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“The cheapest, fastest and most reliable components of a computer system are those
that aren’t there.”

- Gordon Bell.
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Abstract

Evolutionary algorithms have employed the SAW (Stepwise Adaptation of Weights)
method in order to solve CSPs (Constraint Satisfaction Problems). This method origi-
nated in hill-climbing algorithms used to solve instances of 3-SAT by adapting a weight
for each clause. Originally, adaptation of weights for solving CSPs was done by assigning
a weight for each variable or each constraint. Here we investigate a SAW method which
assigns a weight for each conflict. Two simple evolutionary CSP solvers are presented.
For both we show that constraint based SAW and conflict based SAW perform equally on
easy CSP samples, but the conflict based SAW outperforms the constraint based SAW
when applied to hard CSPs. Moreover, the best of the two suggested algorithms in its
conflict based SAW version performs better than the best known evolutionary algorithm
for CSPs that uses weight adaptation. The results in this thesis were submitted to the
IEEE-CEC conference of 2009.



Chapter 1

Introduction

Weight adaptation originated in the context of 3-SAT solvers. In [19] Selman and Kautz
introduced weight adaptation as a way to enhance GSAT [20], which is a hill-climber with
restart algorithm for the 3-SAT problem. Each clause of the CNF has a weight associated
with it, and the algorithm tries to minimize the sum of the weights of unsatisfied clauses
rather than minimizing their number. Weights of unsatisfied clauses are increased before
each restart. This approach was later improved by Frank [11] by changing the weights at
every search step, namely whenever a variable value is flipped. When used for Genetic
algorithms (GAs), and evolutionary algorithms (EAs), adaptation of weights was termed
SAW (Stepwise Adaptation of Weights). The SAW technique was used to enhance EAs
solving a variety of constraint satisfaction problems [7, 10] including 3-SAT [9], and
general CSPs [4]. The weights were either weights per constraint, or per variable. The
search space was represented either by an array of values, one for each variable, or by a
permutation of the variables, decoded into an assignment to some of the variables by a
special decoder [10]. Weights were updated at equal intervals according to the constraints
violated by the best individual of the population, or according to its variables that could
not be assigned by the decoder.

In [4, 2] it was concluded that using a weight per variable vs. a weight per constraint
does not make a significant difference in the performance of SAW, countering the intu-
ition that keeping more weights and thus having more information, should enhance the
performance of SAW. Here we explore the possibility of a weight adaptation scheme for
CSPs that keeps a weight for each conflict. This means that instead of keeping a weight
for each variable or each constraint, we keep a weight for all possible “illegal” assign-
ments of values to two variables. We show that keeping weights that are sensitive not
only to violated variables but also to their values, significantly improves the performance
of SAWing EAs solving constraint satisfaction problems.

Conflict based SAW is suggested especially for CSP solvers because for other classes
of problems for which SAW was proposed we can expect only a slight difference with
previous suggestions, if at all. When weight adaptation is used for 3-SAT the algorithms
keep a weight for each clause of the CNF. Thus an adaptable weight exists for each set
of three variables and their values that render the CNF unsatisfied. This is equivalent to
keeping a weight for each conflict. This means that keeping a weight for each conflict is
a somewhat traditional approach to weight adaptation. The difference between a conflict
based SAW and proposed algorithms for graph 3-coloring does exist though quite small.
Although a weight per variable approach was advocated, a version with a weight per graph
edge was checked as well and found to be less suitable [10]. The parallel of a conflict
based SAW in this case means keeping a weight for any combination of a graph edge and
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the color the adjacent nodes connected by the edge have when a violation occurs. This
only multiplies the number of weights by three w.r.t. the version that keeps a weight per
edge, which is not expected to make a big difference. The situation is totally different
when it comes to SAWing algorithms for CSPs. The number of conflicts usually exceed
the number of constraints and variables by several orders of magnitude, depending on
the domain sizes of the variables and the particular CSP.

Two hypotheses will be examined. The first is that an improvement is achieved by
using conflict based SAW instead of constraint based SAW. This will be tested for easy
CSPs as well as for hard CSPs (and for a wide range of intermediate problems). The test is
done by introducing two simple EAs (both having population size 1, and straightforward
representation of search points) and applying conflict based SAW and constraint based
SAW to both. The second hypothesis is that given a weight for each conflict, a simple EA
outperforms rSAWEA, which is the best known SAWing EA for constraint satisfaction
problems. To test this hypothesis the published results of rSAWEA over a test-set is
compared to the results of the best of the two conflict based SAW variants over the same
test-set.

The robustness of the key parameter of SAW and its influence over the performance of
constraint based SAW and conflict based SAW are checked to determine if conflict based
SAW is robust, and to find out if a bad choice of the parameter might compromise the
comparison between the two approaches. This also provides an estimation for reasonable
values of this parameter, which we use for the above experiments.

The thesis is organized as follows : In chapter 2 we describe the basic concepts, such
as constrained satisfaction problems and their related concepts, genetic and evolutionary
algorithms, weight adaptation schemes, and performance measures. In chapter 3 we
describe the proposed algorithms, and the rSAWEA algorithm. In chapter 4 we describe
three test sets from three different models of random constraint satisfaction problems
that are used as input to the algorithms. The test plan, and all experiments are detailed
in chapter 5. In it we deal with parameter issues, explore the effectiveness of conflict
based SAW for CSPs of varying hardness, and compare the results of a conflict based
SAW algorithm with results of rSAWEA. The conclusions are presented in chapter 6.
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Chapter 2

Basic Concepts

2.1 Binary Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a finite set Z = {X1, ..., Xn} of n
variables with respective domains D1, ..., Dn, and a set of constraints C. For 2 ≤ k ≤ n a
constraint Ri1,i2,...,ik ∈ C is a subset of Di1×Di2× ...×Dik , where i1, i2, ..., ik are distinct.
Ri1,i2,...,ik is called a constraint of arity k that bounds the variables Xi1 , ..., Xik . There
are no two constraints that bound the same variables. Ri1,i2,...,ik is called restrictive when
Ri1,i2,...,ik 6= Di1 × Di2 × ... × Dik . Here we use the term constraint only for restrictive
constraints.

An n-tuple (d1, ..., dn) such that di ∈ Di satisfies Ri1,i2,...,ik if (di1 , ..., dik) ∈ Ri1,i2,...,ik ,
otherwise it violates Ri1,i2,...,ik . A solution of a CSP is an n-tuple (d1, ..., dn) which satisfies
all constraints.

A binary constraint satisfaction problem is a CSP for which all constraints are of arity
two. In this thesis we limit our attention to binary CSPs, known to be computationally
equivalent to general CSPs [18]. Moreover, we discuss only problems for which all vari-
ables have the same domain size. We use m to denote the domain size of all variables in
our CSPs.

      X=Y    X+Z<=3

           Y=Z

X::{1,2}

Y::{1,2} Z::{1,2}

Fig. 2.1: An example of a constraint graph.

The standard graphic way to describe a binary CSP is by using its constraint graph,
also known as its dual graph. In a constraint graph the nodes represent the variables
and their domains, while edges represent constraints. Each edge is a relation over two
variables. It is sometimes easy to represent this relation with a simple condition which is
written next to the edge, or by detailing all the allowed pairs of values (which is feasible
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when the domains of the variables are very small, or in case very few pairs of values are
allowed). Figure 2.1 shows the constraint graph of a simple binary CSP.

This representation makes it easy to understand why all instances of the graph 3-
coloring problem are binary CSPs. An instance of the graph 3-coloring problem is an
undirected graph, and a solution of the instance is obtained by assigning each node one
of three different colors so that no two nodes connected with an edge have the same color.
The graph 3-coloring problem is known to be NP complete.

Fig. 2.2: A graph 3-coloring instance and its solution.

The constraints graph of an instance of the graph 3-coloring problem is the undirected
graph of the instance. Each edge is an inequality relation between the values of its nodes.
Figure 2.2 shows a graph 3-coloring instance, and its solution.

A well known example of a binary CSP is the Queens Problem, which is sometimes
referred to as the Queens Puzzle. The problem asks for a way to place eight queens on a
chessboard so that no queen attacks another using standard chess rules. Explicitly this
means that no two queens share a row, a column or a diagonal (where a diagonal is any
sequence of adjacent squares that share the same color, not only the two main diagonals).
This problem is easily formulated as a binary CSP. The usual way to do this is to observe
that no two queens share the same row, thus in a solution each row contains exactly
one queen. Each row becomes a variable, and the value of each row is the position
of a queen within the row. The position of a queen is described with the numerical
value 1 for the leftmost column, which grows by one each time we move the queen one
column to the right. This is a representation with eight variables Z = {X1, ..., X8}, each
having the domain {1, 2, 3, 4, 5, 6, 7, 8}. Note that in this problem any two variables are
constrained. A simple way to describe the constraint between variables Xi and Xj is
Ri,j = {(di, dj)|di 6= dj ∧ |di − dj| 6= |i − j|}. It turns out that the queens problem has
solutions. Figure 2.3 shows all twelve solutions of the problem unique under reflection
and rotation symmetries. Otherwise there are 80 more solutions. The N-Queens Problem
is a generalization of the queens problem so that there are N queens and the board is an
N ×N board.
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Fig. 2.3: All solutions to the queens problem.

2.2 CSP Related Concepts

A conflict is an assignment of values to variables, which violates a constraint. We use the
term conflict only for assignments of values to two variables. A conflict check (CC) is a
basic operation performed by binary CSP solvers. Given two variables and their values,
a conflict check determines in constant time whether or not there is a conflict. This is
done, for example, by doing a simple computation (if possible, like in the case of the
N-Queens problem), keeping a matrix for each constraint, or simply by keeping a four
dimensional matrix for pairs of variables and their values.

Density, and tightness are two parameters that measure how constrained a given
instance of a CSP is. The density parameter, denoted by p1, is the ratio between the
number of constraints and the maximum number of possible constraints. Accordingly,
the number of constraints in a binary CSP is p1

(
n
2

)
.

The tightness of a single constraint Ri1,i2 is the ratio between the number of conflicts
that involve variables Xi1 , Xi2 and the number of possible assignments to those variables.
This value is expressed in formula (2.1). Note that since Ri1,i2 is the relation that describes
allowed assignments, conflicting pairs of values belong to the complement of Ri1,i2 .

1− |Ri1,i2 |
|Di1 ×Di2|

(2.1)

Since in our case the domain size of all variables is m, this can also be written as in
formula (2.2). The average tightness (or simply tightness) of a CSP, denoted by p2, is
the average tightness of all (restrictive) constraints.

1− |Ri1,i2|
m2

(2.2)

For example, the density of the above representation of the queens problem is 1,
because each pair of variables is constrained. This follows from the fact that for any two
rows, it is possible to place queens that attack each other in those rows (by putting both
on the same column for example). Each placement of a queen on a row conflicts with
at least one and up to three positions in other rows. This means that the tightness of
each constraint is between 1

8
and 3

8
, and thus the tightness of the problem is also within

that range. It turns out that the average tightness of the N-Queens problem is about 2.3
N

.
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This means that even though the density of all these problems is the highest possible,
the tightness diminishes as N increases, and the problems become less constrained.

2.3 Hard and Easy Constraint Satisfaction Problems

An algorithm that guarantees a solution if one exists, and able to identify a problem as
insoluble is called a complete algorithm. The time needed for complete algorithms such as
backtracking algorithms [17] to solve a CSP indicates how hard the CSP is. CSP solvers
are frequently tested with instances of random binary CSPs. It is possible to use the
density and tightness parameters in order to produce CSPs of varying hardness [22, 15].

Binary CSPs may be classified by using four parameters : n (the number of variables),
m (domain size of each variable), p1 (density), and p2 (tightness). Keeping n,m, and p1

constant, small values of p2 produce binary CSPs with many solutions, thus easily solved
ones. Large values of p2 create insoluble CSPs, and the higher p2 is makes it easier for
complete algorithms to recognize CSPs as insoluble. Given specific values of n,m, and p1,
there are values of p2 for which CSPs have very few solutions, or are insoluble in a way
that is hard to recognize. Around these parameter values of CSPs there is a sharp peak
in the time required by complete algorithms. This phenomenon is sometimes referred to
as the phase transition phenomenon. Note that unlike backtracking algorithms, EAs and
stochastic search algorithms in general are not able to recognize insoluble CSPs, and they
are therefore usually tested only with soluble CSPs.

Fig. 2.4: Phase transition for various density values.

As might be expected, the higher the density is, the lower tightness has to be in order
to reach the phase transition. Figure 2.4 shows the logarithm of the number of conflict
checks a complete algorithm needs in order to solve CSPs with density varying from 0.1 to
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1. The peak is reached at a tightness of about 0.8, and tightness of about 0.2 respectively.
The illustration in figure 2.4 was taken from the learning guide of a CSP course (number
22924) of the open university of Israel.

2.4 Genetic Algorithms and Evolutionary Algorithms

Genetic algorithms (GAs) [16, 13] are stochastic optimizers that aim to find optimal or
near optimal solutions quickly by simulating an evolutionary process. When designing
a genetic algorithm for a specific optimization problem, the search points have to be
encoded as “chromosomes” which are strings of “alleles”. This may be, for example, a
fixed length bit string, an array of numbers from a finite domain, or possibly an array of
real numbers. These chromosomes are sometimes also referred to as individuals. Usually
all possible search points are mapped to such a sequence so that each search point has
exactly one representation.

Since Genetic algorithms are optimizers they are meant to be used for optimization
problems. This means that the problem to be solved already defines an estimation of
search space points. Genetic algorithms use this property of optimization problems in
order to decide which chromosomes are better than others. Each chromosome is assigned
a value called a fitness value, which is derived from the value the problem assigns to the
search point it represents. It is allowed that some chromosomes would not represent a
search point, as long as they are assigned a low fitness value.

2.4.1 The Basic Framework of Genetic Algorithms

A set of individuals, usually one that has a fixed size, is called a population. A generation
is a population made of all the individuals the algorithm holds at the beginning of each
iteration. The basic framework shared by most genetic algorithms is to randomly choose
an initial generation, and use operators that simulate evolutionary behavior in order
to produce new generations from former ones. The genetic algorithm does a series of
iterations, each produces a new generation from a former one, halting when an optimal
solution is found, or when another halting criteria is met (when a specified number of
generations has been reached, when no improvement is seen for a specified time, etc.). A
general flowchart of a genetic algorithm is displayed in figure 2.5.

Fig. 2.5: A schematic depiction of a general genetic algorithm.
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The operators used in order to create new generations from older ones are usually
selection, recombination (or crossover) and mutation. There is a wide variety of these
operators, just as there is a wide variety of search point representations. Several strategies
for these operators are listed bellow.

The general tactics for creating a new population from a former one is usually as
follows. First the selection operator is used in order to choose individuals that have a high
fitness value. This move corresponds to the evolutionary idea of “survival of the fittest”,
and is the main engine for pushing the search forward. Recombination is then applied
iteratively, each time on several selected individuals to produce new individuals. The idea
of recombination is to “mix” the alleles of several selected chromosomes thus simulating
the evolutionary idea of sexual reproduction. Finally, a mutation operator is applied to
the resulting chromosomes by randomly changing the value of a small number of alleles.
This corresponds to the evolutionary idea of duplication errors within chromosomes. The
last two operators may degrade some of the chromosomes. They are used mainly to
increase the diversity of the populations, thus allowing new search paths, and an escape
from local optima. When the number of created individuals exceed the population size,
a “survivor selection” strategy is used to pick individuals for the new generation.

2.4.2 Examples of Genetic Operators

Selection can be done in several ways. It usually prefers individuals with a higher fitness,
while still allowing a selection of individuals with a low fitness. One way to do this is
to determine that the probability to choose an individual is the ratio of its fitness value
and the sum of the fitness values of all the individuals in the population. Another way
may be to sort the individuals according to their fitness value, and to apply a choice that
favors the ones at the top of the sorted list.

Some of the more frequent crossover operators are one point crossover and two point
crossover. A one point crossover, shown in figure 2.6 is performed over two selected
individuals called parents. Then it uniformly chooses a crossover point and replaces the
parents with two individuals called children (or offsprings), for which the alleles before
the crossover point are the ones of one parent, and the alleles from that point forward
are the alleles of the other parent.

000100 0100010001 111011 1000111101

Parent 1 Parent 2

Crossover Point

111011 0100010001 000100 1000111101

Offspring 1 Offspring 2

Fig. 2.6: One point crossover.
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A similar two point crossover is shown in figure 2.7. In this case two crossover points
are chosen and the internal segment between them is replaced in both parents by the
same segment of the other parent. Many other variants were suggested that include,
for example, crossovers that require more than two parents. Such a crossover is called
a multi-parent crossover. Since the parents are “lost” using this operation, it is usually
performed only at some predetermined probability called the crossover rate.

000100 0100010 001 111011 1000111 101

Parent 1 Parent 2

000100 1000111 001 111011 0100010 101

Offspring 1 Offspring 2

Fig. 2.7: Two point crossover.

Mutation operators also vary. Mutation is usually performed on a single individual,
and it may even consider alleles as the operand. A simple mutation for the bit string
representation may be a mutation that flips all alleles with a very small probability
called the mutation rate. This kind of mutation leaves some individuals unchanged while
allowing others to be changed in more than one allele. Another way to mutate individuals
is by swapping two different alleles of the same individual, as seen in figure 2.8. This
works well for non-binary representations as well as for binary representations, and also
for permutations.

0001000100010001

0001010100010000

Fig. 2.8: Mutating an individual by swapping alleles.

A (µ + λ) GA is a GA that keeps a population of size µ, and generates additional λ
individuals at each new generation. µ individuals of the µ+ λ individuals are selected to
become the population of the next generation. In a (µ, λ) GA a new generation of size µ
is selected only from the λ individuals generated.

9



2.4.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) is a more general term than genetic algorithms. Evolu-
tionary algorithms include, apart from Genetic algorithms, also Evolutionary Strategies,
Evolutionary Programming, and Genetic Programming. A discussion of the differences
between them can be found in [8].

(1 + 1) and (1, λ) EAs, that use no crossover, were traditionally used with SAW
[9, 10]. A (1 + 1) algorithm with a permutation of the variables as the representation,
and a mutation which swaps two uniformly chosen variables, was initially found to work
best for SAWing algorithms applied to the graph 3-coloring problem. However, using a
population of a single individual has an inherent lack of diversity which proved harmful
when SAW was used for CSPs. For CSP solvers, EAs with only one individual in the
population perform worse than EAs with a larger population, and tend to get stuck at
local optima [2].

We will use (1+λ) EAs as a basis for conflict based SAW. Comparing the results with
the ones of their constraint based SAW versions, will determine if the local optima problem
occurs for conflict based SAW. A comparison with rSAWEA (which avoids the local
optima problem by keeping a larger population), will show how much of an improvement
a simple conflict based SAW algorithm can provide.

All the algorithms we present and survey here are related to genetic algorithms, even
though some of them use a population of a single individual, and all of them do not use
crossover. However, since evolutionary algorithms is a broader notion, all of them fit the
notion of an EA.

2.5 Weight Adaptation Methods

Weight adaptation was found useful for improving stochastic search algorithms including
3-SAT solvers such as GSAT [19, 12, 11], and EAs designed to solve a variety of problems
[10, 7, 9]. Being a general method, weight adaptation can be customized for a specific
problem solver. The basic principle of weight adaptation is that instead of minimizing
the number of violated constraints (in CSPs), or the number of unsatisfied clauses (in
3-SAT), etc. we keep an adaptable weight for each constraint (or clause), and minimize
their sum. Since these weights are always kept positive, weight based objective functions
reach a minimum value of zero for, and only for, solutions. Increasing the weights of
“problematic” constraints or clauses helps the algorithm reject previously unsuccessful
search paths, hopefully escaping local optima. In time, the weight adaptation heuristic
is supposed to allow the algorithm to learn which constraints or clauses are harder to
satisfy, and rate points in the search space accordingly.

A more formal, yet still general, description of weight adaptation follows. A weight
adaptation heuristic WA(S, V, χ; ∆w, Tp) consists of a finite search space S, finite set V
of violation entities , and a function χ : S×V → {0, 1} such that for each s ∈ S and each
i ∈ V , χ(s, i) = 1 iff s violates i. Tp determines the intervals between weight adaptations.
Whenever weights are revised they are incremented by ∆w.

The algorithm keeps an adaptable weight wi for each i ∈ V . The objective function
to be minimized is f(s) =

∑
i∈V χ(s, i)wi. All weights are initialized to 1. After the

creation and evaluation of each new Tp search points, weights are adapted. This is done
by letting s′ be the latest produced search point, or in the case of an EA the best search
point in the latest population, and performing wi ← wi + χ(s′, i)∆w for all i ∈ V . This
simple framework covers most of the weight adaptation schemes.
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Experiments [10, 9] show that weight adaptation is a robust technique. Hardly any
difference is noticed when using different ∆w values, and the usual choice of it is ∆w = 1.
Tp shows robust behavior provided it has a large enough value, and the traditional value
Tp = 250 was used many times without special consideration.

When the above approach is used for 3-SAT [9, 11, 19], V is the set of clauses, S is
the set of all possible assignments of Boolean values to the variables, and an assignment
violates a clause if the clause is unsatisfied by the assignment.

For CSPs and graph coloring there are two common approaches. In the first approach
S represents all possible assignments to variables, and V is the set of constraints. The
other approach is to let S be the set of all the permutations of the variables, and let
V be the set of variables. A greedy decoder is used to assign values to the variables
in the order that the permutation dictates, by assigning the first value consistent with
previous assignments. Variables that cannot be assigned consistently with previous ones
are considered violated. Though it is less straightforward, the permutation approach is
widely used, because it produced better results than the first approach. The original
SAW algorithm for the graph 3-coloring problem used a permutation representation, and
rSAWEA (Stepwise-Adaptation-of-Weights EA with randomly initialized domain sets)
[3, 5, 6], which is the best known SAW algorithm for CSPs, uses it as well. This approach
was also found to be superior under extensive experimentation [2].

There are a few exceptions which are not covered by the above weight adaptation
paradigm, namely refinement, decay, and weight exponentiation, originally suggested for
3-SAT solvers[12, 11, 14], which will not be surveyed here. In brief, refinement means
adding a function to the objective function that allows differentiating search points that
would otherwise evaluate the same. Decay means lowering the value of weights over time
so new weight increments have a stronger impact than older ones. Refinement and decay
were found not helpful for CSPs when implemented both with variable based SAW and
with constraint based SAW [4]. Weight exponentiation led Frank to the idea that the
search should focus on variables of unsatisfied clauses, which he implemented as a weight
adaptation version of GSAT called UGSAT [11]. This is exceptional because different Tp
values are determined and used at runtime. The combined effect of refinement, decay
and optimizing variables of unsatisfied clauses with conflict based SAW is left for further
research.

One of the main concerns in this thesis is the impact of using weights per conflict
instead of the older applications of weight adaptation for CSPs which used a weight per
variable or per constraint. In order to demonstrate that by using a weight for each conflict
weight adaptation for CSPs becomes significantly more effective, we compare two weight
adaptation schemes. Both use all possible assignments to variables as the search space.
For the first, which we use as a constraint based SAW representative, we use the set of
constraints for the set of violation entities V . For the other, which we term CSAW, we
use the set of all conflicts for V . The schemes are tested using two simple EAs. By adding
“SAW” and “CSAW” at the end of the names of the proposed algorithms we declare the
application of constraint based SAW, and conflict based SAW respectively to each of the
algorithms. The choice of ∆w and Tp is also discussed, and the choice of Tp is tested in
our experiments.
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2.6 Performance Measures

The most important measure is SR (success rate) which measures the percentage of runs
at which a solution was found. Since evolutionary algorithms, and stochastic algorithms
in general, usually cannot provide a way to detect insoluble instances, they are usually
tested only with soluble ones. Accordingly, the test-sets we used here contain only soluble
CSPs. This ensures the possibility of reaching 100% success rates.

A secondary measure which is supposed to measure the runtime needed to find a solu-
tion is ACCS (Average Conflicts Checks to Solution). It averages the number of conflict
checks in successful runs. If there are no successful runs ACCS is not defined. The ACCS
measure is secondary to SR because the primary objective of a CSP solver is to solve as
many CSPs as possible, and/or solve them with a higher probability. Consequentially,
the ACCS measure is of little importance when success rates differ considerably.

It was customary to use AES (Average Evaluations to Solution), which measures the
number of evaluations of search points in successful runs. ACCS is now preferred, mainly
because AES is not able to measure some of the costs such as the time needed to run
the decoder in a permutation representation SAW algorithm, and the costs needed for
weight adaptation. Using conflict checks to measure performance is also the standard for
backtracking algorithms [17]. For the purpose of comparing constraint based SAW and
conflict based SAW algorithm variants, the merits of AES and ACCS are about the same.
ACCS is preferred here because it was used to measure recent relevant EAs, because it
is finer, and because for the algorithms suggested here it is runtime proportional.
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Chapter 3

Algorithms

3.1 The Proposed Algorithms

In order to compare conflict based SAW with constraint based SAW we use two algo-
rithms. The first is a (1 + 1) EA which at each iteration may or may not replace the
current search point with a randomly chosen search point that differs only by the value
of one variable. The other is a stochastic hill-climber, which at each iteration optimizes
one randomly chosen variable by checking all possible assignments to it (keeping other
variables fixed), and thus could be seen as a (1 + (m− 1)) EA.

The merits of using (1 + λ) EAs are that they are very simple algorithms. Moreover,
they resemble hill-climbing algorithms for which weight adaptation was originally used.
In [9] Eiben et. al. noted that GSAT can be interpreted as a (1, n) algorithm.

Though keeping a population of size 1 may seem problematic in the context of genetic
algorithms, it was argued upon the introduction of SAW [10] (as a weight adaptation
scheme for EAs), that a (1 + 1) algorithm may be viewed as a GA with an extreme value
for the population size parameter, and that either way it fits the broader notion of an
evolutionary algorithm. Regardless of how (1 + λ) algorithms are classified, they provide
a convenient basis for a comparison of conflict based SAW with constraint based SAW.

We turn to a detailed description of the algorithms. Both algorithms require the
following :

• A function that performs a conflict check in constant time, and increases the conflict
checks counter. The function receives two variables and their values and returns
true if there is a conflict and false otherwise.

• A list of pairs of variables bounded by constraints, one pair of variables per con-
straint.

• For each variable, a list of variables that share a constraint with the variable.

• A parameter for the maximum number of conflict checks the algorithm may use for
the search, called maxCC.

The (1+1) algorithm without weight adaptation simply chooses an initial assignment
to all variables, and at each iteration mutates the only individual by uniformly selecting
a variable and changing its value to a uniformly selected value different than its current
value. Selection is done by evaluating the current search point and the mutated search
point, and preferring the later if it evaluates at least as good as the former. The algorithm
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keeps running as long as no solution is found and the conflict checks counter is less than
maxCC.

The hill-climbing algorithm, which we term HC, works in a similar way. The only
difference is, that instead of checking only one value of the selected variable at each
iteration, the search points with all values of the variable are evaluated, and the best one
is selected. The search point with the current value of the variable is evaluated first, and
then the search points with other values of the variable are evaluated according to the
order of the values in a static domain (any domain order may be used without special
consideration). Whenever a search point which is at least as good as the best one thus far
is encountered, it is taken to be the best one yet. Since we always select one individual
from m individuals that include the parent population of size 1, this is a (1 + (m − 1))
EA.

When optimizing a variable in the HC algorithm, it is possible that one of its values
does not conflict with the values of other variables. Since no other value of the optimized
variable can produce better results, we avoid the evaluation of the rest of the values.

Each of the two algorithms has two weight adaptation variants. Adding a weight
adaptation scheme requires the parameters ∆w, Tp, and a table for the weights. Weight
adaptation variants that use a weight per constraint is called a SAW variant, and one
that uses a weight per conflict is called a CSAW variant. We use (1 + 1)SAW and
(1 + 1)CSAW to denote the (1 + 1) algorithms, and HCSAW, HCCSAW to denote the
hill-climbing algorithms. In a SAW type algorithm a weight is determined by the violated
variables, while in a CSAW type algorithm the values of the variables are also used in
order to read and update weights. Otherwise the SAW and CSAW variants of the same
algorithm are exactly the same.

In order to keep a weight for each conflict while achieving optimal access time, the
CSAW algorithms keep a four dimensional table with an entry for all possible assignments
to any two variables. The SAW algorithms need only a two dimensional matrix with an
entry for any pair of variables. However, CSPs and especially random CSPs usually
use a four dimensional matrix of Boolean values to perform efficient conflict checks, and
a CSAW algorithm can simply use such a matrix with two bytes per entry that keeps
integer weight values instead of a Booleans. Either way, the costs of holding and setting
up a four dimensional matrix are polynomial and remain virtually unnoticed even for
relatively large CSPs. If the direct access table becomes too large to fit in main memory,
a hash table of conflicts is a reasonable alternative.

Weight adaptation is done once each new Tp search points are created and evaluated.
It is performed using the current search point by going over the list of all constraints.
For each pair of variables bounded by a constraint, the relevant weight is increased by
∆w if there is a conflict involving the two variables. For simplicity we assume that the
HC algorithm creates exactly m − 1 search points at each iteration, and always use Tp
values divisible by m− 1.

The straightforward way to evaluate an individual would be to go over the list of all
the pairs of variables bounded by a constraint, and summing the weights for which the
current assignment to the pair of variables constitutes a conflict. This also provides a
way to determine weather the evaluated search point is a solution. A more efficient way
is to avoid a full evaluation, and use the fact that we only need to compare search points
that differ by the value of one variable. Going over the list of all constraints that bound
that particular variable and summing the weights relevant to it is sufficient because all
costs that do not involve it remain the same.
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In order to track the (total) number of violated constraints, thus keeping the ability
to detect solutions, we keep a variable called violations, which holds the number of
violated constraints for each current search point. We compute the total number of
constraint violations only once for the initial search point and store it in violations. At
every iteration, we advance from search point s1 to s2, by replacing the value of a single
variable X. Let CVs,X denote the number of constraint violations in s of constraints that
bound X. The values of CVs1,X , CVs2,X are computed while summing the weights relevant
to X in s1 and s2, by counting constraint violations that involve X (which is the same as
the number of added weights). The violations variable can now be updated to hold the
number of constraint violations of s2 by letting violations← violations−CVs1,X+CVs2,X .
Knowing the total number of constraint violations for all search points of the algorithm
may also be useful if one wants a version of the algorithm that outputs the best search
point the algorithm produced in case a solution was not found.

Violations(S)
v ← 0
for each (v1, v2) ∈ C do

if cc(v1, v2, S[v1], S[v2])
v + +

return v

Fig. 3.1: Violations routine : Full
estimation of violated constraints.

The HC algorithms can be improved by choos-
ing the variable to be “hill-climbed” from variables
different than the one in the previous iteration, be-
cause there is no merit in optimizing the same vari-
able in succession. Moreover, it appears that for
both HC and (1 + 1) the individual selected at each
iteration is needlessly re-evaluated at the beginning
of the following iteration. This can be avoided by
tracking weight sums for each variable, and keeping
lists of currently violated constraints per variable.
The result is about 50% less conflict checks for the
(1 + 1) algorithms and a slight improvement of the
HC algorithms. There are several ways to maintain the needed data, even ones that
keep CPU time strictly proportional to the conflict check count. Yet, since constants per
conflict check are originally very low the entire operation becomes insignificant or even
harmful in terms of CPU time. Since the SAW and CSAW versions of the algorithms
differ only in the application of weights, the above changes do not affect the comparison
of SAW with CSAW, and they are avoided.

LocalConflicts(S, v)
r.v ← 0
r.w ← 0
for each v′ ∈ Cv do

if cc(v, v′, S[v], S[v′]) then
r.v + +
r.w+ = weight(v, v′, S[v], S[v′])

return r

Fig. 3.2: LocalConflicts routine : Constraints
and weights relevant to a single variable.

The pseudocode of several routines
our algorithms use appear on the left.
But first, a few clarifications. We use
V ariable+ + to denote the increment
operation (V ariable ← V ariable +
1), and V ar1+ = V ar2 instead of
V ar1 ← V ar1 + V ar2. Search points
are represented by the letter S. S is
an array that contains the values of
all the variables. Accordingly S[v] de-
notes the value of variable v. As men-
tioned, the algorithms use a list of con-
strained pairs of variables. The list is
denoted by the letter C. The algo-
rithms also use a list of variables that share a constraint for each variable. Cv denotes
this list for variable v. The function cc performs conflict checks. It receives two variables
and their respective values, and returns true if and only if the assignment of these values
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to the variables constitutes a conflict. The function cc is also responsible for updating
the conflict checks variable CCcount. Every time cc is called it performs the operation
CCcount+ +.

Weights are accessed using the term weight(v1, v2, S[v1], S[v2]) where v1 and v2 are
two variables. In the SAW variants of the algorithms, the values of the variables are
ignored, and the weight is determined only using the variables. The weights are held
in a matrix supposed to be initialized to one for all pairs of constrained variables, and
zero otherwise. In the CSAW variants, all four values are used, and different weights are
accessed for different values of the same variables. In this case, a four dimensional matrix
is used, for which all entries denoting a conflict are initialized to one, and all other entries
are initialized to zero. Since in both cases entries supposed to be initialized to zero are
never accessed, they are allowed to hold garbage values.

HillClimb(S, v)
saved← S[who]
bestvalue← S[who]
best← LocalConflicts(S, v)
initial← best.v
for each k ∈ Dv while best.v 6= 0 do

if k 6= saved then
S[v]← k
current← LocalConflicts(S, v)
if current.w ≤ best.w then

best← current
bestvalue← k

S[v]← bestvalue
return initial − best.v

Fig. 3.3: HillClimb routine : Optimizing a sin-
gle variable. Used only by HC.

If no weight adaptation is used,
the only change is that the routine
ChangeWeights is never called, or
alternatively does nothing. In this
case, it is also possible to replace the
weight access in routine LocalCon-
flicts with the constant value 1, and
avoid using any weight matrices.

The algorithms use the constant
values ∆w, Tp and maxCC. The first
two are weight adaptation parameters,
and the third determines the number
of conflict checks allowed.

Let us now turn to the helper rou-
tines seen on the left. The first is
called Violations, which appears in
figure 3.1. It returns the number of vi-
olated constraints in the search point
S. This is done by going over the list
of all constraints.

Another auxiliary routine, called LocalConflicts is described in figure 3.2. It receives
a search point and a variable, and returns a record r that contains two values v and w
(denoted by r.v and r.w respectively). The first value is the number of constraints violated
by the value of v, and the other is the sum of the weights that involve variable v. Since
only costs relevant to v are counted, it is sufficient to check only the variables that share
a constraint with v.

ChangeWeights(S)
for each (v1, v2) ∈ C do

if cc(v1, v2, S[v1], S[v2]) then
weight(v1, v2, S[v1], S[v2])+ = ∆w

Fig. 3.4: ChangeWeights routine : Performing
weight adaptation.

The HillClimb routine which ap-
pears figure 3.3 is used only by HC and
its variants. It receives a search point
and a variable and optimizes the value
of the variable. This is done by com-
puting the costs for the current value
of the variable, and then going over
all the other values and updating the
bestvalue variable whenever the sum
of the weights is at least as good as
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what we have. The routine is slightly improved by halting the optimization when the
variable is fully optimized, i.e. when a value that violates no constrained is reached. Even
so, for the purposes of counting the number of evaluated individuals, the HillClimb rou-
tine is assumed to have evaluated exactly m − 1 individuals. The HillClimb routine
returns the difference between the number of constraints violated by the replaced value
and the number of constraints violated by the new value. This is the number by which
the total number of violations in S decreased as a consequence of the changed value of
the optimized variable.

(1 + 1)
CCcount← 0
Choose a random start point and store it in S
violations← Violations (S)
generation← 1
while violations 6= 0 ∧ CCcount < maxCC do

Randomly choose a variable and store it in v
Randomly choose a value val 6= S[v]
before← LocalConflicts(S, v)
saved← S[v]
S[v]← val
after ← LocalConflicts(S, v)
if after.w > before.w then

S[v]← saved
else

violations+ = after.v − before.v
if (generation mod Tp) = 0 then

ChangeWeights (S)
generation+ +

Fig. 3.5: (1 + 1) algorithm.

HC
CCcount← 0
Choose a random start point and store it in S
violations← Violations (S)
generation← 1
while violations 6= 0 ∧ CCcount < maxCC do

Randomly choose a variable and store it in v
violations− = HillClimb(S, v)
if ((generation ∗ (m− 1)) mod Tp) = 0 then

ChangeWeights (S)
generation+ +

Fig. 3.6: HC algorithm.
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Weight adaptation is performed using the ChangeWeights routine shown in figure
3.4. The routine receives a search point, goes over the list of constraints, and increases
the values of the relevant weight by ∆w whenever a constraint is violated.

Finally, there are the two algorithms (1+1) and HC in figures 3.5 and 3.6 respectively.
The code is fairly self explanatory. The variable m that appears in HC is the domain
size of the variables.

3.2 The rSAWEA Algorithm

In order to test the improvement a conflict based SAW method can provide, a comparison
of a CSAW variant with the best known SAWing EA for CSPs appears to be the most
relevant. In this section we provide a detailed description of the rSAWEA (Stepwise-
Adaptation-of-Weights EA with randomly initialized domain sets) algorithm which is
currently the best SAWing EA for CSPs.

rSAWEA was presented by the name SAWEA r2 as part of a comprehensive study of
EAs for CSPs [3]. It was later used for comparisons with better EAs for CSPs, namely
STLEA (Simple Tabu List Evolutionary Algorithm) and CTLEA (Conflict Tabu List
Evolutionary Algorithm) in [5] and [6] respectively, under the name rSAWEA. Even
though it is possible to show that one of the proposed CSAW variants is better than the
best EA for CSPs in general, and that it is competitive with complete algorithms, such
a comparison is beyond the issue of improving the SAW technique, and thus beyond the
scope of this thesis.

We begin by giving a detailed description of an algorithm named SAWEA. rSAWEA
is a variant of SAWEA, and differs only in the way variable domains are handled. The
top level pseudo-code of SAWEA is shown in figure 3.7.

SAWEA is an evolutionary algorithm for CSPs that keeps a population of ten indi-
viduals. The individuals are permutations of the variables of the CSP to be solved. For
now, we will concentrate on the evolutionary aspects of the algorithm, and return to the
way permutations are used later.

SAWEA(max evaluations)
evaluations← 0
P ← initialize
generation← 1
while ¬contains solution(P ) ∨ evaluations < max evaluations do

S ← select parents(P )
S ← mutate(S)
evaluations← evaluations+ evaluate(S)
P ← select survivors(P, S)
if generation mod 25 = 0 then

adapt weights(P )
generation+ +

Fig. 3.7: The SAWEA algorithm - the basis of rSAWEA.

SAWEA receives a parameter called max evaluations that determines the time the
algorithm is allowed to use in order to find a solution. The variable evaluations tracks
the number of evaluations of individuals.
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A general description of the flow of SAWEA is as follows : Before the main loop
starts, SAWEA sets evaluations to zero, and an initial population is randomly selected.
The algorithm is run until a solution is found, or until max evaluations is reached,
whichever comes first. The creation of a new generation from an older one is performed
by first selecting a parent population for mutation using the procedure select parents,
mutating the selected individuals using the procedure mutate, and using replace worst
survivor selection via the procedure select survivors. The function evaluate evaluates
all the individuals in the population it receives, and returns the number of evaluations
performed. There is no crossover operator.

Initial selection is done using the procedure select parents. It selects with repetitions
ten individuals using biased ranking selection with a 1.5 bias. Biased ranking was intro-
duced in [21]. Biased ranking selection is performed by sorting the population according
to fitness, and selecting at random individuals in a way that favors the top of the list.
Biased ranking uses a function that transforms pseudo-random numbers distributed uni-
formly within [0, 1) to a number in the same range with a higher probability for lower
numbers. The function is shown in equation 3.1. Using this function, and given a uni-
formly distributed pseudo-random number r in the range [0, 1), the index of the selected
individual is defined by bpopulation size · f(r)c.

f(x) =
bias−

√
bias2 − 4 · (bias− 1) · x
2 · (bias− 1)

(3.1)

The variable bias in equation 3.1 is the selection bias parameter. It may have values in
the range (1, 2]. It is easy to verify using basic calculus that when bias approaches 1, f(x)
approaches x. Thus when selection bias is close to 1, biased ranking is close to having
no selection pressure, i.e., letting all individuals have the same selection probability. It
is also fairly easy to verify that bias ≥ 0 implies f(0) = 0, and that f(1) = 1 whenever
bias ≤ 2. This means that when bias receives legitimate values, f is a transformation
from [0, 1) to itself. The higher bias is, the more f(x) is biased towards lower values,
which results in higher selection pressure. In [21] it is reported that a bias of 1.5 turned
out to be preferable. This value was used for SAWEA. The meaning of setting bias← 1.5
is that the top ranking individual is 1.5 times more likely to be selected than the median
individual.

The selected population is mutated using the mutate procedure. Every individual
in the population is mutated exactly once. A mutation is performed by swapping two
uniformly selected variables of the permutation.

After the new ten mutated individuals are evaluated, the function select survivors is
used on twenty individuals. Ten of them are the individuals of the current generation, and
the other ten are the ten selected and mutated individuals. Selection is done with replace
worst survivor selection, which means that individuals with lower fitness of the current
generation are replaced with better ones from the ten individuals created by selection
and mutation. The function returns a new population of ten individuals, which is the
next generation.

In order to use weight adaptation, SAWEA uses the parameter ∆w = 1, and it per-
forms weight adaptation once every 25 generations, which is derived from the traditional
Tp = 250 (since population size is 10). As usual when SAW is applied to EAs, weight
adaptation is done by the best individual of the relevant population.

SAWEA uses a count of the number of evaluations for the stop condition of the
algorithm, but a conflict checks measure for the runtime is measured and reported. In
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order to keep a fair accounting of the actual runtime, weight adaptation is counted as a
single evaluation, and the conflict checks needed in order to perform weight adaptation
are included in the ACCS measure. Most of the computational effort is done by the
decoder which interprets and evaluates the permutations. The details of the decoder and
the handling of variable domains in SAWEA and rSAWEA follow.

SAWEA uses the permutation representation. Each individual is a permutation of the
variables, and a decoder is used in order to assign values to the variables. Variables are
assigned according to their order in the permutation. Each variable receives the first value
consistent with previous assignments, and otherwise considered violated. The assignment
is evaluated by summing the weights of unassigned variables. Even though using a weight
per variable means using few weights this was not considered a problem since [10, 4, 2]
showed no advantage for a constraint based SAW over variable based SAW.

The original version of the decoder that was used for graph 3-coloring [10] always
assigns values in the order of a static domain. This worked well for a (1 + 1) algorithm
applied to the graph 3-coloring problem for which the values of the variables are symmet-
ric. The symmetry ensures that the decoder, though always assigning the first value to
the first variable in the permutation, does not exclude a solution. Another reason which
makes the decoder suitable for the graph 3-coloring problem is that there are only 3n pos-
sible assignments and n! permutations, which is an overrepresentation, yet does not seem
to hurt performance. In CSPs, however, the values are usually not symmetric, and when
the domain size is equal to the number of variables there are nn possible assignments.
SAWEA also uses a static domain for the variables.

In rSAWEA the decoder was enhanced by checking and testing several options for
a dynamic assignment of the values [3]. The best choice turned out to be randomizing
the order of domain values, and once every weight adaptation rotating domain values of
unassigned variables so the first becomes last and all others advance one step forward.
Assigning values with a dynamic domain ensures that all solutions are producible, yet
this means that the actual assignment of the same permutation depend on runtime cir-
cumstances. In fact, rotating domain values means that we are also adapting the order
of the values the decoder is using, and not only weights. Determining at runtime which
violation entities are relevant also means that rSAWEA does not conform with the weight
adaptation model that was presented in section 2.5.
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Chapter 4

Test-sets

Three test-sets of randomly generated CSPs from three different models are used to
measure performance. Their contents and objectives are detailed in this chapter.

4.1 Model F Problems

For a comparison of the proposed CSAW algorithms with rSAWEA we use a model
F [15] test-set of soluble phase transition CSPs with 10 variables of domain size 10. A
model F binary CSP is created by selecting uniformly, independently and with repetitions,
p1p2m

2
(
n
2

)
conflicts. Later, exactly p1

(
n
2

)
pairs of variables are chosen to be the only pairs

of constrained variables, and all other pairs become unconstrained again (by ignoring all
chosen conflicts concerning them).

The test-set consists of nine categories, denoted by F1, F2, ..., F9, each holding 25
problems. The categories have the following density-tightness combinations F1:(0.1,0.9),
F2:(0.2,0.9), F3:(0.3,0.8), F4:(0.4,0.7), F5:(0.5,0.7), F6:(0.6,0.6), F7:(0.7,0.5), F8:(0.8,0.5),
F9:(0.9,0.4). The test-set was created by Craenen [3], and is downloadable at :
http://www.emergentcomputing.org/csp/testset mushy.zip.

4.2 Model RB Problems

Another phase transition test-set is an RB model [22] test-set, that has five instances
of soluble phase transition binary CSPs. The CSPs are random binary CSPs with 30
variables of domain size 15. We use this test-set to check the influence of the Tp parameter
over larger problems, and as another source for phase transition CSPs. The test-set was
created for the annual SAT competition of 2007 and is downloadable at :
http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/frb30-15-cnf.tar.gz.

RB is a model that allows the creation of CSPs with constraints of arity k ≥ 2,
and uses two parameters, r and q. Since in our case we deal only with binary CSPs, we
describe the RB model only for the special case where k = 2. The parameter r determines
the number of constraints in the CSP instance, while p determines how restrictive the
constraints are. The generation of an RB binary CSP instance is done by first selecting
with repetitions rnlnn random constraints. The selection of a constraint is done by
selecting without repetitions two of n variables. For each chosen constraint we select
uniformly and without repetitions pm2 conflicts.

In order to create phase transition CSPs the values of r and p can each be determined
given the other, and given α which describes the relation between the number of the
variables and their domain size according to m = nα. The way to set them, including
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the theoretical justification, is provided in [22].
The choice of the parameters in the specific test-set was done in the following way :

all test-sets created for the annual SAT competition used α = 0.8 (Note that 15 roughly
equals 300.8). The choice of r was r = α

ln4−ln3
. According to theorem 2 in [22], in order to

get a phase transition CSP given r and α, one should set p = 1− e−αr which in our case
means letting p = 1

4
.

4.3 Model E Problems

The third test-set contains a model E [1] test-set created by Craenen, and used in [4, 2].
Model E employs only one parameter instead of a density-tightness combination to control
the number of conflicts in the generated random binary CSPs. Given a parameter 0 ≤ p ≤
1 a model E CSP is created by choosing uniformly, independently and with repetitions
p
(
n
2

)
m2 conflicts. Model E is in fact a special case of model F with p1 = 1.

The test-set contains ten categories, denoted by E1, E2, ..., E10. Each category con-
tains 25 instances of soluble CSPs with 15 variables, each having a domain of 15 values. p
ranges from 0.2 in the first category to 0.38 in the last, increasing by 0.02. In other words,
category 1 ≤ i ≤ 10 has problems for which p = 0.2 + 0.02 · (i− 1). This means that the
first category contains very easy CSPs, and that we approach the phase transition as we
get closer to the last category. Note that choosing from all possible conflicts means that
even for very small values of p it is almost certain that all pairs of variables become con-
strained [15], so we expect a density of 1 in all the problems of this test-set. The test-set is
downloadable at : http://www.xs4all.nl/ bcraenen/resources/csps modelE v15 d15.tar.gz.
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Chapter 5

Experiments

5.1 The Test Plan

The test plan is composed of three types of experiments. Tests are performed by running
the four proposed variants (a conflict based SAW and a constraint based SAW variant for
both (1 + 1) and HC) on test-set categories. Given an algorithm and a test-set category,
every instance within the category is run 50 times. The number of successful runs is used
for the computation of the SR measure, and the conflict check counts of the successful
runs are used for the ACCS measure.

We begin with tests of the algorithms with varying Tp values. These tests are shown
in section 5.2. We aim to find a good estimation for the Tp parameter, and to check
how the choice of specific Tp values affect the comparison of conflict based SAW with
constraints based SAW. The test is performed over a limited number of categories of all
test-sets. It is performed for the RB model test set, which has only one category, for
categories F2, F5, and F8 of the model F test-set, and categories E1, E4, E7, and E10 of
the model E test-set.

The second type of experiments check the impact of conflict based SAW vs. constraint
based SAW when applied to CSPs of varying hardness. Here we compare the results of the
four variants over the model E test-set. We also use different runtimes to investigate the
effect of both weight adaptation schemes as the time allowed increases. These experiments
are shown in section 5.3.

Finally, section 5.4 shows a comparison of the best of the two conflict based SAW
variants compared with its constraint based SAW version over the model F test set. This
provides a way to determine weather the local optima problem of the (1 + λ) EAs still
occur when a conflict based SAW is used. The same conflict based SAW algorithm is
also compared with rSAWEA over the same test set in order to find how much of an
improvement is gained when former versions of the SAW technique are compared with a
conflict based SAW algorithm.

5.2 Parameter Related Experiments

As mentioned in section 2.5, weight adaptation requires the parameters ∆w and Tp.
Experiments for different values of ∆w consistently shows very strong robustness, and
the usual choice of ∆w = 1 seems safe enough. We devote special attention to Tp for two
reasons. The first reason is that we want to make sure that using the same Tp value does
not bias the comparison, i.e, that the same algorithm does not have different performance
peaks for significantly different Tp values when constraint based SAW and conflict based
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SAW are applied to it. The other reason is that Tp is known not to work well for very
small values, and it is plausible that problems with a higher number of variables or with
larger domains would require longer periods between weight adaptations.

In order to use Tp values that take problem size into consideration we define C =
n(m − 1) as the cover value for a CSP. This value is the total number of search points
obtainable by changing the value of a single variable. For all test-sets, tests are conducted
for Tp values from 0.2C to 5.8C increasing by 0.4C. In other words, all tests are done 15
times, with Tp = βC where β = 0.2 + 0.4i, and 0 ≤ i ≤ 14. Note that HC is assumed
to create m − 1 search points at every iteration in order to perform the stochastic hill-
climbing. Thus the (1 + 1) algorithm performs a weight adaptation once every βn(m−1)
iterations while HC does this only once every βn iterations.
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Fig. 5.1: The influence of Tp over the RB model test set, for which n = 30 and m = 15.
The values of Tp are problem size dependent and range from 0.2n(m-1) to 5.8n(m-1).
maxCC is set to 30,000,000.

Results for the RB model and maxCC = 30, 000, 000 are shown in figure 5.1. It
appears that the traditional value Tp = 250 may be too low when conflict based SAW
is applied to problems of this size. The graphs indicate this because it appears that the
CSAW algorithms are sensitive to low values of Tp, and only when Tp reaches a value
of 588 the SR and ACCS measures begin to stabilize. This justifies a choice of Tp that
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takes problem size into account. Even though the CSAW algorithms perform worse than
the SAW algorithms in terms of ACCS, they perform significantly better in terms of SR,
which is the primary measure. When the success rate gap is as clear as in our case, the
ACCS measure is of no significance.
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Fig. 5.2: The influence of Tp over categories F2, F5 and F8, for which n = 10 and
m = 10. The values of Tp are problem size dependent and range from 0.2n(m-1) to
5.8n(m-1). maxCC is set to 1,000,000.

Figure 5.2 shows the results for all four suggested variants on three of the nine model
F categories, namely, categories F2, F5 and F8, with maxCC = 1, 000, 000. Note that
all model F categories are supposed to be close to the phase transition, yet category 2 is
experimentally known to be easy to solve, so the results for it do not necessarily indicate
results for hard CSPs. The graphs on the left show the success rates of the algorithms
on the three categories. The success rate results show that the two conflict based SAW
variants always have a 100% success rate, while the constraint based SAW variants get
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close but constantly fail to achieve total success. The ACCS results show that only
in category 2, (1 + 1)SAW becomes sensitive to a low Tp value. Otherwise the CSAW
variants are more sensitive to low Tp values. Once Tp = C is reached, all algorithms begin
to stabilize. However, the (1 + 1) variants suffer more from a substantial increase of Tp,
whereas the HC variants are not affected much even when Tp reaches 5.8C.
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Fig. 5.3: The influence of Tp over categories E1, E4, E7 and E10, for which n = 15
and m = 15. The values of Tp are problem size dependent and range from 0.2n(m-1) to
5.8n(m-1). maxCC is set to 1,000,000.

Figure 5.3 shows the results of running the four suggested algorithms with four model
E categories, and maxCC = 1, 000, 000. The categories are E1, E4, E7, and E10. Recall
that model E categories contain problems of varying hardness. E1 holds the easiest CSPs,
and E10 is at the phase transition. The success rate graphs for categories E1 and E4 are
omitted because for them all the algorithms have a 100% success rate for all Tp values.
The results show again that the conflict based SAW variants are more sensitive for lower
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values of Tp. Category E10 shows that HCCSAW might require a Tp value of 2C in
order to reach full effectiveness. Otherwise even lower Tp values are still applicable to all
algorithms.

In conclusion, lower Tp values hurt performance, and higher Tp values usually do not
hurt performance substantially, if at all. CSAW algorithms are more sensitive to the
parameter, especially when Tp is set to lower values. Except for low Tp values any choice
of the parameter seems to allow a fair comparison between constraint based SAW and
conflict based SAW. The value Tp = 1.4C, shown on the forth column from the left of all
the graphs, is chosen for our experiments. Though Tp = 1.4C is a reasonable choice, in
case of doubt higher values such as Tp = 2C and even higher may be used without fear of
significantly hurting performance, especially for the HC variants which appear to be more
stable. CSAW variants outperform SAW variants at all tests performed for model F and
model RB, which indicates that conflict based SAW consistently outperforms constraint
based SAW on phase transition CSPs. Finally, results for the RB model show that the
traditional value Tp = 250 may be too low as problem size increases. This justifies a
choice of Tp that takes problem size into account.

The HC algorithms perform about twice as fast as the parallel (1+1) algorithms over
all test-sets. Since HCCSAW is the best of the two CSAW algorithms, it is used for a
comparison of CSAW algorithms with rSAWEA.

5.3 Comparisons for CSPs of Varying Hardness

We turn to test the implications of using conflict based SAW for soluble CSPs of varying
hardness by using the model E test-set.

Tab. 5.1: Model E test-set results for maxCC = 1, 000, 000.
Category (1+1)SAW (1+1)CSAW HCSAW HCCSAW

SR ACCS SR ACCS SR ACCS SR ACCS
E1 1 10801 1 10702 1 4073 1 4002
E2 1 15382 1 15605 1 5785 1 5923
E3 1 23192 1 24142 1 8816 1 8840
E4 1 37195 1 37819 1 14157 1 13354
E5 1 66797 1 61639 1 24898 1 23784
E6 1 127283 1 120672 1 48065 1 45457
E7 0.96 241927 0.98 239314 0.99 115867 1 97525
E8 0.72 352572 0.80 370575 0.89 239675 0.96 246007
E9 0.33 419616 0.44 433448 0.52 345121 0.58 374262
E10 0.15 479161 0.21 486220 0.26 360991 0.28 441589

Table 5.1 shows the results for running the SAW and CSAW versions of the HC and
(1 + 1) algorithms. maxCC was set to 1 million conflict checks. Recall that problems
become increasingly hard as we move from the first category to the last. The first five
categories show little difference between SAW and CSAW variants of both algorithms.
However, as we get closer to the phase transition, conflict based SAW begins to outperform
the constraint based SAW in terms of SR, which is the primary measure.

When the algorithms receive more time the effect of conflict based SAW becomes
more apparent.
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Tab. 5.2: Model E test-set results for maxCC = 10, 000, 000.
Category (1+1)SAW (1+1)CSAW HCSAW HCCSAW

SR ACCS SR ACCS SR ACCS SR ACCS
E6 1 127283 1 120672 1 48065 1 45457
E7 1 297102 1 249181 1 118642 1 100289
E8 0.98 937903 1 605367 0.99 465234 1 292644
E9 0.72 2.09e+06 0.94 1.90e+06 0.72 2.09e+06 0.98 1.29e+06
E10 0.39 2.64e+06 0.75 3.20e+06 0.49 1.93e+06 0.90 2.74e+06

Table 5.2 shows results for the last five categories with maxCC = 10, 000, 000. Ap-
parently, there is a more dramatic difference in performance of the CSAW and SAW
algorithms in the last category which is at the phase transition. Other categories show
that the extra time helped conflict based SAW widen the performance gap, yet in a more
modest way.

5.4 A Comparison with rSAWEA

Table 5.3 shows the results of running HCSAW, HCCSAW and rSAWEA on the model F
test-set. The results for rSAWEA were originally published in [3], and taken from [5, 6].
The time allowed for HCSAW and HCCSAW to complete their runs was 1 million conflict
checks. rSAWEA was allowed 100, 000 evaluations of search points.

Tab. 5.3: Model F test-set results.
Category HCSAW HCCSAW rSAWEA

SR ACCS SR ACCS SR ACCS
F1 0.74 376 1 722 1 9665
F2 0.80 8317 1 3160 0.98 350789
F3 0.87 31421 1 7861 0.95 763903
F4 0.90 52897 1 15847 0.97 652045
F5 0.91 53486 1 18337 1 557026
F6 0.91 70938 1 24980 1 715122
F7 0.88 92896 1 49671 1 864249
F8 0.86 102332 1 47927 1 1012082
F9 0.96 70457 1 37387 1 408016

The results for HCSAW show that even though it performs well on most runs, there
are runs for which it fails even when the number of allowed conflict checks is over ten times
the average needed for the successful runs. This is consistent with previous knowledge
about the performance of EAs with population size 1 using variable or conflict based
SAW [2]. Luckily, the problem does not occur when HCCSAW is used, and performance
in terms of ACCS is further improved. A comparison of HCCSAW with rSAWEA shows
that HCCSAW is over ten times, and sometimes a hundred times faster than rSAWEA.
This is especially interesting when we remember that HC uses a population of size 1, and
a straightforward search points representation, that were found not to work best with the
usual weight adaptation schemes.
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Chapter 6

Conclusions

In this thesis we explored weight adaptation with weights for every conflict rather than
for every constraint or variable. We demonstrated that this significantly improves the
performance of EAs solving hard CSPs, while having virtually no effect on easy CSPs.
Moreover, a very simple EA employing conflict based SAW called HCCSAW turned out
to be over ten times faster than the best SAWing EA for CSPs. This means that weight
adaptation, when used correctly, is more powerful than previously perceived. HCCSAW
proves superior even though it does not use the permutation representation, considered
most suitable for SAWing algorithms solving CSPs and graph 3-coloring. It is also easy to
program, and requires only robust parameters. The results in this thesis were submitted
to the IEEE-CEC conference of 2009.

Conflict based SAW uses many more weights than constraint based SAW. Accordingly,
more space is needed for them. The additional overhead in space and time needed for
the most efficient runtime implementation of the weights is fairly insignificant even for
relatively large CSPs. It consists of holding and initializing a matrix with an entry for all
possible assignments to two variables. Otherwise there are no additional runtime costs.
Therefore it is safe to say that using a conflict based SAW algorithm instead of a parallel
SAW algorithm is never noticeably harmful, and with hard CSPs very beneficial.

The results obtained here are in contrast to the conception that adding more informa-
tion, by adding more weights, does not improve the performance of SAWing CSP solvers.
Although this is true when using a weight per constraint instead of a weight per variable,
keeping a weight for each conflict does improve SAW. Consequentially, some of the results
known to hold for variable and constraint based SAW algorithms solving CSPs should be
rechecked using conflict based SAW. Among these are that EAs with a population larger
than 1 are preferable, that refinement and decay are not effective, and that the order-
based representation with a decoder is better than an integer representation of variable
values.

Further research may include a comparison of HCCSAW with better EAs for CSPs
in order to determine if conflict based SAW provides a superior EA for CSPs. Since
the conflict based SAW algorithms presented here are simple, better conflict based SAW
algorithms for CSPs may be sought. The contribution of randomness is unclear so a non
EA approach might prove useful. Local search algorithms that use weight adaptation
should be compared with efficient non local search algorithms for CSPs. Since weight
adaptation was found here to be more powerful than usually perceived, some form of a
weight adaptation heuristic might also prove useful for non local search algorithms.
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