

The Open University of Israel

Department of Mathematics and Computer Science

DRAS

Derived Requirements Generation

by Actions and States

Thesis submitted on February, 2009

as partial fulfillment of the requirements towards an

M.Sc. degree in Computer Science

The Open University of Israel

Computer Science Division

By

David Bar-On

Prepared under the supervision of Dr. Shmuel Tyszberowicz

DRAS - Derived Requirements Generation by Actions and States Page 1

Table of Contents

1 Introduction... 7
2 Requirements Engineering and AORE Overview .. 12

2.1 Requirements Engineering.. 12
2.2 Requirements Specifications Sub-Activities .. 13
2.3 Textual Requirements Specification... 14
2.4 Crosscutting Requirements and Derived Requirements 14
2.5 Early Aspects and AORE ... 16

3 Problem and Solution Overview... 18
3.1 The Problem.. 18
3.2 Crosscutting FRs... 18
3.3 The DRAS Methodology - an Overview .. 22

3.3.1 Implied Actions... 22
3.3.2 Entities and Actions .. 24
3.3.3 Crosscutting and Modes.. 25
3.3.4 Action Modifiers... 26
3.3.5 Requirements Priorities... 27
3.3.6 Contribution and Composition Rules.. 29

3.4 Putting all together – the DRAS Outline .. 30
4 The TETRA MS Example... 32

4.1 TETRA Overview... 32
4.2 TETRA MS Features and Functionality ... 33
4.3 Simplified Requirements Set .. 35
4.4 Baseline Requirements (Stakeholders’ Requirements)..................................... 37

4.4.1 Baseline Requirements - Attributes and Facts .. 38
4.4.2 Baseline Requirements – System Related... 39
4.4.3 Baseline Requirements – Group Call.. 39

4.5 Crosscutting (Aspectual) Requirements ... 40
4.5.1 Aspectual Requirements - Emergency Mode ... 40
4.5.2 Aspectual Requirements – TXI Mode .. 40
4.5.3 Aspectual Requirements – System Related .. 40

4.6 Derived Requirements from Baseline and Aspectual Requirements................ 41
4.6.1 Out-of-Coverage related Derived Requirements 41
4.6.2 Registration related Derived Requirements .. 42

5 Related Work .. 43
5.1 Viewpoints .. 43
5.2 Goal Oriented Requirements Analysis ... 44
5.3 Modularization and Composition of Aspectual Requirements......................... 44
5.4 Composition Process for Aspect Oriented Requirements (AOR) 45
5.5 Adaptation of the NFR Framework to AORE .. 45
5.6 Crosscutting Quality Attributes .. 46
5.7 Theme and Theme/Doc - Finding Aspects in Requirements............................ 46
5.8 Mining Aspects ... 47
5.9 Other Methods .. 48

6 Deeper Evaluation of Some AORE Methods ... 49

DRAS - Derived Requirements Generation by Actions and States Page 2

6.1 Modularization and Composition of Aspectual Requirements (MCAR) 49
6.1.1 Overview... 49
6.1.2 Input Requirements Analysis using MCAR ... 52

6.1.2.1 Identify and Specify Stakeholders’ Requirements................................ 52
6.1.2.2 Identify and Specify Concerns.. 52
6.1.2.3 Identify the Coarse-grained Concern/Viewpoint Relationship............. 52
6.1.2.4 Identify Candidate Aspects ... 54
6.1.2.5 Handle Conflicts between Candidate Aspects 54
6.1.2.6 Compose the Aspects and Requirements.. 55

6.1.3 Applicability of MCAR for creating Derived Requirements.................... 55
6.2 Composition Process for Aspect Oriented Requirements (AOR) 55

6.2.1 Overview... 55
6.2.2 Composition Process for AOR Main Activities.. 56

6.2.2.1 Identify Concerns.. 56
6.2.2.2 Specify Concerns and Identify Candidate Aspects............................... 57
6.2.2.3 Compose Candidate-Aspects with Concerns .. 57

6.2.3 Input Requirements Analysis using Composition Process for AOR 58
6.2.3.1 Identify Concerns.. 59
6.2.3.2 Specify Concerns and Identify Candidate Aspects............................... 59
6.2.3.3 Compose Candidate-Aspects with Concerns .. 61

6.2.3.3.1 Identify how each candidate aspect affects the concerns it cuts..... 61
6.2.3.3.2 Identify Match-Points ... 62
6.2.3.3.3 Identify Conflicts between candidate aspects 63
6.2.3.3.4 Identify the Dominant Aspect based on “Priority” 63
6.2.3.3.5 Identify Composition Rules .. 63

6.2.4 Applicability of Composition Process for AOR to create the Derived
Requirements .. 66

6.3 Theme and Theme/Doc - Finding Aspects in Requirements............................ 66
6.3.1 Overview... 66
6.3.2 Theme/Doc Approach Major Steps .. 67
6.3.3 Input Requirements Analysis using Theme and Theme/Doc 69

6.3.3.1 Identifying Actions and Entities ... 69
6.3.3.1.1 Identifying Actions and Entities per requirement........................... 69
6.3.3.1.2 Actions Identified.. 71
6.3.3.1.3 Entities Identified.. 72

6.3.3.2 Create Actions Views ... 73
6.3.3.2.1 Actions View (Theme/Doc) – Actions by Requirements 73

6.3.4 Applicability of Theme/Doc for creating a Derived Requirement 75
7 The DRAS Methodology .. 76

7.1 Gathering the Stakeholders’ Requirements .. 76
7.2 Identifying Actions, Entities and Attributes ... 76

7.2.1 General Lists for all Systems .. 77
7.2.2 General Lists with Specific System Contents... 77

7.3 Identifying Correlations between Actions and Entities 81
7.3.1 Entities used by Action ... 81
7.3.2 Actions Directly Implied (used) by Action... 82

DRAS - Derived Requirements Generation by Actions and States Page 3

7.3.3 Actions used by Action... 83
7.4 Identifying Actions and Entities used by the Input Requirements and their
Priorities.. 84

7.4.1 Split Requirements Text per Action/Entity (Manual)............................... 86
7.4.2 Attributes (Modes and States) of Requirements Parts 86
7.4.3 Requirements Priorities... 88

7.5 Identifying Actions used by the Requirements... 88
7.6 Identifying Requirements-Actions Attributes... 93
7.7 Identifying Match-Points between the Requirements....................................... 94

7.7.1 List of Match-Point Candidates between Requirements........................... 96
7.7.2 Remove Redundant Entries... 99
7.7.3 Remove Impossible or same Mode/State Match-Points 99
7.7.4 The Final Match-Point Candidates ... 100

7.8 Evaluating Match-Points... 102
7.9 Generating the Derived Requirements.. 106

8 Summary and Conclusions ... 110
9 Future Work .. 112
10 References... 116

DRAS - Derived Requirements Generation by Actions and States Page 4

List of Figures

Figure-1 The MS platform and buttons used by this work.. 36
Figure-2 Action View for a Subset of Requirements .. 74

List of Tables

Table 1 Correlation between Base and Crosscut Requirements 53
Table 2 Correlation between the Crosscut Requirements.. 54
Table 3 Requirements Attributes ... 60
Table 4 Requirements Attributes and Prioritization .. 62
Table 5 Derived Requirements .. 64
Table 6 Actions List... 79
Table 7 Modes and States List ... 80
Table 8 Modes and States Values .. 80
Table 9 Contradicting Pairs of Mode/State Values.. 81
Table 10 Entities used by Actions.. 82
Table 11 Actions Implied by Action.. 83
Table 12 Actions used by Action Summary .. 84
Table 13 Input Requirements Split - use of Actions and Entities................................ 85
Table 14 Requirements Attributes of Actions and Entities.. 86
Table 15 Entities used by Requirements.. 88
Table 16 Actions per Entity ... 89
Table 17 Actions Directly used by the Requirements (excerpt) 90
Table 18 Actions Used By Requirements (excerpt)... 92
Table 19 Requirement-Actions Attributes (excerpt).. 94
Table 20 Candidate Match-Points.. 98
Table 21 Removed Redundant Candidate Match-Points ... 99
Table 22 Removed Impossible Match-Point.. 100
Table 23 Requirements Match-Points.. 101
Table 24 Match-Points Evaluation... 103

DRAS - Derived Requirements Generation by Actions and States Page 5

Abbreviations

AOP Aspect Oriented Programming
AORE Aspect Oriented Requirements Engineering
AOSD Aspect Oriented Software Design
DR Derived Requirement
DRAS Derived Requirements generation by Actions and States

(the method defined in this work)
EA Early Aspects
FR Functional Requirements
GORA Goal Oriented Requirements Analysis
MS Mobile System (GSM/TETRA term for e.g. Cellular Phone)
NFR Non-Functional requirements
PTT Push-to-Talk
QA Quality Attribute
RE Requirements Engineering
Rx Receive
SoC Separation of Concerns
TETRA Trans European Trunked Radio
Tx Transmit
TXI Transmit (Tx) Inhibit

DRAS - Derived Requirements Generation by Actions and States Page 6

Abstract

When specifying system requirements, many interdependencies may exist between the

requirements. Requirements may conflict with one another and they may impact

(change, enhance, enhance or override) other requirements as well. In order to avoid the

cost and schedule overheads, these interactions and conflicts should be resolved as early

as possible in the development process. One method to resolve such interactions and

conflicts is to define Derived Requirements (DRs), representing new or modified

requirements that are inferred from other requirements.

An important category of requirements are the Functional Requirements (FRs),

representing requirements that change or override the function of other requirements they

crosscut. This work presents the DRAS (Derived Requirements generation by Actions

and States) methodology that helps both to identify FRs that crosscut other FRs and to

generate the DRs. To identify crosscutting requirements, the methodology matches the

actions used by the requirements and the system modes and states related to these

requirements. DRAS is based on the observation that when the same action is used by

two requirements, in a similar state of the system, it indicates that one of the requirements

may crosscut the other.

In addition to considering the actions used directly by the requirements, DRAS also takes

into account the actions implied (activated as a result of) activating these actions, or the

actions that imply the use of the actions directly used by the requirements. Whether the

implied or implying actions are considered, depends on whether the requirements restrict

the use of an action or eases restrictions for its use.

The DRAS input and output are textual specifications and the output is generated during

the requirements specification phase of the software development lifecycle. This enables

all stakeholders, with or without a technical background, to participate in the process.

DRAS - Derived Requirements Generation by Actions and States Page 7

1 Introduction

System and product requirements often contain crosscutting requirements, i.e.,

requirements which interact with each other. Interacting requirements may conflict with

one another and they may impact other requirements as well. Crosscutting between

requirements usually mean that either existing requirements must be enhanced (changed),

or new requirements must be written. Crosscutting requirements influence the selection

and definition of system requirements and eventually limit the various architectural

choices. It is very important to be able to identify crosscutting requirements as soon as

possible in the software development process and to handle them properly. While

identifying and handling crosscutting requirements, both functional-requirements (FRs)

and non-functional requirements (NFRs) should be considered. A rigorous analysis and

understanding of crosscutting requirements and their interactions are essential to derive a

balanced architecture. Ignoring interactions between crosscutting requirements results in

an incomplete understanding of specified requirements and, consequently, poorly

informed architectural choices.

A common resolution to the conflicts or interactions of crosscutting requirements is

Derived Requirements (DRs). These are requirements that are inferred, or derived, from

other user requirements. They are the outcome of resolving interactions and conflicts

between requirements. DRs may be either new requirements or changes (enhancements)

to existing requirements. Note that in the context of this work, derived requirements are

the result of two or more crosscutting requirements; not expanding and detailing a

requirement.

It is very difficult to identify crosscutting requirements in large systems; consequently,

methods and tools that can identify crosscutting requirements and define the outcome

DRs are needed. If the crosscutting requirements are not identified early enough, for

example during requirements analysis, the result is major overhead work during later

development phases. This overhead is the effort required to change the system to adhere

to the conclusions resulting from the interactions between the requirements. Sometimes

system redesign may be needed.

DRAS - Derived Requirements Generation by Actions and States Page 8

This work presents a methodology to generate textual DRs from stakeholders’ textual

requirements. The methodology is called DRAS - Derived Requirements generation by

Actions and States.

The DRAS method enables the generation of textual derived requirements from

stakeholders’ requirements. It mainly handles specific types of crosscutting

requirements, namely crosscutting Functional Requirements (FRs), which may crosscut

other FRs. The consequence is that they may change, enhance, or override other

requirements they crosscut. For example, a requirement to “not open a window when the

outside temperature is below 10 degrees” may crosscut the requirement to “open the

window in the morning”. The former requirement tentatively crosscuts all requirements

related to the action “opening a window”, when the temperature decreases below 10

degrees. The outcome of the analysis (for this interaction) should include a decision

whether or not to open the window in the morning, when the temperature is below 10

degrees.

A common term used to identify crosscutting between entities and the way they are

handled is the Aspect. Sousa et-al define an aspect as “an abstraction that encapsulates

the specification of a crosscutting concern, and where the match-points and the

composition rules for the crosscutting concern are defined” [Sousa 03a]. That is, an

Aspect is an abstraction of crosscutting requirements that identifies the crossing points

(the match-points) and defines what to do at these points (the composition rules).

Some of DRAS includes ideas that have been adopted from existing methods, especially

from [Baniassad 04b, Rashid 03, Brito 03]. DRAS uses actions as the primary means for

identifying match-points between FRs, i.e., identifying crosscutting FRs and the

requirements they crosscut. This is similar to [Baniassad 04b]. Actions are the functions

specified by the FRs. In the example above, “open window” is the action used by both

requirements. Note that using the same action by both requirements indicates that one of

them may crosscut the other.

DRAS - Derived Requirements Generation by Actions and States Page 9

DRAS takes into account the actions directly used by a requirement, and the actions they

imply (trigger), or the actions implied by their use. That is, for a specific action Act used

by a requirement, DRAS uses:

(a) the actions that their use is the consequence (result) of using Act, as implied actions,

or (b) the actions that imply the use of Act. Whether the implying actions or the implied

actions are used, depends on:

• Implying actions are used when the crosscutting requirement restricts the use of

the action.

• Implied actions are used when the crosscutting requirement eases other

restrictions for using the action.

For example, assume the action “to refresh the room” requires (and therefore implies) the

action “open the window”. In this case, if the window should not be opened, then the

implying action “refresh room” is also forbidden, i.e. the room should not be refreshed.

On the other hand, “the room should be refreshed” implies that the “open the window”

action is required.

DRAS observes that the modes or states of the system (when an action is activated), also

determine whether one FR crosses the other. For example, there may be different

requirements for opening the window in the summer or in the winter. In this case,

requirements that are only relevant for the summer, when the system is in Summer mode,

usually do not crosscut with requirements that are relevant only for the winter.

The initial requirements for a system or product are usually textual, because the input

from stakeholders is usually verbal or textual. The requirements specifications are

transformed into a more formal, technical representation (such as UML diagrams [Fowler

03]) only later in the development process. When the data is formally represented, it is

easier to identify crosscutting requirements and the requirements they crosscut.

However, non-technical stakeholders, such as customers and marketing representatives,

usually are not trained to read formal specifications. Therefore, it is advantageous to be

able to generate DRs in a textual form and to integrate them with other requirements.

DRAS - Derived Requirements Generation by Actions and States Page 10

This enables non-technical stakeholders to review and understand the specifications; thus,

it was decided to create textual requirements as the output of DRAS.

In order to generate textual DRs from stakeholders’ requirements, DRAS first identifies

match-points [Brito 03] between requirements. A Match-point in requirements is a part in

them that identify a tentative crosscutting between the requirements (e.g. a common

action). This is performed by identifying common actions that are used by the

requirements (inspired by [Baniassad 04b]), and by identifying common system modes

and states (when these actions are used). The DRs are then created based on the

crosscutting requirements. This enables review and evaluation by both technical and

non-technical stakeholders.

As an example, following is a simple set of requirements for initiating a call from a

cellular system:

R1. When a phone user dials a number, the phone shall initiate a call to the dialed

number.

R2. The phone shall allow initiating calls to the police (911 in the US, 112 in

Europe, 100 in Israel) under any condition.

R3. The phone shall be allowed to initiate calls and receive calls, only after

checking that the user is allowed to use it (bills paid, phone not stolen, etc.).

The first observation is that all of these requirements are FRs, and the action “call

initiation” is mentioned in each of them. Therefore, these requirements may crosscut

each other. Further analysis reveals that R2 and R3 are tentatively crosscutting, because

they restrict or ease the restriction for initiating a call. Analyzing each pair of

requirements shows that R3 crosscuts R1, because R3 restricts the specifications in R1.

Assuming that R3 has a higher priority than R1 (e.g., the requirement R3 has precedence

over R1), then the result is an enhancement (change) to R1. This enhanced derived

requirement may be:

R4. When a user of a phone dials a number, the phone shall initiate a call to the

dialed number only if the user is legitimate.

In this case, R3 may be redundant, as R4 includes its requirements (and crosscut

requirements that R3 crosscuts. It may still be important to keep such requirement, as

DRAS - Derived Requirements Generation by Actions and States Page 11

usually not all the requirements it crosscuts are identified in the early stages of

development. If new requirements it crosscuts will be added later, R3 may be important

for the resolution process.

Another derived requirement is the result of R2 and R3 crosscutting each other. That

requirement should either allow or disallow illegitimate users to dial the police. A

common solution in cellular systems gives R2 higher priority and therefore allows

illegitimate users to dial the police:

R5. Illegitimate user should be allowed to dial the police.

Alternatively, this can be an enhancement to R4:

R4 (enhanced). The phone should not allow dialing by an illegitimate user, unless

the user dials the police.

The rest of the thesis is organized as follows:

In Chapter 2 provides a general overview of Aspect Oriented Requirements Engineering

(AORE), which is the main area of this work. Chapter 3 discusses the problem of

generating DRs and outlines how DRAS handles this issue. Chapter 4 defines a set of

requirements that are used later throughout the document to evaluate the different

methods, including the new methods suggested in this work. The requirements are a

very simple set of requirements for a TETRA Mobile Station. Chapter 5 describes

different related existing AORE methods and evaluates them for the ability to help

generate derived requirements from the set of requirements defined. Chapter 6 further

details and evaluates the methods that were found to be most applicable. The evaluation

is performed using the same set of requirements that were defined in chapter 4. Chapter

 7 is the main chapter of this work. It defines the DRAS methodology to generate the

derived requirements semi-automatically, using a prototype tool. The process and

algorithms of DRAS are described and the generation of the derived requirements is

demonstrated. Chapter 8 summarizes the work and its conclusions, and suggests items

for further research to enhance DRAS, including possible integration with requirements

management tools.

DRAS - Derived Requirements Generation by Actions and States Page 12

2 Requirements Engineering and AORE Overview

This chapter gives an overview of requirements engineering with specific focus on

Aspect Oriented Requirements Engineering (AORE). This is to allow better

understanding of the place of the DRAS methodology in the development lifecycle, as

this work deals with the requirements engineering phase of the development cycle.

2.1 Requirements Engineering
Requirements Engineering (RE) methods handle the requirements specifications phase.

The RE methods target the following issues:

1) How to gather the requirements and needs from stakeholders.

2) How to verify that the requirements are well understood.

3) How to specify the requirements, in such a way that they will be well understood by

the engineers developing the system.

For a detailed description related to Requirements Engineering (RE) methods, one may

refer to [Young 04; Kovitz 99].

This work discusses requirements specifications activities (but does not describe how to

write good requirements). RE is a major part of these activities, as RE methods handles

specifying the functionality of the system. It is crucial that the output of these activities

match stakeholders’ needs. Otherwise, the system’s usability may be sub-optimal (in

relatively good cases) and unusable (in the worst case). Bad requirements specifications

also lead to over-budgeted projects, because of the large number of changes needed

during development after identifying the problems in the requirements.

Note that some development methods assume that requirements cannot be specified well

enough during early development (e.g. Agile and Spiral development methods).

Therefore, such methods allow for requirements changes during development. However,

even when these methods are used, the basic stakeholder requirements and needs still

need to be well understood early. In addition, RE methods can usually be applied

DRAS - Derived Requirements Generation by Actions and States Page 13

thought the development lifecycle, as details and priorities may be specified later during

development.

Getting a good understanding of the basic stakeholders’ requirements and needs is not a

simple task. [Kovitz 99] states that because software development is difficult,

exploratory engineering should be performed to identify the right requirements and

solution. There are many issues involved, mainly because it is difficult to bridge the gap

between stakeholders’ descriptions and the formal specifications (for the requirements).

Consequently, the Requirements Specifications for RE is divided into sub-activities; they

help create the bridge between these two types of specifications.

2.2 Requirements Specifications Sub-Activities

Several methods are used to identify requirements specifications. However, however,

they all have common activities, as they all have a common output - the requirements

specifications. Some of these activities that are common to many methods are (see

[Creveling 03] for details):

• Voice of the Customer (VOC): customers’ needs are gathered by interviewing

the customers.

• Grouping related needs: Similar needs by customers are grouped together.

During this process, the initial priority for each group of requirements is set.

• Customers’ Validation and Prioritization : The high level requirements are

returned to the customers, in order to verify that they correctly express customer

needs. Also, the customers can validate the prioritization made for the

requirements.

• Mapping to Technical requirements: The customers’ requirements are mapped

into technical requirements.

• Concept Analysis: The appropriate concept for the solution, required by the

customers, is specified.

• Requirements Specification and Writing: In this activity, the system

requirements are specified and written. This activity is detailed below, describing

how this work relates to this activity in Requirements Engineering (RE).

DRAS - Derived Requirements Generation by Actions and States Page 14

2.3 Textual Requirements Specification

A common way to specify the system requirements is textually, were each requirement is

specified separately and is identified by a specific tag. For example, the following is a

simple set of textual requirements for initiating a call from a cellular phone:

R1. When a phone’s user dials a number, the phone shall initiate a call

 to the dialed number.

R2. The phone shall allow initiating calls to the police (911 in the US,

 112 in Europe, 100 in Israel) under any condition.

R3. The phone shall be allowed to initiate and receive calls, only after checking

that the user is allowed to use it (bills are paid, phone is not stolen, etc.).

In this example, the Rx (x=1,2,3) are the tags of the specific requirements.

The requirements in the specifications are generally split into two types:

• Functional Requirements (FRs) – These requirements define the system

functionality, as required by the stakeholder. In the above example, R1 and R2

are FRs.

• Non-Functional Requirements (NFRs) – In general, these requirements enable

proper system functionality by defining requirements such as: security,

availability, reliability, etc. These NFR types are also called “ilities” (see [Young

04]). In the above example, R3 is an NFR.

The DRAS methodology mainly handles FRs.

2.4 Crosscutting Requirements and Derived Requirements

During requirements specification, a major issue is the interactions, dependencies, and

conflicts that usually exist between requirements. This is due to both inherent

dependencies between requirements, and different requirement types. Such requirements

are called Crosscutting Requirements. The main purpose of DRAS methodology is to

help handle crosscutting requirements.

DRAS - Derived Requirements Generation by Actions and States Page 15

There are several issues with crosscutting requirements:

1) In large systems, it is difficult to identify the relations between requirements

2) In cases of contradiction, it is sometimes difficult to resolve the conflicts.

3) New requirements should be specified because of crosscutting requirements, etc.

The main types of dependencies between requirements are:

• Enhanced functionality by dependencies between requirements.

In the requirements set for the example above (section 2.3), requirements R1 and

R3 are dependent and a new requirement is derived:

 R4. Dialing should not be allowed by

 an illegitimate user.

Instead of creating new requirements, R1 may be enhanced:

 R1. When a phone’s user dials a number, the phone shall initiate a call

 to the dialed number only if the user is legitimate.

Although this requirement directly results from other requirements, note that in

many cases (to verify that they are implemented), it is important to define them

specifically. Also, there are different interpretations for dependencies between

requirements. For example, in this case the user is allowed to dial a number, so

that it will be possible to initiate a call to the police.

• Conflicts between requirements. Requirements 2 and 3 conflict when an

illegitimate user tries to dial to the police. The common resolution for this conflict

is to allow illegitimate users to dial the police (and with no charge). This result

can come from either extending Requirement 3, or by defining a new

requirement:

 R5. Illegitimate user should be allowed to dial the police.

The requirements (generated because of these two types of dependencies between

requirements) are the main issue of this work. These requirements are called Derived

Requirements. Functional and non-functional requirements come mostly from

stakeholders and from other systems that the system connects to. Usually, derived

requirements are written without using any special methods or tools, after thorough

DRAS - Derived Requirements Generation by Actions and States Page 16

analysis of other requirements. Defining these requirements is often problematic,

because defining them requires a very deep understanding of the system and the

correlation between many requirements. In many cases, several of these requirements are

not defined ahead. Sometimes they are understood only after issues are found during

testing, or when the system is already in use. This can cause several issues and defects

during system development and system use.

2.5 Early Aspects and AORE
The term early aspects refers to aspect-oriented methods that are used during early

phases of the development lifecycle. In the requirements specification phase, aspects are

the actions and activities that are repeated in different requirements; or they are the cause

requirements to “crosscut” each other (i.e., the crosscutting-requirements). Aspects are

the interacting parts between requirements, their dependencies, and conflicts. Identifying

aspects enables the proper handling of these dependencies and conflicts between

requirements. In general, aspects handling enables the generation of additional

requirements; the derived requirements resolve the conflicts and add information needed

to handle the dependencies. In addition, Aspects handling promotes a better

understanding of the system; this helps to later improve system analysis and software

design.

The primary purpose of early aspects methods is to find ways for identifying crosscutting

concerns from stakeholders’ requirements, and to properly compose them with a set of

system requirements. Because gathering and specifying system requirements requires a

high degree of human (stakeholders) involvement, more than just formal methods are

needed. Therefore, tools that were developed to support Early Aspects methods usually

do not implement the full process; normally they are used only to assist in the process.

Aspect Oriented Requirements Engineering (AORE) deals with aspect oriented methods

for Requirements Specification. Some AORE methods were developed before aspect

oriented methodology was established (e.g. Goal Oriented Requirements Engineering -

see Chapter 5). Others were developed based on AOP methods; they try to extend the

use of their techniques to earlier development phases. AORE methods are mainly used

DRAS - Derived Requirements Generation by Actions and States Page 17

for handling crosscutting requirements, for cases where there are dependencies and

conflicts between different requirements.

Several AORE methods are reviewed in Chapter Error! Reference source not found.,

for their applicability to DRAS methodology developed in this work. An extensive

review of Early Aspects and AORE methods can be found in [Chitchyan 05; Araujo 05].

DRAS - Derived Requirements Generation by Actions and States Page 18

3 Problem and Solution Overview

This chapter explains in more details the issues of handling crosscutting requirements to

generate derived requirements and the main approaches to solve these issues that are

included in the DRAS methodology. The full description of the methodology is provided

in Chapter 7.

3.1 The Problem
The DRAS methodology described in this work handles requirement that are specified

textually. Some of the requirements specified for a system may crosscut each other (as

explained in Chapter 1, crosscutting requirements are requirements in a system

specification that interact with each other). Therefore, it is very important to be able to

identify crosscutting requirements as soon as possible, to allow generating the proper

derived requirements (DRs). While identifying and handling crosscutting requirements,

both functional and non-functional requirements should be included. It is also important

that the output of that analysis (performed during the requirements elicitation phase) be

textual, enabling non-technical stakeholders to review and understand the output.

DRAS is designed to handle these issues for functional requirements. As described later

in Chapter Error! Reference source not found., most of the existing methods handle

crosscutting NFRs. However, it is important to be able to also treat crosscutting FRs. The

DRAS methodology intends to solve this problem by identifying crosscutting functional

requirements (along with determining how to handle them), and by specifying the DRs.

Both its input and output requirements are textual.

3.2 Crosscutting FRs
This section gives additional and more detailed examples of crosscutting requirements

and the crosscutting analysis. The ideas presented in these examples are the basis for the

DRAS methodology.

DRAS - Derived Requirements Generation by Actions and States Page 19

One way to identify crosscutting FRs is according to the actions used by the

requirements. The Push-to-Talk (PTT) action used in cellular systems will be used as an

example.

PTT is used to initiate calls to a pre-selected user or target number in walky-talkies, by

pressing a button, also called PTT. As in walky-talkies, these calls are half-duplex, and

only one participant can transmit voice at a given time. See chapter 4 for more

information regarding the PTT mechanism.

Following are two functional requirements (the crosscutting actions appear in bold):

R1 When PTT is pressed, the phone shall initiate voice transmission.

R2 When another phone transmits, the phone shall not initiate voice

transmission.

Since both requirements are about transmission, one of them may crosscut the other. In

cellular systems, when PTT is used to initiate a call, usually R2 crosscuts R1. That is, a

phone will not try to transmit if another phone already transmits. Therefore, the

crosscutting resolution may be as follows [the E in R1(E) means enhanced]:

R1(E) When PTT is pressed, the phone shall initiate voice transmission unless

another phone transmits.

Note that with R1(E), R2 may be redundant. However, it is important to keep such

crosscutting requirements. Usually not all requirements they crosscut are identified in the

early stages of development; new requirements they crosscut may be added later.

Certain issues were identified in the way existing methods use actions to indicate a

tentative crosscutting of FRs:

• Actions that are implied by the actions directly used by the requirements are not

taken into account.

• Crosscutting-modes and states are not considered.

• Action-modifiers to restrictions are not considered.

DRAS - Derived Requirements Generation by Actions and States Page 20

1. Implied Actions

 In many cases, the use of an action Act by a requirement implies the use of other actions

by that requirement. These are the actions which are the consequence of using Act. For

example, the action “pressing the dial button on the phone” implies the use of the action

“Transmitting Voice”. In addition, actions that imply the use of Act may also be relevant

to the requirement. For example, when analyzing a requirement about “Transmitting

Voice”, the action “pressing the dial button” may also have to be considered.

It should be decided which actions to consider: those that are implied by the action Act,

or those that imply the use of Act. This decision depends on whether the requirement

restricts the use of Act or whether it eases restrictions for the use of Act. Restricting the

use of Act means that all actions that imply its use should also be restricted. Ease of

restrictions for the use of Act means that all the actions that are implied by it should also

be allowed.

For example, a case were an action (transmit) is restricted and therefore an action that

implies transmit (initiate a call) is also restricted:

R3 When another phone transmits, the phone shall not initiate voice

transmission.

R4 When PTT is pressed, the phone shall initiate a call.

In this case, since initiating a call requires the phone to transmit, a phone should not try to

initiate a call if another phone is already transmitting. Note that this deduction requires

knowing that initiating a call results in a transmission.

2. Crosscutting and Modes

Modes (or states) of the different entities in the system are also important for determining

whether requirements crosscut. Examples for modes of a cellular phone are:

a. Whether it is in a call,

b. Whether the user is in the process of dialing a number, or

c. Whether the user reads SMS messages.

For example:

DRAS - Derived Requirements Generation by Actions and States Page 21

R5 In Call mode (i.e. during a call), when another phone transmits, the phone

shall not initiate voice transmission.

R6 In Idle mode (i.e. while not in a call), when PTT is pressed, the phone shall

initiate a call.

Although both requirements imply the use of “transmit,” none of them crosscuts the other

because the modes are orthogonal (mutually exclusive). However, R7 below crosscuts

R8, because both requirements are related to the Call mode:

R7 In Call mode, when another phone transmits, the phone shall not initiate

voice transmission.

R8 When PTT is pressed, the phone shall initiate voice transmission.

Note that R8 does not refer to any specific mode; thus, it is considered to be relevant to

all modes, including both Call and Idle modes. Therefore R7, which explicitly refers to

the Call mode, crosscuts R8.

However, especially in systems with many kinds of modes, analysts tend not to explicitly

mention in the requirements the mode they refer to; otherwise, the requirements would be

very long and difficult to understand. Rather, they consider an implicit default mode. In

R8 for example, this may be the Idle mode. Then, of course, R7 does not crosscut R8

because they refer to different modes of the system.

There is no way of knowing whether the requirements have implicit default modes.

Therefore, requirements that do not mention a specific mode are considered as referring

to all modes

3. Action Modifier

Functional requirements usually crosscut when they restrict normal functionality or ease

other restrictions.

For example, R8 above crosscuts R7 because R8 specifications restrict the functionality

of R7.

In the following requirements, the restriction is eased:

DRAS - Derived Requirements Generation by Actions and States Page 22

R9 During a call, when another phone transmits, the phone shall not initiate

voice transmission.

R10 In Emergency mode, the phone should always be allowed to initiate voice

transmission.

In this case, when the phone is in Emergency mode, R10 crosscuts R9 and the restriction

of R9 is eased by R10.

3.3 The DRAS Methodology - an Overview
To solve the issues described above, the DRAS methodology has been developed. The

methodology is used to identify and handle functional requirements that crosscut. It first

identifies the actions used by each requirement, including the implied actions, the modes

(or states) that are relevant for the requirement, and the action modifiers per action.

Then based on this information, DRAS identifies the functional crosscutting

requirements, the requirements they crosscut, and helps with generating the resulting

derived requirements (DRs). The generated requirements are textual, so that all

stakeholders (including those with no technical background) can review and understand

the requirements.

3.3.1 Implied Actions

When searching for requirements which may crosscut (based on actions), DRAS not only

performs comparisons between actions directly used by the requirements, but it also takes

implied actions into account. For identifying the implied and implying actions for a

certain action Act, the methodology uses a knowledgebase that pre-defines lists of all

actions that are directly used by each action. The list is defined based on previous

knowledge and during initial analysis of the system’s requirements. Recursive use of the

list allows it to identify all actions that are implied by the use of that action. The

knowledgebase also specifies whether the implied actions are always activated by Act, or

they may be only activated by it.

For example:

DRAS - Derived Requirements Generation by Actions and States Page 23

R3 When another phone transmits, the phone shall not initiate voice

transmission.

R4 When PTT is pressed, the phone shall initiate a call.

To identify whether one of the above requirements crosscuts the other, DRAS analyzes

recursively the list of actions implied by call initiation (as specified by the implied

actions knowledgebase) to check if transmit is a result of call initiation. This is shown in

 Fig. 1 (Tx is the abbreviation for transmit):

Fig. 1 Implied Actions for Call Initiation

Given that R3 has a priority not lower than R4, then the crosscutting resolution may be:

R4(E) When PTT is pressed, the phone shall initiate a call, unless another phone

transmits.

Fig. 2 Implied Actions (partial list)

Initiate Call
Call State

to Tx Tx Voice Tx
Ask Tx

Permission

Initiate Call
Call State

to Tx Tx Voice Tx

Press PTT

Idle Mode

Call Mode

Receive
Incoming

Call

Join
Incoming

Call

Call
Mode to
Active

Power On Register

Registration
Command

Ask Tx
Permission

DRAS - Derived Requirements Generation by Actions and States Page 24

A more complex example of the implied actions knowledgebase is shown in Fig. 2. It

shows that several threads of actions can imply the same action; e.g., both Power On and

Initiate Call imply transmission. Therefore, for example, not allowing transmission (Tx)

means that call initiation or Power Off full functionality are also restricted.

3.3.2 Entities and Actions

In addition to the actions implied by other actions, the DRAS knowledgebase specifies

which actions are related to each entity in the system. An entity is a sub-system, a user of

the system etc., which is referred to by the requirements. Usually an entity has well

defined interfaces with other entities in the system. In the cellular systems example, the

entities are the phone, the cellular system, and the phone user. Similar to implied actions,

the information about which actions are related to each entity is needed whenever an

entity is being referenced to in a requirement. This information is also stored in the

DRAS knowledgebase. For example, referring to an entity may mean referring to any

action relevant to that entity.

See Fig. 3 below for the actions used by the Cellular System entity and the following

requirement:

R11 Illegitimate user should not be allowed to use the cellular system.

R11 means that all actions relevant to the cellular system (initiating a call, etc.) are also

not allowed to be activated by an illegitimate user.

Fig. 3 Actions used by System Entity (partial list)

Initiate Call Ask Tx
Permission

Join
Call Register

Cellular System (Entity)

DRAS - Derived Requirements Generation by Actions and States Page 25

3.3.3 Crosscutting and Modes

DRAS identifies the Modes (and States) that each requirement is referring to. Normally,

when two requirements relate to two orthogonal (mutually exclusive) modes, these

requirements do not crosscut. That is, even if the two requirements use the same

(implied) action, it can still be assumed that they do not have match-points (i.e., they do

not crosscut) if their modes are orthogonal.

For example:

R9 During a call, when another phone transmits, the phone shall not initiate

voice transmission.

R10 In Emergency mode, the phone should always be allowed to transmit.

As shown in Fig. 4, Idle mode and Call mode are orthogonal. That is, phone can either

be in a call (Call mode) or not (Idle mode). However, the Emergency mode crosscuts

both, because Emergency mode can be initiated no matter if the phone is in a call or not.

Fig. 4 Crosscutting Modes

In this example, R9 does not refer to any specific mode; hence it refers to both Normal

and Emergency modes (among other modes). Therefore, since R10 refers to a call in

Emergency mode, it tentatively crosscuts R9 (which refers to a Normal mode call).

DRAS takes into account requirements specifically related to emergency cases, which

have higher priority than the requirements for general cases. A possible resolution to the

conflict in the above crosscutting requirements may be:

R9(E) In Call mode, when another phone transmits, the phone shall not initiate

voice transmission, unless it is in Emergency mode.

Idle Mode Call Mode

Emergency
Mode

DRAS - Derived Requirements Generation by Actions and States Page 26

3.3.4 Action Modifiers

For each action used by a requirement, DRAS identifies its action modifiers, which

specify restriction or ease of restriction for normal use of the action. DRAS can

distinguish between three action-modifiers:

• Restrict: action is restricted or not allowed.

• Unconditional: action is always allowed, even if it was restricted by other

requirements (ease of restriction).

• None: action not specifically allowed or restricted in certain modes or states.

Usually, actions with a non-action-modifier do not need to determine whether the

FR is crosscutting or not.

The information regarding action modifiers helps determine whether two requirements

crosscut each other. If the use of an action is not restricted, or a restriction for its use is

not eased, then the use of the action does not necessarily mean the requirements crosscut

other requirements (unless there is a mistake in the requirements, such as: two

contradicting requirements that are erroneously defined). The action modifiers are also

propagated to the implied-actions.

Whether to consider the actions that are implied by an action, or to consider the actions

that imply it, depends on the way action usage is restricted. If a requirement restricts the

use of action Act, then all actions that imply Act are also restricted. For example, not

allowing transmitting also means not allowing call-initiation, but not allowing call-

initiation does not mean not allowing transmitting.

On the other hand, if a requirement eases the restrictions for using Act or allows using it

unconditionally, then all actions implied by Act are also allowed. For example,

permitting unconditional call-initiation in Emergency mode also means unconditional

permission to transmit in this mode. Permitting unconditional transmission, however,

does not mean unconditionally permitting call-initiation.

DRAS - Derived Requirements Generation by Actions and States Page 27

Therefore, an action-modifier is also used to determine the direction for identifying

implied-actions (see Fig. 5). If an action Act is restricted, then the actions that imply Act

are also restricted. If restrictions are eased (“Unconditional”), then restrictions for using

the actions (implied by the action) are also eased.

Fig. 5 Restriction and Ease of Restriction for Implied Actions

For example:

R3 When another phone transmits, the phone shall not initiate voice

transmission.

R4 When PTT is pressed, the phone shall initiate a call.

Since R3 restricts transmission according to Fig. 5, R3 also restricts call-initiation;

therefore, R3 crosscuts R4.

Note that having only an action modifier does not mean that one requirement may

crosscut the other. Usually, in order to crosscut, the action modifier should also

contradict the action-modifier of the other requirement. For example, the following two

requirements do not crosscut each other:

R1 When PTT is pressed, the phone shall initiate voice transmission.

R10 In Emergency mode, the phone should always be allowed to transmit.

Although R10 eases a restriction for transmission, it does not contradict R1, because R1

refers to permitting transmission and not to restricting transmission.

3.3.5 Requirements Priorities

The resolution of crosscutting between requirements depends on the priority of the

requirements. The specification of a requirement with higher priority should override the

specifications of requirements with lower priority. The use of relative priorities between

Initiate Call
Ask Tx

Permission
Call State

to Tx Tx Voice Tx

Implied Actions (Forward) - used for ease of restrictions

Implying Actions (Backward) - used for restrictions

DRAS - Derived Requirements Generation by Actions and States Page 28

requirements (for handling crosscutting requirements) is inspired by existing methods,

such as [Baniassad 04b, Rashid 03].

Note that it is difficult to assign relative priorities for each pair of requirements, i.e., to

specify for each pair of requirements which requirement has a higher priority. In order to

simplify the process, DRAS assigns one unique priority to each requirement. A

functional requirement priority is based on the importance of the actions the requirement

refers to and system state the requirement refers to. For example requirement about

emergency actions will usually have higher priority than a requirement about other

actions. Also, requirements that restrict operation in certain states will usually have

higher priority than the requirements for general states.

The decision about a requirement priority is not deterministic and the final decision

should be made manually, based on experience, domain knowledge, understanding the

customer needs, etc.

Following is an example of conflicting requirements, where the analysis of requirements

priorities can be used to resolve the conflict:

R12 Illegitimate users shall not be allowed to initiate calls.

R13 All users should be allowed to initiate a call to the police (an emergency

number).

The resolution whether an illegitimate user can dial the police or not, can only be

performed manually. That is, it should be determined which of these two requirements

has a higher priority to define the proper DR.

It should be noted that assigning a unique priority per requirement is a simplification, as

the requirements priorities do not necessarily form a transitive order. Thus, using a

unique priority per requirement can only suggest which requirement has a higher priority.

A main reason for this is that many of the requirements are unrelated, so it not possible to

compare their relative priority. Another reason is requirement that refer to more than one

action, as the reference to each action may have its own priority.

For example:

R14 When pressing PTT, the phone shall initiate a call.

DRAS - Derived Requirements Generation by Actions and States Page 29

R15 Illegitimate users shall not be allowed to transmit.

R16 The phone shall send its location to the system every minute.

R17 During a call, the phone shall not transmit its location.

As initiating a call requires transmission, R15 is assigned a higher priority than R14.

However, although sending location to the system also requires transmission, it may still

be allowed for illegitimate users, e.g. to allow locating the phone in case of emergency.

Therefore, R16 is assigned a higher priority than R15. A conclusion is that R16 has

higher priority than R14. However, because of R17 (which can be the result of a

technical limitation of the system), initiating a call will stop sending the location for the

duration of the call. That is, R14 should have higher priority than R16 to allow imitating

calls. We see that different considerations lead to different relative priority of R14 and

R16 and that the relative priorities between the requirements are not transitive.

3.3.6 Contribution and Composition Rules

After identifying which requirements crosscut which requirements, the effect of the

crosscutting should be evaluated. This is performed before the requirements can be

composed to generate DRs. Based on [Brito 03], two attributes are identified by DRAS:

contribution and composition rules.

• Contribution - indicates whether the function (that the crosscutting requirement

defines) conflicts with the function for the requirement it cuts (“-”), adds to its

functionality (“+”), or does not affect it (“None”).

• Composition Rules - based on the relative priority between requirements and the

nature of the crosscutting functionality, the crosscutting requirement can be one of

the following:

o Overlap Before/After - add functionality before/after the functionality of the

requirement it crosscuts.

o Override - replace the functionality.

o Wrap - encapsulate the existing functionality within new functionality.

DRAS - Derived Requirements Generation by Actions and States Page 30

3.4 Putting all together – the DRAS Outline

The DRAS methodology is based on the activities described earlier. Fig. 6 shows the

process map for this methodology. Chapter 7 provides a full description of the

methodology.

Fig. 6 DRAS Process Map

The functionality of each of the step is as follows:

1. Gathering the Stakeholders’ Requirement (the input requirements for the

process).

2. Identifying Actions, Entities, and Attributes.

3. Identifying Correlations between Actions and Entities.

4. Identifying Actions and Entities used by Input Requirements and their

Priorities , including identifying requirements priorities and for each Action or

Entity, their appropriate Modes and States.

5. Identifying Actions used by the Requirements, directly or indirectly.

6. Identifying Requirements-Actions Attributes, i.e., in what conditions the action

is performed (according to the specified requirement).

Gathering the
Stakeholders’
Requirements

Identifying Actions,
Entities, and Attributes

Identifying Actions and
Entities used by the

Input Requirements and
their Priorities

Identifying Actions
used by the

Requirements

Identifying
Requirements-Actions

Attributes

Identifying Match-
Points between the

Requirements

Evaluating
Match-Points

 Identifying
Correlations between
Actions and Entities Generating the

Derived
Requirements

DRAS - Derived Requirements Generation by Actions and States Page 31

7. Identifying Match-Points between the Requirements, using their common

attributes (the common Actions, Modes, States, and Constraints).

8. Evaluating Match-Points to identify which of them should result in a derived

requirement.

9. Generating the Derived Requirements according to the match-points identified.

DRAS - Derived Requirements Generation by Actions and States Page 32

4 The TETRA MS Example

This chapter gives an overview to TETRA, especially the TETRA MS (Mobile Station -

the TETRA phone) and defines a set of requirements for the MS that are used later for

evaluating different methods. The requirements are a small subset of the real TETRA

MS requirements.

4.1 TETRA Overview

TETRA is a cellular system, mainly used for public safety and transit systems (police

force, train systems, etc). TETRA voice services include both phone calls and push-to-

talk (PTT) type of calls. PTT services support both Group and Private calls. The

TETRA air interface standard is defined by ETSI in [TETRA]. In TETRA, as opposed to

cellular systems such as GSM, only the air interface and equipment interface (used by

end users) are standardized. (In GSM and other cellular systems, the interface between

different system components is also standardized.) In many cases, the TETRA system is

owned by the customer, while in most other cases a cellular system is owned by an

operator that sells services to customers.

A primary differentiator between TETRA and most other cellular systems is its

emergency services features. Some of emergency services features are: Emergency

Alarm, Emergency/Priority Call, Call Preemption, Ambience-Listening, Hot-Mic, and

more. These services usually don’t exist in cellular systems. Another difference is that

in TETRA, a user should be able to start talking almost immediately (less than one-half

of a second) after starting a call using PTT. In comparison, PTT services currently

supported cellular systems, such as GSM, allow the user to start talking only after few

seconds. Emergency and Priority calls add many interactions between features.

Therefore, they are significant and a major part of the requirements defined in this work.

DRAS - Derived Requirements Generation by Actions and States Page 33

Most TETRA systems include a control center, where a human operator can: control

calls, interrupt calls, connect (patch) different calls, broadcast to a site/system, control

emergency operations, and more.

4.2 TETRA MS Features and Functionality

Following is a short description of TETRA MS features and functionality that used to

define the requirements set used in this work:

• Registration (to the System): In cellular systems, the MS (phone) usually registers

to a system before it can get service from it. Registration is required for several

reasons:

1) Authenticating the MS and the system.

2) Ensuring that the MS is authorized to get support from the system (e.g., the user

has paid his bill, or the user is a member of the police force that owns this

system).

3) Allowing the system to know that the MS is active, etc.

 One known exception is an emergency call (such as a 911 call in the US) in

systems (such as GSM), where in any case, the emergency call should be allowed.

• In/Out of Coverage: Cellular systems coverage is limited due to: 1) their RF signal

propagation distance is limited, and 2) because of system and MS loss of

synchronization starting from a certain distance (because of a delay in receiving the

signal). The MS can register and get services from a system only when it is within

the system coverage range. While out of the system coverage range, the MS

periodically searches for the system. The user services allowed (when out of

coverage) are limited to local MS functions (e.g., browsing the phone book).

• Group Call (Half Duplex): A major (and maybe the main) service for cellular

systems used for public safety (such as TETRA systems) is the Group Call, which

allows a user to talk to a group of people. This service simulates a walkie-talkie

service, where all over-the-air radios that are tuned to the same frequency can hear all

DRAS - Derived Requirements Generation by Actions and States Page 34

other over-the-air radios. In cellular systems, there are mechanisms that prevent

anyone from interrupting the talking party, although there are also mechanisms that

will allow a graceful interruption in high priority cases. The Group Call is in Half

Duplex mode. If two users were allowed to talk at the same time (as in a full-duplex

phone call), a third user would not be able to hear any of them.

A Group Call is usually initiated by pressing and holding the Push-To-Talk (PTT)

button; the transmitting phone continues to transmit until the user releases the PTT

button. Therefore, the user does not need to again press (push) the PTT button to end

the Group Call. After the PTT button is released, the call usually remains active for a

few more seconds, allowing others to respond. (It is also possible [by pressing the

PTT button separately each time] to start a new call, but if the system is busy, it may

mean that no resources will be available for a response.)

A Group Call can be received whenever the MS is busy in a call, or when the MS is

idle. The decision whether to receive the new incoming call, while the MS is busy

with another call, is usually based on the priority for each of the two calls.

• Idle vs. Call Mode: Normally in a cellular system, MS functionality is different if it

is NOT in a voice call, than if it is in a call. For example, if NOT in a call, almost all

received incoming calls will be accepted; if in a call, only higher priority incoming

calls will be accepted. For the purpose of this work, Idle Mode is when the MS is

NOT in a call, while Call Mode is when it is in a call. (In reality, the definition is far

more complex, e.g., there is a duration after the Group Call ends when incoming calls

[for that group] will have higher priority, because it is assumed that the incoming call

is a continuation of the previous call.)

• Call Priority : In TETRA, each call has an assigned priority. The priority can be

predefined for the user, set according to the state of the MS, etc. Using Call Priority,

the system can preempt (stop) an active call to free resources for another higher

priority call; in a call, MS may switch to another higher priority call, etc. In TETRA

there are 15 levels of priority. But in this work only two will be discussed: Normal

DRAS - Derived Requirements Generation by Actions and States Page 35

and Emergency.

• Emergency Call Priority: In TETRA, Emergency Call Priority is the highest call

priority. It has a distinct name because it is used not just to set higher priority, but

also to indicate a serious problem, such as in situations of life and death. Therefore,

an Emergency Priority Call provides additional functionality that is not allowed in

other cases, such as longer or unlimited talk time.

• Emergency Alarm and State: In TETRA systems, the usual functionality is to be

able to initiate an Emergency Priority Call, but the MS should first be in an

Emergency Mode. This is usually performed by pressing a designated emergency

button. When the button is pressed, the MS sends “emergency alarm” signals to the

Control Center and it enters the “emergency state”. While in the emergency state, the

MS is usually limited in its functionality (e.g., it will not receive non-emergency

priority calls). This limited functionality guarantees that the MS is free to perform

functions that are needed to handle the emergency situation.

• TXI (Transmission Inhibit) : There are some cases where it may be dangerous to

allow the MS to transmit any signal. For example, if the user is in an explosive area

or in a hospital. For such cases, the MS user can set the MS so that it cannot transmit

(unless it is in an emergency mode). In TXI mode, the MS may receive Group Calls

(because it can only listen to these calls), but it cannot initiate calls or receive one-to-

one calls (e.g., a phone call).

4.3 Simplified Requirements Set

The following sections define the requirements set for the purpose of this work. The

requirements are a highly simplified subset of the requirements for the TETRA MS. Two

sets of requirements are defined. One set includes baseline requirements for normal,

non-crosscutting functionality for the MS. The other set includes crosscut requirements

DRAS - Derived Requirements Generation by Actions and States Page 36

related to emergency/priority/TXI, where normal behavior is suspended or changed

because of required higher priority activities. The requirements for higher priority

activities, defined by the second set, are crosscutting requirements that cut the first set of

requirements.

The interactions between different crosscutting requirements will be discussed later,

using the different AORE methods described in this work.

Note that in systems like TETRA, there are several other crosscutting requirements and

some of them crosscut each other. For this work, the requirements were simplified so as

to clarify which of the functional requirements crosscut which of the other functional

requirements. Also, there is no reference to the TETRA over-the-air protocol (defined by

[TETRA]), although all incoming or outgoing commands/messages referenced in this

work (except for the User Interface) are performed using this protocol.

For the defined requirements, a simplified TETRA MS is assumed:

Figure-1 The MS platform and buttons used by this work

P

T

T

EMR

TXI

PWR

DRAS - Derived Requirements Generation by Actions and States Page 37

• It supports only half-duplex group calls. No other types of calls (private, phone,

etc.) are supported.

• It can initiate an outgoing call to only two predefined groups: one used when in

Normal Call Mode (the Normal Group), and the other used when in Emergency

Call Mode (Emergency Group). The user cannot dial a group number and cannot

select within pre-defined groups.

• Pressing the Emergency button only puts the MS into Emergency Mode; it does

not cause the MS to send an Emergency Alarm signal to the Control Center.

• A single cell system is assumed. Therefore, there is no need to handle cell

handover re-registration on a new cell when in TXI mode, etc.

• Only the following buttons are available for users (as shown in Figure-1): Power

On/Off (PWR), Push-To-Talk (PTT), Emergency (EMR), and Tx Inhibit (TXI).

4.4 Baseline Requirements (Stakeholders’ Requirements)

The defined requirements are simplified TETRA stakeholders’ requirements. The defined

requirements are based on experience, and not on one of the methods developed for

discovering stakeholders’ requirements. The methods include Viewpoints, Use-cases,

Goals or Problem Frames; see [Rashid 02; Rashid 03] for references to some of the

above-named methods. Because only stakeholders’ requirements are the basis for this

work (and they had to be simplified for this purpose), the above-named methods were not

used.

Note that in some cases, functional requirements and user interface requirements (using

the platform in Figure-1) were combined into one requirement. This was done so as to

simplify the handling of the requirements set and traceability for this work. An example

of such a simplification is Req-150. The functional requirement is to allow switching

between emergency and normal mode; the user interface requirement is that switching be

done by pressing the EMR button.

DRAS - Derived Requirements Generation by Actions and States Page 38

4.4.1 Baseline Requirements - Attributes and Facts

Before defining requirements, some attributes (used by the requirements) must be

defined. Some of this data could have been defined as requirements, but for the sake of

simplicity, it is given below.

Attributes:

• Coverage Mode - whether MS is within system coverage: In-Coverage or Out-

of-Coverage.

• MS Call Mode - whether MS is in call mode: Idle mode or Call mode. (For

short, Idle/Call mode will be used later instead of Idle/Call Call mode.)

• Tx Mode - whether MS is allowed to transmit (Tx): Tx-Allowed (TXA) or Tx-

Inhibit (TXI).

• Call Priority - from low to high call priority: Normal or Emergency.

• Priority Mode - from low to high MS priority mode: Normal or Emergency.

(For short, Normal/Emergency mode will be used later instead of

Normal/Emergency Priority mode.)

The actions taken when pressing different MS buttons (except for PTT) are:

• Emergency (EMR) Button: Toggles the MS between Emergency Mode and

Normal Mode. The initial priority mode at power-on is Normal.

[A general note when toggling to all modes: toggle -try to change the mode name

from “toggle” to “change mode,” because the second name is better in some

cases. I decided to keep only “toggle” so as to reduce the number of actions in

the list during the evaluation of the Theme/Document.]

• TXI button : Toggles between TXI and TXA modes. The initial Tx Mode at

power-on is Allowed (TXA).

• Power (PWR) button: Toggles between Power-on and Power-off for the MS.

Other general attributes are:

• Priority of Calls : All calls with the same Call Priority have the same priority.

DRAS - Derived Requirements Generation by Actions and States Page 39

4.4.2 Baseline Requirements – System Related

The following requirements are for MS registration at power-up. Normal mode and Tx

Allowed mode are assumed. According to the requirements, these are always the modes

when the MS starts at power-up, regardless of the modes it was in during a previous

power-off. (Note that this is for simplification only; in a real case, the MS can remember

the Priority and Tx Modes during the power off/on cycle.) The detailed registration

process, including sub-steps (such as authentication), is not included.

Req-250: On power-on, MS shall register to the system.

Req-260: On power-off, the MS shall de-register first from the system, if it is

successfully registered.

Req-270: MS shall be able to power-off in any state.

4.4.3 Baseline Requirements – Group Call

The following requirements assume that the MS is in Normal priority and Tx Allowed

modes. The requirements, when the MS is in Emergency priority or Tx Inhibit modes are

defined separately, and regarded as crosscut functional requirements.

Req-310: Pressing PTT in Idle mode shall initiate a request for an outgoing group

call to the system, with Normal priority, to the predefined Normal group.

If acknowledged by the system, MS shall toggle to Call mode and may

start transmitting voice.

Req-320: Pressing PTT in Call mode shall cause the MS to ask the system for

permission to Tx voice, when no one else is transmitting in the call. The

MS may start to Tx voice only if allowed by the system. The PTT shall be

ignored when someone else is already transmitting in the call.

Note: this type of call is half-duplex, i.e. in this case, parallel transmission

by several participants in the call is not allowed.

DRAS - Derived Requirements Generation by Actions and States Page 40

Req-330: When receiving incoming Group call in Idle mode, MS shall toggle to

Call mode and join the call.

Note: in Group Call there is usually no need to acknowledge the receipt of

the incoming call message, because such an acknowledge will probably

collide with the acknowledge of other group call participants. This is why

the MS can listen to a group call while in TXI Mode.

Req-340: When receiving incoming Group call in Call mode, the MS shall

internally reject the call, without notifying the system.

Note: rejection is done internally to the MS and no message is sent over

the air.

4.5 Crosscutting (Aspectual) Requirements

4.5.1 Aspectual Requirements - Emergency Mode

Req-520: Pressing PTT in Emergency mode shall always allow the MS to initiate

a call, as soon as possible, to the Emergency group with Emergency

priority.

Req-540: When receiving Incoming Call with Emergency priority, the MS shall

join the call if it is not engaged in Emergency call.

4.5.2 Aspectual Requirements – TXI Mode

Req-610: When in TXI mode, MS shall ignore any request to transmit.

4.5.3 Aspectual Requirements – System Related

Req-710: While MS is unregistered, no system related operations should be

allowed by the MS (e.g., the MS shall not be allowed to initiate calls and

should reject all incoming calls).

Req-720: When MS is out of coverage, pressing PTT shall be ignored.

Req-730: When MS powers-on while it is out of coverage, it should not try to

register.

DRAS - Derived Requirements Generation by Actions and States Page 41

Req-740: When MS is out of coverage, MS shall not try to transmit.

4.6 Derived Requirements from Baseline and Aspectual Requirements

The requirements in this section are derived from aspectual and baseline requirements.

These requirements were generated based on previous knowledge about real-life TETRA

MS requirements and behavior. No specific method was used to generate them

(including not using the DRAS method developed in this work). (In fact, these

requirements were specified before DRAS was developed.) The purpose for defining

these requirements is: to be able to evaluate the effectiveness of the different methods

(for correlating between baseline and crosscut requirements). Each method is expected to

“generate” these requirements. Whether this is the case, and how easy this is achieved is

a major part of the evaluation that follows.

4.6.1 Out-of-Coverage related Derived Requirements

Req-1110: When MS is powered-on but registration to the system was not

successful yet, the power-off button press shall cause the MS to power-

off.

[Resolves the conflict between Req-270 and Req-710. Practically means

that the only button that is active before successful registration is the

power-on/off button.]

Req-1120: When MS is out-of-coverage and is unregistered, the MS shall register

to the system once it is in coverage.

[Resolves the conflict between Req-250 (that requires that the MS will

register on power-up) and between Req-730 (that does not allow

registration when MS is initially out of coverage).]

Req-1130: On power-off, when MS is out of coverage, the MS shall be allowed to

power-off without trying to de-register from the system.

[Resolves the conflict between Req-260 and Req-740. Allows the MS to

power down without de-registration first, if out of coverage.]

DRAS - Derived Requirements Generation by Actions and States Page 42

Req-1340: MS shall not try to register to the system when in TXI mode.

[Resolves the conflict between Req-250/Req-1120 and Req-610. Allows

the MS not to register if it was turned on out of coverage and then put into

TXI mode.]

Note: the conflict solved here is between crosscutting and a derived

requirement because of other crosscut requirements.

4.6.2 Registration related Derived Requirements

Req-1410: When MS is unregistered in Normal mode, a PTT press shall be

ignored.

[Resolves the conflict between Req-310 and Req-710. MS in normal mode

should not ask to talk while out of coverage.]

DRAS - Derived Requirements Generation by Actions and States Page 43

5 Related Work

As described in Chapter 2, different AORE methods were suggested for handling

crosscutting (aspectual) requirements. Some of these methods directly refer to

crosscutting requirements and how to combine them with other requirements. Others

handle the separation of concerns based on customers’ requirements.

The following is a summary of the applicability of several AORE methods to the DRAS

methodology developed in this work. The applicability evaluation is a summary of a

through review done for these methods. Methods that are directly relevant to the work

will be further evaluated in the following Chapter 6, which discusses how well they

handle the requirements defined earlier in Chapter 4 (identifying derived requirements).

Some papers include an exhaustive survey of existing methods and approaches; for

example, see [Chitchyan 05]. The description includes the main characteristics for each

of the methods and a description of their processes. The characteristics are partly based

on [Bakker 05; Chitchyan 05] which characterizes the different approaches and tries to

split the characteristics into a few major categories. However, several categories

currently exist, so each approach is characterized separately.

5.1 Viewpoints
Viewpoints [Finkelstein 96] are used to specify the system from the perspectives

(viewpoints) of each of its users (Actors in the Use Cases terminology). Usually each of

these perspectives is partial and incomplete, because of the different roles for each user.

However, a separate evaluation for each viewpoint is needed in order to define the full

system’s specifications. For a complex system, using viewpoints allows the Separation

of Concerns between different viewpoints, and provides a more manageable means of

handling the system’s specifications. Viewpoint-oriented methods do just that.

[Nuseibeh 04] presents a viewpoint as an encapsulating knowledge representation,

process, and specification; all from the user viewpoint. Several Viewpoints-Based

Requirements Engineering (VBRE) methods exist. [Silva 02] for example, introduces an

approach for classifying and diagnosing discrepancies between viewpoints.

DRAS - Derived Requirements Generation by Actions and States Page 44

Although the main purpose for Viewpoint methods is to verify that requirements cover all

viewpoints, they deal with the Separation of Concerns and not specifically with

identifying crosscutting requirements. Therefore, these methods will not be evaluated

further.

5.2 Goal Oriented Requirements Analysis

Goal Oriented Requirements Analysis (GORA) is described in [Mylopoulos 01].

It explores the alternatives for achieving the goals in a given set of high level

requirements. GORA correlates Softgoals (non-functional requirements) with goals and

other softgoals; this is similar to analyzing crosscutting aspectual requirements.

An enhancement of this method is Aspects in Requirements Goal Models (ARGAM) by

[Yu 04; Chitchyan 05].

One main purpose GORA is the evaluation of alternatives. Note that the term “Softgoal”

is defined in [Chung 00] as a framework for handling Non-Functional Requirements.

Although using the NFR Framework method itself is not mentioned in this paper, this

paper clearly relies on this framework. The correlation analysis mainly handles NFRs as

a whole; consequently, GORA is not well suited to correlating between base and

crosscutting functional requirements, such as those defined in this work.

For similar reasons, ARGAM will not be evaluated any further; it is mainly used to

identify non-functional (Softgoals) aspects.

However, parts of the methods are relevant. goal and softgoal correlation analysis, where

baseline requirements replace goals and crosscutting requirements, are used instead of

softgoals. The evaluation of alternatives may be relevant for selecting the right derived

requirements (from the different resolution alternatives).

5.3 Modularization and Composition of Aspectual Requirements

The Modularization and Composition of Aspectual Requirements (MCAR) method is

described in [Rashid 03; Rashid 02]. This method defines an AORE process model from

DRAS - Derived Requirements Generation by Actions and States Page 45

identifying stakeholders’ requirements and concerns related to these requirements, to

resolving conflicts and determining their influence on later architecture and design

development stages. ([Bakker 05] calls this method AORE, but since AORE is a general

term, the method will be called MCAR in this work.)

Although this method is mainly applicable for crosscutting NFRs, some of the methods it

uses are also applicable for crosscutting FRs. In the context of this work, stakeholders’

requirements are the baseline requirements, and aspectual concerns are the crosscutting

requirements. Since the purpose of this work is to evaluate the effectiveness of

composing baseline and crosscutting requirements (to get derived requirements), not all

steps for this method are applicable. However, some steps are applicable; so the method

is further evaluated using the TETRA requirements in Section 6.1.

5.4 Composition Process for Aspect Oriented Requirements (AOR)

This method is described in [Brito 03]. It describes the process of composing crosscut

concerns with concerns (requirements) they cut across. The method is mainly applied for

non-functional concerns (requirements), but as shown below, it also includes techniques

that are applicable for functional requirements.

The main purpose for the additional approaches introduced by this method over MCAR

(described in Section 6.1), is the identification of match-points between elements of the

model, and the use of crosscutting operators (Overlap, Override, and Wrap). These

methods seem to be valuable for evaluating requirements defined in this work, in order to

generate derived requirements. Therefore, these methods are further evaluated in Section

 6.2.

5.5 Adaptation of the NFR Framework to AORE

This method is described in [Sousa 03a]. The method is an enhancement to the method

defined in [Rashid 03]. It also includes parts from the method defined in [Mylopoulos

2001].

DRAS - Derived Requirements Generation by Actions and States Page 46

This method is applicable to requirements defined in this work. However, its

enhancement over [Rashid 02; Rashid 03] is not enough to justify a detailed analysis, in

addition to the analysis already given for that method. Therefore, this method will not be

further evaluated in this work.

5.6 Crosscutting Quality Attributes

Crosscutting Quality Requirements method is described in [Moreira 02, Brito 02].

The method proposes a model to identify and specify Quality Attributes (QA) that

crosscut requirements at the requirements analysis stage. QA is a non-functional concern,

such as response time, accuracy, security, and reliability. This is the same as in a NFR,

but from the point-of-view of the functional requirement.

This method is only partly applicable for generating derived requirements from the

requirements defined in this work. It mainly handles NFR and Quality Attributes

requirements. Also, the main methods it uses are also included in other methods

evaluated in this paper ([Brito 03; Rashid 03]). Therefore, this method will not be

discussed any further in this work.

5.7 Theme and Theme/Doc - Finding Aspects in Requirements

This method is defined in [Baniassad 04a; Baniassad 04b]. The Theme approach

[Baniassad 04a] is a method and set of tools developed for early identification of aspects

in the software development life cycle. The theme notion represents a system feature.

Themes can be either base themes (which may share some structure of behavior with

other base themes), or crosscutting themes (aspects) which have a behavior that overlays

base themes functionality. The Theme/Doc approach can identify aspects from FR

interrelated behaviors, not just aspects from the NFR (as most other methods identify).

DRAS - Derived Requirements Generation by Actions and States Page 47

Because the Theme/Doc approach helps identify aspects from FR interrelated behaviors

(not just aspects from a NFR, like most other methods identify), it has the potential to be

highly applicable for requirement types defined in this work. The approach is mainly

used for the Theme/Doc tool, to discover whether aspects in requirements are applicable.

This work describes only the requirements phase and does not delve any further to the

design phase. This method is further evaluated in Section 6.3.

5.8 Mining Aspects
Mining Aspects by [Loughran 02] support storage and mining aspects, with special focus

to AOSD; this is a specific type of mining for existing assets. Mining existing assets

generally refers to locating useful information (from an organization’s asset base) for

reuse in new applications. Asset mining can occur at many different stages, throughout

the software development lifecycle. Typical assets for mining can include: program code,

designs, system architectures, specifications, etc. Effective mining requires support tools

that effectively store the data and enable a relatively fast retrieval of data (for the mining

process). [Rosenhainer 04] suggests identifying aspects in requirements. [Sampaio 05]

describes the approach for mining aspects in requirements in his document, based on

Theme/Doc [Baniassad 04b; Rosenhainer 04], but utilizes corpus-based natural language

processing (NLP) techniques. [Garcia-Duque 06] presents a method to separate aspects

from specification. To support the identification of crosscutting concerns and allow the

mining for aspects, the specs are first represented in a formal model, using an enhanced

version of SCTL-MUS (Simple and Causal Temporal Logic - Model of Unspecified

States) by [Pazos-Arias 01].

Mining aspects for requirements deals with methods to store requirements data, so that

they allow automatic or semi-automatic retrieval and identification of aspects.

Identifying aspects in requirements is highly relevant to identifying crosscutting

requirements and the requirements they cut across, therefore, these methods are highly

relevant to this work. Mining aspects methods are not used in this work, although they

are relevant candidates for further enhancements (see Section 9).

DRAS - Derived Requirements Generation by Actions and States Page 48

5.9 Other Methods
Several other AORE methods are suggested; only a few of them are mentioned here.

These methods will not be evaluated for applicability to DRAS.

[Grundy 99] proposes the AORE method for component-based software. The proposal

addresses some difficult issues regarding component requirements engineering, by

characterizing components (based on different aspects of the applications a component

addresses). Examples of components’ aspects are: User Interface, Collaboration,

Persistency, Distribution, and Configuration.

[Pang 04] proposes an aspect-oriented refinement for the Agile Feature-Driven

Development (FDD) lifecycle by [Palmer 02]. The refinement includes using a

boundary condition exploration, while building a features list. This method was

proposed by the authors to assist with detection and prevent inconsistencies between

features. The method is based on a fact they found; most inconsistencies and conflicts

(between features) happen across the boundary condition for features. To refine feature

planning and design, they adopt aspect-oriented development methods.

[Sousa 04] proposes a Use Case driven approach for the Separation of Concerns from

requirements. It adapts some use-case activities (from the Unified Software

Development Process by [Booch 99]) in requirements, analysis and design, and includes

NFR framework activities (by [Mylopoulos 01; Sousa 03a]).

DRAS - Derived Requirements Generation by Actions and States Page 49

6 Deeper Evaluation of Some AORE Methods

In this chapter we further evaluate some AORE methods which are described in Chapter

 5 and are applicable for generating derived requirements. We evaluate how well these

methods can obtain the derived-requirements, defined in Chapter 4.6. The conclusions of

the current chapter helped to define the DRAS methodology which is fully described in

Chapter 7.

The evaluated methods are based on the conclusions in the previous chapter:

• Section 6.1: Modularization and Composition of Aspectual Requirements

(MCAR) [Rashid 03].

• Section 6.2: Composition Process for AOR [Brito 03].

• Section 6.3: Theme/Doc for Finding Aspects in Requirements [Baniassad 04a;

Baniassad 04b].

6.1 Modularization and Composition of Aspectual Requirements

(MCAR)

6.1.1 Overview

The Modularization and Composition of Aspectual Requirements (MCAR) is described

in [Rashid 03]. It focuses on modularization and composition of requirements level

concerns that cut across other requirements. The method is mainly applicable for NFRs,

such as availability, security and other requirements that cannot be encapsulated by a

single viewpoint or use-case. The method intends to:

1) Support the separation of crosscutting FR and NFR properties, and

2) Help identify the mapping and influence of requirements level aspects on

artifacts at later development phases; thus establishing critical tradeoffs before

the architecture is derived.

The method is supported by the Aspectual Requirements Composition and Decision tool

(ARCaDe). XML is used in the tool to define the different requirements and aspects.

DRAS - Derived Requirements Generation by Actions and States Page 50

ARCaDe is not evaluated in this work, because our main purpose is to understand

whether the principles for this method are helpful in identifying derived requirements.

The main process steps (performed using the ARCaDe tool) are:

1. Identify and specify stakeholders’ requirements and concerns: This mainly

involves the separation of FRs and NFRs. The output is XML Viewpoints for

main entities identified in the requirements. Each Viewpoint defines a set of

requirements.

2. Identify and specify concerns: It identifies crosscutting concerns (from NFRs)

that have the potential of becoming Aspects. The concerns are (NFR)

requirements that crosscut other requirements. The output is XML Concerns

definitions. Each Concern defines a set of requirements.

3. Identify coarse-grained concern/viewpoint relationship: It relates to

viewpoints and concerns. The output is a Viewpoints/Concerns relationship

matrix.

4. Identify candidate aspects: From the concerns/viewpoints relationships defined

in the previous step, it identifies the concerns that crosscut several viewpoints,

and therefore, are candidate aspects. In the XML definition, these Concerns are

transformed into Aspects.

5. Define composition rules: Composition rules define the relationship between

aspectual requirements and viewpoint requirements at a fine granularity (unlike

the relationship matrix defined earlier, which was used only to identify aspects).

The output is an XML definition of composition rules.

 The composition rules define how the requirements are constrained by aspectual

requirements, and what is the expected output for these constrains. The operator-

action Constrained and expected Output (defined in this paper) are:

a. Constraint Actions: enforce, ensure, provide, applied, exclude.

b. Constraint Operators: during, between, on, for, with, in, XOR.

c. Outcome Actions: satisfied, fulfilled.

6. Compose the aspects and viewpoints: Using composition rules, the aspects and

viewpoints are composed. The process helps identify conflicts between aspects

DRAS - Derived Requirements Generation by Actions and States Page 51

that constrain the same requirements. In practice, the composition itself may be

delayed until conflicts are resolved.

7. Handle conflicts between candidate aspects: It determines how aspects

contribute to other aspects, in case they constrain the same requirement. It is also

used to determine which aspectual requirement is “stronger” by setting

importance weights to the aspects (in case of a conflict between aspects). The

output is a contribution table that shows the aspect contribution to another aspect

to be positive or negative. The table is used to resolve conflicts between aspects.

8. Specify aspects dimensions: It is used to determine the aspects’ influence on

architecture, and design development stages that come later. It also identifies their

mapping to a function, decision, or aspect.

Although the method is mainly applicable for identifying crosscutting NFRs, some of the

methods it uses are also good for identifying crosscutting FRs. In the context of this

work, stakeholders’ requirements are the baseline requirements and aspectual concerns

are the crosscutting requirements. Since the purpose of this work is to evaluate the

effectiveness of composing baseline and crosscutting requirements, in order to generate

derived requirements, not all steps for this method are applicable. Therefore, not all steps

for these methods will be evaluated further. Also, the requirements and composition

rules will not be specified using XML because the purpose of this work is only to define

textual derived requirements. Note that it may be possible to translate back the XML to

requirements; so this may be the subject of a future work.

These are the method’s steps that will be used to evaluate requirements defined in this

work:

• Identify and specify stakeholders’ requirements

• Identify and specify concerns

• Identify the coarse-grained concern/viewpoint relationship: These relate to

baseline and crosscutting requirements.

• Identify candidate aspects: It identifies which of the crosscutting requirements

can be considered as aspects.

DRAS - Derived Requirements Generation by Actions and States Page 52

• Handle conflicts between candidate aspects: It determines the weights of the

crosscutting requirements and resolve conflicts.

• Compose the aspects and requirements: It generates the derived requirements.

During the evaluation of this method, the definition for both base requirements and

crosscutting requirements (defined in Chapter 4 of this work) were enhanced. In

addition, the method enabled a better identification and definition of derived

requirements. This method was the first excellent, applicable method evaluated using this

set of requirements. The enhancements were done mainly while creating Table 1 and

 Table 2.

6.1.2 Input Requirements Analysis using MCAR

This section evaluates the use of MCAR to analyze the input requirements, defined in

Chapter 4.

6.1.2.1 Identify and Specify Stakeholders’ Requirements

These are the base and crosscutting requirements defined in Chapter 4 4.2.

6.1.2.2 Identify and Specify Concerns

These are the base and crosscutting requirements defined in Chapter 4.

6.1.2.3 Identify the Coarse-grained Concern/Viewpoint Relationship

The table below identifies the crosscut/baseline (coarse-grained concerns/viewpoints in

the original method terms) requirements relationship. The numbers, for the related

derived requirements, were already inserted into the table for the purpose of this method

evaluation. In practice, they are defined only at the end of the process.

DRAS - Derived Requirements Generation by Actions and States Page 53

Table 1 Correlation between Base and Crosscut Requirements

Baseline Req or
Crosscut Req

Req-
250

Req-
260

Req-
270

Req-
310

Req-
320

Req-
330

Req-
340

Req-520
 √

1230
√

1240

Req-540
 (√) √

1250

Req-610
√

1340
√

1330
 √

1320
√

1320

Req-710
 √

1110
√

1410
√

Req-720

√

Req-730
√

1120

Req-740
 √

1130

Legend: “√” – indicates where requirements are related
 “(√)” – indicates where related requirements do not

 affect each other
 “<number>” – indicates a new/enhanced derived req. no.

Notice that not all conflicting requirements created new derived requirements. These are

cases where the behavior is imposed by the TETRA system, and there are no alternative

behaviors for the MS behavior. For example, if the MS is out of coverage range (Req-

720), it cannot start a call (Req-310). Also, in the specific cases presented, all of these

cases are related to ignoring key presses (mainly PTT) in certain situations. It is assumed

that in these cases the requirement to ignore the key press is enough, since functionality is

as if the key was not pressed. Therefore, there is no need to enhance the related baseline

requirement

While evaluating the method described in [Brito 03] (see Section 6.2), it was found that

derived Req-1340 is also a result of the crosscut Req-610 crosscutting derived

requirement Req-1120 (in addition to Req-610 crosscutting Req-250). This finding

suggests that an additional step is needed: the evaluation of crosscutting requirements vs.

derived requirements (vs. baseline requirements). For simplicity, this step was not done.

DRAS - Derived Requirements Generation by Actions and States Page 54

6.1.2.4 Identify Candidate Aspects

As seen in Table 1, all crosscutting requirements are candidates to becoming aspects.

This is not surprising, because the crosscutting requirements chosen for this work are

known to be important crosscutting requirements in the real world. Note that the baseline

requirements that are most affected by the crosscutting requirements are Req-310 and

Req-320. The reason is that both of them handle the initiation of a group call (which is

the main subject of the requirements set defined here), and therefore, are the most

affected by the crosscutting requirements.

6.1.2.5 Handle Conflicts between Candidate Aspects

 Table 2 shows the correlation between crosscut requirements.

Table 2 Correlation between the Crosscut Requirements

Baseline Req or
Crosscut Req

Req-
520

Req-
540

Req-
610

Req-
710

Req-
720

Req-
730

Req-
740

Req-520
 -

1310
-
1210

-
1220

Req-540 (√) (√)
Req-610 + +
Req-710 +
Req-720
Req-730
Req-740

Legend: “+” or “-” indicate whether the requirements
 positively or negatively contribute to each other.

The table shows that new/enhanced requirements are needed only when the crosscutting

functional requirements contribute negatively to each other. Only in these cases, there are

conflicts between requirements that should be solved.

Note that in this case, aspectual requirements are also crosscutting each other to generate

derived requirements (unlike the MCAR method). In the MCAR method, aspects

crosscut only viewpoints (equivalent to baseline requirements). This is because MCAR

handles mainly crosscutting NFRs, while here the aspects are FRs.

DRAS - Derived Requirements Generation by Actions and States Page 55

The original method also gives weights to conflicting crosscutting requirements, to allow

easier resolution of conflicts between requirements. This step was not used, but will be

used when the method from [Brito 03] is evaluated (see Section 6.2).

6.1.2.6 Compose the Aspects and Requirements

The composition of the requirements is performed according to identified relations and

conflicts, as shown in Table 1 and Table 2. The result is the derived requirements.

6.1.3 Applicability of MCAR for creating Derived Requirem ents

This method includes techniques that are very applicable to the type of crosscutting

functional requirements defined in this work. Not all of the steps are relevant, because

the requirements are already detailed and not given initially at a level of viewpoints (use-

cases or similar level of presentation). Although mapping the requirements to later

development phases was not used, it may also be applicable.

Using the method, it was possible to identify all derived requirements. The visualization

of correlations between the different requirements (using the tables above) is very useful.

However, all of this was mainly manual work, because the method does not provide a

tool for automatically identifying the correlation between baseline (stakeholders’)

requirements and crosscutting (concerns) requirements. In other words, the identification

of correlations between requirements is only based on expert judgment.

6.2 Composition Process for Aspect Oriented Requirements (AOR)

6.2.1 Overview

This method is defined in [Brito 03]. It describes the process to compose crosscut

concerns with concerns (requirements) they cut across. The method is mainly applied for

DRAS - Derived Requirements Generation by Actions and States Page 56

non-functional concerns (requirements), i.e., NFRs. But as shown below, it includes

techniques that are also applicable for functional requirements.

The main concepts used by this method are:

• Match-Point: A point where one or more crosscutting concerns are applied to

a given functional concern (functional requirement, in the context of this

work). Match-point is an abstraction of the join-point concept used in AOSD

(for an example, see [Laddad 03]).

• Conflicting Aspect: Conflicting concerns are identified by a match-point.

• Dominant Aspect: It identifies a concern with higher priority – used for

resolving conflicts.

• Composition Rules: It includes a sequential list of simpler compositions for

crosscutting concerns, some operators, and model elements.

The method has three main activities:

1. Identify concerns

2. Specify Concerns and discover which of the concerns are crosscutting

(i.e., candidate aspects)

3. Compose crosscutting concerns with other concerns (uses match-points

and composition rules, defined to them)

6.2.2 Composition Process for AOR Main Activities

The following is a description of the method’s main activities, based on [Brito 03].

6.2.2.1 Identify Concerns

In this step, the system concerns (requirements) are identified, both functional and non-

functional. This can be performed using any known method, with no specific approach

being used here.

DRAS - Derived Requirements Generation by Actions and States Page 57

6.2.2.2 Specify Concerns and Identify Candidate Aspects

This step starts with specifying the concerns and ends with identifying which of them are

crosscutting (i.e., candidate aspects). Functional concerns can be specified by using a set

of scenarios, sequence diagrams, etc. For each of the non-functional concerns, the

method assigns the following attributes:

• Name: The name of the non-functional concern.

• Description: A short description.

• Priority: The importance of the concern. It may take any of these values:

Very Important, Important, Average, Low, and Very Low. This helps in

conflicts resolution.

• Decomposition: It explains how concerns can be decomposed into simpler

ones.

• Where: It is a list of models and their elements (e.g., use cases, classes,

sequence diagrams) that require the concern. It helps in identifying match-

points.

• Contribution: It describes how a concern affects other concerns. It can be

positive (+) or negative (-) and helps identify conflicts.

6.2.2.3 Compose Candidate-Aspects with Concerns

The goal of this activity is to integrate candidate aspects with the concerns it cuts, in

order to obtain the whole system. The main steps guiding the composition are:

1. Identify how each candidate aspect affects the concerns it cuts across:

The following composition rules crosscut-operators are used to determine the

type of conflict. The operators are similar to those used by other aspect-

oriented methods for aspectual actions (e.g., see [Laddad 03] for this use in

AspectJ):

• Overlap (Before or After) – The candidate aspect is applied before or after

the concerns it traverses.

• Override - The behavior of a candidate aspect replaces the behavior of the

concern it traverses.

DRAS - Derived Requirements Generation by Actions and States Page 58

• Wrap (Around) - The candidate aspect “encapsulates” the concern it

traverses.

2. Identify match-points: It is based on the “Where” attributes of different

concerns. This step identifies the match-points where the composition will

occur. Note that match-points do not occur in the requirements, but rather in

artifacts such as: use-cases, classes, and sequence diagrams.

To represent match-points, the method uses a bi-dimensional table that lists

the Model Element (ME i) under study, and the stakeholders for the system.

Each cell in the table may be filled with a list of Candidate Aspects (CA i) that

affect each Model Element. Each filled cell represents a match-point (MP i).

3. Identify conflicts between candidate aspects: It is based on the

“Contribution” attribute of concerns. The identification of conflicts results

(from identified compositions) is required. More than one candidate’s aspects

(applied to the same match-point) may conflict with each other.

4. Identify the dominant aspect: It is based on “Priority.” This step is used to

resolve the conflicts identified in the previous step, by prioritizing candidate

aspects and identifying dominant candidate aspects.

5. Identify composition rules: It is based on the previous step. In this last step,

the actual composition rules are defined, including which candidate aspects

will be used (i.e., which of them will be used as aspects), where and how.

6.2.3 Input Requirements Analysis using Composition Process for AOR

This section evaluates the use of the Composition Process for AOR to analyze the input

requirements defined in Chapter 4. The primary (additional) approaches introduced by

this method (versus MCAR described in Section 6.1) are:

1) Identifying match-points between elements of the model and

2) Using crosscutting-operators (Overlap, Override, Wrap).

Since the input for this work is already defined requirements, and the output are also

requirements, the match-points only will be identified between requirements.

DRAS - Derived Requirements Generation by Actions and States Page 59

Crosscutting-operators will also be used between requirements, usually between the

Baseline and Crosscutting requirements.

6.2.3.1 Identify Concerns

This step was already performed as part of the requirements specifications in Chapter 4,

by identifying the crosscutting (aspectual) requirements.

6.2.3.2 Specify Concerns and Identify Candidate Aspects

Since the match-points (that should be identified in this work) are already in the

requirements, and not in the artifacts of later development phases, not all attributes

(defined by the methods for crosscutting requirements) are applicable:

• Where is not used as defined; it is related to artifacts used in later phases.

Instead, I used a similar idea to combine the contribution attribute to a list of

requirements that other requirements crosscut.

• Decomposition is not used as the requirements defined in this work. It is not

split between other requirements (although in practice, this may be required in

certain cases).

• Name and Description are part of the requirements definition, but are not

important for the process itself.

• Priority is used to identify the relative importance of requirements.

• Contribution is used to identify whether the crosscutting requirement affects

the requirement it cuts, negatively or positively. A positive effect usually

causes an extension of the original requirement. A negative effect is a conflict

and usually causes the contribution to give up requirements (in certain cases).

Part of this step was performed earlier as part of the requirements specifications in

Chapter 4. Therefore, this analysis is partly produced by reverse engineering.

 Table 3 defines the value for baseline attributes and crosscut requirements. Which

requirements crosscut other requirements (candidate aspects) is not defined, because they

are the same as in the evaluation by [Rashid 03], in Table 1.

DRAS - Derived Requirements Generation by Actions and States Page 60

Table 3 Requirements Attributes

Requirement

Baseline /
Crosscut
[Input]

Non-Conflicting
Related

Requirements
(from Table 1
and Table 2)

Contribution of
Conflicting Related

Requirements
(from Table 1 and

 Table 2)

Importance
Priority

[1-5]
Req-250 Base 610 (+), 730(+) 3
Req-260 Base 610(+), 740(+) 2
Req-270 Base 710(-) 3
Req-310 Base 520(+), 610(+),

710(+), 720(+)
4

Req-320 Base 520(+), 610(+),
710(+), 720(+)

4

Req-330 Base 4
Req-340 Base 540(+) 3
Req-520 Crosscut 610(-), 710(-), 720(-) 6
Req-540 Crosscut 5
Req-610 Crosscut 740 730(-) 6
Req-710 Crosscut 720 3
Req-720 Crosscut 710 3
Req-730 Crosscut 3
Req-740 Crosscut 610 2

The default value used for the priority attribute is “Average” or “Important,” depending

on the importance of functionality to the user. A new “Critical” level, for highest

priority, was added. This level is used for life threatening related requirements -

Emergency and Tx Inhibit. Know that in TETRA, an Emergency call has a higher

priority than a call to a police center from a cellular system (911 in the USA, 112 in

Europe, etc.). This is similar to call priorities defined for TETRA (where there are four

levels to an emergency call), but the highest is treated in a special way (because its

intended use is only for life threatening situations).

For requirements where it is not critical for functionality to work in all situations (such as

in de-registering from the system during power-off), the assigned priority is “Low.” For

ease of use, numeric values identify the priorities (1 – Very Low, 2 – Low, 3 – Average,

4 – Important, 5 – Very Important, and 6 – Critical).

DRAS - Derived Requirements Generation by Actions and States Page 61

A list of “Non-Conflicting Requirements” was added to a column to assist in setting a

requirement’s priority. Using this information, the relative priority for the requirements

is set while deciding the priority for each requirement.

The Contribution attribute is defined by the (+)/ (-) added to conflicting requirements; the

(+)/ (-) indicate whether the conflicting requirements have higher or lower priority. Only

requirements with higher priority are listed in this column, to prevent duplicate

information. Note that the list of “conflicting related requirements,” in the Contributions

column, replaces the Where attribute defined in [Brito 03].

Note that not all conflicting requirements created new derived requirements. These are

cases where the requirements priority is imposed by the system; therefore, there is no

need to make a decision. For example, if the MS is out of coverage (Req-720), it cannot

start a call (Req-310). In addition, related requirements that do not conflict (e.g., Req-

610 and Req-740) do not impact priority. Because such a relation does not generate new

derived requirements, they can (practically) be ignored, but only if first verified that this

is indeed the case for this relation.

6.2.3.3 Compose Candidate-Aspects with Concerns

Following is the implementation of the different activities of this step for input

requirements.

6.2.3.3.1 Identify how each candidate aspect affects the concerns it cuts

Based on Table 3, the crosscut-operators (composition rules) are added. Based on the

operators, the priority was modified in some cases to agree with the operators. These

results are summarized in Table 4. Because the priority is also relative to the related

crosscutting requirements, Priority is called “Relative Priority” in Table 4.

DRAS - Derived Requirements Generation by Actions and States Page 62

Table 4 Requirements Attributes and Prioritization

Requirement

Baseline /
Crosscut
[Input]

Non-
Conflicting

Requirements
(from Table 1
and Table 2)

Contribution of
Conflicting Related

Requirements
(from Table 1
and Table 2)

Relative
Priority

[1-6]
Req-250 Base 610 (+ Override),

730 (+ Overlap After)
3

Req-260 Base 610 (+ Override),
740 (+ Override)

2

Req-270 Base 710 (- Override) 2
Req-310 Base 520 (+ Override), 610 (+),

710 (+), 720 (+)
4

Req-320 Base 520 (+ Override),
610(+ Override), 710 (+),
720 (+)

4

Req-330 Base 3
Req-340 Base 540 (+ Override) 4
Req-520 Crosscut 610 (- Override),

710 (- Override),
720 (- Overlap Before or
Wrap)

6

Req-540 Crosscut 5
Req-610 Crosscut 740, 730 5
Req-710 Crosscut 720 3
Req-720 Crosscut 710 3
Req-730 Crosscut 3
Req-740 Crosscut 610 2

As seen, only related requirements (that have a negative relation) or conflicting

requirements influence the priority. Requirements that are related positively (i.e.,

requirements that only add to each other and do not generate a derived requirement [see

 Table 2]), do not influence the priority. The priorities for the requirements were set

manually, although in practice, algorithms (that create a partially ordered tree) can be

used for this task.

6.2.3.3.2 Identify Match-Points

No activity was performed in this work, because the equivalent activity is identifying

which requirement crosscuts other requirements. This step has already been performed.

DRAS - Derived Requirements Generation by Actions and States Page 63

6.2.3.3.3 Identify Conflicts between candidate aspects

This analysis has already been performed as part of building Table 3 and Table 4. In this

work, the base and crosscut requirements are already input to the process, so it was

possible to evaluate both using the same steps. In general, this may not be the case.

6.2.3.3.4 Identify the Dominant Aspect based on “Priority”

In this work, this analysis was already performed as part of previous activities.

6.2.3.3.5 Identify Composition Rules

In this last step, the actual composition rules are defined - including which

candidate aspects will be used (i.e., which of them will be used as aspects), where,

and how.

Based on the crosscutting-operators set for the contribution in Table 4, the composition

rules are defined. According to [Brito 03], the composition rules format should be

something like “Req-xxx <operator> Req-yyy”. Since the derived requirements (in this

work) are already known, the definition of the composition role also includes the derived

requirement (specified in Section 4.6) resulting from the rule. Also included is an

explanation of how the derived requirements were derived, using the composition rules.

(Note that while preparing this work, some refinements were made to the derived

requirements in Section 4.6, because of insights gotten from having to define and use the

composition rules.)

In the following cases, although there is a conflict between requirements, in practice the

conflict can (should) not happen. Therefore for these cases, no derived functional

requirements are needed. Note however; for robust and safe system implementation, it

may be useful to add such requirements (in case the “impossible” case does happen

[because of a software bug, etc.]):

• Req-710 overrides Req-320: This cannot happen because MS in Normal mode

cannot be in a call while unregistered.

• Req-720 overrides Req-320: This cannot happen because MS cannot be in a call

while out of coverage.

DRAS - Derived Requirements Generation by Actions and States Page 64

Note the influence of requirements priorities to the operation of the composition rule.

The higher priority requirement changes the behavior of the lower priority requirement.

Therefore, in some cases, the base requirement practically crosscuts the crosscutting-

requirement (e.g., Req-250 crosscuts Req-730), or the crosscutting-requirement crosscuts

another crosscutting-requirement (e.g., Req-520 crosscuts Req-61).

The above evaluation is summarized in the following table for derived requirements (the

description for derived requirements is the same as defined in Section 4.6):

Table 5 Derived Requirements

Base
Requirement
(and Priority)

Crosscutting
Requirement
(and Priority)

Composition Rule Derived
Requirement

Req-250 (3) Req-610 (5) Override Req-1340
Req-250 (3) Req-730 (3) Wrap or Overlap After Req-1120
Req-260 (2) Req-610 (5) Override Req-1330
Req-260 (2) Req-740 (2) Override Req-1130
Req-710 (3) Req-270 (2) Override Req-1110
Req-310 (4) Req-520 (6) Override

(see also below)
Req-1230

Req-310 (4) Req-610 (5) Override Req-1320
Req-310 (4) Req-710 (3) Override Req-1410
Req-320 (4) Req-520 (6) Override Req-1240
Req-320 (4) Req-610 (5) Override Req-1320
Req-340 (4) Req-540 (5) Override Req-1250
Req-610 (5) Req-520 (6) Override Temporarily (see below) Req-1310
Req-710 (3) Req-520 (6) Override Req-1210
Req-720 (3) Req-520 (6) Wrap or Overlap After Req-1220
Req-1120
(Crosscutting
of Derived
requirement)

Req-610 Override (see below) Req-1340

Evaluating the composition rules, used earlier to define the derived requirements, raises

some issues:

• In most cases, “override” is often used while “wrap” and “overlap” are barely

used. The reason seems to be that crosscutting requirements mainly relate to

DRAS - Derived Requirements Generation by Actions and States Page 65

“mode” changes, which change the functionality of baseline requirements.

“Wrap” and “overlap” are used mainly when additional functionality is required

(e.g., checking security and logs).

• Req-1120: this is a delayed activation of Req-250 (registration when getting into

coverage). If Req-730 exists, there is no registration when out of coverage. This

seems to be a special case for crosscutting a FR. It deserves composition rules

like “delayed after” and “when mode change”:

 Req-250 is delayed after Req-730, when the mode changes to in-coverage.

• Req-1230: Req-520 changes the behavior of Req-310 (from Normal to

Emergency Mode), but does not override it. This may require a composition rule

such as “modify”.

• Req-1340: Req-610 overrides temporarily Req-250 until TXI is off (entering a

TXA Mode). This example implies that the impact of crosscutting functional

requirements (to each other) is also state-based (in the sense that it does not

change functionality), but defers or moves the functionality to a later (maybe

earlier?) state or time. This suggests that composition rules should be enhanced

with some kind of temporal rules.

• As also seen in Table 1 and in Table 2, Req-520 and Req-610 override many of

the other requirements. In both cases, this is because they both significantly

effect the transmission of the MS (which is the primary action in the

requirements set defined in this work). (Req-610 prevents Tx and Req-520 allows

Tx; when Tx is normally not allowed, it can change its priority.) While Req-610

mainly interacts with baseline requirements, Req-520 also interacts with

crosscutting requirements. This is because it was decided (according to

stakeholders’ needs) that Req-520 has a higher priority than the crosscutting

requirements it interacts with.

DRAS - Derived Requirements Generation by Actions and States Page 66

6.2.4 Applicability of Composition Process for AOR to create the Derived

Requirements

The techniques used by this method are very applicable to the type of crosscutting

functional requirements defined in this work. Not all of the steps are relevant, because

the requirements are already detailed and not given initially as a level of viewpoints, use-

cases, or similar level. Because of these reasons, some changes to the steps should be

made.

6.3 Theme and Theme/Doc - Finding Aspects in Requirements

The Theme approach described in [Baniassad 04a] is a method and set of tools developed

for the early identification of aspects in the software development life cycle.

6.3.1 Overview

The theme notion represents a system feature. Themes can be either base themes (which

may share some behavior structure with other base themes), or crosscutting themes

(aspects) which have a behavior that overlays base themes functionality.

The tools (developed to support this approach) include Theme/Doc and Theme/UML.

Theme/Doc is used at the requirements level and provides views of the requirements

specification text, thus exposing the relationship between behaviors in a system.

Theme/UML is used at the design level; it allows a developer to model features and

aspects of a system, and specifies how they should be combined. A central idea in the

method is that Theme/Doc allows the developer to refine requirements views (in order to

reveal which system functionality is crosscutting, and where in the system it crosscuts).

Another claim is that the Theme approach helps maintain traceability from requirements

to design, because the requirements map directly to Theme/Doc views (which map

directly to Theme/UML models). This traceability also provides clues regarding

requirements coverage in the design.

DRAS - Derived Requirements Generation by Actions and States Page 67

The Theme/Doc approach and tool is used to view the relationship between behaviors in

requirements documents, and to identify and isolate aspects in the requirements. In

other words, it is used mainly to identify and separate aspects (or the Separation of

Concerns - SoC) from the requirements, but not to combine aspects with the other

requirements. The approach provides views of requirements specs, and exposes

relationships (interactions in the case of aspectual FRs) between behaviors in the system.

The method helps to determine which elements of functionality are “base” and which are

“aspects.”

The Theme/Doc approach assumes that if two behaviors are described in the same

requirement, they are related. According to this approach, there are three ways that

behaviors can relate to each other (note that the method refers to identifying

related-behaviors, and not related-requirements which is the main subject of other

methods):

• Erroneously/coincidentally: In this case, requirements can be re-written so that

behaviors are not coupled.

• Hierarchically: One behavior is a subset of the other, and there is no crosscutting

relationship between them.

• Crosscutting: One behavior is an aspect of the other.

The Theme/Doc tool provides views that expose which behaviors are co-located in the

requirements, in order to help determine the kind of relationships existing between

behaviors.

6.3.2 Theme/Doc Approach Major Steps

The major steps in using the Theme/Doc approach are:

1. Identifying and listing the Actions used in the requirements. This step is

performed manually. Usually the list of actions is pre-defined, based on

experience from previous projects. This list of actions is a combination of actions

DRAS - Derived Requirements Generation by Actions and States Page 68

known from previous projects, and actions identified by reviewing current project

requirements and choosing sensible verbs.

2. Creating an Action View. For each action, it is used to show the requirements that

use the action. The view also highlights the relationships between actions. This

is performed using the Theme/Doc tool to perform a lexical analysis of the

requirements text (using the actions list defined earlier).

3. Identifying crosscutting actions (aspectual actions) and entities being used, and

removing non-crosscutting actions. Note that this method identifies crosscutting

(aspectual) actions, and does not identify aspectual requirements (as done by

other methods).

4. Creating a Clipped Action View. It shows the crosscutting hierarchy between

actions. Insights acquired here (regarding the actions) are fed back to enhance the

requirements and actions list.

The following steps are performed as part of the design phase, using Theme/UML. These

steps are not evaluated in this work, because they are already part of the design phase:

5. Creating a Theme View to model the themes identified in the previous steps, for

each of the crosscutting actions.

6. The Theme/UML is used to incorporate crosscutting actions and identified

entities into the design as classes, methods, etc.

7. The Theme Views are then augmented to help verify the design choices made to

align with the requirements.

The primary goal of the Theme/Doc approach is, therefore, to identify which of the

actions are themes. As described earlier, the actions are given as an input to the process.

Although it may be possible to automatically identify actions from requirements, it was

found that using actions as input is a good starting point for finding themes. Also,

requirements that don’t seem to include any actions can often be refined to include them.

Because a product performs almost the same action for all of its releases, once the action

list is defined, it can be reused from release-to-release with relatively minor

enhancements.

DRAS - Derived Requirements Generation by Actions and States Page 69

6.3.3 Input Requirements Analysis using Theme and Theme/Doc

This section evaluates the use of Theme/Doc method to analyze the input requirements

defined in Chapter 4. This method can identify aspects from interrelated behaviors of

FRs, and not just aspects of a NFR (as most other methods identify). Therefore, it seems

highly applicable for the type of requirements defined in this work. In this work, only

techniques used for the Theme/Doc tool (for finding aspects in requirements) are used

(according to the description by [Baniassad 04b]). The reason being that this work only

deals with the requirements phase; it does not continue into the design phase. The

Theme/Doc tool itself was not used.

To simplify the evaluation, only the requirements subset (defined in Chapter 4) is used.

The subset includes requirements for initiating calls (for starting voice transmission) and

emergency mode, or to crosscut the normal mode and calls. The subset does not handle

incoming calls, power on/off, registration, and Tx inhibit.

6.3.3.1 Identifying Actions and Entities

The lists of actions and entities are generated by first identifying them in each

requirement, and then generating the lists. Note that the lists can be made available from

earlier releases of the product (as described earlier).

6.3.3.1.1 Identifying Actions and Entities per requirement

In this step, actions and entities are identified per requirement. The following

conventions are used to mark actions (by underscore) and entities (by italics). In some

cases, the text of the requirements is enhanced to clarify the analysis. In these cases,

[additional words] that were added are marked in rectangular brackets. Also in

rectangular brackets are comments about these additional words [comments about added

words].

DRAS - Derived Requirements Generation by Actions and States Page 70

Req-310: Pressing PTT [button] in Idle mode shall initiate a request for an

outgoing group call, with Normal Priority, to the predefined Normal

group. If acknowledged by the system, MS shall toggle to Call mode and

may start transmitting voice.

[It was decided not to add the word “button,” but assume it for referencing

to button values as a reference to the button entity.]

Req-320: Pressing PTT [button] in Call mode shall cause the MS to ask the system

for permission to Tx voice, when no one else is transmitting in the call.

The MS may start to Tx voice only if allowed by the system. The PTT

[button] [press] shall be ignored when someone else is already

transmitting in the call.

[PTT also refers to “press,” because the name “Push-To-Talk” should

probably add “press” to all references to PTT; PTT is a name, not an

action. “PTT ignore” may not be an action, but a constraint. See also

similar issues for “always” in Req-520 and Req-710.]

Req-520: Pressing PTT [button] in Emergency mode shall always allow the MS to

initiate a call, as soon as possible, to the Emergency group with

Emergency priority.

[“Always” is more likely a kind of constraint of a modal operator, which

may be the subject of a later work in analyzing requirements that use

temporal logic.]

DRAS - Derived Requirements Generation by Actions and States Page 71

Req-710: While MS is unregistered, no system related operation should be allowed

by the MS.

[In this context, “system related operation” is translated to mean (see list

of actions below): initiate call, ask Tx permission, Tx voice. Therefore, it

is implied that the requirement refers to these actions.]

[As for “always” in Req-520, it is not clear what is “allowed”. It may

require the use of modal logic, or should be replaced by a “no call

initiation” action.]

Note that the use of modal operators, such as: “always”, “allowed” are problematic in this

method. The method developed in this work partially solves these issues (see Chapter 7),

although further evaluation is needed, such as the use of temporal logic methods.

6.3.3.1.2 Actions Identified

The actions identified in the previous step are listed below. In practice, this list would

also be the basis for a pre-defined actions list, used for future releases of the product.

Note that in some cases, the use of an action by a requirement is implied; it is not used

directly. For example, “Initiate Call” is implied for Req-520 because “Press PTT in

emergency mode” implies initiating a call. Another issue is the use of “not.”

These phenomena are handled in the DRAS method developed in this work (see Chapter

 7).

• Press PTT [button]: Req-310, Req-320, Req-520

• Ignore PTT Press: Req-320

• Initiate [outgoing group] Call: Req-310, Req-520 (implied), Req-710 (implied)

• (toggle) Call Mode [from Idle] to Active: Req-310

• Ask [the System for Voice] Tx Permission: Req-320, Req-520, Req-710

(implied)

• (toggle) Call State [from Rx] to Tx: Req-320, Req-520 (implied?)

• Tx Voice:: Req-310, Req-320, Req-520 (implied?), Req-710 (implied)

DRAS - Derived Requirements Generation by Actions and States Page 72

Note that the actions were rephrased (in some cases) to make the specification clearer and

more precise. It may be useful to restate the requirements using these actions definitions.

This approach will be evaluated as part of the method defined in this work. Also, note

that some actions can have shorter definitions; for example: using “press” instead of

“press PTT” in this context. However, because such definitions may not be unique (when

other requirements are added), it is better to have a specific definition for the actions. On

the other hand, it seems that in the TETRA MS context, “button” is redundant for “press”

actions. Although in another context, “press PTT button” should have been used.

6.3.3.1.3 Entities Identified

The entities identified are shown below. Because the actions are usually related to

specific entities, the actions (related to the entities) are also listed (to provide more

information because these actions are often taken from all requirements). Note that the

relationship between entities and their actions is similar to the methods defined for

classes in the object-oriented method. Also listed are attributes related to the entity.

� MS entity

o Actions: Power On/Off

o Attributes: Priority Mode (Normal/Emergency), Call Mode (Idle/Call),

Registration Mode (Registered/Un-registered)

� MS User entity (note that the MS user is not directly mentioned in the

requirements, but its existence is implied)

o Actions: Press <button> (<button> represents any of the MS’s buttons)

o Attributes: none

� Call entity

o Actions: Initiation, Receiving

o Attributes: Call Priority (Normal/Emergency), Call Direction

(Incoming/Outgoing), Call State (Tx/Rx)

� PTT Button entity

o Actions: Pressed

o Attributes: none

DRAS - Derived Requirements Generation by Actions and States Page 73

� Emergency Button entity

o Actions: Pressed

o Attributes: none

� System entity

o Actions: none (because the requirements are for the MS only)

o Attributes: because the requirements are for the MS, all system attributes

are reflected in MS related attributes for entities. Therefore, the system

entity attributes are the related attributes from the system point of view:

Call Mode (Idle/Call), Registration Mode (Registered/Un-registered), Call

Priority (Normal/Emergency), System Call Direction

(Incoming/Outgoing), System Call State (Tx/Rx).

Note that the system Call Direction and Call State are opposite to the MS

state (e.g., when the MS transmits, the system receives).

The entities identification is not evaluated any further or used in this work, because they

are mainly used for the design phase.

6.3.3.2 Create Actions Views

The Actions View shows how actions are used by requirements. The Theme/Doc tool

uses lexical analysis to generate these views. Here, the analysis was done manually.

Two types of inputs are used: a list of actions (generated earlier [e.g., for a previous

project] or in this case, as part of previous sections) and the list of requirements.

6.3.3.2.1 Actions View (Theme/Doc) – Actions by Requirements

The actions used by each the requirements are:

o Req-310: Press PTT (Normal Priority), Initiate Call (Normal Priority), Call Mode

to Active (Normal Priority), Tx Voice.

o Req-320: Press PTT (Normal Priority), Ignore PTT Press, Ask Tx Permission

(Normal Priority), Call State to Tx, Tx Voice

o Req-520: Press PTT (Emergency Priority), Initiate Call (Emergency), Ask Tx

Permission (Emergency), Call State to Tx, Tx Voice.

DRAS - Derived Requirements Generation by Actions and States Page 74

o Req-710: Initiate Call (Unregistered), Ask Tx Permission, Tx Voice.

 Figure-2 shows the Action view for requirements (the figure was created manually and

without the Theme/Doc tool):

Figure-2 Action View for a Subset of Requirements

Note that attributes were added to some of the actions: Emergency Priority-Mode and

Unregistered Registration-Mode. These modes make them crosscutting-actions for other

requirements. Also note that adding attributes to the actions is currently not part of the

Theme/Doc method, but without this information, the crosscutting nature of some of the

requirements is not visible.

As seen in Figure-2, the Action View does not offer much help to identify crosscutting

requirements and create derived requirements. The main purpose of Theme/Doc is

identifying crosscutting actions. To create derived requirements, crosscutting

requirements are the main issue. For this reason, more steps related to this method are

not evaluated.

Press PTT

Req-310

Req-710

Req-520

Req-320

Ignore Press PTT

Initiate Call

Call Mode to Active

Ask Tx Permission

Call State to Tx

Tx Voice

 Emergency

Emergency
Emergency

Emergency

Unregistered
Unregistered

DRAS - Derived Requirements Generation by Actions and States Page 75

6.3.4 Applicability of Theme/Doc for creating a Derived Requirement

As understood from the previous paragraph, this method is not well suited for creating

derived requirements. However, the method is useful for identifying actions and their

attributes that make requirements crosscut. This approach is used as part of the DRAS

method.

DRAS - Derived Requirements Generation by Actions and States Page 76

7 The DRAS Methodology

This chapter describes the DRAS (Derived Requirements generation by Actions and

States) methodology for generating DRs from stakeholder requirements, as shown in Fig.

6. The requirements, defined in Chapter 4, are used as an example for this methodology.

Prototype implementation scripts for some of the DRAS process steps were developed,

and were used to produce some of the tables in this chapter. These scripts perform the

following steps:

• Identifying actions used by requirements based on the manual actions and entities

lists directly used by each action (actions or entities directly used by each

requirement).

• Identifying requirements-action attributes.

• Identifying match-points between requirements.

The input to the scripts is the output of parsing the requirements, and the manually

identified actions and attributes. The output of the scripts is the tentative match-points.

Because of the fixed priorities per requirement, it is only possible to suggest which

requirement is the crosscutting requirement. In general, no part of the requirements text

analysis is automated.

7.1 Gathering the Stakeholders’ Requirements
In this step, the stakeholders’ requirements are gathered and formulated. Different

methods may be used to gather and formulate requirements (see [Creveling 03] for details

of some of these methods). The requirements defined earlier will be used to explain how

the other steps of DRAS work.

7.2 Identifying Actions, Entities and Attributes
The lists of actions, entities, and attributes (mainly modes and states) for the system

(TETRA MS in this work) are identified. The attributes are then used to analyze the

requirements. The contents of some lists are used for all systems, while the contents of

DRAS - Derived Requirements Generation by Actions and States Page 77

other lists are specific to the system (TETRA MS, in this work). The following sections

describe the different lists by DRAS.

7.2.1 General Lists for all Systems

Action Modifiers

This attribute defines whether the use of an action by a requirement is about restricting its

use, or ease of other restrictions for its use. The action modifier is assigned separately

per each action used by a requirement. As defined in section 3.3.4, possible values are:

• NULL

• Unconditional

• Restrict

Composition Rules

The way a crosscutting requirement affects the requirement it crosscuts is defined here.

This is based on [Brito 03]. As defined in section 3.3.6, possible values are:

• Overlap Before or After

• Override

• Wrap (around)

Relative Priorities

This step defines Relative Priorities between requirements or attributes. It is also based

on [Brito 03]. As defined in section 3.3.5, possible values are:

• “+”

• Same

• “-”

7.2.2 General Lists with Specific System Contents

Some of the lists defined in this section conform to ideas found in [Baniassad 04b] for

identifying entities and actions in the requirements, and in [Brito 03] for identifying

attributes in them.

DRAS - Derived Requirements Generation by Actions and States Page 78

Entities

This is the list of entities identified in the system. For system requirements of the

TETRA MS example, identified entities are:

• Incoming Call

• MS

• Outgoing Call

• PTT

• System

Note that it is possible to add an actors list. In this case, MS User may be included in this

list as the person who presses the PTT button. (Consequently, “Pressing PTT” could

have been written as “MS User presses PTT”.) To simplify the example, it was decided

not to use the MS User actor in the requirements text.

DRAS - Derived Requirements Generation by Actions and States Page 79

Actions

 Table 6 shows the list of actions as identified in the requirements.

Table 6 Actions List

Action MS Initiated Note
Ask Tx Permission Yes

Call Ack No Ack Initiate Call by the System

Call Mode to Active Yes

Call Nack No Nack Initiate Call by the System

Call State to Tx Yes

De-register Yes

Initiate Call Yes

Join Incoming Call Yes

Power Off Yes

Power On Yes

Press PTT Yes

Receive Incoming Call No

Register Yes

Tx Yes

Tx Control Yes

Tx Voice Yes

This is the list of functional actions used in the system. For each action, specific system

attributes can be added. For the MS, one attribute is defined: whether the action is

initiated by the MS, or by the TETRA system. A more general definition would be to

define the Initiating Entity for the action.

Modes and States

This is a list of possible modes and states, related to the entities used by the requirements.

Each mode or state is also tagged as crosscutting or not. Non-crosscutting modes or

states are used later in the analysis to identify aspectual requirements and their effect on

other requirements. Table 7 is the list for the input requirements.

DRAS - Derived Requirements Generation by Actions and States Page 80

Table 7 Modes and States List

Mode Crosscutting
Coverage_Mode Yes

Registration_Mode Yes

MS_Call_Mode No

Call_State No

Power_State Yes

MS_Priority Yes

Call_Priority Yes

Tx_Mode Yes

For each mode or state, the list of possible values is defined in Table 8.

Table 8 Modes and States Values

Mode Value 1 Value 2 Value 3 Value 4
Coverage_Mode In Out

Registration_Mode Registered Unregistered

MS_Call_Mode Idle Call

Call_State Rx Tx No-Tx No-Voice

Power_State Power-Off Powering-On Power-On Powering-Off

MS_Priority Normal Emergency

Call_Priority Normal Emergency

Tx_Mode Allowed (TXA) Inhibit (TXI)

In addition, a table that lists contradicting pairs of modes values is generated. This table

(Table 9) is later used to remove possible conflicts between requirements that usually

cannot occur in reality. There are two types of such contradictions:

• Values of two different modes (the second row of Table 9 - unregistered MS that

is in a call - MS cannot take part in a call without registering to the system first).

DRAS - Derived Requirements Generation by Actions and States Page 81

Table 9 Contradicting Pairs of Mode/State Values

Mode1 Value1 Mode2 Value2
Coverage Out MS_Call_Mode Call

Registration_Mode Unregistered MS_Call_Mode Call

Power_State Power Off Registration_Mode Registered

Power_State Poser Off Coverage In

7.3 Identifying Correlations between Actions and Entities
In this step, correlations among actions, among entities, and between actions and entities

are identified. That is, which actions are used by each entity in the system and therefore,

which entities are relevant for each action.

7.3.1 Entities used by Action

For each action, the list of entities used by that action is defined. It is later used to

identify correlations between requirements that define functionality based on entities and

requirements that define functionality based on related actions.

 Table 10 summarize these relations for input requirements. An empty cell indicates that

there is no relation, while Yes/No indicates whether an entity is always used by the

action. For example, the system is always a part of call initiation, because all call traffic

must go through the system. On the other hand, the system will not be involved after

pressing PTT, if someone else is already talking.

DRAS - Derived Requirements Generation by Actions and States Page 82

Table 10 Entities used by Actions

Action MS System PTT Outgoing
Call

Incoming
Call

Ask Tx Permission Yes Yes

Call Ack Yes Yes Yes

Call Mode to Active Yes Yes Yes Yes

Call Nack Yes Yes Yes

Call State to Tx Yes Yes Yes Yes

De-register Yes Yes

Initiate Call Yes Yes Yes

Join Incoming Call Yes Yes Yes

Power Off Yes No

Power On Yes No

Press PTT Yes No Yes Yes

Receive Incoming Call Yes Yes Yes

Register Yes Yes

Tx Yes Yes

Tx Control Yes Yes

Tx Voice Yes Yes Yes Yes

Note that the MS entity is used by all of the actions, because the requirements are for the

MS. Therefore, the MS entity is practically redundant in the analysis of this specific set

of requirements.

7.3.2 Actions Directly Implied (used) by Action

For each action, the list of actions that they directly imply (i.e., that are directly used by

the action) are defined. These relations between actions are later used to identify all

actions that are used by the requirements, whether directly or indirectly.

 Table 11 presents these relations. The Must column indicates whether the implied action

must be used (e.g., Registration during Power-On is not a must).

DRAS - Derived Requirements Generation by Actions and States Page 83

Table 11 Actions Implied by Action

Action Implied_Action Must Note
Initiate Call Call Ack Yes Ack by the System

Initiate Call Call Nack Yes Nack by the System

Power On Register No

Power Off De-register No

Register Tx Control Yes

De-register Tx Control Yes

Press PTT Initiate Call Yes

Press PTT Ask Tx Permission Yes

Initiate Call Call Mode to Active Yes

Initiate Call Tx Control Yes

Initiate Call Ask Tx Permission Yes

Receive Incoming Call Join Incoming Call Yes

Join Incoming Call Call Mode to Active Yes

Ask Tx Permission Tx Control Yes

Ask Tx Permission Call State to Tx Yes

Call State to Tx Tx Voice Yes

Tx Control Tx Yes

Tx Voice Tx Yes

7.3.3 Actions used by Action

For each action, the list of actions that it uses (either directly or indirectly) is defined.

The list is generated from the list of actions directly implied (Table 11). These relations

between actions are later used to correlate between requirements, based on the use of

different but related functional actions. For example, Req-610 specifies that when MS is

in the TXI (Tx Inhibit) mode, it should not transmit. To understand which actions are

affected by Req-610, all actions that may result in transmission should be identified.

The table is created by recursively identifying the actions that are used by an action,

based on the previously identified, implied actions. The initial values are taken from

 Table 11.

Pseudo code to generate the “Actions Used by Action” table:

From each record in “Actions Implied by Action” (Table 11):

DRAS - Derived Requirements Generation by Actions and States Page 84

 Create record in “Actions Used by Actions” tabl e with
 Action, Implied Action, Must
End From
Repeat until no new record is added (no duplicates) :
 Foreach two records in “Actions Used by Actions ”,
 were R1.Implied_Action = R2.Action:
 Create record in “Actions Used by Actions” table with
 R1.Action, R2.Implied_Action, Must
 End Foreach
End Repeat

 Table 12 summarizes which actions are used by each action.

Table 12 Actions used by Action Summary

 Implied Actions

Action

Ask Tx
Permiss

ion
Call
Ack

Call
Mode

to
Active

Call
Nack

Call
State
to Tx

De-
Reg.

Initiate
Call

Join
Income

Call Reg. Tx
Tx

Control
Tx

Voice

Ask Tx Permission Y Y Y Y

Call State to Tx Y Y

De-register Y Y

Initiate Call Y Y Y Y Y Y Y Y

Join Incoming Call Y

Power Off N N N

Power On N N N

Press PTT Y Y Y Y Y Y Y Y Y
Receive Incoming
Call Y Y

Register Y Y

Tx Control Y

Tx Voice Y

7.4 Identifying Actions and Entities used by the Input Requirements
and their Priorities

In this step, the actions and entities that are directly used by input requirements are

identified. For each action and entity, the appropriate modes and states are also

identified. In addition, the relative priorities of the requirements are set.

DRAS - Derived Requirements Generation by Actions and States Page 85

Table 13 Input Requirements Split - use of Actions and Entities

Req.
Num

Part
Num

Sub Requirement Action
Modifier

Action Entity

Req-250 1 On power-on Power On

Req-250 2 MS shall register to the system Register

Req-260 1 On power-off Power Off

Req-260 2 MS shall de-register first from the system, if it is
successfully registered

 De-register

Req-270 1 MS shall be able to power-off in any state Power Off

Req-310 1 Pressing PTT in Idle mode shall Press PTT

Req-310 2 initiate a request for outgoing group call to the
system, with Normal Priority to the predefined
Normal group.

 Initiate Call

Req-310 3 If acknowledged by the system Call Ack

Req-310 4 MS shall toggle to Call mode Call Mode to Active

Req-310 5 and may start transmitting voice Tx Voice

Req-320 1 Pressing PTT in Call mode Press PTT

Req-320 2 shall cause MS to ask the system for permission
to Tx voice, when no one else Tx in the call.

 Ask Tx Permission

Req-320 3 If allowed by the system Call Ack

Req-320 4 MS may start Tx Tx Voice

Req-320 5 The PTT shall be ignored when someone else
already Tx in the call.

Ignore Press PTT

Req-330 1 When receiving incoming Group call in Idle
mode

 Receive Incoming
Call

Req-330 2 MS shall toggle to Call mode Call Mode to Active

Req-330 3 and join the call. Join Incoming Call

Req-340 1 When receiving incoming Group call in Call
mode,

 Receive Incoming
Call

Req-340 2 MS shall internally reject the call. Ignore Join Incoming Call

Req-520 1 Pressing PTT in Emergency mode Uncond. Press PTT

Req-520 2 shall always allow the MS to initiate a call, as
soon as possible, to the Emergency group with
Emergency priority.

Uncond. Initiate Call

Req-540 1 When received Incoming Call with Emergency
priority

Uncond. Receive Incoming
Call

Req-540 2 MS shall join the call if not in Emergency call Uncond. Join Incoming Call

Req-610 1 When in TXI Mode, MS shall ignore any request
to transmit

Ignore Tx

Req-710 1 While MS is unregistered, no system related
operations should be allowed by the MS

Ignore System

Req-720 1 When MS is out of coverage, pressing PTT shall
be ignored

Ignore Press PTT

Req-730 1 When MS power-on while it is out of coverage, it
should not try to register

Ignore Register

Req-740 1 When MS is out of coverage, MS shall not try to
transmit

Ignore Tx

DRAS - Derived Requirements Generation by Actions and States Page 86

7.4.1 Split Requirements Text per Action/Entity (Manual)

In this step, each input requirement is split (manually) into parts, based on actions and

functional entities used by it (the Actions and Entities were defined in the lists described

earlier). Functional entities are the entities that the requirements directly refer to, as part

of specifying the functionality. Each record in the table includes one action or entity.

An important attribute (defined per action and entity) is the action modifier: Restrict or

Unconditional (see Section 3.3.4). It is later used to identify the implied actions and to

help decide whether a requirement crosscuts. Table 13 shows the split of input

requirements.

Note that in this set of input requirements, only Req-710 is specified by entity (the

“System” entity) and not by action.

7.4.2 Attributes (Modes and States) of Requirements Parts

For each part of a split requirement, the related attributes, modes and states are identified.

This helps us to identify the concerns and aspectual parts of the requirements. Table 14

shows the split requirements table with the attributes for the input requirements.

Table 14 Requirements Attributes of Actions and Entities

Req.
Num

Part

Action
Modifier Action Entity

Cove
rage

Reg.
Mode

MS
Call

Mode
Call
State

Power
State

MS
Prio.

Call
Prio.

Tx
Mode Comments

Req-320 5 Ignore Press PTT NA NA Call Rx NA NA NA NA
Req-250 1 Power On NA Unreg. NA NA Off NA NA NA

Req-250 2 Register NA Unreg. NA NA
Power
On NA NA NA

Req-260 1 Power Off NA NA NA NA On NA NA NA

Req-260 2 De-register NA Reg. NA NA
Power
Off NA NA NA

Req-270 1 Power Off NA NA NA NA NA NA NA NA
Req-310 1 Press PTT NA NA Idle NA NA NA NA NA

Req-310 2
Initiate
Call NA NA Idle NA NA NA Normal NA

Req-310 3 Call Ack NA NA Idle NA NA NA NA NA

DRAS - Derived Requirements Generation by Actions and States Page 87

Req.
Num

Part

Action
Modifier Action Entity

Cove
rage

Reg.
Mode

MS
Call

Mode
Call
State

Power
State

MS
Prio.

Call
Prio.

Tx
Mode Comments

Req-310 4
Call Mode
to Active NA NA Call

Not
Tx NA NA NA NA

Req-310 5 Tx Voice NA NA Call Tx NA NA NA NA
Req-320 1 Press PTT NA NA Call NA NA NA NA NA

Req-320 2
Ask Tx
Permission NA NA Call

No
Voice NA NA NA NA

Req-320 3 Call Ack NA NA Call
No
Voice NA NA NA NA

Req-320 4 Tx Voice NA NA Call Tx NA NA NA NA

Req-330 1

Receive
Incoming
Call NA NA Idle NA NA NA NA NA

Req-330 2
Call Mode
to Active NA NA Call NA NA NA NA NA

Req-330 3

Join
Incoming
Call NA NA Call NA NA NA NA NA

Req-340 1

Receive
Incoming
Call NA NA Call NA NA NA NA NA

Req-340 2 Ignore

Join
Incoming
Call NA NA Call NA NA NA NA NA

Reject = Ignore
Request

Req-520 1 Uncond. Press PTT NA NA NA NA NA

Emer
genc
y NA NA

Req-520 2 Uncond.
Initiate
Call NA NA NA NA NA

Emer
genc
y NA NA

Always =
Unconditionally

Req-540 1 Uncond.

Receive
Incoming
Call NA NA NA NA NA NA

Emerge
ncy NA

Req-610 1 Ignore Tx NA NA NA NA NA NA NA TXI

No Tx = Ignore
all related
activities

Req-710 1 Ignore
Syste
m NA Unreg. NA NA NA NA NA NA

All actions
related to
System Entity

Req-720 1 Ignore Press PTT Out NA NA NA NA NA NA NA Ignore

Req-730 1 Ignore Register Out Unreg. NA NA
Power
On NA NA NA

No try to
Register =
Ignore Request
to Register

Req-740 1 Ignore Tx Out NA NA NA NA NA NA NA

No Tx = Ignore
all Requests to
Tx

Req-540 2 Uncond.

Join
Incoming
Call NA NA NA NA NA NA

Emerge
ncy NA

DRAS - Derived Requirements Generation by Actions and States Page 88

7.4.3 Requirements Priorities

Relative priorities for the requirements are now defined. The relative priorities help to

identify which is the crosscutting requirement. Usually, a crosscutting requirement cannot

have a priority lower than the requirement it crosscuts.

For the requirements defined in this work, priority levels were set as 1-6 (where 6 is the

highest priority). Level 6 is used only for emergency related requirements. Level 5 is

used for requirements that are related to forced conditions, such as not being able to

transmit to the system when MS is out of coverage.

7.5 Identifying Actions used by the Requirements
In this step, the list of all actions used by the requirements, whether directly or indirectly,

are identified. The purpose is to verify that when checking whether a requirement

crosscuts another requirement, all the common actions (referred to by the requirements)

are taken into account. The action-modifier is the main attribute used to create the list of

actions (used by the requirements).

The following steps are performed to generate the list:

1. The list of entities used by the requirements is generated from the Split Requirements

table (Table 11), including action-modifier attributes. For the requirements given

here, the table includes only one row.

Pseudo code to generate the “Entities Used by Requirement” table:

 Foreach record in “Requirements Split” table:

 If Entity is not Null

 Add record to “Entities Used by Requiremen t” table

 with Requirement_Number, Entity,

 Action_Modifier, Direct_Use=”Enti ty”

 End Foreach

Requirement Number Entity Action Modifier Direct Use

Req-710 System Restrict Entity

Table 15 Entities used by Requirements

DRAS - Derived Requirements Generation by Actions and States Page 89

2. Based on the entities used by each action (Table 10), the list of actions indirectly used

by the requirements is generated according to the entities used by the requirements.

The attribute “Direct Use” is added with the “Entity” value; this means the

requirement is using the action through an entity it uses. Note that since the table

below is based on one requirement (Req-710), the “Action Modifier” and “Direct

Use” attributes are identical for all of the requirements.

3.

Pseudo code to generate the “Actions Used by Entity” table:

 Foreach record in “Entities Used by Requirement” a s EUR:

 Foreach record in “Actions Related Entities” a s ARE,

 with Entity = EUR.Entity:

 Add record to “Action Used by Entity” tabl e with

 EUR.Requirement_Number, ARE.Action,

 EUR.Action_Modifier, EUR.Direct_Use

 End Foreach

 End Foreach

Requirement_Number Action Action_Modifier Direct_Use
Req-710 Power Off Ignore Entity

Req-710 Power On Ignore Entity

Req-710 Register Ignore Entity

Req-710 Tx Ignore Entity

Req-710 De-register Ignore Entity

Req-710 Initiate Call Ignore Entity

Req-710 Call Mode to Active Ignore Entity

Req-710 Receive Incoming Call Ignore Entity

Req-710 Ask Tx Permission Ignore Entity

Req-710 Tx Control Ignore Entity

Req-710 Join Incoming Call Ignore Entity

Req-710 Call State to Tx Ignore Entity

Req-710 Press PTT Ignore Entity

Req-710 Tx Voice Ignore Entity

Table 16 Actions per Entity

DRAS - Derived Requirements Generation by Actions and States Page 90

4. At this step, the list of actions directly used by the requirements is generated, along

with the “Direct Use” attribute (where the requirements directly use the actions [only

part of the list is shown]).

Pseudo code to generate the “Actions Used by Requirement” table:

 Foreach record in “Actions Used by Requirement” as EUR:

 Foreach record in “Actions Related Entities” a s ARE,

 with Entity = EUR.Entity:

 Add record to “Action Used by Requirement” with

 Requirement_Number, Action, Action_Mod ifier,

 Direct_Use = “Yes”

 End Foreach

 End Foreach

Requirement_Number Action Action_Modifier Direct_Use
Req-320 Press PTT Ignore Yes

Req-250 Power On Yes

Req-250 Register Yes

Req-260 Power Off Yes

Req-260 De-register Yes

Req-270 Power Off Yes

Req-310 Press PTT Yes

Req-310 Initiate Call Yes

Req-310 Call Ack Yes

Req-310 Call Mode to Active Yes

Req-310 Tx Voice Yes

Req-320 Press PTT Yes

…

Table 17 Actions Directly used by the Requirements (excerpt)

5. The list of actions used by each requirement according to the entities each

requirement uses (which was generated earlier), is now appended to the “Actions

used by Requirements” table (see Table 18).

DRAS - Derived Requirements Generation by Actions and States Page 91

6. For each action Act which is restricted by the requirement (according to the action-

modifier), the use of all actions implying the use of Act may also need to be restricted.

For example, if the MS should not transmit when transmit is Inhibited (TXI mode), all

actions that result in transmission may also need to be ignored. Therefore, all of these

implied actions are added to the list. A “Direct Use” attribute for these added actions

is set to “Restrict”, indicating that they were added because of the “Restrict” attribute

of their implying action. The Action Modifier for these actions is set to “Restrict” as

the implying action. This is performed using Table 12 (actions used by each action).

Pseudo code to add the “Ignored” using actions to “Actions Used by Requirement”

table:

 Foreach record in “Actions Used by Requirement” as AUR,

 with Action_Modifier = “Restrict”:

 Foreach record in “Actions Used by Action” as AUA,

 with Action = AUR.Action:

 Add record to “Action Used by Requirement” with

 AUR.Requirement_Number, AUA.Used_By_Ac tion,

 AUR.Action_Modifier, Direct_Use=”Restr ict”

 End Foreach

 End Foreach

7. For each action Act which is performed unconditionally (according to the action-

modifier), all actions that are used by Act may also have to be allowed. For example,

if the MS should be allowed to initiate a call in Emergency mode, then it should also

be allowed to transmit. Therefore, all actions used by unconditional actions are added

to the list. A “Direct Use” attribute for these added actions is set to “Implied”,

indicating that they were added because of the “Unconditional” attribute of their

implying actions. The action-modifier for these actions is set to “Unconditional” as

the implying action. This is also performed using Table 12 (the table for actions used

by each action).

Pseudo code to add the “Ignored” using actions to “Actions Used by Requirement”

table:

 Foreach record in “Actions Used by Requirement” as AUR,

DRAS - Derived Requirements Generation by Actions and States Page 92

 with Action_Modifier is not “Restrict”:

 Foreach record in “Actions Used by Action” as AUA,

 with Action = AUR.Used_BY_Action:

 Add record to “Action Used by Requirement” with

 AUR.Requirement_Number, AUA. Action,

 AUR.Action_Modifier, Direct_Use=”Impli ed”

 End Foreach

 End Foreach

Table 18 Actions Used By Requirements (excerpt)

Requirement_Number Action Action_Modifier Direct_Use
Req-250 Power On Yes

Req-250 Register Yes

Req-250 Tx Forward

Req-250 Tx Forward

Req-250 Tx Control Forward

Req-250 Tx Control Forward

Req-260 Tx Control Forward

Req-260 Power Off Yes

Req-260 De-register Yes

Req-260 Tx Forward

Req-260 Tx Control Forward

Req-260 Tx Forward

Req-270 Power Off Yes

Req-270 De-register Forward

……

Req-730 Power On Ignore Ignore

Req-730 Register Ignore Yes

Req-740 Power On Ignore Ignore

Req-740 Register Ignore Ignore

Req-740 Tx Control Ignore Ignore

Req-740 Press PTT Ignore Ignore

Req-740 Tx Ignore Yes

….

The “Actions used by Requirements” table (Table 18), created by the steps above, shows

part of the list for all actions used by the requirements, directly or indirectly. Note that

DRAS - Derived Requirements Generation by Actions and States Page 93

some rows may be created more than once, as a result of different requirements. These

redundancies are removed in later steps.

7.6 Identifying Requirements-Actions Attributes
Now the Actions Used by Requirements table (see Table 18) is extended, by identifying

each Requirement-Action pair Req-Act, showing in which conditions it is performed

according to the requirement. The proper attributes for Req-Act (mainly modes and

states) are identified based on the attributes of actions and entities table (Table 14). In

the case that Act is not directly used by Req, the action Act' that caused Act to be related

to Req and that is directly used by Req should first be identified. Then the row of the

split table that is relevant to the Req-Act should be identified.

Pseudo code for the creation of the “Requirement Attributes” table:

For all records with the same Requirement Number
 from “Requirements” table as R
 “Requirements Split” table as RS
 “Actions Used by Requirement” table as AUR
 with the same Requirement Number
 and where
 (AUR.Action=RS.Action And AUR.Direct_Us e="Yes")
 Or (RS.Action_Modifier="Unconditionally " And
 AUR.Direct_Use="Implied")
 Or (RS.Action_Modifier="Restrict" And
 AUR.Direct_Use="Restrict")
 Or AUR.Direct_Use="Entity"
 Add record to “Requirements Attributes” table w ith
 Requirements Number, R.Priority, RS.Action_ Modifier,
 AUR.Action, all attributes from RS
End For

Following is part of the full Requirement-Action Attributes table for the input

requirements (Table 19).

DRAS - Derived Requirements Generation by Actions and States Page 94

Table 19 Requirement-Actions Attributes (excerpt)

Req. Num
Prio
rity

Action
Modifier Action

Cover
age

Reg.
Mode

MS
Call

Mode
Call
State

Power
State

MS
Priority

Call
Priority

Tx
Mode

Req-250 5 Power On NA Unreg. NA NA Off NA NA NA

Req-250 5 Register NA Unreg. NA NA
Power
On NA NA NA

Req-260 5 De-register NA Reg. NA NA
Power
Off NA NA NA

Req-260 5 Power Off NA NA NA NA On NA NA NA
Req-270 5 Power Off NA NA NA NA NA NA NA NA
Req-310 4 Call Ack NA NA Idle NA NA NA NA NA

Req-310 4
Call Mode to
Active NA NA Call

Not
Tx NA NA NA NA

Req-310 4 Initiate Call NA NA Idle NA NA NA Normal NA
Req-310 4 Press PTT NA NA Idle NA NA NA NA NA
Req-310 4 Tx Voice NA NA Call Tx NA NA NA NA

Req-320 4
Ask Tx
Permission NA NA Call

No
Voice NA NA NA NA

Req-320 4 Call Ack NA NA Call
No
Voice NA NA NA NA

Req-320 4 Press PTT NA NA Call NA NA NA NA NA
Req-320 4 Tx Voice NA NA Call Tx NA NA NA NA
Req-320 4 Ignore Press PTT NA NA Call Rx NA NA NA NA

Req-330 4
Call Mode to
Active NA NA Call NA NA NA NA NA

Req-330 4
Join Incoming
Call NA NA Call NA NA NA NA NA

Req-330 4
Receive
Incoming Call NA NA Idle NA NA NA NA NA

Req-340 4
Receive
Incoming Call NA NA Call NA NA NA NA NA

Req-340 4 Ignore
Join Incoming
Call NA NA Call NA NA NA NA NA

Req-340 4 Ignore
Receive
Incoming Call NA NA Call NA NA NA NA NA

Req-520 6 Uncond.
Ask Tx
Permission NA NA NA NA NA

Emergen
cy NA NA

Req-520 6 Uncond. Call Ack NA NA NA NA NA
Emergen
cy NA NA

……

7.7 Identifying Match-Points between the Requirements
In this step, crosscutting requirements and the requirements they crosscut are identified.

This is performed by identifying the match-points between requirements, using their

common attributes. The common attributes are actions, modes, states, and other

DRAS - Derived Requirements Generation by Actions and States Page 95

attributes that are common to the requirements ([Brito 03] also adds candidate aspects to

the match-points). This is based on ideas from [Brito 03] and [Rashid 03]. Also included

are priorities for the requirements.

The table that identifies match-points is in many ways similar to the commonly used

traceability matrix (between requirements and their sub-products), used during the

development process. A major difference between these tables is that the traceability

matrix is mainly used to trace between artifacts from different development phases, while

match-points help to create DRs in the same development phase (the requirements

phase).

The match-points are mainly identified by modes and states. This is because the

requirements defined here are event-based (button press, incoming call, change mode,

etc.). They define the MS main function in case these events happen. They hardly

include specifications for additional, non-event-based functionality, such as Logging.

Match-point identification is performed in three steps:

1. Identify the list of match-point candidates between requirements, according to

the use of common actions and different values for attributes.

2. Remove redundancies that were created by multiple matches between two

requirements (mainly caused by several implied actions that match between

requirements).

3. Remove match-points that cannot happen in reality (based on Table 9), or do

not have at least one different crosscutting mode or State (based on Table

14 Table 19).

These steps are described further below.

DRAS - Derived Requirements Generation by Actions and States Page 96

7.7.1 List of Match-Point Candidates between Requirements

In this step, all requirements using a common action are identified (based on the actions

used by the requirements [Table 18] and the requirements attributes [Table 19]). The

following criteria are used to match between requirements:

1. The same action is used - based on the actions used by the Requirements table and the

Requirements Attributes table.

2. The priority of the crosscutting requirement is at least as high as the priority of the

requirement it crosscuts.

3. The action is either directly used by the requirement that is being crosscut, or it is

used because of an entity used by the requirement (i.e., Direct-Use is “Yes” or

“Entity”). This prevents redundancies because of actions used by that action.

4. The Action Modifier for the crosscutting requirement is not null (i.e., it is “Restrict”

or “Unconditional”). Only such requirements can force some functionality on other

requirements (i.e., crosscut them).

5. The Action Modifier for the requirement that is being crosscut is different from the

Action Modifier for the crosscutting requirement. If both requirements have the same

Action Modifier, then they specify related functionality that does not imply changes

to one of them.

The match-points list includes the mode or state attributes for the crosscutting

requirement. The attributes, if needed, are available from the requirements attributes table

(Table 19).

Pseudo code for the creation of the “Candidate Match-Points” table:

For each pair of records from “Actions Used by Requ irements”
table, with the same Action but that are the result of different
requirements:
 where the priority of the first requirement is lower
 than the priority of the second re cord
 and where the action of the first record is directly used
 by a requirement or is a result of using Entity
 and Action Modifier of both records is not t he same

 Add record to “Match by Action” table with
 Action, all attributes of action
 from “Requirements Attributes” table re cord

DRAS - Derived Requirements Generation by Actions and States Page 97

 with same Action
 and with Requirement Number of the second record
 Requirement_Number, Priority, Action_Modifi er
 from first requirement
 Crosscut_Number, Crosscut_Priority,
 Crosscut_Action_Modifier2
 from second requirement

The candidate match-points that have been identified in this step are listed in Table 20.

DRAS - Derived Requirements Generation by Actions and States Page 98

Table 20 Candidate Match-Points

Req
Num

Prio
rity

Action
Modifier

Crosscut
Num

Crosscut_
Priority

Crosscut
Action

Modifier
Action

Cover
age

Reg.
Mode

Power
State

MS
Prio.

Call
Prio.

Tx
Mode

Req-250 5 Req-610 5 Ignore Power On NA NA NA NA NA TXI

Req-250 5 Req-610 5 Ignore Register NA NA NA NA NA TXI

Req-250 5 Req-710 5 Ignore Power On NA Unreg. NA NA NA NA

Req-250 5 Req-710 5 Ignore Register NA Unreg. NA NA NA NA

Req-250 5 Req-730 5 Ignore Power On Out Unreg. Power
On

NA NA NA

Req-250 5 Req-730 5 Ignore Register Out Unreg. Power
On

NA NA NA

Req-250 5 Req-740 5 Ignore Power On Out NA NA NA NA NA

Req-250 5 Req-740 5 Ignore Register Out NA NA NA NA NA

Req-310 4 Req-320 4 Ignore Press PTT NA NA NA NA NA NA

Req-310 4 Req-320 4 Ignore Press PTT NA NA NA NA NA NA

Req-310 4 Req-520 6 Unconditi
onally

Call Ack NA NA NA Emerg
ency

NA NA

Req-310 4 Req-520 6 Unconditi
onally

Call Mode
to Active

NA NA NA Emerg
ency

NA NA

Req-310 4 Req-520 6 Unconditi
onally

Initiate
Call

NA NA NA Emerg
ency

NA NA

Req-310 4 Req-520 6 Unconditi
onally

Press PTT NA NA NA Emerg
ency

NA NA

Req-310 4 Req-520 6 Unconditi
onally

Tx Voice NA NA NA Emerg
ency

NA NA

Req-330 4 Req-340 4 Ignore Join
Incoming
Call

NA NA NA NA NA NA

Req-330 4 Req-340 4 Ignore Receive
Incoming
Call

NA NA NA NA NA NA

Req-330 4 Req-340 4 Ignore Receive
Incoming
Call

NA NA NA NA NA NA

Req-340 4 Ignore Req-540 6 Unconditi
onally

Join
Incoming
Call

NA NA NA NA Emerg
ency

NA

Req-340 4 Req-710 5 Ignore Receive
Incoming
Call

NA Unreg. NA NA NA NA

Req-610 5 Ignore Req-520 6 Unconditi
onally

Tx NA NA NA Emerg
ency

NA NA

DRAS - Derived Requirements Generation by Actions and States Page 99

7.7.2 Remove Redundant Entries

In this step, redundant rows generated in the first step are deleted. Redundant rows are

created in the first step because two requirements may be matched to several actions that

are implied by one action (according to Table 12). For example, requirements that match

because of Initiate Call may also be matched because of Tx-Voice (which is implied by

call initiation). Redundancy may also occur because a requirement uses different Action

Modifiers in different requirement parts (see Table 13).

Pseudo code for removing the redundant records:

Delete each record from “Match By Action”
 where a second record exist
 that results from the same Requirement
 and with the same Crosscut Requirement
 and with Action that uses the Action of the first record
End Delete

For example, from the following match-points between Req-310 and Req-520, only the

“Press PTT” action is kept; all other actions are recursively implied by the Press PTT

action, and therefore are removed (the strikethrough actions).

Table 21 Removed Redundant Candidate Match-Points

Req Num
Pri
orit
y

Action
Modifie

r

Crosscut
Num

Cr
oss
cut
_Pr
iori
ty

Crosscut Action Modifier Action

Req-310 4 Req-520 6 Uncond. Call Ack

Req-310 4 Req-520 6 Uncond. Call Mode
to Active

Req-310 4 Req-520 6 Uncond. Initiate Call

Req-310 4 Req-520 6 Uncond. Press PTT

Req-310 4 Req-520 6 Uncond. Tx Voice

7.7.3 Remove Impossible or same Mode/State Match-Points

In this step, match-points that cannot happen in reality (based on Table 9) are removed.

For example, the following match-points are removed because the MS cannot be in a Call

DRAS - Derived Requirements Generation by Actions and States Page 100

(which is part of Req-340 conditions) while unregistered, and because MS cannot be in

Idle and Call modes at the same time (Req-310 and Req-320).

Table 22 Removed Impossible Match-Point

Req
Num

Prior
ity

Action
Modif.

Crosscut
Num

Crosscut
_Priority

Crosscut
Action

Modifier Action
Cover

age
Reg.
Mode

Power
State

MS
Priority

Call
Prio.

Tx
Mode

Req-340 4 Req-710 5 Restrict Receive
Incoming
Call

NA Unreg. NA NA NA NA

Req-310 4 Req-320 4 Restrict Press PTT NA NA NA NA NA NA

The match-point candidates remaining after this step are regarded as the final list of

match-point candidates.

Pseudo code for removing the redundant records according to the above two criteria:

Delete each record from “Match By Action”
 where two of its attributes contradict
 according to list of contradicting Mode/S tate values
 and the “Requirements Attribute s” table
 or where the two crosscutting requirements
 does not have at least one different attribute
 according to the “Requirements Attrib utes” table
End Delete

7.7.4 The Final Match-Point Candidates

 Table 23 below is the result of the process for using the input requirements defined in this

work. Note that the MS Call mode and state attributes are not included; they are not

regarded as crosscutting and therefore do not add value to the analysis.

DRAS - Derived Requirements Generation by Actions and States Page 101

Table 23 Requirements Match-Points

Req
Num

Crosscut
Num Action Prio

rity
Action

Modifier
Crossc

ut
Prio.

Crosscut
Action

Modifier
Cover

age
Reg.
Mode

Power
State

MS
Prio.

Call
Prior.

Tx
Mode

Req-250 Req-610 Power
On

5 5 Ignore NA NA NA NA NA TXI

Req-250 Req-730 Power
On

5 5 Ignore Out Unreg. Power
On

NA NA NA

Req-250 Req-740 Power
On

5 5 Ignore Out NA NA NA NA NA

Req-260 Req-610 Power
Off

5 5 Ignore NA NA NA NA NA TXI

Req-260 Req-710 Power
Off

5 5 Ignore NA Unreg. NA NA NA NA

Req-260 Req-740 Power
Off

5 5 Ignore Out NA NA NA NA NA

Req-270 Req-610 Power
Off

5 5 Ignore NA NA NA NA NA TXI

Req-270 Req-710 Power
Off

5 5 Ignore NA Unreg. NA NA NA NA

Req-270 Req-740 Power
Off

5 5 Ignore Out NA NA NA NA NA

Req-310 Req-520 Press
PTT

4 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-310 Req-540 Call
Mode to
Active

4 6 Uncond. NA NA NA NA Emerg
ency

NA

Req-310 Req-610 Press
PTT

4 5 Ignore NA NA NA NA NA TXI

Req-310 Req-710 Press
PTT

4 5 Ignore NA Unreg. NA NA NA NA

Req-310 Req-720 Press
PTT

4 5 Ignore Out NA NA NA NA NA

Req-310 Req-740 Press
PTT

4 5 Ignore Out NA NA NA NA NA

Req-320 Req-520 Press
PTT

4 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-320 Req-520 Press
PTT

4 Ignore 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-320 Req-610 Press
PTT

4 5 Ignore NA NA NA NA NA TXI

Req-330 Req-520 Call
Mode to
Active

4 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-330 Req-540 Join
Incomin
g Call

4 6 Uncond. NA NA NA NA Emerg
ency

NA

Req-330 Req-710 Receive
Incomin

4 5 Ignore NA Unreg. NA NA NA NA

DRAS - Derived Requirements Generation by Actions and States Page 102

Req
Num

Crosscut
Num Action Prio

rity
Action

Modifier
Crossc

ut
Prio.

Crosscut
Action

Modifier

Cover
age

Reg.
Mode

Power
State

MS
Prio.

Call
Prior.

Tx
Mode

g Call
Req-340 Req-540 Join

Incomin
g Call

4 Ignore 6 Uncond. NA NA NA NA Emerg
ency

NA

Req-610 Req-520 Tx 5 Ignore 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-710 Req-520 Press
PTT

5 Ignore 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-710 Req-540 Join
Incomin
g Call

5 Ignore 6 Uncond. NA NA NA NA Emerg
ency

NA

Req-720 Req-520 Press
PTT

5 Ignore 6 Uncond. NA NA NA Emerg
ency

NA NA

Req-740 Req-520 Tx 5 Ignore 6 Uncond. NA NA NA Emerg
ency

NA NA

7.8 Evaluating Match-Points
The final evaluation step, before specifying DRs, is to identify which of them should

result in a derived requirement. For that, the following attributes are added to each

match-point:

• Crosscutting Attribute : To identify which of the match-point attributes cause

crosscutting between requirements. Usually, this is a mode or state.

• Contribution of a Crosscutting Requirement to another requirement’s

functionality : This indicates whether the function defined by the crosscutting

requirement does one of the following: a) conflicts with the function for the

requirement it crosscuts (“-”), b) adds to that functionality (“+”), or c) does not affect

it (“None”).

• Composition Rules (for the crosscutting requirements to the requirement it cuts):

Possible values are: a) Overlap Before/After, b) Override, or c) Wrap (see section

 3.3.6).

 Table 24 summarizes this evaluation for the identified match-points. For reference, the

table also shows the numbers of the resulting DRs, which are identified in a later phase.

DRAS - Derived Requirements Generation by Actions and States Page 103

Note that the Contribution for the Crosscutting Attribute is: “-” when the Crosscutting

Action Modifier is “Restrict”, and “+” when it is “Unconditional”. Therefore, the

contribution attribute is practically redundant.

Table 24 Match-Points Evaluation

Req Num Action
Modif.

Crosscut
Req Num

Crosscut
Action

Modifier

Action Crosscutting
Attributes

Contrib
ution of
Crosscut

Req
(None /
+ / -)

Composition Rules
[Overlap Before /
After | Override |

Wrap]

Derived
Req.

Req-250 Req-610 Ignore Power
On

 TXI - Override (Register) Req-1340

Req-250 Req-730 Ignore Power
On

 Unregistered,
Out, Powering-
On

- Override (Register) Req-1120

Req-250 Req-740 Ignore Power
On

 Out - Override (Register) (Join to
Req-1120)

Req-260 Req-610 Ignore Power
Off

 TXI - Override (De-
register)

Req-1330

Req-260 Req-710 Ignore Power
Off

 Unregistered - NONE (260 already
de-register only if

registered)

None

Req-260 Req-740 Ignore Power
Off

 Out - Override (De-
register)

Req-1130

Req-270 Req-610 Ignore Power
Off

 TXI - Override (De-
register)

(Join to
Req-1130)

Req-270 Req-710 Ignore Power
Off

 Unregistered - Override (De-
register)

Req-1110

Req-270 Req-740 Ignore Power
Off

 Out - Override (De-
register)

(New?
Join to
Req-

1130?)
Req-310 Req-520 Unconditio

nally
Press
PTT

 Emergency-
Mode

- Override
(Emergency Call

Priority)

Req-1230

Req-310 Req-540 Unconditio
nally

Call
Mode to
Active

 Emergency-
Incoming-call

None NONE (No conflict) None

Req-310 Req-610 Ignore Press
PTT

 TXI - Override (Initiate
Call = Ignore PTT)

Req-1320

Req-310 Req-710 Ignore Press
PTT

 Unregistered - Override (Initiate
Call = Ignore PTT)

Req-1410

Req-310 Req-720 Ignore Press
PTT

 Out - NONE
(720 already say to
ignore PTT and is

None

DRAS - Derived Requirements Generation by Actions and States Page 104

Req Num Action
Modif.

Crosscut
Req Num

Crosscut
Action

Modifier

Action Crosscutting
Attributes

Contrib
ution of
Crosscut

Req
(None /
+ / -)

Composition Rules
[Overlap Before /
After | Override |

Wrap]

Derived
Req.

the self-derived)

Req-310 Req-740 Ignore Press
PTT

 Out - Override (Initiate
Call = Ignore PTT)

New

Req-320 Req-520 Unconditio
nally

Press
PTT

 Emergency-
Mode

+ Override (Initiate
Call instead of Tx

in call)

Req-1240

Req-320 Ignore Req-520 Unconditio
nally

Press
PTT

 Emergency-
Mode

+ Override (Initiate
Call instead of Tx

in call)

Req-1240

Req-320 Req-610 Ignore Press
PTT

 TXI - Override (Ask
Tx=Ignore PTT)

Req-1320

Req-330 Req-520 Unconditio
nally

Call
Mode to
Active

 Emergency-
Mode

None NONE (No conflict) None

Req-330 Req-540 Unconditio
nally

Join
Incomin
g Call

 Emergency-
Incoming-call

None NONE (in Idle
Mode, MS joins the

call anyway)

None

Req-330 Req-710 Ignore Receive
Incomin
g Call

 Unregister - Override (Join Call) New

Req-340 Ignore Req-540 Unconditio
nally

Join
Incomin
g Call

 Emergency-
Incoming-call

- Override (Ignore
Incoming call -
instead, join the

new call)

Req-1250

Req-610 Ignore Req-520 Unconditio
nally

Tx Emergency-
Mode

+ <Need to DECIDE
whether to allow
Emergency Tx in

TXI>

Req-1310

Req-710 Ignore Req-520 Unconditio
nally

Press
PTT

 Emergency-
Mode

+ <Need to DECIDE
whether to allow
Emergency Tx

when Unregistered>

Req-1210

Req-710 Ignore Req-540 Unconditio
nally

Join
Incomin
g Call

 Emergency-
Incoming-call

+ <Need to DECIDE
whether to allow to

Join Emergency
Call when

Unregistered>

New

Req-720 Ignore Req-520 Unconditio
nally

Press
PTT

 Emergency-
Mode

+ <Need to decide
what to do with
Emergency-PTT

when Out of
Coverage>

Req-1220

DRAS - Derived Requirements Generation by Actions and States Page 105

Req Num Action
Modif.

Crosscut
Req Num

Crosscut
Action

Modifier

Action Crosscutting
Attributes

Contrib
ution of
Crosscut

Req
(None /
+ / -)

Composition Rules
[Overlap Before /
After | Override |

Wrap]

Derived
Req.

Req-740 Ignore Req-520 Unconditio
nally

Tx Emergency-
Mode

+ <Need to decide
what to do with
Emergency-PTT

when Out of
Coverage>

(Join to
Req-1220)

Here are some notes regarding some of the decisions made regarding the match-points:

•••• The Aspectual Requirements, i.e. the requirements that crosscut other requirements

are: Req-520, Req-540, Req-610, Req-710, and Req-720.

•••• Only Override Composition-Rule is practically used, which means that the

Composition-Rule attribute may not be useful in context with this methodology. The

Modes and States are the main reason for the crosscutting functionality conditions.

This is because the requirements defined here are event based, and the Modes and

States define the main conditions for the MS functionality in the events. This is

probably why the composition rules wrap and overlap are not used. Yet, using the

Composition Rule for this methodology still needs further evaluation.

•••• In several cases, the decision regarding the resolution for the conflict between

requirements is not clear. This usually happens when an aspectual requirement

crosscuts other aspectual requirements.

For example, should the match-point between aspectual requirements Req-520 and

Req-710 allow MS in an emergency to initiate calls, even if it is not registered in the

cellular system? Note that for most cellular systems, the resolution for a similar

conflict would be that any user can call emergency services.

•••• The identified (false) match-points. Req-310/Req-540 and Req-330/Req-520 could

have been removed while preparing the match-point candidates list, by separating the

Call mode to Active for Incoming [Rx] calls and Active for Outgoing [Tx] calls. In

general, during the evaluation process, additional or more accurate definitions of

actions and attributes to be defined can be expected. The value of adding these more

detailed definitions depends on how many false match-points are saved.

DRAS - Derived Requirements Generation by Actions and States Page 106

7.9 Generating the Derived Requirements
Derived requirements are generated according to the attributes defined for each match-

point. The requirement numbers for each of the DRs are in Table 24. Note that several

match-points may result in one derived requirement. For example, Req-1320 is the result

of the match-point between Req-310 and Req-610, and also the result of the match-point

between Req-320 and Req-610.

The following DRs are the result of the identified match-points (Table 24). In certain

cases, a derived requirement is an enhancement to the original requirement and replaces

it. The underlined parts are the parts with the added text to the original requirements.

Req-610 and Req-520

Req-1310: When in TXI mode, MS shall ignore any request to transmit; except when

MS is in Emergency mode.

[The decision here is to allow transition during Tx-Inhibit (TXI) mode, while in

Emergency mode, assuming that the danger of not being able to communicate during

emergency is more severe than the danger of transmitting (TXI is usually used in cases

where transmitting is problematic; e.g., in hospitals where it may interrupt medical

equipment or in oil fields, where it may cause a fire).]

Req-710 and Req-520

Req-1210: While MS is unregistered, no system related operation should be allowed

by the MS, except when MS is in Emergency mode, where initiate call and asking for

transmission permission should be allowed.

Req-710 & Req-540

Req-2260: While MS is unregistered, no system related operation should be allowed

by the MS, including not joining an incoming emergency call.

DRAS - Derived Requirements Generation by Actions and States Page 107

[It is assumed that if an MS cannot register to a system, it is not part of the system’s

active subscribers and therefore will not participate in emergency calls. Note that this

requirement can be combined with Req-1210 above. (This requirement was not identified

as part of the initial writing of the derived requirements, before performing the process

described here.)]

Req-720 & Req-520 and Req-740 & Req-520

Req-1220: When MS is out of system coverage, MS shall not try to transmit.

Pressing PTT shall be ignored, unless the MS is in Emergency mode, where the MS

should initiate emergency call as soon as it is in coverage (unless Emergency mode is

over by that time).

[Req-720 and Req-740 seem to be redundant, “ignoring PTT” as defined by Req-720 is

actually implied here by “not try to Tx”. This is probably a common case and therefore

should not cause any issue during the analysis.]

Req-250 & Req-610

Req-1340: On power-on, MS shall register to the system, unless it is in TX Inhibit

mode (set before the previous power-off).

[The decision here is that the MS should remember its TXI mode during power off/on

cycle, and therefore cannot register when powered on.]

Req--250 & Req-730 and Req-250 & Req-740

Req-1120: On power-on, when MS is outside of system coverage, MS shall register

to the system once it is in coverage.

Req-260 & Req-610 with Req-270 & Req-610

Req-1330: On power-off, the MS shall de-register first from the system, if it is

successfully registered and if it is not in Tx Inhibit mode.

[Req-270 does not effect the requirement text, but it effects the decision to allow power

off without de-registration first.]

DRAS - Derived Requirements Generation by Actions and States Page 108

Req-260 & Req-260 & Req-740 with Req-270 & Req-740

Req-1130: On power-off, the MS shall de-register first from the system, if it is

successfully registered and if it is in coverage.

[Req-270 does not effect the requirement text, but it effects the decision to allow power

off without de-registration first.]

Req-2-270 & Req-710

Req-1110: MS shall be able to power-off in any state even when unregistered.

[Taking into account Req-1130 and Req-1330 above, this requirement becomes

redundant. It is given here only for reference to the original list of derived

requirements.]

Req-310 and Req-520

Req-1230: Pressing PTT in Idle Call mode and Emergency mode shall initiate-call

for an outgoing group call, with emergency priority to the emergency predefined group.

If the call-initiation is acknowledged by the system, MS shall toggle to Call mode and

may start voice transmission.

[This requirement is the equivalent to Req-1230 in the expected Derived Requirements,

although Req-1230 is broader, as it includes both Req-320 and Req-310&520 in one

requirement. That is, Req-1230 is written in such a way that it can replace Req-310.]

Req-310 & Req-610

Req-1320: Pressing PTT in Idle mode shall be ignored if MS is in Tx Inhibit mode.

Req-310 and Req-710

Req-1410: Pressing PTT in Idle Call mode and Normal mode while MS is

Unregistered shall be ignored.

[Note that this requirement may be combined with Req-1230 (that is, the result of Req-

520 crosscutting Req-310) to one requirement, by adding “even if MS is Unregistered”.]

Req-310 and Req-740

DRAS - Derived Requirements Generation by Actions and States Page 109

Req-2160: Pressing PTT in Call mode while MS is Out of Coverage shall be

ignored.

Req-320 and Req-520

Req-1240: Pressing PTT in Call mode in Emergency mode shall cause the MS to

ask for voice Tx permission, when no one else is transmitting in the call, with Emergency

Call priority, regardless if someone else is transmitting in the call. The PTT shall be

ignored when someone else is already transmitting in the call. The MS may start to Tx

voice only if the Tx Request was Acknowledged.

Req-320 & Req-610

Req-1320: Pressing PTT in Call mode while MS is in Tx Inhibit mode shall be

ignored.

Req-330 & Req-710

Req-2460: When receiving an incoming group call in Idle mode, MS shall toggle

to Call mode and join the call, unless the MS is unregistered, in which case the call

should be ignored.

Req-340 & Req-540

Req-1250: When receiving an incoming group call with Emergency priority while

in Normal Call mode, the MS shall internally reject the call without notifying the system

(leave the current call and join the Emergency call).

DRAS - Derived Requirements Generation by Actions and States Page 110

8 Summary and Conclusions

This work presented DRAS, a methodology to help identify and handle crosscutting

requirements in the requirements of a system. In many cases, several major problems

occur in products because match-points between requirements were not identified. A

major goal of AORE methods is to help resolve this issue. Most existing AORE methods

concentrate on: handling interactions between requirements during the requirements

analysis phase, or during system architecture, software architecture and design phases.

However, usually only engineers are familiar with the tools and methods used in these

phases. Therefore, in many cases the analysis of crosscutting requirements output is

limited only to engineers. For other stakeholders, such as customers and marketing

people, it is desirable to state the requirements to the extent possible, in textual format.

Another limitation of several existing methods is that they mainly handle NFRs. They

either do not handle FRs at all, or do not handle them well. The DRAS methodology was

designed to identify and handle crosscutting functional requirements, and to generate

textual DRs (which are the result of analyzing crosscutting requirements).

DRAS identifies crosscutting requirements based on the actions they use. It starts with

identifying the lists of actions and entities used by the input requirements. The relative

priority of each requirement is also identified. Then the list of actions (implied by each

action) is defined. This list is later used to identify all of the actions a requirement refers

to, directly or indirectly. Generating the list depends on whether the requirement restricts

the use of an action, or eases a restriction for its use. If the use of an action Act is

restricted, the use of all actions that use Act (i.e., the implied-actions) is restricted too. If

a requirement eases the restrictions for using an action Act, the actions list will include

actions that are the result of using Act (i.e., the implying actions).

For each requirement, the modes and states of the different entities it refers to are also

identified. This information is later used to help decide whether functional requirements

DRAS - Derived Requirements Generation by Actions and States Page 111

crosscut each other, because this usually depends on the modes and states referred to by

the requirements.

The actions (and their modifiers), the modes and the states per each requirement are

identified. Based on this information, match-points between the requirements are

identified. To get to the final list of match-points, the list is further refined to remove

redundancies and conflicts that cannot occur in real-life.

The final step of DRAS is to generate DRs, according to the list of match-points between

requirements. This process usually requires consulting the stakeholders; because in

several cases resolving conflicts are not straight forward, and the stakeholders should

decide what direction to take. The requirements, both original and derived, can be

reviewed by all stakeholders, making sure that resolutions to conflicts are performed

properly.

Using DRAS provides a more reliable method to identify crosscutting functional

requirements and the requirements they crosscut. It also helps in deciding what derived

requirements should be generated from the crosscutting, because it identifies the match-

points between the requirements. Therefore, using DRAS helps complete the

requirements definition phase with a better set of requirements.

DRAS - Derived Requirements Generation by Actions and States Page 112

9 Future Work

Several enhancements are considered for the DRAS methodology, mainly automating the

process (making it more robust and easier to use), so that the (tentative) DRs can be

generated automatically. That requires the ability to parse and analyze the text and the

ability to set the relative priorities between requirements a match-point refers. Note that

text analysis should allow identifying actions, even when they are written in different

forms. For example, “call initiation” may be written in the requirement “initiate a call”,

“start call”, etc.

The DRAS methodology, or part of it, may be integrated with existing requirements

management tools (such as DOORS or RequisitePro). This will enhance their

functionality and enable an easier definition of requirements (derived from conflicts

between other requirements).

Another possible enhancement to such tools is the definition of attributes per

requirement, as used in this work (see Table 19 and Table 14). Per requirement, these

attributes include the Actions used with their Action Modifiers and the Mode/State

Attributes . With proper textual analysis, the requirements management tool may be able

to generate these attributes automatically. Using these attributes, the tool can suggest to

the user possible crosscutting between the requirements, by implementing similar

algorithms to the ones defined for DRAS.

To achieve the above-mentioned enhancements, the requirements management tool

should enable the user to define the following required input lists:

• Action modifiers (probably a predefined fixed list)

• Composition rules (probably a predefined fixed list)

• Relative priorities (probably a predefined fixed list)

• Entities list

• Actions list and implied actions list

• Entities used by actions list

DRAS - Derived Requirements Generation by Actions and States Page 113

• Modes and states list, their possible values and list of contradicting mode/state

values.

An additional attribute per requirement may be the crosscutting type, which can be one

of the following: Baseline, Crosscutting and Derived. This attribute may help users and

reviewers better understand the requirements.

Another enhancement can come from handling the generated DRs. This can be supported

by derived requirements traceability in the requirements management tool. Such

traceability can be similar to the traceability used between different development phases:

requirements to design, design to code, etc. However, in this case, traceability will be

within the same phase. It will enable the user to verify that all identified crosscutting

between requirements were handled. Traceability will require a Derived From attribute

per requirement (listing the requirements that the requirement is derived from).

If the DRs analysis is performed automatically, then attributes identified during the

analysis may be added to the DRs traceability entities. These attributes can include

Actions and Modes/States that are responsible for the match-point, the involved action

modifiers, and identifying non-crosscutting match-points, etc.

DRAS methodology assumes that a match-point it identifies (between functional

requirements) means that tentatively one requirement crosscuts the other. That is, one of

the requirements is a crosscutting requirement. This assumption was not validated;

further work is required to identify whether this is true, or for what cases this is true.

Using natural language processing methods to analyze the requirements (e.g. [Pantel 07],

[Lin 07], EA-Miner [Sampaio 2005]), it may be possible to semi-automate

identification of actions (used by the requirements) and their different attributes.

Writing the requirements in some formal form, such as Attempto controlled language

[Hoefler 04], can assist this approach. Ideas from AbstFinder [Goldin 97] may also be

used to help identify aspects in the specifications text. Mining aspects methods

[Loughran 02] and tools may also be used for automatic or semi-automatic retrieval and

DRAS - Derived Requirements Generation by Actions and States Page 114

identification of aspects. Automatic weaving (composing) of requirements (to generate

the DRs) may use methods similar to the ones used by aspect oriented programming (see

[Laddad 03]). Tools such as the EasyCRC tool [Raman 07], which automates the

processes of finding nouns and synonyms, can be considered for finding actions and

related actions in the requirements.

Using queries to identify crosscutting requirements and the requirements they

crosscut, as defined in the Requirements Description Language (RDL) [Chitchyan 2007],

is another possible approach for enhancing DRAS. RDL identifies aspectual

(crosscutting) requirements by defining constraint queries about actions and objects used

by the requirements. The requirements that the aspectual requirements tentatively

crosscut are identified by base queries.

The use of XML to internally represent requirements can also be considered. Note that

XML cannot be used to represent input and output requirements, because these should be

in textual format, so as to be understandable for all stakeholders. XML representation

can help automate the creation of DRs. Methods will be needed to translate the textual

requirements from text to XML (or other format) and to translate back the XML

representation for DRs to textual format. XML is already used for aspect-oriented

methods (e.g., the ARCaDe tool [Rashid 03; Katz 04]) to compose requirements, or for

supporting aspects plug-ins in software design [Lopes 05]. Concepts from these and

other approaches may be reused.

To allow automatic detection of relative priorities between requirements, priorities may

be added per attribute value (e.g., Normal=1, Emergency=2). In addition to

requirements priorities, this can also enable having relative priorities between

requirements (i.e., a partially ordered tree of requirements priorities). There will be no

absolute priority per requirement, and the relative priority of each pair of requirements

should be evaluated separately. In addition, default values per attribute should be

defined. This will enable requirements handling, where partial attribute values are

DRAS - Derived Requirements Generation by Actions and States Page 115

specified (e.g., set call priority default as “Normal”).

Composition rules can be enhanced to improve the automation process. In many cases,

current composition-rules values are not useful. Different values for composition rules,

which are more suited for generating DRs, may be more useful. One possible approach is

to define temporal rules, such as “Override Temporarily”, “Delayed After”, “On Event”

(e.g., when mode changes). Enhancements using ideas from LOTOS [Bolognesi 87] and

[Brito 04] should also be considered.

Temporal logic may also be used to enhance the method [Manna 92]. Action Modifiers

identified in DRAS, “Restrict” and “Unconditionally”, seem to be similar to Temporal

Logic Path Quantifiers/Operators A/G (all paths / always) and A/H (all paths / always

in the past). It may be possible to develop a logic based on temporal logic, that will use

such action-modifiers and specify (using a formula), the effect of these aspectual action-

modifiers on other requirements (e.g., Emergency -> [A(always) PTT -> Initiate

Call”]). The logic may be defined as an extension to already existing methods which

support temporal logic for requirements, such as Formal Tropos [Fuxman 03] or Kaos

[Bertrand 98]. Using formal languages that use temporal logic may allow the use of

Model Checking methods [Manna 92] to identify crosscutting and conflicting

requirements. The ideas suggested by [Katz 04] for the use of temporal logic in the

PROBE framework can also be used as input for enhancements.

DRAS - Derived Requirements Generation by Actions and States Page 116

10 References
[Araujo 05] J. Araujo, E. Baniassad, P. Clements, A. Moreira, A. Rashid, B.
Tekinerdogan. Early Aspects: The Current Landscape. Technical Note CMU/SEI-2005-
TN-xxx, Technical Report Lancaster University COMP-001-2005, 2005. Available at
http://trese.cs.utwente.nl/early-aspects-AOSD2005/Papers/EarlyAspects-
LandscapePaper-FirstDraft-2005.pdf (last visited: July 2007).

[Bakker 05] J. Bakker, B. Tekinerdogan, M. Aksit. Characterization of Early Aspects
Approaches. Early Aspects Workshop, March 15, 2005. Available at
http://trese.cs.utwente.nl/early-aspects-
AOSD2005/Papers/11_BakkerBedirAksit_Twente.pdf (last visited: May 2007).

[Baniassad 04a] E. Baniassad S. Clarke. Theme: An approach for aspect-oriented
analysis and design. International Conference on Software Engineering, 2004. Available
at http://www.cse.cuhk.edu.hk/~elisa/papers/theme.pdf (last visited: July 2007).

[Baniassad 04b] E. Baniassad E., E. Siobhan. Finding Aspects in Requirements with
Theme/Doc, Workshop on Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design 2004. Available at http://trese.cs.utwente.nl/workshops/early-
aspects-2004/Papers/Baniassad-Clarke.pdf (last visited: July 2007).

[Bar-On 07a] D. Bar-On. S. Tyszberowicz. Derived Requirements Generation.
Proceedings of 2nd International Workshop on Aspects, Dependencies and Interactions,
July 2007. Available at http://www.aosd-europe.net/adi07/papers/baron_adi07.pdf (last
visited: September 2007).

[Bar-On 07b] D. Bar-On. S. Tyszberowicz. Derived Requirements Generation - the
DRAS methodology. IEEE International Conference on Software – Science, Technology
and Engineering, October 2007.

[Bergmans 01] L. Bergmans, A. Aksits. Composing Crosscutting Concerns using
Composition Filters. Communications of the ACM, October 2001/Vol. 44, No. 10, pp
51-57. Available at http://doi.acm.org/10.1145/383845.383857 (last visited: May 2007).

[Bertrand 98] P. Bertrand, R. Darimont, E. Delor, P. Massonet, A. van Lamsweerde.
GRAIL/KAOS: an Environment for Goal Driven Requirements Engineering.
Proceedings 20th International Conference on Software Engineering, April 1998.
Available at http://www.info.ucl.ac.be/Research/Publication/1998/icse984p.ps.gz (last
visited: August 2007).

[Bolognesi 87] B. Bolognesi, E. Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks and ISDN Systems, Vol. 14, pp 25-59, 1987.
Available at http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=44214 (last
visited: April 2007).

[Booch 99] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[Brito 02] I. Brito, A. Moreira, J. Araujo. A requirements model for quality attributes.
1st International Conference on Aspect-Oriented Software Development, 2002.

DRAS - Derived Requirements Generation by Actions and States Page 117

Available at http://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/Papers/Brito.pdf (last
visited: May 2007).

[Brito 03] I. Brito, A. Moreira. Towards a Composition Process for Aspect-Oriented
Requirements. Workshop on Early Aspects: AORE and Architecture Design, March 17 –
Boston, USA, 2003. Available at http://www.cs.bilkent.edu.tr/AOSD-
EarlyAspects/Papers/BritoMoreira.pdf (last visited: July 2007).

[Brito 04] I. Brito, A. Moreira. Integrating the NFR framework in RE model. Early
Aspects Workshop, Lancaster U.K., 2004. Available at
http://trese.cs.utwente.nl/workshops/early-aspects-2004/Papers/BritoMoreira.pdf (last
visited: July 2007).

[Chitchyan 05] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia. Survey of Aspect-
Oriented Analysis and Design Approaches. AOSD-Europe-ULANX-9. 18 May 2005.
Available at http://www.comp.lancs.ac.uk/computing/aod/papers/d11.pdf (last visited:
July 2007).

[Chitchyan 07] R. Chitchyan, A Rashid, P. Rayson, R. Waters. Semantics-based
composition for aspect-oriented requirements engineering. Proceedings of the 6th
International Conference on Aspect-Oriented Software Development (AOSD), pages 36-
48, 2007. Available at http://portal.acm.org/ft_gateway.cfm?id=1218569&type=pdf (last
visited: August 2007).

[Chung 00] Chung L., Nixon B., Yu, E. and Mylopoulos, J. Non Functional
Requirements in Software Engineering. Boston: Kluwer Academic Publishers, 2000.

[Creveling 03] C.M. Creveling, J.L. Slutzky, D. Antis Jr. Design for Six Sigma in
Technology and Product Development. Prentice Hall, 2003.

[Filman 05] R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software
Development, Addison-Wesley, 2005.

[Finkelstein 96] A. Finkelstein, I Sommerville. The View Point FAQ. Software
Engineering Journal, Vol. 11, pp 2-4, 1996. Available at
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/papers/viewfaq.pdf (last visited: April 2007).

[Fowler 03] M. Fowler, S. Kendall. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, 2003.

[Fuxman 03] A. Fuxman, R. Kazhamiakin, M. Pistore, M. Roveri. Formal Tropos:
language and semantics. Version 1.0: November 4, 2003. Available at
http://dit.unitn.it/~tropos/papers_files/ftsem03.pdf (last visited: July 2008).

[Garcia-Duque 06] J. Garcia-Duque, M. Lopez-Nores, J. J. Pazos-Arias, A. Fernandez-
Vilas, R. P. Diaz-Redondo, A. Gil-Solla, M. Ramos-Cabrer, Y. Blanco-Fernandez.
Guidelines for the incremental identification of aspects in requirements specifications.
Requirements Eng (2006), DOI 10.1007/s00766-006-0028-72006, pp 239-263, Springer-
Verlag London Limited 2006. Available at
http://www.springerlink.com/index/6N1R150311H22124.pdf (last visited: May 2007).

[Goldin 97] L. Goldin, D. Berry. AbstFinder, A Prototype Natural Language Text
Abstraction Finder for Use in Requirements Elicitation. Automated Software

DRAS - Derived Requirements Generation by Actions and States Page 118

Engineering, Vol. 4, pp 375-412,1997. Available at
http://www.springerlink.com/index/K68M2902K83526HX.pdf (last visited: July 2007).

[Grundy 99] J. Grundy. Aspect-oriented Requirements Engineering for Component-
based Software Systems, Proceedings of RE’99, 7-11 June, Limerick, Ireland, 1999.
Available at http://ieeexplore.ieee.org/ (last visited: May 2007).

[Hoefler 04] H. Stefan. The Syntax of Attempto Controlled English: An Abstract
Grammar for ACE 4.0. Technical Report ifi-2004.03. Available at
http://www.ifi.unizh.ch/attempto/publications/papers/hoefler2004theSyntax.pdf (last
visited: July 2007).

[Katz 04] S. Katz, A. Rashid. From aspectual requirements to proof obligations for
aspect-oriented systems. In: Proceedings of the 12th IEEE international conference on
requirements engineering, Kyoto, pp 48–57, 2004. Available at
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335663 (last visited: July 2007).

[Kovitz 99] B. L. Kovitz. Practical Software Requirements. Manning Publications Co.,
1999.

[Laddad 03] R. Laddad. AspectJ in Action Practical Aspect-Oriented Programming.
Manning Publications Co., 2003.

[Lieberherr 96] K.J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, Boston, 1996. Available
at http://www.ccs.neu.edu/research/demeter/book/book-download.html (last visited: May
2007).

[Lin 07] D. Lin, Demos. Available at http://www.cs.ualberta.ca/~lindek/demos.htm (last
visited: July 2007).

[Loughran 02] N. Loughran, A. Rashid. Mining Aspects. In Proceedings of Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop,
April 2002. Available at
http://www.comp.lancs.ac.uk/computing/aose/papers/PersAsp_SPL_EarlyAspects2002.p
df (last visited: July 2007).

[Lopes 05] C. V. Lopes, T. C. Ngo. The Aspect Oriented Markup Language and its
Support of Aspect Plug-ins. ISR Technical Report # UCI-ISR-04-8, Institute for
Software Research, ICS2 210, University of California, October 2004. Available at
http://www.isr.uci.edu/tech_reports/abstracts/UCI-ISR-04-8-abs.pdf (last visited: August
2007).

[Manna 92] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems, Springer-Verlag, 1992.

[Moreira 02] A. Moreira., J. Araujo, I. Brito. Crosscutting Quality Attributes for
Requirements Engineering. 14th International Conference on Software Engineering and
Knowledge Engineering (SKE 2002), pp 167-174, ACM Press, Italy, July 2002,
http://portal.acm.org/ (last visited: August 2007).

DRAS - Derived Requirements Generation by Actions and States Page 119

[Mylopoulos 01] J. Mylopoulos at. al. Exploring Alternatives During requirements
Analysis. IEEE Software, January/February 2001, pp 2-6. Available at
http://ieeexplore.ieee.org/ (last visited: August 2007).

[Nuseibeh 04] B. Nuseibeh. Crosscutting Requirements, AOSD conference 2004
keynote presentation, Available at http://aosd.net/2004/archive/AOSD-
FromPromiseToReality.ppt (last visited: August 2007).

[Ossher 00] H. Ossher, P. Tarr. Multi-dimensional separation of concerns and the
Hyperspace approach. In Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development, Kluwer, 2000.
Available at http://www.research.ibm.com/hyperspace/Papers/sac2000.pdf (last visited:
May 2007).

[Palmer 02] S.R. Palmer, J.M. Felsing. A Practical Guide to Feature-Driven
Development. Prentice Hall, 2002.

[Pantel 07] Z. Pantel, Demos. Available at
http://www.isi.edu/~pantel/Content/demos.htm (last visited: July 2007).

[Pang 04] J. Pang, L. Blair. Refining Feature Driven Development – a Methodology for
Early Aspects. In Early Aspects Workshop in conjunction with the 3rd International
conference on Aspect-Oriented Software Development, 2004. Available at
http://trese.cs.utwente.nl/workshops/early-aspects-2004/Papers/Pang-Blair.pdf (last
visited: May 2007).

[Pazos-Arias 01] J.J. Pazos-Arias, J. Garcia-Duque. SCTL-MUS: a formal methodology
for software development of distributed systems; a case study. Formal Aspects of
Computing, Volume 13, pp 50–91, ISSN 0934-5043, 2001. Available at
http://www.springerlink.com/index/X2PUA1WURK6GDTLR.pdf (last visited: May
2007).

[Raman 07] A. Raman, S. Tyszberowicz. The EasyCRC Tool, 2nd international
conference on Software Engineering Advances (ICSEA), France, 2007. Available at
http://ieeexplore.ieee.org/iel5/4299876/4299877/04299933.pdf?tp=&arnumber=4299933
&isnumber=4299877 (last visited: July 2008).

[Rashid 02] A. Rashid, A. Moreira, J. Araujo. Early Aspects: a Model for Aspect-
Oriented Engineering. IEEE Joint Conference on Requirements Engineering, pp 199-202,
Essen, Germany, September 2002. Available at
http://www.comp.lancs.ac.uk/computing/aose/papers/AORE_RE2002.pdf(last visited:
May 2007).

[Rashid 03] A. Rashid, Moreira, J. Araujo. Modularization and Composition of
Aspectual Requirements, 2nd international conference on AOSD, ACM, pp 11-20, 2003.
Available at http://www.comp.lancs.ac.uk/computing/aose/papers/AORE-AOSD2003.pdf
(last visited: July 2007).

[Rosenhainer 04] L. Rosenhainer. Identifying Crosscutting Concerns in Requirements
Specifications. In Proceedings of OOPSLA Early Aspects 2004: Aspect-Oriented
Requirements Engineering and Architecture Design Workshop, pp 49-58, October 2004.

DRAS - Derived Requirements Generation by Actions and States Page 120

Available at http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-
2004/Papers/Rosenhainer.pdf (last visited: May 2007).

[Sampaio 05] A. Sampaio, N. Loughran, A. Rashid, P. Rayson. Mining Aspects in
Requirements. Workshop on Early Aspects (held with AOSD), 2005
http://www.comp.lancs.ac.uk/computing/aose/papers/Mining_EA2005.pdf (last visited:
July 2007).

[Silva 02] A. Silva. Requirements, Domain Specifications: Viewpoint-based Approach
to Requirements Engineering. ICSE’02, pp 94-104, 2002. Available at
http://portal.acm.org/citation.cfm?doid=581339.581354 (last visited: August 2007).

[Skotiniotis 04] T. Skotiniotis, D. H. Lorenz. From contracts to aspects and back.
Technical Report NU-CCIS-04-05, pp 196-197, College of Computer and Information
Science, Northeastern University, Boston, MA 02115, Mar. 2004. Available at
http://portal.acm.org/citation.cfm?id=1028747 (last visited: May 2007).

[Sousa 03a] G. Sousa, I. Silva, J. Castro. Adapting the NFR Framework to Aspect-
Oriented Requirements Engineering. XVII Brazilian Symposium on Software
Engineering, Manaus, Brazil, October, pp 177-192, 2003. Available at
http://www.cin.ufpe.br/~ler/publicacoes/pub_2003/SBES03_AdaptingTheNFRFramewor
kToAspect.pdf (last visited: August 2007).

[Sousa 03b] G. Sousa, J. Castro. Towards a Goal-Oriented Requirements Methodology
Based on the Separation of Concerns Principle, WER, pp 223-239, 2003. Available at
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER03/georgia_souza.pdf (last
visited: August 2007).

[Sousa 04] G. Sousa, S. Soares, P. Castro, B Castro. Separation of Crosscutting
Concerns from Requirements to Design: Adapting as Use Case Driven Approach. Early
Aspects, 2004. Available at
http://www.di.ufpe.br/~scbs/artigos/sousa_soares_borba_castro_earlyAspects2004.pdf
(last visited: May 2007).

[Tarr 02] Tarr P., H. Ossher. Hyper/J™: Multi-Dimensional Separation of Concerns for
Java™, Proceedings of the 24th International Conference on Software Engineering, pp
24-35, 2002. Available at http://portal.acm.org/citation.cfm?id=581447 (last visited:
May 2007).

[TETRA] ETSI EN 300 392-2. Terrestrial Trunked Radio (TETRA); Voice plus Data
(V+D); Part 2: Air Interface (AI). Available at http://www.etsi.org (last visited: August
2007).

[Yu 04] Y. Yu, J. C. S. d. P. Leite, J. Mylopoulos. From Goals to Aspects: Discovering
Aspects from Requirements Goal Models, presented at International Conference on
Requirements Engineering, Kyoto, Japan, pp 38-47, 2004. Available at
http://doi.ieeecomputersociety.org/10.1109/ICRE.2004.1335662 (last visited: August
2007).

DRAS - Derived Requirements Generation by Actions and States Page ii

 תקציר

המשמעות היא . חלק מדרישות המוצר עשויות להשפיע זו על זו, בשלביים המוקדמים של פיתוח מערכת

חלק מהדרישות עלולות אפילו להיות . אחרתשממפרט דרישה אחת יכולים לנבוע שינויים ושיפורים בדרישה

 כמה שיותר מוקדם בתהליך ר בחשבון ולהיפתחהשפעות וסתירות אלו צריכים להילק. הסותרות אחת לשניי

כדי להימנע מתוספת מחיר ועיכובים שהם לרוב התוצאה של זיהוי השפעות כאלו בשלבים , הפיתוח

. לכן חשובה ביותר וקונפליקטים בין דרישות מערכת היאהיכולת לזיהוי השפעות . מתקדמים של הפיתוח

-derived(נגזרות -זיהוי ברור שלהן בשלב הגדרת הדרישות וניתוחן מאפשר הגדרה של דרישות

requirements (דרישות אלו מגדירות את המשתמע משילוב המפרטים . או שינוי דרישות קיימות, חדשות

 . פותרות את הקונפליקטים ביניהןו, הדרישות שמשפיעות אחת על השנייה

סוג חשוב של דרישות שמשפיעות על המפרט של דרישות אחרות הן הדרישות הפונקציונאליות החוצות

)Crosscutting Functional Requirements .(את המפרט של , או אפילן מחליפות, דרישות אלו משנות

 .ימים של פעולת המערכתלרוב במצבים מסו,)crosscut(הדרישות אותן הן חוצות

שפותחה בעבודה) DRAS) Derived Requirements generation by Actions and Statesמתודולוגית

זו עוזרת גם בזיהוי דרישות פונקציונאליות שחוצות דרישות אחרות וגם ביצירת הדרישות הנגזרות או

דולוגיה משווה ומתאימה בין פעולות המתו, לצורך זיהוי הדרישות החוצות. בשנויים לדרישות הקיימות

 אשר תפעולה הינה פונקציונאליו. הדרישותתשבשימוש הדרישות ובין מצבי המערכת שאליהן מתייחסו

י שתי דרישות מצביע על אפשרות שאחת מהן "שימוש באותה פעולה ע. הדרישה הפונקציונאלית מגדירה

שימוש כתוצאה מהפעלת הפעולות שאליהן מטפלת גם בפעולות שבהן יש DRAS. חוצה את השנייה

כדי לקבוע מהן הפעולות האחרות שבהן צריך לטפל כתוצאה מפעולה . הדרישות באופן ישירתמתייחסו

בודקת האם הדרישה מגדירה מגבלות המתודולוגיה , ספציפית שאליה מתייחסת דרישה מסוימת באופן ישיר

 בחשבון פעולות וי כך נקבע האם יילקח"ע. לשימוש בפעולה או מבטלת מגבלות לגבי השימוש בפעולה

 .שמשתמשות הפעולה זו או פעולות שפעולה זו משתמשת בהן

 הם דרישות טקסטואליות וכל התהליך של המתודולוגיה מתבצע בשלב DRASהו הקלט והן הפלט של

ולא רק לאנשים , דבר זה מאפשר לכל האנשים הנוגעים בדבר להשתתף בתהליך. רת וניתוח הדרישותהגד

 .הטכניים

DRAS - Derived Requirements Generation by Actions and States Page i

 תוכן עניינים

 כללי •

o תקציר

o סקירה

 סקירת הנדסת דרישות •

o הנדסת דרישות

o מונחת אספקטיםדרישות-ם והנדסתמוקדמי-אספקטים

 הבעיה וסקירת הפתרון •

o חוצות ודרישות נגזרות- דרישות

o קטים ו אספDRAS

o הצגת הבעיה

o כיצדDRASפותרת את הבעיה

o סיכום תרשים תהליךDRAS

o מבנה העבודה

 רדיו טטרה כמקרה מבחן •

)AORE(ונחת אספקטים דרישות מ- ת הנדסתסקיר •

 חת אספקטיםדרישות מונ-ל והנדסתבחינת שיטות קיימות •

 פ פעולות ומצבים"יצירת דרישות נגזרות ע - DRASתהליך •

 תיון ומסקנוד •

 הצעות לכיווני מחקר נוספים •

 רשימת מקורות •

 האוניברסיטה הפתוחה בישראל

 המחלקה למתמטיקה ומדעי המחשב

DRAS

 פ פעולות ומצבים"יצירת דרישות נגזרות ע

 2009, פברוארתזה הוגשה ב

 במדעי המחשב) M.Sc(כחלק מהשלמת הדרישות לקראת תאר מוסמך

 האוניברסיטה הפתוחה בישראל

 י"ע

 און-דוד בר

 ר שמואל טישברוביץ"הוכן תחת פיקוחו של ד

