
 The Open University of Israel

Department of Mathematics and Computer Science

Implementation of self-stabilizing algorithms

in the distributed model

By

Oleg Zatulovsky

Advanced Project 22997

Prepared under the supervision of Dr. Leonid Barenboim

Table of Contents

Abstract ... 3

Introduction .. 4

Algorithm 1 ... 5

 Algorithm 1 Description ... 5

Algorithm 1 Implementation ... 6

Algorithm 1 Test ... 9

Algorithm 2 ... 11

 Algorithm 2 Description ... 11

Algorithm 2 Implementation ... 12

Algorithm 2 Test ... 16

Algorithm 3 ... 17

 Algorithm 3 Description ... 17

Algorithm 3 Implementation ... 19

Algorithm 3 Test ... 25

Summary .. 27

Installation .. 30

Execution ... 33

Bibliography .. 35

Abstract

A distributed system is defined to be self-stabilizing if, regardless of its initial state, the system reaches a

legitimately correct state in a finite time. Graph algorithms and self-stabilization have become one of

the most popular fault tolerance approaches and as for today form the basis of many network protocols

and clustering tasks. The objective of this project is to implement three self-stabilizing algorithms with

different characteristics for graph coloring and compare their performance on various graphs. The

results will show us the difference between the theoretical calculations and assumptions made by the

authors of the algorithms and the actual performance of the algorithms in real time.

Introduction

In the self-stabilizing distributed model, we consider a partially connected system of autonomous nodes,

each of which has limited information about the system. In our model we consider an n-vertex graph

𝐺 = (𝑉, 𝐸) with maximum degree ∆. Each node 𝑣 ∈ 𝑉 hosts a processor with two types of memory. The

Read Only Memory (ROM) holds a unique ID number of the node, the degree ∆, the number of vertices

n and the algorithm code. The contents of the ROM are initialized once and cannot be altered during

execution. The second type of memory is Random Access Memory (RAM). This memory can change

during execution and holds variables such as program registers, node color, received data from other

nodes etc... The RAM memory is controlled by the user and as a result is prone to faults caused by

system crashes and transient faults. We can think of a situation in which as a result of system crash the

coloring of the nodes is changed and becomes illegal. Once the faults cease, the self-stabilizing algorithm

knows how to self-stabilize the graph into a proper solution.

In this project we will look at three self-stabilizing algorithms which were published in different journals

and implement them using Sinalgo platform which is a simulation framework for testing and validating

network algorithms. The first algorithm by Gradinariu and Tixeuil (1) is a self-stabilizing randomized

coloration algorithm. It works on anonymous networks which means that a unique ID in the ROM is

unnecessary. Since the algorithm is probabilistic, we would say that there exists a positive probability

under which a legitimate coloring is achieved in finite time of 𝑂((∆ − 1) log|𝑉|). The second algorithm

by Kosowski and Kuszner (2) is supposed to determine a legal coloring of graph G in at most

𝑂(|𝑉||𝐸|2∆𝐷𝑖𝑎𝑚(𝐺)) moves and assumes that each node is assigned with a unique ID. The third one is

a state of the art self-stabilizing (∆ + 1)-coloring algorithm with running time of 𝑂(∆ + log∗ 𝑛) which is

lower than the Szegedy-Vishwanathan barier of Ω(∆ log ∆ + log∗ 𝑛). Presented by Barenboim, Elkin and

Goldenberg, the algorithm uses a special variation of Linial’s algorithm for 𝑂(∆2)-coloring and a 2-

dementional additive group (AG) algorithm for 𝑂(∆2) to 𝑂(∆) coloring in 𝑂(∆) rounds.

The algorithms implementation will be followed by comparing their performace on different inputs of

veriying size. We will give special attention to the ∆ parameter and the number of nodes and edges in

the graph. Massage and runtime complexities will be given and compared. Since we are dealing with a

realtime perfomance we will measure the local computation time in order to have amore accurate view

of the algortihms performace.

Algorithms Description

Algorithm 1 - M. Gradinariu, S. Tixeuil.

Self-stabilizing Randomized Vertex Coloration Algorithm (1)

Algorithm 1 Description

This randomized algorithm works on anonymous networks and stabilizes with an unfair scheduler. Each

vertex knows the bound ∆ on the network degree and maintains an integer 𝐶 ∈ {0. . ∆} which is its color.

Each vertex 𝑖 ∈ 𝑉 knows the colors of its neighbors. Once the color of vertex 𝑖 is not the largest legal

possible (line 1), a fair coin is tossed (line 2) and the color 𝐶 of vertex 𝑖 is changed to the largest legal

possible integer (line 3). The randomization assures us that there exists a positive probability that only

one of the nodes changes its color. As a result, starting from an arbitrary coloring, the system reaches a

legal coloring with a positive probability.

Pseudo code

1) if 𝐶𝑖 ≠ max({0. . ∆}\ ⋃ {𝐶𝑗}𝑗∈𝒩𝑖
) then

2) if random(0,1) = 1 then

3) 𝐶𝑖: = max({0. . ∆}\ ⋃ {𝐶𝑗}𝑗∈𝒩𝑖
)

Complexity

The average number of rounds to achieve legal coloring is given as O((∆ − 1) log|𝑉|).

Algorithm 1 Implementation

The implementation of the algorithm on Sinalgo required rewriting existing classes and methods. The

following describes all the involved objects and the logic behind them. To fully understand the

explanation, the reader must be familiar with the Sinalgo simulation framework (4).

CustomGlobal.java

Variables

Delta – static integer which holds the calculated maximal rank in the graph.

legalColoring - static Boolean that indicated in each round if the coloring became legal.

colorTable – static Hash table for the coloring of the nodes. It is initialized once and hold the different

RGB colors for the GUI representation

The following variables are used for the data acquisition and the generation of the report after the

algorithm stabilizes:

startAcq – static Boolean that indicates the exact point when data collection starts.

timer – holds the start time of the stabilization.

runtime – holds the runtime in seconds of the stabilization.

rounds - holds the rounds number of the stabilization.

countMsg – holds the number of massages sent during the stabilization.

Methods

buildHash – this method initialized the hash table for the nodes coloring. Since we use RGB colors, we

have 2553 possibilities. For the colors to be notable on the screen, we divide the range [100, 2553] into

n ranges and pick one color from each range. This way the human eye will be able to distinguish

adjacent neighbors more easily.

initDelta – this method returns the highest degree in the graph

preRound – this method is initialized before each round. It starts the process of data acquisition for the

final stabilization report and before the first round it initialized the Delta and the hash table for the

colors.

postRound – this method is inherited from AbstractCustomGlobal.java and runs after each round. It

stops the simulation once the network is stabilized and plots the report of the most recent stabilization

to the sidebar output.

GUI buttons

occurFault – This method is used to simulate a fault in the network. After the network is stabilized the

user can choose which percentage of the nodes will be faulted. Once the faults cease, the user can

resume the simulation and the network will stabilized once again into a proper state.

AgreeMsg.java

In each round each vertex tries to agree with its neighbors on the current color. The AgreeMsg includes

the nodes color as a meta data.

Variables

color – an integer that hold the color of the nodes.

Methods

toString – this method plots the nodes color.

getColor – this color returns the nodes color.

Node1.java

This class implements the main algorithm. Each node knows its color and delta. In each round each node

sends its color to its neighbors and consequently receives their colors.

Variables

Color – an integer that represents the color of the node.

size – an integer that holds the size of the node on the GUI plot.

neighbors_colors – an ArrayList of integers that stores the colors of the neighbors received during the

last round.

Methods

handleMessages – this method iterates over the received massages and extracts the sent meta data.

preStep – this method is trigger before each round. It initializes the neighbor’s colors Array and sets the

GUI node size.

init – this method is triggered once upon node creation. It sets the color of the node to be the ID.

postStep – this method is triggered after each round and holds the main stabilization algorithm. If the

color is maximal then the node agrees. Otherwise a coin is tossed and with probability of ½ a new color

is chosen to be a new maximal color. The nodes color is broadcasted to the neighbors after each round

via AgreeMsg.

getMaximalColor - this method receives an ArrayList of integers which represent colors. The method

returns the maximal color in the ArrayList, meaning the highest value in the range [0, ∆] and does not

exist in the received ArrayList.

toString – prints the nodes ID and the color.

changeColorToNeighbor – this method is triggered when the user wants to simulate a fault in the

system. The nodes color is changes arbitrary to the color of one of its neighbors.

draw – this method plots the node to the GUI.

occur_Error – a button that simulates an error in a certain percentage of the nodes.

Algorithm 1 Test

In order to test the algorithm, we build different graphs with different topologies and collected the data

from the different stabilizations. The testing was done on a home PPC with the following parameters:

Intel Core i5-4460 CPU@3.20Ghz, 4GB RAM, 32-bit OS

The testing included changing the Delta and the number of nodes in the graph. The first simulations

started from a mono coloring graph and the last step included generating a fault of 25% of the nodes.

When the faults ceased the system stabilized again. The following data was collected from the

algorithms testing:

Delta Stabilization rounds Massages sent Total run

time [sec]

Average time

per round

Number

of colors

7 13 3696 0.187 0.014385 6

31 29 57568 0.312 0.010759 18

78 86 426020 1.232 0.014326 42

99 132 1212798 3.385 0.025644 78

At this point we generate 25% fault of the nodes

99 127 1166508 3.229 0.025425 78

n = 100

Delta Stabilization

rounds

Massages sent Total run

time [sec]

Average time

per round

Number

of colors

70 51 3277300 6.848 0.134275 35

131 90 12296062 29.531 0.328122 65

325 171 60082760 205.343994 1.200842 152

609 308 190673402 1051.134033 3.412773 266

At this point we generate 25% fault of the nodes

609 298 184462542 1032.08606 3.463376 270

n = 1500

mailto:CPU@3.20Ghz

Delta Stabilization

rounds

Massages sent Total run

time [sec]

Average time

per round

Number

of colors

43 43 2859528 6.505 0.151279 23

125 90 23119886 57.938999 0.643767 64

266 139 77231148 297.145996 2.137741 125

318 166 118273980 2298.581055 13.846874 152

At this point we generate 25% fault of the nodes

318 126 89601500 1894.873047 15.038675 146

n = 3000

An example of a self-stabilized network with 1500 nodes:

1500 nodes Self- Stabilization

Algorithm 2 - A. Kosowski, L. Kuszner.

A graph coloring algorithm under a distributed daemon optimal for bipartite graphs (2)

Algorithm 2 Description

In this algorithm, each node is assigned with an ID which. Variable f is used for the construction of a

spanning three of the graph what assures us that between every two nodes there will be exactly one

path. This algorithm is semi-uniform since just one node is considered as a root. A node 𝑢 ∈ 𝑉 will be

assigned as the parent of node 𝑣 ∈ 𝑉 if 𝑓(𝑢) < 𝑓(𝑣). Lines 1 and 2 construct the spanning tree. Lines 3

and 4 use the mutex 𝑠(𝑢) to allow the node u to declare that it is interested to change its color 𝑐(𝑢). In

line 4 the condition on 𝐼𝑑(𝑢) is used to prevent parallel color changes on neighboring nodes. In line 6

the parameter 𝛾(𝑢) assigns the smallest odd color if the parents color 𝑐(𝑝𝑎𝑟𝑒𝑛𝑡(𝑢)) is even and the

smallest even color if the parents color is odd.

Pseudo code

1) if (𝑖 ≠ 𝑟𝑜𝑜𝑡(𝐺)) 𝑎𝑛𝑑 (𝑓(𝑖) ≤ min
𝑗∈𝒩𝑖

𝑓(𝑗)) then

2) 𝑓(𝑖): = max
𝑗∈𝒩𝑖

𝑓(𝑗) + 1

3) if (𝑝𝑎𝑟𝑒𝑛𝑡(𝑖) ≠ 𝑛𝑢𝑙𝑙) 𝑎𝑛𝑑 (𝑐(𝑖) ≠ 𝛾(𝑖)) then

4) 𝑠(𝑖): = 𝑜𝑛

5) if (𝑠(𝑖) = 𝑜𝑛) 𝑎𝑛𝑑 (𝐼𝑑(𝑖) < min
𝑗∈𝒩𝑖

{𝐼𝑑(𝑗) | 𝑠(𝑗) = 𝑜𝑛}) then

6) 𝑐(𝑖) ≔ 𝛾(𝑖)

7) 𝑠(𝑖) ≔ 𝑜𝑓𝑓

Where 𝛾(𝑖) = min {𝑖 ∈ ℕ ∪ {0}: 𝐴(𝑖) ≠ 𝐴(𝑐(𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)) 𝑎𝑛𝑑 ∀𝑢∈𝑁(𝑖)𝑘 ≠ 𝑐(𝑢)} and 𝐴(𝑖) ≡ 𝑖 𝑚𝑜𝑑 2

Complexity

The run time complexity of the algorithm for coloring a graph legally is O(|𝐸||𝑉|3∆𝑑𝑖𝑎𝑚(𝐺))

Algorithm 2 Implementation

The implementation of the algorithm on Sinalgo required rewriting existing classes and methods. The

following describes all the involved objects and the logic behind them. To fully understand the

explanation, the reader must be familiar with the Sinalgo simulation framework (4). In order to change

the Delta parameter we alter the parameter rMax in the config.xml file.

CustomGlobal.java

Variables

Delta – static integer which holds the calculated maximal rank in the graph.

legalColoring - static Boolean that indicated in each round if the coloring became legal.

colorTable – static Hash table for the coloring of the nodes. It is initialized once and hold the different

RGB colors for the GUI representation

The following variables are used for the data acquisition and the generation of the report after the

algorithm stabilizes:

startAcq – static Boolean that indicates the exact point when data collection starts.

timer – holds the start time of the stabilization.

runtime – holds the runtime in seconds of the stabilization.

rounds - holds the rounds number of the stabilization.

countMsg – holds the number of massages sent during the stabilization.

Methods

buildHash – this method initialized the hash table for the nodes coloring. Since we use RGB colors, we

have 2553 possibilities. For the colors to be notable on the screen, we divide the range [100, 2553] into

n ranges and pick one color from each range. This way the human eye will be able to distinguish

adjacent neighbors more easily.

initDelta – this method returns the highest degree in the graph

preRound – this method is initialized before each round. It starts the process of data acquisition for the

final stabilization report and before the first round it initialized the Delta and the hash table for the

colors.

postRound – this method is inherited from AbstractCustomGlobal.java and runs after each round. It

stops the simulation once the network is stabilized and plots the report of the most recent stabilization

to the sidebar output.

GUI buttons

occurFault – This method is used to simulate a fault in the network. After the network is stabilized the

user can choose which percentage of the nodes will be faulted. Once the faults cease, the user can

resume the simulation and the network will stabilized once again into a proper state.

show_root – this option is given for the user to show the root node.

CheckError.java

In each round each vertex sends its neighbors the current color, ID, variable f and the semaphore s. The

CheckError class holds the meta data for these pratmeter.

Variables

senders_color – an integer the holds the senders color

senders_ID – an integer the holds the senders ID

senders_f – an integer the holds the sender’s parameter f for tree construction.

senders_s – a mutex that allows mutual exclusion for color changing in the neighborhood.

 Methods

toString – this method plots the nodes color.

getSendersColor – this method returns the nodes color.

getSendersID – this method returns the nodes ID.

getSendersf– this method returns the nodes f parameter.

getSenders_s– this method returns the nodes mutex state.

Node2.java

This class implements the main algorithm. Each node knows its color and delta. In each round each node

calculates gamma, the new parent ID (if applicable) and the new f variable. After each round each node

broadcasts these parameters to its neighbors.

Variables

Color – an integer that represents the color of the node.

size – an integer that holds the size of the node on the GUI plot.

neighbors_colors – an ArrayList of integers that stores the colors of the neighbors received during the

last round.

f - an integer that is used for construction a spanning tree by parent allocation.

parentID – an integer that holds the ID of the nodes parent.

gamma – an integer that hold the value of gamma as described in the article.

mutex – a Boolean that acts as a binary semaphore.

root - a Boolean indicator if the current node is the root.

neighbors_data – an ArrayList of Quads that stores the data of the neighbors received from the last

round.

Methods

handleMessages – this method iterates over the received massages and extracts the sent meta data.

preStep – this method is trigger before each round. It initializes the neighbor’s data ArrayList and sets

the GUI node size.

init – this method is triggered once upon node creation. It initialized the nodes parameters and by

default, set node with ID==1 to be the root.

postStep – this method is triggered after each round and holds the main stabilization algorithm. At

each step the parent of the node is updated according to the new minimal f value. All the nodes except

the root calculate gamma at each round. Algorithmic sections F, C1 and C2 are responsible for the legal

coloring and the mutual exclusion.

toString – prints the nodes ID and the color.

changeColorToNeighbor – this method is triggered when the user wants to simulate a fault in the

system. The nodes color is changes arbitrary to the color of one of its neighbors.

draw – this method plots the node to the GUI.

occur_Error – a button that simulates an error in a certain percentage of the nodes.

getMinimal_f – this nethod returns an integer which is the minimal f among the neighbors of this node.

getMinimal_f_ID - this nethod returns an integer which is the ID of the minimal f among the neighbors

of this node.

getMaximal_f – this nethod returns an integer which is the maximal f among the neighbors of this

node.

mutualExclution - this method returns an integer of the minimal Id among the neighbors of this node

with mutex equals TRUE.

calcGamma – this method receives the parents color and returns a new value for gamma according to

the parent’s color.

noSameNeighbor – this method receives a color c and returns true if there does not exist a neighbor

with color c.

getParentsColor – this method extracts the parents color from the received meta data and returns it

as integer.

An example of a self-stabilized network with 1500 nodes:

1500 nodes Self- Stabilization

Algorithm 2 Test

In order to test the algorithm, we build different graphs with different topologies and collected the data

from the different stabilizations. This algorithm is limited only to connected graphs. Any graph that has

more than one connected component will fail to stabilize since the algorithm, as described in the article,

is not capable of assigning more than one root node. The testing was done on a home PPC with the

following parameters:

Intel Core i5-4460 CPU@3.20Ghz, 4GB RAM, 32-bit OS

The testing included changing the Delta and the number of nodes in the graph. The first simulations

started from a mono coloring graph and the last step included generating a fault of 25% of the nodes.

When the faults ceased the system stabilized again. The following data was collected from the

algorithms testing:

Delta Stabilization rounds Massages sent Total run

time [sec]

Average time

per round

Number

of colors

4 21 7200 0.172 0.00819 3

18 25 33072 0.218 0.00872 14

51 72 240406 0.764 0.010611 40

99 95 857656 2.309 0.024305 53

At this point we generate 25% fault of the nodes

99 24 209852 0.624 0.026 56

n = 100

Delta Stabilization

rounds

Massages sent Total run

time [sec]

Average time

per round

Number

of colors

24 96 1581180 3.776 0.039333 20

63 266 17380820 37.236 0.139985 51

124 759 103498836 248.757996 0.327744 92

587 572 353164642 2647.126953 4.627844 384

mailto:CPU@3.20Ghz

At this point we generate 25% fault of the nodes

587 197 121226392 1050.19397 5.330934 384

n = 1500

Delta Stabilization

rounds

Massages sent Total run

time [sec]

Average time

per round

Number

of colors

41 320 21759628 21759628 21759628 34

97 641 134231040 341.502991 0.532766 75

124 1077 279839624 707.133972 0.656578 89

256 1024 570584388 2746.511963 2.682141 178

At this point we generate 25% fault of the nodes

256 168 93145252 444.27301 2.644482 179

n = 3000

Algorithm 3 - Leonid Barenboim, Michael Elkin, Uri Goldenberg

Fully Dynamic Self-Stabilizing 𝑶(∆)-Coloring (3)

Algorithm 3 Description

This algorithm uses a modified version of Linial’s technique for O(𝑥2) coloring. The heart of the

algorithm is based on computing a polynomial P𝑢(x) for node’s 𝑢 color and for each of 𝑢’s neighbors.

This allow to select a color (for 𝑢) such that the color 〈𝑥, P𝑢(x)〉 holds 〈𝑥, P𝑢(x)〉 ≠ 〈𝑦, P𝑣(y)〉 for any

neighbor 𝑣 of 𝑢. The following definitions are necessary to follow the algorithm. 𝑟 = 𝑙𝑜𝑔∗𝑛 represents

the number of iterations in Linial’s algorithm until proper coloring is achieved. 𝑡1 = 𝑂(∆2), … , 𝑡𝑟 =

𝑂((∆𝑙𝑜𝑔𝑛)2) represent the upper bounds on the number of colors in the different iterations of Linial’s

algorithm. Finally, the intervals are used to map each color to an iteration of Linial’s algorithm. The

intervals are built in such a way that each range holds enough colors to represent all the possible colors

for the iterations of Linial’s algorithm.

𝐼0 = [0, 𝑡1 − 1]=[0, ∆2 − 1] 𝐼0̂ = ∆2 − 1

𝐼1 = [𝑡1, 𝑡1 + 𝑡2 − 1] 𝐼1̂ = 𝑡1 + 𝑡2 − 1 = ∆2 + 𝑡2 − 1 = 𝐼0̂ + 𝑡2

𝐼2 = [𝑡1 + 𝑡2, 𝑡1 + 𝑡2 + 𝑡3 − 1] 𝐼2̂ = 𝑡1 + 𝑡2 + 𝑡3 − 1 = 𝐼1̂ + 𝑡3

………………………………………………………………. …………………………………………………………..

𝐼𝑟−1 = [𝑡1 + 𝑡2 + ⋯ + 𝑡𝑟−1, 𝑡1 + 𝑡2 + ⋯ + 𝑡𝑟 − 1] 𝐼𝑟−1̂ = 𝐼𝑟−2̂ + 𝑡𝑟

𝐼𝑟 = [𝑡1 + 𝑡2 + ⋯ + 𝑡𝑟, 𝑡1 + 𝑡2 + ⋯ + 𝑡𝑟 + 𝑛 − 1] 𝐼�̂� = 𝐼𝑟−1̂ + 𝑛

Each node holds in it’s RAM a color and the ROM holds ∆, the number of nodes and the algorithm. In

lines 1,2 the algorithm checks if the color is legal, if not the color is changed to an initial state in a high

range. In lines 6,7 the algorithm checks if the color range is 2 or higher, in this case the color is updated

by modLinial algorithm and a lower range is achieved. In lines 9-11 the color is in the interval 𝐼1 and the

node selects a new color from the interval 𝐼0 and distinct from any other adjacent color in 𝐼0. ModLinial

selects a new color in 𝐼0 taking in account the set 𝑆′ of all possible colors that the neighbors (in 𝐼1) can

obtain in the current iteration. Finally, in lines 12-16 a color that is in 𝐼0 is finalized or changes to a

different color in 𝐼0 according to AG algorithm which provides us with 𝑂(√∆2) = 𝑂(∆) coloring.

Pseudo code (for node u)

1) if (𝑐(𝑢) = 𝑐(𝑣) | 𝑣 ∈ 𝒩𝑢) then // the neighbors u and v have the same color.

2) 𝑐(𝑢): = ∑ 𝑡𝑖
𝑟
𝑖=1 + 𝐼𝐷(𝑢)

3) else

4) 𝐼𝑗 denotes the range of 𝑐(𝑢)

5) 𝑄 denotes the subset of {𝑣| 𝑣 ∈ 𝒩𝑢 ⋀ 𝑣 ∈ 𝐼𝑗 }

6) if 𝑗 ≥ 2 then

7) 𝑐(𝑢): =mod-Linial(𝑐(𝑢), 𝑄, ∅)

8) else if 𝑗 = 1 then

9) 𝑆 = {< 𝑎, 𝑏 > | 𝑐(𝑢) ≡< 𝑎, 𝑏 >, 𝑐(𝑢) ∈ ⋃ {𝑐(𝑗) ∈ 𝐼0 }𝑗∈𝒩𝑖
}

10) 𝑆′ = {< 𝑎, (𝑏 + 𝑎) 𝑚𝑜𝑑 𝑞 > | < 𝑎, 𝑏 >∈ 𝑆} ∪ {< 0, 𝑏 > | < 𝑎, 𝑏 >∈ 𝑆}

11) 𝑐(𝑢): =mod-Linial(𝑐(𝑢), 𝑄, 𝑆′)

12) else if 𝑗 = 0 then

13) if 𝑐(𝑢) ≡< 𝑎, 𝑏 >∈ 𝑄 then

14) 𝑐(𝑢) ≔< 𝑎, (𝑏 + 𝑎) 𝑚𝑜𝑑 𝑞 >

15) else

16) 𝑐(𝑢) ≔< 0, 𝑏 >

Complexity

Given an arbitrary coloring of graph 𝐺 = (𝑉, 𝐸), the algorithm produces a legal (∆ + 1) – coloring in

𝑂(∆ + log∗|𝑉|) rounds.

Algorithm 3 Implementation

The implementation of the algorithm on Sinalgo required building new classes and functions in addition

to rewriting existing classes and methods. The following describes all the involved objects and the logic

behind them. In order to fully understand the explanation, the reader must be familiar with the Sinalgo

simulation framework (4). This explanation does not replace the documentation notes in the code.

CustomGlobal.java

CustomGlobal class holds customized global variables and methods for the framework.

Variables

numOfColors – static integer array which holds the number of colors at each iteration of Linial’s

algorithm. It is a global variable and calculated just once during initialization. It can be known to all

nodes since each node can calculate it by itself from n.

sumOfnumOfColor - static integer which holds the initial color of a node subtracted by ID of the node.

interval- static integer array which holds the intervals 𝐼0, … , 𝐼𝑟 of the available colors in each iteration.

Delta – static integer which holds the calculated maximal rank in the graph.

q - static integer which holds a prime number in the range [Delta, 2*Delta].

r – static integer which holds the number of rounds in Linial’s algorithm.

legalColoring - static Boolean that indicated in each round if the coloring became legal.

colorTable – static Hash table for the coloring of the nodes. It is initialized once and hold the different

RGB colors for the GUI representation

The following variables are used for the data acquisition and the generation of the report after the

algorithm stabilizes:

startAcq – static Boolean that indicates the exact point when data collection starts.

timer – holds the start time of the stabilization.

runtime – holds the runtime in seconds of the stabilization.

rounds - holds the rounds number of the stabilization.

countMsg – holds the number of massages sent during the stabilization.

Methods

isPrime – receives an integer and returns true if the integer is a prime number and false otherwise.

postRound – this method is inherited from AbstractCustomGlobal.java and runs after each round. It

stops the simulation once the network is stabilized and plots the report of the most recent stabilization

to the sidebar output.

preRound – this method is inherited from AbstractCustomGlobal.java and runs before each round. Its

first task is to start the data acquisition for the simulation parameters measurement. On the first round

we calculate the Delta and consequently the prime number q which will later be used. We make sure

that the calculation takes place in the first round of the simulation when all the nodes exist, and the

edges are reevaluated.

buildHash – this method initialized the hash table for the nodes coloring. Since we use RGB colors, we

have 2553 possibilities. For the colors to be notable on the screen, we divide the range [100, 2553] into

n ranges and pick one color from each range. This way the human eye will be able to distinguish

adjacent neighbors more easily.

GUI buttons

occurFault – This method is used to simulate a fault in the network. After the network is stabilized the

user can choose which percentage of the nodes will be faulted. Once the faults cease, the user can

resume the simulation and the network will stabilized once again into a proper state.

Polynomial.java

The stabilization process is using Linial’s algorithm for finding distinct colors between neighbors. The

color generation is done by finding a unique polynomial for each node color. This class implements a

polynomial which in it’s turn is used in the modLinial functions. The polynomial’s structure is a following:

𝑝(𝑥) = 𝑐𝑜𝑒𝑓𝑓[0] ∗ 𝑥𝑑𝑒𝑔𝑟𝑒𝑒 + 𝑐𝑜𝑒𝑓𝑓[1] ∗ 𝑥𝑑𝑒𝑔𝑟𝑒𝑒−1 + ⋯ + 𝑐𝑜𝑒𝑓𝑓[𝑑𝑒𝑔𝑟𝑒𝑒]

Variables

coeff – an integer array which holds the coefficients of the polynomial.

degree – an integer which hold the polynomial degree.

Methods

Polynomial - A constructor that builds a polynomial from a color and a degree. The coefficients are

constructed by changing the current color of the node into base q (q is a prime number) and taking the

digits as the coefficients. This way each coefficient will be in the range[0, 𝑞 − 1] and the polynomial will

be unique.

value – this method receives an integer x and returns the value of the polynomial in x p(x).

getDegree – returns the degree of the polynomial.

toString – prints the polynomial in the canonical form.

haveSameValue – this method receives an array of polynomials and n integer i. The method returns true

if one of the polynomials intersects with the current polynomial in point i.

CheckError.java

In each round, every node check if it’s state is legal. This is done by sending a massage that holds the

nodes color to each one of its neighbors. The class CheckError represents a massage that holds the ID

and color of the sending node.

Variables

senders_color – holds an integer with the color of the sender.

senders_ID - holds an integer with the ID of the sender.

Methods

CheckError – A constructor for the massage

getSendersColor – returns the color of the sender.

Node3.java

This class implements the main algorithm. Each node knows its color, delta and the number of nodes in

the graph. In each round each node sends it’s color to its neighbors and consequently receives their

colors.

Variables

Color – An integer the represents The color of the Node as my_color in the article.

j – an integer that represents the range of the color.

size – an integer that holds the size of the node on the GUI plot.

neighbors_colors – an ArrayList of integers that stores the colors of the neighbors received during the

last round.

Q – an ArrayList of integers that stores the colors of the neighbors received during the last round and

which are in the same range as my Color.

S_prime – an ArrayList of < Integer , Integer > which holds the colors of S’ as described in the article.

Methods

getRange – this method receives a color and returns the range to which the color belongs according to

the calculated intervals.

logStar – this method receives an integer and returns the result of log*n in base 2.

log(a,b) – this method returns the result of log𝑏 𝑎.

isPrime – this method receives an integer and returns true if the integer is a prime number,

loglogn(n,k) – this method receives two integers n and k and returns the result of

(log𝑏 log𝑏 … log𝑏 𝑛), k times.

haveSameNeighbor – this method returns true if one of the neighbors has the same color as this node.

modLinial – in our algorithm this method is overloaded since it has two implementations which are

used in different stages of the stabilization process. The first implementation is used for the rounds in

which j > 1. The method receives the nodes color and the neighbors color which are in the same range

as the nodes color. For each received color the method generates a unique polynomial. The rank of the

polynomial is calculated so that there will be enough polynomials to represent all the potential colors.

After the polynomials are ready, we calculate a value for the prime number q_prime ∈ [2∆+1 , 4∆]. In

order to return a new unique color in the correct range 𝐼𝑗−1, the method looks for an index i at which the nodes

polynomial does not intersect with any other polynomial in its neighborhood. Once found the new color is choses

as a concatenation of 𝑖 and p(i). If the new color is not in the range of 𝐼𝑗−1 then the algorithm transforms it into

the desired range. Note that in case of two new colors in the same neighborhood which are distant by 𝐼𝑗−1 from

each other, we could end up by having two nodes with the same color. This is easily addressed by returning to the

original ID and running the stabilization algorithm for these two nodes. The second implementation is used for the

round when j = 1. In this round the modLinial function receives in addition to the old color and the

neighbors from the same range, a list of forbidden colors which in case of generation can’t be returned.

The forbidden colors are the colors that the AG algorithm must avoid in order to stabilize into 𝑂(∆)

coloring.

handleMessages – this method iterates over the received massages and extract the sent meta data.

preStep – this method is triggered before each step. One of the main functions in this implementation

is to calculate the color intervals which define the ranges of the colors. This is done before the first

round just after Delta is calculated in CustomGlobal.java and the number of nodes in the graph is

finalized.

init – this method is triggered once when the node is created and, in our implementation, sets the

color.

postStep – this method contains the main algorithm as described in the article. Needless to explain the

algorithm again. Just to emphasize that at the end of this method we calculate the new colors range,

and check if the coloring of the current node is legal. At the end the new color is broadcasted to the

neighbors.

legalColor – this method returns true if the color of the node is legal per the algorithm’s definition.

toString – this method prints the parameters of the node.

changeColorToNeighbor – this method is triggered when the user wants to simulate a fault in the

system. The nodes color is changes arbitrary to the color of one of its neighbors.

draw – this method plots the node to the GUI.

occur_Error – a button that simulates an error in a certain percentage of the nodes.

concolor – this method receives a pair of integers and return an integer of their concatenation.

Algorithm 3 Test

In order to test the algorithm, we build different graphs with different topologies and collect the data

from the different stabilizations. The testing was done on a home PPC with the following parameters:

Intel Core i5-4460 CPU@3.20Ghz, 4GB RAM, 32-bit OS

The testing included changing the Delta and the number of nodes in the graph. The first simulations

started from a mono coloring graph and the last step included generating a fault of 25% of the nodes.

We the faults ceased the system stabilized again. The following data was collected from the algorithms

testing:

Delta Stabilization rounds Massages sent Total run

time [sec]

Average time

per round

Number

of colors

21 12 11946 0.171 0.01425 23

33 12 22000 0.188 0.015667 35

77 16 72150 0.344 0.0215 69

99 10 82836 0.39 0.039 98

At this point we generate 25% fault of the nodes

99 25 217872 0.749 0.02996 98

n = 100

Delta Stabilization rounds Massages sent Total run

time [sec]

Average time

per round

Number

of colors

68 19 1162872 3.088 0.162526 71

214 32 7387982 24.211 0.756594 223

462 20 9422442 55.490002 2.7745 461

601 34 20649618 157.826004 4.641941 586

At this point we generate 25% fault of the nodes

601 17 10011936 80.995003 4.764412 590

n = 1500

mailto:CPU@3.20Ghz

Delta Stabilization rounds Massages sent Total run

time [sec]

Average time

per round

Number

of colors

41 16 1016640 2.933 0.183313 43

85 19 3029796 8.83 0.464737 89

179 27 9620312 31.559 1.168852 181

252 36 19662930 101.744003 2.826222 256

At this point we generate 25% fault of the nodes

252 47 25842708 130.712997 2.781128 255

n = 3000

An example of a self-stabilized network with 1500 nodes:

1500 nodes Self- Stabilization

Summary

In this project we implemented and tested three self-stabilizing algorithms using Sinalgo platform.

According to the authors, the first algorithm by Gradinariu and Tixeuil (1) stabilizes to a legitimate state

in 𝑂((∆ − 1) log|𝑉|) rounds. The following chart represents the results achieved and compared to the

theoretical analysis.

Delta

∆

Nodes

|𝑽|

Stabilization

rounds De-

Facto

Theoretical analysis

𝑶((∆ − 𝟏) 𝐥𝐨𝐠|𝑽|)

Asymptotical factor

C

99 100 127 196
𝐶 = ⌈

127

196
⌉ = 1

325 1500 171 1029
𝐶 = ⌈

171

1029
⌉ = 1

609 1500 298 1931
𝐶 = ⌈

298

1931
⌉ = 1

125 3000 90 431
𝐶 = ⌈

90

431
⌉ = 1

318 3000 126 1102
𝐶 = ⌈

126

1102
⌉ = 1

Algorithm 1 Asymptotical Factor

It is clearly seen that the asymptotical factor is very low in all inputs. We will look at the additional two

algorithms and calculate their approximation factor. At the final stage of this summary we will compare

the performances of the three algorithms.

Delta

∆

Nodes

|𝑽|

Edges

|E|

Stabilization

rounds De-

Facto

Theoretical analysis

𝑶 (|𝑽||𝑬|𝟑∆𝑫𝒊𝒂𝒎(𝑮))

𝑫𝒊𝒂𝒎(𝑮)~√𝟐|𝑽|

Asymptotical factor

C

99 100 8932 96 ∆ <<< 𝐶 → 0

71 1500 64350 189 ∆ <<< 𝐶 → 0

129 1500 142318 477 ∆ <<< 𝐶 → 0

263 3000 555766 1032 ∆ <<< 𝐶 → 0

526 3000 1259634 1568 ∆ <<< 𝐶 → 0

Algorithm 2 Asymptotical Factor

The factor of |𝐸|𝟑 in the theoretical analysis of algorithm 2 seems to be a very gross bound since the

result shows that the self-stabilization of the network in our case is much faster. The following table

show the results of Algorithm 3:

Delta

∆

Nodes

|𝑽|

Stabilization rounds

De-Facto

Theoretical analysis

𝑶(∆ + 𝐥𝐨𝐠∗|𝑽|)

Asymptotical factor

C

99 100 25 102
𝐶 = ⌈

25

102
⌉ = 1

214 1500 32 217
𝐶 = ⌈

32

217
⌉ = 1

601 1500 34 604
𝐶 = ⌈

34

604
⌉ = 1

179 3000 27 182
𝐶 = ⌈

27

182
⌉ = 1

252 3000 47 255
𝐶 = ⌈

47

255
⌉ = 1

Algorithm 3 Asymptotical Factor

If we compare the three algorithms, we come to the following conclusions:

 Massages

complexity

Result

Algorithm 1 89601500 2

Algorithm 2 93145252 3

Algorithm 3 25842708 1

Massage Complexity

We compare the 3000 nodes test and the self-stabilization after 25% fault and see that Algorithm 3 gives

the best result in terms of massage complexity by a factor of 3 from the other algorithms.

 Run Time

(Real Time)

Result

Algorithm 1 1894 3

Algorithm 2 444 2

Algorithm 3 130 1

Time Complexity

The real time measurement of the three algorithms shows significant advantage to algorithm 3. We

compare the 3000 nodes test and the self-stabilization after 25% fault and see that Algorithm 3 gives the

best result in terms of Run Time by a factor of 3 from the second algorithm and a factor of 10 from the

randomized algorithm.

The most important parameter in comparing the algorithms is the stabilization rounds. If we look closely

at the asymptotical factor tables, we see clearly that the fastest algorithm by far is algorithm 3.

Installation

1. Run Eclipse and select the Workspace c:\

2. In eclipse create new java project:

3. Name the new project as sinalgo:

4. Copy the content of the submitted sinalgo folder to c:\sinalgo. The result

should be:

5. In Eclipse the following structure should appear:

Execution

1. After the Sinalgo simulator and the projects folder have been properly

installed, run Sinalgo.

2. Choose Algorithm 1 / Algorithm 2/ Algorithm 3.

3. Create Nodes for the simulation:

4. Run the simulation until it stops with the following report:

5. Click “Occur Random Fault” and choose the percentage of the nodes to fault. It is possible to

right click on a specific node and make it fault.

6. Run the simulation again until it stabilizes.

Bibliography

1. Self-stabilizing vertex coloration and arbitrary graphs. M. Gradinariu, S. Tixeuil. 2000. 4th

International Conference on Principles of Distributed Systems. pp. 55-70.

2. Self-stabilizing algorithms for graph coloring with improved performance guarantees. A. Kosowski,

L. Kuszner. 2006, Proc. 8th International Conference on Artificial Intelligence and Soft Computing, p.

1150_1159.

3. A self-stabilizing algorithm for coloring planar graphs. S. Ghosh, M.H. Karaata. 1993, Distributed

Computing, Vol. 7, pp. 55-59.

4. Self-stabilizing coloration in anonymous planar networks. S.T. Huang, S.S. Hung, C.H. Tzeng. 2005,

Information Processing Letter, Vol. 95, pp. 307-312.

5. Developing self-stabilizing coloring algorithms via systematic randomization. S.K. Shukla, D.J.

Rosenkrantz, S.S. Ravi. 1994. 1st International workshop on Parallel Processing. pp. 668-673.

6. Superstabilizing protocols for dynamic distributed systems. S. Dolev, T. Herman. 1997 , Chicago

Journal of Theoretical Computer Science.

7. Locality in distributed graph algorithms. Linial, N. 1992, SIAM Journal on Computing, Vol. 21, pp.

193-201.

8. What cannot be computed locally! F. Kuhn, T. Moscibroda, R. Wattenhofer. 2004. 23rd Annual

ACM Symposium on Principles of Distributed Computing. pp. 300-309.

9. A self-stabilizing algorithm for coloring bipartite graphs. S. Sur, P.K. Srimani. 1993, Information

Sciences, Vol. 69, pp. 219-227.

10. Linear time self-stabilizing colorings. S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani. 2003,

Information Processing Letters, Vol. 87, pp. 251-255.

11. GROUP, DISTRIBUTED COMPUTING. [Online] http://disco.ethz.ch/projects/sinalgo/.

12. Dolev, Shlomi. Self-stabilization. s.l. : MIT Press, 2000. ISBN 9780262041782.

13. Locally-Iterative Distributed (Delta + 1)-Coloring below Szegedy-Vishwanathan Barrier, and

Applications to Self-Stabilization and to Restricted-Bandwidth Models. Leonid Barenboim, Michael

Elkin, Uri Goldenberg. 2017.

