
The Open University of Israel
Department of Mathematics and Computer Science

Clustering of lines

Thesis submitted as partial fulfillment of the requirements towards an M.Sc. degree in
Computer Science The Open University of Israel Computer Science Division

by

Author: Tomer Peretz

Prepared under the supervision of Dr. Michael Langberg

Abstract

Let P = {p1, . . . , pn} be a set of points in Rd. The k-median problem is the problem of finding k
points (facilities) such that the sum of distance from each input point in P to its nearest facility
is minimized. The k-median problem is known to be NP-hard. Approximation algorithms for k-
median have received a significant amount of research over the past decade, and the current state of
the art includes linear time algorithms that return a set of facilities that approximate the optimal
solution within a factor of (1 + ϵ) for any constant ϵ and dimension d.

In this work we study the k-median problem for lines. Let L = {l1, . . . , ln} be a set of lines.
The “k-median for lines” problem is the problem of finding k points (facilities) such that the sum
of distance from each line in L to its nearest point is minimized. In this work we study both exact
and approximate algorithms for the k-median problem for lines, concentrating on the case in which
our input L lies in R2.

We show that the k-median for lines problem can be efficiently solved for constant values of k,
but is NP-complete if k is non-constant. Moreover, we show that solving the k-median for lines
problem in R2 in time less than poly(n)2ϵk will imply an algorithm for solving SAT in running time
2ϵn. This implies that it is not likely to improve on the running time of poly(n)2ϵk for the k-median
for lines problem when ϵ is small. On the positive side, we present an algorithm for finding the
1-median for lines in R2 in time O(n2 lgn), and an algorithm that can find the k-median for lines
in R2 in time O(n2k lgn).

We then turn to study approximation algorithms for k-median for lines. Using the notion
of bi-criteria approximation and core-sets, we design an n(c/ϵ)poly(k)(log n)poly(k) time algorithm
that returns a (1 + ϵ) approximation to the k-median for lines problem on the plane (here, c is a
sufficiently large constant).

iii

Acknowledgements

This thesis would not have been possible without the support of many people.
First of all I would like to express my sincere appreciation and gratitude to my supervisor Dr.

Michael Langberg for his support and guidance. His invaluable assistance, knowledge and ideas
enriched my knowledge and made this thesis possible.

I would also like to thanks Dr. Dan Feldman, for his interesting talks and ideas. A part of this
thesis uses the techniques which he was gladly willing to explain.

I would like to thank my parents for teaching me the value of education and for making it
possible for me to achieve my educational goals.

Last but not least I would like to thank my family for their support. Especially I would like to
my wife Einat for her encourage and for giving me the time to work on this thesis.

1

Contents

Contents 2

1 Intoduction 3
1.1 General Background . 3
1.2 Clustering of lines . 4
1.3 This Work . 5

2 Exact algorithms for k-median for lines in R2 7
2.1 Finding 1-median for lines . 7

2.1.1 1 median for lines in R2 . 9
2.2 k-median for lines in time O(n2k lg n) . 10

2.2.1 The Algorithm . 11
2.2.2 Running time . 12

3 k-median for lines: lower bounds 15
3.1 Hardness of computing k-median for lines . 15
3.2 Lower bounds on the running time of k-median for lines 15

4 k-median for lines: strong coreset 19
4.1 Coreset for k-median for lines . 19

4.1.1 Outline . 19
4.1.2 Bi-criteria for k-median . 20
4.1.3 ϵ net . 23

4.2 Strong coreset for k-median of lines . 24
4.2.1 k = 1: Finding Minimal Median for C1-Median 25
4.2.2 k = 1: Strong coreset for C1-Median . 26
4.2.3 CK-Median strong coreset algorithm . 30
4.2.4 Strong corsets for the k-median problem for lines in R2 37
4.2.5 (1 + ϵ) approximate clustering for k-median for lines in the plane 38

Bibliography 41

A Finding line k-median for points on a line 45
A.1 General Algorithm . 45
A.2 Algorithm for points on a line . 46

B Properties of the circle 47

List of Figures 51

2

Chapter 1

Intoduction

1.1 General Background

The field of geometric clustering describes grouping sets of geometrical objects while minimizing or
maximizing several objective functions. In the standard setting, the input to the problem is a set
of points in high dimensional Eucledian space Rd and a parameter k. The objective is to partition
the points into k-groups (or clusters) as to optimize a certain objective function. For example, one
function extensively studied during the past decade [HPM04, HPK05, Che06] and most relevant to
this thesis, is the k-median objective function. In k-median clustering, for each group a center is
specified, and the objective is to minimize the sum of distances between the input points and their
corresponding centers.

Many variations and restrictions to this standard setting have been addressed. They differ from
each other by the type of objects they are clustering, the number of groups, the dimension of the
problem and the objective function. Each one of those problems has different motivation and can
be related to different fields of research.

For example, we can distinguish between applications based on clustering of geometrical objects
in high and low dimensional space. Clustering of geometrical objects in high dimension is more
related to fields such as databases [DRSS96], un-supervised learning [WWP00], data mining [Ber06,
AGI+92], etc. These problems inherently do not limit the dimension of the geometrical objects.
In such cases, to enable feasible algorithms, the solutions running time must have a polynomial
dependence on d.

Clustering of geometrical objects in low dimension (for example objects in the plane R2 or in
three dimensional space R3) is used in problems such as facility location in the plane [CEK02], and
the Fermat-Weber problem [BMM03]. These problems assume that the dimension of the input is
limited. Studying constant value of the dimension d enables the design of algorithms with running
time which has arbitrary dependence, e.g., exponential, in the dimension d at hand. Moreover,
such algorithms are strongly based on a variety of special properties that hold in low dimensional
Euclidean space.

There has been a significant amount of research in the field of geometric clustering when the
data objects to be clustered are points. The most commonly studied clustering objectives are
k-center, k-median and k-mean. They are described as follows:

Let L = {l1, ..., ln} be a set of n points in Rd, and let C be k points C = {c1, ..., ck}. Define
d(li, C) = minj=1...k d(li, cj). Here for points x and y, d(x, y) is the Euclidian distance between x
and y. If d(li, C) = d(li, cj) we say that li is associated with cluster j.

• The k-center problem - Given L, find C of size k that minimizes the maximum distance of a
point in L to C. Namely find C that minimizes max d(li, C).

3

4 CHAPTER 1. INTODUCTION

• The k-median problem - Given L, find C of size k that minimizes the sum of the distances of
a point in L to C. Namely find C that minimizes

∑
d(li, C).

• The k-mean problem - Given L, find C of size k that minimizes the sum of the square distances
of a point in L to C. Namely find C that minimizes

∑
d2(li, C).

Since k-center, k-median and k-mean are proven to be NP-Hard problems [MS84] [Pap81], a
lot of effort was invested in finding approximation algorithms for these problems. Most of them do
not relax the value of k, rather they allow a relaxation in the value of the objective function (if the
value of the optimal solution is Opt, then an r-approximation algorithm is guaranteed to return a
solution of value at most rOpt).

The k-center problem on points has an efficient 2 approximation algorithm. This is close to
optimal as it is NP-hard to obtain a 1.82 approximation factor, even in the case the input is given
in the plane R2 [FG88]. For constant d, Euclidian k-median and k-mean can be approximated
within a ratio of (1 + ε) in time O(ndk + f(d, ε, k)) [FMS07]. Here f depends polynomially on d
and exponentially on k

ε .

1.2 Clustering of lines

The field of line clustering is a relatively new research area. It addresses the task of clustering when
the objects to be clustered are lines instead of points. The clustering of lines arises, for example,
in the context of handling “incomplete data”. It is common to model a data item of d values as a
point in Rd. When the data item is missing information on some of its entries, we may consider
the data item as a line or hyper plane in Rd (i.e. the collection of points in Rd consistent with the
partial data item). The clustering of incomplete data is a central problem in statistical analysis,
e.g., [All02]. We view the clustering of lines as the most elementary case of incomplete data.

Another example in which the clustering of lines arises is the following (practical) low dimen-
sional problem. A flying probe tester machine is a machine for electrical testing of printed circuit
boards. This machine has several probes that touch each electrical line. One may consider the
problem of locating the probes in order to minimize the maximum distance between a conductor
line and one of the probes or to minimize the total distance that the probes have to move in order
to touch all the conductor lines. When looking in small areas of the printed circuit board, the
conductor lines can be seen as straight lines. This clearly corresponds to clustering in the context
of lines.

The field of line clustering is a relatively new field of research with several open questions
that are waiting to be explored. One can study clustering in the context of lines in low or high
dimensional space, w.r.t. the k-center, k-means, or k-median objective function, and in the exact
or approximate setting.

Previous work on the clustering of lines includes the design of efficient approximation algorithms
for the k-center problem on lines when k 6 3 [GLS06, GLS10]. Similar to the k-center problem
on points, in the k-center problem for lines, one seeks to find k center points that minimize the
maximum distance of a line from its closest center. The 1-mean and 1-median clustering of lines
was addressed briefly in the work of [HP06]. For k larger than 1, the clustering of both these
objective functions remains unstudied and the focus of this thesis addresses the study of the latter
for general k (in the plane).

1.3. THIS WORK 5

1.3 This Work

In this work we study the k-median for lines problem in the plane. We concentrate on two aspects
of k-median for lines in R2: finding exact and approximate solutions.

Chapter 2 studies the exact solution of the k-median for lines problem in R2. We start by
studying the case where k = 1 and then proceed to general k. We suggest algorithms to find the
exact solution for both cases. The main idea of this chapter is to prove that there is an optimal
solution where all the facilities lie on intersection points between the input lines.

In Chapter 3 we analyze the computational hardness of solving k-median for lines exactly.
Starting from the study of Megiddo and Tamir [MT82], we show that the k-median for lines problem
is NP hard and that solving the k-median for lines problem in R2 in time less than poly(n)2ϵk will
imply an algorithm for solving SAT in running time 2ϵn (the latter being unlikely for small ϵ).

In Chapter 4 we address approximation in the context of k-median for lines in the plane and
present an algorithm that guarantees a (1 + ϵ) approximation in time O(n(cϵ)

poly(k) logpoly(k) n) for
some constant c. Our algorithm builds on previous algorithmic paradigms that have been used in
the context of approximate clustering. Specifically, we start by presenting a bi-criteria approximate
solution to our problem (a solution in which both the number of clusters and the solution value
are compromised). Here we use ideas and proof techniques from [FFSS07, GLS10]. We then turn
to the construction of a coreset for the problem of k-median for lines. Namely, using ideas from
[HPK05, FFS06] combined with our bi-criteria approximation we construct a small set of lines which
represent the original input with respect to the task of clustering. Finally, solving the k-median
problem on our coreset, we conclude a solution for the original set of lines.

Chapter 2

Exact algorithms for k-median for
lines in R2

2.1 Finding 1-median for lines

Let L = {l1, . . . , ln} be a set of lines in R2. Let Dist(p, li) be the Euclidean distance between a
point p and a line li. For every point p, let φ(p) = φ(L, p) =

∑n
i=1Dist(p, li). In the 1-median

problem one has to find a point p∗ such that φ(p∗) is minimized, namely φ(p∗) = minp∈R2 φ(p).
We denote such p∗ as the 1-median point and φ∗ = φ(p∗) as the 1-median value.

In the following lemma we show that the intersection points of lines in L includes an optimal
center. For simplicity, let us assume that not all the lines in L are parallel. Otherwise the problem
can be solved immediately (we will refer to this case later).

Lemma 2.1.1. Let Q be the set of all the intersection points between two lines from L. Namely
Q = {li ∧ lj |li, lj ∈ L}. It holds that minpi∈Q φ(pi) = φ(p∗).

Proof. We start by proving the following claim.

Claim 2.1.1. Let L be a set of lines in R2, and let l be any line in R2 (not necessarily in L) such
that l intersects at least one line from L. Let φ(L, l) = minp∈l φ(L, p). Then there exists a point p̄

on the intersection of l̄ and a line in L such that φ(L, p) = φ(L, l).

Proof. Let us denote the intersection point of l and a line li ∈ L as σi and the angle between the
two lines as αi. Let Wp be the sum of distances between any point on l and all lines parallel to l in
L. Let L̄ be the set of lines parallel to l. Let n′ = n− |L̄| and let {l1, . . . , ln′} = L \ L̄. Let α and β
be the two outermost points on l in the intersection of l and L. Define fl̄(x) =

1
α−β (xα+(1−x)β).

For every x ∈ [0, 1] let φ(L, fl̄(x)) =
∑n

i=1Dist(fl̄(x), li). For simplicity we will refer to fl̄(x)) as
f(x). Since Dist(f(x), li) = Dist(f(x), σi) sinαi then

φ(L, f(x)) =Wp +

n′∑
i=1

Dist(f(x), σi) sinαi (2.1)

Now consider the derivative of φ(L, f(x)) according to x, Namely φ(L, f(x))′ = ∂(φ(L,f(x)))
∂(x) .

7

8 CHAPTER 2. EXACT ALGORITHMS FOR K-MEDIAN FOR LINES IN R2

φ(L, f(x))′ = W ′
p +

n′∑
i=1

(Dist(f(x), σi) sinαi)
′

= 0 +
n′∑
i=1

Dist(f(x), σi)
′ sinαi.

Let us look at the interval [σj , σj+1], 0 6 j < n. Here we assume that the points σi appear in
the natural order σ1, σ2, . . . , σn on l. It is not hard to verify that the minimum value of φ(L, f(x))
for f(x) ∈ [σj , σj+1] is obtained at the end points σj or σj+1. This follows from the fact that any
two points x1, x2 such that f(x1), f(x2) ∈ [σj , σj+1] have the same derivative Dist(f(x1), σi)

′ =
Dist(f(x2), σi)

′ for all 0 6 i 6 n. Thus φ(L, f(x))′ is constant for f(x) ∈ [σj , σj+1] which implies
that φ(L, f(x)) obtains its minimum on either σj or σj+1 depending on the sign of φ(L, f(x))′. Let
σ0 be any point on l̄ laying “before” σ1 and σn+1 be any point on l̄ “after” σn. It is not hard to
verify that in the first segment [σ0, σ1] the sign of φ(L, f(x))′ is negative and in the last segment
[σn, σn+1] the sign is positive. We conclude that φ(L, l̄) must be equal to one of the intersection
points {σj}nj=1. See Figure 2.1 for schematic presentation of φ(L, f(x))′.

ϕ(L, f(x))′

σ1 σ2 σ3 σ4 σ5 σ6 σnσn−1σn−2

x

Figure 2.1: The value of φ(L, f(x))′ changes at each intersection points σi by 2 sinαi. Since
Dist(f(x), σi)

′ = 1 for f(x) > σi and Dist(f(x), σi)
′ = −1 for f(x) < σi, the difference between

φ(L, f(x))′ for f(x) > σi and for f(x) < σi is exactly 2 sinαi.

We now prove Lemma 2.1.1. Let us assume in contradiction that minpi∈Q φ(pi) > φ(p∗). If
p∗ is not on any of the lines of L, namely minp∈L φ(p) > φ(p∗) then let l̄ be any line that passes

2.1. FINDING 1-MEDIAN FOR LINES 9

trough p∗. For some j 6 n, let L̄ = {l1, . . . , lj}, be the lines in L that intersects l̄. Then by Claim
2.1.1 there is a point p̄ on the intersection of l̄ and a line from L̄ such that minp∈l̄ φ(L, p) = φ(L, p̄).

Since p∗ is on l̄ this contradicts the fact that minp∈L φ(p) > φ(p∗).

Otherwise, if p∗ is on a line from L, denoting this line by l̄ and repeating the argument above,
we conclude that there exist a point p̄ on the intersection of l̄ and another line from L such that
φ(p∗) = minp∈l̄ φ(L, p) = φ(L, p̄). As p̄ ∈ Q, we conclude our assumption.

2.1.1 1 median for lines in R2

Based on the observation of Claim 2.1.1, we can suggest a naive algorithm for the 1-median for
lines problem in R2. The naive algorithm can compute φ(q) for every intersection point q between
a pair of lines (li, lj) in L. Since there are O(n2) such points and computing φ(q) requires O(n)
time, this bring us to a total running time of O(n3). In this section we improve this running time
to O(n2 lgn).

Claim 2.1.2. For a set of lines L = {l1, . . . , ln} in R2, one can find the 1-median of L in time
O(n2 lgn)

Proof. We start with the case that all the lines are parallel to each other. If this is the case we
can reduce the problem to one dimension, projecting each line on a single line perpendicular to
all the lines in L. Now each point is represented by a value in R. We have reduce the problem
to the 1-median of points in R. This problem can be solved in O(n lg n) time by sorting all the
numbers and finding the middle value (that is the value of order statistics n

2). Indeed this value is
the 1-median corresponding to the set of points.

If there is at least one pair of lines that is not parallel, it holds that each line in L intersects at
least one other line in L.

The main idea of the algorithm is that if for each line, we know the value φ(x) for at least
one intersection point x ∈ Q, then we can compute the values of all the intersection points of this
line in time O(n lg n). Since each line has at least one intersection point with other lines, we can
calculate the values of all the intersection points in time O(n2 lgn).

More formally, for each line li ∈ L we sort the intersection points of li and other lines in L. Then
we partition each line li ∈ L into at most n − 1 line segments, defined by the intersection points
of li and other lines in L according to their appearance on li. Let fl(x), α and β have the same
meaning as defined in Claim 2.1.1. For each segment [σj , σj+1] and a point p on that segement, let
x = Dist(α, p)/Dist(α, β). Let g(li, p) = φ(L, fli(x))

′ . If we find the value of φ(xj) for a single
intersection point, we can compute the value of φ(xj+1) by φ(xj+1) = φ(xj)+g(li, x)Dist(xj , xj+1).
This means that we can find φ(xj) for all intersection points on li in O(n) time. By Lemma 2.1.1,
the minimum value from this set is equal to the 1-median in L. Our algorithm is given in Algorithm
1 below. We note that during the execution of the algorithm the value φ(x) is computed for all the
points x ∈ Q. Our algorithm is described at Algorithm 1.

Running time The loop in line 7 is executed n times. Sorting the intersection points in line 10
of the algorithm, will take time O(n lg n) for each line, thus O(n2 lgn) for all the lines. Finding
φ(xj) for all intersection points on a line will take O(n), thus O(n2) for all the lines. Finding the
minimum will take O(n2). Therefore we can find the 1-median of L in time O(n2 lg n+ n2 + n2) =
O(n2 lgn).

10 CHAPTER 2. EXACT ALGORITHMS FOR K-MEDIAN FOR LINES IN R2

Algorithm 1 1 median for R2

1: if all the lines are parallel to each other then
2: return project the lines onto their normal and reduce to 1-median of points in R
3: end if
4: L̄← L
5: select a point p ∈ Q and compute φ(p).
6: P̄ ← p
7: while L̄ is not empty do
8: select a line l ∈ L̄ that intersects one of the points pl in P̄ .
9: L̄← L̄ \ l

10: compute {l ∩ li|li ∈ L} and order them according to their appearance on l. Denote these
points by P = {p1, . . . , ps}

11: for pi = pl−1 to p1 do
12: φ(pi) = φ(pi+1)− g(l, p)Dist(pi, pi+1).
13: P̄ ← P̄ ∪ pi
14: end for
15: for pi = pl+1 to ps do
16: φ(pi) = φ(pi−1) + g(l, p)Dist(pi, pi−1).
17: P̄ ← P̄ ∪ pi
18: end for
19: end while
20: return the point with the minimal calculated value among the points of P̄

2.2 k-median for lines in time O(n2k lg n)

Let L = {l1, . . . , ln} be a set of lines in R2. Let Dist(p, li) be the Euclidean distance between a
point p and a line li. For every set of k points Φ = {ϕ1, . . . , ϕk}, let Dist(Φ, li) = minϕ∈ΦDist(ϕ, li)
and let φ(Φ, L) =

∑n
i=1Dist(Φ, li). In the k-median problem one has to find a set of k points Φ∗

such that φ(Φ∗, L) is minimized. We denote such Φ∗ as the k-median points and φ∗ = φ(Φ∗, L) as
the k-median value.

Lemma 2.2.1. Let Q be the set of all the intersection points between two lines from L. Namely
Q = {li ∧ lj |li, lj ∈ L}. It holds that minϕ1,...,ϕk∈Q φ({ϕ1, . . . , ϕk}, L) = φ(Φ∗, L).

Proof. Assume by contradiction that there is a set of k points Φ̄ = {ϕ̄1, . . . , ϕ̄k}, such that
minϕ1,...,ϕk∈Q φ({ϕ1, . . . , ϕk}, L) > φ(Φ̄, L), and there is a point ϕ̄ ∈ Φ̄, such ϕ̄ /∈ Q. Here we
assume that ϕ̄ can not be replaced with one of the points in Q. Let L̄ ⊂ L be the set of lines that
ϕ̄ is the closets point to them among the points in Φ̄, namely L̄ = {l ∈ L|Dist(Φ̄, l) = Dist(ϕ̄, l)}.

By Lemma 2.1.1 there is a point p ∈ Q such that φ(L̄, p) 6 φ(L̄, ϕ̄). This in contradiction that
ϕ̄ can not be replaced with a point from Q.

In order to find the k-median for lines we can use a naive algorithm that looks at all
(
n2

k

)
possibilities to take k points out of n2 possible intersection points (actually there are only

(
n
2

)
intersection points, but we use n2 to simplify notation). For each possible solution the algorithm
calculates the cost of that solution and eventually takes the solution with the minimal value. The
running time for such an algorithm is O(n2k+1).

We will now present an algorithm that finds the k-median for lines in time O(n2k lgn). This is
an improvement over the trivial algorithm described above.

2.2. K-MEDIAN FOR LINES IN TIME O(N2K LGN) 11

We start with the case that all the lines are parallel to each other. If this is the case we can
reduce the problem to one dimension, projecting each line on a single line perpendicular to all the
lines in L. Now each point is represented by a value in R. We have reduced the problem to the
k-median of points in R. This problem can be solved in O(n3k) time. We will refer to this problem
(and suggest an efficient algorithm) in Section A.2 of the Appendix.

Let Φ = ϕ1, . . . , ϕk be the k points of the optimal solution. Assume that we know the first k−1
points of the optimal solution ϕ1, . . . , ϕk−1. Moreover since we know by Lemma 2.2.1 that all the
points of Φ are on the lines of L, assume that we know the line l that contains the last point of the
solution, namely ϕk. Now we will show how to find ϕk.

Let l1, . . . , lm ∈ L for m < n be the lines that intersects l and let q1, . . . , qm be the intersection
points of those lines and l. Each li intersects l, therefore there is an interval [ai, bi] on l such that
∀p ∈ [ai, bi] Dist(li, p) 6 minj∈1,...,k−1Dist(li, ϕj). Namely if ϕk will be any point in this interval,
the line li will be closer to ϕk then to any other point in {ϕ1, . . . , ϕk−1}. See Figure 2.2.

For a point x on l, let L̄x be all the lines l ∈ L such that φ(l, x) < φ(l, {ϕ1, . . . , ϕk−1}).
Notice that φ(Φ, L) = φ(x, L̄x) + φ({ϕ1, . . . , ϕk−1}, L \ L̄x). We want to find x which minimizes
φ(x, L̄x) + φ({ϕ1, . . . , ϕk−1}, L \ L̄x).

Let pricek(x) = φ(x, L̄x) and priceother(x) = φ({ϕ1, . . . , ϕk−1}, L\ L̄x). We will now present an
algorithm that finds the k-median for lines in time O(n2k lg n).

a1 b1

l1

a2 b2

l2

l3

a3 b3

l

φ1

q1 q2

Figure 2.2: An example of lines from L and the corresponding intervals created on l (only a subset of the

facilities appear in the figure). In this example, if ϕk is between a2 and b1 then ϕk will be the closest facility

for both l1 and l2.

2.2.1 The Algorithm

Our algorithm is described in Figure 2.2. In what follows we explain the notation in the algorithm.
For each line li we call ai its entrance point, bi its exit point and qi its intersection point with
respect to l. We define distouter(li) as the minimum distance of li to {ϕ1, . . . , ϕk−1}, namely
distouter(li) = φ({ϕ1, . . . , ϕk−1}, li).

Without lost of generalization, we assume an orientation of l. Our data structure will collect
all entrance points, exit points and intersection points; and order them along the direction of l.

The algorithm we suggest will travel along l in its direction, maintaining pricek(x) and priceother(x).
In order to maintain priceother(x) we need to remove the value distouter(li) when we meet an

12 CHAPTER 2. EXACT ALGORITHMS FOR K-MEDIAN FOR LINES IN R2

entrance point, and to add it when we meet an exit point. priceother is initialized for each
{ϕ1, . . . , ϕk−1, l} as the sum of distances of all lines beside l, to the nearest point among ϕ1, . . . , ϕk−1.
pricek(x) is initialized with 0. In order to maintain pricek(x) we should keep a function dirk that
holds the derivative of pricek(x). For each li let αi be the angle between li and l on qj . In gen-
eral pricek(x) =

∑
li∈L̄x

Dist(qi, x) sinαi, thus the derivative of pricek(x) is
∑

li∈L̄x
θi sinαi, where

θi ∈ {1,−1} depends on whether x ∈ [ai, qi] or x ∈ [qi, bi]. As pricek(x) is linear between two
consequent points, it needs to be updated each time we meet an entrance point, exit point or
intersection point.

Algorithm 2 k-median for lines

1: for each {ϕ1, . . . , ϕk−1} in Q do
2: priceall ←

∑n
i=1 distouter(li)

3: for each line l do
4: priceother ← priceall − distouter(l)
5: pricek ← 0
6: dirk ← 0
7: list← order entrance, exit and intersection points on l
8: while list is not empty do
9: xj ← list pop next point

10: li ← line corresponding to xj
11: if xj is an entrance point then
12: priceother ← priceother − distouter(li)
13: pricek ← pricek + dirkDist(xj , xj−1) + φ(li, xj)
14: dirk ← dirk − sinαi

15: end if
16: if xj is an exit point then
17: priceother ← priceother + distouter(li)
18: pricek ← pricek + dirkDist(xj , xj−1)− φ(li, xj)
19: dirk ← dirk − sinαi

20: end if
21: if xj is an intersection point then
22: pricek ← pricek + dirkDist(xj , xj−1)
23: dirk ← dirk + 2 sinαi

24: if pricek + priceother < min then
25: min← pricek + priceother
26: points← {ϕ1, . . . , ϕk−1, xj}
27: end if
28: end if
29: end while
30: end for
31: end for
32: return min, points

2.2.2 Running time

The first “for” loop (line 1) is done O(
(

n2

k−1

)
) 6 O(n2k−2) times. In line 2 we calculate distouter for

each line. distouter can be computed in O(k) time. Thus the total cost of line 2 is O(n2k−1k). The

2.2. K-MEDIAN FOR LINES IN TIME O(N2K LGN) 13

second for loop (line 3) is done O(n) times, therefor each line inside the loop is executed O(n2k−1)
times. Ordering the points (line 7) is done in time O(n lg n), thus a total of O(n2k lgn) . The While
loop (line 8) is done O(n) times which gives us a total time of O(n2k) . This bring us to total of
O(n2k lgn).

Chapter 3

k-median for lines: lower bounds

3.1 Hardness of computing k-median for lines

We showed that the k-median for lines problem can be solved in R2 in time that is polynomial in
n, but exponential in k. We will now show that the k-median for lines problem is NP-Hard when
k is not fixed in advanced and is part of the input.

Megiddo and Tamir prove [MT82] that:

Theorem 3.1.1 ([MT82]). Let l1, . . . , lr be a set of straight lines. Finding a set of points {(x1, y1), . . . , (xp, yp)}
of minimum cardinality such that each lj contains at least one (xi, yi), is NP-Hard.

Lemma 3.1.1. k-median for lines in the plane in NP-hard.

Proof. We use a simple reduction from the problem studied in [MT82] to the k-median for lines
problem. Let us assume in contradiction that the k-median for lines problem is not NP-Hard. We
design an algorithm for the problem discussed in [MT82]. Our algorithm starts with k = 1 and
checks whether the k-median equals to zero. If not, then increase k by one until the solution for
the k-median is zero. The first k for which the k-median is zero is the minimum cardinality of a
set of points {(x1, y1), . . . , (xp, yp)} such that each lj contains at least one (xi, yi). This will solve
the problem of [MT82].

This proves that k-median for lines in R2 is also an NP-Hard problem. Moreover these results
imply that approximation within any multiplicative factor is also NP-Hard. Namely, a multiplica-
tive approximation of a solution of value zero is also zero.

3.2 Lower bounds on the running time of k-median for lines

We have shown that k-median for lines in the plane is NP-hard. We will now present a lower
bound on the running time of k-median for lines. For this purpose we will look at a reduction from
the 3-SAT problem. The 3-SAT problem is a Boolean satisfiability problem, it is expressed as a
boolean AND of clauses. Each clause is expressed as a boolean OR of 3 boolean literals. The 3-SAT
problem is an NP-Hard problem, it was well studied and it is believed that the 3-SAT problem can
not be solved in time O(2ϵn) for constant value of ϵ approaching zero, see for example [Woe03]. In
what follows poly(n) refers to nc for some constant c.

Lemma 3.2.1. Let ϵ > 0, k-median for lines in the plane can not be solved in time poly(n)2ϵk

unless 3-SAT can be solved in time 2ϵn.

Proof. In their paper [MT82] Megiddo and Tamir define two problems. The point covering problem
(PC) and its dual, the line covering problem (LC). The PC problem is defined as follows: A set of

15

16 CHAPTER 3. K-MEDIAN FOR LINES: LOWER BOUNDS

points (x1, y1), . . . , (xp, yp) (xi, yi rationals, i = 1, . . . , p) is given. Find a collection of straight lines
{l1, . . . , lr} of minimum cardinality, such that (xi, yi) lies on at least one lj .

The LC problem is defined as follows: A set of straight lines l1, . . . , lp is given. Find a set of
points {(x1, y1), . . . , (xr, yr)} of minimum cardinality such that each lj contains at least one (xi, yi).

Megiddo and Tamir show a reduction from 3-SAT to PC, in order to prove that PC is NP-
Hard. For a given 3-SAT formula φ with m clauses and n variables, the reduction creates in
polynomial time, m2n points and shows that if φ is feasible, then all the points can be covered
by nm lines, otherwise more lines are needed. The reduction constructs for each 3-SAT formula
φ = E1∧E2∧· · ·∧Em, with each Ej of the form xj∨yj∨zj (here, xj , yj , zj ∈ {v1, . . . , vn, v̄1, . . . , v̄n}),
the following instance of PC (See Figure 3.1):

• For each clause Ej we create a point Pj , such that no three points are on a straight line.

• Each pair of variables (vi, v̄i) is presented by grid of m2 points pikl (1 6 k, l 6 m), such that:

– For each vi ∈ Ej only the points {pi1j . . . pimj} and Pj are on a straight line. We denote

the points {pi1j . . . pimj} as Pij

– For each v̄i ∈ Ej only the points {pij1 . . . pijm} and Pj are on a straight line. We denote

the points {pij1 . . . pijm} as P̄ij

In [MT82] it is shown that φ is satisfiable iff the entire collection of points {pikl}∪ {P1, . . . , Pm}
can be covered by nm lines.

If φ is satisfiable, then the solution suggested consists of the following mn lines. Let γ be an
assignment that satisfies φ

• If vi is true in γ, we create m lines Lij (0 6 j 6 m), such that Lij covers {pi1j . . . pimj}.

• If vi is false in γ, we create m lines L̄ij (0 6 j 6 m), such that Lij covers {pij1 . . . pijm}.

It is easy to verify that this setting hasmn lines and covers all the points in {pikl}∪{P1, . . . , Pm}.
The solution is depicted in Figure 3.1.

If φ is not satisfiable, roughly speaking, the main idea of the proof of [MT82] is that each
m × m array can be covered by m lines iff all the lines are in the same direction (vi or v̄i) and
thus correspond to an assignment to vi. Namely, in order to cover all the points with nm lines,
the points in each m ×m grid should be covered by at most m lines. Since each array represents
a variable vi, if φ is not satisfiable, by the construction not all the points {P1, . . . , Pm} will be
covered.

This reduction can be improved from the setting in which one is given O(m2n) points which
should be covered with nm lines to one in which O(m2) points should be covered with 3m lines.

Instead of creating m2 points {pikl} for each variable vi, we create a subset Qi of points defined
as follows. Let I be a set of clauses in which vi or v̄i appear. Our set Qi will be equal to {pikl}Ek,El∈I .
Our reduction is depicted in Figure 3.1.

Namely, we exclude all the points on the lines Lij such that neither Lij nor L̄ij contribute to
cover any Pi

Theorem 3.2.1. Q ∪ {P1, . . . , Pm} can be covered with 3m lines iff φ is satisfiable

Proof. Since there are exactly m clauses, each contains 3 instance of variables, there are 3m in-
stances of the variables in φ. If φ is satisfiable, we can use the following covering of lines. Let γ be
a assignment that satisfies φ

3.2. LOWER BOUNDS ON THE RUNNING TIME OF K-MEDIAN FOR LINES 17

• If vi is true in γ, for each vi ∈ Ej we create a line Lij that passes through Pj and all the
points Qij .

• If vi is false in γ, for each v̄i ∈ Ej we create a line L̄ij that passes through Pj and all the
points Q̄ij .

Since there are 3m instances of the variables in φ, 3m lines covers all the points in Q ∪
{P1, . . . , Pm}.

We prove the case where φ is not satisfiable by contradiction. Let us assume that φ is not
satisfiable and 3m lines can cover Q∪{P1, . . . , Pm}. Since nm− 3m lines can cover {pikl} \Q. This
implies a set of mn lines that covers the original instance of [MT82] corresponding to φ. Here we
use the fact that in our instance, for each variable we must cover the corresponding sub grid in a
unified direction (exactly as in [MT82]). This is in contradiction to the fact that φ is not satisfiable.

P1

P2

P3

L̄11

L̄12

L̄13
L11

L12
L13

L̄21

L̄23

L̄22

L21
L22

L23

L41

L42

L43

L̄41

L̄42
L̄43

L̄33
L̄32

L̄31

L33

L32

L31

Figure 3.1: Example for E1 = v1 ∨ v2 ∨ v3, E2 = v̄1 ∨ v2 ∨ v4, E3 = v2 ∨ v3 ∨ v4. Each point Pi represent

a clause Ei. With each variable vi we associate a grid of points (in this case a 3 × 3 grid), such that if

vi ∈ Ej then there exist a line Lij passing through Pj and {pi1j . . . pimj}. Similarly if v̄i ∈ Ej then there

exist a corresponding line L̄ij passing through Pj and {pij1 . . . pijm}. The dashed lines are lines that where

constructed in the original reduction but are absence in our reductions.

Using the standard duality between points and lines in R2, [MT82] define a dual instance to
the problem in which there are p lines and r points, and a point from the original instance lay on
two lines iff the corresponding two dual points lay on the corresponding dual line.

18 CHAPTER 3. K-MEDIAN FOR LINES: LOWER BOUNDS

Consider the dual problem to our enhanced reduction, referred to as the LC problem. In the
corresponding dual instance we will have O(n2) lines and the optimum solution will consist of 3n
points

Now apply k-median for lines on our LC instance with k = 3n. If the k-median value is 0, then
this is a solution for the LC instance, implying that φ is satisfiable. Otherwise there is no solution
to this instance, implying that φ is not satisfiable.

Let us assume that we can solve the k-median problem in time f(n, k) 6 poly(n)2ϵk, then with
the above reduction we can solve 3-SAT in time f(n2, 3n) 6 poly(n)2O(ϵn)

We note that our reduction also holds for any multiplicative approximation algorithm for k-
median, since for optimal value 0 any multiplicative approximation will also be 0.

Chapter 4

k-median for lines: strong coreset

4.1 Coreset for k-median for lines

In this section we will present an algorithm that given n lines L in the plane returns a small weighted
subset of lines L′ such that for any k centers Φ it holds that the cost of clustering L with Φ is
approximately that of clustering L′. Our algorithm will involve several steps as outlined below.

4.1.1 Outline

Let L = {l1, . . . , ln} be a set of lines in R2. For a set of k points Φ = {ϕ1, . . . , ϕk}, let Dist(Φ, li)
be the Euclidean distance between a line li and the closest point from Φ. We refer to the points
of Φ as facilities. A line l is said to be served by ϕ ∈ Φ if ϕ is the closest facility to l. Let
φ(Φ, L) =

∑n
i=1Dist(Φ, li). In the k-median problem for lines one is to find a set of k points Φ∗

such that φ(Φ, L) is minimized. We denote such Φ∗ as the k-median points and φ∗(L) = φ(Φ∗, L) as
the value of the k-median based solution. Let L′ = {l1, . . . , lm}. L′ is defined as a strong coreset for
the k-median problem for L, if for any set of k facilities Φ, (1−ϵ)φ(Φ, L′) 6 φ(Φ, L) 6 (1+ϵ)φ(Φ, L′).

In this section we present an algorithm, given L, that finds a strong coreset L′ ⊆ L of size
ck

ϵ
3k
2
log4k−4 n for some constant c. Our algorithm is based on an (α, β) bi-criteria approximation

algorithm. In an (α, β) bi-criteria approximation, one seeks a set of points Φ′ of relaxed side βk
such that φ(Φ′, L) 6 αφ∗(L). Here α and β are typically greater then 1 and we refer to the output
of an (α, β) bi-criteria algorithm as an (α, β) approximation solution.

Our algorithm for finding a coreset L′ has 4 steps.

1. Find Φ′, |Φ′| = O(k2 lg n ln(k lgn
ϵ)) = βk such that φ(Φ′, L) 6 8φ∗(L). Namely find an (8, β)

approximate solution Φ′ for β of size approximately lg n.

2. Using Φ′, find Φ′′, |Φ′′| = O(k
2|Φ|
ϵ lg n ln(k lgn

ϵ) log1+ϵ
8n
ϵ) such that φ(Φ′′, L) 6 32ϵφ∗(L).

Namely find a (32ϵ, β) approximate solution Φ′ for β of size approximately lg2 n.

3. Move each line to its nearest facility in Φ′′. This will create a partition of lines in L into
subsets, each subset intersecting at a single point. We denote the geometrical structure of
the subsets as ”star shape”.

4. Find a strong coreset for each star shaped subset. The union of the coresets will be the
resulting coreset.

In general our algorithm works only in the plane R2. However, steps 1-3 work for higher
dimensions also. We thus prove steps 1-3 in Rd and step 4 in R2.

19

20 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

4.1.2 Bi-criteria for k-median

The first phase of our algorithm finds a set of facilities Φ′, |Φ′| > k such that φ(Φ′, L) 6 8φ∗(L).
Our algorithm works in iterations. For a set of lines L, in each iteration we will show a way to
select points to add to Φ′ that cover a subset of lines in L. The union of the selected points in each
iteration will be our facilities Φ′. Our algorithm is presented in Algorithm 3.

Lemma 4.1.1. For a center ϕ ∈ Φ, let Lϕ = {l1, . . . , lm} ⊆ L be the set of lines that is being served
by ϕ ordered by their distance from ϕ. For lj ∈ Lϕ, let projj be the projection of ϕ on lj. Then for
each line lh ∈ Lϕ such that h > j, Dist(lh, projj) 6 2Dist(lh, ϕ).

Proof. Let d be the distance between ϕ and projj , then for each line lh, by the triangle inequality
Dist(lh, projj) 6 Dist(lh, ϕ) + d. Since for each line lh such that h > j, d 6 Dist(lh, ϕ), then
Dist(lh, projj) 6 2Dist(lh, ϕ). See Figure 4.1.

Lemma 4.1.2. For a center ϕ ∈ Φ, let Lϕ = {l1, . . . , lm} ⊆ L be the set of lines that is being
served by ϕ ordered by their distance from ϕ. Let lj be a line in Lϕ and projj be the projection of
ϕ on lj. For a line lh ∈ Lϕ let projj,h be the closest point on lj to lh. Fix a line lx in Lϕ, and
denote by d′ the distance between projj and projj,x. Then, for each line lh ∈ Lϕ such that h > j
and Dist(projj,h, projj) > d′ it holds that Dist(lh, projj,x) 6 4Dist(lh, ϕ). See Figure 4.1.

Proof. Since Dist(projj , projj,x) 6 Dist(projj , projj,h), then it can be seen that Dist(lh, projj,x) 6
2Dist(lh, projj) (this is immediate in R2 and follows from basic computations in higher dimensional
space). By Lemma 4.1.1, for each line lh such that h > j, Dist(lh, projj) 6 2Dist(lh, ϕ), thus
Dist(lh, projj,x) 6 4Dist(lh, ϕ).

φ

d

projj

lj
projj,x

lh

projj,h

d′

Figure 4.1: Example of definitions presented in Lemmas 4.1.1 and 4.1.2.

Lemma 4.1.3. Let ϵ > 0. If we set δ = 1
200 , then with probability 1− ϵ, Algorithm 3 finds a set Φ′

such that φ(Φ′, L) 6 8φ∗(L), and |Φ′| = O(k2 lgn ln(k lgn
ϵ)).

4.1. CORESET FOR K-MEDIAN FOR LINES 21

Algorithm 3 Bi-criteria for lines k-median(L, k, δ)

1: L̄← L
2: n← |L|
3: P ← ∅
4: for lg n times do
5: n̄← |L̄|
6: for 1002k2

δ2
ln(k lgn

ϵ) times do
7: Pick two lines lj , lx chosen randomly from L̄ (in a uniform manner)
8: projj,x ← The closest point to lx on lj .
9: P ← P ∪ projj,x

10: end for
11: L̄← L̄\ the n̄

2 closest lines to P
12: end for
13: Φ′ ← P ∪ a point on each of the remaining lines in L̄
14: return Φ′

Proof. In order to analyze φ(Φ′, L), we start with some terminology. Let n be the size of L and let
n̄ be the size of L̄ (the remaining lines in each iteration). Let projjx be the closest point on lj to
lx. Let Φ = {ϕ1, . . . , ϕk} be a set of facilities, for a facility ϕi ∈ Φ, we define the cluster Ci as the
set of lines from L̄ that is being served by ϕi. We refer to projjx as δ-good for a cluster Ci if:

• Both lj and lx are in Ci.

• lj is among the δ|Ci| closest lines to ϕi in Ci.

• In the set {projj,h|lh ∈ Ci}, projj,x is among the δ|Ci| closest points to projj . Here projj is
the projection of ϕi on lj .

In each iteration of our algorithm we choose 1002k2

δ2
ln k lgn

ϵ centers to be added to P . A line will be
called good, if its distance to P is less then 4 times its distance to the optimal Φ, otherwise we will
refer to it as bad. By Lemma 4.1.2, if projjx is δ-good for Ci then there are at least (1 − 2δ)|Ci|
good lines in Ci. Moreover a line will be called near if it is in the set of closest lines that are
removed from L̄ at the end of the iteration.

Let us analyze what happens in each iteration of Algorithm 3. We will start by analyzing the

probability that after the iteration there are at least (1− 2δ)(n̄− n̄(k−1)
100k) > (1− 2δ) 99

100 n̄ good lines
in a single iteration. Here n̄ is defined in each iteration of the algorithm.

For each Ci, let ni = |Ci|. If ni > n̄
100k , then the probability that both lj and lx are from Ci is

at least 1
1002k2

, and the probability that projjx is δ-good for Ci is at least
δ2

1002k2
.

In each iteration we pick 1002k2

δ2
ln(k lgn

ϵ) different centers (pairs of lines). Denote these centers
by P .

Thus if |Ci| > n̄
100k then

Prob[∃projjx ∈ P such that projjx is δ-good for Ci] > 1−
(
1− δ2

1002k2

) 1002k2

δ2
ln(k lgn

ϵ
)

> 1−
(
1

e

)ln(k lgn
ϵ

)

= 1− ϵ

k lgn

22 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

Thus, Prob[∀Ci s.t. |Ci| > n̄
100k ∃projjx ∈ P s.t. projjx is δ-good for Ci] > 1 − ϵ

lgn . Namely,
after the first round, with probability 1− ϵ

lgn , there is a δ-good point in P for each cluster Ci that

satisfies |Ci| > n̄
100k . This implies that there are at least (1− 2δ) 99

100 n̄ good lines in L̄. We call such
an iteration successful.

After lg n external iterations the probability that each iteration is successful is at least 1 −
ϵ

lgn lg n = 1− ϵ by the union bound.

Let us set δ = 1
200 . Let Neari be the near lines in iteration i and let Goodi be the good lines in

iteration i. Let NGi be the near lines that are good in iteration i, let NBi be the near lines that
are bad in iteration i, let FBi be the far lines that are bad in iteration i and let FGi be the far
lines that are good in iteration i.

|Goodi| =
∑
|Ci|(1− 2δ) > 99

100
n̄(1− 2δ) > 99

100
n̄
99

100
> 9

10
n̄

This implies that |NBi| 6 n̄− |Goodi| 6 1
10 n̄. Similarly, |FBi| 6 n̄

10 thus |FGi| > n̄
2 −

n̄
10 = 4n̄

10 .

In iteration i+1 the new size of L̄ is n̄
2 and in L̄ there will be at least 9

10
n̄
2 good lines. Since n̄

4 lines
are near in iteration i+ 1 (namely chosen by the algorithm only in iteration i + 1) and n̄

4 are far,

thus |FGi ∧Ni+1| > 4n̄
10 −

n̄
4 = 0.15n̄ > |NBi|.

Now let us analyze the total cost of φ(Φ′, L). We will do so by charging each of the removed
lines in each iteration. In each iteration we remove all the near lines, however there could be bad
lines in the set of those lines. Namely, lines l for which φ(l, P) is larger then 4φ(l,Φ). For each
good and near line the cost of this line is at most 4 times its cost in the optimal solution. For each
of the bad and near lines lbad we will charge a line lgood in the next iteration with the following
properties:

1. lgood is far and good in the current iteration.

2. lgood is near in the next iteration.

3. lgood has not been charged by any other line other then lbad. This is possible since |FGi ∧
Ni+1| 6 |NBi|.

Let Pi be the set P after iteration i. It holds that

φ(Φ′, L) 6
∑
i

∑
l∈Neari

Dist(Pi, l)

=
∑
i

(
∑

l∈NBi

Dist(Pi, l) +
∑

l∈NGi

Dist(Pi, l))

6
∑
i

∑
l∈NBi

Dist(Pi, l) + 4
∑
i

∑
l∈NGi

Dist(Φ, l)

6
∑
i

∑
l∈NBi

Dist(Pi, l) + 4φ(Φ, L)

Thus, we are left to analyze
∑

i

∑
l∈NBi

Dist(Pi, l). We have shown that |NBi| 6 |FGi∧Ni+1|,
thus for each lbad ∈ NBi one can match a distinct line lgood ∈ Ni+1 such that

1. Dist(lbad, Pi) 6 Dist(lgood, Pi) (follows from the fact that lgood /∈ Neari and lbad ∈ Neari).

2. Dist(lgood, Pi) 6 4Dist(lgood,Φ) (follows from the fact that lgood ∈ Goodi).

3. lgood is removed from L̄ in iteration i+ 1 (lgood ∈ Ni+1).

4.1. CORESET FOR K-MEDIAN FOR LINES 23

By 3 it follows that any line lgood corresponds to at most a single line lbad. By 1 and 2 we have
Dist(lbad, Pi) 6 4Dist(lgood,Φ).

Thus : ∑
i

∑
lbad∈NBi

Dist(lbad, Pi) 6
∑

lgood∈L
4Dist(lgood,Φ) 6 4φ(L,Φ)

Notice that in the final iteration L̄ is of constant size and we pick a point to add to P for each
l ∈ L̄. Thus there are no bad lines in this iteration.

This means that for each line we charged at most 8 times the cost in the optimal solution
(four for itself and four for a near bad line). Therefore the total cost φ(Φ′, L) is at most 8 times
that of φ(Φ, L). Choosing Φ to be the optimal k centers, we have φ(Φ, L) 6 8φ∗(L). Note that

|Φ′| = O(k2 lg n ln(k lgn
ϵ)), as in line 13 of Algorithm 3 the size of the remaining L̄ is at most

constant.

Lemma 4.1.4. Algorithm 3 has a running time of O(nk2 ln(k lgn
ϵ) lg n).

Proof. The loop in line 4 is executed lgn times. The loop in line 6 is executed 1002k2

δ2
ln(k lgn

ϵ)

times for each inner iteration, resulting in a total of O(k2 ln(k lgn
ϵ) lg n) times. Each step inside

that takes time of O(1). In line 11, finding the distance for each line in L̄ can be done in total time

O(k2 ln(k lgn
ϵ) lg n) for all the iterations, which yield a total time of O(nk2 ln(k lgn

ϵ) lg n). Thus the

total running time of the algorithm is O(nk2 ln(k lgn
ϵ) lg n).

4.1.3 ϵ net

Let ϵ > 0. For the second part of our algorithm we would like to find a set of facilities Φ′′ such that
φ(Φ′′, L) 6 ϵφ(Φ′, L). We will do this by selecting a set of facilities corresponding to each facility
ϕ′ ∈ Φ′. We will create the set of facilities for ϕ′ ∈ Φ′ in the following way. Consider a ball centered

around ϕ′ with radius r1 = ϵφ(Φ′,L)
n . Let L̄ be the set of lines in L served by ϕ′. Now consider the

set of balls Bi with radius ri = (1 + ϵ)ri−1 centered at ϕ′. Let i = 1, . . . , t where t is defined to be
the smallest integer such that the balls of radius ri centered at ϕ′ cover (i.e., intersect) all the lines
in L̄. For each ball Bi above we add to Φ′′ a set of facilities on the boundary of Bi. The set added
”covers” the boundary in the sense that every point on the boundary of Bi is of distance at most
ϵri from some added facility. As we are in R2 this set if of size 2πri

ϵri
= 2π

ϵ . (For the case of Rd, such

a set can be seen to be of size (
√
4επ
ϵ)d−1 [GLS10]).

Lemma 4.1.5. The size of Φ′′ is 2π|Φ′|
ϵ log1+ϵ

n
ϵ = O(k

2

ϵ lgn ln(k lgn
ϵ) log1+ϵ

n
ϵ)

Proof. Let t be the number of balls created for a facility ϕ′. We start by bounding t. The distance
from ϕ′ to the farthest line in L̄ is at most φ(Φ′, L). Thus, r1(1 + ϵ)t 6 φ(Φ′, L), and t 6
log1+ϵ

nφ(Φ′,L)
ϵφ(Φ′,L) = log1+ϵ

n
ϵ . The number of facilities created on each ball is 2πr

ϵr = 2π
ϵ . We conclude

that the total number of facilities for each ϕ′ is 2π
ϵ log1+ϵ

n
ϵ . Finally, the total number of facilities

is 2π|Φ′|
ϵ log1+ϵ

n
ϵ

Lemma 4.1.6. φ(Φ′′, L) 6 4ϵφ(Φ′, L)

Proof. Let l ∈ L be a line of distance d from ϕ′. If d 6 r1 then by construction d 6 ϵφ(Φ′,L)
n . If

d > r1, let i be the index such that ri−1 < d < ri. It holds that ri−ri−1 6 ϵri−1 due to construction.
As d > ri−1 we conclude ri − d < ri − ri−1 6 ϵri−1 < ϵd.

24 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

Since the distance from each point of the ball Bi to the nearest facility is less then ϵri then
Dist(l,Φ′′) 6 ϵd+ ϵri 6 ϵd+ (1 + ϵ)ϵd 6 3ϵDist(l,Φ′). Thus

φ(Φ′′, L) =
∑
l∈L

Dist(l,Φ′′)

=
∑

Dist(l,Φ′)6r1

Dist(l,Φ′′) +
∑

Dist(l,Φ′)>r1

Dist(l,Φ′′)

6 n
ϵφ(Φ′, L)

n
+ 3

∑
Dist(l,Φ′′)>r1

ϵDist(l,Φ′)

6 ϵφ(Φ′, L) + 3ϵ
∑

Dist(l,Φ′′)>r1

Dist(l,Φ′)

6 4ϵφ(Φ′, L)

We now conclude this section by the following lemma.

Lemma 4.1.7. Let L′ be the set of lines resulting from moving each line in L to its nearest facility
in Φ′′ (by additive shifts), then for any set of facilities Φ: |φ(Φ, L)− φ(Φ, L′)| 6 32ϵφ∗(L).

Proof. In Lemma 4.1.6 we proved that φ(Φ′′, L) 6 4ϵφ(Φ′, L), we also proved in Lemma 4.1.3
that φ(Φ′, L) 6 8φ∗(L). Therefor φ(Φ′′, L) 6 32ϵφ∗(L). L′ is created by moving each line to
its closest facility. Namely for each set of facilities Φ, by the triangle inequality it holds that
|φ(Φ, L)− φ(Φ, L′)| 6 32ϵφ∗(L).

4.2 Strong coreset for k-median of lines

In the previous section we proved that one may assume with little loss, that our set of lines are
partitioned into few groups, such that each group intersects at a common point (see Lemma 4.1.7).
We now concentrate on one such group.

Let L = {l1, . . . , ln} be a set of n lines, all intersecting at a point pC . Let C be a circle with
center pC and radius 1. We define the CK-median as k points Φ = {ϕ1, . . . , ϕk} outside C such
that φ(Φ, L) =

∑n
i=1Dist(Φ, li) is minimized.

Lemma 4.2.1. Let Cup be a half space defined by a line passing trough pC and let Cdown = R2\Cup.
For a given set of facilities Φ we can create a set Φ′ for which all of its points are in Cup, such that
for any L, Dist(Φ, L) = Dist(Φ′, L).

Proof. We can create Φ′ in the following way. For each point ϕ ∈ Φ that is in Cdown with distance
dϕ from pC , we will look at a line lϕ that passes through ϕ and pC . We will replace ϕ with a point
ϕ′ on that line on the other side of pC (lϕ ∩ Cup) with distance dϕ from pC .

Since each line l ∈ L passes through pC , and lϕ passes through pC , the distance of each point
pϕ on lϕ to l is Dist(pϕ, pc) sinα, where α is the angle between l and lϕ. Since the distance of ϕ
and ϕ′ from pC is the same and they are lying on the same line lϕ, then Dist(ϕ, l) = Dist(ϕ′, l).
We conclude that Dist(Φ, l) = Dist(Φ′, l).

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 25

Definition 4.2.1. Let L = {l1 . . . ln} be a set of n lines. For a set of k points Φ = {ϕ1, . . . , ϕk}, with
weights {wϕ1 , . . . , wϕk

}, let the weighted Euclidean distance of l and ϕi be the Euclidean distance of
l and ϕi multiplied by wϕi

, and let Dist(Φ, li) be the minimum weighted Euclidean distance between
a line li and the points from Φ. Let φ(Φ, L) =

∑
Dist(Φ, l).

Lemma 4.2.2. For a given set of facilities Φ outside C, we can create a set of weighted facilities
Φ′ such that all ϕ ∈ Φ′ are on C and φ(Φ, L) = φ(Φ′, L).

Proof. For each ϕ ∈ Φ, let dϕ be the distance between ϕ and pC (the center of C), and let lϕ be
the line connecting ϕ and pC . The distance from ϕ to a line l ∈ L is dϕ sinα, where α is the angle
between lϕ and l. We now define the set of facilities Φ′ such that for each ϕ ∈ Φ we have a facility
ϕ′ with weight dϕ, located at the intersection point of lϕ and C. For each line l ∈ L the weighted
distance from ϕ′ is w(ϕ′) sinα = dϕ sinα, which is the weighted distance from ϕ.

Definition 4.2.2. Let L = {l1 . . . ln} be a set of n lines, all intersecting at a point pC , a CK-Median
strong coreset is defined as a set of lines L′ ⊆ L of size ϵn for which, for each weighted facility set
Φ of size k, it holds that, (1− ϵ)φ(Φ, L′) 6 φ(Φ, L) 6 (1 + ϵ)φ(Φ, L′).

4.2.1 k = 1: Finding Minimal Median for C1-Median

Lemma 4.2.3. We can find the C1-Median in time O(n log(n)).

Proof. We first prove the following claim.

Claim 4.2.1. The C1-median ϕ(C) is on the intersection of C and one of the lines.

Proof. Lets assume in contradiction that the median point ϕ(C) in not on the intersection of C and
one of the lines. As we allow only median centers that are outside C or on C, this also holds for
ϕ(C). If ϕ(C) is not on any of the lines of L, we can create a new line l, that passes through ϕ(C)
and does not intersect C. Unless all the lines in L are parallel to l (in this case ϕ(C) can be taken
to be a point on one of the lines in L, and the median value is 0), l intersects another line from L.
Let Pl be the set of intersection points of lines in L with the line l. Let φ∗(L) =

∑
l∈LDist(l, ϕ(C))

and for a point pl ∈ Pl let φ(pl, L) =
∑

l∈LDist(l, pl). By Claim 2.1.1, there exists a point pl ∈ Pl

such that φ∗(L) > φ(pl, L), implying that φ∗(L) = φ(pl, L). Thus we may assume that ϕ(C) lie on
the intersection of l and a line l′ from L. Notice that p is outside C. Now consider the intersection
point p of l′ and C. It holds that φ(p, L) 6 φ(ϕ(C), L) as any line in L is closer to p than to ϕ(C).
Thus, as before, we may assume that ϕ(C) equals p which contradicts our assumption.

Since the minimal C1 median is on the intersection of C and one of the lines, we have n
candidates for the minimal median. Thus, naively, one can compute the C1 median in time O(n2).
In what follows, we present an alternative iterative algorithm which computes the C1 median in
time O(n log(n)).

Our algorithm will first sort the lines by their appearance on the cycle C, assume that the
sorted lines are l1, . . . , ln in clockwise order. We then scan the lines one by one, updating the value
φ(p) for each intersection point of a line l ∈ L and C. We now show that scanning all the lines
and calculating φ(p) for each intersection point can be done dynamically in total running time of
O(n), which suffices to prove our assertion. To do so we will use Lemma B.0.3 of the appendix.

We, first calculate the angles α1, . . . , αn between l1 and the remaining lines l2, . . . , ln (here, we set
α1 to be 0, and each αi is at most π). Then we calculate

∑
li∈L sinαi,

∑
li∈L cosαi,

∑
li∈L(p1) sinαi

and
∑

li∈L(p1) cosαi. This can be done in time O(n). Here p1 is the intersection of l1 and C;

and L(p1) are the set of lines that lie in counter clockwise order to the left of p1 with angle
αi < π/2. Notice that these calculations include φ(pi, L) =

∑
li∈L sinαi. We can then calculate the

26 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

corresponding sums for l2 using Lemma B.0.3 of the appendix in a running time of O(|L1|+ |L2|)
where L1 is the set of lines between l1 and l2, which is empty in our case, and L2 is the set of lines
between the lines perpendicular to l1 and l2. In general, Lemma B.0.3 allows us to compute the
sums above for li+1 once they are given for li in running time proportional to the number of lines
between the lines perpendicular to li and li+1 (denoted by L2 in the lemma). As the lines appear
in sorted order, each line can belong to the set L2 only once, and thus the total running time is
linear. After we calculate φ(pi, L) for all the intersection points, we then choose the minimum in
time O(n). This bring to a total running time of O(n lgn).

4.2.2 k = 1: Strong coreset for C1-Median

In this section we will present an algorithm that finds a strong coreset for C1-Median. This
algorithm uses similar techniques to the ones defined in [HPK05]. In [HPK05], Har-Peled and
Kushal present a technique for finding a strong coreset for the k-median problem for weighted
points on a line, that finds a coreset of size O(kϵ).

Lemma 4.2.4. Let L = {l1 . . . ln} be a set of lines intersecting at pC . We can find a weighted set L′

of size O(1ϵ) such that for each weighted facility ϕ, (1− cϵ
2
3)φ(ϕ,L′) 6 φ(ϕ,L) 6 (1+ cϵ

2
3)φ(ϕ,L′).

Here, c is a sufficiently large constant. The running time of our algorithm is O(n log(n)).

Proof. Note that by Lemmas 4.2.1 and 4.2.2 we can replace any set of facilities Φ with a weighted
facility set Φ′ laying on Cup. Let L = {l1 . . . ln} be a set of lines intersecting at pC , we start with
some definitions depicted in Figure 4.2. Let A ⊆ L be a set of lines in which the angle between each
two lines is less then π

4 . Let lleft be the leftmost (in counter clockwise order) line in A. For a line
li ∈ A, let αi be the angle between li and lleft. Let lA be the line passing through PC , with angle∑

li∈A αi

|A| to the right of lleft. We will also give lA a weight w(A) = |A|. Let pA be the intersection

point of lA and the circle C. Let us define ξ∗(A) =
∑

l∈ADist(l, pA). Let V be the value of the
1-median for L on C, found by the C1-median algorithm from the previous section.

lA

lleft

φ

φ′

li

αi

pA

pC

Figure 4.2: Example of lines in A as defined in Lemma 4.2.4

We now describe our algorithm. We will start by scanning the lines in L = {l1, . . . , ln} by the
direction of the intersection on C, and group them into batches. Namely we ”grow” each batch A
of lines in L sequentially until one of the following occur

• ξ∗(A) = ϵV . To ensure ξ∗(A) = ϵV and not ξ∗(A) > ϵV , we will divide the last line in
each batch into two weighted lines l1, l2 with total weight of 1. In this case Dist(l1, pA) =
w(l1)Dist(l1, pA)

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 27

• The angle between the start of the batch and the current scanned line θ 6 ϵ. If the angle is
bigger then ϵ we will take the previous line.

Let B = B1, . . . , Bu be the resulting batches, and let L′ = {lB1 , . . . , lBu}. Let ϕ be a facility
point outside C. We will scale ϕ, to ϕ′ on C, and analyze the total error between L and L′ on the
facility ϕ′. By Lemma 4.2.2 this will suffice to prove our claim.

We now analyze the total error ζ = |
∑

li∈LDist(li, ϕ)−
∑

Bi∈B |Bi|·Dist(lBi , ϕ)| = dϕ|
∑

li∈LDist(li, ϕ
′)−∑

Bi∈B |Bi| ·Dist(lBi , ϕ
′)|.

Let us define ξ(Bi) = |
∑

li∈Bi
Dist(li, ϕ

′)−|Bi|·Dist(lBi , ϕ
′)|. It holds that ζ 6 dϕ

∑
Bi∈B ξ(Bi).

For a facility ϕ′ and a batch Bi we will refer to ϕ′ as inside Bi if ϕ
′ is to the left of the rightmost

line in Bi and to the right to the leftmost line in Bi. We will divide the analysis into two different
possibilities.

• Case 1: ϕ′ is inside Bi

• Case 2: ϕ′ is outside Bi

Consider Bi that contains ϕ′, there could be at most two such batches. For such Bi, for each
line l ∈ Bi, by Lemma B.0.2 |Dist(lBi , ϕ

′)−Dist(l, ϕ′)| 6 Dist(l, pB) (pB is the intersection point
of lBi and C). Thus the total sum of error to ξ(Bi) 6 ξ∗(Bi) = ϵV .

We now consider Bi that doesn’t contain ϕ
′. Let us assume w.l.o.g that ϕ′ is to the right of Bi.

For these batches, define l′ϕ as the line passing through ϕ′ and pC , β as the angle between l′ϕ and
the leftmost line in Bi, and for a line lj ∈ Bi define αj as the angle between lj and the leftmost
line in Bi.

ξ(Bi) = |
∑

lj∈Bi
Dist(li, ϕ

′)− |Bi| ·Dist(lBi , ϕ
′)| = |

∑
lj∈Bi

sin(β − αj)− |Bi| · sin(β −
∑

αj

|Bi|)|.

Claim 4.2.2. For a batch Bi that doesn’t contain ϕ
′ it holds that ξ(Bi) 6 6ϵ

2
3
∑

lj∈Bi
sin(β − αj).

Proof. We divide our proof into two cases. The case where β ∈ [0, 2ϵ
1
3] and the case where β ∈

[2ϵ
1
3 , π2].

Let β ∈ [0, 2ϵ
1
3], in this case, the fact that the facility is close to Bi implies that the distance

from the facility to the lines of Bi is close to the distance between the facilities and the points of
Bi∩C. We will use the following facts in our analysis: Since sin(x) = x−(x

3

3! −
x5

5!)−(x
7

7! −
x9

9!)− . . .
then sin(x) 6 x , for x 6 1. Since sin(x) = x− x3

3! + (x
5

5! −
x7

7!) + (x
9

9! − . . . then sin(x) > x− x3

3! , for

x 6 1. Thus, for the range x ∈ [0, 2ϵ
1
3], x(1− 4ϵ

2
3

3!) 6 sin(x) 6 x

If
∑

lj∈Bi
sin(β − αj) > |Bi| · sin(β −

∑
αj

|Bi|), then

ξ(Bi) =
∑
lj∈Bi

sin(β − αj)− |Bi| · sin(β −
∑
αj

|Bi|
)

6
∑
lj∈Bi

(β − αj)− |Bi| · (1−
4ϵ

2
3

3!
)(β −

∑
αj

|Bi|
)

= |Bi|β −
∑

αj − (1− 4ϵ
2
3

3!
)(|Bi|β −

∑
αj)

28 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

Otherwise,

ξ(Bi) = |Bi| · sin(β −
∑
αj

|Bi|
)−

∑
lj∈Bi

sin(β − αj)

6 |Bi|(β −
∑
αj

|Bi|
)− (1− 4ϵ

2
3

3!
)
∑
lj∈Bi

(β − αj)

= |Bi|β −
∑

αj − (1− 4ϵ
2
3

3!
)(|Bi|β −

∑
αj)

Therefore

ξ(Bi) 6 |Bi|β −
∑

αj − (1− 4ϵ
2
3

3!
)(|Bi|β −

∑
αj)

= |Bi|β −
∑

αj − |Bi|β +
∑

αj +
4ϵ

2
3

6
(|Bi|β −

∑
αj)

=
2ϵ

2
3

3
(|Bi|β −

∑
αj)

=
2ϵ

2
3

3
(
∑

(β − αj))

6 2ϵ
2
3

3

∑
sin(β − αj)

1− 4ϵ
2
3

3!

<
6ϵ

2
3

3

∑
sin(β − αj)

Now let β ∈ [2ϵ
1
3 , π2]. The fact that the facility is not too close to Bi causes the lost of each

line to be relative to its distance. We will show that for each line lj ∈ Bi, | sin(β − αj) − sin(β −∑
αj

|Bi|)| 6
3
2ϵ

1
3 sin(β − αj). As β > 2ϵ

1
3 , and sin(x) > x − x3

3! , for all β ∈ [2ϵ
1
3 , π2], it holds that

sin(β) > sin(2ϵ
1
3) > 2ϵ

1
3 (1 − 4ϵ

2
3

3!). Since ϵ < 1 and sin(β) > 2ϵ
1
3 (1 − 4

3!) = 4
6ϵ

1
3 , we have that

3
2ϵ

2
3 sin(β) > ϵ for all β ∈ [2ϵ

1
3 , π2]. Since β 6 π

2 , it always holds that | sinβ− sin(β− ϵ)| 6 ϵ. Thus,

| sinβ − sin(β − ϵ)| 6 ϵ < 3
2ϵ

2
3 sin(β).

As sin(x) > x
3 for x 6 π

2 and β > 2ϵ
1
3 , we have ϵ 6 β−ϵ < 3 sin(β−ϵ). As sin(β)−sin(β−ϵ) 6 ϵ,

we also have sin(β) 6 ϵ + sin(β − ϵ) 6 4 sin(β − ϵ). Here we have used that ϵ 6 1. Thus,

| sinβ − sin(β − ϵ)| 6 3
2ϵ

2
3 sin(β) 6 12

2 ϵ
2
3 sin(β − ϵ). Since both β −

∑
αj

|Bi| 6 β, and αj 6 ϵ, it holds

that

| sin(β − αj)− sin(β −
∑
αj

|Bi|
)| 6 | sinβ − sin(β − ϵ)|

6 12

2
ϵ
2
3 sin(β − ϵ)

6 6ϵ
2
3 sin(β − αj).

ξ(Bi) =
∑

lj∈Bi
| sin(β − αj)− sin(β −

∑
αj

|Bi|)| 6 6ϵ
2
3
∑

lj∈Bi
sin(β − αj)

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 29

We have shown that for Bi containing ϕ′, ξ(Bi) = O(ϵV), and for all other Bi, ξ(Bi) =

O(ϵ
2
3
∑

lj∈Bi
Dist(li, ϕ

′)). We conclude that the total error is ζ = O(dϕϵ
2
3
∑

li∈LDist(li, ϕ
′))+ϵV =

O(ϵ
2
3V). Since φ(ϕ,L) > V , thus (1 − cϵ

2
3)φ(ϕ,L′) 6 φ(ϕ,L) 6 (1 + cϵ

2
3)φ(ϕ,L′) for a sufficient

large constant c > 0.
Now we will give a bound on the size of L′.

Claim 4.2.3. The size of L′ is O(1ϵ).

Proof. We will start with some definitions. Let p be a point on the circle C. Left(p,Bi) is defined
as the lines in Bi to the left of p (in a counter clock wise order). Right(p,Bi) is defined as the lines
in Bi to the right of p (in a clock wise order). For a line l ∈ B, let I(p, l) be the length of the arc
from p to the intersection point of l and C.

We will start by showing that for each Bi, φ
∗(Bi) = Ω(ξ∗(Bi)) (here, φ∗(Bi) is the optimal

clustering of the batch Bi). The angle between lBi and the left most line in Bi equals
∑

αi

|Bi| , thus∑
l∈Left(pBi

,Bi)

I(pBi , l) =
∑

l∈Right(pBi
,Bi)

I(pBi , l) =
ξ∗(Bi)

2

Dist(pBi , l) = sin I(pBi , l). For ϵ 6 π
4 ,

sin ϵ
ϵ > sin π

4
π
4

, thus Dist(pBi , l) > sin π
4

π
4
I(pBi , l) >

0.9I(pBi , l), thus ∑
l∈Left(pBi

,Bi)

Dist(pBi , l) > 0.9
ξ∗(Bi)

2

Denote the optimal solution on Bi by ϕi and assume (w.l.o.g) that ϕi is to the right of
pBi , then for each line l ∈ Left(pBi , Bi), Dist(ϕi, l) > Dist(pBi , l), thus φ

∗(Bi) = φ(ϕi, Bi) >
φ(ϕi, Left(pBi , Bi)) > φ(pBi , Left(pBi , Bi)) > 0.9 ξ∗(Bi)

2
Consider a batch Bi such that ξ∗(Bi) < ϵV . Such batches are defined by their angle (between

the leftmost and the rightmost line in the batch). Specifically for such batches Bi the angle between
lleft of Bi and lleft of Bi+1 is less than then ϵ. Thus the number of such batches is bounded by π

ϵ +1.
The addition of one in π

ϵ + 1 is attributed to the last batch Bu which may also have ξ∗(Bu) < ϵV .
For the rest of the batches, ξ∗(Bi) = ϵV , thus

V = φ∗(L) >
∑
Bi∈B

φ∗(Bi) > 0.9
∑ ξ∗(Bi)

2
> 0.9(|B| − π

ϵ
− 1)

ϵV

2

Therefor |B| 6 1
0.9

2
ϵ +

π
ϵ + 1 = O(1ϵ)

Claim 4.2.4. The running time of our algorithm is O(n lg n).

Proof. As our algorithm scans the lines, the lines need to be sorted, which can be done in time
O(n lg n). We then turn to computing the batches. Namely, we scan the lines (in clockwise order)
and compare ξ∗(A) =

∑
l∈ADist(l, pA) with ϵV . The point pA can be adjusted with each line

added to A in constant time O(1). Computing the value of ξ∗(A) iteratively with each update can
be done in a total running time of O(n) using the techniques described in Lemma B.0.3 of the
appendix.

Specifically, let A be the current batch, let Ai be the lines in iteration i, and let pAi and lAi be
the values of pA and lA for Ai. Let αi1, . . . , αik, k = |Ai|, be the angles between lAi and the lines in

30 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

Ai. Our algorithm maintains the values ξ∗(Ai) =
∑

lj∈Ai
sinαi,j ,

∑
lj∈Ai

cosαi,j ,
∑

lj∈L(pAi
) sinαi,j

and
∑

lj∈L(pAi
) cosαi,j . Here L(pAi) is the set of lines in Ai that lie to the left of pAi (in counter

clockwise order) with angle αi,j < π/2. Let l̄ be the line added in iteration i + 1, Using Lemma
B.0.3, we now calculate lAi+1 and the above corresponding sums for Ai+1 (notice that we also need
to add the contribution of l̄ after the use of Lemma B.0.3). Applying Lemma B.0.3 takes a running
time of O(|L1|+ |L2|) where L1 is the number of lines between lAi and lAi+1 , and L2 is the number
of lines between the lines perpendicular to lAi and lAi+1 . Since in our iterative process, the lines
always progress in a sorted manner, each line will be counted a constant number of times. The
total running time of the entire algorithm is thus O(n lg n).

This concludes that proof of Lemma 4.2.4.

4.2.3 CK-Median strong coreset algorithm

We now present an algorithm that finds a strong coreset for CK-Median with k > 1. Our algorithm
uses a technique similar to the one in [FFS06]. In [FFS06], Feldman, Fiat and Sharir describe a
technique for finding a strong coreset for the k-median problem of size O(log2k−1n) for points on
a line. Their algorithm addresses the case in which the facilities (centers), and not only the input
points, may be weighted.

We will start with some definitions. For a set of weighted facilities Φ and a circle C, we define
a Voronoi arc, as an arc on C such that all the points in this arc are served by the same facility,
and the adjutant points of this arc (from both sides) are served by different facility. Later we will
prove that the number of Voronoi arcs is bounded by 2k − 1.

Our algorithm appears in Algorithm 4, divide C to 8 equal parts arci(i = 1 . . . 8), applying a
subroutine algorithm V-Coreset specified in Algorithm 5 on each part. The union of the resulting
coresets will be the final coreset.

Algorithm 5 gets a set of lines L, a number k and 0 < ϵ 6 1. The Algorithm returns a set
of lines L′ such that for every set of weighted facilities Φ that creates at most k Voronoi arcs
|φ(Φ, L) − φ(Φ, L′)| 6 ϵφ(Φ, L). In order to simplify things, instead of looking at the number of
facilities, we will look at the number of Voronoi arcs created by the facilities.

The main idea of Algorithm 5 is to divide the set of points to small groups and recursively find
a strong coreset for each one of those groups. For the base case where there is single Voronoi arc,
namely there is a single facility, we will use the C1-Median algorithm.

Our algorithm 5 uses the following notation. We use the distance function I(p1, p2) for two
points, as the length of the arc that passes through them. We denote the union of the intersection
points of the lines in L with C as P . We then order the points by their appearance on C and split
them in the middle to two sets SL and SR. We divide each one of the sets SL and SR to smaller
sets Bi and in turn divide each Bi to smaller sets Bij . Our scheme for dividing SL, SR and Bi are
specified in Algorithm 5. We denote by Z the collection of all the sets Bij in S. For algorithm 5
we will use a constant δ, later on we will bound δ.

Algorithm 4 CK-median for lines

1: divide C to 8 equals part Arc = /arc1 . . . arc8/.
2: for each arci ∈ Arc ∩ Cup do
3: Li ← the lines from L that intersect arci
4: S ← S∪ V-Coreset(L, 2k − 1, ϵ))
5: end for
6: return S

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 31

Algorithm 5 V-Coreset(L, k, ϵ)

1: if k=1 then
2: return call to algorithm C1-Median (L, ϵ)
3: end if
4: Z ← ∅
5: P ← L ∩ C
6: n← |P |
7: Pmid ← the middle point of P (when the points in P are ordered by their appearance on C).
8: let SL be the points in P left to Pmid and let SR be the points in P right to Pmid.
9: for each S ∈ {SL, SR} do

10: I(S)← The length of the arc containing S.

11: Divide S to arcs Bi of length
2i−1|I(S)|

n2 , i is an index that runs from 1 to ⌈lg(n2)⌉
12: for each Bi do
13: divide Bi into subsets Bij (referred to as ”intervals”) in the following way. the first ⌈ δϵ ⌉

intervals contain a single point, the next ⌈ δϵ ⌉ intervals contain 2 points, the next ⌈ δϵ ⌉
intervals contain 4 points, and so on until we cover all of the points. For B1j the division
will start from the side furthest to the middle point, and for the remaining Bij from the
side closest to the middle point. See Figure 4.3.

14: Z ← Z ∪ {Bij}
15: end for
16: Sl ← ∅ (for the right group we will use Sr)
17: for each B ∈ Z do
18: LB ← lines that correspond the points in B
19: SB ← V-Coreset(LB, k − 1, ϵ)
20: Sl ← Sl ∪ SB (for the right group we will use Sr)
21: end for
22: end for
23: L′ ← Sl ∪ Sr with their weights
24: return L′

We start by bounding the size of our coreset:

Lemma 4.2.5. Let k be the number of Voronoi cells. The number of lines in Sr ∪ Sl of Algorithm
5 is at most ck

ϵk
log2k−2 n for some large enough constant c.

Proof. We start by bounding the number of sets Bij in Z. There are O(lg n) sets Bi by construction.
For each set Bi, we start with sets Bij of one point and after ⌈ δϵ ⌉ sets we multiply the number of

points in the set by 2 for another ⌈ δϵ ⌉ sets. Using the fact that each Bi contains at most n points, it

is not hard to verify that the number of sets in Bi is at most δ
ϵ lg(

nδ
ϵ) = O(ϵ−1 log n). With O(lg n)

sets Bi, Z = O(ϵ−1 log2 n). Thus there is a constant c1 such that Z 6 c1(ϵ
−1 log2 n)

Now we continue with the proof on the number of lines in Sr ∪ Sl defined in Algorithm 5. The
proof is by induction on the number of Voronoi cells k. Let T (k, ϵ, n) be the maximum size of

Sr ∪ Sl for a given ϵ and n. Let us assume that T (k, ϵ, n) 6 ck

ϵk
log2k−2 n for some constant c. For

the base case k = 1, a single Voronoi cell can be created only by a single facility, T (1, ϵ, n) = O(1ϵ)

by Claim 4.2.3. Thus there is a constant c2 such that T (1, ϵ, n) 6 c2(
1
ϵ) Let c be a constant

bigger or equal to c1 and c2. T (k, ϵ, n) 6 |Z| · T (k − 1, ϵ, n), by the assumption of the induction

T (k − 1, ϵ, n) 6 ck−1

ϵk−1 log
2k−4. Thus

32 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

Figure 4.3: Example of partition of I(SL) to B1, . . . , B⌈lgn2⌉.

T (k, ϵ, n) 6 |Z| · T (k − 1, ϵ, n)

= c(ϵ−1 log2 n) · T (k − 1, ϵ, n)

= c(
1

ϵ
log2 n) · c

k−1

ϵk−1
log2k−4 n

=
ck

ϵk
log2k−2 n

As seen in Lemma 4.2.2, for any set of facilities in R2 we can create a set of weighted facilities
all laying on Cup. We will continue with the proof assuming all the facilities are on Cup.

Lemma 4.2.6. Let arci be as defined in Algorithm 4. The number of Voronoi arcs created on each
arci by the k weighted facilities is bounded by 2k − 1.

Proof. In order to be able to use the V-Coreset algorithm we need to bound the number of Voronoi
arcs generated by the weighted facilities on each arci. We consider Davenport-Schinzel sequences
to bound the number of Voronoi arcs created on each arci. For a sequence U = {u1, . . . , um} of
integers, and two positive numbers k and s, a Davenport-Schinzel sequences DS(k, s) is a sequence
satisfying the following:

1. for each ui ∈ U , 1 6 ui 6 k

2. ui ̸= ui+1 for each i < m.

3. there does not exist s+ 2 indices 1 6 i1 6 i2 6 . . . 6 is+2 6 m such that ui1 = ui3 = · · · = a
and ui2 = ui4 = · · · = b and a ̸= b

According to [SA96] if s = 2 then DS(k, 2) = 2k − 1.
Let U be the sequence of the Voronoi arcs created on arci. Each facility ϕ ∈ {ϕ1, . . . , ϕk} can

create several intervals on arci, as the facilities are weighted. For each arc ui ∈ U , the value of
ui will be the index of the facility that is associate with the arc. Condition 1 and 2 above can be
verified due to our construction. In order to satisfy the third condition, we will show that for each
two facilities, the weighted distance functions from a point on arci to each one of those facilities
intersect at most twice.

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 33

Consider the arc length from a point on the circle to closest weighted facility on the circle. The
arc distance of each facility ϕ ∈ Φ to a point p on the circle is w(ϕ) sin θ, where θ is the angle
between the line (pC , p) and the line (pC , ϕ) (pC is the center of the circle).

In order to find the distances for each point on the circle to its closest facility, we should look
at the lower envelope of the functions w(ϕi) sin θi created by each facility. Since we only need to
find a coreset for each arci at a time, we consider the number of times the functions intersect when
θi is in an interval of length π

4 .
It can be easily verified that any two functions of type w(ϕi) sin θi intersect at most twice in an

interval of length π
4 .

Since each two functions intersect at most twice there do not exist 4 indices 1 6 i1 6 i2 6 i3 6
i4 6 m such that ui1 = ui3 = a and ui2 = ui4 = b and a ̸= b.

We now state and prove the main theorem of this section.

Theorem 4.2.1. Let L be a set of n lines intersecting arci. Algorithm V-Coreset(L, k, ϵ) finds

in time O(n ck

ϵk
log2k−1 n), a strong coreset L′ for L such that |φ(L′) − φ(L)| 6 O(ϵ

2
3φ(L)) of size

O(c
k

ϵk
log2k−2 n) for some constant c.

Proof. The size of the coreset is proved by Lemma 4.2.5. For an arc arci let arci+1 be the adjacent
arc in clockwise direction and arci−1 be the adjacent arc in counter clockwise direction. Let
ρ = arci ∪ arci+1 ∪ arci−1.

Let Φ be a set of facilities. In Algorithm 5 for each batch B ∈ Z we define a coreset SB. Let
φ(B) =

∑
l∈BDist(Φ, l) be the sum of values of all the distances of lines in L intersecting B to

their closest facility, and let φ(SB) =
∑

l∈SB
w(l)Dist(Φ, l) be the weighted value of all the coreset

lines intersecting B to their closest facility.
We will use the following observation which follows directly by our definition. We assume that

in line 8 of Algorithm 5 we are considering the case S = SL. Otherwise our analysis is analogous.

Observation 4.2.1.

1. The length of the arc I(Bi), for i > 1, is less then twice the length of all the intervals to its
right, Namely I(Bi) 6 2

∑i−1
j=1 I(Bj).

2. For any Bij ∈ Z that contains at least two points, we have |Bij | 6 2ϵ
δ

∑
m<j |Bim|.

Let L′ be the set of lines returned from algorithm 5. We will prove by induction that Algorithm
V-Coreset(L, k, ϵ) return a set of lines L′ such that for each set of weighted facilities Φ that create

at most k Voronoi arcs |φ(Φ, L) − φ(Φ, L′)| 6 cϵ
2
3φ(Φ, L) for sufficiently large c. We will assume

that the induction is correct for V-Coreset(L, k − 1, ϵ). A single Voronoi arc can be created only
by a single facility, thus the base case of our induction is covered by Lemma 4.2.4.

If for a every B ∈ Z, the interval I(B) intersects less than k Voronoi arcs, then by the induction
assumption each recursive call to V-Coreset(L, k−1, ϵ) returns a set SB such that |φ(B)−φ(SB)| 6
ϵ
2
3φ(B), thus

|φ(L)− φ(L′)| 6
∑
B∈Z
|φ(B)− φ(SB)| 6

∑
B∈Z

ϵ
2
3φ(B) = ϵ

2
3φ(L)

Here, for a set X, φ(X) = φ(Φ, X).
Notice that there can be at most a single batch B such that the interval I(B) intersects k

Voronoi arcs. If there exist a batch B ∈ Z, such that the interval I(B) intersects k Voronoi arcs,
then

34 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

|φ(L)− φ(L′)| 6
∑
X∈Z
|φ(X)− φ(SX)|

=
∑

X∈Z\B

|φ(X)− φ(SX)|+ |φ(B)− φ(SB)|

6
∑

X∈Z\B

ϵ
2
3φ(X) + |φ(B)− φ(SB)|

So we are left to proof that for the single batch B such that the interval I(B) intersects k

Voronoi arcs, |φ(Φ, B)− φ(Φ, SB)| 6 ϵ
2
3φ(L).

For any facility ϕ ∈ Φ, since SB was constructed recursively by C1 − coresets, SB is a 1

coreset for B, hence |φ(ϕ,B) − φ(ϕ, SB)| 6 ϵ
2
3φ(ϕ,B), so φ(ϕ, SB) 6 (1 + ϵ

2
3)φ(ϕ,B). Therefore

|φ(Φ, B)− φ(Φ, SB)| 6 φ(Φ, B) + φ(Φ, SB) 6 φ(ϕ,B) + φ(ϕ, SB) 6 (2 + ϵ
2
3)φ(ϕ,B).

Bounding φ(ϕ,B) by ϵφ(Φ, L): We will now bound φ(ϕ,B) by ϵφ(Φ, L). We will prove our
claim for SL, a similar proof can be applied to SR.

For a batch Bij ∈ Z, let BL be the set of lines of Bi that lies to the left of Bij and let BR be
the set of lines of Bi that lies to the right of Bij . Let PL be the set of lines of L that lies to the
left of Bij and let PR be the set of lines of L that lies to the right of Bij . Since B is the single
batch such that the interval I(B) intersects k Voronoi arcs, all the other batches in Z intersects a
single Voronoi arcs. Therefor for the facility ϕ ∈ Φ that creates the leftmost Voronoi arc, and a
batch X ∈ PL, φ(ϕ,X) = φ(Φ, X). Thus φ(ϕ, PL) = φ(Φ, PL) 6 φ(Φ, L). Symmetrically for the
facility ϕ ∈ Φ that creates the rightmost Voronoi arc, and for a batch X ∈ PR, φ(ϕ,X) = φ(Φ, X).
Thus φ(ϕ, PR) = φ(Φ, PR) 6 φ(Φ, L). Thus it is enough to proof that either φ(ϕ,B) 6 ϵφ(ϕ, PL)
or φ(ϕ,B) 6 ϵφ(ϕ, PR).

We will divide our proof to the case when there is at least one facility not in ρ and the case
when all the facilities are in ρ. We start with the case in which there is at least one facility not in
ρ. We will assume w.l.o.g. that ϕ is to the left of B. Recall that ρ = arci−1 ∪ arci ∪ arci+1.

lfar

lnear

π
4

ρ

φ

arci

Figure 4.4: The distance from ϕ on Cup − ρ to the nearest and farthest line on B.

Lemma 4.2.7. Let ϕ be a facility on Cup − ρ, then φ(ϕ,B) 6 ϵφ(ϕ,BL).

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 35

Proof. Let Dist(ϕ, l) be the distance from ϕ to any line that intersects arci, then it is not hard to
verify that sin π

4 6 Dist(ϕ, l) 6 1. Let lfar be the farthest line from ϕ in B and lnear be the nearest

line to ϕ in B, thus Dist(ϕ, lfar) 6 1
sin π

4
Dist(ϕ, lnear). See Figure 4.4.

By observation 4.2.1(ii) |B| 6 2ϵ
δ |BL|, thus φ(ϕ,B) 6 |B|Dist(ϕ, lfar) 6 2ϵ

δ |BL|Dist(ϕ, lfar) 6
2ϵ
δ |BL|Dist(ϕ, lnear) 1

sin π
4
6 ϵφ(ϕ,BL)

2
δ sin π

4
. If we choose δ that is large enough so that 2

δ sin π
4
6 1

then φ(B) 6 ϵφ(ϕ,BL).

To summer up the case where ϕ is a facility on Cup−ρ. As ϕ is to the left of B then the leftmost
Voronoi arc is created by ϕ, thus for a facility on Cup− ρ, |φ(Φ, B)−φ(Φ, SB)| 6 (2 + ϵ)φ(ϕ,B) 6
(2 + ϵ)ϵφ(ϕ,BL). Recall that the latter is at most (2 + ϵ)ϵφ(Φ, BL) 6 (2 + ϵ)ϵφ(Φ, L).

We are left with the case that all of the facilities are in ρ. The proof in this case is very similar to
the one in [FFS06]. This is due to the fact that for a facility in ρ and two lines l1 and l2 intersecting
arci at p1 and p2, I(ϕ, p1) 6 I(ϕ, p2) iff Dist(ϕ, l1) 6 Dist(ϕ, l2). We show the complete proof.

Lemma 4.2.8. For a set B = Bij ∈ Z, where |B| > 1. Let PL and PR be the set of points that
lie to the left and to the right of B respectively. Then with appropriate choice of δ > 8

sin π
4
, for any

facility ϕ ∈ Φ we have,
(i) for i = 1, φ(ϕ,B) 6 ϵφ(ϕ, PL)
(ii) for i > 1, φ(ϕ,B) 6 ϵφ(ϕ, PR)

Proof. We use the following definition in our proof.

Definition 4.2.3. For two points p1, p2 on ρ,

• p1 6 p2 iff p1 is to the left of p2 on ρ.

• Let I(p1, p2) be the length of the arc that starts at p1 and ends at p2 (in clockwise direction).

We start with the following fact.

Fact 4.2.1. Let l1 and l2 be lines passing trough the center of the circle C and let p1 and p2 be
the intersection point of the lines and C. Let 0 6 α 6 π

2 be the angle between l1 and l2, then
I(p1, p2) sinα = αDist(l1, p2) = αDist(l2, p1).

Figure 4.5: Proof of Lemma 4.2.8, case (i).

(i) If ϕ lies to the right of B, let BL be the set of lines of B1 that lies to the left of B. By
observation 4.2.1 (ii), |B| 6 2ϵ

δ |BL|. ϕ lies to the right of B therefore the distance from ϕ to each
one of the points in BL is greater than the distance from ϕ to each one of the points in B. Thus
φ(ϕ,B) 6 2ϵ

δ φ(ϕ,BL) 6 2ϵ
δ φ(ϕ, PL).

Otherwise, if ϕ lies to the left of B or inside B, let D = Dist(ϕ,B1) denote the distance between
ϕ and the nearest line in B1. Since B ⊆ B1, and for every line l intersecting B, Dist(ϕ, l) <
D + I(B1), we have φ(ϕ,B) 6 |B|(D + I(B1)). Let BL be the set of lines of B1 that lies to

36 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

the left of B. By observation 4.2.1 (ii) |B| 6 2ϵ
δ |BL|. Therefore, φ(ϕ,B) 6 |B|(D + I(B1)) 6

2ϵ
δ |BL|(D + I(B1)) =

2ϵ
δ |BL|D + 2ϵ

δ |BL|I(B1). See Figure 4.5.
Let us look at the first term, since D is at most the distance to the nearest line in BL, |BL|D 6

φ(ϕ,BL). Since BL ⊆ PL, |BL|D 6 φ(ϕ, PL).

Since by the construction of algorithm 5, I(B1) = I(SL)
n2 , |BL|I(B1) 6 n I(SL)

n2 = I(SL)
n 6

I(SL)− I(SL)
n2 = I(SL)− I(B1).

Let pl be the leftmost point on B1 and ll ∈ L the line corresponding to that point. Let p1 be
the leftmost point in SL and let l1 be the line corresponding to p1.

Since both p1 and pl are on PL, then I(SL) − I(B1) 6 I(pl, p1) 6 I(pl, ϕ) + I(ϕ, p1) 6
π
4

sin π
4
(Dist(ϕ, ll) +Dist(ϕ, l1)) 6 π

4 sin π
4
φ(ϕ, PL).

Thus, φ(ϕ,B) 6 2ϵ
δ |BL|D + 2ϵ

δ |BL|I(B1) 6 2ϵ
δ φ(ϕ, PL) +

2ϵ
δ

π
4 sin π

4
φ(ϕ, PL) = φ(ϕ, PL)

2ϵ
δ (1 +

π
4 sin π

4
) < 2.12φ(ϕ, PL)

2ϵ
δ

Figure 4.6: Proof of Lemma 4.2.8, case (ii).

(ii) If ϕ lies to the left of B, let BR be the set of lines of B1 that lies to the right of B. By
observation 4.2.1 (ii), |B| 6 2ϵ

δ |BR|. ϕ lies to the left of B therefore the distance from ϕ to each
one of the points in BR is greater than the distance from ϕ to each one of the points in B. Thus
φ(ϕ,B) 6 2ϵ

δ φ(ϕ,BR) 6 2ϵ
δ φ(ϕ, PR).

Otherwise, if ϕ lies to the right of B or inside B, let D = Dist(ϕ,Bi) denote the distance
between ϕ and the nearest line in Bi and let BR denote the set of lines in Bi to the right of B. See
Figure 4.6. As in previous case φ(ϕ,B) 6 |B|D+ |B|I(Bi). As before by observation 4.2.1 (ii), we
can bound the |B|D by 2ϵ

δ φ(ϕ, PR). To bound |B|I(Bi), let lr and l⌊n/2⌋ be the right most lines of
Bi and SL, respectively, and let pr and p⌊n/2⌋ be the intersection of those lines and C. Define pmid

to be the midpoint point on C between them.
By observations 4.2.1 (i) and (ii), |B|I(Bi) 6 2ϵ

δ |BR|2(I(pr, p⌊n/2⌋)). In case pmid 6 ϕ, we
have I(p⌊n/2⌋, pr)/2 = I(pmid, pr) 6 I(ϕ, p) for every point p ∈ BR, and in case pmid > ϕ we have
I(p⌊n/2⌋, pr)/2 = I((p⌊n/2⌋, pmid) 6 I(p, ϕ) for every point p ∈ SR. Since BR, SR ⊆ PR, we conclude
that, in any case, there are at least |BR| lines intersecting PR that have a distance of at least
4
π sin π

4 I(p⌊n/2⌋, pr)/2 to ϕ. Thus, |BR|I(p⌊n/2⌋, pr) 6 π
2 sin π

4
φ(ϕ, PR), which gives us |B||I(Bi)| 6

2ϵ
δ |BR|2(I(pr, p⌊n/2⌋)) 6 8ϵ

δ sin π
4
φ(ϕ, PR). This suffices to conclude the proof of Lemma 4.2.8.

To conclude the proof of Theorem 4.2.1 we summarize: we have shown that if B ∈ B1,

|φ(ϕ,B)− φ(ϕ, SB)| 6 (2 + ϵ)φ(ϕ,B) 6 3ϵφ(ϕ, PL) = 3ϵφ(Φ, PL) 6 3ϵφ(Φ, L)

And for B /∈ B1,

|φ(ϕ,B)− φ(ϕ, SB)| 6 (2 + ϵ)φ(ϕ,B) 6 3ϵφ(ϕ, PR) = 3ϵφ(Φ, PR) 6 3ϵφ(Φ, L)

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 37

Algorithm 6 Coreset for lines.

1: Find Φ′, |Φ′| > k such that φ(Φ′, L) 6 8φ∗(L).
2: Find Φ′′, |Φ′′| > |Φ′| such that φ(Φ′′, L) 6 16ϵφ∗(L).
3: Move each line of L to its nearest facility in Φ′′ resulting with L′. This will create a partition

of lines in L into subsets, each subset L′
i of size ni intersecting at a single point. We denote the

geometrical structure of the subsets as ”star shape”.
4: For each star shaped subset L′

i find a strong coreset L′′
i .

5: return ∪L′′
i

It is left to analyze the running time of Algorithm 5:

Lemma 4.2.9. The running time of Algorithm 5 is O(n ck

ϵk
log2k−1 n).

Proof. Consider the tree representing the recursive calls of Algorithm 5. The depth of the tree is
exactly k (as in line 19 of Algorithm 5 the recursive call is with k − 1). The number of leaves in
the tree (i.e., executions with parameter k− 1) is bounded by the number of points |S| which is at

most ck

ϵk
log2k−2 n. Each execution takes time O(n lg n) and each call to k = 1 takes time O(n lgn)

as seen in Claim 4.2.4. Thus, we conclude that the total running time is O(n ck

ϵk
log2k−1 n).

This concludes the proof of Theorem 4.2.1.

Remark 4.2.1. To be consistent with previous sections of the thesis, throughout we have used an

approximation factor of ϵ
2
3 . We can change the approximation to be |φ(L′) − φ(L)| 6 O(ϵ′φ(L))

instead of |φ(L′)−φ(L)| 6 O(ϵ
2
3φ(L)) by picking ϵ′ = ϵ

2
3 . This will result in a strong coreset L′ for

L such that |φ(L′)−φ(L)| 6 O(ϵ′φ(L)) of size O(ck

ϵ′
3k
2
log2k−2 n) for some constant c. The running

time is O(n ck

ϵ′
3k
2
log2k−1 n)

4.2.4 Strong corsets for the k-median problem for lines in R2

In the previous section we designed an algorithm that finds a strong coreset for CK-median (namely,
for a set of lines that all intersected at a single point). We now extend our results for a general set
of lines in the plane.

Theorem 4.2.2. Let L = {l1, . . . , ln} be a set of lines in R2. We can find a strong coreset L′′ of

size O(c
2k−1k2

ϵ3k
lgn ln(k lgn

ϵ) log1+ϵ
n
ϵ log

4k−4 n) for some constant c such that for each set of facilities

Φ, |φ(Φ, L)− φ(Φ, L′′)| 6 O(ϵφ(Φ, L)) in running time O(n(c

ϵ
3
2
)2k−1 log4k−2 n).

Proof. We use the four step Algorithm 6. We will start by showing that the size of the coreset

is O(c
2k−1k2

ϵ3k
lgn ln(k lgn

ϵ) log1+ϵ
n
ϵ log

4k−4 n). The first three steps of the algorithm move each line
(to finally form a number of star shapes, i.e., a set of lines intersecting at a single point) and do
not change the number of lines. Since step 4 works on each star shape, the number of star shapes
returned from step 3 defines the number of coresets return in step 4. By Lemma 4.1.5 the number
of coresets is O(k

2

ϵ lgn ln(k lgn
ϵ) log1+ϵ

n
ϵ). By Lemma 4.2.5 the number of lines of each coreset of

size ni is O(ck
′

ϵ
3k′
2

log2k
′−2 ni) for k

′ voronoi cells. Since we have 2k − 1 Voronoi cells, the number of

lines of each coreset is of size ni is O(c2k−1

ϵ
6k−3

2

log4k−4 ni). The union of those coresets is a coreset of

size O(c
2k−1k2

ϵ3k
lgn ln(k lgn

ϵ) log1+ϵ
n
ϵ log

4k−4 n) for some constant c.

38 CHAPTER 4. K-MEDIAN FOR LINES: STRONG CORESET

Now we proof that the algorithm running time is O(n(cϵ)
2k−1 log4k−2 n). Step 1 of the algo-

rithm is executed in running time of O(nk2 ln(k lgn
ϵ) lg n) by Lemma 4.1.4. Steps 2 and 3 can

be done in running time proportional to the number of returned points which is by Lemma 4.1.5
O(nk2

ϵ lgn ln(k lgn
ϵ) log1+ϵ

n
ϵ). Step 4’s running time for k′ = 2k − 1 Voronoi cells, is by Lemma

4.2.9 O(n ck
′

ϵ
3k′
2

log2k
′−1 n) = O(n(c

ϵ
3
2
)2k−1 log4k−2 n). Thus the running time of the entire algorithm

is dominated by O(n(c

ϵ
3
2
)2k−1 log4k−2 n).

We are now left with showing that for each set of facilities Φ of size at most k, |φ(Φ, L′′) −
φ(Φ, L)| 6 O(ϵφ(Φ, L)). In Steps 1,2 and 3 of Algorithm 6 we move the lines of L to create L′. By
Lemma 4.1.7 |φ(Φ, L)−φ(Φ, L′)| 6 32ϵφ∗(L). By Theorem 4.2.1 for each ”star shape” Li of size ni
we find a strong coreset L′′

i for the k-median problem, such that |φ(Φ, L′′
i)−φ(Φ, L′

i)| 6 ϵφ(Φ, L′
i).

We now have, for any Φ, |φ(Φ, L) − φ(Φ, L′)| 6 32ϵφ∗(L) 6 32ϵφ(Φ, L), thus φ(Φ, L′) 6
(1 + 32ϵ)φ(Φ, L).

We conclude that

|φ(Φ, L′′)− φ(Φ, L)| 6 |φ(Φ, L′′)− φ(Φ, L′)|+ |φ(Φ, L)− φ(Φ, L′)|
6 ϵ

∑
i

φ(Φ, L′
i) + 32ϵφ∗(L)

6 ϵ(1 + 32ϵ)φ(Φ, L) + 32ϵφ(Φ, L)

6 65ϵφ(Φ, L)

4.2.5 (1 + ϵ) approximate clustering for k-median for lines in the plane

In this section, we use our coresets to solve k-median for lines in an approximate manner.

Theorem 4.2.3. Let L = {l1, . . . , ln} be a set of lines in R2 and let ϵ < 1 then one can find a
(1 + ϵ)- approximation to the k-median for lines in time n(c/ϵ)poly(k)(log n)poly(k).

Proof. We will use Algorithm 7

Algorithm 7 Finding a 1 + ϵ approximation to L.

1: L′′ ← the lines returned from Algorithm 4
2: P ← the points returned from Algorithm 2 when applied to L′′.
3: return P

We claim that P = φ∗(L′′) is a (1 + ϵ) approximation to the optimal solution for L, φ∗(L).
Let Φ1 be the optimal solution for L and let Φ2 be the optimal solution for L′′. By Theorem 4.2.2
for each set of facilities Φ, |φ(Φ, L) − φ(Φ, L′′)| 6 O(ϵφ(Φ, L)). Then, |φ(Φ1, L) − φ(Φ1, L

′′)| 6
O(ϵφ(Φ1, L)) and |φ(Φ2, L)− φ(Φ2, L

′′)| 6 O(ϵφ(Φ2, L)). We also know that φ(Φ1, L) 6 φ(Φ2, L)
and φ(Φ2, L

′′) 6 φ(Φ1, L
′′).

If φ∗(L) 6 φ∗(L′′) then

|φ∗(L)− φ∗(L′′)| = φ(Φ2, L
′′)− φ(Φ1, L)

6 φ(Φ1, L
′′)− φ(Φ1, L)

= |φ(Φ1, L)− φ(Φ1, L
′′)|

6 O(ϵφ(Φ1, L)).

4.2. STRONG CORESET FOR K-MEDIAN OF LINES 39

If φ∗(L) > φ∗(L′′) then for any constant c, (1 − c · ϵ)φ(Φ1, L) 6 (1 − c · ϵ)φ(Φ2, L). Thus,
c · ϵφ(Φ2, L) 6 φ(Φ2, L)− φ(Φ1, L) + c · ϵφ(Φ1, L). Now, let c be a constant such that |φ(Φ2, L)−
φ(Φ2, L

′′)| < c · ϵφ(Φ2, L):

|φ∗(L)− φ∗(L′′)| = φ(Φ1, L)− φ(Φ2, L
′′)

= φ(Φ1, L)− φ(Φ2, L) + φ(Φ2, L)− φ(Φ2, L
′′)

6 φ(Φ1, L)− φ(Φ2, L) + c · ϵφ(Φ2, L)

6 φ(Φ1, L)− φ(Φ2, L) + φ(Φ2, L)− φ(Φ1, L) + c · ϵφ(Φ1, L)

= O(ϵφ(Φ1, L)).

The running time of line 1 of Algorithm 7 is by Lemma 4.2.2 O(n(c

ϵ
3
2
)2k−1 log4k−2 n). The

running time of line 2 is O(n̄2k log n̄) where n̄ is the number of lines returned from Algorithm 4.
The value of n̄ by Lemma 4.2.5 is at most (c

ϵ
3
2
)2k−1 log4k−4 n for some large enough constant c.

This gives a total running time of n(c/ϵ)poly(k)(log n)poly(k). Here, poly(k) is some polynomial
in k.

Bibliography

[AGI+92] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval classifier for database
mining applications. In VLDB ’92: Proceedings of the 18th International Conference on Very
Large Data Bases, pages 560–573, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers
Inc.

[All02] P. D. Allison. Missing Data. Sage Publications, 2002.

[Ber06] P. Berkhin. A survey of clustering data mining techniques. pages 25–71. Springer, 2006.

[BMM03] P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums of distances, clustering and
the Fermat–Weber problem. Comput. Geom. Theory Appl., 24(3):135–146, 2003.

[CEK02] J. F. Campbell, A. T. Ernst, and M. Krishnamoorthy. Facility Location: Applications and Theory,
chapter Hub Location Problems, pages 373–407. Springer Verlag, 2002.

[Che06] K. Chen. On k-median clustering in high dimensions. In SODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 1177–1185, New York, NY, USA,
2006. ACM.

[DRSS96] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clustering techniques for minimizing
external path length. In VLDB ’96: Proceedings of the 22th International Conference on Very
Large Data Bases, pages 342–353, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers
Inc.

[FFS06] D. Feldman, A. Fiat, and M. Sharir. Coresets for weighted facilities and their applications.
In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pages 315–324, Washington, DC, USA, 2006. IEEE Computer Society.

[FFSS07] D. Feldman, A. Fiat, D. Segev, and M. Sharir. Bi-criteria Linear-time Approximations for Gen-
eralized k-Mean/Median/Center. In Proc. 23th Annu. ACM Symposium on Computational Ge-
ometry (SoCG), pages 19–26, 2007.

[FG88] T. Feder and D. Greene. Optimal algorithms for approximate clustering. In STOC ’88: Pro-
ceedings of the twentieth annual ACM symposium on Theory of computing, pages 434–444, New
York, NY, USA, 1988. ACM.

[FMS07] D. Feldman, M. Monemizadeh, and C. Sohler. A ptas for k-means clustering based on weak core-
sets. In SCG ’07: Proceedings of the twenty-third annual symposium on Computational geometry,
pages 11–18, New York, NY, USA, 2007. ACM.

[GLS06] J. Gao, M. Langberg, and L. Schulman. Analysis of incomplete data and an intrinsic-dimension
helly theorem. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 464–473, New York, NY, USA, 2006. ACM.

[GLS10] J. Gao, M. Langberg, and L. J. Schulman. Clustering lines: classification of incomplete data.
ACM Transactions on Algorithms, 7:8, 2010.

[HP06] S. Har-Peled. How to get close to the median shape. In SCG ’06: Proceedings of the twenty-second
annual symposium on Computational geometry, pages 402–410, New York, NY, USA, 2006. ACM.

41

42 BIBLIOGRAPHY

[HPK05] S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. In SCG ’05:
Proceedings of the twenty-first annual symposium on Computational geometry, pages 126–134,
New York, NY, USA, 2005. ACM.

[HPM04] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In STOC ’04:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291–300,
New York, NY, USA, 2004. ACM.

[MS84] N. Megiddo and K. J. Supowit. On the complexity of some common geometric location problems.
SIAM J. Comput., 13:182–196, 1984.

[MT82] N. Megiddo and A. Tamir. On the complexity of locating linear facilities in the plane. Operations
Research Letters, 13:194–197, 1982.

[Pap81] C. H. Papadimitriou. Worst-case and probabilistic analysis of a geometric location problem.
SIAM Journal of Computing, 10:542 – 557, 1981.

[SA96] M. Sharir and P.K. Agarwal. Davenport-Schinzel sequences and their geometric applications.
Cambridge University Press, New York, NY, USA, 1996.

[Woe03] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. Lecture Notes in Computer
Science, 2570/2003:185–207, 2003.

[WWP00] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for recognition. In ECCV,
LNCS 1842, pages 18–32. Springer Verlag, 2000.

Appendices

43

Appendix A

Finding line k-median for points on a
line

In this section we present an algorithm for (exactly) finding the optimal k-median solution for points
on a line. Our algorithm is used in Section 2.2, after the proof of Lemma 2.2.1. Our alorithm is based
on dynamic programming, and is first presented in an abstract manner, afterwhich we elaborate
on the application to points on a line.

A.1 General Algorithm

Let U be a set of input elements. Let V be a set of potential “center” elements. Let d be a distance
function d : U × V → R+.

For sets A = {a1, . . . , an} ⊂ U and M = {m1, . . . ,mk} ⊂ V let d(ai,M) = minj=1...k d(a,mj).
Let d(A,M) =

∑n
i=1 d(ai,M). Let B = {B1, . . . , Bk} be a partition of A such that Bj =

{ai|d(ai,M) = d(ai,mj)}. Finally, let φ(A, k) = min∥M∥=k d(A,M).

Theorem A.1.1. If we can order A in such a way that

1. For any set M , in the corresponding partition B = {B1, ..., Bk}, each set Bj takes the form
{ar, ar+1, . . . , as} for some r 6 s.

2. ∪jBj = A.

3. There exists an algorithm that finds φ({ar, ar+1, . . . , as}, 1) for any r 6 s.

Then, we can find φ(A, k) in time O(n2kh), where h is the running time of the algorithms for
finding φ({ar, . . . , as}, 1) in (3) above.

Proof. We will present an algorithm that computes φ(A, k) using dynamic programming. Let σ be
a two dimensional n×k array, each entry σ(i, j) of the array, describes the cost of φ({a1, . . . , ai}, j).
Our goal is to compute φ(A, k) = σ(n, k).

Each cell of the array is computed as follows:

σ(i, j) = min
r=1,...,i−1

(φ({ar+1, . . . , ai}, 1) + σ(r, j − 1)) (A.1)

We now show by induction that the above definition of σ(i, j) indeed equals φ({a1, . . . , ai}, j).

Lemma A.1.1. φ({a1, . . . , ai}, j) = minr=1,...,i−1(φ({ar+1, . . . , ai}, 1) + φ({a1, . . . , ar}, j − 1).

45

46 APPENDIX A. FINDING LINE K-MEDIAN FOR POINTS ON A LINE

Proof. Let M be a set realizing φ({a1, . . . , ai}, j). Namely, M = {m1, . . . ,mj}. Let Bj be the
partition defined by M . It holds by our assumptions that Bj = {ar+1, . . . , ai} for some r 6 i− 1.
Thus,

φ({a1, . . . , ai}, j) =
r∑

ℓ=1

d(aℓ,M\{mj})+φ({ar+1, . . . , ai}, 1) > φ({a1, . . . , ar}, j−1)+φ({ar+1, . . . , ai}, 1).

On the other hand, as φ({a1, . . . , ai}, j) = min∥M∥=k d(A,M) it holds that φ({a1, . . . , ai}, j) 6
φ({a1, . . . , ar}, j − 1) + φ({ar+1, . . . , ai}, 1). Therefore ∃r 6 i − 1 such that φ({a1, . . . , ai}, j) =
φ({a1, . . . , ar}, j − 1) + φ({ar+1, . . . , ai}, 1). Since r minimizes the value of the right side of the
equation φ({a1, . . . , ai}, j) = minr=1,...,i−1(φ({ar+1, . . . , ai}, 1) + φ({a1, . . . , ar}, j − 1)

The only thing left now to show is how to initialize the array. In order for our algorithm to
work we need to initialize all σ(i, 1) for 1 6 i 6 k. Since one of the requirements for A is that
we can compute each φ({aj , . . . , aj+i}, 1), we can also compute each φ({a1, . . . , ai}, 1) which is the
value of σ(i, 1).

If we also wants to find the partition B corresponding to the optimal solution , it can be done
by keeping an additional two dimensional n × k array, ψ(i, j), where each entry describes B for
{a1, . . . , ai} and a set of optimal centers M of size j, that are used to create φ({a1, . . . , ai}, j) =
min∥M∥=j d({a1, . . . , ai},M).

A.2 Algorithm for points on a line

Lemma A.2.1. Let P = {p1, . . . , pn} be a set of n points on a line l. Let Φ = {ϕ1, . . . , ϕk} be a
set of k points. For a point p ∈ P let φ(Φ, p) = minϕ∈ΦDist(p, ϕ) and let φ(Φ, P) =

∑
p∈P φ(Φ, p).

Let φ(P, k) = min∥Φ∥=k φ(Φ, P) be the minimum solution, then we can find φ(P, k) in O(n3k).

Proof. We can apply the previous algorithm in order to find φ(P, k) by setting A = P and M = Φ.
By Lemma 2.1.1 the optimal solution can contain only points from P , therefore we can set V = P .
We now prove that the set P can be ordered according to the constrains of Theorem A.1.1. Since
all the points in P are on the same line, we can order them on the line such that p1 is the left most
point and pn the right most point.

For each set of facilities Φ we can create partitions such that each partition contains points
{pr, pr+1, . . . , ps} ⊂ P for some r 6 s. For a partition {pr, pr+1, . . . , ps}, the optimal solution is
φ({pr, . . . , ps}, 1) =

∑
p∈{pr,...,ps}Dist(p, p⌊ s−r

2
⌋), which can be found in time O(n). By Theorem

A.1.1, we can find φ(P, k) in time O(n3k).

Appendix B

Properties of the circle

l1

p

p1

a

p5

c

p6

p3

p4

l2

pC

p2

Figure B.1: Proof of Lemma B.0.2.

Lemma B.0.2. Let C be a circle with center pC , let l1 and l2 be two lines passing trough pC and
let p be another point on C. Let p1 be the intersection point of l1 and C that is closer to p. Then
Dist(p, l1) +Dist(p1, l2) > Dist(p, l2).

Proof. We start with some notations. Let p2 be the closest point on l1 to p, let p3 be the closest
point on l2 to p and let p4 be the closest point on l2 to p1. See Figure B.2.

If Dist(p, l1) > Dist(p, l2) then we are done. Otherwise, let a = Dist(p1, p4) and b =
Disp(p, p3). Since both (p1, p4) and (p, p3) are perpendicular to l2 they are parallel to each other.
Thus we can pass a line from p1 parallel to l2 intersecting (p, p3) at point p5 and (p2, p) at point p6 (If
it does not intersects (p, p3) or (p2, p) then Dist(p1, l2) > Dist(p, l2)). Dist(p1, p4) = Dist(p5, p3).
If we look at the triangle p, p5, p6, Dist(p, p6) > Dist(p, p5) thus Dist(p, l1) + Dist(p1, l2) >
Dist(p, p6) +Dist(p1, p4) > Dist(p, p5) +Dist(p1, p4) = Dist(p, p5) +Dist(p5, p3) = Dist(p, l2).

Lemma B.0.3. Let C be a circle with radius 1 and center pC , let L = {l1, . . . , ln} be a set of lines
passing trough pC and let p1 and p2 be another two points on C. Let l̄1 be a line passing trough p1 and
pC and l̄2 be a line passing trough p2 and pC . Let β be the smallest angle between l̄1 and l̄2, assume
that p2 is to the right of p1 in clockwise order via β. For a line li ∈ L let αi be the angle between
li and l̄1 and γi be the angle between li and l̄2. Let L1 be the set of lines that lie between l̄1 and l̄2,
let L2 ⊂ L be the set of lines that lies between a line perpendicular to l̄1 and a line perpendicular
to l̄2, let L3 ⊂ L be all the lines between l̄1 and the line perpendicular to l̄2 and let L4 ⊂ L be all

47

48 APPENDIX B. PROPERTIES OF THE CIRCLE

β

p1

pC

p2

L1

l̄1

l̄2

L2

L3

L4

Figure B.2: Proof of Lemma B.0.3.

the lines between l̄2 and the line perpendicular to l̄1. Note that L = L1 ∪ L2 ∪ L3 ∪ L4. See Figure
B.2. For a point p, let lp be the line passing through p and pC . Let φ(L, p) =

∑
l∈LDist(l, p) and

let Z(p) =
∑

li∈L cosαi(p). Here αi(p) is the angle between lp and li. Let L(p) be the set of lines
that lie to the left of p in counterclockwise direction between the line lp and the line perpendicular
to lp. It holds that L(p1) = L2 ∪ L3, and L(p2) = L1 ∪ L3. Let φL(p)(p) =

∑
l∈L(p)Dist(l, p) and

let ZL(p)(p) =
∑

li∈L(p) cosαi(p).

If we know φ(L, p1), φL(p1)(p1), Z(p1), ZL(p1)(p1) and the set of lines L1 and L2 then we can
compute φ(L, p2), φL(p2)(p2), Z(p2) and ZL(p2)(p2) in time O(|L1|+ |L2|).

Proof. Since the radius of C is 1 it holds that φ(L, p1) =
∑

li∈LDist(li, p1) =
∑

li∈L sinαi.
We will start by computing φL(p2)(p2) and ZL(p2)(p2). By definition it holds that φL(p2)(p2) =∑

li∈L3
sin γi +

∑
li∈L1

sin γi and that ZL(p2)(p2) =
∑

li∈L3
cos γi +

∑
li∈L1

cos γi.

The sums
∑

li∈L1
sin γi and

∑
li∈L1

cos γi can be calculated in time O(|L1|). We will now present
a way to calculate

∑
li∈L3

sin γi and
∑

li∈L3
cos γi in time O(|L2|)

∑
li∈L3

sin γi =
∑
li∈L3

sin(αi + β)

=
∑
li∈L3

sinαi cosβ +
∑
li∈L3

cosαi sinβ

= cosβ
∑
li∈L3

sinαi + sinβ
∑
li∈L3

cosαi

49

∑
li∈L3

cos γi =
∑
li∈L3

cos(αi + β)

=
∑
li∈L3

cosαi cosβ −
∑
li∈L3

sinαi sinβ

= cosβ
∑
li∈L3

cosαi + sinβ
∑
li∈L3

sinαi

We now notice that
∑

li∈L3
sinαi = φL(p1)(p1)−

∑
li∈L2

sinαi and
∑

li∈L3
cosαi = ZL(p1)(p1)−∑

li∈L2
cosαi, thus we can compute both expression in time of O(|L2|). Therefor the total running

time of computing φL(p2)(p2) and ZL(p2)(p2) is O(|L1|+ |L2|).
We will now present a way to compute φ(p2) and Z(p2) is O(|L1|+ |L2|).

• For the lines of li ∈ L1, γi = β − αi.

• For the lines of li ∈ L2, γi = π − (β + αi).

• For the lines of li ∈ L3, γi = αi + β.

• For the lines of li ∈ L4, γi = αi − β.

Thus,

• For li ∈ L1, sin γi = − sinαi cosβ + cosαi sinβ

• For li ∈ L2, sin γi = sinαi cosβ + cosαi sinβ

• For li ∈ L3, sin γi = sinαi cosβ + cosαi sinβ

• For li ∈ L4, sin γi = sinαi cosβ − cosαi sinβ

Thus,

φ(L, p2) = cosβ ·
∑
li∈L

sinαi − 2 cosβ ·
∑
li∈L1

sinαi + sinβ ·
∑
li∈L

cosαi − 2 sinβ ·
∑
li∈L4

cosαi

= cosβ · φ(L, p1)− 2 cosβ ·
∑
li∈L1

sinαi + sinβ · Z(p1)− 2 sinβ ·
∑
li∈L4

cosαi

However,
∑

li∈L4
cosαi = Z(p1)− ZL(p1)(p1)−

∑
li∈L1

cosαi.

• For li ∈ L1, cos γi = cosαi cosβ + sinαi sinβ

• For li ∈ L2, cos γi = − cosαi cosβ + sinαi sinβ

• For li ∈ L3, cos γi = cosαi cosβ − sinαi sinβ

• For li ∈ L4, cos γi = cosαi cosβ + sinαi sinβ

Z(p2) = cosβ ·
∑
li∈L

cosαi − 2 cosβ ·
∑
li∈L2

cosαi + sinβ ·
∑
li∈L

sinαi − 2 sinβ ·
∑
li∈L3

sinαi

= cosβ · Z(p1)− 2 cosβ ·
∑
li∈L2

cosαi + sinβ · φ(L, p1)− 2 sinβ ·
∑
li∈L3

sinαi

50 APPENDIX B. PROPERTIES OF THE CIRCLE

As before,
∑

li∈L3
sinαi = φL(p1)(p1)−

∑
li∈L2

sinαi. Thus to complete the computations of Z(p2)
and φ(L, p2) the only expressions we need to compute are

∑
li∈L1

cosαi,
∑

li∈L1
sinαi,

∑
li∈L2

cosαi

and
∑

li∈L2
sinαi which require running time of O(|L1|+ |L2|).

List of Figures

2.1 The value of φ(L, f(x))′ changes at each intersection points σi by 2 sinαi. SinceDist(f(x), σi)
′ =

1 for f(x) > σi and Dist(f(x), σi)
′ = −1 for f(x) < σi, the difference between

φ(L, f(x))′ for f(x) > σi and for f(x) < σi is exactly 2 sinαi. 8
2.2 An example of lines from L and the corresponding intervals created on l (only a subset of the

facilities appear in the figure). In this example, if ϕk is between a2 and b1 then ϕk will be the

closest facility for both l1 and l2. 11

3.1 Example for E1 = v1 ∨ v2 ∨ v3, E2 = v̄1 ∨ v2 ∨ v4, E3 = v2 ∨ v3 ∨ v4. Each point Pi represent a

clause Ei. With each variable vi we associate a grid of points (in this case a 3×3 grid), such that

if vi ∈ Ej then there exist a line Lij passing through Pj and {pi1j . . . pimj}. Similarly if v̄i ∈ Ej

then there exist a corresponding line L̄ij passing through Pj and {pij1 . . . pijm}. The dashed lines

are lines that where constructed in the original reduction but are absence in our reductions. . 17

4.1 Example of definitions presented in Lemmas 4.1.1 and 4.1.2. 20
4.2 Example of lines in A as defined in Lemma 4.2.4 . 26
4.3 Example of partition of I(SL) to B1, . . . , B⌈lgn2⌉. 32
4.4 The distance from ϕ on Cup − ρ to the nearest and farthest line on B. 34
4.5 Proof of Lemma 4.2.8, case (i). 35
4.6 Proof of Lemma 4.2.8, case (ii). 36

B.1 Proof of Lemma B.0.2. 47
B.2 Proof of Lemma B.0.3. 48

51

 ענייניםהתוכן

 3 הקדמה .1

 3 רקע כללי .1.1

 4 של קווים הצברה .1.1

 5 עבודה זו .1.3

 7 עבור קווים k-medianעבור בעיית מדויקאלגוריתם .1

 7 עבור קוויםmedian-1 המציאת .1.1

1.1.1. 1-median ב עבור קוויםR
2 9

1.1. k-median (עבור קווים בזמן ריצהO(n
2k

 lg n 11

 11 אלגוריתם .1.1.1

 11 זמן ריצה .1.1.1

 15 חסמים תחתונים .3

 15 עבור קווים k-median הקושי של חישוב .3.1

 15 וויםעבור ק k-medianגבול תחתון של זמן הריצה של .3.1

4. k-median :עבור קוויםcoreset 19 חזק

4.1. coreset עבור k-median 19 עבור קווים

 19 תיאור כללי .4.1.1

4.1.1. bi-criteria רועב k-median 11

 ϵ 13 רשתות .4.1.3

4.1. coreset חזק עבור k-median 14 עבור קווים

4.1.1. k=1 :15 פתרון מדויק

4.1.1. k=1 יאת: מצ coreset חזק עבורC1-median 16

 CK-median 31חזק עבור coreset אלגוריתם עבור .4.1.3

4.1.4. coreset חזק עבורk-median עבור קווים ב- R
2 37

Rעבור קווים ב k-median ר(עבוϵ+1קירוב) .4.1.5
2- 38

 41 ביבליוגרפיה

.A מציאתk-median 45 עבור נקודות על ישר

 A.1. 45 ם כלליאלגורית

 A.2. 46 אלגוריתם עבור נקודות על ישר

B. 47 תכונות של מעגל

 51 רשימת תמונות

 תקציר

Rקבוצה של נקודות ב P = {p1,...,pnיהי }
dבעיית ה .k-median היא מציאתk)נקודות)מרכזים

 k-medianלמרכז הקרוב ביותר יהיה מינימלי. בעיית ה Pכך שסכום המרחקים מכל נקודה ב

בעשור האחרון, וכיום נחקרו רבות k-medianקשה. אלגוריתמי קירוב לבעיית ה NPהינה בעיה

את הפתרון האופטימלי תמקרבהקבוצת המרכזים בזמן לינארי אשר מחזיר הרץ ידוע אלגוריתם

 .קבוע ϵעבור (ϵ +1) של בפקטור

 .קבוצה של קווים L = {l1,...,lnקווים. יהי }על k-median בעבודה זו אנו לומדים את בעיית ה

נקודות)מרכזים(כך שסכום המרחקים מכל קו kעבור קווים, היא מציאת k-median בעיית ה

 למרכז הקרוב ביותר יהיה מינימלי. Lב

עבור קווים k-median בעבודה זו אנו מציגים הן אלגוריתם מדויק והן אלגוריתם קירוב לבעיית ה

R-ווים הינם בומתרכזים בעיקר במקרה בו הק
-k אנו מראים כי ניתן לפתור את בעיית ה .2

median עבור קווים בצורה יעילה עבור ערכים קבועים שלk אך היא ,NP-שלמה אם k הוא לא

R-עבור קווים ב k-median יתר על כן, אנו מראים כי פתרון בעיית הקבוע.
-מ מהירבזמן הרץ 2

poly(n)2
ϵk את בעיית משמעותו שניתן לפתורSAT 2בזמן ריצה של

ϵn מציאת אלגוריתם , ולכן

poly(n)2הרץ בזמן
ϵk לבעיית הk-median עבור קווים כאשרϵ .לעומת זאת הינו קטן, אינו סביר

R-עבור קווים ב median-1למציאתאנו מציגים אלגוריתם
O(n) בזמן ריצה 2

2
 lg nאלגוריתם , ו

R-עבור קווים ב k-medianלמציאת
O(nבזמן ריצה) 2

2k
 lg n .

באמצעות .עבור קווים k-median לאחר מכן, אנו פונים להציג אלגוריים קירוב לבעיית ה

 אנו מתכננים אלגוריתם קירוב בזמן ,coreset-מושג הו bi-criteria קירוב הרעיונות של

(
n(c/ϵ)

poly(k)
log(n)

poly(k אשר מחזיר קירוב לבעיית ה k-median עבור קווים במישור)כאןc הינו

 קבוע מספיק גדול(.

 האוניברסיטה הפתוחה

 המחלקה למתמטיקה ולמדעי המחשב

 של קווים הצברה

 עבודת תזה זו הוגשה כחלק מהדרישות לקבלת תואר

 . במדעי המחשבM.Sc"מוסמך למדעים"

 באוניברסיטה הפתוחה

 החטיבה למדעי המחשב

 ידי-על

 תומר פרץ

 לנגברג העבודה הוכנה בהדרכתו של ד"ר מיכאל

 1111 ינואר

