
 

The Open University of Israel 

Department of Mathematics and Computer Science  
 

 

 

 

 

 

FairE9: Fair File Distribution 

over Mesh-Only Peer-to-Peer 
 

 

 

 

 

Thesis submitted as partial fulfillment of the requirements 

towards an M.Sc. degree in Computer Science 

The Open University of Israel 

Computer Science Division 
 

 

 

 

 

By 

Eyal Zohar 
 

 

Prepared under the supervision of Dr. Anat Lerner 
 

 

 

January 2009



 

Acknowledgments 

I wish to thank Dr. Anat Lerner for her guidance and endless patience; Prof. Danny 

Raz for his productive advice; Prof. Zeev Nutov for helping with the permutations 

algorithm; Ran Tavory for his comments on earlier drafts; and Ofer Wald for 

recommending me to write in English. 



 

Table of Contents 

Abstract....................................................................................................................................................... 1 
1. Introduction ....................................................................................................................................... 1 
2. Background ....................................................................................................................................... 3 

2.1. BitTorrent ................................................................................................................................ 3 
2.2. eMule ....................................................................................................................................... 4 

3. The FairE9 Approach ........................................................................................................................ 4 
3.1. The Model................................................................................................................................ 4 
3.2. The Idea ................................................................................................................................... 4 
3.3. Peer Identifier .......................................................................................................................... 5 
3.4. Locating Peers ......................................................................................................................... 5 
3.5. Random Protocol ..................................................................................................................... 5 
3.6. FairE9 Protocol ........................................................................................................................ 7 
3.7. Expected Behavior ................................................................................................................... 8 

4. Experimental Evaluation ................................................................................................................. 10 
4.1. Simulation Setup.................................................................................................................... 10 
4.2. Flash Crowd and Fairness...................................................................................................... 10 
4.3. Load Balance and Fairness .................................................................................................... 12 
4.4. Moderateness and Message Overhead ................................................................................... 12 
4.5. Welcoming Newcomers......................................................................................................... 14 
4.6. Resilience to Seeders Churn .................................................................................................. 15 
4.7. Incentives to Share................................................................................................................. 16 
4.8. Free-Riders ............................................................................................................................ 17 
4.9. Reduce Hard Disk Drive Reads ............................................................................................. 18 

5. Future Work .................................................................................................................................... 20 
6. Conclusions ..................................................................................................................................... 20 
References................................................................................................................................................. 21 
Appendix A – Simulator Source Code...................................................................................................... 22 

 



 

Tables and Figures 

Figure 1 Tree-view of a single piece distribution 

Figure 2 Peers 10% behind the average 

Figure 3 Peers 20% behind the average 

Figure 4 Newcomers latency 

Figure 5 Sampled newcomers 

Figure 6 Seeders churn, per protocol 

Figure 7 Seeders churn, with leaving probability 0.3 

Figure 8 Limited upload bandwidth 

Figure 9 Average latency in the presence of free-riders 

Figure 10 Free-riders compared to sharing peers 

Figure 11 FairE9 uploads by piece position 

Table 1 Flash crowd results 

Table 2 Uploads deviation 

Table 3 Aggressive crowd vs. moderate group 

Table 4 Message overhead 

Table 5 Distinct uploaded pieces per protocol 

 



 1 

Abstract 

Peer-to-peer (P2P) networks are in the spotlight due to the wide-spreading file-

sharing applications. Many file-distributing algorithms have been suggested and 

implemented. The various solutions need to cope with a heterogeneous and unstable 

environment, where peers can arrive and depart at a high rate (churn). Sometimes 

cooperation cannot be assumed. These issues make the structured attitude less practical. 

Even some of the algorithms that are considered as unstructured try to maintain long-

term parent-child relationships. Existing unstructured (mesh-only) algorithms for file-

distribution work well on the Internet on the average. But some of the participating 

peers may suffer from a slow start or high latency because of the randomness of the 

peer and piece selection for upload and download.  

In this paper we propose a fair unstructured system for file-distribution from a single 

source, with no central authority. The proposed protocol is fair both with respect to 

load balancing and with respect to the latency in each peer. It is based on a novel 

weights-algorithm that helps peers to determine what piece to ask from which peer, in a 

manner that increases their chance to get served. In this way it also lowers the 

overhead. The proposed algorithm welcomes newcomers while being resilient to churn, 

being resilient to free-riders, and adaptive to heterogeneous bandwidth. 

1. Introduction 

The peer-to-peer (P2P) system is a promising platform for many forthcoming 

distributed systems that deal with content delivery. The magic of P2P systems is based 

on the ability of a client to share previously downloaded data, thus helping numerous 

servers with their distribution. Broadcasting servers can deal with a large client-base by 

having the clients form a P2P overlay. With such an overlay, web sites and multimedia 

servers can cope with a sudden increase in service demand (flash-crowds) [1]. 

P2P overlays can be classified into two main classes: mesh-only and non-mesh. The 

non-mesh solutions are mostly based on some (hidden) hierarchical structures, with 

long-term parent-child relationships. Initial effort is spent on the establishment of a 

structure, which in turn allows an efficient streaming of the information along the 

paths. 

SplitStream [2] is a tree-based multicast system for a heterogeneous environment. It 

splits the video stream into stripes using MDC (Multiple Description Coding). With 

MDC, a peer can watch the video as soon as it receives at least one stripe, but to 



 2 

improve its quality it needs more stripes. SplitStream distributes each stripe using a 

separate distribution tree. If the forest is built efficiently, all the peers share the 

forwarding load. The forest structure also takes into account the declared capacities of 

every peer to maximize the peer utilization. It relies on Pastry [3] to maintain the 

distribution tree without the need for a central authority. 

Many existing solutions follow the idea of SplitStream to build multiple trees/paths 

to distribute the forwarding load among all peers. Each algorithm may focus on a 

different property. For example, Orchard [4] deals with free-riding, Chunkyspread [5] 

adapts to heterogeneous capacity, LagOver [6] considers individual latency constraints, 

and Climber [7] and [8] are incentives-based. 

These structures can be very efficient in a cooperative and stable environment, where 

peers stay for long-term and contribute a stable and significant upload bandwidth. But 

these algorithms often lose their main advantage in the Internet environment, where 

peers arrive and leave (churn) frequently, and where some are unwilling or unable to 

share in return (free-riding). Broken paths are not easily detected, and when these are 

repaired they cost with some more overhead and a higher latency. 

Mesh-only solutions divide files into small equal pieces to allow peers to upload soon 

after they start download. The peers are given a high level of freedom, as they can 

contact any peer, and download from it any piece the other peer owns and is willing to 

upload. Central entities, if they exist, do not fully control the process but merely help 

peers to locate each other. Famous representatives of this family are the existing file-

sharing networks, like BitTorrent [9], Gnutella [10] and eMule [11]. These operate well 

in a heterogeneous bandwidth environment, and sometimes encourage peers to share. 

But their flexibility and openness come with some level of chaos which results in 

random performance and encourages peers to be aggressive by contacting many 

siblings. The distributed nature and direct-reciprocity help free-riders to bypass defense 

mechanisms by whitewashing (switching identity) and/or downloading from complete-

sources (peers that completed their download) [12]. Mechanisms that are intended to 

filter out free-riders may also hurt potentially-cooperative newcomers [13]. 

In this paper we suggest a novel approach to the problem, which puts some order in a 

mesh-only solution. Each peer has an inherent individual piece-order that can be easily 

derived by all other peers from a commonly known function. The combination of the 

two peers' orders imposes weights to each request, helping to estimate the probability 

for a transaction before the requests are actually sent. Altogether this algorithm 



 3 

enhances fairness and lowers the overhead of the process. 

This paper is organized as follows. Some background is given in Section  2. The 

proposed algorithm is presented in Section  3. In Section  4 we show experimental 

evaluations. We present several ideas for future work in Section  5 and conclude in 

Section  6. 

2. Background 

FairE9 takes a novel approach toward the file distribution problem. To our 

knowledge, there are no other mesh-only P2P networks that are designed to cope with 

flash-crowd. In this section we give a brief overview of some systems that will later be 

referenced and compared to. 

2.1. BitTorrent 

Direct reciprocity P2P networks are based on the concept of direct reward given by a 

downloader to a peer that uploaded to it. This may be an immediate and short-term 

reward, or a future score that will help the generous contributor to get better service 

later when required. Such schemes tend to be simple to understand and implement in 

practice, and are therefore popular among the current P2P file sharing systems. 

BitTorrent is a pioneer of mesh-only P2P file-sharing, which can be regarded as 

having a direct-reciprocity mechanism with an immediate reward. The implemented 

mechanism is roughly based on TFT (Tit-for-Tat) [14]. Studies show effective upload 

bandwidth utilization [15]; however, it is also far from optimal for distribution from a 

single source to multiple receivers [16]. In addition, its peer selection policy induces 

free-riding [17], and measurements show that when the number of seeds is over 60%, 

free-riders download faster than others [12]. 

The distribution process is made up of many peers running a software client that 

implements the original BitTorrent wire protocol. Numerous software clients exist, 

each has its own flavor: from a basic open-source, to sophisticated clients that use their 

proprietary extensions. The incentive mechanism is not a part of the wire protocol, but 

is more related to internal decision taking. As with the wire protocol, each software 

client may take a slightly different approach. 

Basically, each peer holds a fixed number of upload slots, hopefully allocated to 

cooperative and beneficial partners. Peers normally measure their download speed in 

these slots, in order to choke (send a specific "choke" message) or even disconnect the 

less productive ones, and look for better partners. In order for cooperation to get 



 4 

started, it also does an "optimistic unchoke" from time to time, meaning it gives a new 

partner an upload slot for a short time to see if it cooperates. This behavior is intended 

for newcomers to get their time-limited chance to get their first pieces, but it also helps 

free-riders to download. 

2.2. eMule 

eMule file sharing system was suggested earlier than BitTorrent. It is considered less 

efficient than BitTorrent, and it is less popular worldwide today. It implements a long-

term credit system, in which peer a  gains a remote credit when uploading to peer b , 

and loses some credit when downloading from it. If peer a  later needs anything that b  

shares, it will move faster in b 's queue and get  better service according to its credit 

there. 

eMule's main drawback is long latency and large overhead. Each peer has a single 

incoming-requests queue that is common to all the files it shares. Peers are encouraged 

to contact many potential sources and to send multiple messages just to keep their place 

in the remote queues until they get a chance to download one piece (around 10 MB). 

Sometimes it takes several days before a peer gets a significant part of a downloaded 

file. 

3. The FairE9 Approach 

3.1. The Model 

A group of peers { }1,...,N n=  is interested in a file f F∈ 1
. The file is divided into m  

pieces, indexed with serial numbers { }1,...,m . Initially the file is held exclusively by the 

initial source s N∈ . The goal is to distribute all the pieces to all the peers in N .When a 

peer completes downloading all the pieces of the file, it is called a seeder. 

3.2. The Idea 

Every peer has a strict piece-order, which is a function of its identity (e.g. network 

address) and the file identifier (e.g. file hash). The permutation function g  maps each 

triple of a peer, a file, and a piece number into the index in the peer's piece-order. It 

involves a procedure that converts a number to permutation, called "unranking a 

permutation". These papers show how to perform it in a linear time [18;19]. The 

function g  is a bijection (one-to-one and onto), and it is known to all peers in N : 

{ } { }: , , 1,..., 1,...,g N F m m→    (1) 

 
1 FairE9 supports the distribution of multiple files in parallel, while each is distributed in a separate domain, like BitTorrent 

does. 



 5 

Each peer repeatedly sends requests to other peers, asking to download a specific 

missing piece. Sources get these requests, and consider providing the needed piece. 

Each request is granted a calculated weight, such that the requests with the lower 

weights get higher priority and are served first.  

Weights are based on piece position on both sides. When peer con  asks for piece i  of 

file f  from peer src , both peers measure the request's weight using the formula: 

( ) ( ) ( )
( )

, , , ,
, , ,

, ,

g con f i g src f i if src s
weight con src f i

g con f i if src s

 + ≠
=

=  (2) 

3.3. Peer Identifier 

The permutation function makes use of the peer identifier. A reasonable peer 

identifier mechanism would be the IP address of a peer, converted to a serial integer 

(up to 2
16

). Other alternatives may be considered, as long as they follow the basic 

required properties of such an identifier. The identity should not be freely selected by 

the peer itself, although non-frequent switches are allowed. FairE9 does not save any 

credits, therefore multiple peers with the same identifier may exist, just not too often; 

groups of around 1/ m  of the peers can share the same identifier with no harm. 

3.4. Locating Peers 

FairE9 does not limit itself to one solution, but it can use any combination of one of 

the many operative solutions already existing in current networks; for example 

BitTorrent trackers, BitTorrent DHT, eMule servers, eMuleKademlia, etc. For the ease 

of description, from this point  on, we assume that a BitTorrent trackers mechanism is 

in use. 

3.5. Random Protocol 

In this section we describe a fully random algorithm that can be considered as the 

ancestor of several mesh P2P networks, like eMule, BitTorrent and FairE9. 

Procedure 1  MainRandom 

1. Once: Bootstrap() 

2. Forever, in background: PeerExchange() 

3. Forever, in background: AcceptRequests() 

4. Until seed, in background: SendRequests() 

5. Forever: Upload() 



 6 

Procedure 2  Bootstrap 

1. Get initial peers from external source 

2. Add peers to known_peers 

3. Add peers to free_peers 

Procedure 3  PeerExchange 

1. Get random peer from known_peers 

2. Ask peer for its known_peers 

3. For each returned peer, while not exceed 

known_peers: 

3.1. If returned is new to known_peers: 

3.1.1. Add returned to known_peers 

3.1.2. Add returned to free_peers 

Procedure 4  AcceptRequests 

1. Wait for incoming requests 

2. If not exceed up_pending: 

2.1. Add request for random piece to 

up_pending 

Procedure 5  SendRequests 

1. Cleanup expired down_pending 

2. Remove disconnected 

known_peers/free_peers 

3. If not exceed down_pending: 

3.1. Pop random peer from free_peers 

3.2. Send request for random piece to the peer 

3.3. Add the request to down_pending 

 



 7 

Procedure 6  Upload 

1. If up_pending is not empty and up_slots is 

not full: 

1.1. Pop random peer from up_pending 

1.2. If there are pieces you have and peer 

does not: 

1.2.1. Pick random piece of these pieces 

1.2.2. Occupy a slot in up_slots 

1.2.3. Upload the piece to the peer in 

background 

1.2.4. When complete, release a slot in 

up_slots 

3.6. FairE9 Protocol 

FairE9 suggests a different approach to sending requests and to uploading: 

Procedure 5a SendRequests 

1. Cleanup expired down_pending, and abandon 

the peers that were attached to the removed 

requests 

2. Remove disconnected 

known_peers/free_peers 

3. If not exceed down_pending: 

3.1. target
2←max(2,down_pending / missing 

pieces) 

3.2. Get the lightest missing piece that has 

less than target pending requests 

3.3. Pop from free_peers the peer with the 

lightest weight for that piece 

3.4. Send the request for the piece to the peer 

3.5. Add the request to down_pending 

 
2 This formula is used in the simulator, later in this article. Other formulas may be used instead, as part of the trade-off between 

speed and overhead. This subject is out of the scope of this paper. 



 8 

Procedure 6a Upload 

1. If up_pending is not empty and up_slots is 

not full: 

1.1. Pop the lightest peer and piece from 

up_pending 

1.2. If you have that piece: 

1.2.1. Occupy a slot in up_slots 

1.2.2. Upload the piece to the peer in 

background 

1.2.3. When complete, release a slot in 

up_slots 

3.7. Expected Behavior 

The idea behind the weight formula is to advise peers how to behave. Downloading 

peers are expected to send download requests only to peers from whom there is a high 

probability of being served. Each request specifies the specific missing piece with the 

lowest weight. This mechanism has several fundamental desirable properties: it 

welcomes newcomers in the sense that new peers will get their first pieces very fast; the 

total overhead is reduced as the possibility of being served is increased; and the total 

load is more fairly shared as peers will usually receive requests for their low-order 

pieces. Requesting peers temporarily abandon peers that have not uploaded to them fast 

enough (expired down_pending), in order to cope with free-riders and slow peers. 

A detailed example is illustrated in Figure 1. In this example, a group of 28n =  peers 

distributes a file f  of 6m =  pieces. The illustration is for one of the pieces only - piece 

i . For the ease of the demonstration, we assume synchronous time, and we demonstrate 

3 imaginary time-slot phases that resemble only one of the many possibilities to 

distribute a single piece. We further assume that each peer may know only a subset of 

the peers; each peer may perform several uploads and downloads in parallel; other 

pieces may be transferred in the background (not displayed in this illustration). 

Figure 1a shows 3 peers downloading piece i  from the initial source s . Their given 

piece-order index is drawn in the upper-right corner of each peer, meaning that: 

( )
( )
( )

2

3

4

, , 1

, , 1

, , 2

g k f i

g k f i

g k f i

=

=

=
 



 9 

Figure 1b is a later possible snapshot. Note that 
6

k   downloads after 
4

k , although 

( ) ( )6, 4, , ,g k f i g k f i< , because 
6

k  did not know s  at the time but it knows 
2

k . 

Figure 1c shows the last downloads of this piece. Note that unlike a classic tree, here 

2 3
, ,s k k  can upload again, if they have free upload bandwidth; 

9 10
,k k  do not upload this 

piece, because of a relatively high weight compared to 
6 7 8 11 12
, , , ,k k k k k ; 

5
k  has the same 

high weight but it uploads, maybe because 
15

k  does not know many other peers or 

because 
15

k  did not manage to download the piece from others yet, due to others' 

bandwidth constraints. 

Note that the other 1m −  pieces are distributed in parallel in the background, 

involving the same peers. For each piece, a different tree-like distribution is performed. 

In each tree, different peers carry the load. This outcome resembles the idea behind 

SplitStream, but without any structure, no central authority, no need for full knowledge 

of all the peers, and resilience to peer failures and noncooperation. 

 

ss

k2

1

k2

1

k3

1

k3

1

k4

2

k4

2

 

ss

k
2

1

k
2

1

k
3

1

k
3

1

k
4

2

k
4

2

k
5

3

k
5

3

k
6

1

k
6

1

k
7

2

k
7

2

k
8

2

k
8

2

k
9

3

k
9

3

k
10

3

k
10

3

k
11

2

k
11

2

k
12

2

k
12

2

 

(a) Phase 1 (b) Phase 2 

ss

k
2

1

k
2

1

k
3

1

k
3

1

k
4

2

k
4

2

k
5

3

k
5

3

k
6

1

k
6

1

k
7

2

k
7

2

k
8

2

k
8

2

k
9

3

k
9

3

k
10

3

k
10

3

k
11

2

k
11

2

k
12

2

k
12

2

k
13

3

k
13

3

k
14

4

k
14

4

k
15

6

k
15

6

k
16

4

k
16

4

k
17

4

k
17

4

k
18

5

k
18

5

k
19

5

k
19

5

k
20

6

k
20

6

k
21

3

k
21

3

k
22

5

k
22

5

k
23

5

k
23

5

k
24

6

k
24

6

k
25

6

k
25

6

k
26

3

k
26

3

k
27

4

k
27

4

k
28

5

k
28

5

 

(c) Phase 3  

Figure 1 Tree-view of a single piece distribution 



 10 

4. Experimental Evaluation 

In this section we present simulation results of experiments designed to evaluate the 

performance of FairE9 and compare them to existing algorithms. We ran large-scale 

experiments on a proprietary network simulator that implements several different 

systems in an almost real environment. The results support our claims that several 

aspects of fairness and overhead can be improved by the new system. 

4.1. Simulation Setup 

We developed a proprietary simulator in order to evaluate specific behaviors of the 

proposed system, while neutralizing mechanisms that are not in the scope of this paper, 

such as the peers acquiring mechanism. 

All the simulated systems are evaluated using the same fixed parameters, unless 

noted otherwise: 10,000 peers download a 250MB file, with 200 pieces, from a single 

source; each peer, including the single source, has a 3Mbps download and 3Mbps 

upload bandwidths, divided into 500Kbps slots; each peer has 5 initial random known 

peers (previously joined), and performs a single peer exchange with one of the peers it 

knows every 40 seconds to get up to 50 new peers, until it reaches 500 known peers; 

maximum number of pending requests is set to 100, with timeout of 200 seconds per 

request. 

To simulate eMule, we created an eMule-like mode that resembles Random, but uses 

eMule credits mechanism. Peers waiting in the queue get higher priority if they have 

uploaded to the same peer before. Each uploaded piece gives a boost equal to a 60 

seconds wait in the queue. 

BitTorrent does not have a strict united incentives mechanism because many software 

clients exist today, each taking a slightly different approach. Our BitTorrent-like mode 

implements the basic ideas presented by the original software client [20]; each peer 

regularly checks the download-to-upload ratio on each connection to keep the 

connections with the high ratios alive, and closes those with the lower ratios. It also 

periodically gives a chance to new peers for a limited time. 

4.2. Flash Crowd and Fairness 

We tested an extreme case of flash crowd, when the single source deals with all the 

newcomers simultaneously from the very beginning. This is a common situation with 

live events or timed site launches. The goal is to keep both the average latency 

(efficiency) and the maximum and standard deviation latencies (fairness) low.  



 11 

This is a difficult assignment for mesh P2P that deals at start with peers that know 

only some of the other peers; none of them have a history or anything to give in return. 

We wish to avoid unfair situations, where some peers download several pieces while 

others starve for their first piece. 

In Table 1 we compare Random, eMule and FairE9, with respect to the average, the 

standard deviation and the maximum latencies. The simulation results show that FairE9 

is both more efficient and more fair than Random, eMule and BitTorrent. 

 

To explain the differences, a closer look at the process is needed. Figure 2 presents 

the percentage of slower peers that were at least 20 pieces (10% of the file) behind the 

average. Figure 3 does the same for 40 pieces (20%) behind the average. The diagrams 

show the undesired impact of BitTorrent's TFT and eMule's credit system, where a 

relatively small group of peers is starved. These are unlucky peers that get their first 

pieces late; therefore they have lower credit and slow continuation, even in comparison 

to Random. FairE9 on the other hand helps peers that started late to catch up quickly. 

  

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

20 80 140 20
0

26
0

32
0

38
0

44
0

50
0

56
0

62
0

68
0

74
0

80
0

86
0

920 98
0

1,
04

0

1,
10

0

1,
16

0

1,
22

0

1,
28

0

Time (sec)

P
e

e
rs

 B
e
h

in
d

Random

eMule

BitTorrent

FairE9

 

Figure 2 Peers 10% behind the average 

Protocol Avg. Latency Latency Stdev Max Latency 

Random 795.4 sec 35.6 1,100 sec 

eMule 812.8 sec 38.8 1,260 sec 

BitTorrent 819.2 sec 47.6 1,300 sec 

FairE9 786.4 sec 19.8 880 sec 

Table 1  Flash crowd results 



 12 

   

4.3. Load Balance and Fairness 

Another aspect of fairness is related to the load carried by each peer. We have 

measured the number of uploads performed by each peer. The results in Table 2 show 

that FairE9 keeps the system relatively balanced, probably because it turns newcomers 

into "almost seeders" very fast, as they get their first pieces early, and these first pieces 

are also the pieces often requested from them by others. 

 

BitTorrent demonstrates the worst results, probably because some of the peers are 

unlucky with their first pieces, and TFT only makes the situation worse. Not only do 

peers not get a chance to upload much, they also need to download mostly from seeders 

that do not ask for anything in return. Altogether it creates an unbalanced load. 

4.4. Moderateness and Message Overhead 

Typical mesh P2P encourages peers in practice to contact many peers, as the chance 

to download grows with the number of requests sent. What stops peers from sending 

unlimited number of requests are costs and constraints related to communications and 

CPUusage. 

Consider for example a peer that sends i  requests. Denote by p  the probability to be 

served by at least one of the requested peers. Using the Random algorithm, if this peer 

-0.30%

0.20%

0.70%

1.20%

1.70%

2.20%

20 80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

56
0

62
0

68
0

74
0

80
0

86
0

92
0

98
0

1,
04

0

1,
10

0

1,
16

0

Time (sec)

P
e

e
rs

 B
e

h
in

d

Random

eMule

BitTorrent

FairE9

 

Figure 3 Peers 20% behind the average 

Protocol Uploads Stdev. Max Uploads 

Random 29.52 288 

eMule 26.01 339 

BitTorrent 31.94 358 

FairE9 20.95 253 

Table 2  Uploads deviation 



 13 

doubles the number of requests, the probability to be served will grow to 22 p p− , as the 

probability to download from the peers of the second group is equal to the probability 

to download from the peers of the first group. With FairE9, the requests are ordered in 

a descending order of the probability to be served. Therefore, if we denote by q  the 

probability to download from the second group, then q p� , and so doubling the 

number of requests will be less profitable. 

To evaluate the motivation of a single peer in practice, we defined a peer 

aggressiveness factor which is a multiplier of the number of maximum pending 

requests (the base is 100). Table 3 shows what happens when the crowd has an 

aggressive factor of 2.0 while a tested group of 10 peers remains with a factor of 1.0. 

With respect to the reduced latency of the crowd and the added latency of the group, it 

is clear that Random is the worst. One could expect that the moderate group would not 

perform so well in eMule and BitTorrent because their somewhat random service 

encourages peers to be aggressive. But surprisingly the moderate group performs well 

in both networks because in this special experiment there are hardly any seeders during 

the process which makes the direct-reciprocity more dominant and random contacts 

less effective. The reason that FairE9 is influenced by the factor is because the 

aggressive peers have an advantage when downloading their last pieces. 

  

Message overhead has some performance penalty, therefore in real life there is a 

trade-off between the reduced latency and the additional overhead. Therefore, we also 

measured the average number of messages per download sent by the peers. The results 

are presented in Table 4. Intuitively, as FairE9 sends messages for specific pieces while 

the others ask for any piece, the number of messages in FairE9 could be the highest. 

But, in the others, the peers have to exchange inventory messages to figure out if and 

what one can send to the other, so the final results are that FairE9 has a lower message 

overhead in this test case. BitTorrent has the highest overhead, probably because the 

unlucky newcomers need to send many messages until they get a chance to download. 

eMule is a little better, probably because peers mostly get a chance to download even 

Protocol Crowd avg latency 

reduction (1.0→2.0) 

Group avg latency 

gain (2.0→1.0) 

Random 18.2 sec 154 sec 

eMule 0.6 sec 10 sec 

BitTorrent 2.4 sec 6 sec 

FairE9 12.2 sec 30 sec 

Table 3  Aggressive crowd vs. moderate group 



 14 

without a credit, just by waiting long enough for their turn. 

  

4.5. Welcoming Newcomers 

A common problem with incentives-based systems is the way they treat the 

newcomers who cannot contribute anything or cannot express or prove their 

willingness to share. 

To emphasize the effect of the approach taken by FairE9, we simulated a crowd that 

joins the distribution gradually; 8,000 peers join at time 0, and 200 more join every 

minute,  up to 10,000 peers. For each group of 200 peers we measured the average 

latency and absolute completion time (join time plus latency). We found that the 

absolute completion time correlates with the join time on all the protocols and groups. 

But the latency results are more complex, as presented in Figure 4. 

 

Newcomers in eMule and BitTorrent usually pay for their late join by having a long 

latency. An exception to this is when they join the distribution in a progressed stage, 

with a high number of seeders (or almost seeders). 

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 60 120 180 240 300 360 420 480 540 600

Join Time (Sec)

N
e

w
c

o
m

e
rs

 L
a

te
n

c
y

 v
s

. 
P

e
e

rs
 S

ta
rt

e
d

 a
t 

T
im

e
 0

Random

eMule

BitTorrent

FairE9

 

Figure 4 Newcomers latency 

Protocol Messages per download 

Random 5.15 

eMule 5.82 

BitTorrent 6.53 

FairE9 4.82 

Table 4  Message overhead 



 15 

We also compared the delay for receiving the first piece by the newcomers, as shown 

in Figure 5. The samples are taken one minute after a group of 200 peers joins, just 

before another group joins. It is clear that FairE9 and Random help newcomers to 

download, as almost all the 200 peers download at least one piece within the first 

minute that they join. eMule and BitTorrent incentive mechanisms treat newcomers as 

inferior peers, therefore they have difficulties getting their first piece. 

  

4.6. Resilience to Seeders Churn 

The problem with peers that leave unstructured systems is that they might take with 

them rare pieces of the file or just take with them a significant part of it while the 

overall progress is just at the beginning. 

We have tested the case of peers that leave soon after they become seeders. Figure 6 

presents the portion of non-seeders still in the system, while seeders leave with 

probability 0, 0.1, 0.2 or 0.3 every 20 seconds. The results correlate with Figure 3, 

because eMule's starving peers also suffer from the phenomenon explored here, while 

FairE9 is completely resilient even to a high churn rate. 

 

0

10

20

30

40

50

60

70

80

90

180 240 300 360 420 480 540 600 660

Sample Time (sec)

N
e

w
c

o
m

e
rs

 W
it

h
o

u
t 

P
ie

c
e

s

Random

eMule

BitTorrent

FairE9

 

Figure 5 Sampled newcomers 



 16 

 

 

4.7. Incentives to Share 

Any comparison that involves eMule and BitTorrent is incomplete without an 

evaluation of the incentives to share, as this is their main concern and focus. To 

evaluate the incentives to share, we set a different limited upload bandwidth to several 

groups of 50 peers each. Figure 8 shows the latency penalty paid by each group. 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

78
0

82
0

86
0

90
0

94
0

9
80

1,
02

0

1,
06

0

1,
1
00

1,
14

0

1,
18

0

1,
22

0

1,
26

0

1,
30

0

1,
3
40

Time (sec)

N
o

n
-S

e
e

d
e
rs

Random 0.3

eMule 0.3

BitTorrent 0.3

FairE9 0.3

Figure 7 Seeders churn, with leaving probability 0.3 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

68
0

72
0

760 80
0

840 8
80

92
0

960

1,0
00

1,
040

1,0
80

1,
120

1,1
60

1,
20

0

1,
2
40

Time (sec)

N
o

n
-S

e
e

d
e

rs

Random

Random 0.1

Random 0.2

Random 0.3

 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

68
0

72
0

76
0

80
0

84
0

880 92
0

96
0

1,
000

1,
04

0

1,
08

0

1,
12

0

1,
16

0

1,
20

0

1,
240

Time (sec)

N
o

n
-S

e
e

d
e

rs

eMule

eMule 0.1

eMule 0.2

eMule 0.3

 

(a) Random (b) eMule 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

68
0

72
0

760 80
0

840 8
80

92
0

960

1,0
00

1,
040

1,0
80

1,
120

1,1
60

1,
20

0

1,
2
40

Time (sec)

N
o

n
-S

e
e

d
e

rs

BitTorrent

BitTorrent 0.1

BitTorrent 0.2

BitTorrent 0.3

 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

68
0

72
0

76
0

80
0

84
0

880 92
0

96
0

1,
000

1,
04

0

1,
08

0

1,
12

0

1,
16

0

1,
20

0

1,
240

Time (sec)

N
o

n
-S

e
e

d
e

rs

FairE9

FairE9 0.1

FairE9 0.2

FairE9 0.3

 

(c) BitTorrent (d) FairE9 

Figure 6 Seeders churn, per protocol 



 17 

 

It is clear that eMule and BitTorrent impose incentives to upload. But it should be 

noted that we also measured the number of uploads performed by each group and saw 

that it correlates with the upload bandwidth presented here. So with these two protocols 

peers that have only pieces that others do not need, or a limited upload bandwidth, also 

suffer from long latency. Another important point is that even free-riders in BitTorrent 

complete their download eventually, paying less than additional 40% in latency. So the 

incentive to share depends on the trade-off between latency and dedicated upload 

bandwidth. 

4.8. Free-Riders 

Even though free-riders are not FairE9's main concern, we find it necessary to 

compare their effect on FairE9 to their effect on eMule and BitTorrent. 

In Figure 9 we compare the effect on the average latency when some of the peers 

free-ride on the various algorithms. In Figure 10 we focus on the latency gain of the 

free-riders in comparison to the sharing peers. 

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.00% 16.67% 33.33% 50.00% 66.67%

Upload Bandwidth

A
d

d
e

d
 L

a
te

n
c

y

Random

eMule

BitTorrent

FairE9

 

Figure 8 Limited upload bandwidth 



 18 

   

  

FairE9 takes a completely different approach to free-riders than eMule and 

BitTorrent. Instead of a direct punishment to the free-riding peer, an incentive to 

cooperate is offered, as cooperative behavior decreases the overall and self latencies. 

4.9. Reduce Hard Disk Drive Reads 

Sometimes a peer's upload bottleneck is the memory reading speed. This is due to the 

hard disk drive access time that derives from its head movements. A broadband peer 

that shares many files made of small pieces, may encounter such a problem. One of the 

0

50

100

150

200

250

300

350

400

450

0 500 1,000 1,500

Free-Riders (Peers)

F
re

e
-R

id
e
rs

 L
a

te
n

c
y

 G
a
in

 (
S

e
c

)

Random

eMule

BitTorrent

FairE9

 

Figure 10  Free-riders compared to sharing peers 

750

770

790

810

830

850

870

890

910

930

950

0 500 1,000 1,500

Free-Riders (Peers)

A
v

e
ra

g
e

 L
a

te
n

c
y
 (

S
e
c

)

Random

eMule

BitTorrent

FairE9

 

Figure 9 Average latency in the presence of free-riders  



 19 

keys to the solution is to make each peer focus on a small number of distinct pieces to 

upload. This can not only reduce head movements but it also enables the use of fast 

cache memory.  

Table 5 presents the results of a measured number of distinct pieces uploaded by each 

peer. Since peers start to share from the moment they have only one piece, even in the 

random protocols, peers upload less than half of the pieces. Random is a little better 

than eMule, because the latter sometimes couples peers that exchange distinct pieces on 

purpose. eMule is a little better than BitTorrent because of a similar reason, as 

BitTorrent's TFT is a stricter decoupling mechanism. 

 

FairE9 deals with this phenomenon by having each peer become in practice a major 

source for only a small number of distinct pieces. More than that, the weight system 

helps to focus on 1-2 pieces, as illustrated in 

1

38%

2

17%

7-200

32%

5

2%

4

3%

6

1%

3

7%

 

Figure 11. According to it a peer could serve 55% of 1,000 files from 250MB of fast 

memory. 

Protocol Distinct Pieces Avg 

Random 91.83 

eMule 93.71 

BitTorrent 94.39 

FairE9 37.58 

Table 5  Distinct uploaded pieces per protocol 



 20 

1

38%

2

17%

7-200

32%

5

2%

4

3%

6

1%

3

7%

 

Figure 11  FairE9 uploads by piece position 

5. Future Work 

FairE9 can be enhanced to be incentives-based and even directly confront free-riders. 

Since peers are expected to download according to piece-order, the system is ready for 

direct-reciprocity mechanism. One option is that a peer that wishes to download will be 

forced to upload simultaneously a lower order piece. This constraint is expected to add 

latency to the average case, with even more latency to less cooperative peers. Such a 

scheme does not require the use of long-term memory or the presence of a central 

authority. 

The presented weight formula gives equal importance to the index of the piece on 

both sides. An unbalanced formula can change the properties of the protocol. We 

expect that a formula that gives a higher weight to the index on the downloading side 

will give a boost to newcomers and improve the latency. The trade-off would probably 

be additional overhead. 

We used a balanced permutation function. In some cases it may be more suitable to 

use an unbalanced function. For example, if a video preview is required it would be 

better to use a function that tends to put the first file pieces in low indexes. This will 

distribute the first pieces faster than the other pieces. 

6. Conclusions 

We presented the design and evaluation of FairE9, a fair system for file-distribution 



 21 

from a single source, with no central authority. Each peer has an inherent individual 

piece-order. The combination of the two peers' orders imposes weights on each request. 

Serving priority is determined by these weights, making the entire process more 

deterministic and systematic. 

As other unstructured P2P networks, it copes well with churn, free-riders, 

heterogeneous environments and peer failures. In comparison to other unstructured P2P 

networks, FairE9 also handles flash crowd, balances the upload efforts, welcomes 

newcomers and reduces the message overhead. 



 22 

 

References 

 [1]  J. Jaeyeon, K. Balachander, and R. Michael, "Flash crowds and denial of service attacks: characterization and 

implications for CDNs and web sites," in Proceedings of the 11th international conference on World Wide Web 

Honolulu, Hawaii, USA: ACM Press, 2002, pp. 293-304. 

 [2]  Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Rowstron, and Atul Singh, 

"Splitstream: High-bandwidth multicast in cooperative environments," in Proceedings of the 19th ACM symposium on 

Operating systems principles (SOSP '03) 2003. 

 [3]  Antony I.T.Rowstron and Peter Druschel, "Pastry: Scalable, Decentralized Object Location, and Routing for Large-

Scale Peer-to-Peer Systems," in Proceedings of the IFIP/ACM International Conference on Distributed Systems 

Platforms Heidelberg (Middleware '01), 2218 ed London, UK: Springer-Verlag, 2001, pp. 329-350. 

 [4]  J.J.D.Mol, D.H.J.Epema, and H.J.Sips, "The Orchard Algorithm: P2P Multicasting without Free-Riding," in 

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P '06) Washington, DC, USA: 

IEEE Computer Society, 2006, pp. 275-282. 

 [5]  Vidhyashankar Venkataraman, Paul Francis, and John Calandrino, "Chunkyspread: Multi-tree Unstructured Peer-to-

Peer Multicast," in Procedding of the 5th International Workshop on Peer-to-Peer Systems (IPTPS '06) 2006. 

 [6]  Anwitaman Datta, Ion Stoica, and Mike Franklin, "LagOver: Latency Gradated Overlays," in Proceedings of the 27th 

International Conference on Distributed Computing Systems (ICDCS '07) 2007. 

 [7]  Vidhyashankar Venkataraman, Paul Francis, and John Calandrino, "Climber: An Incentive-based Resilient Peer-to-

Peer," in Proceedings of the Seventh International Workshop on Peer-to-Peer Systems (IPTPS 2008) 2008. 

 [8]  Tsuen-Wan "Johnny" Ngan, Dan S.Wallach, and Peter Druschel, "Incentives-Compatible Peer-to-Peer Multicast," in 

Proceeding of the 2nd Workshop on Economics of Peer-to-Peer Systems 2004. 

 [9]  BitTorrent, "http://bittorrent.com," 2004. 

 [10]  Gnutella, "http://www.gnutella.com," 2000. 

 [11]  eMule, "http://www.emule-project.net," 2002. 

 [12]  Nazareno Andrade, Miranda Mowbray, Aliandro Lima, Gustavo Wagner, and Matei Ripeanu, "Influences on 

cooperation in BitTorrent communities," in Proceeding of the 2005 ACM SIGCOMM workshop on Economics of peer-

to-peer systems ACM Press New York, NY, USA, 2005, pp. 111-115. 

 [13]  Michal Feldman and John Chuang, "Overcoming free-riding behavior in peer-to-peer systems," ACM SIGecom 

Exchanges, vol. 5, no. 4, pp. 41-50, July2005. 

 [14]  Robert Axelrod and William D.Hamilton, "The Evolution of Cooperation," Science, no. 211, pp. 1390-1396, 1981. 

 [15]  Ashwin R.Bharambe, Cormac Herley, and Venkata N.Padmanabhan, "Analyzing and improving BitTorrent 

performance," Microsoft Research,MSR-TR-2005-03, Feb.2005. 

 [16]  Gang Wu and Tzi-cker Chiueh, "How Efficient is BitTorrent?," in Proceeding of Multimedia Computing and 

Networking (MMCN '06), 6071 ed 2006. 

 [17]  Seung Jun and Mustaque Ahamad, "Incentives in BitTorrent induce free riding," in Proceeding of the 2005 ACM 

SIGCOMM workshop on Economics of peer-to-peer systems (P2PECON '05) New York, NY, USA: ACM Press, 2005, 

pp. 116-121. 

 [18]  Wendy Myrvold and Frank Ruskey, "Ranking and Unranking Permutations in Linear Time," Information Processing 

Letters, vol. 79, no. 6, pp. 281-284, 2001. 

 [19]  Martin Mares and Milan Straka, "Linear-Time Ranking of Permutations," in Algorithms – ESA 2007 Springer Berlin / 

Heidelberg, 2007, pp. 187-193. 

 [20]  Bram Cohen, "Incentives Build Robustness in BitTorrent," in Proceeding of the 1st Workshop on Economics of Peer-to-

Peer Systems (IPTPS '03) 2003. 

 

 



 23 

Appendix A – Simulator Source Code



 

  תקציר

אלגוריתמים . קבצים- נמצאות באור הזרקורים תודות לתפוצה הרחבה של רשתות שיתוףP2Pרשתות 

בה , על הפתרונות השונים להתמודד עם סביבה הטרוגנית ולא יציבה. קבצים הוצעו ומומשו- רבים להפצת

 שיתוף פעולה לעתים לא ניתן להניח שיתקיים). churn(צמתים עשויים להצטרף ולנטוש בתדירות גבוהה 

אפילו כמה . נושאים אלו הופכים את גישת המערכות המובנות לפחות מעשיות. מלא בין הצמתים

מובנים -אלגוריתמים בלתי. ארוך-בן לטווח-מובנים משמרים יחסי אב-מהאלגוריתמים הנחשבים בלתי

עשויים לסבול אך כמה מהצמתים המשתתפים . קבצים פועלים לרוב היטב ברשת האינטרנט-קיימים להפצת

  .מאתחול איטי או תקורה גבוהה בגלל האקראיות של בחירת הצמתים והפיסות להעלאה והורדה

. ללא סמכות מרכזית, קבצים ממקור יחיד-מובנית להפצת-במסמך זה אנו מציעים מערכת הוגנת בלתי

-אלגוריתםהוא מבוסס על . סיום בכל צומת- הפרוטוקול המוצע הוגן בהיבטים של חלוקת העומס וזמן

באופן המגדיל את סיכוייהם לקבל , משקלים מקורי המסייע לצמתים לקבוע איזו פיסה לבקש מאיזה צומת

חדשים תוך כדי גילוי -האלגוריתם המוצע מקדם מצטרפים. כך גם מושגת הקטנה של התקורה. שירות

  .וחב פס מגווןוהסתגלות לסביבה בעלת ר, חינם-עמידות בפני אוכלי, עמידות בפני תחלופה גבוהה



 

  תוכן העניינים

 1............................................................................................................................................................צירקת
 1..................................................................................................................................................דמההק .1
 3.....................................................................................................................................................קער .2

2.1. BitTorrent.................................................................................................................................3 
2.2. eMule.......................................................................................................................................4 

3. FairE9................................................................................................................................................4 
 4.........................................................................................................................................ודלמה .3.1
 4.........................................................................................................................................יוןרעה .3.2
 5.................................................................................................................................מתהצוהה זמ .3.3
 5................................................................................................................................םתיצמור אית .3.4
 5...........................................................................................................................ראיאקל וקוטרופ .3.5
 FairE9.........................................................................................................................7ל קוטוורפ .3.6
 8.............................................................................................................................פהות מצגותנהה .3.7

 10........................................................................................................................םצועיבי רכתהעליים סוינ .4
 10........................................................................................................................טורמולסי היאורת .4.1
4.2. Flash Crowd 10................................................................................................................ותגינוה 
 12....................................................................................................................ותגינוהומס  עלוקתח .4.3
4.4. Moderateness 12...............................................................................................................הורתקו 
 14........................................................................................................שיםחדפים רטלמצ םניפבלת ק .4.5
 15............................................................................................אים מלורותמקשל שה נטיי בפנת ידומע .4.6
 16........................................................................................................................תף לשבציהטימוה .4.7
 17................................................................................................................................םחינ-יוכלא .4.8
 18.....................................................................................................יחקשהסק דימהת ריאוהק םצומצ .4.9

 20...............................................................................................................................םפי נוסמחקרני וויכ .5
 20...............................................................................................................................................ותקנסמ .6
 21..............................................................................................................................................תמקורומת שיר
 22.................................................................................................................טורלימוסהל ר שמקוהוד ק – 'אפח סנ

  



 

 האוניברסיטה הפתוחה

  המחלקה למתמטיקה ולמדעי המחשב
  
  
  
  
  
  

FairE9 :הפצת תכנים הוגנת  

   בלתי מובנהP2Pגבי -על
  
  
  
  
  

  עבודת תזה זו הוגשה כחלק מהדרישות לקבלת תואר
   במדעי המחשב.M.Sc" מוסמך למדעים"

  באוניברסיטה הפתוחה
  החטיבה למדעי המחשב

  
  
  
  
  

  ידי- על

  איל זהר
  
  
  
  

  ר ענת לרנר"העבודה הוכנה בהדרכתה של ד
  
  
  

  2009 ינואר


