The Open University of Israel

Department of Mathematics and Computer Science

DRAS
Derived Requirements Generation

by Actions and States

Thesis submitted on February, 2009
as partial fulfilment of the requirements towasis
M.Sc. degree in Computer Science
The Open University of Israel
Computer Science Division

By
David Bar-On

Prepared under the supervision of Dr. Shmuel Tysxtiez

DRAS - Derived Requirements Generation by Actiomd States Page 1

1
2

3

4

6

Table of Contents

1] o [8 o 1 o] o HR PP PP PPPTPR PP 7
Requirements Engineering and AORE OVEIVIEW e vvvvvvvvrveveevevevevenenenenenenenes 12
2.1 Requirements ENQINEEIING........ccooeeiiiiiiieee e, 12
2.2 Requirements Specifications SUD-ACHVILIES e eveeeeeeiiiieeiieeeeeeeeeeeeeeeee, 13
2.3 Textual Requirements SPeCifiCationccceeeerriveerveiiiiiiiiniiiiiieniienineennnn. 14
2.4 Crosscutting Requirements and Derived ReqUINSNE.cccccvvvvvveeeenne. 14
2.5 Early Aspects and AOREoooooi i 16
Problem and Solution OVEIVIEWuoeeeeeiiiiiieeee et 18
3.1 ThE Problem. .. ettt e 18
3.2 CrOSSCULIING FRS ...ttt ettt beeebebeebbese bbbt emmnmeeeeee e 18
3.3 The DRAS Methodology - an OVEervieW ... 22
3.31 IMplied ACHIONS.....coo e, 22
3.3.2 Entities and ACHONS ..o 24
3.3.3 Crosscutting and MOES....... .. e 25
3.34 ACHION MOIFIEIS ..o e 26
3.35 Requirements PrioritieS...........ouii e 27
3.3.6 Contribution and Composition RUIES.... . eeeieeiiiiiiiiiiiiiiiiiiiiiiiiiieieees 29
3.4 Putting all together — the DRAS Outline ... 03
The TETRA MS EXAMPIE....ooeiiiiiiiiiiiiiiitcceeceeieiieeieeiieieeteseeeteeeeeeeeseeeeeeevneeneees 32
4.1 TETRA OVEIVIEW.....coiiiiiiiiiiiiiiieiietieeeeeteeteeteetestesaseasesessssssssnessessssssnnenneees 32
4.2 TETRA MS Features and FUNCHONAIILYcouumeeeeeemeniiiiiiiiiiiiiiens 33
4.3 Simplified Requirements Seti i 35
4.4 Baseline Requirements (Stakeholders’ Requiréshen...........ccccccevvvvveeennen. 37
44.1 Baseline Requirements - Attributes and Facts..............cccoooee. 38
4.4.2 Baseline Requirements — System Related................couevvvviiiviriiinnnnnn. 39
4.4.3 Baseline Requirements — Group Call....oeeeeeiieiieiiiinii. 39
4.5 Crosscutting (Aspectual) REqQUIrEMENTS ...uumesvvvevnvrnnnnnennnnnennnnnnnennennennens 40
4.5.1 Aspectual Requirements - Emergency Mode..............uvvvvvivivivinnninnnns 40
4.5.2 Aspectual Requirements — TXI MOdeccceeeeeieiiiiiiiiiiie, 40
4.5.3 Aspectual Requirements — System Related....ccc.....ovvvvvviiviiiiiniiininnnn. 40
4.6 Derived Requirements from Baseline and Aspé&agquirements................ 41
4.6.1 Out-of-Coverage related Derived Requirements..............cccceevvevenenn. 41
4.6.2 Registration related Derived ReqUIremMentS.cuvvvveveeveeevevenenennnn. 42
REIAIEA WOTK ...t mmmme et e e e e 43
5.1 VIBWPOINTS ..ottt 43
5.2 Goal Oriented Requirements ANAIYSIScccceeririrriiriiriiiiiiiieirininininnnnnn. 44
5.3 Modularization and Composition of Aspectual Begments............c.ccc.c...... 44
5.4 Composition Process for Aspect Oriented Remqmergs (AOR) 45
5.5 Adaptation of the NFR Framework t0 AOREoovvviiiiiiiiiiiiiiiiiniiinenenns 45
5.6 Crosscutting Quality AtribDULES ..o 46
5.7 Theme and Theme/Doc - Finding Aspects in Requants............................ 46
5.8 MINING ASPECLS ...ttt ettt e e e e ee e a7
5.9 Other Methods mnnme e e 48
Deeper Evaluation of Some AORE Methods ... 49

DRAS - Derived Requirements Generation by Actiomd States Page 2

6.1 Modularization and Composition of Aspectual Begments (MCAR) 49
6.1.1 OVEIVIBW ...ttt ettt ettt e e e et ettt e e e e e e e nnbnn e e e e e nnnes 49
6.1.2 Input Requirements Analysis using MCAR e eeeeeeeeeiiiiiiiiieieeeeenn. 52

6.1.2.1 Identify and Specify Stakeholders’ RequeaiB................ccceeeeeeeennn. 52
6.1.2.2 Identify and Specify CONCEIMNS.......coummeeennenniiiiiiaineneaaneasaeeeaeaeeenens 52
6.1.2.3 Identify the Coarse-grained Concern/Viewp&elationship............. 52
6.1.2.4 Identify Candidate ASPECLS..........ommmmmmeeeeeeeieiiiiiiieieieieeeeeeeeeeereaeenns 4.5
6.1.2.5 Handle Conflicts between Candidate ASPECtS............evvvvverrrvvennnns 54
6.1.2.6 Compose the Aspects and RequirementS ee...ccoooeevieiiiiiiinenennnn. 55
6.1.3 Applicability of MCAR for creating Derived Beirements.................... 55

6.2 Composition Process for Aspect Oriented Remqergs (AOR) 55
6.2.1 OVBIVIBW ...ttt s+ttt st e e s e st s s eetesstsensbnmnnneeeees 55
6.2.2 Composition Process for AOR Main AcCtivitieS..........ccevvvvviiiiiineeeen. 56

6.2.2.1 1dentify CONCEINS.... ... 56
6.2.2.2 Specify Concerns and Identify Candidateefp...............uevuennnnnnnns 57
6.2.2.3 Compose Candidate-Aspects with Concerns...............cccoeeeeeeeeen. 57
6.2.3 Input Requirements Analysis using ComposiRoocess for AOR......... 58
6.2.3.1 1dentify CONCEINS..... .. 59
6.2.3.2 Specify Concerns and Identify Candidateefp................uevuennnnnnns 59
6.2.3.3 Compose Candidate-Aspects with Concerns...............ccccoeeeeeeeeen. 61
6.2.3.3.1 Identify how each candidate aspect afféwet concerns it cuts..... 61
6.2.3.3.2 Identify MatCh-Pointscooi e 62
6.2.3.3.3 Identify Conflicts between candidate aspe.............ccceeeeeeeeennnn. 63
6.2.3.3.4 Identify the Dominant Aspect based ondiity”......................... 63
6.2.3.3.5 Identify Composition RUIES ..., 63
6.2.4 Applicability of Composition Process for AQd&create the Derived
[YETo [T =T 0 41T | €PN 66

6.3 Theme and Theme/Doc - Finding Aspects in Requants............................ 66
6.3.1 OVEIVIBW ...ttt ettt e ettt e e e e e et et e e e e e e e e nnnnnn e e e e e nnnns 66
6.3.2 Theme/Doc Approach Major STEPSvueeeeeeerieeiiiiiiieieieieeeieeee e 67
6.3.3 Input Requirements Analysis using Theme dmehie/Doc 69

6.3.3.1 Identifying Actions and ENtitiesccceeiiiiiiiiiiiiiiiiciee e, 69
6.3.3.1.1 Identifying Actions and Entities per regment..............c.ccceevee... 69
6.3.3.1.2 Actions Identified............cccouremreeiiieiii e 71
6.3.3.1.3 Entities Identified................oceeemiiiiiiiie e 72

6.3.3.2 Create ACLIONS VIBWScoiuiiiieeeeeeiiiiiieee et e e aes 73
6.3.3.2.1 Actions View (Theme/Doc) — Actions by Begments................ 73

6.3.4 Applicability of Theme/Doc for creating a D&xd Requirement 75
7 The DRAS MethOdOIOgYuuuuuiumriiiiiismmmmmm e eseeeseeeeeseeee s s e es e e e e eaae e e e e e eeeeeennns 76

7.1 Gathering the Stakeholders’ Requirements..........cccceeeeevieieeieeee e, 76

7.2 Identifying Actions, Entities and Attributes...........ccoceeeeee 6.7
7.2.1 General Lists for all SYSteMScoeieeiiiiiiiiiiiiiiiiiiiiieieeeieeaees 77
7.2.2 General Lists with Specific System Contents...........ccvvevvveiiiiinennnn. 77

7.3 Identifying Correlations between Actions andii@sccceeveeeeeeeennns 81
7.3.1 Entities used DY ACHONuuuiiiceeeeeei e 81

7.3.2 Actions Directly Implied (used) by ACHONce...coooiiiiiiiiiiiiiee 82

DRAS - Derived Requirements Generation by Actiomd States Page 3

8
9

7.3.3 PaXox (0] g ISR UEST=To [o) Y2 £ [ISR 83
7.4 Identifying Actions and Entities used by thpuhRequirements and their
PIIOTITIES ...ttt e e e 84

7.4.1 Split Requirements Text per Action/Entity (al).................ccceeeeee. 86

7.4.2 Attributes (Modes and States) of RequiremBatssc.ccccevvveveeeene. 86

7.4.3 ReqUIrements PriOritieS.............uw e eeeeeeee e eeeeaeen 38
7.5 Identifying Actions used by the RequirementS.........cccooeeveeieeiiiie e, 88
7.6 Identifying Requirements-Actions AttribDUtES . ..coooeeeeeieieeeieeeeeeeeeeeeeee, 93
7.7 Identifying Match-Points between the Requiret®en............cccceeeeeveieieeenen. 94

7.7.1 List of Match-Point Candidates between Rego@nts..............ccccvveeee. 96

7.7.2 Remove Redundant ENIES.............ceeccceeeiniiiiiiiiieeee e 9.9

7.7.3 Remove Impossible or same Mode/State MatahtQ........................ 99

7.7.4 The Final Match-Point Candidatescccceiiiiiiiiiie 100
7.8 Evaluating Match-POINtS...........oooiiiiiiiiiiiiiii e 102
7.9 Generating the Derived ReqUIrements. ... oo iiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 106

Summary and CONCIUSIONS ... 110

U LN YAV 0] o P 112

| L =) (<1 (=] (o= TR 116

DRAS - Derived Requirements Generation by Actiomd States Page 4

List of Figures

Figure-1
Figure-2

The MS platform and buttons used by thogkW...............eeueeieiniiiiiniiiiinnn. 36
Action View for a Subset of RequireMentS...........ccccevviiiiiiiiinceee e, 74

List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24

Correlation between Base and Crosscut REQENTScvvvvvevivinnnnnns 53
Correlation between the Crosscut Requirésnen..........ccceeeeeeeeeeeeeeeeeenn, 54
Requirements ArDULESi e, 60
Requirements Attributes and Prioritizationcccccccveviiiiiiiiininnnn 62
Derived REQUIFEMENTSveiiiiiiiiceeeeee et 64
ACHIONS LIST. ..ttt e e 79
Modes and States LiStoooi oo 80
Modes and States ValUeSuueeeiiaiieee e, 80
Contradicting Pairs of Mode/State Values................ueeiiiiiiiiiniiiiiiinininnns 81
Entities used DY ACHONS.........o e 82
Actions Implied By ACHION........ooi i 83
Actions used by ACtiON SUMMANY ... 84
Input Requirements Split - use of Actiand Entities.............ccccccvnevnnennnne 85
Requirements Attributes of Actions andtESt.................eeveeeiiiiiiiniiinnnnns 86
Entities used by ReqUIremMENtS.. ... e 88
ACHIONS PEI ENLILY ..eeiiiiiiiiii it e 89
Actions Directly used by the Requireméaterpt)ccccevvvvememennnennnns 90
Actions Used By Requirements (EXCEIPL)ummm . vvverrrrrrrrrrrrrererenerenennnnnnnnnns 92
Requirement-Actions Attributes (EXCErpP)u ..o 4.9
Candidate MatCh-POINtS..........ccooeiieariiiiiie e 98
Removed Redundant Candidate Match-Paints...............cccooocvvvvveeeeenn. 99
Removed Impossible Match-Point................evviiviiiiiiiiiiiiiiiii. 0oaL
Requirements MatCh-PoiNtS..........coueeeeiiiiiiiiiii e, 101

MatCh-PoiNtS EVAlUATIONiee e ettt eeemaeees 103

DRAS - Derived Requirements Generation by Actiomd States Page 5

Abbreviations

AOP Aspect Oriented Programming

AORE Aspect Oriented Requirements Engineering

AOSD Aspect Oriented Software Design

DR Derived Requirement

DRAS Derived Requirements generation by Actions anteSta
(the method defined in this work)

EA Early Aspects

FR Functional Requirements

GORA Goal Oriented Requirements Analysis

MS Mobile System (GSM/TETRA term for e.g. Cellulardple)

NFR Non-Functional requirements

PTT Push-to-Talk

QA Quality Attribute

RE Requirements Engineering

Rx Receive

SoC Separation of Concerns

TETRA Trans European Trunked Radio

Tx Transmit

TXI Transmit (Tx) Inhibit

DRAS - Derived Requirements Generation by Actiomd States Page 6

Abstract

When specifying system requirements, many intendeégecies may exist between the
requirements. Requirements may conflict with ometlaer and they may impact
(change, enhance, enhance or override) other ergaits as well. In order to avoid the
cost and schedule overheads, these interactionsaafiicts should be resolved as early
as possible in the development process. One mévh@dolve such interactions and
conflicts is to define Derived Requirements (DRspresenting new or modified
requirements that are inferred from other requirgse

An important category of requirements are the Honat Requirements (FRS),
representing requirements that change or overniedunction of other requirements they
crosscut. This work presents the DRAS (DerivedURegqents generation by Actions
and States) methodology that helps both to ideRiRg that crosscut other FRs and to
generate the DRs. To identify crosscutting regnésts, the methodology matches the
actions used by the requirements and the systenesratt states related to these
requirements. DRAS is based on the observatidnithan the same action is used by
two requirements, in a similar state of the systiémgicates that one of the requirements
may crosscut the other.

In addition to considering the actions used diyelsl the requirements, DRAS also takes
into account the actions implied (activated assalteof) activating these actions, or the
actions that imply the use of the actions direadgd by the requirements. Whether the
implied or implying actions are considered, depemasvhether the requirements restrict
the use of an action or eases restrictions farsés

The DRAS input and output are textual specificagiand the output is generated during
the requirements specification phase of the so#wiavelopment lifecycle. This enables

all stakeholders, with or without a technical backmd, to participate in the process.

DRAS - Derived Requirements Generation by Actiomd States Page 7

1 Introduction

System and product requirements often contain cuttesg requirements, i.e.,
requirements which interact with each other. bt&ng requirements may conflict with
one another and they may impact other requirenantgell. Crosscutting between
requirements usually mean that either existingirequents must be enhanced (changed),
or new requirements must be written. Crosscuttggirements influence the selection
and definition of system requirements and evengdialit the various architectural
choices. It is very important to be able to idgntifosscutting requirements as soon as
possible in the software development process ahdndle them properly. While
identifying and handling crosscutting requiremehtsth functional-requirements (FRS)
and non-functional requirements (NFRs) should besicered. A rigorous analysis and
understanding of crosscutting requirements and thigractions are essential to derive a
balanced architecture. Ignoring interactions betwgresscutting requirements results in
an incomplete understanding of specified requirdsmand, consequently, poorly
informed architectural choices.

A common resolution to the conflicts or interacaf crosscutting requirements is
Derived Requirements (DRs). These are requirentkatsare inferred, or derived, from
other user requirements. They are the outcomesaifiving interactions and conflicts
between requirements. DRs may be either new regeints or changes (enhancements)
to existing requirements. Note that in the contéhthis work, derived requirements are
the result of two or more crosscutting requirememi$ expanding and detailing a
requirement.

It is very difficult to identify crosscutting regq@iments in large systems; consequently,
methods and tools that can identify crosscuttimgirements and define the outcome
DRs are needed. If the crosscutting requiremawetsat identified early enough, for
example during requirements analysis, the resulta@r overhead work during later
development phases. This overhead is the effquimed to change the system to adhere
to the conclusions resulting from the interactibesveen the requirements. Sometimes

system redesign may be needed.

DRAS - Derived Requirements Generation by Actiomd States Page 8

This work presents a methodology to generate tékiRa from stakeholders’ textual
requirements. The methodology is call@AS - Derived Requirements generation by
Actions and States

The DRAS method enables the generation of texteigaveld requirements from
stakeholders’ requirements. It mainly handles sigagpes of crosscutting
requirements, namely crosscutting Functional Reguants (FRs), which may crosscut
other FRs. The consequence is that they may changance, or override other
requirements they crosscut. For example, a rempainéto “not open a window when the
outside temperature is below 10 degrees” may cubs$ise requirement to “open the
window in the morning”. The former requirementtegively crosscuts all requirements
related to the action “opening a window”, when tlmperature decreases below 10
degrees. The outcome of the analysis (for thexadtion) should include a decision
whether or not to open the window in the morningewthe temperature is below 10

degrees.

A common term used to identify crosscutting betwestities and the way they are
handled is thé\spect Sousa et-al define an aspect as “an abstrattaarencapsulates
the specification of a crosscutting concern, anér<he match-points and the
composition rules for the crosscutting concerndafined [Sousa 03a]. That is, an
Aspect is an abstraction of crosscutting requirdsérat identifies the crossing points

(the match-points) and defines what to do at tipesets (the composition rules).

Some of DRAS includes ideas that have been addmtedexisting methods, especially
from [Baniassad 04b, Rashid 03, Brito 03]. DRA®auactions as the primary means for
identifying match-points between FRs, i.e., idemti§) crosscutting FRs and the
requirements they crosscut. This is similar to [Basad 04b]. Actions are the functions
specified by the FRs. In the example above, “opeow” is the action used by both
requirements. Note that using the same actiorolly kequirements indicates that one of

them may crosscut the other.

DRAS - Derived Requirements Generation by Actiomd States Page 9

DRAS takes into account the actions directly usgd bequirement, and the actions they
imply (trigger), or the actions implied by theireusThat is, for a specific actigkct used
by a requirement, DRAS uses:
(a) the actions that their use is the consequerself) of usingAct, asimplied actions,
or (b) the actions thamply the use oAct Whether the implying actions or the implied
actions are used, depends on:
e Implying actions are used when the crosscuttingireqent restricts the use of
the action.
e Implied actions are used when the crosscuttingirespent eases other
restrictions for using the action.
For example, assume the action “to refresh the fgequires (and therefore implies) the
action “open the window”. In this case, if the daw should not be opened, then the
implying action “refresh room” is also forbidderg.ithe room should not be refreshed.
On the other hand, “the room should be refreshexgblies that the “open the window”

action is required.

DRAS observes that thmodesor statesof the system (when an action is activated), also
determine whether one FR crosses the other. Fongbe, there may be different
requirements for opening the window in the sumnmen ¢he winter. In this case,
requirements that are only relevant for the summvben the system is Bummemode,

usually do not crosscut with requirements thatral®vant only for the winter.

The initial requirements for a system or produet @asually textual, because the input
from stakeholders is usually verbal or textual.e Tequirements specifications are
transformed into a more formal, technical represt@m (such as UML diagrams [Fowler
03]) only later in the development process. Witendata is formally represented, it is
easier to identify crosscutting requirements amdréguirements they crosscut.
However, non-technical stakeholders, such as cues®and marketing representatives,
usually are not trained to read formal specifigadio Therefore, it is advantageous to be

able to generate DRs in a textual form and to natiegthem with other requirements.

DRAS - Derived Requirements Generation by Actiomd States Page 10

This enables non-technical stakeholders to reviesvuamderstand the specifications; thus,
it was decided to create textual requirements @stiput of DRAS.

In order to generate textual DRs from stakeholdeguirements, DRAS first identifies
match-pointgBrito 03] between requirements.Match-pointin requirements is a part in
them that identify a tentative crosscutting betwtenrequirements (e.g. a common
action). This is performed by identifying commartians that are used by the
requirements (inspired by [Baniassad 04b]), an@lbgtifying common system modes
and states (when these actions are used). Theaf2Rben created based on the
crosscutting requirements. This enables revieweaatliation by both technical and

non-technical stakeholders.

As an example, following is a simple set of reguieats for initiating a call from a
cellular system:
R1. When a phone user dials a number, the phorikisitiate a call to the dialed
number.
R2. The phone shall allow initiating calls to thaipe (911 in the US, 112 in
Europe, 100 in Israel) under any condition.
R3. The phone shall be allowed to initiate calld amceive calls, only after
checking that the user is allowed to use it (lpésd, phone not stolen, etc.).
The first observation is that all of these requieats are FRs, and the action “call
initiation” is mentioned in each of them. Therefothese requirements may crosscut
each other. Further analysis reveals R2andR3are tentatively crosscutting, because
they restrict or ease the restriction for initigte call. Analyzing each pair of
requirements shows thBRB crosscutfkl, becaus&3restricts the specifications RiL
Assuming thaR3has a higher priority thaR1 (e.g., the requiremeR3 has precedence
overR1), then the result is an enhancement (changR)Ltol his enhanced derived
requirement may be:
R4. When a user of a phone dials a number, theghkball initiate a call to the
dialed number only if the user is legitimate.
In this caseR3 may be redundant, & includes its requirements (and crosscut

requirements tha3 crosscuts. It may still be important to keep stedfuirement, as

DRAS - Derived Requirements Generation by Actiomd States Page 11

usually not all the requirements it crosscuts deaiified in the early stages of
development. If new requirements it crosscuts belladded lateR3 may be important
for the resolution process.
Another derived requirement is the resulR¥andR3 crosscutting each other. That
requirement should either allow or disallow illegiate users to dial the police. A
common solution in cellular systems gi\R2higher priority and therefore allows
illegitimate users to dial the police:

R5. lllegitimate user should be allowed to dial futice
Alternatively, this can be an enhancemeriR#o

R4 (enhanced). The phone should not allow dialingmillegitimate user, unless

the user dials the police.

The rest of the thesis is organized as follows:

In Chapter2 provides a general overview of Aspect OrienteduRements Engineering
(AORE), which is the main area of this work. Chea@tdiscusses the problem of
generating DRs and outlines how DRAS handles sisigd. Chaptet defines a set of
requirements that are used later throughout thardeot to evaluate the different
methods, including the new methods suggested srnvtbirk. The requirements are a
very simple set of requirements for a TETRA Mol8kation. Chapteb describes
different related existing AORE methods and evasigdhem for the ability to help
generate derived requirements from the set of reménts defined. Chaptéifurther
details and evaluates the methods that were faubd most applicable. The evaluation
is performed using the same set of requirementsatbige defined in chaptdr. Chapter
7 is the main chapter of this work. It defines DRRAS methodology to generate the
derived requirements semi-automatically, usingaqtype tool. The process and
algorithms of DRAS are described and the generatidhe derived requirements is
demonstrated. Chapt8rsummarizes the work and its conclusions, andestggtems
for further research to enhance DRAS, includingsgms integration with requirements

management tools.

DRAS - Derived Requirements Generation by Actiomd States Page 12

2 Requirements Engineering and AORE Overview

This chapter gives an overview of requirements megiing with specific focus on
Aspect Oriented Requirements Engineering (AORHB)is s to allow better
understanding of the place of the DRAS methodoiagie development lifecycle, as

this work deals with the requirements engineeringse of the development cycle.

2.1 Requirements Engineering

Requirements Engineering (RE) methods handle tnginements specifications phase.

The RE methods target the following issues:

1) How to gather the requirements and needs frakebblders.

2) How to verify that the requirements are well erstiood.

3) How to specify the requirements, in such a weay they will be well understood by
the engineers developing the system.

For a detailed description related to RequiremEntiineering (RE) methods, one may

refer to [Young 04; Kovitz 99].

This work discusses requirements specificationsides (but does not describe how to
write good requirements). RE is a major part ekthactivities, as RE methods handles
specifying the functionality of the system. Icisicial that the output of these activities
match stakeholders’ needs. Otherwise, the systesability may be sub-optimal (in
relatively good cases) and unusable (in the was¢) Bad requirements specifications
also lead to over-budgeted projects, because déatge number of changes needed

during development after identifying the problemshe requirements.

Note that some development methods assume thateegants cannot be specified well
enough during early development (e.g. Agile andeébpievelopment methods).
Therefore, such methods allow for requirements geamuring development. However,
even when these methods are used, the basic skdé&eheuirements and needs still

need to be well understood early. In addition,R&hods can usually be applied

DRAS - Derived Requirements Generation by Actiomd States Page 13

thought the development lifecycle, as details amariies may be specified later during
development.

Getting a good understanding of the basic stakehslldequirements and needs is not a
simple task. [Kovitz 99] states that because samiwdevelopment is difficult,
exploratory engineeringhould be performed to identify the right requiesits and
solution. There are many issues involved, maielyaoise it is difficult to bridge the gap
between stakeholders’ descriptions and the forpetifications (for the requirements).
Consequently, the Requirements Specifications toiRlivided into sub-activities; they
help create the bridge between these two typegetiifications.

2.2 Requirements Specifications Sub-Activities

Several methods are used to identify requiremeo@sifications. However, however,
they all have common activities, as they all hae@mmon output - the requirements
specifications. Some of these activities thatcammon to many methods are (see
[Creveling 03] for details):

e Voice of the Customer (VOC) customers’ needs are gathered by interviewing
the customers.

e Grouping related needs Similar needs by customers are grouped together.
During this process, the initial priority for eaghoup of requirements is set.

e Customers’ Validation and Prioritization: The high level requirements are
returned to the customers, in order to verify thaly correctly express customer
needs. Also, the customers can validate the prmation made for the
requirements.

e Mapping to Technical requirements The customers’ requirements are mapped
into technical requirements.

e Concept Analysis The appropriate concept for the solution, requbg the
customers, is specified.

e Requirements Specification and Writing In this activity, the system
requirements are specified and written. This #gtig detailed below, describing

how this work relates to this activity in RequiremteeEngineering (RE).

DRAS - Derived Requirements Generation by Actiomd States Page 14

2.3 Textual Requirements Specification

A common way to specify the system requirementsxtially, were each requirement is
specified separately and is identified by a spet¢#gy. For example, the following is a
simple set of textual requirements for initiatingadl from a cellular phone:
R1. When a phone’s user dials a number, the phoaiéisitiate a call
to the dialed number.
R2. The phone shall allow initiating calls to thaipe (911 in the US,
112 in Europe, 100 in Israel) under any coioait
R3. The phone shall be allowed to initiate and nexealls, only after checking
that the user is allowed to use it (bills are pgtipne is not stolen, etc.).

In this example, th&x (x=1,2,3) are the tags of the specific requirements.

The requirements in the specifications are genesalit into two types:
e Functional Requirements (FRs)- These requirements define the system
functionality, as required by the stakeholderthi@ above exampl®1landR2
are FRs.
¢ Non-Functional Requirements (NFRs)- In general, these requirements enable
proper system functionality by defining requirensesitich as: security,
availability, reliability, etc. These NFR typesalso called “ilities” (see [Young
04]). In the above examplB3is an NFR.
The DRAS methodology mainly handles FRs.

2.4 Crosscutting Requirements and Derived Requirements

During requirements specification, a major issuésinteractions, dependencies, and
conflicts that usually exist between requiremenitkis is due to both inherent
dependencies between requirements, and differgoiresnent types. Such requirements
are calledCrosscutting Requirement3 he main purpose of DRAS methodology is to

help handle crosscutting requirements.

DRAS - Derived Requirements Generation by Actiomd States Page 15

There are several issues with crosscutting req@nesn
1) Inlarge systems, it is difficult to identify thelations between requirements
2) In cases of contradiction, it is sometimes diffidol resolve the conflicts.

3) New requirements should be specified because s&cutting requirements, etc.

The maintypes of dependencibstween requirements are:
e Enhanced functionality by dependencies between requirements.
In the requirements set for the example abovei(se2t3), requirementR1 and
R3are dependent and a new requirement is derived:
R4. Dialing should not be allowed by
an illegitimate user.
Instead of creating new requiremeriR4,may be enhanced:
R1. When a phone’s user dials a number, the phoaiéisitiate a call
to the dialed number only if the usdegitimate.
Although this requirement directly results fromathequirements, note that in
many cases (to verify that they are implementedl,important to define them
specifically. Also, there are different interptéias for dependencies between
requirements. For example, in this case the gsallawed to dial a number, so
that it will be possible to initiate a call to tpelice.

e Conflicts between requirements. Requirements 2 and 3 conftien an
illegitimate user tries to dial to the police. Té@mmon resolution for this conflict
is to allow illegitimateusers to dial the police (and with no charg€his result
can come from either extending Requirement 3, aildfining a new
requirement:

R5. lllegitimate user should be allowed to died police.

The requirements (generated because of these pgs tf dependencies between
requirements) are the main issue of this work. sélrequirements are callBeérived
RequirementsFunctional and non-functional requirements conostiy from

stakeholders and from other systems that the syst@mects to. Usually, derived

requirements are written without using any spatiethods or tools, after thorough

DRAS - Derived Requirements Generation by Actiomd States Page 16

analysis of other requirements. Defining thesairegnents is often problematic,

because defining them requires a very deep undelisof the system and the
correlation between many requirements. In mangs;aeveral of these requirements are
not defined ahead. Sometimes they are understdgdaftar issues are found during
testing, or when the system is already in uses €an cause several issues and defects

during system development and system use.

2.5 Early Aspects and AORE

The termearly aspectsefers to aspect-oriented methods that are usedgiearly

phases of the development lifecycle. In the rements specification phase, aspects are
the actions and activities that are repeated fermiht requirements; or they are the cause
requirements to “crosscut” each other (i.e., tlesscutting-requirements). Aspects are
the interacting parts between requirements, tregeddencies, and conflicts. Identifying
aspects enables the proper handling of these depeied and conflicts between
requirements. In general, aspects handling endéiidegeneration of additional
requirements; the derived requirements resolvedndicts and add information needed
to handle the dependencies. In addition, Aspeatslimg promotes a better
understanding of the system; this helps to lat@rawve system analysis and software

design.

The primary purpose of early aspects methodsfimtioivays for identifying crosscutting
concerns from stakeholders’ requirements, anddpegyty compose them with a set of
system requirements. Because gathering and spagyistem requirements requires a
high degree of human (stakeholders) involvementgertizan just formal methods are
needed. Therefore, tools that were developedpgpat Early Aspects methods usually
do not implement the full process; normally theg ased only to assist in the process.
Aspect Oriented Requirements Engineering (AORE)sdedh aspect oriented methods
for Requirements Specification. Some AORE methwele developed before aspect
oriented methodology was established (e.g. Goar@ed Requirements Engineering -
see Chaptées). Others were developed based on AOP methoelgtth to extend the

use of their techniques to earlier development @ha®\ORE methods are mainly used

DRAS - Derived Requirements Generation by Actiomd States Page 17

for handling crosscutting requirements, for caskere there are dependencies and

conflicts between different requirements.

Several AORE methods are reviewed in Chapteor! Reference source not found,
for their applicability to DRAS methodology devegmpin this work. An extensive
review of Early Aspects and AORE methods can baddo [Chitchyan 05; Araujo 05].

DRAS - Derived Requirements Generation by Actiomd States Page 18

3 Problem and Solution Overview

This chapter explains in more details the issudgafiling crosscutting requirements to
generate derived requirements and the main appeedotsolve these issues that are
included in the DRAS methodology. The full destiap of the methodology is provided
in Chapter7.

3.1 The Problem

The DRAS methodology described in this work handéegiirement that are specified
textually. Some of the requirements specifiedafelystem may crosscut each other (as
explained in Chaptet, crosscutting requirementse requirements in a system
specification that interact with each other). ®fere, it is very important to be able to
identify crosscutting requirements as soon as ptesdo allow generating the proper
derived requirements (DRs). While identifying drahdling crosscutting requirements,
both functional and non-functional requirementsudtidoe included. It is also important
that the output of that analysis (performed duthmgrequirements elicitation phase) be

textual, enabling non-technical stakeholders toeng\and understand the output.

DRAS is designed to handle these issues for fumaticequirements. As described later
in ChapterError! Reference source not found, most of the existing methods handle
crosscutting NFRs. However, it is important to bkedo also treat crosscutting FRs. The
DRAS methodology intends to solve this problemdsntifying crosscutting functional
requirements (along with determining how to hartdéam), and by specifying the DRs.

Both its input and output requirements are textual.

3.2 Crosscutting FRs

This section gives additional and more detailedrglas of crosscutting requirements
and the crosscutting analysis. The ideas presémtbése examples are the basis for the
DRAS methodology.

DRAS - Derived Requirements Generation by Actiomd States Page 19

One way to identify crosscutting FRs is accordimghieactionsused by the
requirements. The Push-to-Talk (PTT) action useckllular systems will be used as an
example.

PTT is used to initiate calls to a pre-selected os¢éarget number in walky-talkies, by
pressing a button, also called PTT. As in wakdkies, these calls are half-duplex, and
only one participant can transmit voice at a giiere. See chapter for more

information regarding the PTT mechanism.

Following are two functional requirements (the smgting actions appear loold):
R1 When PTT is pressed, the phone shall initiaieeyoansmission.
R2 When another phomgansmits, the phone shall not initiate voice
transmission.
Since both requirements are abtvahsmissionone of them may crosscut the other. In
cellular systems, when PTT is used to initiatelh gauallyR2 crosscutfR1l That is, a
phone will not try to transmit if another phoneealdy transmits. Therefore, the
crosscutting resolution may be as follows [the Ri{E means enhanced]:
R1(E) When PTT is pressed, the phone shall initiateetransmission unless
another phone transmits.
Note that withR1(E) R2may be redundant. However, it is important to keegh
crosscutting requirements. Usually not all requieats they crosscut are identified in the

early stages of development; new requirementsc¢hesscut may be added later.

Certain issues were identified in the way existimgthods use actions to indicate a
tentative crosscutting of FRs:
e Actions that aremplied by the actions directly used by the requiremergsat
taken into account.
e Crosscutting-modesand states are not considered.

e Action-modifiers to restrictions are not considered.

DRAS - Derived Requirements Generation by Actiomd States Page 20

1. Implied Actions
In many cases, the use of an act#taby a requirement implies the use of other actions
by that requirement. These are the actions whiehhee consequence of usiAgt For
example, the action “pressing the dial button enghone” implies the use of the action
“Transmitting Voice”. In addition, actions that jphy the use ofAct may also be relevant
to the requirement. For example, when analyzinggairement about “Transmitting
Voice”, the action “pressing the dial button” mdgahave to be considered.
It should be decided which actions to considersé¢hihat are implied by the actidet,
or those that imply the use Att This decision depends on whether the requirement
restricts the use dictor whether it eases restrictions for the usAaf Restricting the
use ofAct means that all actions that imply its use sholdd be restricted. Ease of
restrictions for the use @ct means that all the actions that are implied Ishauld also
be allowed.
For example, a case were an action (transmitksisiceed and therefore an action that
implies transmit (initiate a call) is also resteidt

R3 Wheranother phone transmits, the phone shall not initiate voice

transmission.
R4 WherPTT is pressed, the phone shalhitiate a call.

In this case, since initiating a call requires phene to transmit, a phone should not try to
initiate a call if another phone is already trartimg. Note that this deduction requires

knowing that initiating a call results in a transsion.

2. Crosscutting and Modes
Modes (or states) of the different entities in $lgstem are also important for determining
whether requirements crosscut. Examples for motlasellular phone are:

a. Whether it is in a call,

b. Whether the user is in the process of dialingm@aber, or

c. Whether the user reads SMS messages.

For example:

DRAS - Derived Requirements Generation by Actiomd States Page 21

R5 InCall mode (i.e. during a call), when another photransmits, the phone
shall not initiate voiceransmission.
R6 Inldle mode (i.e. while not in a call), when PTT is presséx phone shall

initiate a call.

Although both requirements imply the use of “traitshmone of them crosscuts the other
because the modes are orthogonal (mutually exeéusiMoweverR7 below crosscuts
R8 because both requirements are related t€#ilemode:
R7 InCall mode, when another phorteansmits, the phone shall not initiate
voicetransmission.

R8 WherPTT is pressed, the phone shall initiate voideansmission.

Note thatR8does not refer to any specific mode; thus, ibissidered to be relevant to

all modes, including bot@all andldle modes. ThereforR7, which explicitly refers to

the Call mode, crosscuk8

However, especially in systems with many kinds ofies, analysts tend not to explicitly
mention in the requirements the mode they refeotfterwise, the requirements would be
very long and difficult to understand. Ratherytikensider an implicit default mode. In
R8for examplethis may be thé&dle mode. Then, of coursB7 does not crosscir8
because they refer to different modes of the system

There is no way of knowing whether the requireméiatge implicit default modes.
Therefore, requirements that do not mention a §penbde are considered as referring

to all modes

3. Action Modifier

Functional requirements usually crosscut when tkstrict normal functionality or ease
other restrictions.

For exampleR8above crosscuR7 becaus&8specifications restrict the functionality
of R7.

In the following requirements, the restriction &sed:

DRAS - Derived Requirements Generation by Actiomd States Page 22

R9 During a call, when another phone transmits,ghene shall not initiate
voicetransmission.
R10 InEmergency mode, the phone should always be allowed to initiatee’o
transmission.
In this case, when the phone isEmergencynode,R10crosscutik9 and the restriction
of R9is eased bjr1Q

3.3 The DRAS Methodology - an Overview

To solve the issues described above, the DRAS rdelbgy has been developed. The
methodology is used to identify and handle funclaequirements that crosscut. It first
identifies the actions used by each requiremeal,ding the implied actions, the modes
(or states) that are relevant for the requirenmeamd, the action modifiers per action.
Then based on this information, DRAS identifies filngctional crosscutting
requirements, the requirements they crosscut, alus lwith generating the resulting
derived requirements (DRs)'he generated requirements are textual, sathat
stakeholders (including those with no technicakigagund) can review and understand

the requirements.

3.3.1 Implied Actions

When searching for requirements which may crosdmaged on actions), DRAS not only
performs comparisons between actions directly bydtie requirements, but it also takes
implied actions into account. For identifying tingplied and implying actions for a
certain actiorAct, the methodology uses a knowledgebase that preeddfsts of all
actions that are directly used by each actionhe [ist is defined based on previous
knowledge and during initial analysis of the systeraquirements. Recursive use of the
list allows it to identify all actions that anmplied by the use of that action. The
knowledgebase also specifies whether the impliédracare always activated Byt, or
they may be only activated by it.

For example:

DRAS - Derived Requirements Generation by Actiomd States Page 23

R3 Wheranother phone transmits, the phone shall not initiate voice
transmission.
R4 WherPTT is pressed, the phone shalhitiate a call.
To identify whether one of the above requirementsscuts the other, DRAS analyzes
recursively the list of actions implied logll initiation (as specified by the implied
actions knowledgebase) to checkr#nsmitis a result otall initiation. This is shown in

Fig. 1 (Txis the abbreviation faransmi:

. Ask Tx Call State ,
Initiate Call Permission to Tx Tx Voice Tx

Fig. 1 Implied Actions for Call Initiation

Given thatR3 has a priority not lower thaR4, then the crosscutting resolution may be:
R4(E) When PTT is pressed, the phone shall initiatell, unless another phone

transmits.

Ask Tx Call State
{Initiate CaIIH PermissionH to Tx Tx Voice Tx

Idle Mode

Press PTT
Registration
[Power OnH Register]—/ Command

Receive Join Call
Incoming Incoming Mode to

Call Call Active

Fig. 2 Implied Actions (partial list)

DRAS - Derived Requirements Generation by Actiomd States Page 24

A more complex example of the implied actions krexigebase is shown kig. 2. It
shows that several threads of actions can implgémee action; e.g., both Power On and
Initiate Call imply transmission. Therefore, foraenple, not allowing transmission (Tx)

means that call initiation or Power Off full funmtiality are also restricted.

3.3.2 Entities and Actions

In addition to the actions implied by other actiothe DRAS knowledgebase specifies
which actions are related to eaattityin the system. An entity is a sub-system, a aker
the system etc., which is referred to by the rezyuents. Usually an entity has well
defined interfaces with other entities in the systdn the cellular systems example, the
entities are the phone, the cellular system, aagtione user. Similar to implied actions,
the information about which actions are relateddoh entity is needed whenever an
entity is being referenced to in a requirementisTiformation is also stored in the
DRAS knowledgebase. For example, referring tordityemay mean referring to any
action relevant to that entity.
SeeFig. 3 below for the actions used by tellular Systenentity and the following
requirement:

R11 lllegitimate user should not be allowed to texellular system.
R11means that all actions relevant to the cellulateay (initiating a call, etc.) are also
not allowed to be activated by an illegitimate user

< Cellular System (Entity) >

Ask Tx
Permissio

Register

Fig. 3 Actions used by System Entity (partial list)

DRAS - Derived Requirements Generation by Actiomd States Page 25

3.3.3 Crosscutting and Modes

DRAS identifies theModes(andState$ that each requirement is referring to. Normally,
when two requirements relate to two orthogonal (rally exclusive) modes, these
requirements do not crosscut. That is, even itwgerequirements use the same
(implied) action, it can still be assumed that tdeynot have match-points (i.e., they do
not crosscut) if their modes are orthogonal.
For example:

R9 During acall, when another phone transmits, the phone shalimiiite

voicetransmission.

R10 InEmergency mode, the phone should always be allowedrsmsmit.
As shown in Fig. 4ldle mode andCall mode are orthogonal. That is, phone can either
be in a call Call mode) or notiflle mode). However, thEmergencymode crosscuts

both, becausEmergencynode can be initiated no matter if the phone & @all or not.

Idle Mode Call Mode

Emergency
Mode

Fig. 4 Crosscutting Modes

In this exampleR9does not refer to any specific mode; hence itrsefe bothNormal
andEmergencynmodes (among other modes). Therefore, dti@refers to a call in
Emergencynode, it tentatively crosscui9 (which refers to &lormalmode call).
DRAS takes into account requirements specificalgted to emergency cases, which
have higher priority than the requirements for gaheases. A possible resolution to the
conflict in the above crosscutting requirements oy

R9(E) In Call mode, when another phone transntits phone shall not initiate

voice transmission, unless it is in Emergency mode.

DRAS - Derived Requirements Generation by Actiomd States Page 26

3.3.4 Action Modifiers

For each action used by a requirement, DRAS ideatifs action modifiers, which
specify restriction or ease of restriction for natmase of the action. DRAS can
distinguish between three action-modifiers:
e Restrict: action is restricted or not allowed.
e Unconditional: action is always allowed, even if it was res&tcby other
requirements (ease of restriction).
e None action not specifically allowed or restrictedcertain modes or states.
Usually, actions with a non-action-modifier do meed to determine whether the

FR is crosscutting or not.

The information regarding action modifiers helpgedaine whether two requirements
crosscut each other. If the use of an action ise=iricted, or a restriction for its use is
not eased, then the use of the action does noss&tky mean the requirements crosscut
other requirements (unless there is a mistakeamafuirements, such as: two
contradicting requirements that are erroneouslinddj. The action modifiers are also

propagated to the implied-actions.

Whether to consider the actions that are impliedtyction, or to consider the actions
that imply it, depends on the way action usagessricted. If a requiremengstricts the
use of actiorAct, then all actions thammply Actare also restricted. For example, not
allowing transmitting also means not allowing dalttation, but not allowing call-

initiation does not mean not allowing transmitting.

On the other hand, if a requiremeaiseghe restrictions for usingct or allows using it
unconditionally, then all actiongmplied by Actare also allowed. For example,

permitting unconditional call-initiation iEmergencynode also means unconditional
permission to transmit in this mode. Permittingamditional transmission, however,

does not mean unconditionally permitting call-iiitn.

DRAS - Derived Requirements Generation by Actiomd States Page 27

Therefore, an action-modifier is also used to deilee thedirectionfor identifying
implied-actions (sekig. 5). If an actiorActis restricted, then the actions that implgt
are also restricted. If restrictions are easedtishditional”), then restrictions for using

the actions (implied by the action) are also eased.

— Implied Actions (Forward- used for ease of restrictic —

» Ask Tx Call State .
Initiate Call Permission to Tx Tx Voice Tx

<+<— |mplving Actions (Backward- used for restrictior ——

Fig. 5 Restriction and Ease of Restriction for Implied iAot

For example:

R3 Wheranother phone transmits, the phone shall not initiate voice

transmission.

R4 WherPTT is pressed, the phone shalhitiate a call.
SinceR3restricts transmission according to FigR3,also restricts call-initiation;
therefore R3 crosscutfk4.
Note that having only an action modifier does neamthat one requirement may
crosscut the other. Usually, in order to crossiha,action modifier should also
contradict the action-modifier of the other reqment. For example, the following two
requirements do not crosscut each other:

R1 When PTT is pressed, the phone shall initiaieeyoansmission.

R10 InEmergency mode, the phone should always be allowedrsmsmit.
AlthoughR10eases a restriction for transmission, it doesootradictR1, becaus&k1

refers to permitting transmission and not to restrg transmission.

3.3.5 Requirements Priorities

The resolution of crosscutting between requiremdagends on the priority of the
requirements. The specification of a requiremeittt Mgher priority should override the

specifications of requirements with lower priorityhe use of relative priorities between

DRAS - Derived Requirements Generation by Actiomd States Page 28

requirements (for handling crosscutting requirerseistinspired by existing methods,
such as [Baniassad 04b, Rashid 03].

Note that it is difficult to assign relative pribes for each pair of requirements, i.e., to
specify for each pair of requirements which requieat has a higher priority. In order to
simplify the process, DRAS assigns one unique pyito each requirement. A
functional requirement priority is based on the arance of the actions the requirement
refers to and system state the requirement redersdor example requirement about
emergency actions will usually have higher priotitgn a requirement about other
actions. Also, requirements that restrict operatiocertain states will usually have
higher priority than the requirements for genetates.

The decision about a requirement priority is ndedwainistic and the final decision
should be made manually, based on experience, ddinawledge, understanding the

customer needs, etc.

Following is an example of conflicting requirememshere the analysis of requirements
priorities can be used to resolve the conflict:
R12 lllegitimate users shall not be allowed toiaté calls.
R13 All users should be allowed to initiate a ¢althe police (an emergency
number).
The resolution whether an illegitimate user can tth@ police or not, can only be
performed manually. That is, it should be detesdiwhich of these two requirements

has a higher priority to define the proper DR.

It should be noted that assigning a unique prigréy requirement is a simplification, as
the requirements priorities do not necessarily fartransitive order. Thus, using a
unique priority per requirement can only suggestivinequirement has a higher priority.
A main reason for this is that many of the requigats are unrelated, so it not possible to
compare their relative priority. Another reasoneguirement that refer to more than one
action, as the reference to each action may haaib priority.
For example:

R14 When pressing PTT, the phone shall initiatalla ¢

DRAS - Derived Requirements Generation by Actiomd States Page 29

R15 lllegitimate users shall not be allowed to sanit.

R16 The phone shall send its location to the systgsry minute.

R17 During a call, the phone shall not transmitidsation.
As initiating a call requires transmissid®il5is assigned a higher priority th&14
However, although sending location to the systeso stquires transmission, it may still
be allowed for illegitimate users, e.g. to allowdting the phone in case of emergency.
ThereforeR16is assigned a higher priority th&15 A conclusion is thaR16has
higher priority tharR14 However, because 817 (which can be the result of a
technical limitation of the system), initiating allcwill stop sending the location for the
duration of the call. That i®14should have higher priority thal6to allow imitating
calls. We see that different considerations leadifferent relative priority oR14and

R16and that the relative priorities between the rezruents are not transitive.

3.3.6 Contribution and Composition Rules

After identifying which requirements crosscut whiglguirements, the effect of the
crosscutting should be evaluated. This is perfdrbefore the requirements can be
composed to generate DRs. Based on [Brito 03] aftrdoutes are identified by DRAS:
contributionandcomposition rules

o Contribution - indicates whether the function (that the crotsoy requirement
defines) conflicts with the function for the recqemment it cuts ("), adds to its
functionality (*+”), or does not affect it lone’).

o Composition Rules- based on the relative priority between requineim@nd the
nature of the crosscutting functionality, the coogsng requirement can be one of
the following:

o Overlap Before/After - add functionality before/after the functionaldf/the
requirement it crosscuts.
o Override - replace the functionality.

o Wrap - encapsulate the existing functionality withimniinctionality.

DRAS - Derived Requirements Generation by Actiomd States Page 30

3.4 Putting all together — the DRAS Outline
The DRAS methodology is based on the activitiesesd earlierFig. 6 shows the

process map for this methodology. Chaterovides a full description of the

methodology.
Gathering the
Stakeholders’ A 2 v
Requirements Identifying Actions ang o
Entities used by the Identifying Match-
: Points between the
Input Requirementand .
S Requirements
their Priorities
N A 4
Identifying Actions, v

Identifying Actions
used by the
Requirements

v l

Identifying o v
Correlations betweer Re uligggtgr{g?Action‘)
Actions and Entitie q P Generating the

Attributes Derived
Requirements

Entities, and Attributes Evaluating

Match-Points

Fig. 6 DRAS Process Map

The functionality of each of the step is as follows
1. Gathering the Stakeholders’ Requirement(the input requirements for the

process).
Identifying Actions, Entities, and Attributes.
Identifying Correlations between Actions and Entites
Identifying Actions and Entities used by Input Requrements and their
Priorities, including identifying requirements priorities afat each Action or
Entity, their appropriate Modes and States.
Identifying Actions used by the Requirementsdirectly or indirectly.
Identifying Requirements-Actions Attributes, i.e., in what conditions the action
is performed (according to the specified requiretnen

DRAS - Derived Requirements Generation by Actiomd States Page 31

7. ldentifying Match-Points between the Requirementsusing their common
attributes (the common Actions, Modes, States,Gmakstraints).

8. Evaluating Match-Points to identify which of them should result in a dexiv
requirement.

9. Generating the Derived Requirementsaccording to the match-points identified.

DRAS - Derived Requirements Generation by Actiomd States Page 32

4 The TETRA MS Example

This chapter gives an overview to TETRA, especitidyy TETRA MS (Mobile Station -
the TETRA phone) and defines a set of requiremfantthe MS that are used later for
evaluating different methods. The requirementsassmall subset of the real TETRA
MS requirements.

4.1 TETRA Overview

TETRA is a cellular system, mainly used for pulsiatety and transit systems (police
force, train systems, etc). TETRA voice servicedude both phone calls and push-to-
talk (PTT) type of calls. PTT services supportb@roup and Private calls. The
TETRA air interface standard is defined by ETSJTETRA]. In TETRA, as opposed to
cellular systems such as GSM, only the air interi@ed equipment interface (used by
end users) are standardized. (In GSM and otharlaeBystems, the interface between
different system components is also standardizedmany cases, the TETRA system is
owned by the customer, while in most other caseslalar system is owned by an
operator that sells services to customers.

A primary differentiator between TETRA and mostethkellular systems is its
emergency services features. Some of emergendgeefeatures are: Emergency
Alarm, Emergency/Priority Call, Call Preemption, Bience-Listening, Hot-Mic, and
more. These services usually don't exist in catlglystems. Another difference is that
in TETRA, a user should be able to start talkingadt immediately (less than one-half
of a second) after starting a call using PTT.cdmparison, PTT services currently
supported cellular systems, such as GSM, allowsiae to start talking only after few
seconds. Emergency and Priority calls add mamyastions between features.

Therefore, they are significant and a major pathefrequirements defined in this work.

DRAS - Derived Requirements Generation by Actiomd States Page 33

Most TETRA systems include a control center, wieeheiman operator can: control

calls, interrupt calls, connect (patch) differealis, broadcast to a site/system, control

emergency operations, and more.

4.2 TETRA MS Features and Functionality

Following is a short description of TETRA MS feasrand functionality that used to

define the requirements set used in this work:

Registration (to the Systen)In cellular systems, the MS (phone) usually regs
to a system before it can get service fronRegistration is required for several
reasons:

1) Authenticating the MS and the system.

2) Ensuring that the MS is authorized to get supfpom the system (e.g., the user
has paid his bill, or the user is a member of Wiep force that owns this
system).

3) Allowing the system to know that the MS is aetietc.

One known exception is an emergency call (suah@kl call in the US) in

systems (such as GSM), where in any case, the emeygall should be allowed.

In/Out of Coverage Cellular systems coverage is limited due toh&jit RF signal
propagation distance is limited, and 2) becausystem and MS loss of
synchronization starting from a certain distanccéluse of a delay in receiving the
signal). The MS can register and get services f@ystem only when it is within
the system coverage range. While out of the systemarage range, the MS
periodically searches for the system. The uselicEs\allowed (when out of

coverage) are limited to local MS functions (ebggwsing the phone book).

Group Call (Half Duplex): A major (and maybe the main) service for cellular
systems used for public safety (such as TETRA syskés the Group Call, which
allows a user to talk to a group of people. Thkivige simulates a walkie-talkie
service, where all over-the-air radios that aretlto the same frequency can hear all

DRAS - Derived Requirements Generation by Actiomd States Page 34

other over-the-air radios. In cellular systemsyréhare mechanisms that prevent
anyone from interrupting the talking party, althbubere are also mechanisms that
will allow a graceful interruption in high priorityases. The Group Call is in Half
Duplex mode. If two users were allowed to talkhet $ame time (as in a full-duplex
phone call), a third user would not be able to laarof them.

A Group Call is usually initiated by pressing aradding the Push-To-Talk (PTT)
button; the transmitting phone continues to trahsmiil the user releases the PTT
button. Therefore, the user does not need to qmass (push) the PTT button to end
the Group Call. After the PTT button is releagtd,call usually remains active for a
few more seconds, allowing others to responds @#$o possible [by pressing the
PTT button separately each time] to start a nely loat if the system is busy, it may
mean that no resources will be available for agesp.)

A Group Call can be received whenever the MS iy lmus call, or when the MS is
idle. The decision whether to receive the new inogneall, while the MS is busy

with another call, is usually based on the priofittyeach of the two calls.

e Idle vs. Call Mode Normally in a cellular system, MS functionalitydifferent if it
is NOT in a voice call, than if it is in a call.oFexample, if NOT in a call, almost all
received incoming calls will be accepted; if inadl,conly higher priority incoming
calls will be accepted. For the purpose of thiskytrle Mode is when the MS is
NOT in a call, while Call Mode is when it is in alc (In reality, the definition is far
more complex, e.g., there is a duration after theu@ Call ends when incoming calls
[for that group] will have higher priority, becau$és assumed that the incoming call

is a continuation of the previous call.)

e Call Priority : In TETRA, each call has an assigned priority.e Phiority can be
predefined for the user, set according to the stbtiee MS, etc. Using Call Priority,
the system can preempt (stop) an active call ®@resources for another higher
priority call; in a call, MS may switch to anothi@igher priority call, etc. In TETRA

there are 15 levels of priority. But in this wonkly two will be discussed: Normal

DRAS - Derived Requirements Generation by Actiomd States Page 35

and Emergency.

e Emergency Call Priority: In TETRA, Emergency Call Priority is the highesll
priority. It has a distinct name because it isduset just to set higher priority, but
also to indicate a serious problem, such as itsitns of life and death. Therefore,
an Emergency Priority Call provides additional ftimcality that is not allowed in

other cases, such as longer or unlimited talk time.

e Emergency Alarm and State In TETRA systems, the usual functionality is® b
able to initiate an Emergency Priority Call, bug S should first be in an
Emergency Mode. This is usually performed by prgsa designated emergency
button. When the button is pressed, the MS seaiefgency alarm” signals to the
Control Center and it enters the “emergency stat&hile in the emergency state, the
MS is usually limited in its functionality (e.gt,will not receive non-emergency
priority calls). This limited functionality guartees that the MS is free to perform

functions that are needed to handle the emergetuation.

e TXI (Transmission Inhibit) : There are some cases where it may be dangerous to
allow the MS to transmit any signal. For examfléhe user is in an explosive area
or in a hospital. For such cases, the MS usesetathe MS so that it cannot transmit
(unless it is in an emergency mode). In TXI mdte,MS may receive Group Calls
(because it can only listen to these calls), baaitnot initiate calls or receive one-to-

one calls (e.g., a phone call).

4.3 Simplified Requirements Set

The following sections define the requirementdeethe purpose of this work. The
requirements are a highly simplified subset ofrdgiirements for the TETRA MS. Two
sets of requirements are defined. One set inclodssline requirementsfor normal,

non-crosscutting functionality for the MS. The atket includegrosscut requirements

DRAS - Derived Requirements Generation by Actiomd States Page 36

related to emergency/priority/TXI, where normal &elor is suspended or changed
because of required higher priority activities.eTkequirements for higher priority
activities, defined by the second set, are croiagutequirements that cut the first set of

requirements.

The interactions between different crosscuttinginemgnents will be discussed later,
using the different AORE methods described in wWosk.

Note that in systems like TETRA, there are sevettar crosscutting requirements and
some of them crosscut each other. For this whekréquirements were simplified so as
to clarify which of the functional requirements ssout which of the other functional
requirements. Also, there is no reference to th&RA over-the-air protocol (defined by
[TETRA]), although all incoming or outgoing commatithessages referenced in this

work (except for the User Interface) are performsihg this protocol.

For the defined requirements, a simplified TETRA Massumed:

EMR I

=

PWR

Figure-1 The MS platform and buttons used by this work

DRAS - Derived Requirements Generation by Actiomd States Page 37

e It supports only half-duplex group calls. No othgres of calls (private, phone,
etc.) are supported.

e It can initiate an outgoing call to only two preaefd groups: one used when in
Normal Call Mode (the Normal Group), and the otireed when in Emergency
Call Mode (Emergency Group). The user cannotaigioup number and cannot
select within pre-defined groups.

e Pressing the Emergency button only puts the MSEm@rgency Mode; it does
not cause the MS to send an Emergency Alarm stgrthe Control Center.

e A single cell system is assumed. Therefore, thrermineed to handle cell
handover re-registration on a new cell when in WXide, etc.

e Only the following buttons are available for us@s shown irFigure-1): Power
On/Off (PWR), Push-To-Talk (PTT), Emergency (EMB)d Tx Inhibit (TXI).

4.4 Baseline Requirements (Stakeholders’ Requirements)

The defined requirements are simplified TETRA skaltders’ requirements. The defined
requirements are based on experience, and noteonfdhe methods developed for
discovering stakeholders’ requirements. The methiocude Viewpoints, Use-cases,
Goals or Problem Frames; see [Rashid 02; Rashitb®8ferences to some of the
above-named methods. Because only stakeholdepsreenents are the basis for this
work (and they had to be simplified for this purgpthe above-named methods were not
used.

Note that in some cases, functional requiremerdsuger interface requirements (using
the platform inFigure-1) were combined into one requirement. Was done so as to
simplify the handling of the requirements set aadéability for this work. An example
of such a simplification is Req-150. The functioreuirement is to allow switching
between emergency and normal mode; the user ineeréguirement is that switching be
done by pressing the EMR button.

DRAS - Derived Requirements Generation by Actiomd States Page 38

4.4.1 Baseline Requirements - Attributes and Facts

Before defining requirements, some attributes (usethe requirements) must be

defined. Some of this data could have been defasagquirements, but for the sake of

simplicity, it is given below.

Attributes:

Coverage Mode- whether MS is within system coverage:Coverage or Out-
of-Coverage.

MS Call Mode - whether MS is in call modédle modeor Call mode. (For
short,ldle/Call mode will be used later insteadldfe/Call Call mode.)

Tx Mode - whether MS is allowed to transmit (TX)x-Allowed (TXA) or Tx-
Inhibit (TXI).

Call Priority - from low to high call priorityNormal or Emergency.

Priority Mode - from low to high MS priority modélormal or Emergency.
(For shortNormal/Emergencynode will be used later instead of

Normal/Emergencyriority mode.)

The actions taken when pressing differl@l@ buttons (except for PTT) are:

Emergency (EMR) Button: Toggles the MS betwedfmergencyMode and
NormalMode. The initial priority mode at power-onN@rmal

[A general note when toggling to all modesggle -try to change the mode name
from “toggle” to “change mode,” because the secaramne is better in some
cases. | decided to keep only “toggle” so as wuee the number of actions in
the list during the evaluation of the Theme/Docurhen

TXI button : Toggles between TXI and TXA modes. The initial Mlode at
power-on is Allowed (TXA).

Power (PWR) button: Toggles between Power-on and Power-off for the MS

Other general attributes are:

e Priority of Calls: All calls with the same Call Priority have thevsapriority.

DRAS - Derived Requirements Generation by Actiomd States Page 39

4.4.2 Baseline Requirements — System Related

The following requirements are for MS registratagrpower-up.Normal mode and'x
Allowedmode are assumed. According to the requiremdrgsetare always the modes
when the MS starts at power-up, regardless of th@es it was in during a previous
power-off. (Note that this is for simplification lynin a real case, the MS can remember
the Priority and Tx Modes during the power off/giecle.) The detailed registration
process, including sub-steps (such as authentigatenot included.

Reg-250: On power-on MS shall register to the system.

Req-260: On power-off the MS shall de-register first from the systefni, is

successfully registered.

Req-270: MS shall be able tpower-off in any state.

4.4.3 Baseline Requirements — Group Call

The following requirements assume that the MS Nammal priority andTx Allowed
modes. The requirements, when the MS iBamergencypriority or Tx Inhibitmodes are

defined separately, and regarded as crosscut unattiequirements.

Req-310: Pressing PTT irndle modeshall initiate a request for an outgoing group
call to the system, witNlormalpriority, to the predefinetlormal group
If acknowledged by the system, MS shall toggl€&ll mode and may

start transmitting voice.

Req-320: Pressing PTT inCall modeshall cause the MS to ask the system for
permission to Tx voicevhen no one else is transmitting in the calle Th
MS may start ta x voice only if allowed by the system. The PTT &bal
ignored when someone else is already transmittinie call.
Note: this type of call is half-duplex, i.e. indluase, parallel transmission

by several participants in the call is not allowed.

DRAS - Derived Requirements Generation by Actiomd States Page 40

Req-330: When receivingncoming Group call in Idle mode MS shall toggle to
Call mode and join the call.
Note: in Group Call there is usually no need toramkledge the receipt of
the incoming call message, because such an ackdg/ieill probably
collide with the acknowledge of other group calitmapants. This is why

the MS can listen to a group call while in TXI Mode

Req-340: When receivingncoming Group call in Call mode the MS shall
internally reject the call, without notifying thgsgem.
Note: rejection is done internally to the MS andmessage is sent over

the air.

4.5 Crosscutting (Aspectual) Requirements

4.5.1 Aspectual Requirements - Emergency Mode

Req-520: Pressing PTT irEmergency modeshallalwaysallow the MS to initiate
a call, as soon as possible, to Braeergency groupvith Emergency
priority.

Reg-540: When receiving ncoming Call with Emergency priority, the MS shall
join the call if it is not engaged Emergencycall.
4.5.2 Aspectual Requirements — TXI Mode

Req-610: When inTXlI mode MS shall ignore any request to transmit.

4.5.3 Aspectual Requirements — System Related

Req-710: While MS isunregistered, no system related operations should be
allowed by the MS (e.g., the MS shall not be alldweinitiate calls and

should reject all incoming calls).
Req-720: When MS isout of coverage, pressing PTT shall be ignored.

Reqg-730: When MS powers-on while it i®ut of coverage, it should not try to

register.

DRAS - Derived Requirements Generation by Actiomd States Page 41

Req-740: When MS isout of coverage, MS shall not try to transmit.

4.6 Derived Requirements from Baseline and Aspectual Rglirements

The requirements in this section are derived frgpeatual and baseline requirements.
These requirements were generated based on prdwoudedge about real-life TETRA
MS requirements and behavior. No specific methad used to generate them
(including not using the DRAS method developedis tork). (In fact, these
requirements were specified before DRAS was deeelQpThe purpose for defining
these requirements is: to be able to evaluateftbetiweness of the different methods

(for correlating between baseline and crosscutirequents). Each method is expected to
“generate” these requirements. Whether this ic#se, and how easy this is achieved is

a major part of the evaluation that follows.

4.6.1 Out-of-Coverage related Derived Requirements

Req-1110: When MS is powered-on but registration tethe system was not
successful yetthe power-off button press shall cause the Mgotwer-
off.

[Resolves the conflict between Req-270 and Req-Pifctically means
that the only button that is active before sucedsspistration is the

power-on/off button.]

Reg-1120: When MS is out-of-coverage and is unre¢gsed, the MS shall register
to the system once it is in coverage.
[Resolves the conflict between Req-250 (that reguinat the MS will
register on power-up) and between Req-730 (thas do¢ allow

registration when MS is initially out of coverade).

Reg-1130: On power-off, when MS is out of coveragéhe MS shall be allowed to
power-off without trying to de-register from thessgm.
[Resolves the conflict between Req-260 and Req-A#06ws the MS to

power down without de-registration first, if outadverage.]

DRAS - Derived Requirements Generation by Actiomd States Page 42

Req-1340: MS shall not try to register to the systa when in TXI mode.
[Resolves the conflict between Req-250/Req-1120Rag610. Allows
the MS not to register if it was turned on out @¥erage and then put into
TXI mode.]
Note: the conflict solved here is between crosswtind a derived

requirement because of other crosscut requirements.

4.6.2 Registration related Derived Requirements

Req-1410: When MS is unregistered itlNormal mode a PTT press shall be
ignored.
[Resolves the conflict between Req-310 and Reqg-FI®in normal mode

should not ask to talk while out of coverage.]

DRAS - Derived Requirements Generation by Actiomd States Page 43

5 Related Work

As described in Chapté; different AORE methods were suggested for hagdli
crosscutting (aspectual) requirements. Some gktheethods directly refer to
crosscutting requirements and how to combine th&mather requirements. Others
handle the separation of concerns based on custbraguirements.

The following is a summary of the applicability sgveral AORE methods to the DRAS
methodology developed in this work. The applidgapgvaluation is a summary of a
through review done for these methods. Methbdsdre directly relevant to the work
will be further evaluated in the following Chap@rwhich discusses how well they
handle the requirements defined earlier in Chapt@tentifying derived requirements).
Some papers include an exhaustive survey of egistiethods and approaches; for
example, see [Chitchyan 05]. The description idetithe main characteristics for each
of the methods and a description of their proces$ége characteristics are partly based
on [Bakker 05; Chitchyan 05] which characterizes different approaches and tries to
split the characteristics into a few major categ®riHowever, several categories

currently exist, so each approach is charactesepdrately.

5.1 Viewpoints

Viewpoints [Finkelstein 96] are used to specify slystem from the perspectives
(viewpoints) of each of its users (Actors in theelWZases terminology). Usually each of
these perspectives is partial and incomplete, Isecafithe different roles for each user.
However, a separate evaluation for each viewpsineeded in order to define the full
system’s specifications. For a complex systermgugiewpoints allows the Separation
of Concerns between different viewpoints, and ptesia more manageable means of
handling the system’s specifications. Viewpoiriented methods do just that.
[Nuseibeh 04] presents a viewpoint as an encamsglehowledge representation,
process, and specification; all from the user viewp Several Viewpoints-Based
Requirements Engineering (VBRE) methods existiv§3)2] for example, introduces an

approach for classifying and diagnosing discrepembetween viewpoints.

DRAS - Derived Requirements Generation by Actiomd States Page 44

Although the main purpose for Viewpoint methodwiserify that requirements cover all
viewpoints, they deal with the Separation of Consend not specifically with
identifying crosscutting requirements. Therefdhese methods will not be evaluated

further.

5.2 Goal Oriented Requirements Analysis

Goal Oriented Requirements Analysis (GORA) is desdrin [Mylopoulos 01].

It explores the alternatives for achieving the gaala given set of high level
requirements. GORA correlat&sftgoalgnon-functional requirements) with goals and
other softgoals; this is similar to analyzing cmgting aspectual requirements.

An enhancement of this method is Aspects in Remqergs Goal Models (ARGAM) by
[Yu 04; Chitchyan 05].

One main purpose GORA is the evaluation of altéraat Note that the term “Softgoal”
is defined in [Chung 00] as a framework for hanglifon-Functional Requirements.
Although using the NFR Framework method itselfas mentioned in this paper, this
paper clearly relies on this framework. The catieh analysis mainly handles NFRs as
a whole; consequently, GORA is not well suiteddaelating between base and
crosscuttingunctional requirements, such as those defined in this work.

For similar reasons, ARGAM will not be evaluated &urther; it is mainly used to
identify non-functional (Softgoals) aspects.

However, parts of the methods are relevant. gadlsaftgoal correlation analysis, where
baseline requirements replace goals and crossguéquirements, are used instead of
softgoals. The evaluation of alternatives mayddevant for selecting the right derived

requirements (from the different resolution alténres).

5.3 Modularization and Composition of Aspectual Requirenents

The Modularization and Composition of Aspectual &®egments (MCAR) method is
described in [Rashid 03; Rashid 02]. This metheliheés an AORE process model from

DRAS - Derived Requirements Generation by Actiomd States Page 45

identifying stakeholders’ requirements and conceefated to these requirements, to
resolving conflicts and determining their influerarelater architecture and design
development stages. ([Bakker 05] calls this meth@dRE, but since AORE is a general
term, the method will be called MCAR in this work.)

Although this method is mainly applicable for crogsing NFRs, some of the methods it
uses are also applicable for crosscutting FRshdrcontext of this work, stakeholders’
requirements are the baseline requirements, aret&sb concerns are the crosscutting
requirements. Since the purpose of this work eviauate the effectiveness of
composing baseline and crosscutting requirementgeft derived requirements), not all
steps for this method are applicable. However,essteps are applicable; so the method

is further evaluated using the TETRA requirementSections.1.

5.4 Composition Process for Aspect Oriented Requirement(AOR)

This method is described in [Brito 03]. It deseslihe process of composing crosscut
concerns with concerns (requirements) they cutsascr@he method is mainly applied for
non-functional concerns (requirements), but as shio@ow, it also includes techniques

that are applicable for functional requirements.

The main purpose for the additional approachesdiuited by this method over MCAR
(described in SectioB.1), is the identification of match-points betwes@ments of the
model, and the use of crosscutting operators (@pefverride, and Wrap). These
methods seem to be valuable for evaluating req@nésndefined in this work, in order to
generate derived requirements. Therefore, thesieote are further evaluated in Section
6.2.

5.5 Adaptation of the NFR Framework to AORE

This method is described in [Sousa 03a]. The nekih@an enhancement to the method
defined in [Rashid 03]. It also includes parts frita method defined in [Mylopoulos
2001].

DRAS - Derived Requirements Generation by Actiomd States Page 46

This method is applicable to requirements defimethis work. However, its
enhancement over [Rashid 02; Rashid 03] is not@gmém justify a detailed analysis, in
addition to the analysis already given for thathmoet Therefore, this method will not be

further evaluated in this work.

5.6 Crosscutting Quality Attributes

Crosscutting Quality Requirements method is desdrib [Moreira 02, Brito 02].

The method proposes a model to identify and sp&uiglity Attributes (QA) that
crosscut requirements at the requirements anaiaie. QA is a non-functional concern,
such as response time, accuracy, security, arabilgly. This is the same as in a NFR,

but from the point-of-view of the functional reqemnent.

This method is only partly applicable for genergtiterived requirements from the
requirements defined in this work. It mainly harsddFR and Quality Attributes
requirements. Also, the main methods it uses lameiacluded in other methods
evaluated in this paper ([Brito 03; Rashid 03]hefefore, this method will not be
discussed any further in this work.

5.7 Theme and Theme/Doc - Finding Aspects in Requiremén

This method is defined in [Baniassad 04a; BaniaBd&dl TheTheme approach
[Baniassad 04a] is a method and set of tools dpeelfor early identification of aspects
in the software development life cycle. Tthemenotion represents a system feature.
Themes can be eithbase themefvhich may share some structure of behavior with
other base themes), arosscutting themgaspecty which have a behavior that overlays
base themes functionality. The Theme/Doc appreaahdentify aspects from FR

interrelated behaviors, not just aspects from tR& as most other methods identify).

DRAS - Derived Requirements Generation by Actiomd States Page 47

Because the Theme/Doc approach helps identify &sfren FR interrelated behaviors
(not just aspects from a NFR, like most other méshidentify), it has the potential to be
highly applicable for requirement types definedhis work. The approach is mainly
used for the Theme/Doc tool, to discover whethpeets in requirements are applicable.
This work describes only the requirements phasedaed not delve any further to the

design phase. This method is further evaluateeition6. 3.

5.8 Mining Aspects

Mining Aspects by [Loughran 02] support storage and mining agpeath special focus
to AOSD; this is a specific type of mining for etiigy assets. Mining existing assets
generally refers to locating useful informatioroffr an organization’s asset base) for
reuse in new applications. Asset mining can octunany different stages, throughout
the software development lifecycle. Typical as$etsnining can include: program code,
designs, system architectures, specifications Etective mining requires support tools
that effectively store the data and enable a xedbtifast retrieval of data (for the mining
process). [Rosenhainer 04] suggests identifygpegets in requirements. [Sampaio 05]
describes the approach for mining aspects in reménts in his document, based on
Theme/Doc [Baniassad 04b; Rosenhainer 04], butesilcorpus-based natural language
processing (NLP) techniques. [Garcia-Duque 06$@mées a method to separate aspects
from specification. To support the identificatiohcrosscutting concerns and allow the
mining for aspects, the specs are first represantadormal model, using an enhanced
version of SCTL-MUS (Simple and Causal Temporalitegvodel of Unspecified
States) by [Pazos-Arias 01].

Mining aspects for requirements deals with methodgore requirements data, so that
they allow automatic or semi-automatic retrievad aentification of aspects.
Identifying aspects in requirements is highly reletto identifying crosscutting
requirements and the requirements they cut aclesesfore, these methods are highly
relevant to this work. Mining aspects methodsrareused in this work, although they

are relevant candidates for further enhancemeeés$sctior?).

DRAS - Derived Requirements Generation by Actiomd States Page 48

5.9 Other Methods
Several other AORE methods are suggested; only @féghem are mentioned here.

These methods will not be evaluated for applicgbib DRAS.

[Grundy 99] proposes the AORE method fomponent-based software The proposal
addresses some difficult issues regarding compaeguoirements engineering, by
characterizing components (based on different aspé¢he applications a component
addresses). Examples of components’ aspects asee:lhterface, Collaboration,

Persistency, Distribution, and Configuration.

[Pang 04] proposes an aspect-oriented refinemenihéoAgileFeature-Driven
Development (FDD)lifecycle by [Palmer 02]. The refinement includesng a
boundary condition exploratignvhile building a features list. This method was
proposed by the authors to assist with detectianpaevent inconsistencies between
features. The method is based on a fact they fomodt inconsistencies and conflicts
(between features) happen across the boundarytmmtbr features. To refine feature

planning and design, they adopt aspect-orientedldpment methods.

[Sousa 04] proposeslise Casalriven approach for the Separation of Concerns fro
requirements. It adapts some use-case activitia® the Unified Software
Development Process by [Booch 99]) in requiremeanalysis and design, and includes
NFR framework activities (by [Mylopoulos 01; Souzal).

DRAS - Derived Requirements Generation by Actiomd States Page 49

6 Deeper Evaluation of Some AORE Methods

In this chapter we further evaluate some AORE nuttwhich are described in Chapter
5 and are applicable for generating derived requargs. We evaluate how well these
methods can obtain the derived-requirements, déim€hapted.6. The conclusions of
the current chapter helped to define the DRAS nulogy which is fully described in
Chapter7.
The evaluated methods are based on the conclusiting previous chapter:
e Section6.1: Modularization and Composition of Aspectuat|Rieements
(MCAR) [Rashid 03].
e Section6.2: Composition Process for AOR [Brito 03].
e Section6.3: Theme/Doc for Finding Aspects in RequireméBeniassad 04a;
Baniassad 04b].

6.1 Modularization and Composition of Aspectual Requiregnents
(MCAR)

6.1.1 Overview

The Modularization and Composition of Aspectual ®egments (MCAR) is described
in [Rashid 03]. It focuses on modularization andhposition of requirements level
concerns that cut across other requirements. ®ikad is mainly applicable for NFRs,
such as availability, security and other requiretsdéimat cannot be encapsulated by a
single viewpoint or use-case. The method inteads t

1) Support the separation of crosscutting FR ang Nieperties, and

2) Help identify the mapping and influence of reguoients level aspects on

artifacts at later development phases; thus estabg critical tradeoffs before

the architecture is derived.

The method is supported by the Aspectual Requir&@omposition and Decision tool
(ARCaDe). XML is used in the tool to define théfelient requirements and aspects.

DRAS - Derived Requirements Generation by Actiomd States Page 50

ARCabDe is not evaluated in this work, because aainmurpose is to understand

whether the principles for this method are helpiutlentifying derived requirements.

The main process steps (performed using the ARGadgare:

1.

Identify and specify stakeholders’ requirements ancconcerns This mainly
involves the separation of FRs and NFRs. The au$pXML Viewpoints for
main entities identified in the requirements. E¥efwpoint defines a set of
requirements.
Identify and specify concerns It identifies crosscutting concerns (from NFRs)
that have the potential of becoming Aspects. Tdreerns are (NFR)
requirements that crosscut other requirements. otitjgut is XML Concerns
definitions. Each Concern defines a set of requams.
Identify coarse-grained concern/viewpoint relationkip: It relates to
viewpoints and concerns. The output is a Viewmdncerns relationship
matrix.
Identify candidate aspects From the concerns/viewpoints relationships define
in the previous step, it identifies the concerrad ttrosscut several viewpoints,
and therefore, are candidate aspects. In the X#&finition, these Concerns are
transformed into Aspects.
Define composition rules Composition rules define the relationship between
aspectual requirements and viewpoint requiremdrddiae granularity (unlike
the relationship matrix defined earlier, which waed only to identify aspects).
The output is an XML definition of composition rale
The composition rules define how the requiremangsonstrainedoy aspectual
requirements, and what is the expected outputisd constrains. The operator-
action Constrained and expected Output (defingdignpaper) are:

a. Constraint Actionsenforce, ensure, provide, applied, exclude.

b. Constraint Operatorsduring, between, on, for, with, in, XOR.

c. Outcome Actionssatisfied, fulfilled.
Compose the aspects and viewpointtlsing composition rules, the aspects and

viewpoints are composed. The process helps igectifflicts between aspects

DRAS - Derived Requirements Generation by Actiomd States Page 51

that constrain the same requirements. In pradtieegcomposition itself may be
delayed until conflicts are resolved.

7. Handle conflicts between candidate aspextit determines how aspects
contribute to other aspects, in case they constin@isame requirement. It is also
used to determine which aspectual requirementisriger” by setting
importanceneightsto the aspects (in case of a conflict betweenctspeThe
output is a contribution table that shows the aspewtribution to another aspect
to be positive or negative. The table is use@solve conflicts between aspects.

8. Specify aspects dimensionst is used to determine the aspects’ influence on
architecture, and design development stages tina¢ ¢ater. It also identifies their

mapping to dunction decision,or aspect

Although the method is mainly applicable for idéntig crosscutting NFRs, some of the
methods it uses are also good for identifying @otigig FRs. In the context of this
work, stakeholders’ requirements are the basetigairements and aspectual concerns
are the crosscutting requirements. Since the pearpbthis work is to evaluate the
effectiveness of composing baseline and crossgutéiquirements, in order to generate
derived requirements, not all steps for this methi@applicable. Therefore, not all steps
for these methods will be evaluated further. Atbe, requirements and composition
rules will not be specified using XML because tluiegose of this work is only to define
textualderived requirements. Note that it may be posdibkranslate back the XML to

requirements; so this may be the subject of a éuork.

These are the method’s steps that will be useddate requirements defined in this
work:
e |dentify and specify stakeholders’ requirements
¢ Identify and specify concerns
¢ Identify the coarse-grained concern/viewpoint relabnship: These relate to
baseline and crosscutting requirements.
¢ Identify candidate aspectslt identifies which of the crosscutting requiremts

can be considered as aspects.

DRAS - Derived Requirements Generation by Actiomd States Page 52

e Handle conflicts between candidate aspectl determines the weights of the
crosscutting requirements and resolve conflicts.

e Compose the aspects and requirementi generates the derived requirements.

During the evaluation of this method, the defimtfor both base requirements and
crosscutting requirements (defined in Chagtef this work) were enhanced. In
addition, the method enabled a better identificatiod definition of derived
requirements. This method was the first excellapplicable method evaluated using this
set of requirements. The enhancements were doiméymaddile creatingTable 1 and
Table 2.

6.1.2 Input Requirements Analysis using MCAR

This section evaluates the use of MCAR to anallgeariput requirements, defined in
Chapterd.

6.1.2.1 Identify and Specify Stakeholders’ Requirements

These are the base and crosscutting requiremeimedée Chapter4.2.

6.1.2.2 Identify and Specify Concerns

These are the base and crosscutting requiremeiimedién Chapted.

6.1.2.3 Identify the Coarse-grained Concern/Viewpoint Relaionship

The table below identifies the crosscut/baselimai®e-grained concerns/viewpoints in
the original method terms) requirements relatiopshiihe numbers, for the related
derived requirements, were already inserted ireddble for the purpose of this method

evaluation. In practice, they are defined onlthatend of the process.

DRAS - Derived Requirements Generation by Actiomd States Page 53

Table 1 Correlation between Base and Crosscut Requirements

Baseline Req or | Req- | Reg- | Reg- | Reg- | Reg- | Reg- | Reg-
Crosscut Req 250 | 260 | 270 | 310 | 320 | 330 | 340
Vo
Req-520 1230 | 1240
V|3 V|3
Req-610 1340/ 1330 1320 1320
VIV [
Req-710 1110/ 1410
Req-720 v
\/
Reg-730 1120
Req-740 1£/30
Legend: “\" — indicates where requirements are related

“(\)” — indicates where related requirements do not
affect each other
“<number>" — indicates a new/enhanced derived req. no.

Notice that not all conflicting requirements crehteew derived requirements. These are
cases where the behavior is imposed by the TETR#eBY, and there are no alternative
behaviors for the MS behavior. For example, ifM@ is out of coverage range (Reg-
720), it cannot start a call (Reg-310). Also,he specific cases presented, all of these
cases are related to ignoring key presses (maifily B certain situations. It is assumed
that in these cases the requirement to ignorediigtess is enough, since functionality is
as if the key was not pressed. Therefore, thane iseed to enhance the related baseline

requirement

While evaluating the method described in [Brito (84e Sectio.2), it was found that
derived Reg-1340 is also a result of the crossegt&LO crosscutting derived
requirement Req-1120 (in addition to Req-610 cnaissg Req-250). This finding
suggests that an additional step is needed: tHaaian of crosscutting requirements vs.
derived requirements (vs. baseline requiremeris).simplicity, this step was not done.

DRAS - Derived Requirements Generation by Actiomd States Page 54

6.1.2.4 Identify Candidate Aspects

As seen irfable 1, all crosscutting requirements are candgltt becoming aspects.
This is not surprising, because the crosscuttiggirements chosen for this work are
known to be important crosscutting requirementhéreal world. Note that the baseline
requirements that are most affected by the crossguequirements are Req-310 and
Req-320. The reason is that both of them han@eniliation of a group call (which is
the main subject of the requirements set defined)hand therefore, are the most

affected by the crosscutting requirements.

6.1.2.5 Handle Conflicts between Candidate Aspects

Table 2 shows the correlation between crosscutinagents.

Table 2 Correlation between the Crosscut Requirements

Baseline Req or
Crosscut Req

Reg-520

Req-540
Reg-610
Req-710
Req-720
Req-730
Req-740
Legend: “+” or“-" indicate whether the requirements
positively or negatively contributeeach other.

The table shows that new/enhanced requirementseaded only when the crosscutting
functional requirements contribute negatively toteather. Only in these cases, there are

conflicts between requirements that should be sblve

Note that in this case, aspectual requirementalacecrosscutting each other to generate
derived requirements (unlike the MCAR method).the MCAR method, aspects
crosscut only viewpoints (equivalent to baselirgureements). This is because MCAR

handles mainly crosscutting NFRs, while here theeets are FRs.

DRAS - Derived Requirements Generation by Actiomd States Page 55

The original method also gives weights to confligtcrosscutting requirements, to allow
easier resolution of conflicts between requiremeiisis step was not used, but will be
used when the method from [Brito 03] is evaluatezb(Sectio.2).

6.1.2.6 Compose the Aspects and Requirements

The composition of the requirements is performexmbating to identified relations and

conflicts, as shown iffable 1 andrable 2. The result is the derived requirements.

6.1.3 Applicability of MCAR for creating Derived Requirem ents

This method includes techniques that are very eable to the type of crosscutting
functional requirements defined in this work. Métof the steps are relevant, because
the requirements are already detailed and not gnigally at a level of viewpoints (use-
cases or similar level of presentation). Althouggpping the requirements to later

development phases was not used, it may also bieagp.

Using the method, it was possible to identify @tided requirements. The visualization
of correlations between the different requireméuassng the tables above) is very useful.
However, all of this was mainly manual work, be@atiee method does not provide a
tool for automatically identifying the correlatitbetween baseline (stakeholders’)
requirements and crosscutting (concerns) requiresnén other words, the identification

of correlations between requirements is only baseedxpert judgment.

6.2 Composition Process for Aspect Oriented Requiremest(AOR)

6.2.1 Overview

This method is defined in [Brito 03]. It descrilibe process to compose crosscut

concerns with concerns (requirements) they cutsacrd@he method is mainly applied for

DRAS - Derived Requirements Generation by Actiomd States Page 56

non-functional concerns (requirements), i.e., NARg.as shown below, it includes

techniques that are also applicable for functioeglirements.

The main concepts used by this method are:

Match-Point A point where one or more crosscutting concerasaaplied to
a given functional concern (functional requiremémthe context of this
work). Match-point is an abstraction of ffoen-point concept used in AOSD
(for an example, see [Laddad 03]).

Conflicting AspectConflicting concerns are identified by a matchrpo
Dominant Aspecitit identifies a concern with higher priority —adsfor
resolving conflicts.

Composition Ruledt includes a sequential list of simpler compiosis for

crosscutting concerns, some operators, and moeialegits.

The method has three main activities:

Identify concerns

Specify Concerns and discover which of the concerm@se crosscutting
(i.e., candidate aspects)

Compose crosscutting concerns with other concerrigses match-points

and composition rules, defined to them)

6.2.2 Composition Process for AOR Main Activities

The following is a description of the method’s magtivities, based on [Brito 03].

6.2.2.1 Identify Concerns

In this step, the system concerns (requiremengsidantified, both functional and non-

functional. This can be performed using any knomethod, with no specific approach

being used here.

DRAS - Derived Requirements Generation by Actiomd States Page 57

6.2.2.2 Specify Concerns and Identify Candidate Aspects

This step starts with specifying the concerns amsavith identifying which of them are
crosscutting (i.e., candidate aspects). Fundticmacerns can be specified by using a set
of scenarios, sequence diagrams, etc. For edtle oion-functional concerns, the
method assigns the following attributes:

e Name The name of the non-functional concern.

e Description A short description.

e Priority: The importance of the concern. It may take dthese values:
Very Important, Important, Average, Low, and Vergw. This helps in
conflicts resolution.

e Decompositionlt explains how concerns can be decomposed intpler
ones.

e Where It is a list of models and their elements (euge cases, classes,
sequence diagrams) that require the concern.lds v identifying match-
points.

e Contribution It describes how a concern affects other conceltnsan be

positive (+) or negative (-) and helps identify timts.

6.2.2.3 Compose Candidate-Aspects with Concerns

The goal of this activity is to integrate candidaspects with the concerns it cuts, in
order to obtain the whole system. The main stejdirgg the composition are:
1. Identify how each candidate aspect affects the coams it cuts across
The following composition rulesrosscut-operatorare used to determine the
type of conflict. The operators are similar to thoased by other aspect-
oriented methods for aspectual actions (e.g.,ls&#dad 03] for this use in
AspectJ):
e Overlap (Beforeor After) — The candidate aspect is applied before or after
the concerns it traverses.
e Override - The behavior of a candidate aspect replaceBehavior of the

concern it traverses.

DRAS - Derived Requirements Generation by Actiomd States Page 58

2.

e Wrap (Around) - The candidate aspect “encapsulatesttmeern it

traverses.

Identify match-points: It is based on the “Where” attributes of different
concerns. This step identifies the match-pointsr&tthe composition will
occur. Note that match-points do not occur inrdguirements, but rather in
artifacts such as: use-cases, classes, and segliagcams.

To represent match-points, the method uses a l@fBianal table that lists
theModel Elemen{ME;) under study, and the stakeholders for the system.
Each cell in the table may be filled with a list@dndidate AspectA)) that
affect each Model Element. Each filled cell reprégs amatch-point(MP;).
Identify conflicts between candidate aspectdt is based on the
“Contribution” attribute of concerns. The ident#tion of conflicts results
(from identified compositions) is required. Molah one candidate’s aspects
(applied to the same match-point) may conflict vagtth other.

Identify the dominant aspect: It is based on “Priority.” This step is used to
resolve the conflicts identified in the previousstby prioritizing candidate
aspects and identifying dominant candidate aspects.

Identify composition rules: It is based on the previous step. In this lasp,st
the actual composition rules are defined, includiuigch candidate aspects

will be used (i.e., which of them will be used apects), where and how.

6.2.3 Input Requirements Analysis using Composition Procss for AOR

This section evaluates the use of the Compositrond3s for AOR to analyze the input

requirements defined in Chapter The primary (additional) approaches introduogd
this method (versus MCAR described in Sectah) are:

1) Identifying match-points between elements ofrtiealel and

2) Using crosscutting-operators (Overlap, Overritfeap).

Since the input for this work is already defineduigements, and the output are also

requirements, the match-points only will be ideatfbetween requirements.

DRAS - Derived Requirements Generation by Actiomd States Page 59

Crosscutting-operators will also be used betwegquoirements, usually between the

Baseline and Crosscutting requirements.

6.2.3.1 Identify Concerns

This step was already performed as part of theireaents specifications in Chapter

by identifying the crosscutting (aspectual) requieats.

6.2.3.2 Specify Concerns and Identify Candidate Aspects

Since the match-points (that should be identifrethis work) are already in the
requirements, and not in the artifacts of laterali@gment phases, not all attributes
(defined by the methods for crosscutting requireis)esre applicable:

e Whereis not used as defined; it is related to artifastsd in later phases.
Instead, | used a similar idea to combinedbetributionattribute to a list of
requirements that other requirements crosscut.

e Decompositions not used as the requirements defined in thi&kwbis not
split between other requirements (although in practhis may be required in
certain cases).

e NameandDescriptionare part of the requirements definition, but ase n
important for the process itself.

e Priorityis used to identify the relative importance of riegunents.

e Contribution is used to identify whether the crosscutting rezgmient affects
the requirement it cuts, negatively or positively positive effect usually
causes an extension of the original requiremenhedative effect is a conflict

and usually causes the contribution to give upirequents (in certain cases).

Part of this step was performed earlier as patti@fequirements specifications in
Chapterd. Therefore, this analysis is partly produceddwuerse engineering.

Table 3 defines the value for baseline attributes@osscut requirements. Which
requirements crosscut other requirements (candadgects) is not defined, because they

are the same as in the evaluation by [Rashid 63Jable 1.

DRAS - Derived Requirements Generation by Actiomd States Page 60

Table 3 Requirements Attributes

Non-Conflicting Contribution of

Related Conflicting Related

Baseline /| Requirements Requirements Importance

Crosscut | (from Tabl e 1 | (from Tabl e 1 and Priority
Requirement | [Input] and Table 2) Table 2) [1-5]
Req-250 Base 610 (+), 730(+) 3
Req-260 Base 610(+), 740(+) 2
Req-270 Base 710(-) 3
Reg-310 Base 520(+), 610(+), 4

710(+), 720(+)
Req-320 Base 520(+), 610(+), 4
710(+), 720(+)

Req-330 Base 4
Req-340 Base 540(+) 3
Req-520 Crosscut 610(-), 710(-), 720(- 6
Req-540 Crosscut 5
Req-610 Crosscut | 740 730(-) 6
Reqg-710 Crosscut | 720 3
Reqg-720 Crosscut | 710 3
Reqg-730 Crosscut 3
Req-740 Crosscut | 610 2

The default value used for tpeiority attribute is “Average” or “Important,” depending
on the importance of functionality to the userndw “Critical” level, for highest
priority, was added. This level is used for lifedatening related requirements -
Emergency and Tx Inhibit. Know that in TETRA, amé&rgency call has a higher
priority than a call to a police center from a gkl system (911 in the USA, 112 in
Europe, etc.). This is similar to call prioritidsfined for TETRA (where there are four
levels to an emergency call), but the highestaated in a special way (because its
intended use is only for life threatening situasipn

For requirements where it is not critical for funagality to work in all situations (such as
in de-registering from the system during power-dtg assigned priority is “Low.” For
ease of use, numeric values identify the prioritles Very Low, 2 — Low, 3 — Average,

4 — Important, 5 — Very Important, and 6 — Critjcal

DRAS - Derived Requirements Generation by Actiomd States Page 61

A list of “Non-Conflicting Requiremeritevas added to a column to assist in setting a
requirement’s priority. Using this informationgtinelative priority for the requirements
is set while deciding the priority for each requuent.

The Contributionattribute is defined by the (+)/ (-) added to diotihg requirements; the
(+)/ (-) indicate whether the conflicting requiremt& have higher or lower priority. Only
requirements with higher priority are listed instleolumn, to prevent duplicate
information. Note that the list of “conflictingleged requirements,” in the Contributions

column, replaces thé/hereattribute defined in [Brito 03].

Note that not all conflicting requirements createsv derived requirements. These are
cases where the requirements priority is imposethéygystem; therefore, there is no
need to make a decision. For example, if the M&utof coverage (Req-720), it cannot
start a call (Req-310). In addition, related reguients that do not conflict (e.g., Reg-
610 and Req-740) do not impact priority. Becaussh s relation does not generate new
derived requirements, they can (practically) beorgd, but only if first verified that this

is indeed the case for this relation.

6.2.3.3 Compose Candidate-Aspects with Concerns

Following is the implementation of the differentiaities of this step for input

requirements.

6.2.3.3.1 Identify how each candidate aspect affects the coams it cuts

Based orTable 3, the crosscut-operators (composition ridesyadded. Based on the
operators, the priority was modified in some cdeemgyree with the operators. These
results are summarized Trable 4. Because the priority is also relativéhtrelated

crosscutting requirementBriority is called Relative Priority in Table 4.

DRAS - Derived Requirements Generation by Actiomd States Page 62
Table 4 Requirements Attributes and Prioritization
Non- Contribution of
Conflicting Conflicting Related
Baseline /| Requirements Requirements Relative
Crosscut | (from Tabl e 1 (from Tabl e 1 Priority
Requirement | [Input] and Table 2) and Table 2) [1-6]
Req-250 Base 610 (+ Override), 3
730 (+ Overlap After)
Req-260 Base 610 (+ Override), 2
740 (+ Override)
Req-270 Base 710 (- Override) 2
Req-310 Base 520 (+ Override), 610 (+) 4
710 (+), 720 (+)
Req-320 Base 520 (+ Override), 4
610(+ Override), 710 (+),
720 (+)
Req-330 Base 3
Req-340 Base 540 (+ Override) 4
Req-520 Crosscut 610 (- Override), 6
710 (- Override),
720 (- Overlap Before or
Wrap)
Req-540 Crosscut 5
Req-610 Crosscut | 740, 730 5
Req-710 Crosscut | 720 3
Req-720 Crosscut | 710 3
Req-730 Crosscut 3
Req-740 Crosscut | 610 2

As seen, only related requirements (that have ativegrelation) or conflicting

requirements influence the priority. Requiremehts are related positively (i.e.,

requirements that only add to each other and dg@&rate a derived requirement [see

Table 2]), do not influence the priority. The piies for the requirements were set

manually, although in practice, algorithms (thagate a partially ordered tree) can be

used for this task.

6.2.3.3.2 Identify Match-Points

No activity was performed in this work, becausedhaivalent activity is identifying

which requirement crosscuts other requirementss Jtep has already been performed.

DRAS - Derived Requirements Generation by Actiomd States Page 63

6.2.3.3.3 Identify Conflicts between candidate aspects

This analysis has already been performed as pauitefing Table 3 andrable 4. In this
work, the base and crosscut requirements are gliepdt to the process, so it was

possible to evaluate both using the same stepgenaral, this may not be the case.

6.2.3.3.4 Identify the Dominant Aspect based on “Priority”

In this work, this analysis was already performsgbart of previous activities.

6.2.3.3.5 Identify Composition Rules

In this last step, the actual composition rulesdafened - including which

candidate aspects will be used (i.e., which of thelinbe used as aspects), where,

and how.

Based on the crosscutting-operators set foctimtributionin Table 4, the composition
rules are defined. According to [Brito 03], thexquosition rules format should be
something like “Req-xxx <operator> Reg-yyy”. Sirtbe derived requirements (in this
work) are already known, the definition of the carsition role also includes the derived
requirement (specified in Sectidnb) resulting from the rule. Also included is an
explanation of how the derived requirements werevdd, using the composition rules.
(Note that while preparing this work, some refinetsevere made to the derived
requirements in Sectioh6, because of insights gotten from having torseéind use the

composition rules.)

In the following cases, although there is a cohfietween requirements, in practice the
conflict can (should) not happen. Therefore fasthcases, no derived functional
requirements are needed. Note howeverrdbust and safe systenimplementation, it
may be useful to add such requirements (in cas@rtipossible” case does happen
[because of a software bug, etc.]):

e Req-710overridesReq-320Q This cannot happen because M®ormal mode

cannot be in a call whilenregistered
e Req-720o0verridesReq-320 This cannot happen because MS cannot becall a

while out of coverage

DRAS - Derived Requirements Generation by Actiomd States

Page 64

Note the influence of requirements priorities te dperation of the composition rule.

The higher priority requirement changes the behrasfithe lower priority requirement.

Therefore, in some cases, the base requirementgaiaccrosscuts the crosscutting-

requirement (e.g., Req-250 crosscuts Req-730heocriosscutting-requirement crosscuts

another crosscutting-requirement (e.g., Reg-528scuts Req-61).

The above evaluation is summarized in the followatge for derived requirements (the

description for derived requirements is the samgefised in Sectiod.6):

Table 5 Derived Requirements

Base Crosscutting Composition Rule Derived
Requirement | Requirement Requirement
(andPriority) | (andPriority)
Reg-250 (3) | Req-610 (5) Override Req-1340
Reg-250 (3) | Req-730 (3) Wrap or Overlap After Req-1120
Req-260 (2) | Req-610 (5) Override Req-1330
Req-260 (2) | Req-740 (2) Override Req-1130
Reg-710 (3) | Req-270 (2) Override Req-1110
Reg-310 (4) | Req-520 (6) Override Req-1230
(see also below)
Reg-310 (4) | Req-610 (5) Override Req-1320
Reg-310 (4) | Req-710 (3) Override Req-1410
Reg-320 (4) | Req-520 (6) Override Req-1240
Reg-320 (4) | Req-610 (5) Override Req-1320
Reg-340 (4) | Req-540 (5) Override Req-1250
Reg-610 (5) | Req-520 (6) Override Temporarily (see below) Re@l3
Reg-710 (3) | Req-520 (6) Override Req-1210
Reg-720 (3) | Req-520 (6) Wrap or Overlap After Req-1220
Reg-1120 Reqg-610 Override (see below) Req-1340
(Crosscutting
of Derived
requirement)

Evaluating the composition rules, used earlierdfing the derived requirements, raises

some issues:

e In most cases, “override” is often used while “wWrapd “overlap” are barely

used. The reason seems to be that crosscuttingeswents mainly relate to

DRAS -

Derived Requirements Generation by Actiongd States Page 65

“mode” changes, which change the functionality afdline requirements.
“Wrap” and “overlap” are used mainly when additibfuanctionality is required

(e.g., checking security and logs).

Req-1120: this is a delayed activation of Reg-28@iétration when getting into
coverage). If Req-730 exists, there is no registnavhen out of coverage. This
seems to be a special case for crosscutting dtrdeserves composition rules
like “delayed aftérand “when mode change

Req-250s delayed afteReq-730when the mode changtsin-coverage.

Req-1230: Reg-520 changes the behavior of Reqf8d® Normalto
EmergencyMode), but does not override it. This may reqair@mposition rule
such as fhodify'.

Req-1340: Reg-616verrides temporarilyReq-250 untill Xl is off (entering a
TXA Mode). This example implies that the impactodsscutting functional
requirements (to each other) is also state-basdti€isense that it does not
change functionality), but defers or moves the fiamality to a later (maybe
earlier?) state or time. This suggests that coitiposules should be enhanced

with some kind of temporal rules.

As also seen iifable 1 and iTable 2, Req-520 and Req-610 override many of
the other requirements. In both cases, this ialmethey both significantly
effect the transmission of the MS (which is theriy action in the
requirements set defined in this work). (Req-61€vpnts Tx and Req-520 allows
Tx; when Tx is normally not allowed, it can chanigepriority.) While Req-610
mainly interacts with baseline requirements, Re@-&8l80 interacts with
crosscutting requirements. This is because itdeagded (according to
stakeholders’ needs) that Req-520 has a highenitgrtban the crosscutting
requirements it interacts with.

DRAS - Derived Requirements Generation by Actiomd States Page 66

6.2.4 Applicability of Composition Process for AOR to crete the Derived

Requirements

The techniques used by this method are very ajfpdica the type of crosscutting

functional requirements defined in this work. Mdtof the steps are relevant, because
the requirements are already detailed and not gnigally as a level of viewpoints, use-
cases, or similar level. Because of these reasonss changes to the steps should be

made.

6.3 Theme and Theme/Doc - Finding Aspects in Requiremén

The Theme approacHescribed in [Baniassad 04a] is a method andffebls developed

for the early identification of aspects in the sa@fte development life cycle.

6.3.1 Overview

Thethemenotion represents a system feature. Themes caitiebase theme@vhich
may share some behavior structure with other emeds), ocrosscutting themes

(aspectywhich have a behavior that overlays base theomagibnality.

The tools (developed to support this approachuoteTheme/Doc and Theme/UML.
Theme/Doc is used at the requirements level andges views of the requirements
specification text, thus exposing the relationdiepyveen behaviors in a system.
Theme/UML is used at the design level; it allowdeaeloper to model features and
aspects of a system, and specifies how they shmmutshmbined. A central idea in the
method is that Theme/Doc allows the developerfiaegequirements views (in order to
reveal which system functionality is crosscuttiaggd where in the system it crosscuts).
Another claim is that the Theme approach helps ta@nraceability from requirements
to design, because the requirements map direciéme/Doc views (which map
directly to Theme/UML models). This traceabilitgalprovides clues regarding

requirements coverage in the design.

DRAS - Derived Requirements Generation by Actiomd States Page 67

The Theme/Doc approach and tool is used to viewelaionship between behaviors in
requirements documents, anddentify and isolate aspectsn the requirements. In

other words, it is used mainly to identify and sepaaspects (or the Separation of
Concerns - SoC) from the requirements, fimttto combine aspects with the other
requirements. The approach provides views of requirementssea exposes
relationships (interactions in the case of aspééiRa) between behaviors in the system.
The method helps to determine which elements aftfonality are “base” and which are

“aspects.”

The Theme/Doc approach assumes thiataof behaviorsare described in the same
requirement, they amelated. According to this approach, there are three vilagt
behaviors can relate to each other (note that #tead refers to identifying
related-behaviorsand notrelated-requirementwhich is the main subject of other
methods):
e Erroneously/coincidentallyIn this case, requirements can be re-writtethab
behaviors are not coupled.
e Hierarchically. One behavior is a subset of the other, and tlsete crosscutting
relationship between them.

e Crosscutting One behavior is an aspect of the other.

The Theme/Doc tool provides views that expose whithaviors are co-located in the
requirements, in order to help determine the kihcelationships existing between

behaviors.

6.3.2 Theme/Doc Approach Major Steps

The major steps in using the Theme/Doc approach are
1. Identifying and listing théctions used in the requirements. This step is
performed manually. Usually the list of actiongis-defined, based on

experience from previous projects. This list df@ts is a combination of actions

DRAS - Derived Requirements Generation by Actiomd States Page 68

known from previous projects, and actions identifog reviewing current project
requirements and choosing sensible verbs.

Creating arAction View. For each action, it is used to show the requirgmthat
use the action. The view also highlights the retethips between actions. This
is performed using the Theme/Doc tool to perforiaxacal analysis of the
requirements text (using the actions list definadier).

Identifying crosscutting actions(aspectual actiong)nd entitiesbeing used, and
removing non-crosscutting actions. Note that thethod identifies crosscutting
(aspectualpctions,and does not identify aspectuafuirementgas done by
other methods).

Creating &Clipped Action View. It shows the crosscutting hierarchy between
actions. Insights acquired here (regarding thm@s} are fed back to enhance the

requirements and actions list.

The following steps are performed as part of th@gitephase, using Theme/UML. These

steps are not evaluated in this work, becausedreglready part of the design phase:

5.

Creating arheme View to model thehemesdentified in the previous steps, for
each of the crosscutting actions.

The Theme/UML is used tacorporate crosscutting actions and identified
entities into the designas classes, methods, etc.

TheTheme Views are theraugmented to help verify the design choices made to

align with the requirements.

The primary goal of the Theme/Doc approach is gfoee, toidentify which of the

actions are themes. As described earlier, the actions are givemasjaut to the process.

Although it may be possible to automatically idgn#ctions from requirements, it was

found that using actions as input is a good stgupioint for finding themes. Also,

requirements that don’t seem to include any actoamsoften be refined to include them.

Because a product performs almost the same adiailfof its releases, once the action

list is defined, it can be reused from releaseetease with relatively minor

enhancements.

DRAS - Derived Requirements Generation by Actiomd States Page 69

6.3.3 Input Requirements Analysis using Theme and Theme/ax

This section evaluates the use of Theme/Doc methadalyze the input requirements
defined in Chapte4. This method can identify aspects from intetegldbehaviors of
FRs, and not just aspects of a NFR (as most otk#rads identify). Therefore, it seems
highly applicable for the type of requirements dedl in this work. In this work, only
techniques used for the Theme/Doc tool (for findaggects in requirements) are used
(according to the description by [Baniassad 04ifje reason being that this work only
deals with the requirements phase; it does noirmaminto the design phase. The

Theme/Doc tool itself was not used.

To simplify the evaluation, only the requiremenibset (defined in Chaptéd) is used.
The subset includes requirements for initiatindscdobr starting voice transmission) and
emergency mode, or to crosscut the normal modealtsl The subset does not handle

incoming calls, power on/off, registration, and imRibit.

6.3.3.1 Identifying Actions and Entities

The lists of actions and entities are generatefirbtyidentifying them in each
requirement, and then generating the lists. Nwdéethe lists can be made available from

earlier releases of the product (as describedegprli

6.3.3.1.1 Identifying Actions and Entities per requirement

In this step, actionandentitiesare identified per requirement. The following

conventions are used to mark actions (by underseogentities (by italics) In some

cases, the text of the requirements is enhanceldrify the analysis. In these cases,
[additional words] that were added are marked atarggular brackets. Also in
rectangular brackets are comments about thesaaudditvords [comments about added

words].

DRAS - Derived Requirements Generation by Actiomd States Page 70

Req-310:

Req-320:

Req-520:

PressindPTT [button] in Idle modeshall initiate a request for an

outgoing group callwith Normal Priority, to the predefinddormal

group. If acknowledged by tlsystemMS shall toggle taCall modeand

may start transmitting voice

[It was decided not to add the word “button,” bssame it for referencing

to button values as a reference to the buttonyehtit

PressindPTT [button] in Call modeshall cause the MS to ask the system

for permission to Tx voicevhen no one else is transmitting in the.call

TheMS may start to Tx voicenly if allowed by thesystem ThePTT

[button] [press] shall be ignoredhen someone else is already

transmitting in the call.

[PTT also refers to “press,” because the name “Higsfalk” should
probably add “press” to all references to PTT; RS & name, not an
action. “PTT ignore” may not be an action, bubastraint. See also

similar issues for “always” in Req-520 and Req-T10.

PressindPTT [button] in Emergency modeshall alwaysallow theMSto

initiate a call,as soon as possible, to themergency groupvith
Emergency priority

[“Always” is more likely a kind of constraint of modal operator, which
may be the subject of a later work in analyzinguirements that use
temporal logic.]

DRAS - Derived Requirements Generation by Actiomd States Page 71

Req-710: WhileMS s unregistered, no system related operation should be allowed
by theMS
[In this context, “system related operation” isstated to mean (see list

of actions below): initiate calbsk Tx permissignrx voice Therefore, it

is implied that the requirement refers to theseast]
[As for “always” in Req-520, it is not clear what'fallowed”. It may
require the use of modal logic, or should be regdday a “no call

initiation” action.]

Note that the use of modal operators, such as:diiy “allowed” are problematic in this
method. The method developed in this work paytisdiives these issues (see Chapjer

although further evaluation is needed, such asisleeof temporal logic methods.

6.3.3.1.2 Actions Identified

The actions identified in the previous step aredidelow. In practice, this list would
also be the basis for a pre-defined actions lsgduor future releases of the product.
Note that in some cases, the use of an actionrbgarement is implied; it is not used
directly. For example, “Initiate Call” is impligfdr Req-520 because “Press PTT in
emergency mode” implies initiating a call. Anotliesue is the use of “not.”

These phenomena are handled in the DRAS methodogheekin this work (see Chapter
7).

Press PTT[button]: Reg-310, Req-320, Req-520

e Ignore PTT Press Req-320

e Initiate [outgoing groupCall: Req-310, Reg-520 (implied), Req-710 (implied)

e (toggle) Call Mode[from Idle]to Active: Req-310

e Ask [the System for VoiceJx Permission Req-320, Req-520, Req-710
(implied)

e (toggle) Call State[from Rx]to Tx: Reg-320, Req-520 (implied?)

e Tx Voice: Req-310, Req-320, Req-520 (implied?), Req-7a{plied)

DRAS - Derived Requirements Generation by Actiomd States Page 72

Note that the actions were rephrased (in some rasesake the specification clearer and
more precise. It may be useful to restate theireopents using these actions definitions.
This approach will be evaluated as part of the oeethefined in this work. Also, note
that some actions can have shorter definitionsexample: using “press” instead of
“press PTT” in this context. However, because siadfimitions may not be unique (when
other requirements are added), it is better to laasjgecific definition for the actions. On
the other hand, it seems that in the TETRA MS cdntbutton” is redundant for “press”

actions. Although in another context, “press PTTdni should have been used.

6.3.3.1.3 Entities | dentified

Theentities identified are shown below. Because the actioesiaually related to
specific entities, the actions (related to thetess) are also listed (to provide more
information because these actions are often taken &ll requirements). Note that the
relationship between entities and their actiorsnslar to the methods defined for

classes in the object-oriented method. Also listedattributes related to the entity.

MS entity
0 Actions: PowelOn/Off
0 Attributes: Priority Mode flormal/Emergengy Call Mode (dle/Call),
Registration ModeRegistered/Un-registergd
= MSUser entity (note that the MS user is not directly ni@med in the
requirements, but its existence is implied)
0 Actions: Press <button> (<button> represents arth@MS’s buttons)
0 Attributes: none
= Call entity
o Actions: Initiation, Receiving
o Attributes: Call Priority Normal/Emergengy Call Direction
(Incoming/Outgoiny Call State Tx/R»
= PTT Button entity
0 Actions: Pressed

o0 Attributes: none

DRAS - Derived Requirements Generation by Actiomd States Page 73

= Emergency Button entity

0 Actions: Pressed

0 Attributes: none

= System entity

0 Actions: none (because the requirements are favithenly)

0 Attributes: because the requirements are for the dMSystem attributes
are reflected in MS related attributes for entitidherefore, the system
entity attributes are the related attributes frbmgystem point of view:
Call Mode (dle/Call), Registration ModeRegistered/Un-registergdCall
Priority (Normal/Emergengy System Call Direction
(Incoming/Outgoiny System Call Statd&/Rx.

Note that the system Call Direction and Call Stateopposite to the MS
state (e.g., when the MS transmits, the systemvwegke

The entities identification is not evaluated anstfer or used in this work, because they

are mainly used for the design phase.

6.3.3.2 Create Actions Views

The Actions View shows how actions are used byireqents. The Theme/Doc tool
uses lexical analysis to generate these viewse,Hee analysis was done manually.
Two types of inputs are used: a list of actionégated earlier [e.qg., for a previous

project] or in this case, as part of previous s&s) and the list of requirements.

6.3.3.2.1 Actions View (Theme/Doc) — Actions by Requirements

The actions used by each the requirements are:
0 Reg-310: Press PT(Normal Priority), Initiate Call(Normal Priority), Call Mode
to Active (Normal Priority), Tx Voice

0 Req-320: Press PT(NormalPriority), Ignore PTT Presg\sk Tx Permission

(Normal Priority), Call State to TXTx Voice

0 Req-520; Press PT(EmergencyPriority), Initiate Call([Emergenc), Ask Tx
PermissionEmergenc), Call State to TxTx Voice

DRAS - Derived Requirements Generation by Actiomd States Page 74

0 Reg-710:Initiate CalfUnregistered, Ask Tx Permission]x Voice

Figure-2 shows the Action view for requirement® (tigure was created manually and

without the Theme/Doc tool):

all Mode to Act] >

Figure-2 Action View for a Subset of Requirements

Note that attributes were added to some of thersstiEmergency Priority-Mode and
Unregistered Registration-Mode. These modes ntaka trosscutting-actions for other
requirements. Also note that adding attributethéoactions is currently not part of the
Theme/Doc method, but without this information, thesscutting nature of some of the
requirements is not visible.

As seen irFigure-2, the Action View does not offer much helpdentify crosscutting
requirements and create derived requirements.nigie purpose of Theme/Doc is
identifying crosscutting actions. To create deriveguirements, crosscutting
requirements are the main issue. For this reasore steps related to this method are

not evaluated.

DRAS - Derived Requirements Generation by Actiomd States Page 75

6.3.4 Applicability of Theme/Doc for creating a Derived Requirement

As understood from the previous paragraph, thisatets not well suited for creating
derived requirements. However, the method is U$efudentifying actions and their
attributes that make requirements crosscut. Tgpscach is used as part of the DRAS

method.

DRAS - Derived Requirements Generation by Actiomd States Page 76

7 The DRAS Methodology

This chapter describes tBRRAS(Derived Requirements generation by Actions and

State$ methodology for generating DRs from stakehol@guirements, as shown king.

6. The requirements, defined in Chapteare used as an example for this methodology.

Prototype implementation scripts for some of theAl3Rbrocess steps were developed,

and were used to produce some of the tables ircliaigter. These scripts perform the

following steps:

e Identifying actions used by requirementdased on the manual actions and entities
lists directly used by each action (actions ortegtidirectly used by each
requirement).

e Identifying requirements-action attributes.

e Identifying match-points between requirements.

The input to the scripts is the output of parsimg tequirements, and the manually

identified actions and attributes. The outputhaf $cripts is the tentative match-points.

Because of the fixed priorities per requiremens tnly possible to suggest which

requirement is the crosscutting requirement. Imegal, no part of the requirements text

analysis is automated.

7.1 Gathering the Stakeholders’ Requirements

In this step, the stakeholders’ requirements atieegad and formulated. Different
methods may be used to gather and formulate reqairts (see [Creveling 03] for details
of some of these methods). The requirements deéadier will be used to explain how
the other steps of DRAS work.

7.2 ldentifying Actions, Entities and Attributes
The lists of actions, entities, and attributes (rtyamodes and states) for the system
(TETRA MS in this work) are identified. The attuites are then used to analyze the

requirements. The contents of some lists are fseall systems, while the contents of

DRAS - Derived Requirements Generation by Actiomd States Page 77

other lists are specific to the system (TETRA M8this work). The following sections
describe the different lists by DRAS.

7.2.1 General Lists for all Systems

Action Modifiers
This attribute defines whether the use of an adipa requirement is about restricting its
use, or ease of other restrictions for its usee dd¢tion modifier is assigned separately
per each action used by a requirement. As defimsdction3.3.4, possible values are:

e NULL

e Unconditional

e Restrict

Composition Rules
The way a crosscutting requirement affects theiremqent it crosscuts is defined here.
This is based on [Brito 03]. As defined in sect®8.6, possible values are:

e Overlap Before or After

e Override

e Wrap (around)

Relative Priorities
This step defines Relative Priorities between neguents or attributes. It is also based
on [Brito 03]. As defined in sectidh3.5, possible values are:

° “qn

e Same

“wn

7.2.2 General Lists with Specific System Contents

Some of the lists defined in this section confoondieas found in [Baniassad 04b] for
identifying entities and actions in the requirensemind in [Brito 03] for identifying

attributes in them.

DRAS - Derived Requirements Generation by Actiomd States Page 78

Entities

This is the list of entities identified in the sgst. For system requirements of the

TETRA MS example, identified entities are:

Incoming Call
MS

Outgoing Call
PTT

System

Note that it is possible to add aatorslist. In this case, MS User may be included is th

list as the person who presses the PTT buttonng€yuently, “Pressing PTT” could

have been written as “MS User presses PTT”.) pbfy the example, it was decided

not to use the MS User actor in the requirements te

DRAS - Derived Requirements Generation by Actiomd States Page 79

Actions

Table 6 shows the list of actions as identifiethi& requirements.

Table 6 Actions List

Action MS Initiated Note
Ask Tx Permission Yes
Call Ack No Ack Initiate Call by the System
(Call Mode to Active | Yes |
(Call Nack ' No |Nack Initiate Call by the System
Call State to Tx Yes
De-register Yes
Initiate Call Yes
Join Incoming Call Yes
Power Off Yes
Power On . Yes |
Press PTT . Yes |
Receive Incoming Ce No
Register Yes
Tx Yes
Tx Control Yes
Tx Voice Yes

This is the list of functional actions used in #ystem. For each action, specific system
attributes can be added. For the MS, one attrisudefined: whether the action is
initiated by the MS, or by the TETRA system. A mgeneral definition would be to
define thdnitiating Entity for the action.

Modes and States

This is a list of possible modes and states, relatehe entities used by the requirements.
Each mode or state is also tagged as crosscuttingto Non-crosscutting modes or
states are used later in the analysis to idensiheetual requirements and their effect on

other requirementsTable 7 is the list for the input requirements.

DRAS - Derived Requirements Generation by Actiomd States Page 80

Table 7 Modes and States List

Mode Crossculttin
Coverage_Mode Yes
Registration_Mod Yes
MS_Call_Mode No
Call_State No
Power_State Yes
MS_ Priority Yes
Call_Priority | Yes
Tx_Mode | Yes

For each mode or state, the list of possible vakidgefined inTable 8.

Table 8 Modes and States Values

Mode Value 1 Value 2 | Value 3| Value 4
Coverage_Mode In Out
Registration_Mod| Registered |Unregistere(|
MS_Call_Mode Idle Call
Call_State Rx TX No-Tx | No-Voice
Power_State Power-Off |Powering-O1Power-OrPowering-Off
MS_ Priority Normal Emergency
Call_Priority Normal Emergency
Tx_Mode \Allowed (TXA)|Inhibit (TXI) | |

In addition, a table that lists contradicting paifsnodes values is generated. This table
(Table 9) is later used to remove possible conflietisveen requirements that usually
cannot occur in reality. There are two types afhscontradictions:

e Values of two different modes (the second rowable 9 - unregistered MS that

is in a call - MS cannot take part in a call withoegistering to the system first).

DRAS - Derived Requirements Generation by Actiomd States Page 81

Table 9 Contradicting Pairs of Mode/State Values

Model Valuel Mode2 Value2
Coverage Out MS_Call_Mode |Call
Registration_Mod|Unregistere(MS_Call_Mode |Call
Power_State Power Off |Registration_ModRegistered
Power_State Poser Off |Coverage In

7.3 Identifying Correlations between Actions and Entites
In this step, correlations among actions, amongiesitand between actions and entities
are identified. That is, which actions are useeagh entity in the system and therefore,

which entities are relevant for each action.

7.3.1 Entities used by Action

For each action, the list of entities used by #wditon is defined. It is later used to
identify correlations between requirements thairgefunctionality based on entities and
requirements that define functionality based oatesl actions.

Table 10 summarize these relations for input reso@nts. An empty cell indicates that
there is no relation, while Yes/No indicates whethre entity is always used by the
action. For example, the system is always a garaélbinitiation, because all call traffic
must go through the system. On the other handsystem will not be involved after

pressing PTT, if someone else is already talking.

DRAS - Derived Requirements Generation by Actiomd States Page 82

Table 10 Entities used by Actions

Action MS|Systen|PTT Ouégao"ing Incg;rllling
Ask Tx Permission |Yes| Yes
Call Ack Yes Yes Yes
Call Mode to Active |Yes Yes Yes Yes
Call Nack Yes Yes Yes
Call State to Tx Yes Yes Yes Yes
De-register Yes| Yes
Initiate Call Yes| Yes | | Yes |
Join Incoming Call |Yes Yes | | | Yes
Power Off Yes No
Power On Yes No
Press PTT Yes No |Yes| Yes
Receive Incoming CelYes Yes Yes
Register Yes Yes
Tx Yes Yes
Tx Control Yes Yes @ | |
Tx Voice Yes Yes | | Yes | Yes

Note that the MS entity is used by all of the at$idbecause the requirements are for the
MS. Therefore, the MS entity is practically redantlin the analysis of this specific set

of requirements.

7.3.2 Actions Directly Implied (used) by Action

For each action, the list of actions that theyalyeimply (i.e., that are directly used by
the action) are defined. These relations betwegare are later used to identify all
actions that are used by the requirements, whelihestly or indirectly.

Table 11 presents these relations. The Must coladinates whether the implied action

must be used (e.g., Registration during Power-Gmis must).

DRAS - Derived Requirements Generation by Actiomd States Page 83

Table 11 Actions Implied by Action

Action Implied_Action |Must Note
Initiate Call Call Ack Yes |Ack by the Systen
Initiate Call Call Nack Yes |Nack by the System
Power On Register No
Power Off De-register No
Register Tx Control Yes
De-register Tx Control Yes
Press PTT Initiate Call | Yes|
Press PTT /Ask Tx Permission| Yes |
Initiate Call Call Mode to Activq Yes
Initiate Call Tx Control Yes
Initiate Call Ask Tx Permission| Yes
Receive Incoming CéeJoin Incoming Call| Yes
Join Incoming Call |Call Mode to Active Yes
/Ask Tx Permission |[Tx Control | Yes|
/Ask Tx Permission |Call State to Tx | Yes |
Call State to Tx Tx Voice Yes
Tx Control TX Yes
Tx Voice TX Yes

7.3.3 Actions used by Action

For each action, the list of actions that it usasthér directly or indirectly) is defined.
The list is generated from the list of actions dirgimplied (Table 11). These relations
between actions are later used to correlate betwezpnrements, based on the use of
different but related functional actions. For exdenReq-610 specifies that when MS is
in theTXI (Tx Inhibit) mode, it should not transmit. To wmdtand which actions are
affected by Reg-610, all actions that may resuttansmission should be identified.

The table is created by recursively identifying #fttions that are used by an action,
based on the previously identified, implied actioii$e initial values are taken from
Table 11.

Pseudo code to generate the “Actions Used by Attadrie:

From each record in “Actions Implied by Action” (Table 11):

DRAS - Derived Requirements Generation by Actiomd States Page 84

Create record in “Actions Used by Actions” tabl e with
Action, Implied Action, Must
End From
Repeat until no new record is added (no duplicates) :
Foreach two records in “Actions Used by Actions ?
were R1.Implied_Action = R2.Action:
Create record in “Actions Used by Actions” table with
R1.Action, R2.Implied_Action, Must
End Foreach
End Repeat

Table 12 summarizes which actions are used by a&etaim.

Table 12 Actions used by Action Summary

Implied Actions

Call
Ask Tx Mode Call Join
Permiss Call to Call State De- Initiate Income TX Tx
Action ion Ack ActiveNack to Tx Reg. Call Call Reg. Tx Control Voice

IAsk Tx Permission Y Y Y Y
Call State to Tx Y Y
De-register Y Y
Initiate Call Y Y Y Y Y Y Y Y
Join Incoming Call Y
Power Off N N N
Power On N| N N
Press PTT Y Y Y Y Y Y Y Y Y
Receive Incoming
Call Y Y
Register Y Y
[Tx Control Y
Tx Voice Y

7.4 ldentifying Actions and Entities used by the InputRequirements
and their Priorities

In this step, the actions and entities that arectly used by input requirements are
identified. For each action and entity, the appeip modesandstatesare also

identified. In addition, the relativariorities of the requirements are set.

DRAS - Derived Requirements Generation by Actiomd States Page 85
Table 13 Input Requirements Split - use of Actions and Enties
Req. [|Part . Action . .
Num Num Sub Requirement Modifier Action Entity
Reqg-250| 1 [On power-on Power On
Reg-250| 2 |MS shall register to the system | RRegister |
Reg-260| 1 |On power-off Power Off
Reg-260| 2 |MS shall de-register first from the system, ifsit De-register
successfully registered
Reg-270| 1 [MS shall be able to power-off in any state Power Off
Reqg-310| 1 |Pressing PTT in Idle mode shall Press PTT
Reg-310| 2 |initiate a request for outgoing group call to the Initiate Call
system, with Normal Priority to the predefined
Normal group.
Reg-310| 3 |If acknowledged by the system | Call Ack |
Reg-310| 4 |MS shall toggle to Call mode Call Mode to Active
Reg-310| 5 |and may start transmitting voice Tx Voice
Reg-320| 1 |Pressing PTT in Call mode | PPress PTT |
Reg-320| 2 [shall cause MS to ask the system for permiss Ask Tx Permission
to Tx voice, when no one else Tx in the call.
Reg-320| 3 |If allowed by the system Call Ack
Reg-320| 4 |MS may start Tx TXx Voice
Req-320| 5 |[The PTT shall be ignored when someone elsglgnore |Press PTT
already Tx in the call.
Reg-330| 1 |When receiving incoming Group call in Idle Receive Incoming
mode Call
Reg-330| 2 |MS shall toggle to Call mode | (Call Mode to Active |
Reg-330| 3 [and join the call. Join Incoming Call
Reg-340| 1 (When receiving incoming Group call in Call Receive Incoming
mode, Call
Reg-340| 2 |MS shall internally reject the call. Ignore [Join Incoming Call |
Reg-520| 1 |Pressing PTT in Emergency mode Uncond. [Press PTT
Reg-520| 2 |shall always allow the MS to initiate a call, as [Uncond. |Initiate Call
soon as possible, to the Emergency group wit
Emergency priority.
Reg-540| 1 |When received Incoming Call with EmergencyUncond. |Receive Incoming
priority Call
Reg-540| 2 [MS shall join the call if not in Emergency call [Uncond. |Join Incoming Call
Reg-610| 1 |When in TXI Mode, MS shall ignore any requ¢lgnore [Tx
to transmit
Reg-710| 1 |While MS is unregistered, no system related |[lgnore Systen
operations should be allowed by the MS
Reg-720| 1 |When MS is out of coverage, pressing PTT slignore |Press PTT
be ignored
Reg-730| 1 |When MS power-on while it is out of coveragellgnore |Register
should not try to register
Req-740| 1 |When MS is out of coverage, MS shall not try|lgnore [Tx
transmit

DRAS - Derived Requirements Generation by Actiomd States

Page 86

7.4.1 Split Requirements Text per Action/Entity (Manual)

In this step, each input requirement is split (nadiy)iinto parts, based actionsand

functional entitiesused by it (the Actions and Entities were defimethe lists described

earlier). Functional entities are the entities tha requirements directly refer to, as part

of specifying the functionality. Each record irettable includes one action or entity.

An important attribute (defined per action and tgiiis theaction modifier Restrictor

Unconditional(see Sectio8.3.4). Itis later used to identify the impliectians and to

help decide whether a requirement crossciitshle 13 shows the split of input

requirements.

Note that in this set of input requirements, onggR’ 10 is specified by entity (the

“System” entity) and not by action.

7.4.2 Attributes (Modes and States) of Requirements Parts

For each part of a split requirement, the relataibates, modes and states are identified.

This helps us to identify the concerns and aspéparés of the requirement§.able 14

shows the split requirements table with the attabdor the input requirements.

Table 14 Requirements Attributes of Actions and Entities

MS
Req. |Part| Action Cove Reg. | Call | Call Power MS | Call | Tx
Num | # |Modifier| Action |Entity [rage|Mode|Mode|State| State|Prio.| Prio. [Mode| Comments
Req-320 5 |lgnore |Press PTT NA [NA |Call [Rx |NA [NA |NA NA
Reqg-250 1 Power On NA [UnregNA [NA |Off |INA |NA NA
Power
Reg-250 2 Register NA [UnregiNA |INA |On [NA |NA NA
Reqg-260 1 Power Off NA INA NA |NA [On |NA |NA NA
Power
Req-260 2 De-register NA [Reg. NA |NA |Off |NA |NA NA
Reqg-270 1 Power Off NA INA |NA |NA [NA |NA NA NA
Reqg-310 1 Press PTT NA |INA |[idle NA [NA |NA NA NA
Initiate
Req-310 2 Call NA [NA (ldle NA |NA |NA |Norma|NA
Reg-310 3 Call Ack NA [INA |idle NA [NA |NA NA NA

h

DRAS - Derived Requirements Generation by Actiomd States Page 87
MS
Req. |Part| Action Cove Reg. | Call | Call |Powerl MS | Call | Tx
Num | # |Modifier| Action |Entity [rage|Mode|Mode|State| State|Prio.| Prio. |[Mode] Comments
Call Mode Not
Reg-310 4 to Active NA [INA [Call Tx |NA |NA NA NA
Reg-310 5 Tx Voice NA |NA [Call [Tx [NA |NA |NA NA
Reg-320 1 Press PTT NA |INA [Call NA |NA |NA NA NA
Ask Tx No
Req-320 2 Permission NA |NA [Call MoiceNA [NA |NA NA
No
Reqg-320 3 Call Ack NA |NA [Call MoiceNA [NA NA NA
Reg-320 4 Tx Voice NA INA [Call [Tx |NA |NA NA NA
Receive
Incoming
Reg-330 1 Call NA |INA (idle NA |NA |NA NA NA
Call Mode
Req-330 2 to Active NA [INA [Call NA |NA |NA NA NA
Join
Incoming
Reg-330 3 Call NA [INA [Call NA INA |NA INA NA
Receive
Incoming
Reqg-340 1 Call NA |NA [Call NA |NA [NA INA NA
Join
Incoming Reject = Ignore
Req-340 2 |Ilgnore (Call NA |NA [Call NA |NA |NA |NA NA |Request
Eme
genc
Reg-520 1 |Uncond. | Press PT NA INA INA INA |NA |y NA NA
Eme
Initiate genc Always =
Reg-520 2 |Uncond. Call NA NA NA INA NA y NA NA |Unconditionally
Receive
Incoming Emerge
Reg-540 1 |Uncond. (Call NA NA NA |NA |NA |NA jhcy |NA
No Tx = Ignore
all related
Reg-610 1 |lgnore |Tx NA INA NA |NA |NA |NA |NA TXI [activities
All actions
Syste related to
Req-710 1 |ignore m NA [UnregiNA |INA |NA [NA |NA NA [System Entity
Reqg-720 1 |lgnore |Press PTT Out NA INA INA INA |NA NA NA |lgnore
No try to
Register =
Power Ignore Reques
Reg-730 1 |lgnore |Register Ouf UnreJA |NA [On |NA |NA NA o Register
No Tx = Ignore
all Requests ta
Reg-740 1 |lgnore |Tx OutNA |INA |INA |[NA |NA NA NA [Tx
Join
Incoming Emerg
Reg-540 2 |Uncond. (Call NA NA NA |NA |NA |NA |ncy TNA

DRAS - Derived Requirements Generation by Actiomd States Page 88

7.4.3 Requirements Priorities

Relative priorities for the requirements are noviirgl. The relative priorities help to
identify which is the crosscutting requirement. bl§y a crosscutting requirement cannot
have a priority lower than the requirement it congs.

For the requirements defined in this work, priotéyels were set as 1-6 (where 6 is the
highest priority). Level 6 is used only for emarnge related requirements. Level 5 is
used for requirements that are related to forcedlitions, such as not being able to

transmit to the system when MS is out of coverage.

7.5 Identifying Actions used by the Requirements

In this step, the list of all actions used by thguirements, whether directly or indirectly,

are identified. The purpose is to verify that witkecking whether a requirement

crosscuts another requirement, all the common ree(ieferred to by the requirements)

are taken into account. The action-modifier isrtfan attribute used to create the list of

actions (used by the requirements).

The following steps are performed to generateitte |

1. The list of entities used by the requirements isegated from the Split Requirements
table (Table 11), including action-modifier attributesorfhe requirements given

here, the table includes only one row.

Pseudo code to generate the “Entities Used by Reagent” table:
Foreach record in “Requirements Split” table:
If Entity is not Null
Add record to “Entities Used by Requiremen t” table
with Requirement_Number, Entity,
Action_Modifier, Direct_Use="Enti ty”

End Foreach

Requirement Number| Entity |Action Modifier |Direct Use

Reqg-710 Systen/Restrict Entity

Table 15 Entities used by Requirements

DRAS - Derived Requirements Generation by Actiomd States Page 89

2. Based on the entities used by each acfi@ble 10), the list of actions indirectly used
by the requirements is generated according torntiges used by the requirements.
The attribute “Direct Use” is added with the “Egtivalue; this means the
requirement is using the action through an entityses. Note that since the table
below is based on one requirement (Req-710), tleti6A Modifier” and “Direct

Use” attributes are identical for all of the reguirents.

3.
Pseudo code to generate the “Actions Used by Enéibte:
Foreach record in “Entities Used by Requirement” a s EUR:
Foreach record in “Actions Related Entities” a s ARE,
with Entity = EUR.Entity:
Add record to “Action Used by Entity” tabl e with

EUR.Requirement_Number, ARE.Action,
EUR.Action_Modifier, EUR.Direct_Use
End Foreach

End Foreach

Requirement_Numbe Action Action_Modifier |Direct_Us
Req-710 Power Off Ignore Entity
Reqg-710 Power On Ignore Entity
Reqg-710 Register Ignore Entity
Reqg-710 TX Ignore Entity
Reqg-710 De-register Ignore Entity
Req-710 Initiate Call Ignore Entity
}Req-?lo |Ca|| Mode to Active \Ignore |Entity
}Req-?lo |Receive Incoming Céllgnore |Entity
Req-710 Ask Tx Permission |(Ignore Entity
Reqg-710 Tx Control Ignore Entity
Reqg-710 Join Incoming Call |Ignore Entity
Reqg-710 Call State to Tx Ignore Entity
Req-710 Press PTT Ignore Entity
Req-710 Tx Voice Ignore Entity

Table 16 Actions per Entity

DRAS - Derived Requirements Generation by Actiomd States Page 90

4. At this step, the list of actions directly usedthg requirements is generated, along
with the “Direct Use” attribute (where the requiremts directly use the actions [only

part of the list is shown]).

Pseudo code to generate the “Actions Used by Remeint” table:

Foreach record in “Actions Used by Requirement” as EUR:
Foreach record in “Actions Related Entities” a s ARE,
with Entity = EUR.Entity:
Add record to “Action Used by Requirement” with
Requirement_Number, Action, Action_Mod ifier,

Direct_Use = “Yes”
End Foreach

End Foreach

Requirement_Numbe Action Action_Modifier |Direct_Us
Req-320 Press PTT Ignore Yes
Req-250 Power On Yes
Req-250 Register Yes
Req-260 Power Off Yes
Req-260 De-register Yes
Req-270 Power Off Yes
Req-310 Press PTT Yes
Reg-310 Initiate Call | Yes
Reg-310 Call Ack | Yes
Req-310 Call Mode to Active Yes
Req-310 Tx Voice Yes
Req-320 Press PTT Yes

Table 17 Actions Directly used by the Requirements (excerpt)

5. The list of actions used by each requirement adagrid the entities each
requirement uses (which was generated earlienpuwsappended to the “Actions

used by Requirements” table (Sksble 18).

DRAS - Derived Requirements Generation by Actiomd States Page 91

6. For each actioct which isrestrictedby the requirement (according to the action-
modifier), the use of all actions implying the weAct may also need to be restricted.
For example, if the MS should not transmit whemgrait is Inhibited TXI mode), all
actions that result in transmission may also nedwktignored. Therefore, all of these
implied actions are added to the list. A “Diretd] attribute for these added actions
is set to “Restrict”, indicating that they were addecause of the “Restrict” attribute
of their implying action. The Action Modifier fdhese actions is set to “Restrict” as
the implying action. This is performed usifigble 12 (actions used by each action).

Pseudo code to add the “Ignored” using action@witns Used by Requirement”

table:
Foreach record in “Actions Used by Requirement” as AUR,
with Action_Modifier = “Restrict”:
Foreach record in “Actions Used by Action” as AUA,
with Action = AUR.Action:
Add record to “Action Used by Requirement” with
AUR.Requirement_Number, AUA.Used_By Ac tion,
AUR.Action_Modifier, Direct_Use="Restr ict”

End Foreach

End Foreach

7. For each actioAct which is performedinconditionally(according to the action-
modifier), all actions that are used Agt may also have to be allowed. For example,
if the MS should be allowed to initiate a callEmergencynode, then it should also
be allowed to transmit. Therefore, all actionsdulsg unconditional actions are added
to the list. A “Direct Use” attribute for thesedsdl actions is set to “Implied”,
indicating that they were added because of the tidditional” attribute of their
implying actions. The action-modifier for thesdiaws is set to “Unconditional” as
the implying action. This is also performed usirable 12 (the table for actions used

by each action).

Pseudo code to add the “Ignored” using action®witns Used by Requirement”

table:

Foreach record in “Actions Used by Requirement” as AUR,

DRAS - Derived Requirements Generation by Actiomd States Page 92

with Action_Moadifier is not “Restrict”:

Foreach record in “Actions Used by Action” as AUA,
with Action = AUR.Used_BY_Action:
Add record to “Action Used by Requirement” with
AUR.Requirement_Number, AUA. Action,
AUR.Action_Modifier, Direct_Use="Impli ed”

End Foreach
End Foreach

Table 18 Actions Used By Requirements (excerpt)

Requirement_Numbel Action [Action_Modifier |[Direct_Us
Req-250 Power On Yes
Req-250 Register Yes
Req-250 TX Forward
Req-250 TX Forward
Req-250 Tx Control Forward
Req-250 Tx Control Forward
\Req-260 \Tx Control| |Forward
Req-260 Power Off Yes
Req-260 De-registe Yes
Req-260 TX Forward
Req-260 Tx Control Forward
Req-260 TX Forward
Req-270 Power Off Yes
IReq-270 De-registe) IForward
. | | |
Req-730 Power Onj|lgnore Ignore
Req-730 Register |Ignore Yes
Req-740 Power Onj|ignore Ignore
Req-740 Register |Ignore Ignore
Req-740 Tx Controlignore Ignore
Req-740 Press PTT|Ignore Ignore
\Req-740 \Tx |Ignore |Yes

... | | |

The “Actions used by Requirements” tabl@able 18), created by the steps above, shows

part of the list for all actions used by the regments, directly or indirectly. Note that

DRAS - Derived Requirements Generation by Actiomd States Page 93

some rows may be created more than once, as & oéslifferent requirements. These

redundancies are removed in later steps.

7.6 Identifying Requirements-Actions Attributes

Now the Actions Used by Requirements table {&aae 18) is extended, by identifying
each Requirement-Action pdReq-Act showing in which conditions it is performed
according to the requirement. The proper attébdibrReq-Act(mainly modes and
states) are identified based on the attributestidras and entities tabl@éble 14). In
the case thaictis not directly used bRReq the actiorAct' that causedct to be related
to Regand that is directly used BReqshould first be identified. Then the row of the
split table that is relevant to tieq-Actshould be identified.

Pseudo code for the creation of the “RequiremetribAtes” table:

For all records with the same Requirement Number
from “Requirements” table as R
“Requirements Split” table as RS

“Actions Used by Requirement” table as AUR
with the same Requirement Number
and where
(AUR.Action=RS.Action And AUR.Direct_Us e="Yes")
Or (RS.Action_Modifier="Unconditionally " And

AUR.Direct_Use="Implied")

Or (RS.Action_Modifier="Restrict" And
AUR.Direct_Use="Restrict")

Or AUR.Direct_Use="Entity"

Add record to “Requirements Attributes” table w ith
Requirements Number, R.Priority, RS.Action_ Modifier,
AUR.Action, all attributes from RS

End For

Following is part of the full Requirement-ActiontAbutes table for the input

requirementsTable 19).

DRAS - Derived Requirements Generation by Actiomd States Page 94
Table 19 Requirement-Actions Attributes (excerpt)
MS
Prio| Action Cover| Reg. | Call |Call | Power | MS Call TX
Reqg. Num rity | Modifier Action age | Mode |Mode|State| State |Priority |Priority |Mode
Reg-250 | 5 Power On INA |Unreg. NA [NA [Off NA NA NA
Power
Reqg-250 | 5 Register NA |Unreg. NA |NA |On NA NA NA
Power
Req-260 | 5 De-register NA |Reg. |[NA |NA [Off NA NA NA
Req-260 | 5 Power Off INA |NA NA NA |On NA NA NA
Reqg-270 | 5 Power Off INA |NA NA INA |NA NA NA NA
Reg-310 | 4 Call Ack NA INA Idle [NA |NA NA NA NA
Call Mode to Not
Reqg-310 | 4 Active NA INA Call [Tx |NA NA NA NA
Reg-310 | 4 Initiate Call [NA |NA Idle INA |NA NA Norma [NA
Reqg-310 | 4 Press PTT [NA |NA Idle |[NA |NA NA NA NA
Reqg-310 | 4 Tx Voice NA NA Call [Tx |NA NA NA NA
IAsk Tx No
Req-320 | 4 Permission [NA INA Call |VoiceNA NA NA NA
No
Req-320 | 4 Call Ack NA [NA Call |VoiceNA NA NA NA
Req-320 | 4 Press PTT [NA |NA Call [NA |NA NA NA NA
Req-320 | 4 Tx Voice NA [NA Call |Tx [|NA NA NA NA
Req-320 | 4 |Ignore Press PTT |[NA |NA Call |[Rx |NA NA NA NA
Call Mode to
Reqg-330 | 4 Active NA INA Call [NA [NA NA NA NA
Join Incomin
Req-330 | 4 Call NA INA Call [NA |NA NA NA NA
Receive
Reg-330 | 4 Incoming CalNA |NA Idle [NA |NA NA NA NA
Receive
Req-340 | 4 Incoming CalNA [NA Call NA |NA NA NA NA
Join Incomin
Reqg-340 | 4 |ignore |Call NA INA Call [NA |NA NA NA NA
Receive
Reg-340 | 4 |lgnore ([Incoming CalNA |NA Call NA |NA NA NA NA
Ask Tx Emerger
Reg-520 | 6 |Uncond. Permission INA [NA NA INA NA cy NA NA
Emerger
Reg-520 | 6 |Uncond. | Call Ack INA INA NA NA |NA cy NA NA

7.7 ldentifying Match-Points between the Requirements
In this step, crosscutting requirements and thairements they crosscut are identified.

This is performed by identifying theatch-points between requirements, using their

common attributes. The common attributesamtions modesstates and other

DRAS - Derived Requirements Generation by Actiomd States Page 95

attributes that are common to the requirementst{{B3] also addsandidate aspect®
the match-points). This is based on ideas front¢E)3] and [Rashid 03]. Also included
arepriorities for the requirements.

The table that identifies match-points is in marays/similar to the commonly used
traceability matrix (between requirements and teab-products), used during the
development process. A major difference betweesettables is that the traceability
matrix is mainly used to trace between artifactsfidifferent development phases, while
match-points help to create DRs in the same dewaop phase (the requirements

phase).

The match-points are mainly identified by modes stiates. This is because the
requirements defined here are event-based (butess pincoming call, change mode,
etc.). They define the MS main function in casesthevents happen. They hardly

include specifications for additional, non-evenséa functionality, such as Logging.

Match-point identification is performed in threess:

1. Identify the list of match-point candidates betweeguirements, according to
the use of common actions and different valuesfisibutes.

2. Remove redundancies that were created by multiptemes between two
requirements (mainly caused by several impliecbastthat match between
requirements).

3. Remove match-points that cannot happen in reddagéd o able 9), or do
not have at least one different crosscutting madgtate (based ohable
14Table 19).

These steps are described further below.

DRAS - Derived Requirements Generation by Actiomd States Page 96

7.7.1 List of Match-Point Candidates between Requirements

In this step, all requirements using a common acii@ identified (based on the actions

used by the requirementEdble 18] and the requirements attributesljle 19]). The

following criteria are used to match between rezguents:

1. The same action is used - based on the actionshysth@ Requirements table and the
Requirements Attributes table.

2. The priority of the crosscutting requirement iseast as high as the priority of the
requirement it crosscuts.

3. The action is either directly used by the requiretikat is being crosscut, or it is
used because of an entity used by the requirementQirect-Use is “Yes” or
“Entity”). This prevents redundancies becausectibas used by that action.

4. The Action Modifier for the crosscutting requiremh¬ null (i.e., it is “Restrict”
or “Unconditional”). Only such requirements cand®isome functionality on other
requirements (i.e., crosscut them).

5. The Action Modifier for the requirement that is bgicrosscut is different from the
Action Modifier for the crosscutting requirement.both requirements have the same
Action Modifier, then they specify related functadity that does not imply changes

to one of them.
The match-points list includes the mode or statéates for the crosscutting
requirement. The attributes, if needed, are aviailtbm the requirements attributes table

(Table 19).

Pseudo code for the creation of the “Candidate M&wints” table:

For each pair of records from “Actions Used by Requ irements”
table, with the same Action but that are the result of different
requirements:
where the priority of the first requirement is lower
than the priority of the second re cord
and where the action of the first record is directly used
by a requirement or is a result of using Entity
and Action Modifier of both records is not t he same

Add record to “Match by Action” table with
Action, all attributes of action
from “Requirements Attributes” table re cord

DRAS - Derived Requirements Generation by Actiomd States Page 97

with same Action
and with Requirement Number of the second record
Requirement_Number, Priority, Action_Modifi er
from first requirement
Crosscut_Number, Crosscut_Priority,
Crosscut_Action_Maodifier2
from second requirement

The candidate match-points that have been idedtifi¢his step are listed ifiable 20.

DRAS - Derived Requirements Generation by Actiomd States Page 98
Table 20 Candidate Match-Points
Req |[Prio| Action |Crosscut|Crosscut | ngzzim Action Cover| Reg. [Powery MS | Call | Tx
Num | rity {Modifier | Num | Priority Modifier age |Mode| State| Prio. | Prio. | Mode
Req-250| 5 Reqg-610 5 Ignore [Power On|NA |NA NA INA INA [TXI
Req-250| 5 Req-610 5 Ignore |Register INA INA INA |NA |NA [TXI
Req-250| 5 Reqg-710 5 Ignore [Power On|NA |[Unreg.NA [NA |INA INA
Reqg-250| 5 Reg-710 5 Ignore |Register INA |Unreg.NA |NA [NA |NA
Req-250| 5 Req-730 5 Ignore [Power OnOut |[Unreg.PowerNA INA NA
On
Reqg-250| 5 Req-730 5 Ignore |Register |Out |Unreg.PowerNA [INA NA
On
Req-250| 5 Reg-740 | 5 |ignore |Power Onjout |NA [NA |NA |NA NA
Reg-250| 5 Reg-740 | 5 |ignore |Register [Oout INA INA INA [NA NA
Reqg-310| 4 Reqg-320 4 Ignore |Press PT‘I|NA NA NA |INA |NA [NA
Reqg-310| 4 Reqg-320 4 Ignore |Press PT‘I|NA NA NA |INA |NA |NA
Reqg-310(4 Reg-520 6 UnconditiCall Ack INA [NA [NA |[EmergNA [NA
onally ency
Req-310| 4 Req-520 6 UnconditiCall Mode]NA INA INA |[EmergNA |NA
onally [to Active ency
Reg-310(4 Reg-520 6 Unconditilnitiate INA [NA [NA |[EmergNA |NA
onally |Call ency
Reqg-310| 4 Req-520 6 UnconditiPress PTINA |[NA INA [EmergNA |NA
onally ency
Reqg-310(4 Reg-520 6 UnconditiTx Voice INA [NA [NA |[EmergNA |NA
onally ency
Req-330| 4 Req-340 4 Ignore Join NA [NA NA |NA |INA |NA
Incoming
Call
Req-330| 4 Req-340 4 Ignore |Receive INA |INA INA |NA |NA |NA
Incoming
Call
Req-330| 4 Req-340 4 Ignore |Receive INA |INA INA |NA |NA |NA
Incoming
Call
Req-340| 4 |Iignore |[Reg-540 6 UnconditiJoin NA [NA |NA |NA |EmergNA
onally |Incoming ency
Call
Req-340| 4 Req-710 5 Ignore |Receive |INA |Unreg.NA |NA |NA |NA
Incoming
Call
Req-610| 5 |Ilgnore [Reg-520 6 UnconditiTx NA [NA |NA |[EmergNA |NA
onally ency

DRAS - Derived Requirements Generation by Actiomd States Page 99

7.7.2 Remove Redundant Entries

In this step, redundant rows generated in the dtegh are deleted. Redundant rows are
created in the first step because two requirenteaisbe matched to several actions that
are implied by one action (accordingTtable 12). For example, requirements that match
because of Initiate Call may also be matched becali$x-Voice (which is implied by

call initiation). Redundancy may also occur beeaausequirement uses different Action

Modifiers in different requirement parts (SEable 13).

Pseudo code for removing the redundant records:

Delete each record from “Match By Action”
where a second record exist
that results from the same Requirement
and with the same Crosscut Requirement
and with Action that uses the Action of the first record
End Delete

For example, from the following match-points betw&eq-310 and Reg-520, only the
“Press PTT” action is kept; all other actions aeursively implied by the Press PTT

action, and therefore are removed (the strikethiagions).

Table 21 Removed Redundant Candidate Match-Points

Cr
| actor Crosscut cc:)ljf
Reqg Numlorit [Modifie Crosscut Action Modifier| Action
r Num | Pr
y iori
ty
Reg310 | 4 Reg-520 6dneond Cal-Aek
Reg310 | 4 Reg-520 6Jneond Cal-Mede
to-Active
Reg310 | 4 Reg-520 6dneond thitiate-Call
Reg310 | 4 Reg-520 6Ynecond PressPFT
Reg310 | 4 Reg-520 6Jncond Fx-\oice

7.7.3 Remove Impossible or same Mode/State Match-Points

In this step, match-points that cannot happenaltityg(based o able 9) are removed.

For example, the following match-points are remobvedause the MS cannot be in a Call

DRAS - Derived Requirements Generation by Actiomd States

Page 100

(which is part of Reg-340 conditions) while unregisd, and because MS cannot be in

Idle and Call modes at the same time (Req-310 atd320).

Table 22 Removed Impossible Match-Point

Crosscut
Req [Prior| Action | Crosscut|Crosscuf] Action Cover| Reg. [Power] MS |[Call| Tx
Num | ity [|Modif. Num |_Priority | Modifier | Action age | Mode | State |Priority |Prio.|Mode
Reg340| 4 Reg-710 5 |Restdet [Reeceive INA [Unareg NA NA NA - INA
theoming
Gall
Reg310| 4 Reg-320 4 |Restriet [PressPTFTNA INA INA NA NA INA

The match-point candidates remaining after thig ate regarded as the final list of

match-point candidates.

Pseudo code for removing the redundant records@ocpto the above two criteria:

Delete each record from “Match By Action”

where two of its attributes contradict

according to list of contradicting Mode/S
and the “Requirements Attribute

or where the two crosscutting requirements
does not have at least one different

according to the “Requirements Attrib

End Delete

7.7.4 The Final Match-Point Candidates

tate values
s” table

attribute
utes” table

Table 23 below is the result of the process fongisine input requirements defined in this

work. Note that the M&all mode and state attributes are not included; theyat

regarded as crosscutting and therefore do not alde Yo the analysis.

DRAS - Derived Requirements Generation by Actiomd States Page 101
Table 23 Requirements Match-Points
Req |[Crosscut Action Prio| Action Crgtssc C;(gziﬁm Cover| Reg. | Power | MS | Call | Tx
Num Num rity | Modifier prio. | Modifier | 298 Mode| State | Prio. |Prior. |[Mode

Req-250|Req-610 |[Power 5 5 lgnore NA [NA NA NA NA [TXI
On

Req-250|Req-730 |Power 5 5 lgnore Out |Unreg.Power [NA |NA NA
On On

Req-250|Req-740 |Power 5 5 lgnore Out [NA NA NA [NA NA
On

Req-260|Req-610 |Power 5 5 lgnore NA [NA NA NA [INA [TXI
Off

Req-260|Req-710 |Power 5 5 lgnore NA |Unreg.NA NA NA NA
Off

Req-260 |Req-740 |Power 5 5 lgnore Out [NA NA NA [NA NA
Off

Req-270|Req-610 |Power 5 5 lgnore NA [NA NA NA [INA [TXI
Off

Req-270|Req-710 |Power 5 5 lgnore NA |Unreg.NA NA [NA NA
Off

Req-270|Req-740 |Power 5 5 lgnore Out |NA NA NA NA NA
Off

Reqg-310|Req-520 |Press 4 6 |[Uncond. [NA [NA NA Emerg|NA NA
PTT ency

Reg-310|Reg-540 |Call 4 6 |Uncond. [NA |INA |NA NA [Emerg|NA
Mode to ency
Active

Req-310|Req-610 |Press 4 5 lgnore NA [NA NA NA [INA [TXI
PTT

Reqg-310|Req-710 |Press 4 5 lgnore NA |Unreg.NA NA NA NA
PTT

Req-310|Req-720 |Press 4 5 lgnore Out |INA NA NA |INA NA
PTT

Reqg-310|Req-740 |Press 4 5 lgnore Out |NA NA NA NA NA
PTT

Req-320|Req-520 |Press 4 6 |[Uncond. [NA |NA NA Emerg|NA NA
PTT ency

Reqg-320|Req-520 |Press 4 lIgnore 6 |[Uncond. [NA [NA NA Emerg|NA NA
PTT ency

Req-320|Reqg-610 |Press 4 5 |lgnore NA [NA |NA NA [NA [TXI
PTT

Reg-330|Reg-520 |Call 4 6 |[Uncond. INA |NA [NA EmergNA |NA
Mode to ency
Active

Req-330|Reg-540 [Join 4 6 |[Uncond. [NA |NA NA NA |[Emerg|NA
Incomin ency
g Call

Reg-330|Req-710 |Receive| 4 5 lgnore NA |Unreg.NA NA [NA NA
Incomin

DRAS - Derived Requirements Generation by Actiomd States Page 102
Req |Crosscut Action Prio| Action Crgtssc ngzzf]m Cover| Reg. | Power | MS | Call | Tx
Num Num rity | Modifier : i age [Mode| State | Prio. |Prior. |Mode

Prio. | Modifier
g Call
Reg-340|Reg-540 |Join 4 |lgnore 6 [Uncond. INA |[NA [NA NA |[Emerg|NA
Incomin ency
g Call
Req-610|Req-520 [Tx 5 |Ignore 6 |[Uncond. |NA [NA NA Emerg|NA NA
ency
Req-710|Req-520 |Press 5 |lgnore 6 |[Uncond. [NA |NA NA Emerg|NA NA
PTT ency
Req-710|Reg-540 [Join 5 |ignore 6 |Uncond. [NA |INA |NA NA |[EmergNA
Incomin ency
g Call
Req-720|Req-520 |Press 5 |Ignore 6 |[Uncond. [NA [NA NA Emerg|NA NA
PTT ency
Req-740|Req-520 [Tx 5 |Ignore 6 |[Uncond. [NA [NA NA Emerg|NA NA
ency

7.8 Evaluating Match-Points
The final evaluation step, before specifying DR<pi identify which of them should

result in a derived requirement. For that, théofeing attributes are added to each

match-point:

Crosscutting Attribute : To identify which of the match-point attributesuse

crosscutting between requirements. Usually, themode or state.

Contribution of a Crosscutting Requirement to anotler requirement’s

functionality : This indicates whether the function defined by ¢hosscutting

requirement does one of the following: a) condliaiith the function for the

requirement it crosscuts-{J, b) adds to that functionality €”), or c) does not affect
it (“None).

Composition Rules(for the crosscutting requirements to the requaenit cuts):

Possible values are: @verlap Before/After, b) Override, or c)Wrap (see section

3.3.6).

Table 24 summarizes this evaluation for the idexdtifnatch-points. For reference, the

table also shows the numbers of the resulting DR are identified in a later phase.

DRAS - Derived Requirements Generation by Actiomd States

Page 103

Note that the Contribution for the Crosscuttingristite is:

when the Crosscutting

Action Modifier is “Restrict”, and “+” when it isUnconditional”. Therefore, the

contribution attribute is practically redundant.

Table 24 Match-Points Evaluation

Reqg Num Action |Crosscut Crosscut| Action || Crosscutting | Contrib (Composition Ruley Derived
Modif. |Req Nun] Action Attributes |ution of | [Overlap Before /| Req.
Modifier Crosscul After | Override |
Req Wrap]
(None /
+/-)
Req-250 Reg-610|lgnore Power |TXI - Override (RegistefReqg-1340Q
On
Req-250 Reqg-730|lgnore Power (Unregistered, - Override (RegisterReq-1120
On Out, Powering-
On
Req-250 Reqg-740|lgnore Power |Out - Override (Register)(Join to
On Reg-1120
Req-260 Reg-610|lgnore Power (TXI - Override (De- |Reg-1330
Off register)
Req-260 Reg-710|lgnore Power |Unregistered - |NONE (260 alread None
Off de-register only if
registered)
Reg-260 Reg-740|lgnore Power |Out - Override (De- |Req-1130Q
Off register)
Req-270 Reqg-610|lgnore Power (TXI - Override (De- | (Jointo
Off register) Reg-1130
Reg-270 Reg-710|lgnore Power (Unregistered - Override (De-|Reg-1110
Off register)
Req-270 Reqg-740|lgnore Power |Out - Override (De- | (New?
Off register) Join to
Reg-
11307?)
Reg-310 Reg-520UnconditioPress |[Emergency- - Override Req-1230
nally PTT Mode (Emergency Call
Priority)
Reg-310 Reg-540UnconditiaCall Emergency- | None NONE (No conflictf None
nally Mode tojlncoming-call
Active
Reg-310 Reg-610|lgnore Press (TXI - Override (Initiate | Req-1320
PTT Call = Ignore PTT
Reg-310 Reg-710|lgnore Press |(Unregistered - Override (InitiateReq-1410
PTT Call = Ignore PTT
Reg-310 Reg-720|lgnore Press |Out - NONE None
PTT (720 already say to
ignore PTT and ig

DRAS - Derived Requirements Generation by Actiomd States Page 104
Reqg Num Action |Crosscut Crosscut| Action || Crosscutting | Contrib |[Composition Ruley Derived
Modif. |Req Nun] Action Attributes |ution of | [Overlap Before /| Req.
Modifier Crosscul After | Override |
Req Wrap]
(None /
+/-)
the self-derived)
Reg-310 Reg-740|lgnore Press |Out - Override (Initiate] New
PTT Call = Ignore PTT
Req-320 Reg-520UnconditigPress |[Emergency- + Override (Initiate| Req-1240Q
nally PTT Mode Call instead of TX
in call)
Reg-320|lgnore |Reg-520UnconditidPress |[Emergency- + Override (Initiate| Reqg-1240Q
nally PTT Mode Call instead of Tx|
in call)
Reg-320 Reg-610|lgnore Press (TXI - Override (Ask |Reqg-1320
PTT Tx=Ignore PTT)
Reg-330 Reg-520[UnconditiaCall Emergency- | None NONE (No conflictf None
nally Mode toMode
Active
Req-330 Reg-540UnconditiaJoin Emergency- None NONE (in Idle None
nally Incomin|{incoming-call Mode, MS joins th
g Call call anyway)
Req-330 Reg-710|lgnore ReceivdUnregister - Override (Join Cdll) New
Incomin
g Call
Reg-340|lgnore | Reg-540UnconditiaJoin Emergency- - Override (Ignore| Req-1250
nally Incomin|{incoming-call Incoming call -
g Call instead, join the
new call)
Reg-610Ignore | Reg-520UnconditigTx Emergency- + <Need to DECIDEReg-1310
nally Mode whether to allow
Emergency Tx in
TXI>
Reg-710lgnore |Reg-520UnconditigPress |Emergency- + <Need to DECIDEReg-1210
nally PTT Mode whether to allow
Emergency Tx
when Unregistered>
Reg-710|lgnore | Reg-540UnconditiaJoin Emergency- + <Need to DECIDE New
nally Incomin|{incoming-call whether to allow t
g Call Join Emergency
Call when
Unregistered>
Reg-720|lgnore |Reg-520UnconditioPress |Emergency- + <Need to decide| Reg-1220
nally PTT Mode what to do with
Emergency-PTT
when Out of
Coverage>

DRAS - Derived Requirements Generation by Actiomd States Page 105

Reqg Num Action |Crosscut Crosscut| Action || Crosscutting | Contrib |[Composition Ruley Derived
Modif. |Req Nun] Action Attributes |ution of | [Overlap Before /| Req.
Modifier Crosscul After | Override |
Req Wrap]
(None /
+/-)
Reqg-740|lgnore | Reg-520UnconditigTx Emergency- + <Need to decide| (Join to
nally Mode what to do with |Reg-1220
Emergency-PTT
when Out of
Coverage>

Here are some notes regarding some of the decisiads regarding the match-points:

e TheAspectual Requirementsj.e. the requirements that crosscut other requerem
are: Req-520, Req-540, Req-610, Reg-710, and Reéq-72

e Only Override Composition-Ruleis practically used, which means that the
Composition-Rule attribute may not be useful inteahwith this methodology. The
Modes and States are the main reason for the ertisgcfunctionality conditions.
This is because the requirements defined herevarg based, and the Modes and
States define the main conditions for the MS fuordiity in the events. This is
probably why the composition rulegap andoverlapare not used. Yet, using the

Composition Rule for this methodology still needstier evaluation.

e In several cases, tliecision regarding the resolutionfor the conflict between
requirements igot clear. This usually happens when an aspectual requiteme
crosscuts other aspectual requirements.

For example, should the match-point between aspkeeaguirements Req-520 and
Reqg-710 allow MS in an emergency to initiate cahgen if it is not registered in the
cellular system? Note that for most cellular systethe resolution for a similar

conflict would be that any user can call emergesayices.

e Theidentified (false) match-points.Reg-310/Req-540 and Reg-330/Req-520 could
have been removed while preparing the match-paindiciates list, by separating the
Call mode to Active for Incoming [Rx] calls and Actif@ Outgoing [Tx] calls. In
general, during the evaluation process, additionahore accurate definitions of
actions and attributes to be defined can be exgedibe value of adding these more

detailed definitions depends on how many false mptiints are saved.

DRAS - Derived Requirements Generation by Actiomd States Page 106

7.9 Generating the Derived Requirements

Derived requirements are generated according tatthibutes defined for each match-
point. The requirement numbers for each of the BiieanTable 24. Note that several
match-points may result in one derived requireméior. example, Req-1320 is the result
of the match-point between Reg-310 and Req-610atswdthe result of the match-point
between Req-320 and Req-610.

The following DRs are the result of the identifimétch-points Table 24). In certain
cases, a derived requirement is an enhancemem wriginal requirement and replaces

it. The_underlinegbarts are the parts with the added text to thgirai requirements.

Reg-610 and Reg-520
Reg-1310: When inTXlI mode MS shall ignore any request to transmit; excepgmv

MS is inEmergencynode

[The decision here is to allow transition during-Bhibit (TXI) mode, while in
Emergency mode, assuming that the danger of nogladile to communicate during
emergency is more severe than the danger of trataisg(TXI is usually used in cases
where transmitting is problematic; e.g., in hosfsterhere it may interrupt medical

equipment or in oil fields, where it may causere)f]

Reg-710 and Reg-520
Reg-1210: While MS isunregistered, no system related operation should be allowed

by the MS, except when MS is iftmergencynode, wherénitiate call and asking for

transmission permission should be allowed

Reg-710 & Reg-540
Req-2260: While MS isunregistered, no system related operation should be allowed

by the MS, including not joining an incoming emergg call

DRAS - Derived Requirements Generation by Actiomd States Page 107

[It is assumed that if an MS cannot register to/atem, it is not part of the system’s
active subscribers and therefore will not partidp@n emergency calls. Note that this
requirement can be combined with Reg-1210 aboVkis fequirement was not identified
as part of the initial writing of the derived regeiments, before performing the process

described here.)]

Reg-720 & Reg-520 and Reg-740 & Reg-520
Req-1220: When MS iut of system coverage, MS shall not try to transmit.
Pressing PTT shall be ignored, unless the MS Emergencynode, where the MS

should initiateemergencyall as soon as it is in coverage (unlessergencynode is

over by that time)
[Reg-720 and Req-740 seem to be redundant, “igigoAM T” as defined by Req-720 is
actually implied here by “not try to Tx”. This mobably a common case and therefore

should not cause any issue during the analysis.]

Reg-250 & Reg-610
Req-1340: On power-on MS shall register to the system, unless it i$Xninhibit

mode (set before the previous power-off)

[The decision here is that the MS should rements€FXl mode during power off/on

cycle, and therefore cannot register when powerefl o

Reg--250 & Reg-730 and Reg-250 & Reg-740
Req-1120: On power-onwhen MS ioutside of system coveradéS shall register

to the system once it is coverage

Reg-260 & Reg-610 with Reg-270 & Reg-610
Req-1330: On power-off the MS shall de-register first from the systefni, is
successfully registered and if it is nofTir Inhibit mode

[Reqg-270 does not effect the requirement textitlaifects the decision to allow power

off without de-registration first.]

DRAS - Derived Requirements Generation by Actiomd States Page 108

Reg-260 & Reg-260 & Reg-740 with Reg-270 & Reg-740
Reg-1130: On power-off the MS shall de-register first from the systeini, is

successfully registered and if itilscoverage
[Reg-270 does not effect the requirement textitlaftects the decision to allow power

off without de-registration first.]

Reg-2-270 & Reg-710

Req-1110: MS shall be able to power-off in any state evenmineregistered.
[Taking into account Req-1130 and Req-1330 abib¥e requirement becomes
redundant. It is given here only for referencehte original list of derived

requirements.]

Reg-310 and Reg-520

Req-1230: Pressing PTT indle Call modeand Emergency mode shallinitiate-call
for an outgoing group call, witmergencyriority to theemergencyredefined group.

If the call-initiation is acknowledged by the systeMS shall toggle t€all mode and
may start voice transmission.

[This requirement is the equivalent to Req-123thmexpected Derived Requirements,
although Req-1230 is broader, as it includes batly-B20 and Req-310&520 in one
requirement. That is, Reg-1230 is written in sackay that it can replace Req-310.]

Reg-310 & Reg-610
Req-1320: Pressing PTT indle modeshall be ignored if MS is ifix Inhibitmode

Reg-310 and Reg-710
Req-1410: Pressing PTT indle Call modeand Normal modewhile MS is

Unregqgisteredshall be ignored

[Note that this requirement may be combined withQ-R230 (that is, the result of Reg-
520 crosscutting Req-310) to one requirement, lyrep“even if MS is Unregistered”.]

Reg-310 and Reg-740

DRAS - Derived Requirements Generation by Actiomd States Page 109

Req-2160: Pressing PTT irCall mode while MS isOut of Coverage shall be

ignored.

Reg-320 and Reg-520
Req-1240: Pressing PTT irCall mode_inEmergency modeshall cause the MS to

ask for voice Tx permission, when no one elseaisamitting in the call, with Emergency

Call priority, regardless if someone else is traittgmg in the call The PTT shall be

ignored when someone else is already transmittirige call. The MS may start to Tx

voice only if the Tx Request was Acknowledged.

Reg-320 & Reg-610
Req-1320: Pressing PTT irCall modewhile MS is in Tx Inhibit modeshall be

ignored

Reg-330 & Reg-710
Req-2460: When receiving an incoming group call ihdle mode MS shall toggle
to Call mode and join the call, unless the MSiisegisteredin which case the call

should be ignored

Reg-340 & Reg-540
Req-1250: When receiving an incoming group call wit Emergency priority while

in Normal Call mode, the MS shall internally reject the call withouwitifying the system

(leave the current call and join the Emergency) call

DRAS - Derived Requirements Generation by Actiomd States Page 110

8 Summary and Conclusions

This work presented DRAS, a methodology to helptifieand handle crosscutting
requirements in the requirements of a system. dnyntases, several major problems
occur in products because match-points betweenresgents were not identified. A
major goal of AORE methods is to help resolve tbgsie. Most existing AORE methods
concentrate on: handling interactions between reqments during the requirements
analysis phase, or during system architectureywso& architecture and design phases.
However, usually only engineers are familiar whik tools and methods used in these
phases. Therefore, in many cases the analysi®sdautting requirements output is
limited only to engineers. For other stakeholdsugh as customers and marketing
people, it is desirable to state the requirementee extent possible, in textual format.
Another limitation of several existing methodshattthey mainly handle NFRs. They
either do not handle FRs at all, or do not harniubent well. The DRAS methodology was
designed to identify and handle crosscutting fumal requirements, and to generate
textual DRs (which are the result of analyzing sopgting requirements).

DRAS identifies crosscutting requirements basetheractions they use. It starts with
identifying the lists of actions and entities uggahe input requirements. The relative
priority of each requirement is also identifiedheh the list of actions (implied by each
action) is defined. This listis later used tontify all of the actions a requirement refers
to, directly or indirectly. Generating the listgds on whether the requirement restricts
the use of an action, or eases a restriction $arse. If the use of an actidwtis

restricted, the use of all actions that Aseg(i.e., the implied-actions) is restricted too. If
a requirement eases the restrictions for usingcaoreAct, the actions list will include

actions that are the result of usiigt (i.e., the implying actions).

For each requirement, the modes and states offtleesdt entities it refers to are also

identified. This information is later used to helgcide whether functional requirements

DRAS - Derived Requirements Generation by Actiomd States Page 111

crosscut each other, because this usually depentieanodes and states referred to by

the requirements.

The actions (and their modifiers), the modes aedsthtes per each requirement are
identified. Based on this information, match-poib&tween the requirements are
identified. To get to the final list of match-ptsnthe list is further refined to remove

redundancies and conflicts that cannot occur iklifea

The final step of DRAS is to generate DRs, accaydinthe list of match-points between
requirements. This process usually requires ctingithe stakeholders; because in
several cases resolving conflicts are not strdgtward, and the stakeholders should
decide what direction to take. The requiremera#) briginal and derived, can be

reviewed by all stakeholders, making sure thatluti®ms to conflicts are performed

properly.

Using DRAS provides a more reliable method to idgrrosscutting functional
requirements and the requirements they crosstalsd helps in deciding what derived
requirements should be generated from the crogsguliecause it identifies the match-
points between the requirements. Therefore, USRAS helps complete the

requirements definition phase with a better seeqtiirements.

DRAS - Derived Requirements Generation by Actiomd States Page 112

9 Future Work

Several enhancements are considered for the DRAlSod@ogy, mainly automating the
process (making it more robust and easier to sedjjat the (tentative) DRs can be
generated automatically. That requires the akiditgarse and analyze the text and the
ability to set the relative priorities between regments a match-point refers. Note that
text analysis should allow identifying actions, Bwehen they are written in different
forms. For example, “call initiation” may be watt in the requirement “initiate a call”,

“start call”, etc.

The DRAS methodology, or part of it, may be intégdawith existing requirements
management tools (such as DOORS or RequisiteHitas will enhance their
functionality and enable an easier definition afuieements (derived from conflicts
between other requirements).

Another possible enhancement to such tools isefiaition of attributes per
requirement, as used in this work (Jedle 19 and able 14). Per requirement, these
attributes include thActions used with theiAction Modifiers and theMlode/State
Attributes . With proper textual analysis, the requiremengmagement tool may be able
to generate these attributes automatically. Usiege attributes, the tool can suggest to
the user possible crosscutting between the reqgeinesnby implementing similar
algorithms to the ones defined for DRAS.

To achieve the above-mentioned enhancements, qneements management tool
should enable the user to define the following meglinput lists:

e Action modifiers (probably a predefined fixed list)

e Composition rules(probably a predefined fixed list)

o Relative priorities (probably a predefined fixed list)

. Entities list

e Actions list andimplied actions list

o Entities used by actiondist

DRAS - Derived Requirements Generation by Actiomd States Page 113

o Modes and statedist, their possible values and listadntradicting mode/state

values

An additional attribute per requirement may bedtasscutting type which can be one
of the following: Baseline, Crosscutting and DedveThis attribute may help users and

reviewers better understand the requirements.

Another enhancement can come from handling thergesteDRs. This can be supported
by derived requirements traceability in the requirements management tool. Such
traceability can be similar to the traceability digetween different development phases:
requirements to design, design to code, etc. Hewaew this case, traceability will be
within the same phase. It will enable the useraiofy that all identified crosscutting
between requirements were handled. Traceabilityequire aDerived From attribute
per requirement (listing the requirements thatrgpiirement is derived from).

If the DRs analysis is performed automaticallyntlagtributes identified during the
analysis may be added to the DRs traceabilityientitThese attributes can include
Actions and Modes/States that are responsiblentorntatch-point, the involved action

modifiers, and identifying non-crosscutting matahngs, etc.

DRAS methodology assumes that a match-point ittifles (between functional
requirements) means that tentatively one requiréer@sscuts the other. That is, one of
the requirements is a crosscutting requirements assumption was not validated;

further work is required to identify whether théstrue, or for what cases this is true.

Using natural language processing methods to amahezrequirements (e.g. [Pantel 07],
[Lin 07], EA-Miner [Sampaio 2005]), it may be pdsle tosemi-automate

identification of actions (used by the requirements) and their differemttattes.

Writing the requirements in some formal form, sashAttempto controlled language
[Hoefler 04], can assist this approach. ldeas fAdstFinder [Goldin 97] may also be
used to help identify aspects in the specificattexs. Mining aspects methods

[Loughran 02] and tools may also be used for autcnoa semi-automatic retrieval and

DRAS - Derived Requirements Generation by Actiomd States Page 114

identification of aspects. Automatic weaving (casing) of requirements (to generate
the DRs) may use methods similar to the ones ugedtect oriented programming (see
[Laddad 03]). Tools such as the EasyCRC tool [Raf¥, which automates the
processes of finding nouns and synonyms, can b&idened for finding actions and

related actions in the requirements.

Usingqueries to identify crosscutting requirementsand the requirements they
crosscut, as defined in the Requirements Descnijptamguage (RDL) [Chitchyan 2007],
is another possible approach for enhancing DRABL Rlentifies aspectual
(crosscutting) requirements by defining constrgurtries about actions and objects used
by the requirements. The requirements that thecisal requirements tentatively

crosscut are identified by base queries.

The use oXML to internally represent requirements can alsodmsidered. Note that
XML cannot be used to represent input and outpmyiiirements, because these should be
in textual format, so as to be understandablelfatakeholders. XML representation

can help automate the creation of DRs. Methodsbsiheeded to translate the textual
requirements from text to XML (or other format) aedranslate back the XML
representation for DRs to textual format. XML iseady used for aspect-oriented
methods (e.g., the ARCaDe tool [Rashid 03; Kat2 @G@fompose requirements, or for
supporting aspects plug-ins in software design @sop5]. Concepts from these and

other approaches may be reused.

To allow automatic detection of relative prioritiestween requirementgtiorities may
be added per attribute value(e.g., Normal=1, Emergency=2). In addition to
requirements prioritieghis can also enable having relative priorities leetw
requirements (i.e., a partially ordered tree otirexnents priorities). There will be no
absolute priority per requirement, and the relagisierity of each pair of requirements
should be evaluated separately. In addition, devalues per attribute should be

defined. This will enable requirements handlingeve partial attribute values are

DRAS - Derived Requirements Generation by Actiomd States Page 115

specified (e.g., set call priority default as “Naifi).

Composition rules can be enhancetb improve the automation process. In many cases,
current composition-rules values are not usefDifferent values for composition rules,
which are more suited for generating DRs, may beeraseful. One possible approach is
to define temporal rules, such as “Override Templgia“Delayed After”, “On Event”

(e.g., when mode changes). Enhancements using fisea LOTOS [Bolognesi 87] and
[Brito 04] should also be considered.

Temporal logic may also be used to enhance theadgiManna 92].Action Modifiers
identified in DRAS, “Restrict” and “Unconditionallyseem to beimilar to Temporal
Logic Path Quantifiers/Operators A/G (all paths / always) and A/H (all paths / always
in the past). It may be possible to develop addgised on temporal logic, that will use
such action-modifiers and specify (using a formulag effect of these aspectual action-
modifiers on other requirements (e§mergency -> [A(always) PTT -> Initiate

Call’]). The logic may be defined as an extension &adly existing methods which
support temporal logic for requirements, such asngbTropos [Fuxman 03] or Kaos
[Bertrand 98]. Using formal languages that usepienal logic may allow the use of
Model Checking methods [Manna 92] to identify cmging and conflicting
requirements. The ideas suggested by [Katz 0O4h®use of temporal logic in the

PROBE framework can also be used as input for exdmeants.

DRAS - Derived Requirements Generation by Actiomd States Page 116

10 References

[Araujo 05] J. Araujo, E. Baniassad, P. Clements, A. MorditadRashid, B.
Tekinerdogan. Early Aspects: The Current Landscapehnical Note CMU/SEI-2005-
TN-xxx, Technical Report Lancaster University COM®@t-2005, 2005. Available at
http://trese.cs.utwente.nl/early-aspects-AOSD2085#Ps/EarlyAspects-
LandscapePaper-FirstDraft-2005.fldist visited: July 2007).

[Bakker 05] J. Bakker, B. Tekinerdogan, M. Aksit. Charactatian of Early Aspects
Approaches. Early Aspects Workshop, March 15, 200ilable at
http://trese.cs.utwente.nl/early-aspects-
AOSD2005/Papers/11_BakkerBedirAksit Twente.faét visited: May 2007).

[Baniassad O4aE. Baniassad S. Clarke. Theme: An approach feecdsoriented
analysis and design. International Conference dtw@ce Engineering, 2004. Available
athttp://www.cse.cuhk.edu.hk/~elisa/papers/theme(lagt visited: July 2007).

[Baniassad 04bJE. Baniassad E., E. Siobhan. Finding Aspectseguitements with
Theme/Doc, Workshop on Early Aspects: Aspect-OeériRequirements Engineering
and Architecture Design 2004. Availablehdtp://trese.cs.utwente.nl/workshops/early-
aspects-2004/Papers/Baniassad-Clarkglpdft visited: July 2007).

[Bar-On 07a] D. Bar-On. S. Tyszberowicz. Derived Requiremé&wseration.
Proceedings of” International Workshop on Aspects, Dependenciesateractions,
July 2007. Available dtttp://www.aosd-europe.net/adiO7/papers/baron_apdd flast
visited: September 2007).

[Bar-On 07b] D. Bar-On. S. Tyszberowicz. Derived Requiremé&wseration - the
DRAS methodology. IEEE International ConferenceSofftware — Science, Technology
and Engineering, October 2007.

[Bergmans 01]L. Bergmans, A. Aksits. Composing Crosscuttingn€ns using
Composition Filters. Communications of the ACM,t@xer 2001/Vol. 44, No. 10, pp
51-57. Available ahttp://doi.acm.org/10.1145/383845.3839%5&t visited: May 2007).

[Bertrand 98] P. Bertrand, R. Darimont, E. Delor, P. Massonetyafk Lamsweerde.
GRAIL/KAOS: an Environment for Goal Driven Requirents Engineering.
Proceedings 20th International Conference on Soé\Eagineering, April 1998.
Available athttp://www.info.ucl.ac.be/Research/Publication/1888984p.ps.gdast
visited: August 2007).

[Bolognesi 87]B. Bolognesi, E. Brinksma. Introduction to th®ISpecification
Language LOTOS. Computer Networks and ISDN Syst&fok 14, pp 25-59, 1987.
Available athttp://portal.acm.org/citation.cfm?coll=GUIDE&dI=GDE&id=44214 (last
visited: April 2007).

[Booch 99 G. Booch, J. Rumbaugh, I. Jacobson. The Uniffiedieling Language User
Guide. Addison-Wesley, 1999.

[Brito 02] I. Brito, A. Moreira, J. Araujo. A requirementodel for quality attributes.
1st International Conference on Aspect-Orientedv&ot Development, 2002.

DRAS - Derived Requirements Generation by Actiomd States Page 117

Available athttp://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/PalBeito.pdf (last
visited: May 2007).

[Brito 03] I. Brito, A. Moreira. Towards a Composition Presdor Aspect-Oriented
Requirements. Workshop on Early Aspects: AORE Amthitecture Design, March 17 —
Boston, USA, 2003. Available attp://www.cs.bilkent.edu.tr/AOSD-
EarlyAspects/Papers/BritoMoreira.p@idst visited: July 2007).

[Brito 04] I. Brito, A. Moreira. Integrating the NFR framerkdn RE model. Early
Aspects Workshop, Lancaster U.K., 2004. Availalble a
http://trese.cs.utwente.nl/workshops/early-asp20®4/Papers/BritoMoreira.pdiast
visited: July 2007).

[Chitchyan 05] R. Chitchyan, A. Rashid, P. Sawyer, A. Garciarv8y of Aspect-
Oriented Analysis and Design Approaches. AOSD-gevdLANX-9. 18 May 2005.
Available athttp://www.comp.lancs.ac.uk/computing/aod/papersiadf (last visited:
July 2007).

[Chitchyan 07] R. Chitchyan, A Rashid, P. Rayson, R. Waters. &ics-based
composition for aspect-oriented requirements ergging. Proceedings of the 6th
International Conference on Aspect-Oriented Soféwevelopment (AOSD), pages 36-
48, 2007. Available dittp://portal.acm.org/ft_gateway.cfm?id=1218569&typdf(last
visited: August 2007).

[Chung 00] Chung L., Nixon B., Yu, E. and Mylopoulos, J. Neanctional
Requirements in Software Engineering. Boston: Ku#cademic Publishers, 2000.

[Creveling 03] C.M. Creveling, J.L. Slutzky, D. Antis Jr. Desifgr Six Sigma in
Technology and Product Development. Prentice 12a03.

[Filman 05] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Asp&atiented Software
Development, Addison-Wesley, 2005.

[Finkelstein 96] A. Finkelstein, | Sommerville. The View Point FAGoftware
Engineering Journal, Vol. 11, pp 2-4, 1996. Avaidaat
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/papeisivfag.pdf(last visited: April 2007).

[Fowler 03] M. Fowler, S. Kendall. UML Distilled: A Brief Gde to the Standard
Object Modeling Language. Addison-Wesley, 2003.

[Fuxman 03] A. Fuxman, R. Kazhamiakin, M. Pistore, M. Rovdformal Tropos:
language and semantics. Version 1.0: Novembed@3.2 Available at
http://dit.unitn.it/~tropos/papers_files/ftsemO3.fldst visited: July 2008).

[Garcia-Duque 06]J. Garcia-Duque, M. Lopez-Nores, J. J. Pazos-AAagernandez-
Vilas, R. P. Diaz-Redondo, A. Gil-Solla, M. Ramoakter, Y. Blanco-Fernandez.
Guidelines for the incremental identification opasts in requirements specifications.
Requirements Eng (2006), DOI 10.1007/s00766-00@aG2006, pp 239-263, Springer-
Verlag London Limited 2006. Available at
http://www.springerlink.com/index/6N1R150311H221#. (last visited: May 2007).

[Goldin 97] L. Goldin, D. Berry. AbstFinder, A Prototype NedlLanguage Text
Abstraction Finder for Use in Requirements Eli¢itat Automated Software

DRAS - Derived Requirements Generation by Actiomd States Page 118

Engineering, Vol. 4, pp 375-412,1997. Available at
http://www.springerlink.com/index/K68M2902K83526HXIf (last visited: July 2007).

[Grundy 99] J. Grundy. Aspect-oriented Requirements Engingdor Component-
based Software Systems, Proceedings of RE'99, Ji&, Limerick, Ireland, 1999.
Available athttp://ieeexplore.ieee.orflast visited: May 2007)

[Hoefler 04] H. Stefan. The Syntax of Attempto Controlled Esigl An Abstract
Grammar for ACE 4.0. Technical Report ifi-2004.8%ailable at
http://www.ifi.unizh.ch/attempto/publications/papAroefler2004the Syntax.p@éast
visited: July 2007).

[Katz 04] S. Katz, A. Rashid. From aspectual requiremenfsaof obligations for
aspect-oriented systems. In: Proceedings of the |EEE international conference on
requirements engineering, Kyoto, pp 48-57, 2004ilable at
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumb&35663(last visited: July 2007).

[Kovitz 99] B. L. Kovitz. Practical Software Requirements.rivieng Publications Co.,
1999.

[Laddad 03] R. Laddad. Aspectd in Action Practical Aspecte@teéd Programming.
Manning Publications Co., 2003.

[Lieberherr 96] K.J. Lieberherr. Adaptive Object-Oriented SoftezaFhe Demeter
Method with Propagation Patterns. PWS Publishiagh@any, Boston, 1996. Available
athttp://www.ccs.neu.edu/research/demeter/book/banintbad.htmi(last visited: May
2007).

[Lin O7] D. Lin, Demos. Available dtttp://www.cs.ualberta.ca/~lindek/demos.{ast
visited: July 2007).

[Loughran 02] N. Loughran, A. Rashid. Mining Aspects. In Prodegd of Early
Aspects: Aspect-Oriented Requirements Engineemgfachitecture Design Workshop,
April 2002. Available at
http://www.comp.lancs.ac.uk/computing/aose/papersi®isp_SPL_EarlyAspects2002.p
df (last visited: July 2007).

[Lopes 05]C. V. Lopes, T. C. Ngo. The Aspect Oriented Markianguage and its
Support of Aspect Plug-ins. ISR Technical RepddGi-ISR-04-8, Institute for
Software Research, ICS2 210, University of Califr®ctober 2004. Available at
http://www.isr.uci.edu/tech_reports/abstracts/USRI04-8-abs.pdflast visited: August
2007).

[Manna 92] Z. Manna, A. Pnueli, The Temporal Logic of Reaetand Concurrent
Systems, Springer-Verlag, 1992.

[Moreira 02] A. Moreira., J. Araujo, I. Brito. Crosscuttinguglity Attributes for
Requirements Engineering. thternational Conference on Software Engineerimd) a
Knowledge Engineering (SKE 2002), pp 167-174, ACMdB, Italy, July 2002,
http://portal.acm.org(last visited: August 2007).

DRAS - Derived Requirements Generation by Actiomd States Page 119

[Mylopoulos 01] J. Mylopoulos at. al. Exploring Alternatives Dugirequirements
Analysis. IEEE Software, January/February 20012 Available at
http://ieeexplore.ieee.ordlast visited: August 2007).

[Nuseibeh 04]B. Nuseibeh. Crosscutting Requirements, AOSDa@mice 2004
keynote presentation, Availableldtp://aosd.net/2004/archive/AOSD-
FromPromiseToReality.p(flast visited: August 2007).

[Ossher 00]H. Ossher, P. Tarr. Multi-dimensional separatbononcerns and the
Hyperspace approach. In Proceedings of the Symimosn Software Architectures and
Component Technology: The State of the Art in SafeDevelopment, Kluwer, 2000.
Available athttp://www.research.ibm.com/hyperspace/Papers/€8c@df (last visited:
May 2007).

[Palmer 02] S.R. Palmer, J.M. Felsing. A Practical Guide tat&ee-Driven
Development. Prentice Hall, 2002.

[Pantel 07]Z. Pantel, Demos. Available at
http://www.isi.edu/~pantel/Content/demos.h{hast visited: July 2007).

[Pang 04]J. Pang, L. Blair. Refining Feature Driven Deystent — a Methodology for
Early Aspects. In Early Aspects Workshop in confiorcwith the & International
conference on Aspect-Oriented Software Developn2@ti4. Available at
http://trese.cs.utwente.nl/workshops/early-asp20®4/Papers/Pang-Blair.pflast
visited: May 2007).

[Pazos-Arias 01]J.J. Pazos-Arias, J. Garcia-Duque. SCTL-MUSra& methodology
for software development of distributed systemsase study. Formal Aspects of
Computing, Volume 13, pp 50-91, ISSN 0934-5043,120Available at
http://www.springerlink.com/index/X2PUA1WURKG6GDTLgIf (last visited: May
2007).

[Raman 07]A. Raman, S. Tyszberowicz. The EasyCRC Tool,itetnational
conference on Software Engineering Advances (ICSEfgnce, 2007. Available at
http://ieeexplore.ieee.org/iel5/4299876/429987 79993 3.pdf?tp=&arnumber=4299933
&isnumber=429987Tlast visited: July 2008).

[Rashid 02] A. Rashid, A. Moreira, J. Araujo. Early Aspectdvliadel for Aspect-
Oriented Engineering. IEEE Joint Conference on Rements Engineering, pp 199-202,
Essen, Germany, September 2002. Available at
http://www.comp.lancs.ac.uk/computing/aose/papeds2k RE2002.pdfast visited:

May 2007).

[Rashid 03] A. Rashid, Moreira, J. Araujo. Modularization a@@dmposition of
Aspectual Requirements!“nternational conference on AOSD, ACM, pp 11-2002
Available athttp://www.comp.lancs.ac.uk/computing/aose/papeds&-AOSD2003.pdf
(last visited: July 2007).

[Rosenhainer 04]L. Rosenhainer. ldentifying Crosscutting ConcemRequirements
Specifications. In Proceedings of OOPSLA Early édp 2004: Aspect-Oriented
Requirements Engineering and Architecture Desigmkélep, pp 49-58, October 2004.

DRAS - Derived Requirements Generation by Actiomd States Page 120

Available athttp://trese.cs.utwente.nl/workshops/oopsla-easlyeats-
2004/Papers/Rosenhainer.fldfst visited: May 2007).

[Sampaio 05]A. Sampaio, N. Loughran, A. Rashid, P. Raysonniij Aspects in
Requirements. Workshop on Early Aspects (held wi@isD), 2005
http://www.comp.lancs.ac.uk/computing/aose/papeiridd_EA2005.pdf(last visited:
July 2007).

[Silva 02] A. Silva. Requirements, Domain SpecificationseWpoint-based Approach
to Requirements Engineering. ICSE’02, pp 94-10022@vailable at
http://portal.acm.org/citation.cfm?doid=581339.584 8ast visited: August 2007).

[Skotiniotis 04] T. Skotiniotis, D. H. Lorenz. From contracts &pacts and back.
Technical Report NU-CCIS-04-05, pp 196-197, Colleg€omputer and Information
Science, Northeastern University, Boston, MA 021M1&y. 2004. Available at
http://portal.acm.org/citation.cfm?id=10287@4dst visited: May 2007).

[Sousa 03a] GSousa, I. Silva, J. Castro. Adapting the NFR Fraonk to Aspect-
Oriented Requirements Engineering. XVII Brazilymposium on Software
Engineering, Manaus, Brazil, October, pp 177-19®3 Available at
http://www.cin.ufpe.br/~ler/publicacoes/pub_2003EE®3_AdaptingTheNFRFramewor
kToAspect.pdf(last visited: August 2007).

[Sousa 03b]G. Sousa, J. Castro. Towards a Goal-Oriented iRegents Methodology
Based on the Separation of Concerns Principle, WipR23-239, 2003. Available at
http://wer.inf.puc-rio.br/WERpapers/artigos/artigggE RO3/georgia_souza.pdfast
visited: August 2007).

[Sousa 04]G. Sousa, S. Soares, P. Castro, B Castro. SepeohtCrosscutting
Concerns from Requirements to Design: Adapting ss Case Driven Approach. Early
Aspects, 2004. Available at
http://www.di.ufpe.br/~scbs/artigos/sousa_soareshdaastro_earlyAspects2004.pdf
(last visited: May 2007).

[Tarr 02] Tarr P., H. Ossher. Hyper/J™: Multi-Dimensionap&ration of Concerns for
Java™, Proceedings of the 24th International Cenfex on Software Engineering, pp
24-35, 2002. Available dtttp://portal.acm.org/citation.cfm?id=58144last visited:
May 2007).

[TETRA] ETSI EN 300 392-2. Terrestrial Trunked Radio (TEA)RVoice plus Data
(V+D); Part 2: Air Interface (Al). Available ditttp://www.etsi.org (last visited: August
2007).

[YuO04] Y. Yu, J. C. S. d. P. Leite, J. Mylopoulos. Fr@uals to Aspects: Discovering
Aspects from Requirements Goal Models, presentétetational Conference on
Requirements Engineering, Kyoto, Japan, pp 38-@d42Available at
http://doi.ieeecomputersociety.org/10.1109/ICRE2083566last visited: August
2007).

DRAS - Derived Requirements Generation by Actiomd States Page ii

"oxPn
RO MYRWNRT AT 9Y 7 YOWAD NTIWY XN MIWOTA P20 ,N0VR MNCD YW 2onTpIng o2kl
NP2 270K MOY MW T2 P2 NIRRT MDA DY Y1217 00710 AR W7 LIonw
TP2IN2 QTP NPW D N9 PAWRA AR 0277 17K NITPN0Y MYOW .7PPWD DX MIND
0°25W2 PR NYOW:T NPT SV ARYING 2177 2w 2°212° 71 ND0INA YVInsa? 973 ,mna]
N2 72N 197 RO NOTYR NMIWSIT P2 2OUR YO MIVOWT NITY N1 MO YW DTN
derived) mMAamI-nw a7 S ANTAT WORD TN MWOITI NTAT 2202 1390 NN2 T
209N 122w YANWAT DR NPT 19K MW7 .Nn»p MW T W R, MwTn (requirements

0192 DOUPRONPT DR NIMDY ,TPNIWT O¥ DR MY Ownw YT
MXITT NPHRIPIPIIDT MWSITA 17 MR MW7 S0 0IONT 28 MYy swnw M7 YW W A0

W ¥R DR ,MDHMmA 12708 IR ,Nuwn 178 M7 .(Crosscutting Functional Requirements
N2 NWD HW MoK 0°2¥1n2 2177 ,(CrosSSCUt MXIm 177 1MIR MW ITa
amava annmow (Derived Requirements generation by Actions andeSta&tRAS n°x1mnn
IR NITTAIT NPT DX O3 MR MW7 MIXIAW NPORIPIPID MW7 217°12 03 DWW T
MWD P2 TR INWA PAATINNT ,MIZINT MW7 57T T8 MR mweaT? o7uwa
WK NYORIPIPND 717 WD NIWOITI MOTINA TPIRY NIV CANA A MWIIT WInwaw
T NARW MAWOR HY Y5281 MW7 0w 'Y A2 MR WW AT DOORIPERN0T W7
TTRRY MWD NOYDAA ARYIND WY W 172w Mo oi nvovn DRAS 01w R 30
2D RXIND 2517 PN AW MANRT MWD 17 VIR 07D LW 1IN MWOITI Mo nn
MY 7797 WOITI ORA NPT AT, 19IRA NM0N AW T DO NN TORY NYD°N0D
MWD PAWn2 WP ORI ¥ap1 100"y LAW0a wIncwiT 2ax? MYaaa NY0an IR 771V Winws
72 DWRNWA 1T 2w MWD IR T 72D MWHNwaY
25W2 y¥ann AATINAT 2w AN 931 nhRIvopw MweaT o1 DRAS Sw v 1m vhpn i
DOWIRY P71 XYY, 772002 ANNWAY D272 DOV DOWIRT 932 qWORN 17T 12T NI NN DT

.0» 1007

DRAS - Derived Requirements Generation by Actiomd States Page i

0"y 19N
W e

"¥pn 0

7P 0

MY"MT NOTIN NPO e
mMY™MTNoTIn 0
QOVPHOR NMINA MW IT-NOTIM DONTPNA-DVPOOR O
NN NP0 VAN e
M MW7 MX-MY™T 0
DRASouwpsoR O
VAT NN

79923 nX N1 DRAS 7305

o O O

DRAS 7910 owan 010°0
TTAaYnMan o
M TPRI T T e
(AORE) o°vpooR nmva My 7-n07I7 NP0 @
D°UPOOR NN MWSIT-NOTIM 2 MNP MYW NN e
D°2¥” MWD 9"y MM MY 17 Y -DRAS 7%in e
mIpom 7 e
Q°D011 IPMA MY MY e

mMmpn nwn e

HNIYYA NNINDN NOIDIINN
AUNNN SY1 NPIONRNNY NPINNN

DRAS

D281 MY 977y M) MYIIT NN

2009 , 9819291 DYNN NN

2WNNN YN (M.SQ THDM IND NIRIPO MYITN NNYWNN PYND
NIV NNINSN NVIDIIIND

My
NPN-92 YT

NY2)72WO0 SNINY VT DY IMPIA NN 19N

