
The Open University of Israel
Department of Mathematics and Computer Science

On Dependent Variables in Linear Temporal
Logic and Reactive Synthesis

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science

The Open University of Israel
Department of Mathematics and Computer Science

By
Eliyahu Basa

Prepared under the supervision of Dr. Dror Fried.
Full collaboration with Prof. S. Akshay and Prof. Supratik Chakraborty.

April 2024

Abstract

Given a Linear Temporal Logic (LTL) formula over input and output vari-
ables, reactive synthesis requires us to design a deterministic Mealy ma-
chine that gives the values of outputs at every time step for every sequence
of inputs, such that the LTL formula is satisfied. In this research, we inves-
tigate the notion of dependent variables in the context of reactive synthe-
sis. Inspired by successful pre-processing steps in Boolean functional syn-
thesis, we define dependent variables as output variables that are uniquely
assigned, given an assignment, to all other variables and the history so far.
We describe three equivalent approaches for dependent variables: LTL for-
mula, NBA, and the ω-language. Using this, we show that dependent
variables are common in reactive synthesis benchmarks. Next, we de-
velop a novel synthesis framework that exploits dependent variables to
construct an overall synthesis solution. By implementing this framework
using the widely used library Spot, we show that when reactive synthe-
sis exploits dependent variables, it can solve some problems beyond the
reach of several existing techniques. Further, among benchmarks with de-
pendent variables, if the number of non-dependent variables is low (≤ 3
by our experiments), our method outperforms all state-of-the-art tools for
synthesis. This thesis contributes in terms of theoretical aspects and prac-
tical aspects. From theoretical aspects, we show new definitions, novel
approaches, and algorithms. In practice, we developed a tool that imple-
ments the suggested algorithms and definitions, in some terms, this tool
outperforms state-of-the-art tools. The research was published at TACAS
2024 conference.

i

Acknowledgements

I am grateful to Dr. Dror Fried from the Open University of Israel for his
supervision, insight, and guidance. My gratitude also goes to Professor
Supratik Chakraborty and Professor S. Akshay from IIT Bombay for their
essential collaboration and insights in this research.

ii

Contents

1 Introduction 1

1.1 Thesis Flow . 4

1.2 Thesis Contribution . 4

2 Background 6

2.1 Linear Temporal Logic . 6

2.2 Synthesis . 11

2.3 Symbolic Representations . 13

2.4 Experiments background . 15

3 Previous Work 18

4 Dependent variables in Linear Temporal Logic 20

4.1 Defining dependent variables 20

4.2 Finding dependent variables 21

4.3 Dependent variables by formula 23

4.4 Dependent variables by automaton 25

5 Dependency in Reactive Synthesis 31

5.1 High Level Overview . 31

5.2 Synthesis Dependent Variables 33

5.3 Synthesis Correctness . 36

6 Symbolic Implementation 40

iii

CONTENTS iv

6.1 Identifying and projecting dependency 40

6.2 Implementing TX . 43

6.3 Merge strategies . 45

7 Experiments and Evaluation 48

7.1 Comparing automata approach and formula approach . . . 48

7.2 Dependency Prevalence . 50

7.3 Dependency in Synthesis . 53

8 Conclusion 60

8.1 Future work . 60

List of Figures

2.1 Example of non-deterministic finite automaton that accepts
all the strings that end with 1. 10

2.2 Deterministic finite automaton constructed with Rabin-Scott
method on the NFA from example 2.2 10

2.3 Example of a Mealy machine for the specification¬o∧G(o ↔
Xi), where ΣI = {i}, ΣO = {o}, Q = {s0, s1}, the state tran-
sition is the edges between the states combined with the in-
put assignment, the output function is the assignments of
the output variable on the edges and the init state is s0 12

2.4 AIG example of the formula x2 ∧¬(¬x1 ∧¬x3) ≡ x2 ∧ (x1 ∨
x3) . 13

2.5 Illustration of the AIGER corresponds to the Mealy machine
in figure 2.3. 15

2.6 ROBBD example of the function x2 ∧ (x1 ∨ x3) with the vari-
able order: x1, x2, x3. 16

4.1 An Example NBA . 26

5.1 Synthesis using dependencies 33

5.2 Example of a transducer of dependent variables displayed
as an automaton. 36

6.1 AIG TY, strategy of non-dependent variables 46

6.2 AIG TX, strategy of dependent variables 47

6.3 AIG T, strategy of the specification 47

v

7.1 Cactus plot of finding a maximal set of dependent variables
per approach. 50

7.2 Cumulative count of benchmarks for each unique value of
Total Dependent Variables. 52

7.3 Plot illustrates the cumulative count of benchmarks for each
unique value of the Dependency Ratio. 52

7.4 Cactus plot comparing DepSynt, LtlSynt, and Strix on 162
benchmarks with at most 3 non-dependent variables. 54

7.5 Cactus plot comparing DepSynt, LtlSynt, and Strix on 138
benchmarks with more than 3 non-dependent variables. . . 55

7.6 Normalized time distribution of DepSynt sorted by total
duration. 56

7.7 Total BDD sizes of the NBA edges before and after the pro-
jection of the dependent variables from the NBA edges. . . . 57

7.8 Cactus plot comparing DepSynt and SpotModular on 162
benchmarks with at most 3 non-dependent variables. 58

7.9 Cactus plot comparing DepSynt and SpotModular on 138
benchmarks with more than 3 non-dependent variables. . . 59

List of Tables

7.1 Total and unique completed benchmarks of finding depen-
dency tool by approach. 49

7.2 Summary for dependency prevalence over 5 benchmark fam-
ilies. 51

7.3 Summarize comparison with state-of-the-art tools over 300
benchmarks with dependency. 56

vi

1 Introduction

Reactive synthesis concerns the design of deterministic transducers (often
Mealy or Moore machines) that generate a sequence of outputs in response
to a sequence of inputs such that a given temporal logic specification is
satisfied. Ever since Church introduced the problem [14] in 1962, there
has been a rich and storied history of work in this area over the past six
decades. Recently, it was shown that a form of pre-processing, viz. de-
composing a Linear Temporal Logic (LTL) specification, can lead to sig-
nificant performance gains in downstream synthesis steps [18]. The gen-
eral idea of pre-processing a specification to simplify synthesis has also
been used very effectively in the context of Boolean functional synthe-
sis [4, 5, 21, 22, 31].

Motivated by the success of one such pre-processing step, viz. identifi-
cation of uniquely defined outputs, in Boolean functional synthesis, we
introduce the notion of dependent outputs in the context of reactive syn-
thesis in this paper. We develop its theory and show by means of extensive
experiments that dependent outputs abound in reactive synthesis bench-
marks, and can be effectively exploited to obtain synthesis techniques with
orthogonal strengths vis-a-vis existing state-of-the-art techniques.

Our work is inspired by dependency in propositional logic. There, we are
given a propositional formula F over a set of variables V. A set X ⊆ V
of variables is called dependent on another set of variables Y in F if there
are no two satisfying assignments for F that are the same for the Y vari-
ables but different for the X variables. In other words, the assignment
for Y uniquely determines the assignment for X in any satisfying assign-
ment. A common example of this arises when auxiliary variables, called
Tseitin variables, are introduced to efficiently convert a specification not
in conjunctive normal form (CNF) to one that is in CNF [38]. Identi-
fying such uniquely defined variables efficiently can be very helpful for
various problems, such as checking satisfiability, model counting, or syn-
thesis. This is because these variables do not alter the basic structure or

1

CHAPTER 1. INTRODUCTION 2

cardinality of the solution space of a specification regardless of whether
they are projected out or not. Hence, one can often simplify the reason-
ing about the specification by ignoring (or projecting out) these variables.
This explains the interest in identifying (and “removing”) such variables
in the spec before solving the given problem. As such, in several prob-
lems in propositional logic, state-of-the-art tools try to identify dependent
variables in a pre-processing step and process them separately, such as
model counting [42], certified DQBF solving [33] or in Boolean functional
synthesis [5, 21, 22, 31]. The remarkable practical success of Boolean func-
tional synthesis tools such as Manthan [22] and BFSS [4, 5] can be partly at-
tributed to efficient techniques for identifying a large number of uniquely
defined variables. We draw inspiration from these works and embark on
an investigation into the role of uniquely defined variables, or dependent
variables, in the context of reactive synthesis.

As a first step, we define dependency in an LTL formula: given an LTL
formula φ over a set of input variables I and output variables O, a set of
variables X ⊆ O is said to be dependent on a set of variables Y ⊆ I ∪ (O\X)
in φ, if at every step of every infinite sequence of inputs and outputs satis-
fying φ, the finite history of the sequence together with the current assign-
ment for Y uniquely defines the current assignment for X. We say that X is
dependent in φ if X is dependent on Y = I ∪ (O\X). We focus on finding de-
pendency in the output variables as our evaluation showed that there are
no dependent input variables in current reactive synthesis benchmarks.
An immediate consequence of this choice is that our definition of depen-
dency is a history-related notion. That is, two distinct words in L(φ) can
have at any point the same assignment for Y, but different assignments
for X dependent on Y as long as the histories of these words are differ-
ent. The above notion of dependency generalizes the notion of uniquely
defined variables in Boolean functional synthesis, where the value of a
uniquely defined output at any time is completely determined by the val-
ues of inputs and (possibly other) outputs at that time.

We first show that our generalization of dependency in the context of re-
active synthesis is useful enough to yield a synthesis procedure with im-
proved performance vis-a-vis competition-winning tools, for a non-trivial
number of reactive synthesis benchmarks. We present 3 equivalent defi-
nitions of dependency over LTL formula φ, (1) over the ω-language of φ
(2) Over the NBA of φ (3) Emptiness of customized LTL formula. Next,
we describe an abstract framework for finding a maximal set of depen-
dent variables in an LTL formula, that is inspired by similar techniques
used in the context of Boolean functional synthesis (e.g. [5]). We then ex-

CHAPTER 1. INTRODUCTION 3

plore two concrete implementations of the abstract framework for depen-
dency finding: a formula-based technique and an automata-based tech-
nique. In the formula-based approach, we construct a reactive LTL for-
mula Ψ which is empty if and only if the variables X are dependent on the
variables Y in the given formula φ. Our experiments convincingly show
that the automata-based approach to detecting dependency scales much
better than the formula-based one. As a result, we focus on the automata-
based approach for the remainder of the paper. Once a subset-maximal
set, say X, of dependent variables, is identified, we proceed with the syn-
thesis process as follows. Referring to the NBA Aφ alluded to above, we
first transform it to an NBA A′φ that accepts the language L′ obtained from
L(φ) after removing (or projecting out) the X variables. Our experiments
show that A′φ is more compactly representable compared to Aφ, when us-
ing BDD-based representations of transitions (as is done in state-of-the-art
tools such as Spot [8]). Viewing A′φ as a new (automata-based) specifica-
tion with output variables O \ X, we now synthesize a transducer TY from
A′ using standard reactive synthesis techniques. This gives us a strategy
f Y : Σ∗I → ΣO\X for each non-dependent variable in O \ X. Next, we
use a novel technique based on Boolean functional synthesis to directly
construct a circuit that implements a transducer TX that gives a strategy
fX : Σ∗Y → ΣX for the dependent variables. Significantly, this circuit can
be constructed in time polynomial in the size of the (BDD-based) repre-
sentation of Aφ. The transducers TY and TX are finally merged to yield
an overall transducer T that describes a strategy f : Σ∗I → ΣO solving the
synthesis problem for φ.

We implemented our approach in a tool called DepSynt. Our tool was
developed in C++ using APIs from the widely used library Spot for rep-
resenting and manipulating non-deterministic Büchi automata. We avoid
the complexity of explicitly constructing power sets of states while con-
structing the transducers for dependent variables. Instead, we use sym-
bolic methods to directly construct circuits that implement the required
transducers. which we combine with the AIGER circuit that describes TY.
This constitutes our third technical contribution, and as our experiments
ratify, constructing the transducers for dependent variables is among the
fastest steps in the synthesis process using dependent variables.

We performed a comparative analysis of our tool with winning entries of
the SYNTCOMP [24] competition to evaluate how knowledge of depen-
dent variables helps reactive synthesis, we compare DepSynt with state-
of-the-art synthesis tools: Ltlsynt (Spot’s reactive synthesis tool) with 4 dif-
ferent configurations and Strix, the winning tool in SYNTCOMP23’ [24].

CHAPTER 1. INTRODUCTION 4

Our tool outperforms state-of-the-art and specifically highly optimized
synthesis tools on benchmarks that have at least one dependent variable
and at most 3 non-dependent variables. Moreover, the evaluation showed
that DepSynt did manage to solve several benchmarks not solvable by any
of the other tools and utilized dependency to some extent. To conclude,
our research shows that dependent variables are prevalent in reactive syn-
thesis benchmarks and that better utilization of these can help in solving
reactive synthesis problems.

1.1 Thesis Flow

This thesis is composed of 8 chapters:

1. Chapter 1 is an introduction and overview of the thesis.

2. Chapter 2 is the background and preliminaries of the research field,
we describe concepts such as ω-regular language, LTL, and reactive
synthesis.

3. Chapter 3 reviews previous works related to this research.

4. Chapter 4 defines the dependency concepts over the linear temporal
field and introduces three equivalent definitions.

5. Chapter 5 examines how dependency can be used in the reactive syn-
thesis field where the specification is given in linear temporal logic
formula.

6. Chapter 6 shows the dependency concept over a symbolic represen-
tation of the reactive synthesis problem. This step is required since
we implement the symbolic form of the dependency algorithms.

7. Chapter 7 displays experimental results of the algorithms and defi-
nitions that were discussed in previous chapters.

8. Chapter 8 is the conclusion of the research, a high-level overview of
the research, and additional future directions.

1.2 Thesis Contribution

This thesis has the following contributions.

CHAPTER 1. INTRODUCTION 5

• Introduction of the dependency concept in the field of reactive syn-
thesis, inspired by the concept in the Boolean functional synthesis.

• Theoretical contribution - Three novel equivalent definitions of de-
pendency, an algorithm to find a maximal set of dependent variables
and a synthesis framework.

• Practical contribution - We published a tool called DepSynt, written
in C++ using Spot [8] that implements the concepts and algorithms
suggested in this research.

• Experimental results - We compare DepSynt with state-of-the-art tools
and showed improvement in the synthesis process.

• TACAS 2024 - The research was published in TACAS 2024 confer-
ence [2]. The artifact DepSynt, got the available, functional, and reusable
badges.

2 Background

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced in [29]. LTL is constructed
with a finite set of propositional variables AP, using Boolean operators
such as ∨,∧, and ¬, and temporal operators such as next X, until U, etc.
The set AP induces an alphabet ΣAP = 2AP of all possible assignments
(true/ f alse) to the variables of AP. The language of an LTL formula φ, de-
noted L(φ) is the set of all infinite words on the alphabet ΣAP. The seman-
tics of the operators and satisfiability relation are defined as usual [23]. We
denote the number of variables AP by |AP|, and the size of the formula φ,
i.e., the number of its subformulas by |φ|. We sometimes abuse notation
and identify the singleton set of a variable {z} with the variable z.

We start by defining the syntax of LTL.

Definition 1 (Linear Temporal Logic Syntax) Linear Temporal Logic (LTL)
is built over a finite set of propositional variables AP, logical operators ∨,∧,¬
and temporal operators X, U, G, R, W, F. The set of LTL formulas over AP is
defined as:

• ⊤,⊥ are LTL formulas.

• if p ∈ AP then p is a LTL formula.

• if α and β are LTL formulas then α∨ β, α∧ β,¬α, Xα, Fα, Gα, αRβ, αUβ, αWβ
are LTL formulas.

The temporal operators stand for:

• G - Globally (Always)

• X - Next (Next time α holds)

6

CHAPTER 2. BACKGROUND 7

• F - Future (Sometime in the future)

• U - Until (α need to holds least until β holds, β must to hold sometime in
future)

• W - Weak Until (α need to holds least until β holds, β is not necessary hold
in future)

• R - Release (β need to holds until and including the time α holds, if α never
holds then β must hold all the time)

We introduce additional notations over LTL formulas to define the seman-
tics and usability in theorems and proofs.

ω-language and ω-word. Given a finite alphabet Σ, an infinite word w ∈
Σω is a sequence a0a1a2 · · · where for every i, the ith letter of w is denoted
by ai ∈ Σ. w is also called an ω-word. The prefix a0 · · · ai of size i + 1 of an
ω-word w is denoted by w[0, i]. Note that w[i, i] = ai, also denoted as w[i].
We denote w[0,−1] to be the empty word. We denote by wi = aiai+1...
the i-suffix of w. The set of all infinite words over Σ is denoted by Σω. We
call L ⊆ Σω a language over infinite words in ω. When the alphabet Σ
is combined from two distinct alphabets, Σ = ΣX × ΣY for some sets of
variables X, Y, we notate for a letter a = (a1, a2) ∈ Σ, denote by a.X the
projection of a on ΣX, that is, the letter a1 ∈ ΣX. Similarly, a.Y denotes
the projection of a on ΣY, that is the letter a2 ∈ ΣY. For letters a1 ∈ ΣX
and a2 ∈ ΣY we denote by a1 ⊕ a2 the letter (a1, a2) in Σ. For words, we
define w.X to be ω-word obtained from a word w ∈ Σ on ΣX i.e. w.X =
a1.Xa2.Xa3.X · · · . For words w1 ∈ ΣX and w2 ∈ ΣY we denote by w1 ⊕ w2

the word w in which for every i, wi = w1
i ⊕ w2

i .

Now we can define LTL semantically, when an ω-word satisfies an LTL
formula.

Definition 2 (Semantic of LTL) The satisfaction relation (|=) between a LTL
formula over AP and ω-word over Σ = 2AP is inductively defined:

CHAPTER 2. BACKGROUND 8

w |= ⊤
w ̸|= ⊥
w |= a if and only if a ∈ w[0]
w |= ¬a if and only if a ̸∈ w[0]
w |= φ ∧ ψ if and only if w |= φ and w |= ψ
w |= φ ∨ ψ if and only if w |= φ or w |= ψ
w |= Xφ if and only if w1 |= φ
w |= Fφ if and only if ∃i ∈N: wi |= φ
w |= Gφ if and only if ∀i ∈N: wi |= φ

w |= φUψ if and only if ∃k : wk |= ψ and ∀j < k : wj |= φ

w |= φWψ if and only if ∀k : wk |= φ or ∃k : wk |= ψ and ∀j < k : wj |= φ

w |= φRψ if and only if ∀k : wk |= ψ or (∃k : wk |= φ and ∀j ≤ k : wj |= ψ)

LTL formulas induce an ω-language.

Definition 3 (ω-language of LTL formula) The ω-language of the LTL for-
mula φ is denoted as L(φ) and defined to be the set of all the ω-words satisfying
φ.

L(φ) = {w ∈ Σω | w |= φ}

For the definitions and approaches that will be introduced in this paper,
we need to compare multiple Boolean variables, therefore we define the
equal ≡ operator.

Definition 4 (Equal Operator) Given the sets of Boolean variables A, B where
A = (a1, ..., an) and B = (b1, ..., bn). We define the binary operators =, ̸= as the
following:

(A = B) ≡ (a1 ↔ b1) ∧ ...∧ (an ↔ bn)

(A ̸= B) ≡ ¬(A = B)

A common practical tool to work with LTL formulas is Nondeterministic
Büchi Automata.

Nondeterministic Büchi Automata. A Nondeterministic Büchi Automa-
ton (NBA) is a tuple A = (Σ, Q, δ, q0, F) where Σ is the alphabet, Q is a
finite set of states, δ : Q× Σ → 2Q is a non-deterministic transition func-
tion, q0 is the initial state and F ⊆ Q is a set of accepting states. A can be
seen as a directed labeled graph with vertices Q and an edge (q, q′) exists
with a label a if q′ ∈ δ(q, a). We denote the set of incoming edges to q by
in(q) and the set of outgoing edges from q by out(q). A path in A is then

CHAPTER 2. BACKGROUND 9

a (possibly infinite) sequence of states ρ = (qi0 , qi1 , · · ·) in which for every
j > 0, (qij , qij+1) is an edge in A. A run is a path that starts in q0, and is
accepting if it visits a state in F infinitely often. A word of the run ρ is the
sequence of labels seen along ρ, i.e., w = σi0σi1 · · · where for every j > 0,
qij+1 ∈ δ(qij , σij). As A is nondeterministic a word can have many runs,
although every run has a single word. A word is accepting if it has an ac-
cepting run in A. The language L(A) is the set of all accepting words in A.
Without loss of generality, we assume that all the edges and all the states
exist at a single run at least. Finally, every LTL formula φ can be trans-
formed in exponential time in the length of φ, to an NBA Aφ for which
L(φ) = L(Aφ) [23, 40]. When φ is clear from the context we omit the sub-
script and refer to Aφ as A. We denote by |A| the size of an automaton,
i.e., its number of states and transitions.

In this research we use the Rabin-Scott Theorem [32] to construct a strategy
for dependent variables, originally, this method converts a non-deterministic
finite automaton (NFA) to a deterministic finite automaton (DFA).

Rabin-Scott Theorem [32] Rabin–Scott powerset construction is a method
to convert a non-deterministic finite automaton (NFA) to a deterministic
finite automaton (DFA) in a term that both have the same language. For-
mally, given the NDA A = (Q, Σ, δ, q0, F) we want to construct the DFA
D = (Q′, Σ, δ′, q′0, F′) such that L(D) = L(A). The method defines the
states ofD to be powerset ofA, i.e., Q′ = 2Q and the init state is q′0 = {q0}.
The transition in the DFA from state S′ ⊆ Q for the input σ ∈ Σ is all the
states in Q that are reachable from any state in S with the input σ ∈ I in
A, formally, it’s defined as: δ′(S′, σ) = ∪{δ(q, σ)|q ∈ S′}. In DFA the state
S′ ⊆ Q is accepting, i.e., S′ ∈ F′ if one the states in S′ is accepting in A,
i.e., F′ = {S′|S′ ⊆ Q, S′ ∩ F ̸= ∅}. Figure 2.1 is an example of an NFA
that accepts all strings ending with 1 and example 2.2 is a DFA that was
constructed via the Rabin-Scott method from example 2.1.

CHAPTER 2. BACKGROUND 10

q0 q1

0, 1

1

0

1

Figure 2.1: Example of non-deterministic finite automaton that accepts all
the strings that end with 1.

∅{q0}

{q1} {q0, q1}

0

1

1

0
0

1

Figure 2.2: Deterministic finite automaton constructed with Rabin-Scott
method on the NFA from example 2.2

CHAPTER 2. BACKGROUND 11

2.2 Synthesis

Reactive Synthesis [30] A reactive LTL formula is an LTL formula φ over
a set of input variables I and output variables O, with I ∩ O = ∅. In
reactive synthesis we are given a reactive LTL formula φ, and the chal-
lenge is to synthesize a function, called strategy, f : Σ∗I → ΣO such that
every word w ∈ (ΣI × ΣO)

ω obtained by using this strategy is in L(φ).
If such a strategy exists we say that φ is realizable. Otherwise, we say
that φ is unrealizable. In what follows, we always consider only reactive
LTL formulas and hence often omit the prefix reactive while referring to
them. The synthesized strategy f : Σ∗I → ΣO that is given as output is
typically described (explicitly or symbolically) in the form of a transducer
T = (ΣI , ΣO, S, s0, δ, λ) in which ΣI and ΣO are input and output alphabet
respectively, S is a set of states with an initial state s0, δ : S × ΣI → S is
a deterministic transition function, and λ : S × ΣI → ΣO is the output
function. A standard procedure in solving reactive synthesis is to trans-
form the given LTL formula φ to an NBA Aφ for which L(Aφ) = L(φ).
Then transform Aφ to a Deterministic Parity Automata (DPA) which turns
into a parity game, whose solution is described as a transducer TAφ

. Many
methods exist to solve the parity game [37] such as Zielonka’s recursive
algorithm [28].

Boolean function synthesis and dependency [5] In Boolean functional
synthesis, the notion of dependent variables proved to be extremely pow-
erful. Intuitively, a set of Boolean variables X is dependent on a set of vari-
ables Y in a Boolean formula F if for every satisfying assignment to F, the
value of X is uniquely determined by the assignments for Y. Dependency
in the Boolean formula has various applications, such as Boolean Func-
tional synthesis and model counting. Specifically, in Boolean Functional
Synthesis, there are tools [5] that find dependent variables and extract
them as a pre-processing step, to have them later be uniquely assigned.
This thesis proposes a possible elevation of the variable dependency con-
cept from propositional logic and Boolean functional synthesis to tempo-
ral logic and reactive synthesis. To formally define dependencies within
Boolean formulas, the projection operator must be defined.

Definition 5 (Projection variables over assignment) Let V be a set of Boolean
variables, X is a subset of V and σ ∈ ΣV is an assignment over V, the projec-
tion operator of σ on the variables X which is denoted as σ ↓ X is the assign-
ment of all variables X in σ. For example, let V = {p, q, s, t}, X = {p, q} and

CHAPTER 2. BACKGROUND 12

σ = (p = ⊤, q = ⊥, s = ⊤, t = ⊥) then σ ↓ X = (p = ⊤, q = ⊥).

We next define dependency in Boolean formulas.

Definition 6 (Variable dependency in Boolean Formula) Given Boolean for-
mula F(X̂, Ŷ, c) where X̂, Ŷ are sets of Boolean variables and c is a Boolean vari-
able. The variable c is dependent on set X if for every assignments σ, σ′ such that
F(σ) = F(σ′) = ⊤ then it holds that if σ ↓ X̂ = σ ↓ X̂′ then σ ↓ c = σ ↓ c.

As discussed on reactive synthesis, the synthesis process produces an trans-
ducer. A common way to represent transducer is with Mealy machine.

Mealy machine [25]. In our synthesis process, we describe our strate-
gies as Mealy machines, which we also refer to as transducers. A Mealy
machine, first introduced in [25], is a finite-state machine whose output
values are determined both by its current state and the current inputs. In
the field of reactive synthesis, the goal is to generate a mealy machine that
satisfies the specification.

Formally, we describe a Meally machine (transducer) as a 6-tuple T =
(ΣI , ΣO, Q, q0, δ, λ), where ΣI is the input alphabet, ΣO is the output alpha-
bet, Q is the set of states of T, with q0 = is the initial state, δ : Q× ΣI → Q
is the state transition function, and λ : Q×ΣI → ΣO is the output function.
An example of a Mealy machine can be found on Figure 2.3.

s0 s1

i = 0, o = 0

i = 1, o = 0

i = 0, o = 1

i = 1, o = 1

Figure 2.3: Example of a Mealy machine for the specification ¬o ∧ G(o ↔
Xi), where ΣI = {i}, ΣO = {o}, Q = {s0, s1}, the state transition is the
edges between the states combined with the input assignment, the output
function is the assignments of the output variable on the edges and the init
state is s0 .

CHAPTER 2. BACKGROUND 13

2.3 Symbolic Representations

In our work we symbolically describe Mealy machines in a format called
AIGER that relies on a structure called AIG. We describe these below.

Definition 7 (And-Inverter Graphs) And-Inverter Graphs (AIGs) are directed
acyclic graphs representing the structural implementation of a circuit’s logical
functionality, initially introduced in Turing’s work [39]. Figure 2.4 is an exam-
ple of an And-Inverter Graph. An And-Inverter graph (AIG) over the variables
X = {x1, ..., xn} is directed acyclic graph G = (V, E) where V = VX ∪Vg with
the following properties:

• Each node v ∈ VX is labeled by xi ∈ X and has no outgoing edges, i.e., v .

• Each non-leaf node v ∈ Vg represents a Boolean conjunction (AND) of the
functions represented by the two incoming edges.

• An edge e ∈ E can optionally contain markers indicating logical negation.

x2

x1 x3

Figure 2.4: AIG example of the formula x2 ∧¬(¬x1 ∧¬x3) ≡ x2 ∧ (x1 ∨ x3)

Using the definition of AIG, we can now define the AIGER format with
which we will make use in the symbolic representation of our synthesis.

Definition 8 (AIGER) AIGER [7] is a circuit logic that is represented with the
tuple (I, O, L, λ, δ) where I are the boolean input variables, O are the boolean
output variables and L are the latches. Latches are flip-flops that are used to store
information within the circuit logic. Flip-flops are digital logic circuits that store
binary information and can change their value. For every output variable o ∈ O,
there is an AIG λo : I ∪ L → {0, 1} that uses the input and latches to determine
the value of o, i.e., λ is a vector of Boolean functions λ = (λo1 , ..., λo|O|). For

CHAPTER 2. BACKGROUND 14

every latch l ∈ L there is an AIG δl : I ∪ L → {0, 1} that uses the input and
latches to determine the next value of the latch l, i.e., δ is a vector of Boolean
functions δ = (δl1 , ..., δl|L|).

Representing Mealy machine as AIGER Mealy machine can be repre-
sented as an AIGER. Assume we have the Mealy machine M = (ΣI , ΣO, Q, q0, δM, λM)
and we would like to get the corresponding AIGER A = (I, O, L, λA, δA)
that induces the same strategy. We show a method that is used in this
paper, although additional methods exist as well. The input and output
would be the same in the Mealy machine and AIGER, for every state Q
in the Mealy machine, we create a corresponding latch, for example, if we
have the states Q = {s1, s2, s3} we would have the latches L = {l1, l2, l3}
where the corresponding latch of si is li. For the state-transition function
δM : Q× ΣI → Q and for every q ∈ Q we can create a Boolean function
δM,q : Q× ΣI → B that takes Q× ΣI and returns true if and only if q sup-
pose to be the next state in the Mealy machine, i.e., δM,q(q′, i) = ⊤ if and
only if q = δM(q′, i). The function δM,q can be represented as an AIG [39].
Therefore, we define the AIGER transition vector as δA = (δM,q1 , ..., δM,|Q|).
In the same way, we define the AIGER output vector λA, we define for
every o ∈ O the function λM,o : Q × ΣI → B such that λM,o is true
if and only if the variable o is assigned true in the Mealy machine, i.e.,
o ∈ λM(q, i) if and only if λM,o(q, i) = ⊤. We define the AIGER output
vector as λA = (λM,o1 , ..., λM,o|O|).

In figure 2.5 we can see the corresponding AIGER A = (I, O, L, λA, δA) of
the Mealy machine in figure 2.3, in both the AIGER and the Mealy machine
we have the input I = {i} and output O = {o}. In the Mealy machine,
we have the states Q = {s0, s1} therefore the AIGER would have 2 latches
L = {s0, s1} corresponding to the states in the Mealy machine. 3The Mealy
machine transition function induces the functions δs0 : {s0, s1} × {i} → B

which returns true if and only if s0 is the next state and the same for δs1 .
We have a single output function λo : {s0, s1} × {i} → B that returns true
if and only if in the Mealy machine, o is assigned to true.

CHAPTER 2. BACKGROUND 15

Figure 2.5: Illustration of the AIGER corresponds to the Mealy machine in
figure 2.3.

In many practical ω-regular frameworks, such as Spot [8], the Binary Deci-
sion Diagram is a common way to represent symbolically edges between
states, it’s discussed widely in section 6. Here we introduce the Binary
Decision Diagram.

Binary Decision Diagram Binary Decision Diagram (BDD) is a data struc-
ture that is used to represent Boolean functions efficiently. BDD is a rooted,
directed, and acyclic graph that includes two terminal nodes to represent
the constants 0/False and 1/True. Each node (except the terminal node)
has a corresponding Boolean variable and two child nodes: high child and
low child. The high child represents the case where the variable in the
node is assigned to 1, respectively, and the low child represents the case
where the variable is assigned to 0. ROBDD is a BDD where the low and
high successors of every node are distinct (redundancy) and no two dis-
tinct nodes are testing the same variable with the same successors (unique-
ness). Figure 2.6 is a graph illustration of an ROBDD. A lot of information
and problems can be solved given a ROBDD in a polynomial time over the
ROBDD, such as Model counting, SAT, etc.

2.4 Experiments background

As part of the research, we introduce a reactive synthesis tool and compare
it with 2 state-of-the-art tools:

CHAPTER 2. BACKGROUND 16

x1

x2 x2

x3

1 0

Figure 2.6: ROBBD example of the function x2 ∧ (x1 ∨ x3) with the variable
order: x1, x2, x3.

1. Spot [8] is a state-of-the-art platform for LTL, ω-automata manipula-
tion and model checking. Many algorithms are implemented in the
Spot library, such as: Converting LTL to NBA, Converting NBA to
deterministic parity automaton, solving parity games, representing
Mealy machines, and working with AIG. The implementation of the
tools that were created for this thesis is mainly based on Spot. Spot
has a tool called ltlsynt for reactive synthesis problems.

2. Strix [26] is a tool for reactive LTL synthesis combining a direct trans-
lation of LTL formulas into deterministic parity automata (DPA) and
an efficient, multi-threaded explicit state solver for parity games. In
brief, Strix (1) decomposes the given formula into simpler formulas,
(2) translates these on-the-fly into DPAs based on the queries of the
parity game solver, (3) converts the DPAs into a parity game, and at
the same time already solves the intermediate games using strategy
iteration, and (4) finally translates the winning strategy, if it exists,
into a Mealy machine or an AIGER circuit with optional minimiza-
tion.

We use benchmarks from The Reactive Synthesis Competition (SYNTCOMP) [24]
to search for LTL-dependent variables and compare the reactive synthesis
tool we introduce in this research. SYNTCOMP is a competition for reac-
tive synthesis tools to search for LTL dependency and compare our reac-
tive synthesis tool. The SYNTCOMP has a variety types of benchmarks
for different reactive synthesis problems, (1) Parity game solving. (2) LTL

CHAPTER 2. BACKGROUND 17

synthesis problem. (3) LTLf synthesis problem. This thesis focuses on the
LTL synthesis problem. In the years, 2018-2023 (the year of writing this
thesis) the tool Strix [26] wins the competition and ltlsynt gets to the
second place.

3 Previous Work

Reactive Synthesis has been an extremely active research area for the last
several decades (see e.g. [10, 14, 18, 19, 30]). Not only is the theoretical
investigation of the problem rich but there are also several tools that are
available to solve synthesis problems in practice. These include solutions
like ltlsynt [27] based on Spot [8], Strix [26] and BoSY [17]. Our tool
relies heavily on Spot and its APIs, which we use liberally to manipulate
non-deterministic Büchi automata. Our synthesis approach is based on
the standard conversion of the converted NBA to a deterministic parity
automaton (DPA) (see [9] for an overview of the challenges of reactive
synthesis).

Reactive synthesis specifications are usually represented in Linear Tempo-
ral Logic (LTL) formulas. LTL was introduced in ”The temporal logic of
programs” by Amir Pnueli [29] and allows to specify temporal properties
on the logic, the time in LTL is represented as an infinity linear sequence of
discrete moments. The LTL extends the propositional logic by adding tem-
poral operators that express properties over the infinity-length sequence
of the time: ”until”, ”globally” ”eventually”, ”and always”, as defined in
definition 1.

The approach for synthesizing the reactive system in this paper begins
by converting the LTL formula into a non-deterministic Büchi automaton
(NBA). The non-deterministic Büchi automaton was introduced in ”On a
Decision Method in Restricted Second Order Arithmetic” by Büchi [12] to
serve as a model for defining the behavior of systems with infinite-length
execution. To convert the LTL formula to NBA we use the algorithm that
we call ”Vardi-Wolper” which was introduced in the paper [41].

To synthesize the non-deterministic Büchi automaton (NBA) we convert
it to deterministic parity automata (DPA) [43], in which the acceptance
conditions are expressed as parity conditions. The DPA provides a deter-
ministic framework for the synthesis process, where the system’s behav-

18

CHAPTER 3. PREVIOUS WORK 19

ior is fully specified by the state transitions and parity conditions. Solv-
ing the parity game involves finding a winning strategy of a two-player
game, where one player represents the environment and the other repre-
sents the system. In this game, the goal is to ensure that for every action
of the environment which symbolizes an assignment to input variables of
the specification, the follow-action of the system, which symbolizes an as-
signment to output variables of the specification leads to the specification
being satisfied. The strategy of the system for the environment’s actions
can be represented as a Mealy machine. If no such Mealy machine exists,
we say the specification is unrealizable. The algorithm to construct DPA
from NBA is called Safraless [34].

Given a deterministic parity automaton, which represents a game of the
required specification to synthesize, we can use ”Zielonka’s Recursive Al-
gorithm” which is an EXP-time recursive divide-and-conquer approach to
solve parity games, the algorithm is presented in [43].

Finally, our work may be viewed as lifting the idea of uniquely defined
variables in Boolean functional synthesis to the context of reactive synthe-
sis. Dependency in Boolean functional synthesis is discussed widely in [4].
The dependency concept in Boolean functional synthesis significantly im-
pacts the synthesis process’s performance. Finding dependent variables
reduces the problem’s complexity since every output dependent variable
can be synthesized with good performance as described in [4].

4 Dependent variables in Linear
Temporal Logic

In this section, we define dependent variables for (reactive) LTL formulas
and suggest a framework for finding a maximal set of dependent vari-
ables. Then we provide two characterizations of dependent variables: us-
ing LTL formula, and using NBA, which allow us to have efficient proce-
dures for identifying such variables. Our research starts with the formula
approach, this approach indicated that there are many reactive synthesis
benchmarks in SYNTCOMP [24] with dependency but could not complete
on many benchmarks and was not efficient enough in terms of time and
memory. Those issues led us to search for another approach, the automa-
ton approach, for identifying dependent variables that could be scaled ef-
ficiently. As discussed in chapter 7, we show that the automaton approach
in practice scales better and outperforms the formula approach. Yet, the
formula approach is a naive and intuitive approach, this approach can be
researched further.

4.1 Defining dependent variables

Our notion of dependent variables for LTL formulas, specifically suited to
reactive synthesis, asks that the dependency be maintained at every step of
the word satisfying the formula. While there are several notions of depen-
dency that can be considered, we describe the one that we use throughout
the paper. As mentioned earlier, our definition of dependency is restricted
to output variables, since having dependent input variables would imply
that not all input values are possible for these variables, which makes the
formula unrealizable. While this can be used for a quick way to detect un-
realizability, empirically, we did not find a single benchmark among those
we encountered with dependent input variables. Nevertheless, all the def-

20

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC21

initions in this section are suitable for finding dependent variables that are
also input variables just as well.

Definition 9 (Variable Dependency in LTL ω-language) Let φ be a reactive
LTL formula over V with input variables I ⊆ V and output variables O = V\I.
Let X, Y be sets of variables where X ⊆ O. We say that X is dependent on Y in φ
if for every pair of words w, w′ ∈ L(φ) and i ≥ 1 if w[0, i− 1] = w′[0, i− 1] and
wi.Y = w′i.Y, then we have wi.X = w′i.X. Further, we say that X is dependent
in φ if X is dependent on V \ X in φ, i.e., it is dependent on all the remaining
variables.

Note that two words in L(φ) with different prefixes can still have different
values for X for the same values for Y, and X can still be defined depen-
dent on Y. In that sense, our definition is much more permissive than
defining, e.g., X to be dependent on Y if the value of Y determines the
value of X for all words in L(φ) and in all time steps.

As an example, consider an LTL formula φ with an input variable y, an
output variable x and a language L = {w1, w2, w3} where w1 = (y, x)ω,
w2 = (¬y, x)ω and w3 = (y, x)(¬y, x)(y,¬x)ω. Then x is dependent on y
in φ. Specifically note that w1[0, 1] ̸= w3[0, 1] and thus the dependency of
x is not violated, although w1

2.y = w3
2.y and w1

2.x ̸= w3
2.x. Observe that, if

X is dependent on Y in φ for some Y, then it is also dependent in φ. We
next show how to find a maximal set of dependent variables.

4.2 Finding dependent variables

Definition 10 (Maximal dependent set) Given an LTL formula φ(I, O), we
say that a set X ⊆ O is a maximal dependent set in φ if X is dependent in φ
and every set that strictly contains X is not dependent in φ.

Finding a maximal dependent set is desirable since we are interested in
exploiting as many dependent variables as possible. Note, however, that
as in the propositional logic case, finding an independent set of variables
with maximum size, is an intractable task [36]. Therefore, propositional
logic deploys various heuristics for finding dependent variables of a large
size. In this work, we extend this to the temporal setting.

As such, Algorithm 1 called FindDependent for finding a maximal depen-
dent set works as follows. FindDependent gets as input an LTL formula

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC22

φ over the set of variables V = I ∪O, and initialize the set X that includes
the dependent variables found so far to be empty (line 3). Then at every
step (line 4) we choose a variable z ∈ O that was not tested before and
check if z is dependent of the remaining variables, excluding those that
were already found dependent (line 5). This is done through a procedure
called isDependent() which we discuss next. If so then x is added to X
(line 6). At the end of the process, we have that X is returned as an output
of FindDependent.

The heart of the framework is naturally in the procedure isDependent
that takes a variable z and a set Y and returns true if and only if {z} is
dependent on Y in φ according to definition 9. The implementation of this
procedure varies, and in the next sections, we discuss two possible imple-
mentations at length: formula-based and automata-based. A second point
to notice is the order in which the output variables are chosen. Currently,
we use the most standard order of the variables which is an order of ap-
pearance. Note however that the order may play a significant role, since
a different order may produce a maximal independent set of a different
size. We leave this problem of choosing a more efficient order heuristic for
future work.

Algorithm 1: Find a maximal set of dependent variables
1 Input: LTL Formula φ with variables V = I ∪O
2 Output: A set X ⊆ O which is maximal dependent in φ
3 X ← ∅;
4 for z ∈ O do
5 if isDependent(z, V\(X ∪ {z})) then
6 X ← X ∪ {z};

7 return X;

In order to prove that Algorithm 1 finds a maximal set of dependent vari-
ables, i.e. Theorem 1, we use the following claim:

Claim 1 Let X′ be a set of output variables and X ⊆ X′. If X′ depends on V \X′

φ, then so is X.

Proof: Set w, w′ ∈ L(φ) with the same prefix w[0, i − 1] = w′[0, i − 1] for
some i ≥ 1. Assume wi.(V\X) = w′i.(V\X). Then since V\X′ ⊆ V\X
we have wi.V\X′ = w′i.V\X′. Therefore w′i.X

′ = wi.X′, which means that
w′i.X = wi.X as well. ■

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC23

Theorem 1 Given an LTL formula φ over the set of variables V, FindDependent
returns a maximal dependent set in φ.

Proof: Assume that isDependent is well defined. That is, for a variable z
and a set Y isDependent returns true if and only if {z} is dependent on Y
in φ. Denote by Xi the set X in the i’th step of the loop obtained in line
6. We show by induction that Xi is dependent on V\Xi in φ. For step
0, we have that the empty set is naturally dependent on V. Assume by
induction that Xi−1 is dependent on V\Xi−1. Then at step i, if no element
was added to Xi−1 then Xi = Xi−1 and we are done. Otherwise, we have
Xi = Xi−1 ∪ {z}. Then let j ≥ 0 be such that for two words w, w′ in L(φ),
w[0, j − 1] = w′[0, j − 1] and wj.V\Xi = w′j.V\Xi. Then since z was just
added, it follows that wj.{z} = w′j.{z}. But then since Xi = Xi−1 ∪ {z} it
follows that wj.V\Xi−1 = w′j.V\Xi−1 and by induction wj.Xi−1 = w′j.X

i−1.
hence in total wj.Xi = w′j.X

i. Note that it also follows that at the end of the
algorithm, X is dependent on V\X in φ and hence X is dependent in φ.

To see that X is maximal, assume for contradiction that it is not and let
X′ ⊆ O be a dependent set that strictly contains X. Let z ∈ X′\X. Let
i be the step in the algorithm in which z was considered and ruled-out
(otherwise z would have been a member of X). Then there exist two words
w, w′ in L(φ) and j ≥ 0, for which w[0, j − 1] = w′[0, j − 1], wj.V\Xi =

w′j.V\Xi and wj.{z} ̸= w′j.{z}. On the other hand since Xi ⊆ X ⊂ X′ we
have that V\X′ ⊆ V\Xi. So that means that also wj.V\X′ = w′j.V\X′.
Then, since w[0, j − 1] = w′[0, j − 1] it follows that wj.X′ = wj.X′ and
specifically wj.{z} = w′j.{z}, a contradiction.

■

4.3 Dependent variables by formula

Towards a practical approach for finding dependent variables, we provide
a formula characterization for dependency.

Definition 11 (Variable formula dependency) Let φ be an LTL formula over
V with input variables I ⊆ V and output variables O = V\I. Let X, Y be sets of
variables where X ⊆ O. Let V′ be a copy of the variables V. Then we say that X
is formula dependent on Y in φ if L(Ψ) = ∅, where

Ψ ≡ φ(V) ∧ φ(V′) ∧ ((V = V′)U(Y = Y′ ∧ X ̸= X′))

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC24

We say that X is formula dependent in φ if L(Ψ) = ∅ and Y = V\X (i.e.
A = ∅).

The following theorem shows that formula dependency captures our no-
tion of dependency.

Theorem 2 Let φ be an LTL formula over variables V. Then X is dependent on
Y in φ if and only if X is formula dependent on Y in φ.

Proof: Let X be formula dependent in Y. That means that the following
formula is false.

Ψ ≡ φ(V) ∧ φ(V′) ∧ ((V = V′)U(Y = Y′ ∧ X ̸= X′))

Which means that for every two words, w, w′ ∈ L(φ), we have that

(w, w′) |= ¬(((V = V′)U(Y = Y′ ∧ X ̸= X′)))

Then suppose that for some i ≥ 0 we have w[0, i − 1] = w′[0, i − 1] and
wi.Y = w′i.Y. Then it must be that wi.X = w′i.X as otherwise w, w′ satisfy
Ψ.

Next, Assume that X is dependent on Y, and let w, w′ be two words in
L(φ). Then for every i > 0, if w[0, i − 1] = w′[0, i − 1] and wi.Y = w′i.Y,
then wi.X = w′i.X. Therefore we have that:

(w, w′) |= ¬(φ(V) ∧ φ(V′) ∧ ((V = V′)U(Y = Y′ ∧ X ̸= X′)))

Then, since w |= φ, and w′ |= φ, we have that Ψ is empty:

Ψ ≡ φ(V) ∧ φ(V′) ∧ ((V = V′)U(Y = Y′ ∧ X ̸= X′))

■

We use the formula Ψ in Algorithm 1 by implementing isDependent as
the procedure isFormulaDependent(z, V\(X ∪ {z})): Given a variable z
with the set X and the whole set of variables V, define variables VΨ = V,
in which XΨ = {z} is a subset of VΨ of the candidate dependent variable,
and variables YΨ = Y′Ψ = V\(X ∪ {z}) which are also a subset of VΨ. Let
V′Ψ be a copy of VΨ. Then return True if and only if Ψ(VΨ, V′Ψ) is empty.
Note that verifying whether Ψ is empty can be done by standard means,
e.g. [23, 40].

We call the resulting algorithm that is obtained from Algorithm 1 im-
plemented using isFormulaDependent as FindFormulaDependency. We
then have the following.

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC25

Corollary 1 Algorithm FindFormulaDependency returns a maximal set de-
pendent in φ.

Implementing variables dependency based formula Given an LTL for-
mula φ(V), we would like to know if the variables X ⊂ V are depen-
dent on Y ⊂ V. The construction of the LTL formula in Definition 11
requires to duplicate every variable in the formula to achieve the corre-
sponding formula with new variables φ(V′) and construct the formula
((V = V′)U(Y = Y′ ∧ X ̸= X′)) as required in the definition. We get the
formula Ψ, as in Definition 11 by applying conjunction of all the 3 formu-
las: φ(V) ∧ φ(V′) ∧ ((V = V′)U(Y = Y′ ∧ X ̸= X′)). To check the empti-
ness of Ψ, we construct the NBA NΨ from Ψ and check if the language
of NΨ is empty by using the standard emptiness algorithm for Buchi au-
tomata [15]. From the proof of Theorem 2, we get that X is dependent on
Y in φ if and only if Ψ is false (hence NΨ is empty).

In section 7 we display the experimental results of the described approach.

4.4 Dependent variables by automaton

Using the FindFormulaDependency algorithm to verify if a variable is de-
pendent on a set of variables, requires repeated calls to emptiness checking
of LTL formula and does not scale in practice (see chapter 7). Instead, we
suggest another approach to verify if a variable is dependent on a set of
variables based on the nondeterministic Büchi automaton of the original
LTL formula. Our framework uses the notion of compatible pairs of states
of the automaton defined as follows.

Definition 12 Let A = (Σ, Q, δ, q0, F) be an NBA . The pair (s, s′) ∈ Q×Q is
compatible in A if there is any run from q0 to s and from q0 to s′ with the same
word w ∈ Σ∗.

Recall that in our definition, only states and edges that are part of an ac-
cepting run exist in A. Then we have the following definition.

Definition 13 Let φ be an LTL formula over V with input variables I ⊆ V and
output variables O = V\I. Let X, Y be sets of variables where X ⊆ O. Let Aφ

be an NBA that describes φ. We say that X is automata dependent on Y in
Aφ, if for every pair of compatible states s, s′ and assignments σ, σ′ for V, where

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC26

σ.Y = σ′.Y and σ.X ̸= σ′.X, δ(s, σ) and δ(s, σ′) cannot both exist in Aφ. We
say that X is automata dependent in Aφ if X is automata dependent on Y in Aφ

and Y = V\X.

q0 q1

0,11
0,00

1,11

1,10
0,11

0,00

1,11

0,00

Figure 4.1: An Example NBA

As an example, consider NBA A1 from adjoining Figure 4.1, constructed
from some LTL formula with input I = {i} and outputs O = {o1, o2}. Here
ΣI = {0, 1}, ΣO = {0, 1}2 and edges are labeled by values of (i, o1o2). It is
immediate that, (q0, q0), (q1, q1) are compatible pairs but so are (q0, q1), (q1, q0)
since they can both be reached from the initial state on reading the length
2 word (0, 00)(0, 00). Now consider output o1. It is not dependent on {i},
i.e., only the input, since from q0 with i = 0, we can go to different states
with different values of o1. But o1 is indeed dependent on {i, o2}. To see
this consider every pair of compatible states – in this case all pairs. Then
we can see that if we fix the values of i and o2, there is a unique value of
o1 that permits state transitions to happen from the compatible pair. For
example, regardless of which state we are in, if i = 0, o2 = 0, o1 must be 0
for a state transition to happen. On the other hand, o2 is not dependent on
either {i} or {i, o1} (as can be seen from (q0, q1) with i = 1, o1 = 1).

The following shows us the relation between automata dependency and
dependency in LTL as defined earlier.

Theorem 3 Let φ be an LTL formula with set of variables V = I ∪O, where
X ⊆ O and Y ⊆ I ∪ (O \ X). Let Aφ be an NBA with L(φ) = L(Aφ). Then X
is dependent on Y in φ if and only if X is automata dependent on Y in Aφ.

Proof: Assume that X is dependent on Y in φ and let s, s′ be two com-
patible states in A with a joint word prefix u for size i ≥ 0. Assume for
contradiction that there are assignments σ, σ′ for V, where σ.Y = σ′.Y,
σ.X ̸= σ′.X. Note that both δ(s, σ) and δ(s, σ′) exist in Aφ. Then this means

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC27

that δ(s, σ) and δ(s′, σ′) are each a part of an accepting run r and r′ respec-
tively, on words w, w′ respectively for which u = w[0, i− 1] = w′[0, i− 1].
But then wi.Y = wi.Y and wi.X ̸= wi.X, contradicting X being dependent
on Y in φ.

Next, assume that X is automata dependent on Y in Aφ. Let w, w′ be two
words in L(φ), and thus in L(Aφ). Let i ≥ 0 be such that u = w[0, i− 1] =
w′[0, i− 1]. Let r, r′ be accepting runs of w, w′ respectively and let s1, s2 be
the states respectively in the run r, r′ that has the same history u. Note that
this makes s1, s2 compatible (specifically if u is the empty word then s1 =
s2 are the initial state s0). Next assume that e1 = (s1, s′1) with a label σ1 is
on r , and e2 = (s2, s′2) with a label σ2 is on r′. Further, assume σ1.Y = σ2.Y.
Note that it means that wi.Y = w′i.Y. Then since X is automata dependent
in Y, we have that σ1.X = σ2.X as well, hence wi.X = w′i.X. ■

Finding Compatible States We find all compatible states in an automa-
ton in Algorithm 2 as follows. We maintain a list of in-process compatible
pairs C to which we start by adding the initial pair (q0, q0), which is of
course compatible. At each step, until C becomes empty, for each pair
(si, qj) ∈ C, we add it to the compatible pair set P, and remove it from C
(in lines 6-7). Then (in lines 9-11), we check (in line 10) if outgoing tran-
sitions from (si, sj) lead to a new pair (s′i, s′j) not already in P or C, which
can be reached on reading the same letter σ and if so, we add this pair to
the in-process set C. All pairs that we put in P, C are indeed compatible,
nothing is removed from P. When the algorithm terminates, C is empty,
which means all possible ways (from the initial state pair) to reach a pos-
sible compatible pair have been explored, thus showing correctness.

To prove that algorithm 2 finds all compatible states we use lemma 4.4.1.

Lemma 4.4.1 Let (s, s′) be compatible states. Then either (s, s′) = (q0, q0) or
there are states s1, s′1 that have the edges (s1, s), (s′1, s′) such that (s1, s′1) are
compatible.

Proof: Assume (s, s′) are compatible such that either s or s′ are not q0.
Then they have a shared word w. Let r, r′ be the runs that lead from q0
to s and s′ respectively with the label w, and let a be the last letter in w.
Then w = w′a for a prefix w′ of w. Then there are states (s1, s′1) for which r
reaches the s1 with the word w′ and δ(s1, a) = s, and r′ reaches the s′1 with
the word w′ and δ(s′1, a) = s′. Therefore (s1, s′1) are compatible. ■

Therefore, we claim that algorithm 2 find all compatible states in an NBA.

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC28

Algorithm 2: Find All Compatible States in NBA
1 Input: NBA Aφ = (Σ, Q, δ, q0, F) of φ.
2 Output: Set P ⊆ Q×Q of all compatible state pairs in Aφ.
3 P← ∅;
4 C ← {(q0, q0)};
5 while C ̸= ∅ do
6 Let (si, sj) ∈ C;
7 P← P ∪ {(si, sj)};
8 C ← C \ {(si, sj)};
9 for (s′i, s′j) ∈ out(si)× out(sj) do

10 if (s′i, s′j) /∈ P ∪ C and ∃σ ∈ 2Σ such that
s′i ∈ δ(si, σ) ∧ s′j ∈ δ(sj, σ) then

11 C ← C ∪ {(s′i, s′j)};

12 return P;

Claim 2 Algorithm 2 finds all the compatible states in the automaton.

Proof: First note that only compatible states enter P, and no pair leaves P
once it enters P. To see that P is the set of all compatible states, assume for
contradiction that it is not. Then there is a compatible pair (s, s′) not in p
with a shared word w from q0 to s and from q0 to s′, which is minimal in
length among all shared words of compatible pairs not in P. If |w| = 0 then
s = s′ = q0 so (s, s′) ∈ P, a contradiction. Then otherwise by Lemma 4.4.1
there are some s1, s′1 for which s1 ∈ E(s) and s′1 ∈ E(s′) for which (s1, s′1)
are compatible and therefore in P, since they have history of length w′ < w
where w = w′a for some letter a. But then since Algorithm 2 returns all
pairs in P unmarked, we have that at some step j of the algorithm, (s1, s′1)
was selected, and therefore (s, s′) would have been identified and added
to P as well, a contradiction. ■

Finally, we show how to implement isDependent from Algorithm 1 by
implementing the following procedure isAutomataDependent, described
in Algorithm 3. isAutomataDependent works by trying to find a witness
to {z} being not dependent on Y. If no such witness exists then it means
that {z} is dependent on Y. Given a variable z, a set Y = V\{z} and a
list P of all compatible pairs in A which is returned from Algorithm 2, the
algorithm isAutomataDependent checks for every pair (s, s′) ∈ P (line 9)
if there exists an assignment σ, σ′ for which both δ(s, σ) and δ(s′, σ′) exist,

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC29

σ.Y = σ′.Y and σ.{z} ̸= σ′.{z} (lines 10-11).

Algorithm 3: Check Dependency Based Automaton
1 Input: NBA Aφ = (Σ, Q, δ, q0, F) from φ.
2 Candidate dependent variable {z}
3 Candidate dependency set Y
4 All compatible states P made by the function

FindAllCompatibleStates(Aφ).
5 Output: Is {z} dependent on Y by definition 13
6 Function AreStateColliding(p, q):
7 return ∃σp, σq ∈ 2Σ such that

δ(p, σp) ̸= ∅ ∧ δ(q, σq) ̸= ∅ ∧ σp.Y = σq.Y ∧ σp.{z} ̸= σq.{z};
8 begin
9 for (s1, s2) ∈ P do

10 if AreStateColliding(s1, s2) then
11 return False;

12 return True;

Lemma 4.4.2 Algorithm 3 returns True if and only if {z} is automata-dependent
on V\{z} in Aφ.

Proof: Since P is finite, The algorithm of course terminates. The algo-
rithm 3 returns false if and only if there are two compatible states s, s′ and
assignment σY for Y, for which there are distinct assignments z, z′ which
both δ(s, zy) and δ(s, z′y) exist. Then by definition 13 we see that {z} is
not dependent on Y. ■

Definition 14 (Algorithm FindAutomataDependency) Algorithm 1 finds
a maximal set of dependent variables given a function that checks if a variable
{x} is dependent on the set of variables. The algorithm FindAutomataDepen-
dency is algorithm 1 with the function isAutomatonDependent as defined in
algorithm 3 as a function to check if a variable is dependent.

Corollary 2 The algorithm FindAutomataDependency (Definition 14), re-
turns a maximal dependent set in φ.

Thus using the above algorithm to perform a dependency check we can
compute maximal sets of dependent variables (as explained earlier), which

CHAPTER 4. DEPENDENT VARIABLES IN LINEAR TEMPORAL LOGIC30

we will use next to improve synthesis. Note that all the above algorithms
run in time polynomial (in fact, quadratic) in size of the NBA.

Corollary 3 Given NBA Aφ, computing compatible pairs, checking dependency,
and building maximal dependent sets can be done in time polynomial in the size
of Aφ.

In the experimental results, which are discussed widely in section 7.1,
the automaton approach scaled and outperforms the formula approach.
Therefore, in this research, we focus mainly on the automaton approach.

5 Dependency in Reactive Synthe-
sis

In this section, we explain how dependencies can be beneficially exploited
in a reactive synthesis pipeline. Our synthesis algorithm focuses on the
NBA Aφ of the LTL specification, it finds dependents on the NBA and
project from it the dependent variables that lead to the NBA A′φ which is
smaller in terms of total output variables (in case there are dependent vari-
ables). The reduced NBA A′φ is synthesized using existing algorithms [9]
and the construction of the dependent variables strategy is described in
this chapter. This section is a theoretical explanation of exploiting depen-
dency in reactive synthesis and uses notions and definitions from the lit-
erature. In practice, tools in the field of reactive synthesis, such as Spot [8],
use symbolic manipulation in the implementation, such as ROBDD to rep-
resent edges between states in the NBA and AIGER to represent the trans-
ducers. In the next section, we will discuss the implementation using sym-
bolic representations and practical tools.

5.1 High Level Overview

Our approach can be described at a high level as shown in Figure 5.1. This
flowchart has the following 6 steps. Every box is a step that is described in
this section. Every step’s output edge in the Figure is passed as an input
to the next step, together with the relevant variables. This is illustrated by
arrows between the steps. For example, Step 2 passes the automaton Aφ

with variable X to Step 5.

The framework follows the following steps:

1. Given an LTL formula φ over a set of variables V with input vari-
ables I ⊆ V and output variables O = V\I, we first construct a

31

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 32

language-equivalent NBA Aφ = (ΣI ∪ ΣO, S, s0, δ, F) by standard
means, e.g [40].

2. Then, as described in Section 4, we find in Aφ a maximal set of output
variables X that are dependent in φ. For notational convenience, in
the remainder of the discussion, we use Y for I ∪ (O\X) and ΣY for
ΣI × ΣO\X.

3. Next, we construct an NBA A′φ from Aφ by projecting out (or elim-
inating) all X variables from labels of transitions. Thus, A′φ has the
same sets of states and transitions as Aφ. We simply remove val-
uations of variables in X from the label of every state transition in
Aφ to obtain A′φ. Note that after this step, L(A′φ) = {w | ∃u ∈
L(Aφ) such that w = u.Y} ⊆ Σω

Y .

4. Treating A′φ as a (automata-based) specification with inputs I and
outputs O \ X, we next use existing reactive synthesis techniques
(e.g., [9]) to obtain a transducer TY that describes a strategy fY : Σ∗I →
ΣO\X for L(A′φ). If no such strategy exists, then φ is unrealizable.

5. We also construct a transducer TX that describes a function fX :
(Σ∗Y → ΣX) with the following property: for every word w′ ∈ L(A′φ)
there exists a unique word w ∈ L(φ) such that w.Y = w′ and for all
i, wi.X = fX(w′[0, i]).

6. Finally, we compose TX and TY to construct a transducer T that de-
fines the final strategy f : Σ∗I → ΣO. Recall that transducer TY has I
as inputs and O \ X as outputs, while transducer TX has I and O \ X
as inputs and X as outputs. Composing TX and TY is done by simply
connecting the outputs O \ X of TY to the corresponding inputs of
TX.

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 33

Figure 5.1: Synthesis using dependencies

φ

1. LTL to NBA

Aφ

2. Find Dependencies

3. Project deps from NBA

4. Synthesis Nondeps TY

5. Synthesis Deps TX

6. Merge strategies T

Aφ, X, Y

A′φ, Y

Aφ, X

fY
fX

In the above synthesis flow, we use standard techniques from the literature
for Steps 1 and 4, as explained above. Step 2 was already described in
detail in Section 4. Step 3 is easy when we have an explicit representation
of the automata. As we will discuss in the next section, it has interesting
consequences when we use symbolic representations of automata. Step
6, as explained above, is straightforward. Hence, in the remainder of this
section, we focus on Step 5, which is also a key contribution of this paper.

5.2 Synthesis Dependent Variables

In this section, we explain the construction of the strategy of the depen-
dent variables, i.e., the transducer TX as described in the high-level frame-
work. An example of this process is shown at subsection 5.2. Let Aφ =
(ΣI × ΣO, Q, δ, q0, F) be the NBA of the specification obtained in step 1

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 34

of the pipeline shown above. The transducer TX we wish to construct is
a deterministic Mealy machine described by the 6-tuple TX = (ΣY, ΣX ∪
{⊥}, QX, qX

0 , δX, λX), where the dependency variables ΣY = ΣI × Σ(O\X)
is the input alphabet, ΣX is the output alphabet with ⊥ ̸∈ ΣX being a
special symbol that is output when no symbol of ΣX suffices. We define
the states of the transducer as the powerset of Q, i.e., QX = 2Q, and the
initial state to be qX

0 = {q0}. The domain and codomain of the transi-
tion function and the output functions are δX : QX × ΣI × Σ(O\X) → QX

and λX : QX × ΣI × Σ(O\X) → ΣX correspondingly. The state transition
function δX is defined by the Rabin-Scott subset construction [32], which
is described in section 2.1 applied to the automaton Aφ [32]. Formally, for
every U ⊆ Q, σI ∈ ΣI and σ ∈ Σ(O\X), we define: δX(U, (σI , σ)

)
= {q′ |

q′ ∈ Q, ∃q ∈ U and ∃σ′ ∈ ΣX such that q′ ∈ δ
(
q, (σI , σ, σ′)

)
}.

Before defining the output function λX, we state important properties of
TX that follow from the definition of δX above.

Lemma 5.2.1 Let U be a state reachable from qX
0 in TX and let σY ∈ ΣY, then

there is a single σX ∈ ΣX such that for every q ∈ U it has an outgoing edge in Aφ,
i.e., δ(q, (σY, σX)) ̸= ∅ and for every σ′X ̸= σX it holds that δ(q, (σY, σX)) = ∅.

Proof: Since X is automata dependent in Aφ, it follows from Definition 13
that for every (q, q′) ∈ U×U, if δ

(
q, (σI , σO\X, σX)

)
̸= ∅ and δ

(
q′, (σI , σO\X, σ′X)

)
̸=

∅ for σX, σ′X ∈ ΣX, then σX = σ′X. ■

Lemma 5.2.2 If X is automata dependent in Aφ, then every state U reachable
from qX

0 in TX satisfies the property: ∀q, q′ ∈ U, (q, q′) is compatible in Aφ.

Proof: We prove by induction on the number of steps, say k, needed to
reach a state U from qX

0 in TX. The base case follows from the fact that
qX

0 is a singleton set, and every singleton set trivially satisfies the desired
property. Therefore, the claim holds for k = 0.

Suppose the claim holds for all states U reachable from qX
0 in k or fewer

steps, for k ≥ 0. Hence, (q, q′) is compatible in Aφ for all q, q′ ∈ U. We
wish to prove that if U′ = δX(U, (σI , σ)

)
for any (σI , σ) ∈ ΣI × ΣO\X, then

(s, s′) is also compatible in Aφ for every s, s′ ∈ U′.

From the definition of δX and lemma 5.2.1, it now follows that if U′ =
δX(U, (σI , σO\X)

)
and if U′ ̸= ∅, then there exists a unique σX ∈ ΣX such

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 35

that U′ = {q′ | ∃q ∈ U such that q′ ∈ δ
(
q, (σI , σO\X, σX)

)
}. This shows

that for every s, s′ ∈ U′, the pair (s, s′) is compatible in Aφ. ■

Given these properties, the output function λX needs to be defined as the
unique σX ∈ ΣX which exists for every U ⊆ Q, σY ∈ ΣY as shown in lem-
mas 5.2.1, 5.2.2, i.e., λX(U, (σI , σO\X)

)
= σX. The correctness of this strat-

egy is shown in the next section. In terms of intuition, every possible state
on the transducer TX is a set of compatible states 5.2.2, and every input of
this transducer is an assignment of dependency variables. Compatibility
ensures that these states agree on a unique value of the dependent vari-
ables for every possible dependency assignment, which is the input of the
transducer.

Example of dependent strategy construction

As an illustration of the above construction, consider the NBA Aφ in Fig. 4.1.
We saw in Section 4.4 that o1 is dependent on {i, o2} in Aφ, hence X = {o1}
and Y = {i, o2}. The transducer TX in this case has the states: {q0}, {q1}
and {q0, q1}, with {q0} being the initial state. The input of the trans-
ducer is ΣX = {i, o2}∗ and ΣX = {o1}∗ is its sole output, i.e., the vari-
ables ΣI , ΣO\X leads to ΣX. In this NBA example, from state q1 there
are two outgoing edges with the label (i = 0, o1 = 0, o2 = 0) therefore,
δX({q1}, 00) = {q0, q1} and λX({q1}, 00) = 0. In state {q0} for input
(i = 0, o1 = 0, o2 = 0) it leads to the state {q1} and in state {q1} for input
(i = 0, o1 = 0, o2 = 0) it leads to the state {q0, q1}, where necessarily both
label o2 = 0, therefore λX({q0, q1}, 00) = 0 and δX({q0, q1}, 00) = {q0, q1}.
This transducer is also visualized as a diagram in figure 5.2.

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 36

{q0} {q1}

{q0, q1}

01 / 1
10 / 1

00 / 0
11 / 1

00 / 0

11 / 1

01 / 1

00 / 0

01 / 1
10 / 1

11 / 1

Figure 5.2: Example of a transducer of dependent variables displayed as
an automaton.

5.3 Synthesis Correctness

We explain in detail our synthesis approach. We first give some definitions
and notations that are necessary to describe our approach, then describe
a more general framework from which the correctness of the automata
implementation easily follows.

Given a language L over alphabet ΣI ∪ ΣO, where ΣI and ΣO are distinct
finite alphabets, a two players game of L is a tuple GL = (ΣI , ΣO, L) played
between two players P0 and P1 as follows. Starting with P0 at step 0, at
every step i, the player P0 chooses a word from ΣI followed by P1 that
chooses a word from ΣO. Thus every step i becomes a word over ΣI ∪

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 37

ΣO. The game goes forever at which an infinite word w ∈ (ΣI ∪ ΣO)
ω is

formed. P1 wins the game if w ∈ L.

Given such a game, the challenge is to devise a strategy f : Σ∗I → ΣO
for P1, of which word to pick such that every word w ∈ (ΣI ∪ ΣO)

ω ob-
tained by using this strategy is in L. Such a strategy is also called a winning
strategy or a solution for L. By default, L is compactly described as an LTL
formula φ (as in reactive synthesis). Note however that L can also be com-
pactly given as an NBA A, and then we call the game played an NBA game,
denoted for simplification: GA = (ΣI , ΣO, A). The set of infinite words ob-
tained by the strategy f is denoted by L(f). That is w ∈ L(f) if and only
if for every prefix w[0, i] ∩ I we have that wi ∩O = f (w[0, i] ∩ I). Then if f
is a solution to φ then L(f) ⊆ L(φ). L(f) is also called the language of the
strategy f .

Next, we are given a reactive LTL formula φ over input variables I and
output variables O. We do as follows.

1. Find in φ a maximal set of output variables X that are dependent on
φ. Set Y = I ∪ (O\X). Define a language L′ = {w.Y | w ∈ L(φ)},
and set a function gY : L(φ)→ L′ as follows gY(w) = w.Y. Similarly
set a language gX : L(φ) → Xω as follows gX(w) = w.X. Note that
for every word w ∈ Σω

V we have w = gY(w)⊕ gX(w). The notions
follow the definitions in subsection 2.1.

2. We synthesize a solution fY : Σ∗I → (O\X) to solve the game GL′ . If
no such solution exists then it means that φ is unrealizable.

3. We construct a function fX : (Σ∗Y → ΣX) with the following property:
for every word w′ ∈ L′ there exists a unique word w ∈ W in which
gY(w) = w′ and gX(w) = fX(w′).

4. From fY and fX we construct the following strategy f : Σ∗I → ΣO.
f (i) = fY(i)⊕ fx(i⊕ fY(i)). We call f the combination of fY and fX.
We then have that f is a solution to φ if and only if f is realizable.

We now have the following

Lemma 5.3.1 gY is well defined and is a bijection.

Proof: We see that gY is a bijection. To see that gY is onto, let w′ ∈ L′.
Then by the definition of L′, there is w ∈ L such that w′ = w.Y. Then

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 38

gy(w) = w′. To see that gY is an injection, assume that w, h are words in
L, and w ̸= h. We see that w.Y ̸= h.Y. Let i be the first index in which
wi ̸= hi. If wi.Y = hi.Y, then since w[0, i − 1] = h[0, i − 1], we have that
wi.X = hi.X since X is dependent on Y, a contradiction since then wi = hi.
Therefore wi.Y ̸= hi.Y, which means that gY(w) = w.Y ̸= h.Y = gY(h). ■

Lemma 5.3.2 f X is well defined.

Proof: Let w′ ∈ L′, then since gY is a bijection, w = gY−1
(w′) is a unique

word for which gY(w) = w′. Then fX is defined to be such that fX(w′) =
gX(gY−1

(w′)). ■

We are now ready for the main lemma.

Lemma 5.3.3 φ is realizable if and only if GL′ is solved.

Proof: Suppose that φ is realizable with a solution f : Σ∗I → ΣO. We
construct a strategy f ′ : Σ∗I → Σ(O\X) as follows. For every i > 0 and a
word σ ∈ Σi

I , we have f ′(σ) = f (σ).(O\X). We see that f ′ solves L′. Let
w′ be a word over (ΣI × Σ(O\X))

ω in L(f ′). Then there is a word w ∈ L(f)
(and therefore in L(φ) since f is a solution) for which w = w′ ⊕ gX(w).
Then gY(w) = w′.Y. Then from Lemma 5.3.1 we have that since w ∈ L
then w′ ∈ L′.

Next, assume that L′ has a solution fY : Σ∗I → Σ(O\X). We show that
the strategy f : Σ∗I → ΣO, where for every word w ∈ Σi

I we have that
f (w) = fY(w) ⊕ fx(w ⊕ fY(w)), solves L(φ). Let w ∈ L(f) and denote
wI = w.I . Then we have that w.Y = wI ⊕ fY(wI) is in L(fY), and therefore
is in L′. Hence there is a word w′ ∈ L(φ) for which gY(w′) = w.Y and
w′.X = gX(w′) = fX(w′). But then w′.X = w.X, which means that w = w′,
hence w ∈ L. ■

Corollary 4 If φ is realizable then f is well defined and solves φ.

Proof: Follows immediately from Lemma 5.3.3. ■

Finally, following the construction described in Section 5.2 we make the
following proof.

Theorem 4 If φ is realizable, the transducer T obtained by composing TX and
TY as in step 6 of Fig. 5.1 solves the synthesis problem for φ.

CHAPTER 5. DEPENDENCY IN REACTIVE SYNTHESIS 39

Proof: For the NBA A′ constructed from A, we have that L(A′) = L′.
Then by definition, the synthesized transducer TY describes a strategy fY
that solves L′. We also have that the construction of TX basically describes
fX and its properties. Finally, see that the merge T of TY and TX describes
the strategy f that combines fY and fX. ■

Corollary 5 If φ is realizable then our synthesis framework returns True with a
solution f to φ. Otherwise, our framework returns False.

Proof: From Theorem 4 we have that if φ is realizable then our synthesis
framework returns True with the solution f . From Lemma 5.3.3 we have
that if φ is not realizable then there is no solution to GL′ hence our frame-
work returns False. ■

Therefore from Corollary 5, if φ is realizable then f solves φ and therefore
T solves φ as well, and if φ is unrealizable then there is no solution and
the framework return f alse.

An interesting corollary of the above result is that for realizable specifi-
cations with all output variables dependent, we can solve the synthesis
problem in time O(2k) instead of Ω(2k log k), where k = |Aφ|. This is be-
cause the subset construction on Aφ suffices to obtain TX, while Aφ must
be converted to a deterministic parity automaton to solve the synthesis
problem in general.

6 Symbolic Implementation

In this section, we describe symbolic implementations of each of the non-
shaded blocks in the synthesis flow depicted in Fig. 5.1. There are two
symbolic implementations in our algorithm that are slightly different than
those discussed in sections 4, 5: 1) ROBDD as NBA edges. 2) AIGER, as
defined in definition 8, to represent the synthesis strategy. This chapter
is composed of 3 sections. Section 6.1 describes how the algorithm han-
dles the cases where the edges between states are ROBDDs, section 6.2
describes how to construct AIGER which is a symbolic strategy for the de-
pendent variables, and section 6.3 describes how to merge two AIGERs
which are symbolic strategies.

6.1 Identifying and projecting dependency

ROBDD as NBA edges We use the same representation as used in Spot [8]
– a state-of-the-art platform for representing and manipulating LTL for-
mulas and ω-automata. Specifically, the transition structure of an NBA
A is represented as a directed graph, with nodes representing states of
A, and directed edges representing state transitions. Furthermore, every
edge from state s to state s′ is labeled by a Boolean function B(s,s′) over
I ∪O. The Boolean function can itself be represented in several forms. We
assume it is represented as a Reduced Ordered Binary Decision Diagram
(ROBDD) [11], as is done in Spot. Each labeled edge represents a set of
state transitions from s to s′, with one transition for each satisfying assign-
ment of B(s,s′). For example, consider I = {i1, i2} and O = {o1, o2} and
suppose an edge from s to s′ is labeled by the Boolean function B(s,s′) ≡
(i1 ∨ o1) ∧ i2 ∧ ¬o2. There are three satisfying assignments of B(s,s′), i.e.
i1i2o1o2 = 1100, 0110 and 1110. Therefore, the edge from s to s′ labeled
B(s,s′) represents three state transitions from s to s′, one corresponding to
each of the satisfying assignments of B(s,s′).

40

CHAPTER 6. SYMBOLIC IMPLEMENTATION 41

Implementing Find Dependencies with NBA We described algorithms
for finding dependent variables from the NBA where states of the NBA
Aφ are explicitly represented as nodes of a graph. Algorithm 2 search for
all compatible states and algorithm 3 verifies dependency based on the
automaton and its pair states. Since in the implementation of the frame-
work, the transition function is not a set of labels, i.e., δ(s, s′) ⊂ Σ but a
ROBDD, i.e. δ(s, s′) = Bs,s′ an appropriate changes needs to be done. In
algorithm 2 we determinate that the pair-states (s′i, s′j) ∈ out(si)× out(sj)

are compatible if ∃σ ∈ 2Σ such that s′i ∈ δ(si, σ) ∧ s′j ∈ δ(sj, σ), i.e., there is
an assignment σ such that it leads si to s′i and sj to s′j. In the ROBDD case,
we replace this condition with B(si,s′i)

∧ B(sj,s′j)
̸= False, it has exactly the

same meaning as described in Claim 3.

Claim 3 Given the NBA A = (Σ, Q, δ, q0, F) where the transition is function
δ : Q × Σ → 2Q and the equivalent NBA A′ = (Σ, Q, δ′, q0, F) where the
transition function’s output is a BDD, i.e., δ(s, s′) = Bs,s′ . Then for every pair
states (s, s′), it holds that ∃σ ∈ 2Σ such that s′i ∈ δ(si, σ) ∧ s′j ∈ δ(sj, σ) if and
only if B(si,s′i)

∧ B(sj,s′j)
̸= False.

Proof: By the definition, it holds that s′i ∈ δ(si, σ) if and only if σ |= Bsi,s′i
.

Therefore, ∃σ ∈ 2Σ such that s′i ∈ δ(si, σ) ∧ s′j ∈ δ(sj, σ) if and only if ∃σ ∈
2Σ such that σ |= B(si,s′i)

and σ |= B(sj,s′j)
, i.e., σ |= B(si,s′i)

∧ B(sj,s′j)
. In other

words, it means that B(si,s′i)
∧ B(sj,s′j)

is satisfiable, i.e., B(si,s′i)
∧ B(sj,s′j)

̸=
False. ■

Algorithm 3 decides that a variable z is dependent if there is no colli-
sion between any compatible pair-state, where a collision in (p, q) is de-
fined as ∃σp, σq ∈ 2Σ such that δ(p, σp) ̸= ∅ ∧ δ(q, σq) ̸= ∅ ∧ σp.Y =
σq.Y ∧ σp.{z} ̸= σq.{z}, i.e., there are different assignments σp, σq that are
the same on the non-dependent variables Y but different on the candidate
dependent variable z. In the ROBDD case, we define collision in (p, q) if
formula 6.1 is satisfiable:∨

(s,s′)∈out(p)×out(q)

B(p,s)(I, O) ∧ B(q,s′)(I′, O′) ∧
∧

y∈Y
(y↔ y′) ∧ (z↔ ¬z′)

(6.1)
In the above formula, I′ (resp. O′) denotes a set of fresh, primed copies of
variables in I (resp. O).

CHAPTER 6. SYMBOLIC IMPLEMENTATION 42

Lemma 6.1.1 Assume that formula 6.1 is satisfiable. Then there are assignments
σp, σq which are the same on non-dependent variables Y but different on the can-
didate dependent variable z, and therefore the states collide.

Proof: Assume that the formula 6.1 is satisfiable, it means that exists (s, s′) ∈
out(p)× out(q) that satisfies B(p,s)(I, O) ∧ B(q,s′)(I′, O′) ∧ ∧

y∈Y(y ↔ y′) ∧
(z ↔ ¬z′). It means that exists σp, σq ∈ ΣI∪O such that σp |= B(p,s)(I, O),
σq |= B(q,s′)(I′, O′) and σp.Y = σq.Y, σp.{z} ̸= σq.{z}. ■

By lemma 6.1.1 we infer that algorithm 3 finds dependent variables where
the edges in the NBA are symbolically presented as ROBDDs.

Projecting dependent variables The synthesis process transforms Aφ to
A′φ by removing dependent variables from Aφ as described in section 5.
Let X be the dependent variables, to obtain A′φ, we simply replace the
ROBDD for B(s,s′) on every edge (s, s′) of the NBA Aφ by an ROBDD for
∃X B(s,s′). While the worst-case complexity of computing ∃X B(s,s′) using
ROBDDs is exponential in |X|, this doesn’t lead to inefficiencies in prac-
tice because |X| is typically small. Indeed, our experiments reveal that
the total size of ROBDDs in the representation of A′φ is invariably smaller,
sometimes significantly, compared to the total size of ROBDDs in the rep-
resentation of Aφ. Indeed, this reduction can be significant in some cases,
as the following proposition shows.

Theorem 5 There exists an NBA Aφ with a single dependent output and an edge
e such that the ROBDD that labels e is exponentially larger (in number of inputs
and outputs) than the labeling of e in A′φ.

Proof: Let I = {i1, . . . in} and O = {o1, . . . on+1} be sets of input and out-
put variables. Consider the LTL formula G

(
on+1 ↔ f (i1, . . . in, o1, . . . on)

)
,

where f is a Boolean function that gives the value of the nth least signif-
icant bit (or middle bit) in the product obtained by multiplying the un-
signed integers represented by the i1, . . . in and o1, . . . on. The automaton
Aφ has a single state, which is also an accepting state, with a self-loop, de-
noted e, labeled by an ROBDD representing on+1 ↔ f (i1, . . . in, o1, . . . on).
It is known that this ROBDD has a size in Ω(2n) regardless of the variable
ordering. However, once we detect that on+1 is dependent on {i1, . . . in} ∪
{o1, . . . on}, we can project away on+1, and the ROBDD after projection is
simply a single node representing True. This is because for every com-
bination of values of {i1, . . . in} ∪ {o1, . . . on}, there is a value of on+1 that
matches f (i1, . . . in, o1, . . . on). ■

CHAPTER 6. SYMBOLIC IMPLEMENTATION 43

6.2 Implementing TX

We now describe how to construct an AIGER (I, O, L, λ, δ) (definition 8)
as a symbolic implementation of the transducer TX which is described in
section 5. The I is the input variables of the specification and the non-
dependent variables and the O is the output which are the dependent
variables. As explained in the previous section, the transition structure of
the Mealy machine is obtained by applying the subset construction to Aφ.
While this requires O(2|Aφ|) time if states and transitions are explicitly rep-
resented, we show below that an AIGER implementing symbolically the
Mealy machine can be constructed directly from Aφ in time polynomial in
|X| and |Aφ|. This reduction in construction complexity crucially relies on
the fact that all variables in X are dependent on I ∪ (O \ X).

Mealy Machine States and AIGER Latches Let S = {s0, . . . sk−1} be the
set of states of Aφ. To implement the desired AIGER, we define the set
of latches L to have k latches (state-holding flip-flops). Every subset of
the automaton Aφ states U ⊆ S is represented in the AIGER as a state
of k flip-flops, i.e. by a k-dimensional Boolean vector. Specifically, the ith

component in this vector is set to 1 if and only if si ∈ L. For example,
if S = {s0, s1, s2} and L = {s0, s2}, then U is represented by the vector
⟨1, 0, 1⟩. Let ni and pi denote the next-state input and present-state output
of the ith latch.

Describing the transition function The next-state function δ = (δ1, · · · δk)
of the AIGER is implemented as follows. Every δi is implemented by a cir-
cuit, with inputs {p0, . . . pk−1} ∪ I ∪ (O \ X) and outputs {n0, . . . nk−1}.
For i ∈ {0, . . . k− 1}, output ni of this circuit implements the Boolean func-
tion

∨
sj ∈ in(si)

(
pj ∧ ∃X B(sj,si)

)
. Theorem 6 shows that δ is a symbolic im-

plementation of the transition function δx in TX. It is known from the
knowledge compilation literature (see e.g. [1, 4, 16]) that every ROBDD
can be compiled in linear time to a Boolean circuit in an And-inverter
graph (AIG), and that every AIG circuit admits linear time projection of
variables, yielding a resultant AIG circuit. Hence, a Boolean circuit for
∃X B(sj,si)

can be constructed in time linear in the size of the ROBDD repre-
sentation of B(sj,si)

. This allows us to construct the circuit δX, implement-
ing symbolically the next-state transition logic of our Mealy machine, in
time (and space) linear in |X| and |Aφ|.

CHAPTER 6. SYMBOLIC IMPLEMENTATION 44

Output function Next, we turn to constructing the output functions λ in
TX. The functions λ = (λx1 , ..., λx|X|) takes as an inputs {p0, . . . pk−1} ∪ I ∪
(O \ X) and outputs X. Since X is automata dependent on I ∪ (O \ X) in
Aφ, we have the following claim:

Claim 4 Let B(s,s′) be a Boolean function with support I ∪O that labels a tran-
sition (s, s′) in Aφ. For every (σI , σ) ∈ ΣI × ΣO\X, if (σI , σ) |= ∃X B(s,s′), then
there is a unique σX ∈ ΣX such that (σI , σ, σX) |= B(s,s′).

Proof: Let (σI , σ) be such that (σI , σ) |= ∃X B(s,s′), by the definition of the
∃ operator there is σX ∈ ΣX such that (σI , σ, σX) |= B(s,s′). Assume in con-
tradiction that σX is not unique, i.e., exists σ′X that (σI , σ, σ′X) |= B(s,s′). By
definition 13 of automaton dependency, for every pair compatible states it
holds that (σI , σ, σ′X) and (σI , σ, σX) cannot both satisfies B(s,s′) since (s, s)
is compatible. ■

Considering only the transition (s, s′) referred to in claim 4, we first discuss
how to synthesize a vector of Boolean functions, say F(s,s′) = ⟨F(s,s′)

1 , . . . F(s,s′)
|X| ⟩,

where each component function has support I∪ (O \X), such that F(s,s′)[I 7→
σI][O \ X 7→ σ] = σ′. Generalizing beyond the specific assignment of I ∪
O, our task effectively reduces to synthesizing an |X|-dimensional vector
of Boolean functions F(s,s′) such that ∀(I∪ (O \X))

(
∃XB(s,s′) → B(s,s′)[X 7→

F(s,s′)]
)

holds. Interestingly, this is an instance of Boolean functional synthe-
sis – a problem that has been extensively studied in the recent past (see
e.g. [1, 3, 4, 6, 13]). In fact, we know from [1, 35] that if B(s,s′) is repre-
sented as a ROBDD, then a Boolean circuit for F(s,s′) can be constructed
in O

(
|X|2.|B(s,s′)|

)
time, where |B(s,s′)| denotes the size of the ROBDD

for B(s,s′). Then, for every xi ∈ X, we use this technique to construct a

Boolean circuit for F(s,s′)
i for every edge (s, s′) in A. The overall circuit λX

is constructed such that the output for xi ∈ X implements the function∨
trans. (s,s′) in A

(
ps ∧ (B(s,s′)[X 7→ F(s,s′)]) ∧ F(s,s′)

i
)
.

Note that δX(U, (σI , σ)
)
= ∅ if and only if all outputs ni of the circuit

δX evaluate to 0. This case can be easily detected by checking if
∨k−1

i=0 ni
evaluates to 0.

To conclude our construction, we have the following theorem.

Theorem 6 The sequential circuit obtained with δX as next-state function and
λX as output function is a correct implementation of transducer TX, assuming

CHAPTER 6. SYMBOLIC IMPLEMENTATION 45

(a) the initial state is p0 = 1 and pj = 0 for all j ∈ {1, . . . k − 1}, and (b) the
output is interpreted as ⊥ whenever

∨k−1
i=0 ni evaluates to 0.

Proof: To see why δ is a symbolic implementation of the transition func-
tion δx in TX, suppose that ⟨p0, . . . pk−1⟩ represents the current state U ⊆ S
of the AIGER. Then the above function sets ni to true if and only if there
is a state sj ∈ U (i.e. pj = 1) such that there is a transition from sj to si
on some values of outputs X and for the given values of I ∪ (O \ X) (i.e.
∃X B(sj,si)

= 1). This is exactly the requirement for si to be member in
the Mealy machine state U′ ⊆ S, that is reached from U by subset con-
struction for the given values of I ∪ (O \ X). To see why λx is a symbolic
implementation of the of the output function in TX, we know from the
proof of Lemma 5.2.2 that there is a unique σX ∈ ΣX such that from every
pair states (s, s′) and for every σy ∈ ΣI∪O\X there is a transition from s to s′,
therefore, when for a single pair-state (s, s′) there is a transition where x is
True for a given ΣI∪O\X, it’s the correct assignment to x, this is as discussed
in section 5.3. If there is no (s, s′) where x is True for a given ΣI∪O\X, there
x must be assigned to false. This is exactly the meaning of the formula of
δx:

δx =
∨

trans. (s,s′) in A

(
ps ∧ (B(s,s′)[X 7→ F(s,s′)]) ∧ F(s,s′)

i
)

Explanation of the formula: is there any transition (s, s′) (the big ∨ opera-
tor), where the corresponding latch of state s is on, which is defined to be
ps, and there is a transition to the next state given the current input and
non-dependent variables, which is defined as F(s,s′)

i and the value of x is
supposed to be true in this transition which is (B(s,s′)[X 7→ F(s,s′)]. ■

6.3 Merge strategies

In chapter 5 we showed how to construct a strategy TY : I∗ → (O \ X) for
the non-dependent variables, the state-of-the-art tools construct AIGER
as the strategy. In this chapter, section 6.2 we showed how to construct
AIGER TX : (I ∪ (O \ X))∗ → X for dependent variables. We next show
how to merge the strategies TX, TY in order to get a strategy T : I∗ → O.
We use Figures 6.1 6.2 6.3, to better illustrate our construction.

We are also given the AIG TX, as shown in figure 6.2, which has as input
the specification input variables and the non-dependent variables I ∪Y =

CHAPTER 6. SYMBOLIC IMPLEMENTATION 46

{i1, ..., in, y1, ..., y|Y|}, as an output the dependent variables X = {x1, ..., x|X|}
and the latches L = {0, 1}j.

Then from TY and TX, we construct the AIG T, shown in figure 6.3, which
describes the required strategy for the specification, and is defined as fol-
lows: The input is I = {i1, ..., in}, output O = X ∪ Y, latches L + S =
{0, 1}k+j. The input I is wired to the input of TY and TX. The first k latches
are wired to the latches of TY and the remind j latches are wired to the
latches of TX. The first k next-latches slots are connected to the next-latches
slot of TY and the remind j latches are wired to the next-latches of TX. The
output Y of TY is wired to the output of T and as input to TX. The output
X of TX is wired to the output of Y.

Figure 6.1: AIG TY, strategy of non-dependent variables

We are given the AIG TY, as shown in figure 6.1, which has as input the
input of specification I = {i1, ..., in}, and as an output the non-dependent
variables Y = {y1, ..., y|Y|} and the latches S = {0, 1}k.

CHAPTER 6. SYMBOLIC IMPLEMENTATION 47

Figure 6.2: AIG TX, strategy of dependent variables

Figure 6.3: AIG T, strategy of the specification

7 Experiments and Evaluation

We implemented the synthesis pipeline depicted in Figure 5.1 in a tool
called DepSynt1 , using the symbolic approach of chapter 6 supporting
both the automaton approach and the formula approach as description
in chapter 4. For steps 1 and 4 of the pipeline, i.e., construction of Aφ

and synthesis of TY, we used the tool Spot [8], a widely used library for
representing and manipulating NBAs, while the other steps are using our
custom C++ code. We then experimented with 1,141 LTL specifications
over 31 benchmark families from the SYNTCOMP competition [24]. All
our experiments were run on a computer cluster, with each problem in-
stance run on an Intel Xeon Gold 6130 CPU clocking at 2.1 GHz with 2GB
memory and running Rocky Linux 8.6.

Our investigation was focused on answering the following research ques-
tions:
RQ1: Between automaton-based and formula-based identification of de-
pendent output variables, which performs better in practice?
RQ2: How prevalent are dependent output variables in existing reactive
synthesis benchmarks?
RQ3: Is there any evidence to suggest that reactive synthesis is benefited
by identification and separate processing of dependent output variables?

7.1 Comparing automata approach and formula
approach

To answer RQ1, we implemented a tool called FindDeps that finds a maxi-
mal set of dependent in an LTL formula, as described in algorithm 1 sup-

1The source code and experiment results can be accessed at:
https://github.com/eliyaoo32/DepSynt

48

CHAPTER 7. EXPERIMENTS AND EVALUATION 49

porting both the formula approach and the automaton approach, the au-
tomaton approach is implemented symbolically as described in chapter
6. Our tool is implemented via Spot [8] that includes building NBA from
the LTL formula, checking the emptiness of the LTL formula (for formula
approach, using NBA emptiness checking [15]) and NBA traversal (for
automaton approach). We applied FindDeps on all 1,141 SYNTCOMP [24]
benchmarks with a timeout of 60 minutes on each benchmark. To compare
the approaches we measure the metrics:

1. How many benchmarks each approach could complete?

2. How many unique benchmarks could the approach complete that
the other one could not?

Approach Uniquely solved Total Completed
Formula 0 297
Automaton 581 878

Table 7.1: Total and unique completed benchmarks of finding dependency
tool by approach.

In the formula approach, 703 benchmarks had out-of-memory errors and
141 had a timeout. On the other hand, in the automaton approach, 222
benchmarks had an out-of-memory error and 41 had a timeout. In the
automaton approach, 33 benchmarks successfully constructed the NBA of
the LTL specification but could not find the dependent variable within an
hour. As indicated in the experiments results and table 7.1 shows, all the
benchmarks that could be solved in the formula approach could be solved
in the automaton approach but not vice versa.

CHAPTER 7. EXPERIMENTS AND EVALUATION 50

Figure 7.1: Cactus plot of finding a maximal set of dependent variables
per approach.

As figure 7.1 shows the automaton approach outperforms the formula ap-
proach in terms of times and total amount of solved benchmarks. Based
on all the experiment results, we can see that the automaton approach out-
performs the formula approach in every aspect.

7.2 Dependency Prevalence

To answer RQ2, we used the experiment results from the previous section.
We were able to identify 300 benchmarks out of 1,141 SYNTCOMP bench-
marks, that had at least 1 dependent output variable (as per Definition 13).
We found that all the benchmarks with at least 1 dependent variable be-
long to one of 5 benchmark families, as seen in Table 7.2. To measure the
prevalence of dependency we evaluate the following:

1. Quantity of dependent variables.

2. The dependency ratio, we define it as the ratio between total depen-
dent variables to total output variables, i.e. Total dependent vars

Total output vars .

CHAPTER 7. EXPERIMENTS AND EVALUATION 51

Table 7.2 summarizes the dependency prevalence for 5 benchmark fami-
lies, indicating the number of benchmarks, where the dependency-finding
process was completed, the total count of benchmarks with dependent
variables, and the average dependency ratio among those with dependen-
cies.

Benchmark Family Total Completed Found Dep Avg Dep Ratio
ltl2dpa 24 24 24 .434
mux 12 12 4 1
shift 11 4 4 1
tsl-paper 118 117 115 .46
tsl-smart-home-jarvis 189 167 153 .33

Table 7.2: Summary for dependency prevalence over 5 benchmark fami-
lies.

Out of those depicted, Mux (for multiplexer) and shift (for shift-operator
operator) were two benchmark families where the dependency ratio was
1. In total, among all those where our dependency-checking algorithm
terminated, we found 26 benchmarks with all the output variables depen-
dent. Of these 4 benchmarks were from Shift, 4 benchmarks from mux, 14
benchmarks from tsl-paper, and 4 from tsl-smart-home-jarvis.

Figure 7.2 is a graph that indicates the cumulative count of benchmarks for
each unique value of total dependent variables, where F(x) on the y-axis
represents how many benchmarks have at most x (on the x-axis) depen-
dent variables.

CHAPTER 7. EXPERIMENTS AND EVALUATION 52

Figure 7.2: Cumulative count of benchmarks for each unique value of Total
Dependent Variables.

Figure 7.3 is a plot that illustrates the cumulative count of benchmarks for
each unique value of the Dependency Ratio, where the value of F(x) on
the y-axis represents how many benchmarks are at most x (on the x-axis)
dependency ratio.

Figure 7.3: Plot illustrates the cumulative count of benchmarks for each
unique value of the Dependency Ratio.

Looking beyond total dependency, among the 300 benchmarks with at
least 1 dependent variable, we found a diverse distribution of dependent

CHAPTER 7. EXPERIMENTS AND EVALUATION 53

variables and ratio as shown in Figures 7.2, 7.3. It shows that there are
various dependent variables and dependency ratios over the benchmarks.
We can see that the dependency ratios is not unified, we could not find a
clear relation between the dependency ratio and performance in synthe-
sis, but as will be discussed in section 7.3 we found a relation between
synthesis performance and the total of non-dependent variables.

7.3 Dependency in Synthesis

Despite a large 1 hour timeout, we noticed that most dependent variables
were found within 10-12 seconds. Hence, in our tool DepSynt, we lim-
ited the time for dependency-check to an empirically determined 12 sec-
onds and declared unchecked variables after this time as non-dependent.
Since the synthesis of non-dependents TY (Step 5. of the pipeline) is im-
plemented directly using Spot APIs, the difference between our approach
and Spot is minimal when there are a large number of non-dependent vari-
ables. This motivated us to divide our experimental comparison, among
the 300 benchmarks where at least one dependent variable was found, into
benchmarks with at most 3 non-dependent variables (162 benchmarks)
and more than 3 non-dependent variables (138 benchmarks). We com-
pared DepSynt with two state-of-the-art synthesis tools, that won in differ-
ent tracks of SYNTCOMP23’ [24]: (i) Ltlsynt (Spot [8]) (ii) Strix [26], where
all the tools had a total timeout of 3 hours per benchmark. As part of the
evaluation, we compare DepSynt with a control tool we call SpotModular,
which is the same code-base and pipeline as DepSynt except we skip the
phase of finding dependent variables, and all variables are classified as
non-dependent automatically. Furthermore, this section analyzes differ-
ent components of DepSynt, such as, how long it takes to synthesize the
strategy of dependent variables and the impact of the projection of depen-
dent variables on the BDD sizes.

Comparing with state-of-the-art tools

To answer RQ3 and show that reactive synthesis is benefited by depen-
dency, we compare DepSynt with two state-of-the-art tools:

(i) Ltlsynt (based on Spot) [8] with all its possible configurations: ACD,
SD, DS, LAR.

CHAPTER 7. EXPERIMENTS AND EVALUATION 54

(ii) Strix [26] with the configuration of BFS for exploration and FPI as
parity game solver. Strix is the overall winning tool in SYNTCOMP’23.

All the tools had a total timeout of 3 hours per benchmark. As can be
seen from Figure 7.4. As a first attempt we tried to correlate the per-
formance of DepSynt relatively to other tools based on the dependency
ratio, yet, we could not find such a correlation. We did find a correla-
tion with the number of non-dependent variables. Indeed for the case of
≤ 3 non-dependent variables, DepSynt outperforms the highly optimized
competition-winning tools. Even for the > 3 case, as shown in Figure 7.5,
the performance of DepSynt is comparable to other tools, only beaten even-
tually by Strix.

Figure 7.4: Cactus plot comparing DepSynt, LtlSynt, and Strix on 162
benchmarks with at most 3 non-dependent variables.

CHAPTER 7. EXPERIMENTS AND EVALUATION 55

Figure 7.5: Cactus plot comparing DepSynt, LtlSynt, and Strix on 138
benchmarks with more than 3 non-dependent variables.

In addition, we observe that there are two specifications, mux32 and mux64,
in the SYNTCOMP benchmarks for which both Strix and Ltlsynt timed out
after 3600 seconds, but DepSynt solved these benchmarks (2 milliseconds
for mux32 and 4 milliseconds for mux64 on the same computing platform).
Note that all output variables are dependent on both mux32 and mux64.
Table 7.3 summarizes the number of benchmarks each tool solved and the
number of benchmarks it uniquely solved.

Comparing DepSynt against Strix, we found 252 benchmarks that had de-
pendent variables in which DepSynt took less time than Strix. Out of
which, in 126 benchmarks DepSynt took at least 1 second less than Strix.
Among these, there are 10 benchmarks for which the time taken by Dep-
Synt was at least 10 seconds less than that taken by Strix. These are the
examples that are easier to solve by DepSynt than by Strix. For shift16,
the difference was more than 1056 seconds in favor of DepSynt. Interest-
ingly, shift16 also has all output variables dependent. Comparing against
Ltlsynt, we found 193 benchmarks that had dependent variables in which
DepSynt took less time than Ltlsynt. Among these, in 27 benchmarks Dep-
Synt took at least 1 second less than Ltlsynt. Of these, there is one bench-
mark (ModifiedLedMatrix5X) for which the time taken by DepSynt was at

CHAPTER 7. EXPERIMENTS AND EVALUATION 56

least 10 seconds less than that taken by Ltlsynt. Specifically, DepSynt took
5 seconds and Ltlsynt took 55 seconds.

Tool Uniquely solved Total Completed
DepSynt 2 273
Ltlsynt (SD) 0 264
Ltlsynt (DS) 0 264
Ltlsynt (ACD) 0 259
Ltlsynt (Lar) 0 259
Strix 5 282

Table 7.3: Summarize comparison with state-of-the-art tools over 300
benchmarks with dependency.

Analyzing time taken by different parts of the pipeline

Figure 7.6: Normalized time distribution of DepSynt sorted by total dura-
tion.

In order to better understand where DepSynt spends its time, we plotted
in Figure 7.6 The normalized time distribution of DepSynt sorted by total
duration over benchmarks that could be solved successfully by DepSynt.
Each color represents a different phase of DepSynt.

The pink is searching for dependency, the green is the NBA build, the blue
is the non-dependent variables and the yellow is the dependent variables

CHAPTER 7. EXPERIMENTS AND EVALUATION 57

synthesis. We can see that synthesizing a strategy for dependent variables
is very fast (the yellow portion)- justifying its theoretical linear complex-
ity bound, and so is the pink region depicting searching for dependency
(again, a poly-time algorithm), especially compared to the blue region syn-
thesizing a strategy for the non-dependent variables. This also explains
why having a high dependency ratio alone does not help our approach,
since even with a high ratio, the number of non-dependent variables could
be large, resulting in worse performance overall.

Analysis of the Projection step (Step 3.) of Pipeline

Figure 7.7: Total BDD sizes of the NBA edges before and after the projec-
tion of the dependent variables from the NBA edges.

The rationale for projecting variables from the NBA is to reduce the num-
ber of output non-dependent variables in the synthesis of the NBA, which
is the most expensive phase as Figure 7.6 shows. Figure 7.6 illustrates the
total BDD sizes of the NBA edges before and after the projection of the
dependent variables from the NBA edges, the left figure is over the bench-
mark with at most 3 non-dependent variables and the right figure is over
the benchmarks with 4 or more non-dependent variables. The solid line
presents the projected BDD size and the dotted line presents the original
BDD size. The y-axis is presented in a symmetric log scale. The bench-
marks are sorted by the projected NBA’s BDD total size. To see if this
indeed contributes to our better performance, we asked if projecting the

CHAPTER 7. EXPERIMENTS AND EVALUATION 58

dependent variables reduces the BDDs’ sizes, in terms of total nodes, (the
BDD represents the transitions). Figure 7.7 shows that the BDDs’ sizes are
reduced significantly where the total of non-dependent variables is at most
3, in cases of total dependency, the BDD just vanishes and is replaced by
the constant true/false. For the case of total non-dependent is 3 or more,
the BDD size is reduced as well.

An ablation experiment with SpotModular

As a final check, that dependency was causing the improvements seen,
we conducted a control/ablation experiment where in DepSynt we gave
zero-timeout to find dependency, and classifies all output variables that
are classified as non-dependent, and called this SpotModular. As can be
seen in Figure 7.8, for the case of benchmarks with at least 1 dependent
and at most 3 non-dependent variables, this clearly shows the benefit of
dependency-checking. In figure 7.9, we see that for other cases we do not
see this.

Figure 7.8: Cactus plot comparing DepSynt and SpotModular on 162
benchmarks with at most 3 non-dependent variables.

CHAPTER 7. EXPERIMENTS AND EVALUATION 59

Figure 7.9: Cactus plot comparing DepSynt and SpotModular on 138
benchmarks with more than 3 non-dependent variables.

Summary

Overall, we answer both the research questions we started with. Indeed
there are several benchmarks with dependent variables, and using our
pipeline does give performance benefits when the number of non-dependent
variables is low. In summary, our recipe would be to first run our poly-
time check to see if there are dependents and if there aren’t too many
non-dependents, use our approach and otherwise switch to any existing
method.

8 Conclusion

In this thesis, we have introduced the notion of dependent variables in
LTL formulas and specifically reactive synthesis benchmarks. By using
two methods: formula-based and automata-based. We managed to show
that dependent variables in reactive synthesis benchmarks are prevalent.
We also described a synthesis framework that utilizes the dependent vari-
ables and constructed a SPOT-based synthesis tool that implements this
framework. Our evaluation showed that on some benchmarks dependent
variables can be deployed for better synthesis. This work covers many as-
pects, starting from initial definition to characterization, algorithms, and
implementations. We focused on one definition of dependent variables
although the other definitions noted in the paper that are more restric-
tive can be of some use. We believe that similar synthesis techniques
can be deployed for such variants as well. In addition, the variant of de-
pendency that we explored was not concerned with finding the minimal
set of variables upon the set X is dependent on. This task is challenging
computational-wise as well and can be thought of as future work. We are
also interested to learn whether formula-based synthesis may still be an
approach to follow, instead of the automata one that we pursued.

8.1 Future work

This research can be developed and continued in various directions in re-
active synthesis and linear temporal logic. We suggest a few topics that
we think should be investigated further:

• Formula approach - We have introduced a naive approach for de-
pendency based on the formula definition which did not scale well,
especially compared to the automaton approach. We think this ap-
proach can be researched further and bring better results, for exam-

60

CHAPTER 8. CONCLUSION 61

ple, finding dependency using the formula structure without check-
ing emptiness, which is an EXP time problem.

• Further dependency notion - Additional definitions and notions of
the dependency concept can be researched, which eventually can in-
clude and work on more benchmarks. For example, the ability to
define a dependency on the LTL syntax would have a great benefit
since it avoids constructing NBA with dependent variables and can
be combined with a variety of synthesis algorithms and tools agnos-
tically.

• Unateness - This research elevated the concept of dependency from
the Boolean Functional Synthesis field. An additional concept that
can be elevated from the Boolean Functional Synthesis field is unate-
ness. The Unate concept is defined on Boolean variables and a Boolean
formula, such that, a variable is Unate if changing its value from
False to True over an assignment does not impact the satisfaction.

• Further Applications - This research showed an application of de-
pendency in the field of reactive synthesis, yet, the dependency con-
cept is defined over a linear temporal logic. Therefore, the depen-
dency concepts can be utilized for additional fields that use linear
temporal logic, for example, counting models of Linear-Time Tem-
poral logic [20].

• Utilization of dependency agnostically to the synthesis tool - In
this research, we showed utilization of dependency in the reactive
synthesis field, but, the utilization can be improved as well. Cur-
rently, the dependency concepts can be utilized only when nondeter-
ministic buchi automata(NBA) is synthesized which is constructed
directly from the specification. Not all the synthesizing tools use
NBA, for example, Strix [26], the usage of dependency in reactive
synthesis should be easily applied to any reactive synthesis tool.

• Explore heuristics for a maximal set of dependency - This research
shows an algorithm to find a maximal set of dependent variables, the
set is maximal in terms of there is no larger dependency set with the
same variables. Yet, the order of the tested variables in the algorithm
does matter in terms of the size of the dependency set, currently, our
algorithm uses an arbitrary order of the variables. The search process
of dependent variables can be improved with better heuristics for the
order of the variables.

Bibliography

[1] AKSHAY, S., ARORA, J., CHAKRABORTY, S., KRISHNA, S. N.,
RAGHUNATHAN, D., AND SHAH, S. Knowledge compilation for
boolean functional synthesis. In Formal Methods in Computer Aided
Design, FMCAD (2019).

[2] AKSHAY, S., BASA, E., CHAKRABORTY, S., AND FRIED, D. On de-
pendent variables in reactive synthesis. In Tools and Algorithms for
the Construction and Analysis of Systems - 30th International Conference,
TACAS (2024).

[3] AKSHAY, S., AND CHAKRABORTY, S. Synthesizing skolem functions:
A view from theory and practice. In Handbook of Logical Thought in
India. 2022.

[4] AKSHAY, S., CHAKRABORTY, S., GOEL, S., KULAL, S., AND SHAH, S.
What’s hard about boolean functional synthesis? In Computer Aided
Verification - 30th International Conference, CAV (2018).

[5] AKSHAY, S., CHAKRABORTY, S., GOEL, S., KULAL, S., AND SHAH,
S. Boolean functional synthesis: hardness and practical algorithms.
Formal Methods Syst. Des. (2021).

[6] AMRAM, G., BANSAL, S., FRIED, D., TABAJARA, L. M., VARDI,
M. Y., AND WEISS, G. Adapting behaviors via reactive synthesis. In
Computer Aided Verification - 33rd International Conference, CAV (2021).

[7] BIERE, A. The AIGER And-Inverter Graph (AIG) format version.
Tech. rep., Institute for Formal Models and Verification, Johannes Ke-
pler University, 2007.

[8] BLAHOUDEK, F., DURET-LUTZ, A., AND STREJČEK, J. Can
complement generalized Büchi automata via improved semi-

62

BIBLIOGRAPHY 63

determinization. In Proceedings of the 32nd International Conference on
Computer-Aided Verification (2020).

[9] BLOEM, R., CHATTERJEE, K., AND JOBSTMANN, B. Graph games and
reactive synthesis. In Handbook of Model Checking. 2018.

[10] BLOEM, R., JOBSTMANN, B., PITERMAN, N., PNUELI, A., AND
SA’AR, Y. Synthesis of reactive(1) designs. J. Comput. Syst. Sci. (2012).

[11] BRYANT, R. E. Binary decision diagrams and beyond: Enabling tech-
nologies for formal verification. In Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD) (1995).

[12] BÜCHI, J. R. On a decision method in restricted second order arith-
metic. The Collected Works of J. Richard Büchi (1990).

[13] CHAKRABORTY, S., FRIED, D., TABAJARA, L. M., AND VARDI, M. Y.
Functional synthesis via input-output separation. In Formal Methods
in Computer Aided Design (FMCAD) (2018).

[14] CHURCH, A. Logic, arithmetic, and automata. In International
Congress of Mathematicians (1962).

[15] COURCOUBETIS, C., VARDI, M., WOLPER, P., AND YANNAKAKIS, M.
Memory-efficient algorithms for the verification of temporal proper-
ties. Formal Methods in System Design (1992).

[16] DARWICHE, A. Decomposable negation normal form. J. ACM (2001).

[17] FAYMONVILLE, P., FINKBEINER, B., AND TENTRUP, L. Bosy: An ex-
perimentation framework for bounded synthesis. In Computer Aided
Verification: 29th International Conference, CAV (2017).

[18] FINKBEINER, B., GEIER, G., AND PASSING, N. Specification decom-
position for reactive synthesis. In NASA Formal Methods - 13th Inter-
national Symposium, NFM 2021, Virtual Event, May 24-28, 2021, Pro-
ceedings (2021).

[19] FINKBEINER, B., AND SCHEWE, S. Bounded synthesis. Int. J. Softw.
Tools Technol. Transf. (2013).

[20] FINKBEINER, B., AND TORFAH, H. Counting models of linear-time
temporal logic. In Language and Automata Theory and Applications
(2014).

BIBLIOGRAPHY 64

[21] GOLIA, P., ROY, S., AND MEEL, K. S. Manthan: A data-driven ap-
proach for boolean function synthesis. Computer Aided Verification
(2020).

[22] GOLIA, P., SLIVOVSKY, F., ROY, S., AND MEEL, K. S. Engineering an
efficient boolean functional synthesis engine. 2021 IEEE/ACM Inter-
national Conference On Computer Aided Design (ICCAD) (2021).

[23] HUTH, M., AND RYAN, M. Logic in Computer Science: Modelling and
Reasoning about Systems. 2004.

[24] JACOBS, S., BLOEM, R., COLANGE, M., FAYMONVILLE, P.,
FINKBEINER, B., KHALIMOV, A., KLEIN, F., LUTTENBERGER, M.,
MEYER, P. J., MICHAUD, T., SAKR, M., SICKERT, S., TENTRUP, L.,
AND WALKER, A. The 5th reactive synthesis competition (SYNT-
COMP 2018): Benchmarks, participants & results.

[25] MEALY, G. H. A method for synthesizing sequential circuits. The Bell
System Technical Journal (1955).

[26] MEYER, P. J., SICKERT, S., AND LUTTENBERGER, M. Strix: Explicit
reactive synthesis strikes back! In Computer Aided Verification: 30th
International Conference, CAV (2018).

[27] MICHAUD, T., AND COLANGE, M. Reactive synthesis from ltl spec-
ification with spot. In Proceedings of the 7th Workshop on Synthesis,
SYNT@ CAV (2018).

[28] PARYS, P. Parity games: Zielonka’s algorithm in quasi-polynomial
time. In 44th International Symposium on Mathematical Foundations of
Computer Science, MFCS (2019).

[29] PNUELI, A. The temporal logic of programs. In 18th Annual Sympo-
sium on Foundations of Computer Science, sfcs (1977).

[30] PNUELI, A., AND ROSNER, R. On the synthesis of a reactive mod-
ule. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (1989).

[31] RABE, M. N., AND SESHIA, S. A. Incremental determinization. In
Theory and Applications of Satisfiability Testing - SAT (2016).

[32] RABIN, M. O., AND SCOTT, D. Finite automata and their decision
problems. IBM Journal of Research and Development (1959).

BIBLIOGRAPHY 65

[33] REICHL, F.-X., SLIVOVSKY, F., AND SZEIDER, S. Certified DQBF solv-
ing by definition extraction. In Proc. of SAT (2021).

[34] SAFRA, S. On the complexity of omega-automata. In Proceedings of
the 29th FOCS (1988).

[35] SHAH, P., BANSAL, A., AKSHAY, S., AND CHAKRABORTY, S. A nor-
mal form characterization for efficient boolean skolem function syn-
thesis. In 36th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS (2021).

[36] SOOS, M., AND MEEL, K. S. Arjun: An efficient independent sup-
port computation technique and its applications to counting and sam-
pling. In ICCAD (2022).

[37] STASIO, A. D., MURANO, A., PERELLI, G., AND VARDI, M. Y. Solv-
ing parity games using an automata-based algorithm. In Implemen-
tation and Application of Automata - 21st International Conference, CIAA
(2016).

[38] TSEITIN, G. S. On the complexity of derivation in propositional cal-
culus. Automation of reasoning: 2: Classical papers on computational logic
1967–1970 (1983).

[39] TURING, A. Intelligent machinery. In Collected Works of A.M. Turing:
Mechanical Intelligence. 1992.

[40] VARDI, M., AND WOLPER, P. Reasoning about infinite computations.
Information and Computation (1994).

[41] VARDI, M. Y., AND WOLPER, P. Automata-theoretic techniques for
modal logics of programs. Journal of Computer and System Sciences
(1986).

[42] YANG, J., CHAKRABORTY, S., AND MEEL, K. S. Projected model
counting: Beyond independent support. CoRR (2021).

[43] ZIELONKA, W. Infinite games on finitely coloured graphs with ap-
plications to automata on infinite trees. Theoretical Computer Science
(1998).

עניינים תוכן iii

50 . תלויים משתנים של שכיחות 7.2

53 תגובתית בסינתזה תלויים משתנים השפעת 7.3

60 סיכום 8

60 . המשך עבודת 8.1

עניינים תוכן

1 מבוא 1

6 רקע 2

18 קודמות עבודות 3

20 לינארית טמפורלית בלוגיקה תלויים משתנים 4

20 . תלויים משתנים הגדרת 4.1

21 . תלויים משתנים מציאת 4.2

23 . נוסחה לפי תלויים משתנים 4.3

25 . אוטומט לפי תלויים משתנים 4.4

31 תגובתיות בסינתזה תלויים במשתנים שימוש 5

31 . הסינתזה תהליך של סקירה 5.1

33 . תלויים משתנים של סינתזה 5.2

36 . הסניתזה תהליך נכונות 5.3

40 סימבולי מימוש 6

40 . ROBDD מימוש 6.1

43 . תלויים למשתנים אסטרטגיה 6.2

45 . אסטרטגיות מיזוג 6.3

48 והערכה ניסויים 7

48 הנוסחה לגישת האוטומט גישת בין השוואה 7.1

ii

תקציר

סינתזה קלט/פלט, משתני גבי על לינארית טמפורלית לוגית נוסחה עבור
מאלי/טרנסדיוצר מכונת הנקראת דטרמניסטית מכונה לתכנן דורשת תגובתית
השמה בהינתן זמן נקודת בכל הפלט למשתני השמה מספקת שהיא כך
טמפורלית הלוגית שהנוסחה כזו בצורה זמן, נקודת אותה עד הקלט למשתני
בהקשר תלויים משתנים של הרעיון את חוקרים אנו הזו, בתזה מסופקת.
בסינתזה תלויים משתנים של מוצלח רעיון בהשראת תגובתית סינתזה של
שיש פלט כמשתני תלויים המשתנים את מגדירים אנו בוליאנית. לוגיקה של
השמות של היסטוריה בהינתן זמן נקודת בכל ויחודית יחידה השמה להם
שלוש חוקרים אנו זמן. נקודת אותה עד בנוסחה המשתנים שאר עבור
ספיקות לינארית: טמפורלית לוגית בנוסחה תלויים למשתנים שקולות גישות
הלא־ בוקי האוטומט גבי על תנאים לינארית, טמפורלית לוגית נוסחה של

הנוסחה. של ωהשפת־ הטמפורלית, הנוסחה של דטרמניסטי

טמפורלית בנוסחאות נפוצה תופעה הם תלויים שמשתנים מראה זו תזה
ואלגוריתמים בהגדרות שמשתמשת תגובתית בסניתזה חדשנית גישה ומציגה
פרקטית, בצורה האלו הרעיונות את לממש מנת על תלויים. משתנים של
אוטומטים, על עבודה המאפשר ״ספוט״ נקראת קוד בספריית משתמשים אנחנו
משלנו מותאם קוד וכתבנו סינתזה ואלגוריתמי טמפורליות לוגיות נוסחאות
טמפורליות בנוסחאות שהרצנו, ניסויים פי על .++Cב־ האלגוריתמים למימוש
שלנו השיטה ,3 היותר לכל ־ בלתי־תלויים משתנים של מועט מספר עם
התגובתית. הסינתזה בתחום ביותר העדכניים מהכלים יותר טובה בצורה פועלת
ואלגוריתמים רעיונות הגדרות, מוצגים שבו התיאורטי, בפן הן תורמת זו תזה
את המממש כלי פיתחנו שבו המעשי, בפן והן מדוקדקת, בצורה חדשניים
הכלים לעומת מסויימים במקרים במדדים מוביל ובפועל האלו האלגוריתמים

הקיימים.

i

הפתוחה האוניברסיטה
המחשב ולמדעי למתמטיקה המחלקה

טמפורלית לינארית בלוגיקה תלויים משתנים
תגובתיות וסינתזה

תואר לקבלת מהדרישות כחלק הוגשה זו תזה עבודת
המחשב במדעי M.SC. למדעים״ ״מוסמך

הפתוחה באוניברסיטה
המחשב ומדעי למתמטיקה המחלקה

על־ידי
בסה אליהו

פריד דרור ד״ר בהנחיית

2023 דצמבר

