more ab-
stractions (functions, classes, etc), where some of them (e.g., the main function)
provide an interface to the outer world, Cedalion programming is also about
building abstractions one on top of the other. Some of these abstractions can
be conveniently called DSLs, while others are “simple” extensions, such as pro-
cedures, functions and predicates, which also exist in traditional programming
languages. As in traditional programming, these abstractions are worthless un-
less they have a real-life meaning. They need to interface to something in the
outer world. This can either be the CPI (if the program is intended to run from
within the Cedalion Workbench), or some other public interface, designed as the
interface between the Cedalion program and some dedicated client.

CHAPTER 3. SOFTWARE DESIGN 19

3.2 Functionality

In Section 3.1 we discussed the “anatomy” of the Cedalion Workbench. In this
chapter we shall discuss its “physiology”, how it does the things it does. We
start by describing the main design principle: the client/server approach. Then
we revisit the functional requirements defined in Section 2.3, and provide the
design behinds them.

3.2.1 Design Principles: Client/Server Approach

Cedalion is a pure logic programming language. This means that code in Cedalion
can only provide results to queries (answer questions), but by itself, it cannot do
anything. It cannot display anything on the screen, and cannot write anything
to the disk. It cannot even change the contents of its own logic database (as do
the predicates assert and retract in Prolog). Cedalion’s way of doing things is
related to its client/server approach.

3.2.1.1 Client/Server Examples

As mentioned in Chapter 3.1, Cedalion is based on a client/server approach.
The Cedalion Workbench is one example for this approach (where the client is
an Eclipse plug-in), but definitely not the only one. For practical applications,
Cedalion code should be deployed in a client/server architecture as well. The
server side remains the Cedalion program running on top of a Cedalion logic
engine, but the client side can differ from one application to the other.

One possible client is a client for GUI applications. Such a client should
have the capabilities to open windows and interact with the user, but should
have no knowledge on the actual application that needs to run. The same client
can thus be used for different applications. The client in this case shall make
queries to the server to receive the layout of the windows to open, and what to
do on user events.

Another example is supporting web applications. For these, the “client”
is actually a web server (e.g., a Java Servlet). It is a relatively simple and
generic server, capable of transforming HTTP requests into Cedalion queries,
and transforming the answer to these queries into HTML. The same web server
(the “client” in Cedalion’s terms) can be used for various applications. The
(Cedalion-level) server provides the actual application logic.

3.2.1.2 Procedures and Commands

Regardless of the nature of the client, it is sometimes required to perform ac-
tions. For example, the web-server acting as a Cedalion client may often be
requested to add records to a database (for data-driven web applications). In
Cedalion, we use procedures and commands for this purpose.

Commands are terms understandable by the client, which stand for per-
forming some action. A command can be for adding a record into the database,

CHAPTER 3. SOFTWARE DESIGN 20

openning a window, saving some data to a file, etc. Commands should have all
the information needed to perform their action, such as the name of the table
and the data to insert, or the name of the window to open, which in turn can be
used to query its contents. Commands can be compound, including other com-
mands. For example, the doAll command supported by the Cedalion Workbench
contains a list of commands and performs them one by one.

Procedures are higher level entities, still representing actions to be performed.
Unlike commands, procedures are understood by the Cedalion program, and not
the client. The Cedalion program can translate a procedure into a command
using the procedureCommand predicate. Implementing this (mainly through
procedure statements) provides a way for procedural programming in Cedalion.
Procedures can call one another through the doProc command, which runs a
procedure by querying the server (the Cedalion program) for the underlying
command, and then performing it. This creates a dialog between the client and
the server.

3.2.2 Requirements Walkthrough
3.2.2.1 Projectional Editing

Cedalion’s projectional editing is implemented in parts at both the client and
the server sides. The client/server protocol for supporting projectional editing
defines the term descriptor, to refer to a handle to a part of the code, one
that can be projected to a view, and in most cases, modified. A “normal”
descriptor (/bootstrap:descriptor), one representing a part of the code being
edited, contains a path to the code element. A path consists of the file name
and a list of indexes representing the path that needs to be taken in the abstract
syntax tree (AST) of the code, in order to reach that code element. This is a
unique identifier for a code element. Given a path, the current contents can
be queried and modified. Cedalion’s bootstrap package provides a predicate
(/bootstrap:termAtPath) for querying the contents of a code element (given a
path), and a procedure (/bootstrap:setAtPath) for modifying its contents. By
providing the path, a descriptor allows the projectional editing mechanism in
Cedalion to edit code elements.

The CPI includes the predicate visualizeDescriptor, which provides the vi-
sualization for a given descriptor. This predicate is Cedalion’s entry point for
the implementation of its projectional editing. The implementation fetches the
underlying code element, consults its projection definitions to find an appro-
priate one (and uses a default projection if none is found). When doing so, it
relpaces the child elements with descriptor for the child elements, to allow them
to be visualized as well. The result provided by the Cedalion program is a term
representing visuals.

On the client side, each node in the returned term is turned into a Java object
representing some figure to be displayed. Cedalion uses draw2d for visualization,
and all visualization objects are derived from draw2d’s Figure class. Cedalion
has a mechanism for converting terms into Java objects, by querying Cedalion’s

CHAPTER 3. SOFTWARE DESIGN 21

cpi:termClass predicate. This predicate matches a Java class to a term. The
client can assume that the class name does not change, and therefore the results
are cached on the client side.

3.2.2.2 The Text Bar

The text bar is implemented in part as part of the Cedalion Widget (of pack-
age net.nansore.cedalion.eclipse), which is used as the editor control by the
CedalionEditor (of the same package). When a VisualTerm (package net.nansore.cedalion.figures)
is selected, it takes over the text bar. It first replaces the content of the text bar
with a textual representation of the term represented by the VisualTerm ob-
ject. This representation is provided by calling the procedure cpi:termAsString,
which unifies a given variable with the term at the given position as a string.

The text bar is editable by the user. The active VisualTerm listens to all
keystrokes. When the user hits Enter, the active VisualTerm calls the procedure
cpizeditFromString to replace the content represented by this VisualTerm with
the result of parsing the text in the text box using Prolog’s syntax.

The cpi:termAsString and cpi:editFromString procedures use the termToString
and stringToTerm commands respectively, which are implemented by calling
Prolog predicates of these names, implemented in service.pl.

3.2.2.3 Auto-Completion

The Cedalion Workbench uses Eclipse’s built in mechanism for auto-completion.
Cedalion provides an adapter (class CedalionProposalProvider, internal to CedalionEd-
itor in package net.nansore.cedalion.eclipse) to provide the completion propos-
als. This class calls the selected VisualTerm to retrieve the proposals (method
getProposals()). It performs a query to the cpi:autocomplete predicate. This
predicate takes the prefix — the characters to the left of the caret in the text
box, as a filter on the results. It also takes the code element path, to allow it
to retrieve the type of the requested concept, as another filter.

The bootstrap package of the Cedalion program implements the predicate
retrieving the auto-completion options. It uses an internal predicate for retriev-
ing all concepts for the current type, and another predicate to check the aliases
of each concept. These aliases are matched against the prefix entered by the
user. If the prefix is a prefix of the alias, the option is displayed.

Auto-completion is not only made for replacing content; it is also made for
inserting content. The suggestions for auto-completion take the current content
of the selected code element into account, and tries to place it as the first
argument of each suggestion, if that fits. Doing so provides Cedalion users a
possibility to edit terms, not just from the outside in (as would be the case
where each entered concept is a new one), but also from the inside out. For
example, to enter the expression X +2x*Y | one could start by entering “X”, then
“4+” and selecting the appropriate concept from auto completion, then select the
empty right-hand operand of the “+”, and enter “2”, then enter “*” and select

CHAPTER 3. SOFTWARE DESIGN 22

the desired concept, and finally — select the right-hand operand of the “*” and
enter “Y”.

3.2.2.4 Aliases

Aliases are implemented entirely in Cedalion. They are answers to the /boot-
strap:aliasString predicate. This predicate has a clause providing each concept
its default alias: the name without the namespace prefixing. More results are
provided using a rewrite rule (see Section 3.3 of [6]) translating alias state-
ments into clauses of the aliasString predicate. The alias statement allows DSL
developers provide custom aliases for their DSLs’ concepts.

Additional rewrite rules provide aliases based projection definitions. They
rewrite certain forms of projection definitions into alias statements. These forms
include:

e Projection definitions where the projection is a label, where the label string
is taken as the alias.

e Projection definitions which specify a horizontal flow, where either the
first or second element is a label. The label string is taken as the alias.

3.2.2.5 Context Menu

The context menu is displayed by the VisualTerm class (package net.nansore.cedalion.figures),
as a response to a right click. The private method createContextMenu() creates

and displays the context menu. The construction of the context menu is done

by calling the cpi:contextMenuFEntry predicate, implemented in Cedalion. The

arguments to this predicate are the descriptor associated with the VisualTerm

object (providing its location), and an unbound variable to retrieve a term de-

scribing the menu item to display, including the procedure to be executed once

the .

Then a popup menu is constructed for each result. Each entry is built by
instantiating a CedalionMenultem (package net.nansore.cedalion.eclipse), which
builds the menu item, and registers the associated action. This mechanism is
polymorphic, so that other classes can be implemented to provide other kinds
of menu items, such as groups (which are not currently implemented). The
CedalionMenultem class associates a callback with each menu item, one that
executes the associated procedure.

On the Cedalion side, the cpi:contextMenuEntry predicate is implemented
with a rewrite from the |bootstrap:contextMenuEntry statement. This state-
ment provides the caption to be written on the menu item, a pattern to be
matched against the part of the code which is right-clicked (the “context”),
place-holders for the path (the location of that piece of code), and the variable
name assignment, and the procedure to be executed. A newer version of this
statement also takes an image identifier, for the icon to be presented besides the
caption. This statement is used extensively in Cedalion’s bootstrap code, and is
also used in libraries.

CHAPTER 3. SOFTWARE DESIGN 23

3.2.2.6 Adapters

Adapters are implemented solely in Cedalion. The entry point is the /boot-
strap:checkAdapter predicate. A rewrite rule contributes to this predicate for
every /bootstrap:adapter statement.

Adapters are used by the bootstrap package in two places: For autocomple-
tion, and for resolving type mismatches automatically.

In autocompletion, the autocomplete predicate consults the checkAdapter
predicate to expand the search beyond the needed type, to also include concepts
that can be placed in that position wrapped in an adapter. This makes editing
much easier in some cases. In addition, when considering the existing content
as the first argument for the new content, adapters are taken into account as
well.

When a type mismatch occurs (either by entering code manually, or by
copying-and-pasting code into a certain location), Cedalion tries to resolve this
error automatically. Adapters are considered for the resolution of such errors.

3.2.2.7 Definition Search

Definition searches are also implemented in Cedalion. The context menu entry
providing the search runs the /bootstrap:doShowDefinitions procedure. That
procedure is defined for every non-variable, and calls /bootstrap:showDefinitions.
The reason for this split is to make the creation of the context menu faster, by
not waiting to actually build the output when the menu is constructed.

The showDefinitions procedure builds a visualization term containing all the
definitions of the concept it takes as argument. Then it displays it in the Cedalion
view, by calling the showView command, implemented by the ShowView class
(package net.nansore.cedalion.cmd).

Bibliography

[1]

2]

131

[4]

[5]

[6]

7]

18]

M. Bachle and P. Kirchberg. Ruby on Rails. IEEE SOFTWARE, pages
105-108, 2007.

S. Dmitriev. Language oriented programming: The next programming
paradigm. JetBrains onBoard, 1(2), 2004.

M. Fowler. Language workbenches: The Kkiller-app for domain spe-
cific languages. 2005. http://www.martinfowler.com/articles/
languageWorkbench.html.

Martin Fowler. Projectional editing. Martin Fowler’s Bliki.
http://martinfowler.com/bliki/ProjectionalEditing.htmlx.

P. Hudak. Building domain-specific embedded languages. ACM Computing
Surveys (CSUR), 28(4es), 1996.

David H. Lorenz and Boaz Rosenan. Cedalion: a language for language
oriented programming. SIGPLAN Not., 46:733-752, October 2011.

Tim Menzies. DSLs: A logical approach, 2001. Lecture Notes, EECE 571F,
http://courses.ece.ubc.ca/571f/lectures.html.

Boaz Rosenan. Designing language-oriented programming languages. In
Proceedings of the ACM international conference companion on Object ori-
ented programming systems languages and applications companion, SPLASH
10, pages 207-208, New York, NY, USA, 2010. ACM.

24

Appendix A

Communication Protocols

A.1 The Cedalion Public Interface (CPI)

The list of concepts in the CPI is given in Figures A.1 and A.3. Please note
that they are given in arbitrary order.

A.2 Built-in Predicates

Built-in predicates are given in the “builtin” namespace. This namespace also
contains other concepts used by these predicates. Figures A.3, A.4 and A.5
provide a listing of all concepts in the builtin namespace.

A.3 Service Predicates

The following are Prolog predicates that provide services used by the Eclipse
plug-in.

insert(Statement) Adds the given Statement to the logic database.
remove(Statement) Removes the given Statement from the logic database.

generateFile(FileName, StringVar, Goal) Generates a file named FileName,
containing a line per each result of Goal. The content of the line is the
string bound to String Var.

readFile(FileName, Namespace, FileContent) Reads a Cedalion source file
named FileName, and binds its content into FileContent. Namespace is
the default namespace to be used when reading the file.

writeFile(FileName, FileContent) Writes FileContent into a Cedalion source
file named FileName.

25

26

(1 9red) Sunsty 14D TV oIS

| Buiys : swepssed * wis padAy it wiual | |« padd i (swepsse) ' wial |) ssejpwia)
sse)d eAef e yum (Wia) | Aq psjuasaudal) ydaduod e Buneidossy jf «

| 8dAy:: L' (1) 81 ynsay * [1) 1dxa i1 udx3 |« 2unpadoud :: sdx3 = 3nsay [duny
a.unpaso.id e se sy00] uonouny jeinpadotd e Moy SISiy] ff

puewwo)

puewwo) ‘ 31npadold :: 2014 |+ paud :: 20id ;.4 3INpad01d
puewwo) o}) bunedosse Aq ‘2014 aunpasoid sauyaq jf «
| Buws iz awepsji4 * Bulls : swepNs2.n0ssy |« aunpadoud i (awepsjl4 ' sweNe2INosaYy) 3|4IALS
JSIp 8y} UO Pasn g 03 SWEeN3|I{ 8y} pue ‘Aiowaw ul pajuasaldad s) Yaiym Ag sWeNa3Inosay ay} yioq a.1e usal9 ysIp sy} 0] SjY e SAeS j/

| puewwod

-

| 1:350U0D | (1) Jdx® 2 3SU0D e

usAib s| 31 JUBISUO) BY] SUIMSJ Jey] uolssaldxa jeinpasoud sjdwis v j/

| Bulns i aweNa2unosay | « ainpadold : (SWeNsS2IN0say) 31143s0[2

Alowaw WoLj sjuajuo2 S} SA0WSI :3jY e 850D /]

[Buugs :: ecedsawepy * Buuls :: swenaonosay ' Buls = swens)id | « ainpadoud : (eoedsswey ' swepNs3unosay awepna|id) a)Juado

pasn aq 0] asedsaweu Jnejap ay] s asedsalwep pue ‘syjed ay] 10j PSsn g 0] S| SLWeNa3JIN0say Alowail ojul SWeNajid paweu sjy e peo /|
[Buins iz 53y | « ainpadoud :: (say) opad

asedsaweu deijsjooq/ ay) 0] paaoly ‘pajesaudaq fj

[Anuanusw :: weynusly * wialpadA] : soldlssseq |« padd = (weynuspy ' Joiduissq) Auanusiyixajuod

Aejdsip 03 way nusw ay] Jo uopdLIISsp B 0] punoq si Waynuajy JoldLossq o4 pepiaoid Ajus nusw 1xa1uod A1ens ioj spesaans f/

-

-

COMMUNICATION PROTOCOLS

APPENDIX A.

[Buigs = seyy " Bulgs = buasuonsidwoe) * Bulys = xysid * wialpadAy = wusl | |« padd = (seyy ' bulasuonsdwo) * xusid wue] |) ay@jdwodoine
pade|ds|p aq 03 sejje ay] uleIuod JjiM seyjy pue ‘w.s] uolsjdwod [ny sy uleauod o3 si burnsuonsidwo) "xysid pelsius Apesije sey issn sy 849ym ‘W] | 10§ SUO[IN|OS 838]dW02-03Ne SPINOd [/ «
1d> soedsaweu

27

COMMUNICATION PROTOCOLS

APPENDIX A.

WBWS3 3P0 3Y3 Yoeal 03 33e] 03 JusWnbie PaJsau Jo Xxapul paseq-auo ayp Buiuasaidal siaquinu Jo Isl e - yled pue ‘sweu sjY sy - SWeN33IN0S3Y JO SISISUc) JUdWals 3pos e o3 yied v //

(11 2ed) Sunsry 1dD g’y onSig

| (Bulns) Jad i yjaybulls ' yied : yied |« ainpadoud :: | Jaybulis ' yied) buLiswoldlpa

‘Upa ajgeopun ue s siy| “BuLis jo JuS1U0I By} 0] YIed 18 JUSWS|3 3P0l 3yl 185 //

| 1equinu : yadag “ yied t yied |« (Buins) adxe [yadeg * yied) bussywley

way) bupiojsal mojje 0] susquuinu ypm wayl bujseidss pue yidag pucAaq sjuswals plys Aue buiwwly ‘bulis e se yled je Wusl ayl suimay //
| Buigs :: swepNs2un0s3y |« padd :: (swena3.nosaYy) pauIpows!

payipow uaaq sey ajy e j s¥2ayD /|

[Buigs :: swepna24n0s3Y | « aunpadoud : (wen22nesay | opun

aoedsawieu ugnNg/ 8yl 03 psaow ‘payedsidaq f/

sowepiE) SawewEn yum =g e i

sewenJeA ' wuspadAy i wasy | * yled : yzed |« aunpadoud :: wus | up3
8|qeopun s| Uoj3de siyl W8 | JSoY 07 yjed uj Jusjuod sy up3 I/

sawepJe " wislpadAy = wusl | *yled : yled | e ainpadodd i (SSWepNIeA " wis] |t yied) Yledivaes
sbulpulg sweu sjgeLIeA 8y] pjoy SSWeNJe WISl | YIM yIed Je Jusws|s spod syl ssaejdsy //

[(@weNJen)3s) : sawepne) © wiaLpadAy = wasly * yed y1ed |« padd i (sawepnseA * wiall ‘ y1ed) ulediywiay
wuay | 1oj sBUIpUIg SWBU SjQELIBA SUJBIUOD SSWBNIEA "UIBd S} U0 P3Seq ‘(Wia) 1) JuUsLWs|a 8pod B SaAaLaY //

[(1equnu) 3s)| = yreg * Buins = swepaInosay | « uyyed : yled / suieNa31nosay

[(@wenden)1s

[1 e 2dAy :: yaed
JuswWa|s apod e oy yyed e 10) adAj [/ «
g

| Jagwinu g ‘Jaguinu 9 ‘' Jaquinu i Y |« Jojod i
10]03 g9y ue pjoy 03 84Mmonis ejep v /f
| opow :: epojy ‘ WUBIPadA] 1 WUB] | |+ UONRZIeNSIA & { Spopy ® wual | }
Spoy apow uonezilensia Ul (waal [) wisy padAy e ue bBuizyensia 1o) sapjoyadeid v |/
[wusipadAy : wus) | |« uonezjensia : (LWJ3[]) SIA
(wua) 1) wisy padAy e ue buizyensia 1oj sapjoyaseid v Jf «
[1 - @pow :: 3neyap
SpoLU UOJRZIjeNsIA Jnejsp ayJ f «

28

(I 1red) Bunysry eordsowreN unIng ¢y oIngdig

[Jequinu :: xapu| ‘ 18qUINU i SUQSNUIWXaPU] | « paJd :: T+ suOsnuIWxapu] = Xapu|
1ab21ul snojas.d Jo 3xau sy a1einared ff
[(wuaLpadAy) 18| 2 sBuyL * Bulls : oung ' wualpadAy @ wusy) |« paad (sbayy oung 't wusl | | waslesied
‘pesjsul Wia|asiedsjes asn "ejes-adA) jou s; sjedpaud sy “sbie padA) pue sweu e Jo Jno Wisl psdA} e Jonijsuol 03 pasn 8q osje ue) ‘(sbiyy) sjuswnbie padA) jo s e pue swep e oju) (Wwas |) wisy padAy e asied] »
[Bus:: z Bus: 4 "Bus = x e padd (7' 4" x) 1e20s
A pue x sbuLgs jo uojeusyeIuod esiz jf «
s8po) ' Bulls 1 /1S |« pald [s8po) * 43S) sapodleyd
1S JO 53p02 DSV Y3 81 53p0] /] -
| Jaquinu :: Jojeujlwousd * Jaquinu i JoJeuiwop | « paldd i (Jojeujwousq : JOJeujtlop) sSoLUIod
$3LWf JOJPUILLIOUSQ 4O 1IN0 J0]BUJWION JE SPa3laNs /[«
| wiapadAy i wiisl | | e paud i wes) |) punodwod
Jwus1-padAy punodwod e wisf | S| jf «
[Jaquinu i 3 * Jaquinu i Ag ‘ Jaquinu i AY |« paud (D Ag ' AV) SNinpow
Ag pow Ay (Ajeouswinu) sjenbs D J1 spas3ang ff «
[Jaquinu i 3 ' Jaquinu i Ag ' JaqWnU i Ay |« paud (D Ag AV) AIPI
(uoisialp 1abajul) AG/AY (Aljeouswinu) sjenba D J1 spaadans ff «
| Jagwinu D ‘Jaguinu i Ag ‘Jaquinu i Ay |« paid (D' Ag AV) AP
(uoIsinp [eal) NG/AY (Aljesuiawnu) sjenba D JI spaalans jf «
[Jaguinu D Jaguinu Ag “J3qWINU i A |« paid (D' Ag ' AV) InW
AG=AY (Ajeauswinu) sjenbs D 41 Spasains ff «
| Jaguinu D' Jaguinu i Ag ' Jaquinu i AY |« paid (D Ag “ AV) snuiw
AG-AV (Ajesuawnu) sjenbs D J1 spasians jf «
[Jequinu 5 “Jaquinu = Ag ‘Jequinu i Ay |« paad (D Ag ' Ay) snid
AG+AY (Ajesuiawnu) sjenbsa 3 Jj spaadons jf «
[Jaquinu g “Jaqunu v |« paid (g ' v) uayliajealb
g < V4 Spaasins ff «
upyIng a>edsaweu

[(Jagqunu)1s

APPENI

29

COMMUNICATION PROTOCOLS

APPENDIX A.

(I1 1red) Burysry oordsowreN unIng 'y 0Ind1qg

| wuspadAy = zwuay) was padAy = Twua) | |« paad (Zzwdaa) g * Twas) |) jenb3kjeinongs
sajgelen Jualayp Ajjepualod Ing ‘91mons SWes ay3 sAeY ZWI3] | pue [Wiid] | JI Sp3323Ns [«
[wuspadAy :: Adopwuia) | “ waspadAy = Bupwua] | |« padd :: (Adoowus) | ' Blowus] |) waalAdod
'Sa|qeLIeA Jualayip aary 1ng ‘fenba Ajjeanionais aue Aayz eyl yons ‘Bupuiia] | jo Adod e ‘Adojwiia) | sa3e31) |f =
11517 paud = jeon ' adAy i adA) ‘ adA) : Jusws)F | « padd :: 3517 03Ul jeo eyl yons adA) adAy Jo Jusws|3 |je puly
109D JO JNSa.1 AI8AS 10} ‘JUBWS|T SB YINS SJUBLWS|S JO ISI B S| ISIT [/ =
[1« paid :: anny
spas22ns sAemje Jey] [eob v /] «
[Buls = spy * Buwgs = seyy | « Juawelels : seyjy se sy Joduwl
(pa3e29.dap) seyje ue 0] sweu sdedsaweu e spujg Juswaels podw uy ff «
[wuspadAy = zieA] WU padAy i TUeAl | & paud ZieA] == TieAl
J3y30 yaes 03 punoq Apealje aie Asy] Jj| jenba ade sajqelieA ‘jenbs aue swia) padAl omy J1 s309UD | =
| Buins : swen * wiaLpadAy it JEAL | & SWENJeA (SwWep ‘ JBAL) dWeNJeA
awepN sy yum Buoye (Jepl) sjqerrea padAy sjbuis e pjoy 01 81N3oNAS BIep W] =
[(BwepIeA) 18] i YA FJUBWBILIS I § | & WIS paIRIouUUR i [A © S | JuBWa)e)s
sBuipuilq aweu ajgeLiea s ypm buoje Juswale)s e jo sed e pjoy 0] 31N3oNs exep vy jj «
[(wa3su) 351 = 3575N ' [WL pajeIoUUR) ¥ SIS |+ JUBIUODBIY == [IS/TSN © SwU3L) JUsuedIY
sasele asedsaweu Jo jsij e pue ‘sbuipuiq SWweu 3jqeLieA yIM SJUSLWS]eIS JO Isi| e pjoy 0] S4mdnjs elep v jf «
ISITSN * paud it (P09 ' WIS PIIRIOUUR i JUSWSIEISPSILIOUUY |« JUIIUCD3IY i (ISITSN ' (209 ‘ JUaWILISPaIRIoULY | JUSIUeD3Y

[[wa|3su) 3s!

3Jy 0] USTILIM BG 0] JUBLISIL]S & SJUISSIADI JUSLWISILISPIILIOULY ‘[B0D JO NS AISAS 104 "PUBLLLLOS 3jI43}1IM By} 10J Y Pa1eIaUSE € JO SJUSIU0I Y} 10j UOHLIUSS3IAL W] »

as|3
JCHE]
uayy
| paud :: 85/3 * paud :: uayy * paud : puo) |« paud i puod)
‘saljdde asj3 asimiaylQ "saljdde uay | ‘spaacons puo) J| "e1esipald jeuonipuol jf -

30

COMMUNICATION PROTOCOLS

APPENDIX A.

(111 yred) Suryst eovdsewreN UG Gy 9INSI]

[(swenJeA) 35]| 2 SaWeNIEA ‘ JUBWSIRIS JuawWwalels ‘ Buls i awenall | « paid i [sawepIeA ‘Juawelels * sweps)ld | JusWaleISpapeo|
sBulpulq aWweu ajgeLieA JO ISl B 0] punog sl SSWEeNIBA "SWeNa|i{ d]Y WOl papeo| SuaLWalels (/e Joj spaadans [/ «
| wuaipadAy it wial | |« paad [waal]) punolb

$8/qeLieA punoqun ou SUIRIUOI W3] | JI SP3aIINS Jf

[eoony
: uondasxJ yosyeo
[eo9
| paud :: jeogyy uondedxa :: uondaixy ‘ paid (P09 |« paid An
‘pPajeN|RAS SI [POD)|Y ‘UMOIY] US3] Sey uojdadxd ulys)ew uoRdadsxa ue J| ' Wolj UMoIy] Usag aneYy suondadxa ou jI pue ‘spaadins [eod JI Spaadans [/ «
[1« paud : ey

SpP39233ns 193U Jey] [eob v [/ «
| uondaoxa :: wondaax3y |« paud [vondasx3) moayy
uondasxa ue mosyl jf «
| wuspadAy zwuay) wisipedhy i Twaa) | |« padd i guual g f Twas) |) Ajunajes
way) bujureluod suLIS} yliMm payjun aq ol sajgeLiea buimojie Jou ‘Zuiia] | pue TWIS] | JO UORedyIun Wiojisd f «
[wuspadAy : wuay | |« paid = [wua))) Jequinu
Jagqwinu e s| wny aJaym ‘adA [wny sayslew Wasj | j spaaddns jf «
[wusipadAy i wuay | |« paad : ((wusy |) bulgs
buLis uoyepa) e s| 135 919YyM ‘adA] 23S saydjew Wiaj | J Spa3dons ff «
[wuspadAy :: wus) | |« paid : (wusl)) Jea
3jqeLIeA punoqun ue sj 1ep aiaym ‘edA|:ieA saysjew wis | Jl speaddns ff «

APPENDIX A. COMMUNICATION PROTOCOLS 31

stringToTerm(String, NSList, Term, VarNames) Converts String into Term.
It uses the namespace bindings in NSList, and binds the variable name
bindings to VarNames.

termToString(Term, VarNames, Depth, NSList, String) Converts Term
into String. It trims all sub-terms deeper then Depth. VarNames are
assumed to contain the variable name bindings to be used, and NSList
contains the namespace aliases.

loadFile(FilePath, Namespace) Loads a file named FilePath into the logic
database. It uses Namespace as the default namespace for the file. If the
file has already been loaded, its previous content will first be removed.

