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Abstract 
The mouse brain is by far the most intensively studied among mammals, yet estimation of its cell 
density and variability across brains is out of reach for many regions, and for others estimates 
are based on extrapolations. Furthermore, the question of variation between individuals in 
region-specific cell density and volume is scarcely addressed in the literature. The Allen Brain 
Institute produces high-resolution full brain images for hundreds of brains. Although these were 
created for a different purpose, they can serve as a first attempt to address such questions. Here, 
we aim to systematically characterize cell density and volume for each anatomical unit in the 
mouse brain over hundreds of brains. We developed a deep neural network-based segmentation 
pipeline that uses the auto-fluorescence intensities of the images to segment cell nuclei even 
within the densest regions, such as the dentate gyrus. We applied our pipeline over 537 brains 
of males and females from C57BL/6J and FVB.CD1 strains to assess strain-specific and sex-specific 
changes. We found that increased overall brain volume does not result in uniform expansion 
across all regions. Moreover, region-specific density changes are often negatively correlated with 
the volume of the region, therefore cell count does not scale linearly with volume. Systematic 
brain-wide cell counting is a powerful tool for detecting variability and small differences across 
populations. We provide the results of this analysis as an accessible tool for the community. 
  



Background 
Overview 
This thesis applies machine learning, specifically, deep neural networks to the computer vision 
problem of detecting cells in brain section images obtained from 537 mouse brains. The detected 
cells’ information is subsequently used to calculate various microscopic and macroscopic 
properties of the processed brains and create a dataset that allows asking specific questions 
about properties of the mouse brain across its regions. This background shortly describes the 
computational tools applied as part of the thesis.  
 
Machine Learning 
Machine learning is a class of algorithms that usually perform data analysis and knowledge 
extraction. These algorithms are characterized by their ability to “learn”, i.e., improve 
automatically through exposure to data samples. Machine learning can be supervised and 
unsupervised, where the former “learns” from labeled data, i.e., data that was assigned the 
desired label. In contrast, unsupervised learning “learns” from unlabeled data, usually by 
examining various properties of the data, such as patterns, probability distribution, etc. 
 
The flow of a machine learning algorithm is usually centered around the “model”, i.e., the entity 
that incorporates the parameters gathered from “learning” the data and that can be queried to 
produce an output for “new” data instances to which it hasn’t been previously exposed. The 
process of learning is usually referred to as “training” whereas the process of applying the model 
to new data is referred to as “prediction” or “test”, depending on the context. 
 
Machine learning is applied to a wide variety of problems in a variety of disciplines. In this thesis 
I am applying machine learning to the computer vision problem of identifying cells in images 
captured using two-photon tomography. 
 
Deep Neural Networks 
Deep Neural Networks (DNN) is the most extensively used class of machine learning algorithms. 
Inspired by biological brains, a neural network consists of layers of artificial neurons, i.e., units 
that receive several inputs and produce an output which is a weighted sum of the inputs to which 
a mathematical function (called “activation function”) is applied. The weights applied to the 
inputs of a neuron are the neuron’s parameters, and they are calculated as a result of “training” 
the network by exposing it to the training data. A neural network consists of layers of neurons. 
Neurons from different layers can be “connected”, i.e., outputs of one or more neurons from one 
layer serve as inputs to one or more neurons from another layer. As a minimum, a network 
consists of an “input” layer which represents the dimensions of the input data, and in the case of 
a classification task, an output layer which represents the dimensions of the label. In addition, 
there exist one or more internal layers referred to as “hidden layers”. A deep neural network is 
characterized by the multiplicity of the hidden layers. There is no established convention on the 
number of layers that is considered “deep”, however, it is common for a network to consist of 
tens or even hundreds of layers. The number and the size of the hidden layers, as well as all the 
connections between layers, are referred to as the architecture of the network. 



A DNN is a function approximator, and its training process is essentially the one of numeric 
optimization. Correspondingly, training is implemented as a gradient descent process aimed at 
minimizing a loss function – the function that quantifies an error between the output predicted 
by the network and the ground truth. The process of gradient descent consists of repeatedly 
computing the loss’ gradient for every neuron in the network at every training datapoint and 
updating its parameters so as to minimize the value of the function at the given datapoint. The 
process for efficient parameter updating across the network is referred to as backpropagation1. 
The loss function itself significantly impacts both the convergence of the training process and the 
performance of the resulting model, hence loss functions for a variety of use cases is an active 
research field. 
The following section shorty describe the specific DNN architectures used in the thesis. 
 
Feed forward networks 
A feedforward neural network is a type of artificial neural network with no cycles formed by the 
connections between neurons, i.e., it is a directed acyclic graph in which the neurons are vertices, 
and the connections are directed edges. A feedforward neural network is the simplest type of 
artificial neural network. In this network, the information moves only forward, i.e., from the input 
nodes, through the hidden nodes to the output nodes. 
 
Fully connected networks 
A fully connected network is a feed forward network in which all neurons from a layer are 
connected to all neurons of the next layer. Therefore, two adjacent fully connected layers, 
consisting of 𝑚 and 𝑛 neurons respectively, form 𝑚 × 𝑛 connections. 
 
Convolutional neural networks 
A Convolutional Neural Network (CNN) is a feed forward network that consists of “filters” which 
are essentially convolution kernels that are applied to an image to form feature maps that 
capture the information contained in an image that is relevant to the task the networks is trained 
to perform2. One of the main characteristics of convolutional networks, that makes them 
especially suitable for performing computer vision tasks, is their shift invariance, i.e., the ability 
to recognize patterns regardless of their position in the image. Another useful trait is better 
computational and storage efficiency compared to the fully connected networks since the 
convolution filters are usually much smaller than the image itself, which leads to weight sharing 
between neurons in a layer. 
 
Image classification by a DNN 
Image classification is a computer vision task of classifying an image by the object that it depicts. 
Usually, an image contains an object of interest and possibly other objects that are not important 
for the classification task and are considered background. An image classification DNN usually 
consists of feature extraction layers and a classification head. Feature extraction layers perform 
dimensionality reduction by converting the image to a vector with much lesser dimensions while 
preserving the information essential to the specific classification task. The classification head uses 



the embedding produced by the feature extraction layers to perform the actual classification. 
Feature extraction layers are usually implemented as a convolutional network whereas the 
classification head consists of a single or a small number of fully connected layers. I this thesis I 
am using the feature extraction layers of an image classification model as the backbone for an 
image segmentation task explained below. 
 
ResNet 
ResNet3 is a CNN architecture for image classification that solves the vanishing gradient problem 
thereby allowing creating very deep DNNs. It has been established that the “deeper” the network 
(i.e., the more layers it has) the better are its prediction capabilities. However, the deeper the 
network the harder is training. One of the key issues complicating the training process is known 
as the “vanishing gradient” effect, i.e., the gradient approaches zero as it backpropagates 
through many layers of the network thereby making adjustment of the parameters for neurons 
in the layers far away from the head challenging, and hence preventing the model from 
converging. In fact, due to this problem, adding more layers quickly reaches the point of 
diminishing returns.  
ResNet solves this problem by introducing “skip” connections, i.e., connections between groups 
of layers (which are called “residual blocks”). Hence, in addition to the regular sequential 
connections between adjacent layers, there are also connections that bypass certain groups of 
layers. Skip connections allow the gradients to “flow” freely via skip connections, thereby 
mitigating the vanishing gradient problem. This enables creating deeper networks while ensuring 
the network converges to a better accuracy during training. 
As an example, Figure 1, taken from the original ResNet paper3 depicts the training process of 
residual network (right) vs. a plain network (left). The latter’s error does not decrease when 
increasing the number of layers from 18 to 34, while ResNet provides lower error using 34 layers 
compared to merely 18 layers. 
 

 
Figure 1. The effect of applying residual connections. 

Performance of a regular network (left) is compared to a ResNet (right) over an image classification task of ImageNet4. Thin curves denote the 
training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 
layers. In this plot, the residual networks have no extra parameters compared to their plain counterparts. 

 



Segmenting cells in mouse brain section images - instance segmentation 
Instance segmentation is a computer vision task of finding instances of certain objects in an image 
and detecting their per-pixel segmentation mask. In my research I use instance segmentation in 
order to detect cells along with precise contours of their nuclei. 
 
Mask R-CNN 
Mask R-CNN5 is the instance segmentation DNN model I am using in this research. It detects 
objects in the image and outputs the predicted object class with its respective confidence score 
and a bounding box along with the segmentation mask for each detected object. From the 
architecture standpoint, Mask R-CNN is a two-stage region-based convolutional network as 
explained below. Figure 2 depicts the Mask R-CNN architecture. In my research I used the Mask R-
CNN implementation from the Detectron26 library. The network comprises two “stages” shortly 
described below. 
 
First Stage 
At the first stage, the image is being processed by (i) the feature extraction backbone. Mask R-
CNN uses feature extraction layers from an image classification CNN as its backbone. Specifically, 
I am using ResNet-101 as the backbone. The resulting feature map is fed to the region proposal 
network that extracts variable size patches (regions). Each region is passed through a lightweight 
binary classifier which produces confidence scores to whether a region contains an object. 
Regions with high enough confidence scores are passed to the non-max suppressor that filters 
out the regions with low intersection over union for an object, so only the boxes which outline 
the object tightly enough are considered regions of interest passed to the predictors in the Stage 
2 for further processing. Size variety of the detected regions of interest ensures that Mask R-CNN 
is size-independent, i.e., it is capable to detect the object regardless to their size in the image 
plane.  
 
Second Stage 
At the second stage, the proposed regions of interest are passed through the predictors in order 
to determine a match with one of the object classes the model is trained to detect, and 
subsequently outline the proper bounding box and segmentation mask. This is accomplished by 
the 3 sub-networks (“heads”) as described below. 
 
Object Class Predictor 
An object class predictor is a classifier that predicts the confidence score that estimates the 
probability of an object belonging to each of the classes Mask R-CNN is trained to detect. 
 
Bounding Box Predictor 
Bounding Box predictor is a regression network that refines the bounding box coordinates for a 
region of interest. 



 
Segmentation Mask Classifier 
Segmentation mask classifier classifies pixels within the region of interest as either belonging to 
the object or to the background. 
 
 

 
Figure 2. Mask R-CNN architecture7. 

  



Introduction 
The mammalian brain can be divided into neuroanatomical units (e.g. brain regions) 
characterized by a shared function, connectivity, developmental origin, and/or cytoarchitecture 
(i.e. number and density of cells it contains). The mouse brain, is the most extensively studied 
and well characterized in terms of its regions. Cytoarchitecture is one of the most prominent 
features of a brain region; nevertheless, very few studies have systematically mapped cell bodies 
or quantified cell densities in complete mammalian brains as compared to the early, detailed cell 
mapping of the nematode C. elegans 8. 
 
Obtaining an accurate cell count for a brain region is technically challenging. Previous estimates 
relied heavily on extrapolation from manual counting of 2D sections (stereology), making cell-
resolved data for subcortical regions sparse 9. Analyzing complete brains using 2D histological 
sections remains labor intensive because it requires sectioning, mounting and accurate alignment 
to a reference atlas. Furthermore, automated cell counting proved particularly difficult in dense 
regions such as the hippocampal formation and the cerebellum 10. Automated block-face imaging 
methods solved several of these issues and drastically improved throughput 11. For instance, 
serial two-photon tomography (STPT) 12 was a technological breakthrough integrating tissue 
sectioning with top-view light microscopy. STPT provided high-quality imaging in an optical plane 
below the sectioning surface and solved many problems of section distortion and atlas alignment, 
further easing downstream analysis. Yet, STPT typically represents a subsample of the complete 
volume and some interpolation is needed.  
Due to their limited throughput, histological studies cannot supply the number of analyzed brains 
needed to uncover potential variability between individuals, experimental conditions and 
populations. Complementary approaches aimed at evaluating variability, e.g. Magnetic 
Resonance Imaging (MRI), can measure some features, such as the volume of specific brain 
regions, and can even track individuals along  time  in a noninvasive manner. Yet, MRI lacks the 
accuracy needed for counting cells or cell densities. Importantly, simultaneous brain-wide 
analysis of regional volume and cell counts (or density) remains difficult, especially with 
throughput high enough to allow comparing two experimental populations (such as two strains, 
or males versus females). The technical challenge to address this problem is the need for 
systematic measurement of all cells over hundreds of brains from multiple experimental groups. 
 
We address this knowledge gap using the largest existing dataset of whole brain images, 
produced by the Allen Mouse Brain Connectivity Project. We apply a Deep Neural Network (DNN) 
to discern cell nuclei, using an autofluorescence channel. This enables us to perform systematic 
brain-wide cell density estimation over hundreds of mouse brains. Based on the alignment to the 
Allen Mouse Brain Atlas (AMBA), we could simultaneously measure volume and density for each 
specific brain, for each region, over a large population. We constructed a comprehensive 
database that aggregates these results and provide it as an accessible resource to the community. 
Furthermore, we discover non-trivial relationships between densities and volumes, and gain 
insights into strain and sex dependent characteristics across various brain regions. 



Methods 
Data 
The Allen Mouse Brain Connectivity Project (AMBCP) dataset 13 consists of 2,992 brains, of which 
we processed 537 and eventually used 399 in our analysis (the strain and sex breakdown of the 
brains appear in Table 1). Each brain consisted of ~140 section images captured every 100𝜇𝑚 along 
the anterior-posterior axis using two-photon tomography 12. Image resolution was 0.35𝜇𝑚 per 
pixel. AMBCP post-processed section images for noise removal. Rather than using the red, green, 
and blue channels that display brain connectivity, we used the background channel of the images, 
as provided by AMBCP, without additional processing, except for converting the RGB image to 
grayscale.  
 

Strain Females Males Total 
B6.129 9 3 12 
B6.129.FVB 2 - 2 
B6.C3H             2 - 2 
B6.FVB 3 1 4 
C57BL/6J         174 195 369 
FVB.CD1(ICR) 69 69 138 
N/A 7 3 10 
TOTAL 266 271 537 

Table 1. Breakdown of the data by strain and sex 

 
Training a deep neural network for cell segmentation 
To detect cells in an image and mark their contour, we used the Detectron2 deep neural network 
library 6, which relies on a Mask R-CNN image segmentation model 5 with the ResNet-101 14 as 
its backbone.  
Model training and validation 
Training the model required 3 rounds of manual annotation and training. 
Initial manual annotation of the data set and model training: We annotated cell contours 
manually using the VGG Image Annotator software 15. Initially, we annotated only the 
hippocampus, which is relatively large and easily discernible. The hippocampus contains sub-
regions of different densities, which we believed would adequately represent the variety of cell 
densities across the mouse brain. We manually annotated tiles of 312 × 312 pixels 
(109 × 109𝜇𝑚), randomly selected from the hippocampus in 5 sections of 3 brains (55 tiles in 
total). We provided these tiles to the network as training data, together with basic data 
augmentation (e.g., rotation and brightness changes) 16. 
Retraining on hippocampal sections: We then applied the trained model to detect cells on a new 
set of 55 randomly selected hippocampus tiles. We manually corrected the results produced by 
the network to create a new set of ground truth annotations. Next, we retrained the model from 
scratch over a combined training set of 110 tiles. 
Retraining on other regions: We subsequently used the trained model to detect cells on random 
sections of 3 selected brains. Visual inspection enabled us to select a set of 64 tiles that displayed 
the least accurate results and annotate them manually.  



Final training: We retrained the model from scratch on the resulting training set of 174 tiles 
(selected from ~15 sections of ~10 brains). The total number of cells across the training set tiles 
was 6,247, corresponding to 0.008% of the estimated 77 million cells in the whole brain. 
Technical details: We conducted the training with a batch of size 2, a learning rate of 0.00025, 
with decay, using the Adam optimizer 17. Training over 174 tiles required ~395,000 iterations, and 
took ~36 hours using a Linux server with 160 Intel Xeon Gold 6248 2.5GHz CPUs and a Tesla 
V100S-PCIE-32GB GPU.  
Evaluating model performance: The training process completed when the model converged. The 
accuracy of the model on the training data was 99.8%, with a false negative rate of 0.4%. To 
evaluate model performance, we manually annotated 30 additional tiles from the isocortex, 
medial amygdala (MEA), hypothalamus (HY), and hippocampus (HIP) of 27 brains and compared 
them with model prediction (Table 2). We obtained highly accurate results, comparable to the 
performance over the training data, for segmentation scores such as Jaccard measure 18, F1 score 
(harmonic mean of precision and recall), and total errors (i.e., percentage of mislabeled pixels), 
as well as for detection scores such as accuracy (detected cells divided by total cells) and false 
positive rate (false positives divided by total cells). 
 

 Segmentation (pixelwise) 
scores Detection (cellwise) scores 

Region # cells in the 
test set 

Jaccard 
Index F1 Total 

errors Accuracy False Positive 
Rate 

Isocortex 192 0.982 0.991 0.002 0.962 0 
MEA 115 0.975 0.987 0.001 0.962 0 
HY 163 0.953 0.974 0.003 0.938 0.005 
HIP 566 0.986 0.992 0.001 0.979 0.009 

Table 2. Model performance over out-of-sample tiles. 

 
Brain-wide automatic segmentation  
The trained DNN was applied to 537 brains, as described in detail below. 
 
Extracting cell information per section 
We divided each section into overlapping tiles sized 312 × 312 pixels, with an overlap of 20 pixels 
on each side (thus mitigating potential artifacts close to the borders of the tiles). We then applied 
the trained DNN to detect cells in each tile, resulting in a cell mask (i.e., a Boolean 312 × 312 
matrix whose entries are true if the corresponding pixel is part of a detected cell and false 
otherwise). Next, we stitched the tiles together using a logical OR over overlapping areas, 
resulting in a single cell mask per section. Subsequently, we performed contour detection to 
obtain the coordinates of each cell in a section, and computed the morphological properties of 
each cell (i.e., circumference, diameter, and area). Following this analysis step, each section 
image was represented by a table containing the coordinates and morphological properties of its 
cells. 
 



Assigning cells to regions 
We used the Allen Mouse Brain Atlas (AMBA) 19 to assign the coordinates of detected cells in 
each section to their corresponding brain region (Table S1). But the atlas annotation was too 
coarse for several regions of interest, i.e., CA1, CA2, and CA3 of the hippocampus. The common 
denominator of these regions was the presence of a dense and a sparse region that were not 
separated by the atlas (e.g., the pyramidal and stratum regions of CA1, CA2, and CA3). To provide 
the coordinates of these sub-regions, we defined a local measure of density referred to as cell 
“coverage,” and used it to cluster the relevant cells into a dense and a sparse region. Briefly, in a 
window of 64 × 64 pixels centered around each cell we counted the number of pixels that belong 
to cells, thus assigning a local “coverage” measure (the median cell area was 80 pixels, much 
smaller than the window around it). We then detected the sub-regions by clustering the cells 
according to their “coverage” values. For example, we took the “coverage” values of all CA1 cells 
and used K-means clustering to split them into two clusters of high and low “coverage” values. 
In this way, the coordinate of each cell center was assigned to either cluster. We then drew the 
circumference of the sub-regions by applying a standard morphological closing operation, and 
discarded spurious small regions. 
 
Estimating volumes, 3D densities, and cell counts 
Until this stage, the analysis provided local, i.e., microscopic properties for each detected cell, 
and assigned cells to a brain region. The next step was to collect cells that belong to each region 
and estimate their density, the volume of the region, and the total cell count. This required 
calculating 3D estimates based on the relevant 2D data, using the following steps: 
(1) Estimating cell density per section: We used AMBA to label the area of a given region in a 
section. We assumed that cells belonging to a region are equi-radius spheres whose projection 
on the 2D section depends on the distance between their centers and the optical plane, and on 
the optical depth of field (Figure 3). Hence, detected cells on a 2D section 𝑠	originate from a slab 
whose volume is 𝑣! = 𝑎! ∙ (2𝑅 + 𝑑), where 𝑎! is the area of a region, 𝑅 is the radius of the cells 
in the region, and 𝑑 is the optical depth of field. Cell density per section, 𝜌!, is given by dividing 
the number of detected cells by 𝑣!. The value of 𝑎! is measured by pixels whose size is 0.35𝜇𝑚, 
and 𝑑 = 1.5𝜇𝑚  12 20. The value of 𝑅 was taken as the 90th percentile of measured cell radii in 𝑎!. 
The distribution of cell radii corresponds to the “projection” of the cells on the measured section, 
together with the optical depth of field. Downstream results of cell count and density significantly 
depend of the value of 𝑅, e.g., using the 50th percentile would provide larger estimated cell 
counts. Yet, rank order of cell counts and densities across regions is independent of the selected 
value of 𝑅.  
(2) Calculating region volume: AMBA provides pixel-wise region annotation for each section, 
making it possible to calculate the area of a region per section (which is independent of cell 
segmentation). The 3D volume of a region is given by the sum of region volumes between 
adjacent sections, estimated by the average of its areas over each section. For example, if a 
region appears in sections 1, 2, 3, and 4, its volume is the sum of average volumes between 
sections 1 and 2, 2 and 3, and 3 and 4.  
(3) Calculating cell counts across adjacent sections and in total: Cell counts between the adjacent 
sections of each region are given by the average densities in those slides multiplied by the volume 



of the region between these sections. The total cell count of a region is provided by a sum across 
all relevant sections. 
(4) Calculating cell densities per region: The overall density of each region is given by the total 
cell count divided by the volume of the region.  
 

 
 
Figure 3. Cell projection onto the section and the relevant volume. 

 (A) Cells in 3D vs. the section plane. (B) Cell projections onto the section’s plane. Cell whose center is more than 𝑹 + 𝒅
𝟐
 away from the plane 

will not be counted. (C) The resulting slab for purpose of density calculation. The slab volume is 𝒘𝒉(𝟐𝑹 + 𝒅) and hence the density is 𝟑
𝒘𝒉(𝟐𝑹(𝒅)

 

Discarding whole brains or particular regions of lower technical quality  
After calculating the three-dimensional counts and densities across all regions in all brains, we 
excluded from subsequent analysis regions and whole brains that displayed potentially flawed 
estimates. We applied the following criteria:  
We discarded brains displaying dark images: We filtered out brains whose median brightness 
across the whole brain (“grey” region) was lower than 25 (on a scale between 0 and 255). In such 
cases, all ~140 sections of the brain were excluded from downstream analysis because DNN cell 
detection was either impossible or provided significantly lower estimates.  
We discarded brains displaying outliers in cell count: We noticed that a common optical artifact 
of resolution degradation caused the DNN to falsely detect large amounts of excess cells. We 
marked cases in which cell count in a region was 3 standard deviations larger than the median 



for the region across brains (calculated as 𝑀𝐴𝐷 ∙ 1.4826, assuming normal distribution). We 
discarded brains that included more than three such outlier regions.  
We discarded regions of small volume: We filtered out regions whose median volume across 
brains was smaller than 0.3𝑚𝑚", or whose median cell count across sections was smaller than 
500. We excluded such regions across all brains.  
We discarded regions displaying a correlation between cell count and image brightness. We 
excluded regions exhibiting strong correlation (>0.25) between brightness and cell count because 
we assumed that in this case cell count was affected by the inability of the model to discern the 
cells when the brightness was too low. We discarded such regions from all brains. 
We discarded regions displaying different estimates in right vs. left hemispheres: Cell count 
estimates in the right and left hemispheres served as a proxy for technical noise. We calculated 
cell counts per region using each hemisphere independently. If the difference in cell count 
between hemispheres for a specific brain was higher than 15.5% of the total cell count for that 
region, we excluded the case from downstream analysis.  
Examples of excluded regions and brains appear in Figure S1. In sum, we processed 537 brains, 
of which 138 were fully discarded. Of 690 regions in AMBA, 369 were discarded completely. 
Across the remaining 399 brains and 321 regions, there were 12,016 (9%) cases in which a region 
was excluded. 
  



Results 
Autofluorescence of STPT images display cell nuclei  
First published in 2014,13 the Allen Mouse Brain Connectivity Project (AMBCP) project has 
systematically imaged 2,992 full brains using serial two-photon tomography (STPT), for the 
purpose of tracing neuronal projections and mapping regional (mesoscale) connectivity, using 
GFP-labelled viral tracers. Each brain in the dataset is covered by 130-140 (median 137) serial 
coronal sections, with a gap of 100µm, as reported in the AMBCP study.21 We noticed that the 
red (background) channel of STPT images, taken for the purpose of atlas alignment, typically 
features dark, round-like objects resembling cell nuclei.   
 
We had observed this phenomenon in our own imaging of mouse brains, but found little more 
than anecdotal mentions of it in the literature.19,22,23,24 To confirm that these dark objects indeed 
represent cell nuclei with lower autofluorescence intensity than the surrounding lipid-rich brain 
tissue, we performed a standard 4% PFA perfusion-fixation followed by cryosectioning and 
nucleus (DAPI) counterstaining. We found the same low-autofluorescent objects, which had an 
overlap of nearly 100% with nuclear staining (DAPI), confirming that dark objects in STPT indeed 
represent cell nuclei (Suppl. Figure S2).  
 
Overview of brain-wide, regionally resolved quantification of cell density, volume and 
count  
To automatically collect cytoarchitecture data for each brain we trained a DNN model to detect 
and segment the nuclei (low-autofluorescent objects) in all brain regions, including those of the 
highest density, such as the dentate gyrus (DG). Due to computing constraints, we applied the 
model systematically to segment a subset of the AMBCP dataset comprising 537 brains (Figure 4 
A-C and Methods). The model performed with an estimated 97% cell detection accuracy on a test 
set, with a false positive rate of <0.01 (see Methods) whenever image quality was sufficient (for 
exclusion criteria of whole brains or certain regions within sections, see Methods). Using 
detected cells in each section, we obtain a local estimate of the volumetric cell density (see 
Methods), that combined with the pixel-wise registration to brain regions provided by the AMBA, 
allow us to estimate the average cell density per region for each brain. Similarly, we evaluated 
the per-region volume of each brain by linear interpolation over all sections (see Methods). In 
sum, we simultaneously estimated the 3D cell density (𝐷) and volume (𝑉) of each region for each 
brain (see Methods). In total, we estimated per-region D and V for 532 basic regions annotated 
in the AMBA, which corresponds to level 6-8 of the region hierarchy. 
Cell count (𝑁) is the product 𝑉 × 𝐷, therefore was not considered an independent variable. The 
median male C57BL/6J mouse brain contained a total of 76 × 106 cells, in 367 mm3 of grey matter, 
at a density of 2.05 × 105 cells/mm3. A pie chart of the volume and cell count of the main regions 
(level 4 of region hierarchy) calculated across 537 brains appear in Figure 4D, and absolute cell 
counts for C57BL/6J male mouse representative regions are shown in Figure 4E. We quantified 
each level of the hierarchical tree structure of the AMBA and found good correlation (r=0.89) 
with a recent 3D whole-brain single-cell resolved light-sheet microscopy study25 (Figure 4F). The 
diameter of detected objects (nuclei) varied between 7-9.5µm (Figure 4G left), which at a 
nucleus/soma volumetric ratio of 0.0826,27 corresponds to median cell body diameters from 



16.25µm in the RSPv6a, to 22µm in the ENTl3. The regional variability of cell densities was high, 
ranging from 1 × 105 mm-3 in layer 1 isocortex (e.g., MOs1) to 6 × 105 mm-3 in the dentate gyrus 
granule layer (DG-sg). We show examples of regional distributions across the full cohort of 537 
brains in the inset of Figure 4G right. The large number of AMBCP brains in our analysis enabled 
us to compare variabilities of macroscopic properties between subsets of the cohort, e.g., to 
compare strains. We compared distributions of volume, cell density, and cell count at the 
coarsest hierarchical atlas level, i.e., across grey matter cell groups in the brains of male C57BL/6J 
vs. male FVB.CD1 mice (Figure 4H). Median cell density was similar for the two strains, with 
considerably larger variance in FVB.CD1 males. FVB.CD1, however, had 11% larger grey matter 
volume than C57BL/6J. Combining these two features revealed a ~10% increase in the median 
cell count in FVB.CD1 vs. C57BL/6J (Figure 4H right panel). These results suggest that: (a) there is 
no simple relationship between volume and density, therefore, both properties should be 
simultaneously measured, and (b) a large cohort enables detection of relatively small differences. 
 



 
Figure 4: Survey of neuroanatomic properties of the mouse brain. 

(A) The analysis is based on a cohort of 537 mouse brains imaged by serial two-photon tomography using the Allen Mouse Brain Connectivity 
Project (AMBCP). Each brain comprises ~140 coronal sections spaced 100µm apart along the anterior-posterior axis. (B) Example of nucleus 
segmentation in the isocortex. Each section was divided into tiles of 312´312 pixels (109´109 um) (zoom-ins, right). A trained deep neural 
network cell segmentation model (see Methods) was applied to detect the contours of nuclei for downstream analysis across tiles, sections, and 
whole brains, as shown. (C) Segmentation of several sections of one particular brain; segmented nuclei are colored using the Allen Mouse Brain 
Atlas (AMBA) region convention. (D) Pie charts of the median volumes and cell counts across all 537 brains in the main brain regions, colored 
using AMBA nomenclature. (E) Median cell counts for selected brain regions in C57BL/6J males (number near bars in thousands). (F) 
Comparison of region cell counts between this study and Murakami et al., over C57BL/6J males; dots above/below the dashed lines represent 
regions with greater than two-fold difference. (G) Ranking of 532 regions by nucleus diameter (left) and density (right). Each dot corresponds to 
the median value of one region over 537 brains. Red dashed line, median across regions. Inset shows distributions of density over 537 brains for 
selected regions. (H) Distribution of cell density (left), brain volume (middle), and cell count (right), comparing C57BL/6J males and FVB.CD1 
males across basic cell groups and regions (“grey”). 



 
A resource for exploring neuroanatomical features across regions and populations 
To test the power of our model, we explored the densities and nucleus diameter of cortical 
regions (Figure 5). First, we considered the hippocampal formation (HPF) because imaging-based 
quantification of its denser regions (pyramidal layers of Ammon’s horn and the granule layer of 
the dentate gyrus) has been difficult10 and was achieved only recently.25,28 Analyzing 195 
C56BL/6J male brains, we found that the pyramidal layer of CA1 was denser than that of CA3 and 
CA2, whereas nucleus size was larger in CA3. In the dentate gyrus, the granule layer had the 
highest density of all regions, with >6.5x105 cells/mm3, and nuclei were largest in the polymorph 
layer (Figure 5 upper panels). In the isocortex, we examined the extent to which the cortical layers 
across cortical divisions differed in density and size (Figure 5 lower panels). Layer 1 was 
consistently underpopulated, having a density of about 105 cells/mm3. The overall rank order 
from densest to sparsest was maintained, with layer4>layer6a>layer2/3,layer5>layer1, 
suggesting a similarity in cytoarchitecture between cortical regions. Layer 4 of the primary visual 
and somatosensory cortices had higher density than did the auditory and visceral cortices. 
Nucleus diameters showed less distinct distributions between layers, although layer 2/3 and layer 
5 tended to have larger nuclei than did layers 4 and 6a.  
 

 
Figure 5. Density and nucleus diameter along cortical regions.  

(A) Local density is shown as a heat map over the anatomy of three coronal sections of one brain. White, low; dark brown, high local density; scale 
bars on upper left corners equal 280µm. Distribution of cell density (B) and nucleus diameter (C) in the hippocampus and selected cortical regions, 
in 195 C56BL/6J male mice. The two upper rows show Ammon’s horn and the dentate gyrus of the hippocampal formation, and the rows below 
show examples of cortical regions, each resolved to its cortical layers. On the right, approximate locations of each region are indicated in coronal 
sections of the AMBA. 



Regions with volume/density sexual dimorphism in C57BL/6J mice 

To examine whether differences in overall brain volume or density (Figure 4H) are isotropic, we 
analyzed volume, density, and cell count region-specifically. Differences between males and 
females in regional neuroanatomy have been extensively described, including dimorphic volume 
and cell count in the medial amygdala (MEA)29,30 and in the bed nuclei of the stria terminalis 
(BST).31 We first compared C57BL/6J males (n=140) with females (n=152). At the global level 
(“grey”), males and females had similar total numbers of cells (77 and 75 × 106, respectively). 
These similar counts were achieved differently, however: females had a larger median grey 
matter volume, whereas males had higher median grey matter density (Figure 6A). We 
conducted rank sum testing on each region that passed QC (see Methods) for sex differences, in 
volume and density (Figure 6B). With the notable exception of both MEA and BST, most regions 
were consistent with the overall trend of larger volumes in females; many were 5-10% larger. 
Volume sex differences were compensated by higher cell density in the male brains, leading to 
slightly more cells in most brain regions in males (see also Figure S3A, which shows similar 
volcano plots for FVB.CD1 mice). We further demonstrated this discordance between median 
sexual difference in volume vs. density in Fig. 3C, where most brain regions fell in quadrant IV of 
the volume-density plane. Notable exceptions included the MEA and BST, which were 
consistently larger in males, and the orbital area layer 2/3, consistently larger in females. Next, 
we looked beyond the rank sum statistical test, governed by the median of the distribution, at 
examples of how distributions differ. For example, the ventrolateral orbital area layer 2/3 
(ORBvl2/3) showed both larger volumes and slightly higher density in females (Figure 6D left), 
resulting in significantly more cells in females (Supp. Figure S3A). The opposite was the case for 
BST, where males had both larger volume and higher density (Figure 6D middle). As a third 
example, we showed the case of primary auditory area layer 5 (AUDp5), which displayed no 
difference in region volume, yet density in the male brains was higher (Figure 6D right).  
 



 
Figure 6. Sexual dimorphism in C57BL/6J.  

(A) Distribution of volume (left), density (middle), and cell count (right) for the whole brain grey matter (“grey”) in female (dark green) and male 
(light green). P-values correspond to a Kolmogorov-Smirnov test. (B) Volcano plots showing per-region statistical testing for male versus female 
difference in volume (left) and density (right), each dot representing one region. Horizontal axis, median differences (%); vertical axis, q-values 
(FDR corrected rank-sum p-values by BH procedure in -log10 scale). Red dots highlight regions with an effect size larger than 5% and q<0.01. (C) 
Scatter plot of tested regions (dots), showing median differences in volume vs. density. Markers represent statistical significance: both volume and 
density (star), volume only (+), or density only (square). (D) Examples of regions that display sexually dimorphic volume and/or density. 
Distributions of volumes appear in the upper row, distributions of densities in the lower row. 



 
Strain differences in volume and density 
Following the observation in C57BL/6J mice that female brain volumes were higher despite a 
smaller body size, we investigated the relation between recorded body weight and grey matter 
volume. To this end, we added the cohort of outbred FVB.CD1 mice, a strain with 40-50% higher 
body weight than C57BL/6J. As expected, in both strains, males and females showed distinct 
distributions for body weight, and males were larger than females (Figure 7A). Distributions for 
grey matter volume had higher overlap between sexes and showed opposing trends between the 
strains: in contrast to C57BL/6J, FVB.CD1 females had smaller brain volumes than males. 
Moreover, within each strain, body weight did not correlate with grey volume. We next 
quantified sex and strain differences in brain volume and density, resolved to neuroanatomical 
regions. First, we compared strain differences in females with those in males, showing 
concordance/discordance patterns between males and females (sex) (Figure 7 B-C and schematic 
to the right). Second, we compared sex differences in FVB.CD1 with those in C57BL/6J, showing 
concordance/discordance patterns between strains (Figure 7 D-E and schematic to the right). 
Strain-wise analysis: FVB.CD1 brains were overall larger, but the volume expansion with respect 
to C57BL/6J was not uniform across regions. Region volumes ranged up to 30%, with the extreme 
example of the cerebellum (CENT2), whose size increased by 50% in both FVB.CD1 males and 
females (Figure 7B). Moreover, per-region volume differences between strains were, in general, 
larger in males (i.e., most data points in Figure 7B quadrant III are above the diagonal). Only two 
regions showed larger volumes in C57BL/6J: the main olfactory bulb (MOB) and the caudal lateral 
septal nucleus (LSc) (Figure 7B quadrant I).  
A similar comparison for cell density per region suggests non-uniform density differences, with 
almost half the regions being denser in C57BL/6J, and the other half in FVB.CD1 (Figure 7B 
quadrants I and III, respectively). In this comparison, olfaction-related regions (AOB and MOB) 
showed higher density in C57BL/6J, while the LSc showed the opposite effect.  
Sex-wise analysis: Differences in volume confirmed sexual dimorphism in MEA and BST, which 
were larger in males for both strains. These differences were more pronounced in FVB.CD1 than 
in C57BL/6J (Figure 7D quadrant I). Many brain regions showed “strain-discordant” dimorphism, 
with females having a larger volume in C57BL/6J and males in FVB.CD1 (Figure 6D quadrant II). 
Although total brain volume in FVB.CD1 males was larger, some regions showed larger volume in 
females (e.g., the previously mentioned orbital cortex ORB, Figure 6D quadrant III). Comparing 
sexual dimorphism in density (Figure 6E), we found a simpler and more consistent picture: in 
both strains, males had higher density in all regions except for ORBvl2/3. Note that in density as 
well, sex differences were found to be larger in FVB.CD1 (most data points in Figure 6E quadrant 
I are above the diagonal). 
 



 
Figure 7. Sexual and cross-strain dimorphism in C57BL/6J (B6) and FVB.CD1 (CD1).  

(A) Scatter plot showing body weight vs. grey volume for 537 brains. Side panels show the group distributions of grey matter volume (upper) and 
weight (right). Lines are the medians whose values are indicated. (B-C) Strain comparison of per region volume (B) and density (C).  Differences 
between the median values of the strains, per region, are shown for males (horizontal axis) and females (vertical axis). Points in quadrants I and III 
suggest concordance between males and females across strains, as illustrated in the schematic on the right. Red markers designate statistical 
significance in either axes or in both. (D-E) Sex comparison of per region volume (D) and density (E). Points in quadrants I and III suggest 
concordance between C57BL/6J and FVB.CD1 across sex, as illustrated in the schematic on the right. 

 
Region-wise correlations between volume and density across brains 
To the best of our knowledge, no previous study simultaneously quantified cell density (D) and 
brain region volume (V). We therefore sought to investigate whether constraints exist between 
D and V. For example, if the number of cells in a region is constant across brains, D and V must 
be negatively correlated. If, by contrast, the number of cells in a region, N, scales with the volume 
while D remains constant, D and V display zero correlation. If a positive correlation exists 
between D and V, the number of cells N grows faster than linear with respect to either D or V 
(Figure 8A). Based on per-region measurements of both V and D, we calculated regionally-
resolved Pearson correlations between volume and density (Figure 8B). In 72% of regions 
(289/397), cell density was negatively correlated with volume (Figure 8C), with a median 
correlation of -0.096. For example, we showed two regions where N was positively correlated 
with both D and V, yet the correlation between D and V was either positive (AAA) or negative 
(SSs2/3). This suggests that for some regions, cell count does not scale simply or linearly with 
volume. 
 
 



 
Figure 8. Correlations between volume, cell count, and density.  

(A) Schematic illustration of two types of relations between regional cell density and volume, associating region expansion with a fixed number of 
cells (upper) or with a fixed density (lower). Each regional expansion can be represented by a shift in the volume-density plane (right column). (B) 
A scheme showing how for each region the correlation between density and volume was measured over the whole dataset. (C) Brain regions ranked 
by the correlation between volume and density. Correlations higher than 0.13 or lower than -0.13 correspond to q-values lower than 0.05. Side 
panel displays the distribution of correlation values, and its median is denoted by the red line. (D) Correlations between volume, density, and count 
in the anterior amygdalar area. (E) As (D), for supplemental somatosensory area, layer 2/3. 

 
Inter-brain similarity between regions based on volume and density 
Finally, we assessed similarity between regions, based on volume or density. We used tSNE as a 
2D embedding method over the density data (Figure 9A-B). Briefly, each region is characterized 
by a vector of 537 components, each representing its density across one brain. 2D embedding 
aims to preserve the local similarity between regions. The tSNE embedding map in Figure 9A 
reveals clear 2D “clusters,” largely consistent with neuroanatomical classification. Cortical 
regions appear in the upper part of the map (colored green), and cerebellum (yellow), midbrain, 
and hindbrain in the lower part. We further explored whether the order within the cortical part 
may be explained by layer structure or by cortical division, but found no clear structure (Figure 
S4 A-B). Compared to Figure 9A, tSNE embedding based on volume was more “dispersed” and 
displayed disorder with respect to neuroanatomical classification (Figure 9C-D). To demonstrate 



that the tSNE map is indeed based on true variations in region-to-region correlations, we 
compared density-based with volume-based correlations. First, for each region we identified its 
10 most correlated regions based on either density or volume. These correlation values were 
higher for density-based correlations across almost all regions (Figure S4C), supporting the 
observed density-based “order.” Second, we selected 10 representative regions across the brain 
and calculated all their pairwise correlations (Figure S4D), showing that even for distant regions, 
density-based correlations remain much higher than volume-based correlations. Thus, similarity 
in volume across regions is less “preserved” brain-wide than similarity in cell density.  
 
 

 
Figure 9. Visualizing the similarity between brain regions based on ABCP. 

A tSNE embedding of brain regions based on pairwise correlations between region density (A) or volume (C). Each dot represents a region and is 
colored according to the AMBA convention. (B,D) Zoom-in on three frames from (A) and (C), respectively. 

  



 

Discussion 
We presented an automated, imaging-based, staining-free study of neuroanatomy and 
cytoarchitecture in the mouse brain. We conducted our measurements on a massive, high-quality 
dataset of serial two-photon tomography,13 aligned with a well-annotated reference atlas.19 This 
made possible, for the first time, a detailed population-wide analysis of two important 
neuroanatomical variables simultaneously: cell density and volume, resolved for 532 regions. The 
data spans an unprecedented cohort of 537 mice of two strains, the inbred C57BL/6J, and the 
hybrid FVB1.CD-1, each represented by both females and males. Our high-throughput 
measurements of cell densities were achieved by using a DNN trained to detect low-
autofluorescent cell nuclei with high accuracy, even in the most cell-dense regions of the brain. 
The study has several limitations. First, the model is sensitive to image quality, and in particular, 
contrast between dark nuclei and autofluorescent surroundings. In the hindbrain (pons, 
medulla), contrast was exceedingly weak, and we expect our quantifications in this region to 
strongly underestimate real cell densities, to an extent we cannot quantify. Second, AMBA 
annotations were not always resolved to the most refined level of the atlas hierarchy. For 
example, density values for the cerebellum appear to be uncharacteristic because the cell-dense 
granule layer and sparse molecular layer were not distinguished at the deepest level of 
annotation (e.g., CENT3 included the granular and molecular layers). The same is true for the 
hippocampus CA1-2-3, where we used cell density-based clustering to distinguish the pyramidal 
layer (sp) from its surrounding sparse layers (slm, so, sr, see Methods). Therefore, although the 
model performed exceedingly well even in these cell-dense regions, the absence of annotations 
stood occasionally in the way of making biologically meaningful distinctions. 
Nevertheless, we provided key statistics that help answer fundamental, recurring questions in 
neuroanatomy. Although no other study presented simultaneous measurements of volume and 
cell density, our data correlate well with a wealth of literature in the field. We achieved good 
region-wise correlation with full 3D volumetric cell counts by expansion microscopy25 (Fig 1F). 
Our derived cell count of mouse brain grey matter (76 × 10# for male C57BL/6J) is well within 
the range of existing cell count estimates for adult males (67 − 150 × 10# cells),32,33,25,28  
By measuring the largest cohort to date, we provided partial support for the notion that this 
extreme range in the literature may not stem from variation in strain or sex, but rather from 
individual differences.25 The median cell counts between sexes and strains differed no more than 
13% overall, or ~40% for the most deviant individual structures (MOB and CENT2), while the 
standard deviation across individuals was ~10 million cells (for C57BL/6J male alone). Hence, 
values between 55 × 10# − 95 × 10# are within ±2� of the distribution of total grey matter cell 
counts. We claim that the notion of “ground truth” values of brain cell number can be reached, 
yet are best reflected by a population distribution. Our dataset provides a large, important corpus 
toward this “ground truth,” and similar studies can further help distinguish technical biases from 
true biological variation. 
We validated the existing literature describing examples of regions that show sex- or strain-based 
differences, and expanded on it. For instance, medial amygdala and bed nuclei of the stria 
terminalis were both larger and denser in males, but to a lesser extent than reported in smaller 
studies34 and to a similar extent to what was reported in MRI-based studies.35 By contrast, in 



females, several prefrontal cortex structures were larger (e.g., ORBvl2/3), which resulted in 
higher cell counts. We found no evidence of this phenomenon in the literature on mice, but an 
MRI population study of 2,838 human individuals found higher grey matter volume (GMV) in 
prefrontal areas in women.36 Between the strains, we found considerable differences in the 
olfactory system, which was larger and denser in C57BL/6J, and in the cerebellum, which was 
larger in FVB.CD-1. Finally, we provide an accessible, web-based platform for open exploration 
of the data. The web application allows researchers to freely compute distributions of any 
measured neuroanatomical features, for any brain region, and across the entire population or 
specific subsets. This exploratory resource can be of great use for experimental design, and lead 
to more accurate brain modeling.  
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Supplementary Material 

 
Figure S1. Sample brains and regions filtered out. 

(A) Brains displaying dark images. Brightness level is too low, especially in the hindbrain region. Experiment #112672268 section 110. (B) Small 
region sample. Sections 115, 116 and 117 from the Allen Brain Atlas with ‘Nucleus y’ region highlighted in violet on the right hemisphere. (C) 
Region displaying different estimates in right vs. left hemispheres. Clearly much more cells detected in the left hemisphere of the 'Superior vestibular 
nucleus' region due to brightness differences. Experiment #113933871 section 113. (D) Brain displaying outliers in cell count. The model fails to 
produce accurate predictions and detects too many cells due to the noise. Experiment #268399145 section 77. 



 
Figure S2 (related to Figure 4): Autofluorescence signal corresponds to nucleus validation.  

A mouse brain was perfused with 4% PFA followed by sectioning and DAPI staining. Representative image from cortex (A) or hypothalamus (C) 
showing autofluorescence (cy5-far red), DAPI, NeuN, and the merge of the three channels. (B,D) We applied the same segmentation DNN used 
for the Allen Mouse Connectivity dataset. Each tile in (B) and (D) shows detected objects on top of the original images (left), autofluorescence 
high contrast (middle), and DAPI overlayed with the same objects (right).  



 
Figure S3 (related to Figure 5): Volcano plots showing per-region statistical testing for male vs. female differences.  
The horizontal axis represents median differences (%) and the vertical axis displays the q-values (FDR corrected rank-sum p-values by BH 
procedure in -log10 scale). Red dots correspond to an effect size larger than 5% and q<0.01. (A) Cell count in C57BL/6J, (B) Density in FVB.CD1, 
(C) Volume in FVB.CD1, (D) Cell count in FVB.CD1. 

 



 
 
Figure S4 (related to Figure 9):   
(A) The density based tSNE plot of Figure 9A color-labelled according to cortical layers (upper) and cortical division (lower). (B) The same for 
the volume based tSNE plot of Figure 9C. (C) Correlation to the 10th nearest neighbor for each region when using volume (horizontal axis) or 
density (vertical axis). (D) Examples for region-region correlations. We show regions ECT6b, SSp-tr6b, SSs4, AUDp5, BMAa, VMPO, SH, TRS, 
MEA, and BST. Correlations are calculated by density (lower triangle) and volume (upper triangle). 

  



Table S1: List of the processed brain regions with the corresponding macroscopic properties 

AMBA brain region 
abbreviation 

Volume, mm3 Density, cell/mm3 Cell count Cell diameter, um Is Leaf? 

AAA 0.39 198760 79212 7.56 TRUE 
ACA 4.58 213077 974059 8.27 FALSE 
ACAd 2.58 199596 515775 8.34 FALSE 
ACAd1 0.51 86452 44455 8.19 TRUE 
ACAd2/3 0.50 212890 107693 8.73 TRUE 
ACAd5 0.95 216193 205904 8.45 TRUE 
ACAd6a 0.61 260192 154335 7.60 TRUE 
ACAd6b 0.02 132124 2868 7.06 TRUE 
ACAv 1.99 228593 453959 8.20 FALSE 
ACAv1 0.40 91238 36259 7.76 TRUE 
ACAv2/3 0.42 238335 101638 8.52 TRUE 
ACAv5 0.82 260186 214167 8.26 TRUE 
ACAv6a 0.29 306983 88937 7.62 TRUE 
ACAv6b 0.05 224306 11330 7.18 TRUE 
ACB 3.54 306270 1093567 7.70 TRUE 
AD 0.14 220954 30133 8.39 TRUE 
ADP 0.08 272235 20699 7.29 TRUE 
AHN 0.56 238982 136628 7.34 TRUE 
AI 6.48 154582 1006649 8.47 FALSE 
AId 3.04 168296 509153 8.43 FALSE 
AId1 0.41 46317 19111 7.50 TRUE 
AId2/3 0.72 147499 105880 8.81 TRUE 
AId5 1.20 183640 221739 8.48 TRUE 
AId6a 0.66 232249 151684 8.02 TRUE 
AId6b 0.04 198938 8048 7.87 TRUE 
AIp 2.01 141619 284403 8.52 FALSE 
AIp1 0.38 53760 20004 7.13 TRUE 
AIp2/3 0.65 147253 95624 8.87 TRUE 
AIp5 0.61 152637 93179 8.55 TRUE 
AIp6a 0.35 202016 69526 7.88 TRUE 
AIp6b 0.02 205517 3601 7.42 TRUE 
AIv 1.46 145445 213027 8.46 FALSE 
AIv1 0.22 57748 12737 7.55 TRUE 
AIv2/3 0.50 134971 67932 8.74 TRUE 
AIv5 0.58 173871 101536 8.36 TRUE 
AIv6a 0.15 199923 29543 8.08 TRUE 
AIv6b 0.00 199895 448 8.07 TRUE 
AM 0.32 186332 60184 8.20 FALSE 
AMd 0.19 180279 33541 8.31 TRUE 



AMv 0.14 193355 26435 8.05 TRUE 
AN 9.47 270120 2575683 7.91 FALSE 
ANcr1 4.89 275829 1364171 7.88 TRUE 
ANcr2 4.57 263512 1210129 7.95 TRUE 
AOB 0.56 236602 131693 7.65 FALSE 
AOBgl 0.14 188441 26264 7.39 TRUE 
AOBgr 0.18 274137 50805 7.82 TRUE 
AOBmi 0.23 233655 54332 7.59 TRUE 
AON 3.87 196427 756448 7.73 TRUE 
AP 0.04 197773 8298 7.64 TRUE 
APN 1.00 214702 214853 7.66 TRUE 
APr 0.31 211244 65278 8.16 TRUE 
ARH 0.22 151715 33481 7.40 TRUE 
ATN 1.73 200215 345224 8.19 FALSE 
AUD 4.73 222520 1045656 8.01 FALSE 
AUDd 1.00 226468 225216 7.96 FALSE 
AUDd1 0.19 93426 17595 8.00 TRUE 
AUDd2/3 0.25 243424 61386 8.22 TRUE 
AUDd4 0.10 317147 33241 7.64 TRUE 
AUDd5 0.27 236213 63681 7.96 TRUE 
AUDd6a 0.15 281973 43126 7.69 TRUE 
AUDd6b 0.03 212228 5256 7.52 TRUE 
AUDp 1.75 224668 392341 7.96 FALSE 
AUDp1 0.37 103573 37905 8.07 TRUE 
AUDp2/3 0.36 250406 90783 8.24 TRUE 
AUDp4 0.19 318734 58332 7.67 TRUE 
AUDp5 0.56 241599 134219 7.91 TRUE 
AUDp6a 0.24 261604 61080 7.68 TRUE 
AUDp6b 0.05 208278 9519 7.48 TRUE 
AUDpo 0.50 241860 122076 7.87 FALSE 
AUDpo1 0.11 113286 12646 7.91 TRUE 
AUDpo2/3 0.11 278043 30981 8.11 TRUE 
AUDpo4 0.06 340258 19842 7.58 TRUE 
AUDpo5 0.14 256990 36898 7.89 TRUE 
AUDpo6a 0.06 289104 18333 7.61 TRUE 
AUDpo6b 0.01 191239 2760 7.33 TRUE 
AUDv 1.48 208148 304977 8.15 FALSE 
AUDv1 0.27 76418 20798 8.10 TRUE 
AUDv2/3 0.30 215672 64330 8.48 TRUE 
AUDv4 0.16 266198 42649 7.99 TRUE 
AUDv5 0.46 232007 107015 8.11 TRUE 



AUDv6a 0.24 265004 61821 7.81 TRUE 
AUDv6b 0.04 206860 7788 7.64 TRUE 
AV 0.35 252970 87755 8.18 TRUE 
AVP 0.07 202864 14672 7.30 TRUE 
AVPV 0.14 171676 24066 7.29 TRUE 
B 0.01 219158 1182 7.55 TRUE 
BA 0.02 101156 1760 7.58 TRUE 
BAC 0.00 181646 651 6.96 TRUE 
BLA 1.50 156164 233583 8.41 FALSE 
BLAa 0.61 174659 106244 8.11 TRUE 
BLAp 0.56 157008 88714 8.73 TRUE 
BLAv 0.33 116694 37815 8.21 TRUE 
BMA 1.17 198784 234459 7.99 FALSE 
BMAa 0.60 215584 129880 7.55 TRUE 
BMAp 0.57 181097 103310 8.38 TRUE 
BS 99.10 154733 15173684 7.67 FALSE 
BST 1.13 230551 261030 7.44 TRUE 
CA 13.98 167380 2359727 8.27 FALSE 
CA1 8.23 168577 1400025 8.12 FALSE 
CA1sp 1.90 415484 777277 8.31 TRUE 
CA1sr 6.33 96850 616075 7.65 TRUE 
CA2 0.43 147854 65212 8.22 FALSE 
CA2sp 0.10 314352 31503 8.52 TRUE 
CA2sr 0.33 99807 33370 7.53 TRUE 
CA3 5.34 166231 891194 8.47 FALSE 
CA3sp 1.30 376990 485766 8.75 TRUE 
CA3sr 4.04 99940 402894 7.74 TRUE 
CB 47.25 261237 12534804 7.88 FALSE 
CBN 1.47 125844 187222 7.73 FALSE 
CBX 45.03 268401 12272554 7.88 FALSE 
CEA 1.04 208397 217243 7.72 FALSE 
CEAc 0.24 196820 46711 7.98 TRUE 
CEAl 0.20 257507 51410 7.89 TRUE 
CEAm 0.60 196108 119013 7.45 TRUE 
CENT 3.47 289608 1026539 7.85 FALSE 
CENT2 1.16 289957 339262 7.88 TRUE 
CENT3 2.32 289320 691056 7.83 TRUE 
CH 231.33 214293 49375658 8.01 FALSE 
CL 0.30 198882 58878 7.86 TRUE 
CLA 0.38 236120 89395 8.01 TRUE 
CM 0.20 238338 47865 8.00 TRUE 



CN 1.36 139454 192093 7.65 FALSE 
CNU 45.97 213381 9744094 7.77 FALSE 
COA 2.70 153554 416834 8.23 FALSE 
COAa 0.61 184154 112494 7.53 TRUE 
COAp 2.09 144228 303258 8.38 FALSE 
COApl 0.98 132083 128349 8.51 TRUE 
COApm 1.12 154956 172650 8.29 TRUE 
COPY 2.24 292193 662082 7.86 TRUE 
CP 22.19 214194 4719098 7.83 TRUE 
CS 0.49 125748 61082 7.38 TRUE 
CTX 184.98 213867 39409417 8.06 FALSE 
CTXpl 177.98 214885 38163576 8.06 FALSE 
CTXsp 7.09 178352 1260008 8.09 FALSE 
CU 0.29 151366 43077 7.65 TRUE 
CUL 6.00 274568 1660279 7.82 FALSE 
CUL4, 5 6.00 274568 1660279 7.82 TRUE 
CUN 0.45 129710 58130 7.52 TRUE 
DCN 0.37 141575 52814 7.66 FALSE 
DCO 0.50 183952 93692 7.83 TRUE 
DEC 3.15 243357 780036 7.90 TRUE 
DG 5.52 273641 1514574 7.92 FALSE 
DG-mo 3.34 83901 281281 7.49 TRUE 
DG-po 0.43 174631 74807 8.15 TRUE 
DG-sg 1.75 660261 1153040 7.96 TRUE 
DMH 0.29 271513 77833 7.48 TRUE 
DMX 0.14 184893 26175 8.03 TRUE 
DN 0.27 197294 53450 7.71 TRUE 
DORpm 10.42 193453 2001049 7.93 FALSE 
DORsm 5.49 167878 923931 7.80 FALSE 
DP 0.40 169684 67859 8.40 TRUE 
DR 0.12 232365 27935 7.65 TRUE 
DTN 0.07 346151 25635 7.51 TRUE 
ECT 1.42 174210 244405 8.43 FALSE 
ECT1 0.26 56654 14993 8.06 TRUE 
ECT2/3 0.38 188663 71568 8.65 TRUE 
ECT5 0.41 193391 78612 8.47 TRUE 
ECT6a 0.31 225834 69288 8.23 TRUE 
ECT6b 0.05 195316 9498 7.82 TRUE 
ECU 0.17 135837 23751 8.04 TRUE 
ENT 10.37 156873 1637252 8.38 FALSE 
ENTl 5.38 130961 706518 8.68 FALSE 



ENTl1 1.07 60192 64052 7.46 TRUE 
ENTl2 1.30 137686 178335 8.95 TRUE 
ENTl3 1.00 133503 134443 9.20 TRUE 
ENTl5 1.14 143207 162553 8.60 TRUE 
ENTl6a 0.87 186260 161651 8.04 TRUE 
ENTm 4.99 184877 919750 8.16 FALSE 
ENTm1 1.76 89895 158373 8.09 TRUE 
ENTm2 1.11 220220 245358 8.39 TRUE 
ENTm3 0.83 227632 186984 8.26 TRUE 
ENTm5 0.77 263601 202095 8.00 TRUE 
ENTm6 0.53 238519 124539 7.72 TRUE 
EP 2.22 149740 331357 7.83 FALSE 
EPI 0.56 272820 153417 7.88 FALSE 
EPd 1.43 171372 243124 7.83 TRUE 
EPv 0.80 108980 86442 7.80 TRUE 
EW 0.02 228337 4510 7.52 TRUE 
Eth 0.18 149106 27219 7.62 TRUE 
FC 0.05 153312 7757 7.81 TRUE 
FF 0.19 150037 28474 7.54 TRUE 
FL 1.09 262898 292940 7.98 TRUE 
FN 0.41 65806 27909 7.73 TRUE 
FOTU 0.98 274695 273109 7.84 TRUE 
FRP 0.78 156064 118746 8.25 FALSE 
FRP1 0.21 68271 14147 7.76 TRUE 
FRP2/3 0.17 152710 25250 8.67 TRUE 
FRP5 0.30 191366 56384 8.27 TRUE 
FRP6a 0.10 231237 22620 7.71 TRUE 
FS 0.35 244193 85528 7.61 TRUE 
GENd 1.14 179697 201385 7.85 FALSE 
GENv 0.43 157238 67487 7.43 FALSE 
GPe 1.50 122681 182855 7.47 TRUE 
GPi 0.40 39636 15450 7.29 TRUE 
GR 0.08 115708 8843 7.69 TRUE 
GRN 2.37 46424 111805 7.62 TRUE 
GU 1.44 206805 296482 8.06 FALSE 
GU1 0.18 50137 8898 7.42 TRUE 
GU2/3 0.32 199519 61651 8.39 TRUE 
GU4 0.12 280415 33456 7.82 TRUE 
GU5 0.45 219917 98790 8.04 TRUE 
GU6a 0.34 252521 86919 7.88 TRUE 
GU6b 0.03 207304 5977 7.70 TRUE 



HATA 0.42 213232 90324 8.07 TRUE 
HB 39.42 98567 3957059 7.63 FALSE 
HEM 26.84 261836 7114499 7.92 FALSE 
HIP 19.64 196988 3879152 8.15 FALSE 
HPF 36.97 186226 6913768 8.20 FALSE 
HY 12.30 192740 2372606 7.42 FALSE 
IA 0.14 337542 48209 7.20 TRUE 
IAD 0.09 199472 16866 7.97 TRUE 
IAM 0.03 202317 6364 8.17 TRUE 
IB 28.97 190464 5478473 7.71 FALSE 
IC 3.62 258920 942315 7.65 FALSE 
ICc 0.87 292873 256689 7.52 TRUE 
ICd 1.06 286422 305750 7.73 TRUE 
ICe 1.69 222509 377628 7.64 TRUE 
IF 0.07 163954 11183 7.37 TRUE 
IG 0.10 104289 9852 7.65 TRUE 
ILA 0.68 222156 150569 8.33 FALSE 
ILA1 0.14 106546 14727 8.41 TRUE 
ILA2/3 0.12 228410 26630 8.70 TRUE 
ILA5 0.25 241512 62111 8.40 TRUE 
ILA6a 0.16 280776 45747 7.76 TRUE 
ILA6b 0.01 225814 1941 7.50 TRUE 
ILM 1.30 208015 269439 7.80 FALSE 
IMD 0.13 198519 25838 8.12 TRUE 
INC 0.06 146950 9562 7.62 TRUE 
IO 0.43 115583 50936 7.66 TRUE 
IP 0.71 143040 102646 7.73 TRUE 
IPA 0.02 315992 5744 7.71 TRUE 
IPC 0.05 182759 9807 7.79 TRUE 
IPDL 0.03 229141 7289 7.71 TRUE 
IPDM 0.01 367749 5377 7.66 TRUE 
IPI 0.03 167522 4778 7.77 TRUE 
IPL 0.05 116416 6159 7.50 TRUE 
IPN 0.29 202946 58093 7.81 FALSE 
IPR 0.06 229005 14585 8.07 TRUE 
IPRL 0.01 153202 2244 7.61 TRUE 
IRN 2.27 100349 227225 7.66 TRUE 
IV 0.00 144510 565 7.92 TRUE 
Isocortex 104.55 218930 22768158 8.07 FALSE 
KF 0.16 153857 24349 7.56 TRUE 
LA 0.65 207667 135222 7.99 TRUE 



LAT 2.47 171070 421577 7.83 FALSE 
LAV 0.24 40496 9844 7.67 TRUE 
LC 0.01 241626 2311 7.64 TRUE 
LD 0.80 177689 142213 8.17 TRUE 
LDT 0.15 273766 42498 7.61 TRUE 
LGd 0.57 187952 105618 7.83 FALSE 
LGd-co 0.34 161994 55255 7.79 TRUE 
LGd-ip 0.06 218178 12831 7.90 TRUE 
LGd-sh 0.17 228224 37833 7.85 TRUE 
LGv 0.34 157872 53313 7.45 TRUE 
LH 0.29 227847 65063 7.73 TRUE 
LHA 1.78 119495 212475 7.39 TRUE 
LIN 0.05 121514 6161 7.86 TRUE 
LING 0.11 234945 27370 7.81 TRUE 
LM 0.07 143695 9374 7.43 TRUE 
LP 1.00 176884 175339 7.83 TRUE 
LPO 0.49 172191 84597 7.36 TRUE 
LRN 0.45 55435 25237 7.90 FALSE 
LRNm 0.42 59289 24911 7.91 TRUE 
LS 2.43 214084 513076 7.87 FALSE 
LSX 2.88 200444 573258 7.84 FALSE 
LSc 0.45 137465 61700 9.05 TRUE 
LSr 1.49 205847 306414 7.75 TRUE 
LSv 0.49 297449 144312 7.36 TRUE 
LZ 4.73 156540 757545 7.40 FALSE 
MA 0.31 189241 58364 7.69 TRUE 
MA3 0.01 217486 2545 7.32 TRUE 
MARN 0.47 55310 25504 7.80 TRUE 
MB 30.78 181205 5589113 7.64 FALSE 
MBO 0.82 203470 166365 7.34 FALSE 
MBmot 17.71 174863 3100951 7.61 FALSE 
MBsen 5.78 257817 1516937 7.69 FALSE 
MBsta 1.50 130714 199515 7.65 FALSE 
MD 1.09 189932 203908 8.21 TRUE 
MDRN 1.73 96360 162021 7.68 FALSE 
MDRNd 0.91 105502 94925 7.68 TRUE 
MDRNv 0.82 84957 68787 7.67 TRUE 
ME 0.06 80262 5047 8.25 TRUE 
MEA 1.71 205312 351304 7.62 TRUE 
MED 1.59 194760 305901 8.11 FALSE 
MEPO 0.03 311942 8550 7.36 TRUE 



MEV 0.01 165800 1080 7.56 TRUE 
MEZ 3.06 230825 708814 7.44 FALSE 
MG 0.58 163972 96369 7.88 FALSE 
MGd 0.14 202379 28665 8.04 TRUE 
MGm 0.21 133902 28393 7.63 TRUE 
MGv 0.22 176949 39058 7.86 TRUE 
MH 0.27 317362 86595 7.97 TRUE 
MM 0.45 229313 100737 7.28 FALSE 
MMd 0.06 292632 17698 7.23 TRUE 
MMl 0.18 186563 33914 7.32 TRUE 
MMm 0.11 265859 29330 7.30 TRUE 
MMme 0.06 241966 14260 7.23 TRUE 
MMp 0.03 194865 5711 7.11 TRUE 
MO 20.56 185666 3778046 8.34 FALSE 
MOB 13.11 335148 4310375 7.70 TRUE 
MOp 9.49 192495 1813402 8.27 FALSE 
MOp1 1.30 72179 92595 7.71 TRUE 
MOp2/3 2.88 215288 617830 8.53 TRUE 
MOp5 2.64 201017 535332 8.30 TRUE 
MOp6a 2.46 222547 539983 7.79 TRUE 
MOp6b 0.17 142812 23228 7.38 TRUE 
MOs 11.05 180149 1954995 8.42 FALSE 
MOs1 2.24 67324 149180 8.00 TRUE 
MOs2/3 2.93 198618 585414 8.78 TRUE 
MOs5 3.67 201122 738237 8.37 TRUE 
MOs6a 2.13 229055 481425 7.73 TRUE 
MOs6b 0.07 112288 7528 7.18 TRUE 
MPN 0.31 255818 78773 7.52 TRUE 
MPO 0.43 209402 91641 7.42 TRUE 
MPT 0.04 257488 10009 7.74 TRUE 
MRN 4.45 90447 405470 7.48 TRUE 
MS 0.34 210274 73857 7.48 TRUE 
MSC 0.96 196178 189440 7.44 FALSE 
MT 0.04 147912 5189 7.48 TRUE 
MTN 0.96 230329 220177 7.93 FALSE 
MV 1.49 195856 295614 7.80 TRUE 
MY 26.16 92309 2508001 7.67 FALSE 
MY-mot 14.48 95709 1416378 7.74 FALSE 
MY-sat 0.20 67823 13256 7.72 FALSE 
MY-sen 6.71 134307 892665 7.58 FALSE 
ND 0.07 246059 17034 7.55 TRUE 



NDB 0.61 185983 114226 7.39 TRUE 
NI 0.07 223602 16423 7.43 TRUE 
NLL 0.58 160676 93673 7.52 TRUE 
NLOT 0.26 177053 45098 8.13 FALSE 
NLOT1 0.09 95890 8438 7.44 TRUE 
NLOT2 0.11 225904 25755 8.29 TRUE 
NLOT3 0.05 207417 10555 7.90 TRUE 
NOD 1.24 320298 402057 7.80 TRUE 
NOT 0.18 200058 35724 7.65 TRUE 
NPC 0.24 197208 47466 7.56 TRUE 
NR 0.02 177644 4332 7.58 TRUE 
NTS 0.70 206861 143402 7.49 TRUE 
OLF 36.50 229090 8280728 7.92 FALSE 
OP 0.05 277387 13345 7.64 TRUE 
ORB 4.97 195001 953744 8.22 FALSE 
ORBl 2.32 197370 448472 8.18 FALSE 
ORBl1 0.31 91022 28305 7.65 TRUE 
ORBl2/3 0.51 174260 88953 8.66 TRUE 
ORBl5 1.01 222714 221687 8.16 TRUE 
ORBl6a 0.44 232975 100672 7.75 TRUE 
ORBl6b 0.04 200575 7917 7.74 TRUE 
ORBm 1.15 176873 200956 8.21 FALSE 
ORBm1 0.35 83674 29051 8.21 TRUE 
ORBm2/3 0.25 180496 45393 8.61 TRUE 
ORBm5 0.37 224868 85083 8.16 TRUE 
ORBm6a 0.16 260232 40584 7.65 TRUE 
ORBvl 1.48 203615 298936 8.28 FALSE 
ORBvl1 0.31 127690 38886 7.56 TRUE 
ORBvl2/3 0.43 183100 78740 8.63 TRUE 
ORBvl5 0.52 234856 121413 8.34 TRUE 
ORBvl6a 0.21 269112 55990 7.71 TRUE 
ORBvl6b 0.01 252042 2010 7.51 TRUE 
OT 3.16 215646 682016 7.83 TRUE 
P 13.23 106228 1420952 7.56 FALSE 
P-mot 4.57 118559 555498 7.64 FALSE 
P-sat 2.69 99887 271949 7.51 FALSE 
P-sen 3.03 135763 415793 7.51 FALSE 
P5 0.25 104744 26410 7.44 TRUE 
PA 0.85 220184 187690 8.36 TRUE 
PAA 0.95 128062 121188 8.49 TRUE 
PAG 3.86 199089 765725 7.50 FALSE 



PAL 8.26 170138 1400284 7.51 FALSE 
PALc 1.14 230324 261590 7.44 FALSE 
PALd 1.89 106387 198010 7.46 FALSE 
PALm 1.21 200126 244540 7.41 FALSE 
PALv 3.01 198434 592839 7.59 FALSE 
PAR 1.04 188507 194887 8.17 TRUE 
PARN 1.77 76765 143111 7.62 TRUE 
PAS 0.02 208690 4266 7.53 TRUE 
PB 0.93 175697 163006 7.52 FALSE 
PBG 0.04 145963 5210 7.57 TRUE 
PC5 0.06 92800 5352 7.55 TRUE 
PCG 0.47 222895 105536 7.43 TRUE 
PCN 0.19 202231 37655 7.90 TRUE 
PD 0.01 281994 1684 7.75 TRUE 
PDTg 0.03 290730 8155 7.45 TRUE 
PERI 0.66 116384 75833 8.89 FALSE 
PERI1 0.21 55267 11831 8.00 TRUE 
PERI2/3 0.26 136061 34867 9.20 TRUE 
PERI5 0.13 141799 18124 8.63 TRUE 
PERI6a 0.04 198632 8371 8.09 TRUE 
PERI6b 0.01 165657 1753 7.93 TRUE 
PF 0.39 201478 78144 7.64 TRUE 
PFL 4.79 258270 1242245 8.00 TRUE 
PG 0.75 211731 163181 7.75 TRUE 
PGRN 0.79 58156 46438 7.59 FALSE 
PGRNd 0.20 63314 12638 7.63 TRUE 
PGRNl 0.59 55143 31776 7.56 TRUE 
PH 0.58 232775 136493 7.39 TRUE 
PHY 0.22 216432 46743 7.67 FALSE 
PIL 0.14 169242 23931 7.41 TRUE 
PIR 9.37 168134 1577945 8.15 TRUE 
PL 1.97 191024 374070 8.40 FALSE 
PL1 0.44 81040 35606 8.23 TRUE 
PL2/3 0.34 200931 68506 8.78 TRUE 
PL5 0.78 208161 162626 8.54 TRUE 
PL6a 0.39 268406 104924 7.67 TRUE 
PL6b 0.02 200597 3518 7.43 TRUE 
PMd 0.11 263784 27917 7.61 TRUE 
PMv 0.15 219456 31373 7.68 TRUE 
PN 0.02 163631 2834 7.37 TRUE 
PO 0.97 171962 166729 7.89 TRUE 



POL 0.17 124143 20838 7.40 TRUE 
POR 0.26 52854 13315 7.48 TRUE 
POST 0.95 244868 232465 7.65 TRUE 
PP 0.05 134811 6887 7.35 TRUE 
PPN 0.76 80701 59378 7.40 TRUE 
PPT 0.12 258777 30688 7.71 TRUE 
PR 0.12 241427 28751 7.50 TRUE 
PRC 0.14 194938 26173 7.63 TRUE 
PRE 0.82 227087 188212 7.93 TRUE 
PRM 4.33 254552 1109280 7.93 TRUE 
PRNc 1.82 46742 85499 7.54 TRUE 
PRNr 1.84 69871 129614 7.49 TRUE 
PRP 0.20 219927 41835 7.67 TRUE 
PRT 1.68 217131 365950 7.65 FALSE 
PS 0.07 268207 19570 7.28 TRUE 
PSTN 0.14 213392 29179 7.49 TRUE 
PSV 0.89 126058 111522 7.40 TRUE 
PT 0.18 196135 34388 8.25 TRUE 
PTLp 2.06 243589 501851 7.97 FALSE 
PVH 0.16 243308 38575 7.27 TRUE 
PVHd 0.10 231953 24176 7.40 TRUE 
PVR 1.57 229009 360990 7.40 FALSE 
PVT 0.36 234301 84625 8.07 TRUE 
PVZ 0.64 165294 106580 7.30 FALSE 
PVa 0.04 222017 8101 7.24 TRUE 
PVi 0.18 115978 20047 7.14 TRUE 
PVp 0.11 213941 23276 7.39 TRUE 
PVpo 0.11 203444 22531 7.20 TRUE 
PYR 1.19 287656 339114 7.78 TRUE 
Pa5 0.08 36355 2877 7.51 TRUE 
PeF 0.18 191676 33534 7.37 TRUE 
PoT 0.23 76551 17999 7.43 TRUE 
ProS 1.10 144177 157347 8.59 TRUE 
RAmb 0.59 183548 106923 7.71 FALSE 
RCH 0.11 106344 11899 6.91 TRUE 
RE 0.35 235947 82668 7.69 TRUE 
RH 0.08 256492 19730 7.87 TRUE 
RHP 16.91 173564 2942260 8.27 FALSE 
RN 0.71 102095 70884 7.92 TRUE 
RPA 0.05 25235 1234 7.73 TRUE 
RPF 0.05 201438 10023 7.61 TRUE 



RR 0.10 106315 10435 7.58 TRUE 
RSP 9.49 246898 2322867 7.75 FALSE 
RSPagl 2.17 240906 516241 7.93 FALSE 
RSPagl1 0.63 110596 68359 7.98 TRUE 
RSPagl2/3 0.56 328188 181490 8.07 TRUE 
RSPagl5 0.62 269915 165317 7.93 TRUE 
RSPagl6a 0.34 293917 98672 7.51 TRUE 
RSPagl6b 0.03 124819 3559 7.00 TRUE 
RSPd 3.50 227990 793059 7.78 FALSE 
RSPd1 0.98 114679 112654 7.92 TRUE 
RSPd2/3 0.84 309418 260220 7.86 TRUE 
RSPd5 1.01 252980 254709 7.80 TRUE 
RSPd6a 0.63 262481 163125 7.40 TRUE 
RSPv 3.80 265315 1009113 7.58 FALSE 
RSPv1 1.00 161414 161878 7.48 TRUE 
RSPv2/3 0.88 397972 347343 7.45 TRUE 
RSPv5 1.36 261212 356897 7.80 TRUE 
RSPv6a 0.53 263597 136369 7.34 TRUE 
RSPv6b 0.04 141102 5179 6.92 TRUE 
RT 1.36 152134 207051 7.39 TRUE 
SAG 0.08 164329 12715 7.34 TRUE 
SBPV 0.08 291718 23476 7.34 TRUE 
SCH 0.05 380041 17531 7.47 TRUE 
SCO 0.01 83459 871 7.28 TRUE 
SCdg 0.96 205187 198704 7.59 TRUE 
SCdw 0.29 178077 51307 7.57 TRUE 
SCig 1.70 275442 467427 7.66 TRUE 
SCiw 1.67 241413 403220 7.65 TRUE 
SCm 4.62 242246 1123737 7.65 FALSE 
SCop 0.55 277068 150397 7.69 TRUE 
SCs 1.99 274476 541677 7.76 FALSE 
SCsg 0.98 322945 312577 7.80 TRUE 
SCzo 0.47 166346 78320 7.67 TRUE 
SF 0.42 124535 51630 7.32 TRUE 
SFO 0.01 239228 3466 7.62 TRUE 
SG 0.01 277829 2890 7.54 TRUE 
SGN 0.15 177387 26906 7.72 TRUE 
SH 0.03 260164 7354 8.16 TRUE 
SI 2.70 196544 529964 7.58 TRUE 
SIM 4.98 245485 1243957 7.88 TRUE 
SLC 0.02 148638 2981 7.70 TRUE 



SLD 0.03 200749 6491 7.55 TRUE 
SMT 0.26 179451 46446 7.94 TRUE 
SNc 0.16 165043 26950 7.76 TRUE 
SNr 1.26 150506 191887 7.61 TRUE 
SO 0.04 106489 3977 7.18 TRUE 
SOC 0.64 76128 49104 7.45 FALSE 
SOCl 0.25 97443 24560 7.41 TRUE 
SPA 0.10 173222 15855 7.63 TRUE 
SPF 0.17 143438 23594 7.48 FALSE 
SPFm 0.06 207766 11566 7.55 TRUE 
SPFp 0.11 107859 11580 7.33 TRUE 
SPIV 0.62 89845 54371 7.66 TRUE 
SPVC 1.51 153116 228757 7.54 TRUE 
SPVI 1.52 112277 168025 7.51 TRUE 
SPVO 0.85 79439 68967 7.53 TRUE 
SS 28.28 241780 6814304 7.88 FALSE 
SSp 20.77 248060 5136722 7.86 FALSE 
SSp-bfd 5.38 261559 1395829 7.80 FALSE 
SSp-bfd1 0.83 100700 84175 8.16 TRUE 
SSp-bfd2/3 1.23 257147 315910 8.20 TRUE 
SSp-bfd4 1.11 388754 429729 7.37 TRUE 
SSp-bfd5 0.96 235000 223555 7.80 TRUE 
SSp-bfd6a 1.09 290314 318157 7.46 TRUE 
SSp-bfd6b 0.13 156285 19758 7.28 TRUE 
SSp-ll 1.99 241891 477202 7.97 FALSE 
SSp-ll1 0.30 84747 25568 7.81 TRUE 
SSp-ll2/3 0.51 255889 130698 8.27 TRUE 
SSp-ll4 0.22 383253 86068 7.45 TRUE 
SSp-ll5 0.46 230792 104776 8.18 TRUE 
SSp-ll6a 0.45 273132 123423 7.66 TRUE 
SSp-ll6b 0.04 146775 6632 7.15 TRUE 
SSp-m 5.33 233815 1243897 7.88 FALSE 
SSp-m1 0.77 80083 60906 8.18 TRUE 
SSp-m2/3 1.23 234457 287487 8.36 TRUE 
SSp-m4 0.81 361746 292918 7.46 TRUE 
SSp-m5 1.04 229970 239606 7.80 TRUE 
SSp-m6a 1.38 251670 345248 7.48 TRUE 
SSp-m6b 0.09 170703 15074 7.33 TRUE 
SSp-n 2.61 250954 652369 7.82 FALSE 
SSp-n1 0.40 96781 39037 8.30 TRUE 
SSp-n2/3 0.54 246505 134398 8.29 TRUE 



SSp-n4 0.49 383127 186522 7.41 TRUE 
SSp-n5 0.46 237252 109301 7.73 TRUE 
SSp-n6a 0.67 265791 179973 7.41 TRUE 
SSp-n6b 0.05 120110 5207 7.26 TRUE 
SSp-tr 1.16 253608 295608 7.96 FALSE 
SSp-tr1 0.21 94106 19556 7.76 TRUE 
SSp-tr2/3 0.34 279337 94025 8.17 TRUE 
SSp-tr4 0.12 396041 48360 7.45 TRUE 
SSp-tr5 0.28 250478 70610 8.12 TRUE 
SSp-tr6a 0.18 296481 55035 7.66 TRUE 
SSp-tr6b 0.03 198173 5642 7.17 TRUE 
SSp-ul 3.23 243430 779130 7.88 FALSE 
SSp-ul1 0.45 88103 39774 7.95 TRUE 
SSp-ul2/3 0.78 251918 196882 8.28 TRUE 
SSp-ul4 0.45 391033 174267 7.36 TRUE 
SSp-ul5 0.65 230637 150938 7.92 TRUE 
SSp-ul6a 0.82 257147 205788 7.51 TRUE 
SSp-ul6b 0.07 120094 7851 7.22 TRUE 
SSp-un 1.07 246022 262257 7.84 FALSE 
SSp-un2/3 0.26 251207 66126 8.19 TRUE 
SSp-un4 0.16 369649 57604 7.39 TRUE 
SSp-un5 0.21 233549 49371 7.84 TRUE 
SSp-un6a 0.26 273096 69406 7.47 TRUE 
SSp-un6b 0.02 125526 2689 7.21 TRUE 
SSs 7.47 222227 1662944 7.95 FALSE 
SSs1 1.19 78772 93982 8.19 TRUE 
SSs2/3 1.68 222464 371284 8.38 TRUE 
SSs4 0.93 313654 292420 7.63 TRUE 
SSs5 1.78 231191 413173 7.85 TRUE 
SSs6a 1.70 268504 457006 7.64 TRUE 
SSs6b 0.17 193267 32828 7.57 TRUE 
STN 0.16 204664 32868 7.43 TRUE 
STR 37.75 221960 8360744 7.79 FALSE 
STRd 22.19 214194 4719098 7.83 FALSE 
STRv 7.07 262506 1862334 7.75 FALSE 
SUB 1.87 195125 366965 8.26 TRUE 
SUM 0.20 188415 38274 7.36 TRUE 
SUT 0.20 146272 28790 7.56 TRUE 
SUV 0.29 98238 28561 7.70 TRUE 
Su3 0.03 221830 7187 7.58 TRUE 
SubG 0.02 209493 4313 7.37 TRUE 



TEa 2.56 208633 529080 8.17 FALSE 
TEa1 0.54 73303 38816 8.05 TRUE 
TEa2/3 0.54 222698 119087 8.47 TRUE 
TEa4 0.24 264608 63104 7.97 TRUE 
TEa5 0.74 234382 173963 8.14 TRUE 
TEa6a 0.42 281401 117694 7.94 TRUE 
TEa6b 0.08 195662 14626 7.62 TRUE 
TH 16.66 182833 3050178 7.88 FALSE 
TM 0.10 156395 15849 7.45 FALSE 
TMd 0.02 248213 5798 7.55 TRUE 
TMv 0.08 127454 9932 7.35 TRUE 
TR 1.17 109374 129315 8.82 TRUE 
TRN 0.59 87415 53351 7.70 TRUE 
TRS 0.25 213065 51286 7.27 TRUE 
TT 1.16 134682 154945 8.45 FALSE 
TTd 0.60 152218 91132 8.63 TRUE 
TTv 0.56 114415 62493 8.00 TRUE 
TU 0.42 131304 55874 7.22 TRUE 
UVU 2.14 283183 607901 7.74 TRUE 
V 0.29 111356 32131 7.87 TRUE 
VAL 0.67 165137 110717 8.01 TRUE 
VCO 0.85 114228 96826 7.47 TRUE 
VENT 4.05 165372 670591 7.79 FALSE 
VERM 18.19 277678 5144896 7.82 FALSE 
VII 0.70 87558 62537 7.90 TRUE 
VIS 11.90 254182 3014946 7.90 FALSE 
VISC 1.93 191332 372807 8.12 FALSE 
VISC1 0.32 56669 17836 7.81 TRUE 
VISC2/3 0.44 194294 84816 8.47 TRUE 
VISC4 0.14 264795 36462 7.81 TRUE 
VISC5 0.57 203056 115661 8.13 TRUE 
VISC6a 0.44 244749 108020 7.87 TRUE 
VISC6b 0.05 216388 9744 7.58 TRUE 
VISa 1.21 245126 296350 8.03 FALSE 
VISa1 0.24 99844 24371 7.91 TRUE 
VISa2/3 0.34 283293 96835 8.22 TRUE 
VISa4 0.13 349883 43964 7.69 TRUE 
VISa5 0.29 246667 71937 8.10 TRUE 
VISa6a 0.18 301426 53629 7.53 TRUE 
VISa6b 0.03 161786 5232 7.06 TRUE 
VISal 0.63 244091 152198 7.82 FALSE 



VISal1 0.12 107242 12426 7.91 TRUE 
VISal2/3 0.15 273558 42246 8.06 TRUE 
VISal4 0.08 338778 27883 7.53 TRUE 
VISal5 0.16 247123 40153 7.82 TRUE 
VISal6a 0.09 294199 26990 7.47 TRUE 
VISal6b 0.02 163035 2973 7.13 TRUE 
VISam 0.67 244459 163920 8.05 FALSE 
VISam2/3 0.17 290464 48896 8.32 TRUE 
VISam5 0.19 260310 49412 8.06 TRUE 
VISam6a 0.11 306590 32407 7.38 TRUE 
VISl 1.07 245831 260270 7.82 FALSE 
VISl1 0.21 113143 23659 8.14 TRUE 
VISl2/3 0.24 280181 64913 8.09 TRUE 
VISl4 0.15 335498 49797 7.53 TRUE 
VISl5 0.26 253934 65176 7.77 TRUE 
VISl6a 0.18 297766 52017 7.51 TRUE 
VISl6b 0.03 120086 4008 7.14 TRUE 
VISli 0.41 244731 99939 7.85 FALSE 
VISli1 0.08 103780 8546 7.93 TRUE 
VISli2/3 0.09 280937 25619 8.12 TRUE 
VISli4 0.04 343744 14683 7.58 TRUE 
VISli5 0.12 264836 31430 7.84 TRUE 
VISli6a 0.06 294890 18483 7.59 TRUE 
VISli6b 0.01 135240 1686 7.13 TRUE 
VISp 6.27 268271 1685308 7.84 FALSE 
VISp1 1.53 131139 199851 8.13 TRUE 
VISp2/3 1.63 313165 510362 8.06 TRUE 
VISp4 0.83 381427 317664 7.48 TRUE 
VISp5 1.29 272634 352025 7.74 TRUE 
VISp6a 0.87 326089 283895 7.50 TRUE 
VISp6b 0.15 139970 20417 7.15 TRUE 
VISpl 0.79 231319 183159 8.00 FALSE 
VISpl1 0.27 127614 34411 8.12 TRUE 
VISpl2/3 0.18 296102 53378 8.11 TRUE 
VISpl4 0.03 299103 8687 7.86 TRUE 
VISpl5 0.21 264417 55429 7.97 TRUE 
VISpl6a 0.09 312511 28991 7.66 TRUE 
VISpl6b 0.01 167221 1023 7.39 TRUE 
VISpm 0.91 251740 226950 8.06 FALSE 
VISpm1 0.21 106932 22490 8.05 TRUE 
VISpm2/3 0.24 291973 70606 8.35 TRUE 



VISpm4 0.08 357940 29770 7.75 TRUE 
VISpm5 0.23 266905 62104 8.00 TRUE 
VISpm6a 0.12 325516 38397 7.44 TRUE 
VISpm6b 0.02 165472 3738 7.09 TRUE 
VISpor 1.14 214409 243345 8.15 FALSE 
VISpor1 0.31 89078 27317 8.19 TRUE 
VISpor2/3 0.30 255561 75160 8.37 TRUE 
VISpor4 0.05 325593 15324 7.78 TRUE 
VISpor5 0.31 244282 76369 8.12 TRUE 
VISpor6a 0.15 297259 44149 7.83 TRUE 
VISpor6b 0.03 144501 3955 7.48 TRUE 
VISrl 0.85 242904 204173 7.89 FALSE 
VISrl1 0.17 114461 19415 8.09 TRUE 
VISrl2/3 0.22 279158 60357 8.11 TRUE 
VISrl4 0.12 336683 40518 7.54 TRUE 
VISrl5 0.20 229808 45142 7.93 TRUE 
VISrl6a 0.12 295175 35483 7.44 TRUE 
VISrl6b 0.02 145000 3466 7.07 TRUE 
VLPO 0.05 79246 4162 7.21 TRUE 
VM 0.77 150946 113912 7.78 TRUE 
VMH 0.43 235542 101503 7.46 TRUE 
VMPO 0.03 106643 3481 6.91 TRUE 
VNC 2.64 146047 384944 7.78 FALSE 
VP 2.37 178903 420971 7.74 FALSE 
VPL 0.78 138886 109531 7.58 TRUE 
VPLpc 0.08 152514 12055 7.84 TRUE 
VPM 1.32 207796 269500 7.74 TRUE 
VPMpc 0.18 163308 29930 8.03 TRUE 
VTA 0.37 125981 47089 7.72 TRUE 
VeCB 0.08 41650 3262 7.58 TRUE 
XII 0.23 154182 34772 8.18 TRUE 
Xi 0.07 261104 18035 7.56 TRUE 
ZI 1.46 187241 273893 7.43 FALSE 
grey 376.99 204624 77265992 7.94 FALSE 
sAMY 3.29 210943 700324 7.63 FALSE 
y 0.02 175498 2881 7.63 TRUE 
 

  



 ריצקת
 תב הניא םהלש תונושהו םיאתה תופיפצ יבגל תוכרעהה ךא רתויב תידוסי הרוצב רקחנ רבכע לש חומ
 תמייק אל ,ךכל ףסונב .דבלב היצלופרטסקא תמייק םיפסונ םירוזא יבגלו חומב םיבר םירוזאב הגשה
 ןלא דיוויד ש"ע רקחמה ןוכמ .םיינדיחי תוחומ ןיב םיאתה תופיפצבו חפנב תונושה יבגל הכרעה תורפסב
 תולאש לע תונעל ןושאר ןויסינכ שמשל םילוכי רשא םימלש תוחומ תואמ רובע םיכתח תונומת תרדס רציי

 רשא )DNN( הקומע םינוריונ תשר תססובמ םיטקייבוא יוהיזל תכרעמ יתחתיפ הזה רקחמהמ קלחכ .הלא
 רתויב םיפופצה םירוזאב ףא תאו ,חומה ךותב םיאתה יניערג יוהיזל תויטנצסרולפוטוא תונומתב תשמתשמ
 Allen Brainךותמ תוחומ לש םיכתח תורדס 537 לע תכרעמה תא יתלעפה .Dentate gyrus תמגודכ

Connectivity Project. ןזמ תובקנו םירכז לש תוחומ ךותמ םינותנ חתנל םירשפאמ ולבקתהש םינותנה 
C57BL/6J ו- FVB.CD1םינזה ןיב םילדבה ןכו םיינימ-ןיב םילדבה תוהזל עצבל ידכ. 
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