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Abstract

The development of software systems using multiple aspect languages is an

approach that involves programming in general purpose languages, such as

AspectJ, along side with domain specific languages, like COOL. A major

research effort in this area is to control and coordinate the interoperability

of the corresponding aspect mechanisms. Unfortunately, less attention has

been given to making this mode of development practical. Providing an

environment with dedicated tools that make the actual development with

multiple aspect languages effective is just as essential for this approach to

succeed.

This thesis focuses on one such tool: a debugger for applications written

using multiple aspect languages. The debugger allows the developer to

investigate the runtime state and behavior of applications of this kind. In

addition, the debugger lets the developer query the composition specifica-

tion, to find out how the different aspect mechanisms are composed and

interact. This is essential since incorrect composition may be the reason

for certain bugs. We analyze the problem of debugging such applications

using several examples. We present a specification for a corresponding

debug infrastructure. We provide a concrete implementation over an ex-

isting aspect composition framework.
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Chapter 1

Introduction

An aspect-oriented extension to a programming language is termed domain specific

when some (general purpose) expressiveness is surrendered for more (domain specific)

conciseness in describing a specific crosscutting concern in the terminology of the

domain. For example, Cool [14, 15] is a domain specific aspect language (dsal) with

high level constructs just for specifying declaratively the synchronization of threads

in the program. To regain the lost expressiveness, dsals are used with other dsals

and collectively with general purpose aspect languages.

The development of aspect-oriented software systems using multiple dsals has

gained attention in recent years (e.g., the dsal workshop series in AOSD). This mode

of development is denoted here asmulti-dsal development [2]. A major research effort

in this area is to coordinate the collaborative operation of the aspect mechanisms [11]

implementing the various dsals. The research has led to the creation of aspect com-

position frameworks, e.g., Pluggable AOP [10], Reflex [22], Awesome [12], JAMI [8],

Crosscutting Composition [6], and others. Less research attention has been devoted

to making the mode of multi-dsal development practical. For dsals to be used

in practice, we need tools that make the actual development with multiple dsals

effective. This thesis focuses on one such tool—the debugger.
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1.1 Runtime State and Behavior

Modern debuggers provide by default standard facilities for examining the state and

behavior of an application at runtime. However, when the object of debugging is a

multi-dsal application, additional unique investigation facilities are required from

the debugger. For instance, when a breakpoint is placed on a method-execution join

point, the developer should be able to examine the list of applied advice of all the

aspect languages. Moreover, the developer needs to be able to distinguish between

advice of different languages.

Today, debuggers are unaware of these requirements and do not provide such

facilities. One of the few that does provide them is the aspect-oriented debugging

architecture (aoda) [4]. The aoda debugger lets the developer investigate the ap-

plication in terms of its AOP abstractions, namely, aspects, pointcuts, and advice.

However, aoda, as the other AOP debuggers, is designed for a single aspect mecha-

nism. When aoda is used to debug multi-dsal applications, only AspectJ advice

is listed during the debug process. Of course, the source code of the other aspect lan-

guages could be translated to AspectJ. However, even if such a translation occurs,

the developer might be able to observe the whole list of advice, but they would all

seem to belong to AspectJ. Moreover, source-to-source translation in general may

introduce and expose synthetic join points that do not exist in the original source

code, resulting in incorrect application behavior [13].Hence, even aoda is not suited

for multi-dsal debugging.

1.2 Composition Specification

A multi-dsal debugger should also provide the developer with the ability to reason

about the composition specification [12, 16]. Composing multiple aspect mechanisms

into a coherent weaver is a complex process that is facilitated by an aspect compo-
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sition framework. In a typical composition process, the framework is provided with

multiple aspect mechanisms, one for each aspect language. A composition designer

then uses the framework to configure the interactions among the mechanisms, based

on a particular composition specification. The specification may set, for instance, a

specific order on advice of different aspect mechanisms that operate at the same join

point. The composition framework produces as an output a single multi-dsal weaver

that behaves according to the specification.

It may be difficult for the composition designer to formulate in advance a complete

composition specification that achieves the desired application behavior flawlessly. It

may also be difficult to communicate the specification to the developer. Therefore,

in addition to normal bugs whose cause lies in the application layer due to improper

use of language constructs or incorrect application logic, composition bugs may exist

due to an incorrect or misunderstood composition specification. Thus, the debugger

should let the developer inspect the composition specification. Again, none of the

debuggers currently supports this feature.

1.3 Contribution

This work presents a Multi-dsal Debug Interface (mddi) [3]. The interface comprises

two sets of debug operations. The first set of operations can be used to examine the

runtime state and behavior of a multi-dsal application. The operations in this set

enhance the debug features found in aoda [4]. The second set of operations can be

used to inspect the application from the composition specification point of view. The

operations defined in this set are based on prior work that characterized abstract

features of an aspect mechanism, and in particular, features of the composition of

several mechanisms [11, 13]. These abstract features are implemented in terms of

concrete debug operations in mddi.
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We provide an implementation of mddi over a specific aspect composition frame-

work called Awesome [12]. We modified the Awesome framework to produce a

multi-dsal weaver that is “debug aware.” The weaver inserts into the woven files

special debug attributes, which a debugger can access via mddi to provide runtime

state and behavior information and details about the composition specification.

Our scope of investigation for multi-dsal development targets a dominant family

of reactive aspect mechanisms [11]. This family includes the set of AOP languages

known as join point and advice.

Outline. Chapter 3 presents an introductory example to concretely illustrate the

problem and the solution. This example demonstrates use of mddi to identify and

locate the cause for a bug in a multi-dsal application. Chapter 4 presents the debug

operations in mddi. In Chapter 5.1, a concrete implementation of the mddi over the

Awesome framework is described. In Chapter 6, the debug interface is evaluated.
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Chapter 2

Background

We first discuss works related to debugging of AOP programs. We then discuss the

composition of multiple aspect mechanisms.

AOP debugging The debugging of AOP programs has been considered before.

One approach is omniscient debugging [21]. Under this kind of debugger, a bytecode

level trace is generated for the program execution. The trace includes synthetic code,

woven advice, and other technology specific entities. Annotations on the trace indicate

the origin of the bytecode, whether it is base code, residue or advice applications.

While this kind of debugging can handle the execution of multiple aspects, it does

not offer source level debugging, nor does it aid in solving problems that result from

feature interactions between aspects or from the composition specification.

Another debugging approach used by Wicca [7] is providing a source-level repre-

sentation of the woven source code. The representation is generated by a dynamic

source weaver. However, even for the case of a single AOP language, this approach

is limited, because the code presented is not the original source code written by the

developer but the one generated by the source weaver. It also does not provide de-

bugging in terms of source level abstractions, such as aspects and advice. In the case

of a multi-dsal program, a translation of the different source files to a common base
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language is required, which brings back the problems related to the composition of

multiple aspect mechanisms [10].

Unlike Wicca, aoda [4] enables debugging that is aware of AOP source level

abstractions, such as aspects and advice. It features a modular design that allows de-

signing new debug agents to support different AOP languages. However, it does not

address the unique problems presented by multi-dsal programs. First, it does not

provide a way for examining the composition specification. Second, it does not recog-

nize AOP artifacts in the context of the original mechanisms, but only in a common

base language abstraction (for example, when Cool coordinators are represented as

AspectJ aspects). In addition, developing a new debug agent for a new mechanism

is a difficult task, requiring implementation knowledge of aoda itself and how to add

debug attributes to class files.

Yin et al.[23] present another AOP aware debugger. It is based on their own

implementation of an AspectJ compiler and it uses external XML files to store the

debugging information. Their approach allows them to define a finer grained model

that enables supporting additional debugging tasks not supported by previous work.

However they also do not address the multi-dsal debugging problem.

In comparison, our debugging infrastructure supports debugging multi-dsal pro-

grams with source level abstractions in the context of each mechanism, including the

inspection of the composition specification. We also provide a generic way to support

debugging of new mechanisms without having to dive into the details of the debug

attributes or class file structure.

Composition Frameworks Pluggable AOP [10] introduced the problem of com-

posing multiple aspect language extensions. The work presents a framework for third-

party composition of arbitrary dynamic aspect mechanisms into an AOP interpreter.
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Awesome [12] is a composition framework that directly weaves dsal code without

an intermediate translation to a common base language. Awesome provides a de-

fault composition specification. For example, by default aspects will advise a foreign

aspect by advising only Java statements within its source code. Awesome allows

the composition designer to specify how to resolve feature interactions between aspect

mechanisms in case the default specification is not the desired one. While Awesome

addresses the composition problem, it does not deal with the problem of debugging

the woven multi-dsal programs. The developer is required to use regular debugging

tools, such as the Java debugger (jdb). However, such tools expose the synthetic con-

structs of Awesome and of the mechanisms, and they also do not provide debugging

in terms of AOP source level abstractions.

A different approach for multi-dsal composition is presented by Dinkelaker et

al. [6]. They propose an architecture for embedded DSLs (EDSLs) that makes use of

meta-object protocols and aspect-oriented concepts to support crosscutting compo-

sition of EDSLs. This enables writing modularized EDSL programs where each pro-

gram addresses one concern. Their proposed architecture is implemented in Groovy,

and like Awesome, the architecture does not address the debugging problem at all,

relying instead on the standard Groovy debugging tools.

7



Chapter 3

Motivating Example

To illustrate the issues involved in debugging a multi-dsal application and to outline

our solution, we first present a simple example. The application in our example

comprises a base system, written in Java, with three concerns, each expressed in

a different aspect language. AspectJ contributes tracing; Cool handles thread

synchronization; and Validate—a dsal that we have defined ourselves—enforces

validation of input parameters.

Recall that the source of bugs or surprising behavior in a multi-dsal application

is either erroneous implementation somewhere in the source code, or incorrect or

misunderstood composition of the aspect mechanisms. In this chapter we provide

an example for a bug of the latter sort. In the example, an unexpected behavior of

the application is observed. We describe how the developer might utilize a multi-

dsal debug interface to: (1) identify a bug caused by an incorrect composition, and

(2) understand the essence of the bug.

We provide as we go brief explanations that are necessary for understanding the

part of the interface that is being discussed. A more complete specification of the

debug interface is presented and explained in chapters 4 and 5.1.
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Listing 3.1: A stack implementation in Java
1 public class Stack {
2 public Stack ( int capac i ty ) {
3 buf = new Object [ capac i ty ] ;
4 }
5 public void push ( Object obj ){
6 buf [ ind ] = obj ;
7 ind++;
8 }
9 public Object pop ( ) {
10 Object top = buf [ ind −1] ;
11 buf[−− ind ] = null ;
12 return top ;
13 }
14 private Object [ ] buf ;
15 private int ind = 0 ;
16 }

3.1 A Multi-DSAL Application

Our running example is a multi-dsal application, which is also multi-threaded. The

base system is a Java class that implements a bounded stack. The class Stack

(Listing 3.1) defines two public methods, push and pop, where an

ArrayIndexOutOfBoundsException is thrown upon an attempt to pop objects off an

empty stack or push objects onto a full stack.

In addition, three aspects are defined, each expressed in a different aspect lan-

guage. Note that the term aspect is used here and throughout the thesis in a broad

meaning, and refers to the language construct introduced by any aspect language

to encapsulate a crosscutting concern. In AspectJ this construct is called aspect.

Cool calls it coordinator, and in Validate the aspect construct is denoted validator.

The first aspect is defined in AspectJ, a general purpose aspect language. The

aspect enhances Stack with tracing facilities (Listing 3.2).

The second coordinator aspect (Listing 3.4) is written in Cool, an off-the-shelf

dsal that facilitates synchronization of Java methods. The coordinator enforces the

9



Listing 3.2: A tracing aspect in AspectJ
1 public aspect Tracer {
2 pointcut scope ( ) : ! cflow (within ( Tracer ) ) ;
3 before ( ) : scope ( ) {
4 out . p r i n t l n ( " b e f o r e ␣ " + thisJoinPoint ) ;
5 }
6 Object around ( ) : scope ( ) {
7 out . p r i n t l n ( " around␣ " + thisJoinPoint ) ;
8 return proceed ( ) ;
9 }
10 after ( ) : scope ( ) {
11 out . p r i n t l n ( " a f t e r ␣ " + thisJoinPoint ) ;
12 }
13 }

Listing 3.3: A validator in Validate
1 validator Stack {
2 validate Stack ( int capac i ty ) :
3 $1 > 0 ;
4 validate push ( Object obj ) :
5 s t r i n g ( $1 ) , emai l ( $1 ) ;
6 }
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Listing 3.4: A synchronization coordinator in Cool
1 coordinator Stack {
2 sel fex {push , pop } ;
3 mutex {push , pop } ;
4 int l en =0;
5 condition f u l l=false , empty=true ;
6 push : requires ! f u l l ;
7 on_exit {
8 empty=fa l se ;
9 l en++;
10 i f ( l en==buf . l ength )
11 f u l l=true ;
12 }
13 pop : requires ! empty ;
14 on_entry { len−−; }
15 on_exit {
16 f u l l=fa l se ;
17 i f ( l en==0)
18 empty=true ;
19 }
20 }

following synchronization policy for each instance of Stack:

• neither push nor pop may be executed by more than one thread at a time

(selfex declaration);

• push and pop are prohibited from being executed concurrently (mutex declara-

tion);

• push may be called only if the stack is not full (condition full); and

• pop may be called only if the stack is not empty (condition empty).

The on_entry and on_exit clauses express the bookkeeping required to implement

the last two items.

The third aspect language is called Validate, a simple in-house dsal that the

developer defines. Validate supports validation of input arguments passed to meth-

ods, constructors, and fields (field assignments). As a motivation for using such a
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language, consider a development team that is interested in involving domain experts

in the implementation of the security concern of the system (one facet of security is

input validation). Furthermore, assume that the domain experts are familiar with

the Unix shell. To accommodate the experts, Validate takes on a syntax that re-

sembles shell commands. The input validation of a particular program element, e.g.,

a method, is contained in a validation command. Within a command, $(i) is used to

access the i’th input argument. In addition, a library of predicates exists for defining

the validation criteria. Validation commands for one or more classes are grouped in

a validator aspect.

In Listing 3.3, a validator for the Stack class is presented. It validates the con-

structor and the push method. The validator specifies that the constructor’s first

argument (the capacity of the stack) should be a positive integer. It also specifies

that the element that is added to the stack via the push method should be a String

object conforming to the format of an email address (string and email are predicates

of the language).

3.2 A Multi-DSAL Debug Scenario

Consider the following scenario. During the development of our multi-dsal applica-

tion, it is tested and executed against different input sets. On one of the input sets,

an unexpected behavior is observed: an exception is thrown from the push(Object)

method indicating a validation error. This indicates that the Validate aspect mech-

anism identified an invalid input argument. However, unexpectedly, the execution

(of other threads) does not progress and it seems like the program is stuck. The

developer initiates a debug session, ready to investigate the cause of the problem.

The exception was thrown from the push method, thus it becomes the natural

suspect and a breakpoint is placed on the method entry. When the breakpoint is
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reached, the program suspends and waits for additional debugging commands. The

developer first asks the multi-dsal debugger for all the pieces of advice that were

applied to this method-execution join point. The developer expects the advice of all

the aspect mechanisms to be present, but discovers instead that the Cool advice

seems to not have been applied. This is surprising, since the program explicitly

specifies that push should be synchronized (Listing 3.4, lines 2-3).

Understanding the Composition Generally, when debugging a multi-dsal ap-

plication, the basic guideline is to understand the feature interactions that are relevant

to the portion of code under investigation. The developer should always look for the

cause of the problem in the application code, but should also be open to the possi-

bility that the unexpected behavior is a matter of a composition specification. In our

case, it should be examined whether or not the unexpected absence of Cool advice

originated from the composition. To find this out, the developer uses dedicated debug

operations for inspecting the composition.

Join point granularity and join point visibility are two of several features that

characterize a reactive aspect mechanism [13]. The join point granularity feature

specifies what kinds of join point computations may be intercepted by the aspect

mechanism. The granularity of AspectJ includes, for example, computations of

kinds method-call, method-execution, field-set, etc. The join point visibility feature

maps join point computations to actual join point instances. That is, each potential

join point in the granularity is classified as either visible or invisible. For example,

the visibility feature of AspectJ hides all the join points within the lexical scope of

an if pointcut expression.

Based on these abstract features, mddi defines concrete debug operations: gran-

ularity and visibility. These operations operate on code elements in a particular

program. In the AspectJ language execution model, each dynamic join point has
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a corresponding static shadow in the bytecode of the program. Advice code may be

inserted at these shadows to modify the behavior of the program [9]. Provided with

a code element, e.g., a method, the granularity operation returns all the join point

shadows in that method that a particular mechanism may plausibly advise. The vis-

ibility operation returns the join point shadows in the method that the mechanism

may actually advise.

In the example, an exception was thrown from the push method and then the

program deadlocked. Following we will illustrate the debugging process concretely

using the AwesomeDebugger.

We use the debugger to observe that Cool related advice are not applied at the

push method. Next, we investigate whether the absence of the advice is a matter of

the composition specification or not. We inspect the shadows in push that are visible

to Cool:

(awdb) show v i s i b i l t y COOL

[ ID ] [ Jo inpo int type ] [ Source l o c a t i o n ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

An empty shadow set is displayed. This indicates that there are no shadows in the

method that are visible to the Cool mechanism. Therefore we proceed to inspect

the shadows in push that are visible to all the mechanisms:

(awdb) show v i s i b i l i t y

[ ID ] [ Jo inpo int type ] [ Source l o c a t i o n ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 F i e ld Get Stack . java : 6

1 F i e ld Set Stack . java : 6

2 F i e ld Get Stack . java : 7

3 F i e ld Set Stack . java : 7

14



4 Method Execution Stack . java : 5

We see that even though that no shadows are visible to the Cool mechanism, they

are visible to other mechanism, We then use the granularity operation to understand

why the method-execution shadow is not visible to Cool:

(awdb) show g ranu l a r i t y COOL

[ ID ] [ Jo inpo int type ] [ Source l o c a t i o n ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

An empty set is displayed again. This means that the problem is not just with

the visibility of the shadows, but also in the granularity of the Cool mechanism.

We conclude that the reason that Cool advice are missing is because the Cool

mechanism was not designed to affect method-execution join point shadows.

Resolving the Bug Armed with this knowledge, the developer can consult the

composition designer to confirm that indeed the granularity of Cool includes join

points of kind method-call (and not method-execution). The Cool mechanism defines

two types of advice, lock and unlock, which are executed before and after the syn-

chronized method, respectively. Thus, Cool’s lock and unlock advice are inserted

in the context of the caller method and not in the context of the callee.

The developer concludes that this particular organization of the advice is the cause

for the bug. When a thread Ti calls push, the lock advice is executed first in the

context of the caller. When Ti is allowed to execute push (hence acquiring the lock),

the validate advice is executed in the context of the callee. If the argument to push

is found to be invalid, an exception is thrown (like in our case). This exception causes

the termination of Ti, but without releasing the lock. From there on, any other thread

Tj which attempts to call push is blocked. Hence the program enters a deadlock.

The analysis implies that for the program to function properly, the validate
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advice should execute before the lock advice. Indeed one of the feature interactions

that a composition designer should solve is so-called emergent advice ordering [13].

It is where the designer specifies an order between advice of different mechanisms.

However, in our case the desired order cannot be set. An advice order can only be

specified when the advice operate on the same join point. Here, lock advice will

always execute before validate because a caller’s before advice precedes any callee’s

advice. Therefore, it should be first specified that both lock and validate operate

on the same join point (be it a method-call or a method-execution). This is done by

modifying the granularity of Cool or that of Validate. Then, the desired advice

order should be set, i.e., that validate should occur before lock.

Note that the analysis also suggests that the Cool mechanism should be refined

to release an acquired lock upon a thrown exception. Although such a refinement may

solve the bug, the proposed solution is still more desirable, because a solution at the

composition level is more robust and does not depend on a specific implementation

approach.
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Chapter 4

Multi-DSAL Debug Operations

The multi-dsal debug interface (mddi) defines debug operations for inspecting a

multi-dsal application at runtime. In this chapter, the debug operations in mddi

are described in abstract platform-independent terms. The description is organized in

two parts: debug operations for examining the runtime state and behavior of a multi-

dsal application, and debug operations for inspecting the composition specification.

In Chapter 5.1, the concrete implementation of mddi for the Awesome composition

framework is presented.

4.1 Examining Runtime State and Behavior

Like a typical debugger, the debugging process of the multi-dsal debugger is based

on stopping the program at a certain breakpoint and then examining the runtime

state and behavior using dedicated debug operations.

aoda [4] defines an aspect-oriented breakpoint model with debug operations that

support stopping at a join point shadow in three modes: before, after, and during the

execution of the advice woven at that shadow. When a breakpoint is reached, aoda

offers three debug operations for inspecting the list of advice:
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1. Inspection of woven advice. This operation lists advice that are woven at a

join point shadow. Note that a woven (applied) advice does not necessarily get

executed, e.g., an advice associated with an if pointcut in AspectJ.

2. Inspection of executing advice. This operation lists advice that are cur-

rently executing on the stack. Note that several advice may be executing si-

multaneously, e.g., when an around advice calls proceed and, while it waits for

the call to return, another before advice takes control.

3. Inspection of past advice. This operation lists advice that were already

processed, indicating whether each advice on the list was actually executed or

not.

The multi-dsal debugger adjusts aoda breakpoint model for debugging multi-dsal

applications. In comparison to aoda, the multi-dsal debugger displays the list of

advice woven by all the aspect mechanisms. The multi-dsal debugger indicates for

each presented advice its originating aspect mechanism and the type of the advice.

Each aspect mechanism defines its own advice types. AspectJ has three advice

types, namely before, after, and around. Cool declares two advice types, lock

and unlock, which are executed before and after the invocation of a synchronized

method, respectively. The Validate mechanism has a single advice type called

validate, which is executed before the validated code element. Indicating the advice

type and the originating mechanism may help the developer to get a clearer picture

of the interactions involved.

Like aoda, the multi-dsal debugger produces mirror objects for the advice de-

clared in the program. These are objects created during the debug process to reflect

the state of corresponding objects in the debugged application [18, 5]. Each advice

mirror is linked to the related source code. In AspectJ, the mapping is straightfor-

ward. Each advice mirror is simply mapped to the related advice construct in the
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source code. However, when dsals are involved, this mapping is often implicit. For

instance, the Cool advice types, lock and unlock, are concepts that are a part of the

implementation model of Cool, but without an explicit representation in the source

code. The Cool language designer should decide to which source code abstractions

each advice type is mapped. For instance, a reasonable mapping is to associate a

lock advice with operations defined in mutex, selfex, requires, and on_entry

expressions (Listing 3.4). Therefore, the multi-dsal debugger provides support for

implicit source code mappings of this kind.

4.2 Inspecting the Composition Specification

The other part of mddi includes operations for investigating the composition speci-

fication of a multi-dsal weaver. These include granularity and visibility operations

for investigating which join point shadows within a particular program element an

aspect mechanism may affect. A third kind is advisability operations for determining

how the aspect mechanism may affect those shadows.

Granularity Operations The join point granularity feature of an aspect mecha-

nismM, denoted granularity(M), specifies in abstract terms the kinds of join point

computations that the mechanism may intercept. For instance, granularity(Cool)

includes computations of kind method-invocation. This indicates that Cool may

affect the program only when methods are invoked. When the mechanism is im-

plemented in the context of a specific environment, the granularity is normalized

according to a shared join point scheme (in our case AspectJ). A method-invocation

join point computation in Cool may be mapped to either a method-call or a method-

execution join point in AspectJ. Both mapping options are reasonable normalization

choices, yet, as illustrated in Chapter 3, the decision may change the collective be-

havior. Therefore, the mapping may be subjected to adjustments by the composition
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designer.

The granularity operation in mddi is defined in relation to a particular code

element in the program, such as a method, a class, or an aspect. The debug operation

is of the form:

GRANULARITYM : Elements → P (Shadows)

Given a code element C and an aspect mechanismM, the operation returns the join
point shadows in C that are in the granularity ofM:

GRANULARITYM(C) =
{
S ∈ C| shadow(S) ∧ S.kind ∈ granularity(M)

}
Note that the operation returns join point shadows, since it relates to code elements
and not to the dynamic execution of the program.

As a usage example for this granularity operation, consider the method push

defined in the Stack class (Listing 3.1, lines 5–8). The method includes five join

point shadows: a field-get and a field-set in line 6, another field-get and field-set in

line 7, and a method-execution shadow. The granularity operations of the different

mechanisms evaluate to:

GRANULARITYAspectJ(push) =
{
field-get(ind),
field-set(buff),
field-get(ind),
field-set(ind),
method-execution(push)

}

GRANULARITYCool(push) =
{
method-execution(push)

}

GRANULARITYValidate(push) =
{
field-set(buff),
field-set(ind),
method-execution(push)

}
Note that the result returned by the Cool granularity operation reflects a change
that was made to the composition in order to resolve the bug detected in Chapter 3.
Cool and Validate were reconfigured to operate on the same method-execution join

20



points. The granularity of Validate includes join point computations in which input
validation makes sense, namely, computations of kinds method-invocation (mapped
to method-call or to method-execution), object-creation (constructor-execution), and
field-assignment (field-set).

Another unified operation, GRANULARITY(C), returns the join point shadows

in code element C that any of the mechanisms may affect. It is the union of all the

mechanism-specific granularity features. In the case of push,

GRANULARITY(push) = GRANULARITYAspectJ(push)

However, should AspectJ be excluded from the composition, the resulted set would
be different: the field-get shadows would not be included, since shadows of this kind
are neither part of the granularity of Cool nor of Validate.

Visibility Operations The join point visibility feature of an aspect mechanism

classifies join points in the granularity as either visible or invisible. Invisible join

points are not available for advising. The visibility operation in mddi has the form:

V ISIBILITYM : Elements → P (Shadows),

where V ISIBILITYM(C) denotes the set of join point shadows in C that are visible
toM. A unified visibility operation, V ISIBILITY(C), returns the set of shadows in
C that are visible to any of the aspect mechanisms. For a mechanismM and a code
element C, the following proposition holds:

V ISIBILITYM(C) ⊆ GRANULARITYM(C)

To illustrate the difference between granularity and visibility, consider a

ConditionalTracer aspect in AspectJ (Listing 4.1). In AspectJ by design join

point shadows within an if pointcut (line 4) are invisible. Therefore, whereas ap-

plying the AspectJ granularity operation on the aspect ConditionalTracer results

in:
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Listing 4.1: A conditional tracer in AspectJ
1 pub l i c aspect Condi t iona lTracer {
2 pub l i c s t a t i c boolean t r a c e = f a l s e ;
3 be f o r e ( ) : execut ion (∗ BoundedStack . pop ( ) )
4 && i f ( t r a c e ) {
5 System . out . p r i n t l n ( th i s Jo inPo in t ) ;
6 }
7 }

GRANULARITYAspectJ(ConditionalTracer) =
{
field-set(trace),
advice-execution(before),
field-get(trace),
method-call(println), . . .

}
,

the visibility operation returns:

V ISIBILITYAspectJ(ConditionalTracer) =
{
field-set(trace),
advice-execution(before),
method-call(println), . . .

}
.

Note that the field-get(trace) shadow, which corresponds to the read operation of

the Boolean trace field in line 4, is in the granularity but not in the visibility.

Advisability Operations The join point advisability feature defines advising con-

straints for various types of join points, or even for specific join points [13]. Recall

that each mechanism declares one or more advice types. For instance, AspectJ

defines three types of advice: before, after, and around. By default, an aspect

mechanism may apply any type of advice on a visible join point. However, in some

cases the composition designer may be interested in restricting the potential effect

of a particular aspect mechanism, that is, preventing advice of a certain type from

being applied at certain join points. For instance, it may be defined that AspectJ

cannot declare an around advice at executions of Cool’s lock and unlock advice.

This may be essential in order to prevent AspectJ aspects from overriding Cool’s
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synchronization logic.

ADV ISABILITYM lets the developer investigate how an aspect mechanism may

affect a particular join point shadow in the program. The operation returns the advice

types that the mechanism may apply at the shadow:

ADV ISABILITYM : Shadows → P (AdviceTypes)

Given an aspect mechanismM and a shadow S, the advisability operation is defined
by:

ADV ISABILITYM(S) =
{
T ∈M| adviceType(T ) ∧ applicable(T,S)

}

Continuing the example, if S is advice-execution(lock) shadow in Cool, then its

advisability in relation to AspectJ would be:

ADV ISABILITYAspectJ(advice-execution(lock)) =
{
before, after

}
This means that AspectJ may only apply before or after advice at a lock ex-
ecution. Another unified advisability operation, ADV ISABILITY(S), returns the
advice types that may be added by any aspect mechanism. In a configuration that
includes AspectJ, Cool, and Validate,

ADV ISABILITY(advice-execution(lock)) =
= ADV ISABILITYAspectJ(advice-execution(lock))

The same result is returned because advice-execution join points are not in the gran-
ularity of Cool nor of Validate, hence by specification they cannot affect the join
point.
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Chapter 5

Implementation

5.1 MDDI Implementation

mddi is implemented as a multi-dsal extension to AJDI, a debug interace for aspect-

oriented applications introduced in aoda. AJDI itself is an extension to the Java De-

bug Interface (JDI). The implementation of mddi requires debug information, which

should be attached to the target multi-dsal application. A common technique which

we use is to add debug attributes to the class files of the application. We formulate

the debug attributes that are needed for implementing the mddi operations. For the

operations that query the runtime state, we extend existing aoda debug attributes.

For the composition specification operations, we define new debug attributes.

The debug attributes should be added to the class files of the application during

the weaving process. In a multi-dsal setup, the weaving process is controlled by an

aspect composition framework. Since none of the existing frameworks handles debug-

ging as part of its weaving process, we extend the Awesome composition framework

for that purpose.

The overall multi-dsal debug process over Awesome is illustrated in Figure 5.1.

Awesome is provided with multiple aspect mechanisms and with a composition spec-
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Figure 5.1: The multi-dsal debugging process

ification, and outputs a single multi-dsal weaver. Awesome is customized such that

the produced weaver is embedded with a multi-dsal debug agent. The weaver is

provided with an application written in multiple aspect languages, and during the

weaving process the agent adds the dedicated debug attributes to the woven class

files of the application. These attributes are then consumed by mddi, which is uti-

lized by the multi-dsal debugger.

The embedded multi-dsal debug agent is significantly different than that of

aoda. In aoda, in order to add debug support for a particular aspect language,

one must implement an appropriate debug agent. This is a difficult task since it

requires to understand the structure of the debug attributes, as well as knowing how

to embed them in the resulting class files. In contrast, the multi-dsal debug agent

that is added to Awesome relieves the designer of the aspect mechanism from this

tedious implementation task. Instead, the process of adding the debug attributes

is handled by the agent. The information needed for producing the attributes that

enable the composition operations is extracted by the agent from the composition

specification. The information needed for the attributes of the state and behavior

operations is fetched from dedicated interfaces that should be implemented by the

developer of each mechanism.

In the rest of this chapter, we present the implementation of the debug opera-

tions for inspecting the composition specification, and for investigating the runtime

state and behavior. For each kind of operation, we describe the corresponding mddi

elements, and the changes made to the Awesome weaving process and to AJDI.

25



5.1.1 Composition Specification Operations

mddi extends AJDI with several methods and types for inspecting the composition

specification. The methods, listed here, realize the debug operations that were de-

scribed in Chapter 4.

JoinPointComputation [ ] ∗ . g r anu l a r i t y ( ) ;

JoinPointComputation [ ] ∗ . g r anu l a r i t y (Mechanism ) ;

JoinPointComputation [ ] ∗ . v i s i b i l i t y ( ) ;

JoinPointComputation [ ] ∗ . v i s i b i l i t y (Mechanism ) ;

AdviceType [ ] JoinPointComputation . a d v i s a b i l i t y ( ) ;

AdviceType [ ] JoinPointComputation . a d v i s a b i l i t y (Mechanism ) ;

The methods let the debugger inspect the granularity, visibility, and advisability

of the composition in relation to specific program elements. Each of the granularity or

visibility methods (lines 1-4) is added to the AJDI elements ClassType, Aspect, and

Method. The first granularity method (line 1) returns the granularity with respect

to all aspect mechanisms. The second (line 2) returns the granularity in relation

to a specific mechanism. The same applies to the visibility methods (lines 3-4).

The advisability methods operate on a join point computation (shadow). The first

method (line 5) returns all the advice types that may be applied at the shadow, of all

aspect mechanisms. The second method (line 6) returns the advice types of a specific

mechanism.

The implementation of the methods is facilitated by three debug attributes that

are added to the woven class files of the multi-dsal application during the weaving

process: GranularityAttribute, VisibilityAttribute,

and AdvisabilityAttribute.

GranularityAttribute During the extended Awesome weaving process, the gran-

ularity of each method, class, or aspect, is calculated with respect to each aspect
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mechanism in the composition. The result is saved in a debug attribute

(GranularityAttribute) that is attached to each corresponding code element in the

woven class files. The following pseudo code shows the calculation of the granularity

attribute for a method or a class element C in the base system:

Granu la r i tyAtt r ibute a t t ;

Shadow [ ] shadows = r e i f y (C ) ;

foreach s in shadows

at t . append ( s ) ;

foreach mech in mechanisms

i f ( g r anu l a r i t y (mech) includes s . kind )

a t t . append (mech ) ;

endforeach

at t . append ( newl ine ) ;

endforeach

The reify method in line 2 returns all the join point shadows in C. In line 4, the

signature of each shadow is appended to the debug attribute (a debug attribute is

simply a string that is later added to a class file). Afterward, we check for each

of the mechanisms in the composition whether its granularity includes the kind of

the current shadow (lines 5-6). If so, the name of the mechanism is written to the

attribute (line 7). By that, we are able to tell, for each of the shadows in C, to which

of the granularities of the different aspect mechanisms it belongs. We may also infer

the shadows that do not belong to any granularity.

This calculation works for methods and classes in the base system. The calculation

of the granularity attribute for aspects is slightly different. For an aspect A, the

second line in the calculation is replaced by the line:

Shadow [ ] shadows = exposed_shadows (A ) ;
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An aspect language, in particular a domain-specific one, may operate in a higher level

of abstraction. As a result, some of the shadows of its aspects may be considered

internal. It is the responsibility of the composition designer to decide which shadows

in the aspects of each mechanism should be exposed for the use of others. For instance,

a Cool coordinator reads and writes to local conditional and ordinary variables,

and to fields of the coordinated object. Therefore, it is reasonable to expose in a

coordinator the corresponding field-get and field-set shadows. However, the designer

may decide not to expose the constructor-execution and initialization computations

because they do not reflect Cool’s visible operation process. Hence, the controlled

exposed_shadows method is used instead of reify. The method returns all the

shadows in the aspect A that the designer decided to expose.

VisibilityAttribute The calculation of the visibility attribute is similar to that

of the granularity attribute. For a given program element, all its shadows are first

retrieved (either by reify or by exposed_shadows). Then, for each shadow and

aspect mechanism, it is checked whether or not the shadow is in the visibility of the

mechanism.

The check is made against the composition specification, which is available during

the Awesome weaving process. The designer of each aspect mechanism defines the

granularity, i.e., the kinds of join points that the mechanism may potentially affect.

The designer also provides, for each join point kind in the granularity, a predicate

that tells in which circumstances join points of this kind are not visible.

AdvisabilityAttribute This attribute indicates, for each code element to which

it is attached, the advice types that may affect the visible join point shadows in the

element. Each line in the attribute describes the advisability of a particular visible

shadow. It holds the shadow’s signature, and a list of the advice types that may be

applied to it.
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Also here, the calculation of the attribute is based on consulting the composition

specification. The composition designer defines in the composition specification ad-

visability restrictions. Each restriction consists of a join point kind, and a list of the

disallowed advice types. For example, consider the following restriction:

advice-execution(validate) aspectj.around

This restriction specifies that an AspectJ around advice cannot be applied at ex-

ecutions of a validate advice. The restriction prevents the validate advice from

being overridden.

5.1.2 Runtime State and Behavior Operations

In this chapter we describe the modifications made in order to implement the part of

mddi that deals with the inspection of runtime state and behavior.

Extending the AspectAttribute An extended aoda debug attribute called

AspectAttribute is attached to each class file that represents an aspect of any mech-

anism. This debug attribute includes general information about the aspect (e.g., the

defining mechanism), and about the different advice that it defines (e.g., their type

and source code locations). The attribute is generated by the multi-dsal debug

agent. For that, the agent queries each mechanism for information about its aspects

via an extended Awesome API, which is described next.

Extending the Awesome API In Awesome, the interface IMechanism represents

an abstract aspect mechanism. IMechanism is implemented by each of the concrete

aspect mechanisms in the composition. We extended IMechanism with several meth-

ods needed by the multi-dsal debug agent to retrieve structural information about

aspects in the application. Examples of methods that were added are:

S t r ing getName ( ) ;
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boolean handledByMe ( Aspect azpect ) ;

L i s t<IE f f e c t > g e tE f f e c t s ( Aspect azpect ) ;

The debug agent, when producing an AspectAttribute for a particular aspect, first

calls the handledByMe method of each mechanism for determining to which of them

the aspect belongs. Then, information is retrieved from the relevant mechanism, e.g.,

the name of the mechanism (by calling getName), and the list of the effects (advice)

that the mechanism may apply to program code (via method getEffects).

The interface IEffect is also extended:

AdviceType getType ( ) ;

ISourceLocat ion [ ] ge tSourceLocat ions ( ) ;

The first method returns the type of the advice. For example, it returns lock or

unlock for a Cool advice. The second method returns the locations in the source

code to which the advice is mapped. The method returns an array type since in some

cases an advice may be mapped to several different locations in the source code (recall

Chapter 4.1).

The author of each aspect mechanism must implement these methods to enable the

creation of the debug attributes. However, the implementation effort is reasonable,

since the data that the methods need is already required for the weaving process. In

our multi-dsal composition example, a total addition of 25 lines-of-code were needed

for the AspectJ mechanism to be debuggable; for the Cool mechanism 35 new lines-

of-code were added, and making Validate debuggable required 30 lines-of-code.
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Chapter 6

Evaluation

To evaluate the mddi implementation, we built a simple command-line, AwesomeDe-

bugger, capable of debugging multi-dsal programs. We demonstrate the debugging

process on the Stack example (Chapter 3).

6.1 Debugging Foreign Advising

Foreign advising [13] refers to the case where an aspect of one mechanism advises

join points in foreign aspects, i.e., aspects that belong to other mechanisms. The

scope pointcut defined in the Tracer aspect (Listing 3.2) includes advice-execution

join points contained in other foreign aspects, e.g., executions of Cool’s lock and

unlock advice. When applying an advice around join points in the scope, Tracer

calls proceed (line 8). This is essential in order to resume the execution of the traced

join points.

Consider a case where Tracer defines another advice that only monitors executions

of Cool’s unlock advice; and the call to proceed is mistakenly omitted. As a result,

the unlock advice is not executed and thus the acquired lock is not released. The

next thread that requests the lock is halted, and eventually the program may enter a

deadlock.

31



When attaching the debugger to the deadlocked program we see the following

stack trace in one of the halted threads:

(awdb) where
[ 0 ] Stack . pop Stack . java :13
[ 1 ] WriteReadThread . a c c e s sBu f f e r WriteReadThread . java :14
[ 2 ] Buf ferCl ientThread . run Buf ferCl i entThread . java : 8

We further examine the advice that affect the execution of the pop method (in frame
0):

(awdb) show advice
[ Aspect ] [ Locat ion ] [ Type ] [ Skipped ] [ Mechanism ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
coo l . StackCoord (2 , 3 , 13 , 14) Lock 0 COOL
aspe c t j . Tracer (3 ) BEFORE 0 AJ
a sp e c t j . Tracer (6 ) AROUND 0 AJ
a sp e c t j . Tracer (10) AFTER 0 AJ
coo l . StackCoord (2 , 3 , 15) Unlock 1 COOL

The Skipped column indicates whether an advice was executed or skipped (‘0’ means
executed, ‘1’ means skipped). We can see (in the last line) that the Cool unlock
advice was skipped. We can either fix our around advice to always proceed, or
change the composition specification so that Cool operations cannot be advised by
an around advice.

6.2 Debugging Co-Advising

Co-advising [13] refers to the case where advice belonging to different mechanisms

are applied at the same join point. Often, a specific advice order should be set or the

program may behave unexpectedly. For instance, if AspectJ advice are allowed to

execute before Cool’s lock advice or after Cool’s unlock advice, then the AspectJ

advice may unsafely access program resources.

To illustrate such a situation, suppose we add a new top method to class Stack:

Object top ( ) {

re turn buf [ ind −1] ;

}
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Calling top from such an AspectJ advice can yield a wrong result or an

ArrayIndexOutOfBoundsException, since the access of both buf and ind is not

synchronized.

When examining the advice executed at top we get:

(awdb) show advice
[ Aspect ] [ Locat ion ] [ Type ] [ Skipped ] [ Mechanism ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a sp e c t j . Tracer (3 ) BEFORE 0 AJ
coo l . StackCoord (2 , 3 , 13 , 14) Lock 0 COOL
aspe c t j . Tracer (6 ) AROUND 0 AJ
coo l . StackCoord (2 , 3 , 15) Unlock 0 COOL
aspe c t j . Tracer (10) AFTER 0 AJ

It may be inferred that the cause for the problem is an incorrect advice execution
order that allows unsafe stack accesses. Hence we change the specification and set
lock (unlock) to execute before (after) any AspectJ advice.

6.3 Debugging Advice Code

Another source for bugs is coding errors in the base program or in the aspects of

the different dsals. As an example, the coordinator in Listing 6.1 contains a simple

bug: len is mistakenly decremented instead of being incremented (line 9). As a

result, full is never set to true (line 10). The requires condition in line 6 is thus

always met, allowing new elements to always be added to the stack. However, buff

has a limited capacity and an ArrayIndexOutOfBoundsException will eventually be

thrown.

We suspect that the problem lies in some advice code. We begin with checking

the advice applied at the push method:

(awdb) show advice
[ Aspect ] [ Locat ion ] [ Type ] [ Skipped ] [ Mechanism ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
va l i d a t o r . Stack (4 ) Val idate 0 Va l idator
coo l . StackCoord (2 , 3 , 6) Lock 0 COOL
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Listing 6.1: Stack coordinator with a bug
1 coo rd ina to r Stack {
2 s e l f e x {push , pop } ;
3 mutex {push , pop } ;
4 i n t l en =0;
5 cond i t i on f u l l=f a l s e , empty=true ;
6 push : r e qu i r e s ! f u l l ;
7 on_exit {
8 empty=f a l s e ;
9 len−−;
10 i f ( l en==buf . l ength ) f u l l=true ;
11 }
12 pop : r e qu i r e s ! empty ;
13 on_entry { len−−; }
14 on_exit {
15 f u l l=f a l s e ;
16 i f ( l en==0) empty=true ;
17 }
18 }

a sp e c t j . Tracer (3 ) BEFORE 0 AJ
a sp e c t j . Tracer (6 ) AROUND 0 AJ
a sp e c t j . Tracer (10) AFTER 0 AJ
coo l . StackCoord (2 , 3 , 7) Unlock 0 COOL

The Location column links each advice to the corresponding source code (the num-
bers in parenthesis indicate the source lines relevant for each advice). The information
helps in locating the specific advice code segments where the bug should be searched
for. We check the code of each advice for errors, and eventually the bug is located in
the on_exit declaration of the unlock advice.
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Chapter 7

Conclusion

In order for dsals to be used in practice, multi-dsal development has to be cost-

effective. Cost effectiveness is a requirement that applies not only to the implemen-

tation of dsals, but just as much to the effective use of these dsals [17]. While

significant progress has been made on the language implementation front, less atten-

tion has been given to making the development of applications with multiple dsals

practical.

Effective development of a multi-dsal application requires appropriate tool sup-

port. One standard tool is a dedicated debugger. A multi-dsal debugger should

support the inspection of a running application in terms of the AOP abstractions

introduced by the different dsals, as well as their collaborative interaction. Ad-

ditionally, the debugger should support inspection of the composition specification,

since the composition of the various aspect mechanisms itself may be the source for

unexpected behavior in the composed program.

In this thesis the unique problems associated with debugging multi-dsal appli-

cations were illustrated. A multi-dsal debug interface (mddi) was specified, and

a corresponding implementation for the Awesome composition framework was pre-

sented. The different implementation parts of mddi include the formulation of dedi-
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cated debug attributes, and a generic multi-dsal debug agent that is integrated into

the Awesome weaving process. mddi consumes the debug attributes and offers a set

of debug operations to be used by a multi-dsal debugger. An AwesomeDebugger

command line tool was implemented to validate the overall debug infrastructure. The

tool was used to analyze the source of different bugs that may be found in multi-dsal

programs.

We have focused on the debugging of a dominant family of reactive aspect mech-

anisms known as join point and advice [11]. The multi-dsal debug infrastructure

was implemented for an AspectJ-based environment. Yet, a major portion of the

implementation may be reused in other setups as well. For example, mddi may be

utilized in a JBoss AOP environment [20]. For that, one would need to implement a

multi-dsal debug agent that provides the defined debug information to mddi. While

the multi-dsal debug agent in Awesome is integrated into the weaver, the JBoss

debug agent will be a remote agent included in the JBoss AOP runtime, similar to

the approach taken in aoda [4]. Debugging other non-reactive aspect mechanisms is

a topic left for future work.
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Appendix A

Developer Guide

The guide describes the internal structure of the debugger framework. It can be used

by developers wishing to further develop the framework or port it to newer version of

AspectJ.

A.1 Code Structure

The framework is made up from several projects that implement the various compo-

nents, plus an example project.

A.1.1 awesome.platform

This project implements the base Awesome framework. The implementation is based

on the AspectJ code (version 1.6.5). It includes the basic platform code without

the different individual weavers. The base framework coordinates the overall weaving

process and writes the binary class files that include the debug information. It was

originally created by Kojarski et al [12] by refactoring AspectJ version 1.5.2 and

ported to a newer version as describer in section A.2.
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A.1.2 aw.coolajval

This project implements the “coolajval” weaver – a weaver that handles the AspectJ,

Cool and Validate languages. It is made up of the individual weavers plus a

configuration aspect.

A.1.3 awesome.adbbcel

This project implements the classes that read and process the debug attributes from

the binary class files. It is part of the AODA framework and was extended to sup-

port multi-dsal debugging. We added support for the retrieval of new attributes

introduced by the Awesome debugger. The new attributes are:

To support the retrieval of the new attributes, the following ADBBCEL classes

were modified:

1. AspectAttribute: added support for the following properties

(a) Mechanism name.

(b) For each effect: its type in DSAL terms (i.e. COOLLock ) and the originat-

ing DSAL source code lines.

2. JoinPointGranularityAttribute: this is a new class that represents a new

debug attribute. It contains the required information for the granularity, visi-

bility and advisability operations. It lists for each method all of the join point

shadows it contains. For each such shadow it lists which mechanisms may advise

it, and with which kind of advice.

A.1.4 AJDI

This project implements AJDI which is the interface which is used by the debugger

application. It is an extension to the standard JDI used by Java debuggers and
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originated from the AODA framework. It has been extended to support multi-dsal

debugging. AJDI uses ADBBCEL to read the debug information from the class files.

The following changes were made:

1. Interface AspectInfoProvider: added getMechNameForAspect - this resolves

the DSAL mechanism name for a given aspect. It is fetched directly from the

aspect attribute of the aspect class.

2. Class AdviceDescriptor and the Advice interface, added two data members

with accessors. These members are initialized from the values read from the

Aspect Attribute.

(a) effectType - the effect type in the DSAL terms, for example, COOLLock.

(b) sourceLines - the line numbers in the DSAL source file represent this

effect.

3. Interface Advice: added the mechanismName method. This is read directly from

the Aspect Attribute.

4. Interface MethodMethod: added two methods. These methods are implemented

by directly reading from the new JoinPointGranularityAttribute.

(a) exposedJoinPoints - returns all join points in the method (used by the

granularity operation)

(b) visibleJoinPoints - returns all visible join points for a given mechanism

(used by the visibility operation)

A.1.5 awdb

A simple debugger application that is based on AJDI (see appendix B). This project

depends on AJDI and ADBBCEL.
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A.2 Refactoring AspectJ to Create Awesome

The following classes should be refactored:

• aspectj\weaver\bcel\BcelAdvice.java

• aspectj\weaver\bcel\BcelClassWeaver.java

• aspectj\weaver\bcel\BcelMethod.java

• aspectj\weaver\bcel\BcelShadow.java

• aspectj\weaver\bcel\BcelWeaver.java

• aspectj\weaver\bcel\BcelWorld.java

• aspectj\weaver\bcel\LazyClassGen.java

• aspectj\weaver\bcel\LazyMethodGen.java

• aspectj\weaver\bcel\ProceedComputation.java

• aspectj\weaver\bcel\Range.java

• aspectj\weaver\bcel\ShadowRange.java

• aspectj\weaver\Advice.java

• aspectj\weaver\Shadow.java

The suggested way to apply the refactoring is to compare the current version of

the platform against the AspectJ version it was derived from and apply the same

changes to these files.
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Appendix B

User Guide

This guide is intended for developers who wish to introduce a new aspect mechanism.

It also explains how to use AwesomeDebugger.

B.1 Developing an Aspect Mechanism with Debug

Support

An aspect mechanism is implemented as an aspect that extends the AbstractWeaver

aspect. To add functionality for the mechanism, several of its methods should be

implemented. Some of them handle the weaving process of the mechanism, and

others add debugging support. In addition, an aspect mechanism may advise – and

by that to refine – the overall weaving process of the Awesome platform. For example,

advising the reify process may control which shadows are exposed from the aspects

of the mechanism. The base aspect AbstractWeaver defines several useful pointcuts

for that purpose.

The following methods control the weaving process of the mechanism:

• public List<IEffect> match(BcelShadow shadow): should return a list of

effects that advise the given shadow.
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• public List<IEffect> order(BcelShadow shadow, List<IEffect> effects):

should sort the given effects that advise the shadow.

• public void setInputFiles(IClassFileProvider input): this method is

called by the weaver after the compilation of the source file is completed and

the weaving is just about to start. This provides the mechanism with the

compiled class files of the program.

These methods should be implemented if a debugging support is desired:

• public boolean handledByMe(LazyClassGen aspectClazz): is called for as-

pects only; should return true if this aspect is processed by the mechanism.

• public List<IEffect> getEffects(LazyClassGen aspectClazz): returns a

list of all effects defined by the aspect.

• public PerClause.Kind getPerClause(LazyClassGen aspectClazz): returns

the per type of the class, e.g. singleton, per object.

• public String getName(): returns the name of the mechanism.

In addition, each effect (“advice” in AspectJ terms) introduced by the mechanism

should be represented as a class. The class should implement the interface IEffect

having the following methods:

• public void transform(BcelShadow shadow): applies the effect for the given

shadow.

• public void specializeOn(Shadow shadow)

• public Member getSignature(): returns the effect’s method’s signature.

• public String getPointcutString() :returns the pointcut string.
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• public ISourceLocation getSourceLocation(): returns the location in the

source of the effect.

• ublic UnresolvedType getDeclaringType(): returns the aspect that defines

the effect.

• public Test getPointCutTest(): returns the pointcut test.

• public String getType(): return the type of the effect (in DSAL terms).

B.2 Compiling COOL Sources

COOL source files are compiled and weaved in two phases. In the first phase, the

Cool source file is compiled into an annotated Java source file. This source file can

be used as an input file to the Cool weaver. The Cool front end is part of the

aw.coolajval project (see A.1.2) and is invoked by launching the

cool.frontend.translator.CoolFrontEnd class. It will convert the source files

given on the command line.

B.3 AwesomeDebugger User Guide

AwesomeDebugger is a simple debugger for multi-dsal programs used to validate

mddi. It uses a command line interface similar to the original Java debugger (jdb).

Once started, it displays the command prompt (awdb) and waits for user input.

The help command lists all possible commands, and can also provide command

specific help. The different commands examine the state of the remote VM while

it is suspended (for example, after hitting a break point). When the remote VM is

running the debugger does not accept input.
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B.3.1 Supported Commands

B.3.1.1 help [command name]

If [command name] is given, short description of the command is printed. Otherwise

it lists all commands that are available.

B.3.1.2 attach <address>:<port>

Attaches to a remote VM (using JDWP over TCP/IP) that is running in the specified

address. The VM must be suspended and listening for debugger connections on the

specified port. After the remote VM is attached it remains suspended.

For example, to make the JVM suspend on start and listen for incoming debugger

connections it should be run with he following parameters: -Xrunjdwp:transport=

dt_socket,server=y,suspend=y,address=4000

B.3.1.3 detach

Detaches from the remote VM. The remote VM resumes running.

B.3.1.4 threads

Lists all the running threads in the debugged VM.

B.3.1.5 thread

Switches the current context to the given thread ID (as given in the output threads

command).

B.3.1.6 cont

Continues the execution of the program until it is finished or a break point is reached.
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B.3.1.7 classpath

Specifies the class path where the compiled classes are found. Specifying the correct

class path is necessary to enable multi-dsal aware debugging.

B.3.1.8 break <method>

Places a break point at the begging of the given method.

B.3.1.9 breakat <class id>:<line number>

Places a break point at the the given location.

B.3.1.10 where

Prints the stack frame of the frame currently in context (including hook frames).

B.3.1.11 show

The show commands queries the application for AOP related information.

B.3.1.12 show alljoinpoints

Lists all joinpionts in the current examined method.

B.3.1.13 showadvisability <joinpoint id> <mechanism name>

Lists the mechanisms for how the given joinoint (with the ID returned from (show

alljoinpoints ) may be advised by the given mechanis.

B.3.1.14 showvisiblejoinpoints <mechanism name>

Lists all the joinpoints current examined method that are visible to the given mech-

anism.
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B.3.1.15 show advice <joinpoint ID>

Lists all advice relevant for the given joinpoint.

B.4 Example Debug Session

This section explains how to:

• Compile and weave an example multi application using a multi-mechanism.

• Debug the application using AwesomeDebugger.

The files for the demonstration program are available with the rest of the MDDI source

code at http://aop.cslab.openu.ac.il/research/awesome/debugger/. They are

all included in “demo.zip”. This zip file includes 3 Eclipse projects, which are required

for the demo session. To use them:

1. Install Eclipse version 3.6.2 with the AJDT plugin version 2.2.0.

2. Start Eclipse with a new empty workspace.

3. Import the projects into the new workspace:

(a) Right click in the empty Package Explorer

(b) Import ... General ... Existing Projects in Workspace ... Select the archive

file ...

(c) Import all three projects

There are 3 projects now in the workspace:

1. aw.coolajval.example: This project holds the source code of the example ap-

plication and provides different launch configurations for the different stages of

the multi-dsal development process.
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(a) verify.buildstack.launch - builds the stack library (into stack.jar)

(b) verify.buildapp.launch - build the multi-threaded application (app.jar)

(c) verify.execute.launch - launches the application

(d) verify.execute.debug.launch - launches the application in debug mode (it

will start suspended)

2. aw.coolajval: this project holds the source code of the three different aspect

mechanisms used in the application.

3. awdbg: this project implements the command line debugger used in the exam-

ple. It is run by launching the awdb.Main class.

To build the stack library and the application we use verify.buildstack.launch ver-

ify.buildapp.launch, respectively. This is done by right clicking on the launch file and

selecting “Run As” and then the requested launch configuration.

After the stack library and the application are built and the corresponding jars are

created, we launch the application using the verify.execute.debug.launch configura-

tion. Once started, the application is suspended and waits for an incoming debugger

connection. We are ready to execute AwesomeDebugger (debugger.Main class in

the awdb project) and start debugging.

At the debugger command line, we first specify our class path (in this example,

the full path to app.jar). This is required and enables the debugger to locate the

compiled class files with the debug information.

(awdb) c l a s spa th

C:\ aop\awesome_svn\workspace\awesome . c o o l a j . example .

v e r i f y \app . j a r

Next, we attach to the suspended VM (that is running locally):
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(awdb) attach 1 2 7 . 0 . 0 . 1 : 4 0 0 0

Attached s u c c e s s f u l y . Use ’ cont ’ to resume

Now we place a break point:

(awdb) break base . BoundedStack . push

Added breakpo int [ 1 ] at base . BoundedStack . push

And resume the program:

(awdb) cont

Once the break point is hit we can start examining the running program as we

saw in section 6.

(awdb ) [ 8 9 ] Hit breakpoint [ 1 ] at base . BoundedStack . push

1 time ( s )

base \BoundedStack . java :21

(awdb) where

Thread 89 GoodWriter [ 0 ] base . BoundedStack . push

BoundedStack . java :20

TargetExecuted : f a l s e

Mechanism Aspect Type Source Locat ion Skipped E f f e c t Type

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ 1 ] base . GoodWriter . run base \GoodWriter . java :44

[ 2 ] . Source not a v a i l b l e
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תקציר

בשפות פיתוח המערבת גישה הוא היבטים מונחות שפות מספר המשלב היבטים מונחה פיתוח

(domain specific languages) לתחום ייחודיות שפות בשילוב AspectJ כגון כלליות היבטים מונחות

המנגנונים כאשר (aspect mechanisms) יחיד היבטים מנגנון ידי על ממומשת שפר כל .COOL כמו

המאפשרת מערכת .(composition specification) ההרכבה מפרט פי על ביניהם מתואמים השונים

.(aspect composition framework) היבטים הרכבת מערכת מכונה כזו הרכבה

הללו השפות את המממשים המנגנונים בין והתיאום השילוב הוא בתחום עיקרי מחקר מאמץ

ולא כמעט זאת, למרות ההיבטים. הרכבת במערכות (aspect mechanisms ־ היבטים (מנגנוני

כלים עם פיתוח סביבת יצירת למעשית. זו פיתוח שיטת יהפכו אשר כלים לפיתוח מאמץ הוקדש

זו. גישה של ההצלחה לצורך חיונית הנה שפות ומרובה היבטים מונחה לפיתוח ייעודיים

מנפה שפות. מרובת היבטים מונחית לתכנית שגיאות מנפה שכזה: בכלי מתמקדת זו עבודה

בנוסף, שלה. ההתנהגות ואת ריצה בזמן התכנית מצב את לחקור למפתח מאפשר השגיאות

ההיבטים מנגנוני בין הגומלין יחסי את ולתחקר ההרכבה, מפרט את לתחקר יכול המפתח

קיימות שלא מסוימות לשגיאות לגרום עלול שגוי ומפרט מאחר חיונית היא זו יכולת השונים.

לניפוי תשתית לתיאור מפרט הצגנו זו בעבודה השפות. מבין יחידה בשפה מפתחים כשאר

.Awesome ־ קיימת היבטים הרכבת מערכת בעזרת מימוש סיפקנו כן כמו שגיאות.
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