
The Open University of Israel
Department of Mathematics and Computer Science

Privacy-preserving planarity testing of
distributed graphs

Thesis submitted as partial fulfillment of the requirements
Towards an M.Sc. degree in Computer Science

The Open University of Israel
Computer Science Division

By:
Guy Barshap

Prepared under the supervision of Prof. Tamir Tassa

October 2017

Acknowledgment.

Preparation of this thesis was neither an easy nor a quick task and it would not have been possible
without the support of many people. First, I would like to express my sincere appreciation and
gratitude to my supervisor, Prof. Tamir Tassa. Tamir taught me diligently how to write an academic
paper, with his endless availability and willingness to help me to accomplish this Master degree. I
am thankful for absorbing from him a good research attitude and valuable skills that certainly will
help me in the future. My gratitude also goes to my family who believe in me and gave me the
space that I needed to work on this demanding project. In particular, I would like to thank my father
who encouraged me to engage in research, my brother Alon, and my mother for her full support and
investment. Last but not least, I wish to thank Talia Szwarc, my girlfriend, who had a significant
positive impact on my mental condition during this long-term journey.

ii

Contents

1 Introduction 1

2 Background: Planarity testing 3

3 Background: Cryptographic tools and protocols 5
3.1 Homomorphic encryption . 5
3.2 Oblivious Transfer . 7
3.3 Yao’s Millionaires’ problem . 8
3.4 Yao’s garbled circuit Protocol . 11
3.5 The BGW Protocol . 13
3.6 Oblivious testing of the solvability of an encrypted linear system of equations . . . 14

3.6.1 Oblivious Gaussian elimination of a square matrix 14
3.6.2 Oblivious Gaussian elimination of a non-square matrix 17
3.6.3 Oblivious testing of the solvability of a system of linear equations 18

3.7 Computing the rank of an encrypted matrix . 20
3.7.1 Preliminaries . 20
3.7.2 Oblivious computation of the minimal polynomial 21
3.7.3 Computing the rank of an encrypted matrix 23

4 Privacy preserving planarity testing 25
4.1 Problem definition . 25
4.2 Overview of the proposed solutions . 25

4.2.1 First stage – testing the number of edges in the unified graph 25
4.2.2 Second stage – a privacy-preserving implementation of the Hanani-Tutte

planarity test . 25
4.3 First stage: Testing the size of the unified edge set 26
4.4 A first algorithm for private HT testing . 28
4.5 A second algorithm for private HT testing . 32
4.6 Testing the solvability of an encrypted system of linear equations 32

4.6.1 Solvable : version 1 . 34
4.6.2 Solvable : version 2 . 34

4.7 Privacy analysis . 35
4.7.1 Protocol 11 . 35
4.7.2 Protocol 12 . 35

4.8 Computational and communication costs . 36
4.8.1 Protocol 11 . 36
4.8.2 Protocol 12 . 37

5 Further results - Graph coloring and outer-planarity testing 38
5.1 An algorithm for testing 3-colorability of planar graphs 38
5.2 Algorithm for testing whether a graph is outer-planar 40

6 Conclusion 41

iii

Abstract

In this thesis we present a solution to the problem of privacy preserving graph planarity testing.
The setting involves several players that hold private graphs on the same set of vertices, and an
external mediator that helps with performing the computations. Their goal is to test whether the
union of their private graphs is planar in a privacy preserving manner. Namely, each player wishes
to protect his private edge set from the other players. We present two privacy preserving algorithms
that are based on the Hanani-Tutte (HT) theorem and have polynomial runtime. The HT Theorem
translates the planarity question into the question of whether a specific system of linear equations
over the binary field, F2, is solvable. Our algorithms use techniques such as secure rank computa-
tion and oblivious Gaussian elimination as subroutines. This is the first time that a solution to this
problem is presented.

iv

1 Introduction

A planar graph G = (V,E) is a graph that can be embedded in the two-dimensional plane R2.
Namely, there exists a bijection ϕ from V to R2 and a representation of each edge e = (u, v) ∈ E
as a continuous simple curve in R2 with ϕ(u) and ϕ(v) as its end points, such that no two curves
intersect apart possibly for their end points.

Planar graphs constitute an attractive family of graphs, both in theory and in practice. In many
applications where graph structures arise, it is needed to test the planarity of those graphs. A classi-
cal example is in the area of integrated circuit (IC) design. An IC consists of electronic modules and
the wiring interconnections between them. It can be represented by a graph in which the vertices are
the modules and the edges are the wires. An IC can be printed on the surface of a chip if and only if
the graph is planar, because wires must not cross each other. Another setting in which planarity is a
natural notion is in road maps. A set of cities and interconnecting highways can be thought of as a
graph; the graph vertices are the cities while the edges are connecting highways. Such a map can be
constructed with non-crossing highways (in order to avoid constructing bridges or obstructing the
traffic flow by stop lights) iff the corresponding graph is planar.

A less known fact is that planar graphs appear in many chemical applications. A graph is called
chemical if it describes a chemical molecule, where the vertices correspond to atoms and the edges
correspond to their chemical bonds. The publicly available NCI chemical dataset1, which is com-
monly used as benchmark in graph mining, describes a large group of pharmaceutical compounds.
Out of those compounds, 94.3% elements are described by a chemical graph that are outer-planar
(a sub-class of planar graphs, that we describe and discuss in Section 5), see [25]. Such graphs are
important in computational drug design [25]. Another example of chemical graphs are graphs that
represent the contact structure of bi-polymers, where the vertices are the monomers and the edges
are the covalent bonds. The DNA and RNA molecules form a special type of contact structure,
called secondary structures, and those graphs are also outer-planar [31].

Apart from the above motivating examples, there are cases in which the planarity of a graph
can be exploited in order to simplify and expedite the solution of some computational problems.
Examples include sub-graph isomorphism [15], maximal clique [37], and maximum cut [22]. The
subgraph isomorphism problem is a computational decision problem in which two graphs G and H
are given as input, and one must determine whether G contains a subgraph that is isomorphic to H .
In case thatG is a general graph andH is a fixed graph with k vertices, the running time is known to
be polynomial. But whenG is planar andH is fixed, the running time of subgraph isomorphism can
be reduced to linear time [15]. The problem of finding a maximal clique with the largest possible
number of vertices in a general graph is known to be a NP-Complete, but for planar graphs it can be
solved in linear time [37]. In the decision maximum cut problem (Max-Cut), defined for a given a
graph G and an integer k, it is needed to determine whether there is a cut of size at least k in G. As
the Max-Cut Problem is NP-complete, no polynomial-time algorithms are known for solving it in
general graphs. However, for planar graphs the computational cost can be reduced to a polynomial
time [22].

The problem of planarity testing, namely, deciding whether a given graph is planar or not, is
well-studied and well-understood. Optimal linear time planarity testing algorithms were proposed
in [24] [11], but it seems unpractical to apply them in a privacy-preserving manner due to theirs
inner mechanism.

In this study we consider a distributed version of the planarity testing problem. In that problem
1http://cactus.nci.nih.gov/

1

http://cactus.nci.nih.gov/

there exist several players, P1, . . . , Pd, each one holding a private graph on the same set of vertices;
namely, Pi has a graph Gi = (V,Ei) where V is publicly known and shared by all, while Ei
is private, 1 ≤ i ≤ d. They wish to determine whether the union graph G = (V,E), where
E =

⋃d
i=1Ei, is planar or not. As the edge sets Ei, 1 ≤ i ≤ d, are private, that planarity testing

should be carried out in a privacy-preserving manner. We propose here secure protocols for that
purpose which are based on the Hanani-Tutte theorem [39].

Our protocols are protocols of Secure Multiparty Computation (SMC). In the general setting of
SMC [44], there are several parties, P1, . . . , Pd, where each Pi holds a private value xi. The goal
is to compute f(x1, . . . , xd), where f is some publicly known function, so that each party does
not learn anything about the private inputs of the other parties, except what is implied by its own
input and the output f(x1, . . . , xd). While generic SMC protocols apply in theory to a wide class of
functions, their applicability in practice is limited to functions that have a compact representation as
a boolean or arithmetic circuit, due to their high computational and communication complexities.
Further studies in this field aim at finding more efficient solutions for specific SMC problems, from
a wide range of domains.

Here we consider an SMC problem where the private inputs are graphs. Problems of secure
multi-party computations on distributed graphs are of much interest and importance. Nonetheless,
due to their apparent difficulty, very few studies were published so far on such problems. The first
such study was by [12] who presented new algorithms for privacy-preserving computation of the all-
pairs-shortest-distance and single-source-shortest-distance problems. A more recent study is that of
[2] who designed secure multi-party computation techniques for the shortest path and the maximum
flow problems. Another example is the work of [27] who presented oblivious implementations of
several data structures for secure multi-party computation and then offered a secure computation
of Dijkstra’s shortest path algorithm on general graphs, where the graph structure is secret. The
problem of privacy-preserving computation of the Minimum Spanning Tree (MST) was considered
in the recent study by [30]. In that study, Laud shows how the MST-finding algorithm by [5] can
be executed without revealing any details about the underlying graph, beside its size. Finally, we
mention the work of [3] that proposed SMC protocols for computing vertex centrality in distributed
graphs.

We focus here on the case of d = 2 players; the extension to any number d of players is straight-
forward. Our protocols are in the mediated model that was presented in [1]. In that model, there
exists an external mediator T to which the players may export some computations, but the mediator
should not learn information on the private inputs of the players or the final output. We assume that
all interacting parties (the players as well as the mediator) are semi-honest. Namely, they follow
the protocol specification, but they try to extract from their view in the protocol information on the
private inputs of other players.

The outline of this work is as follows. In Section 2 we provide the relevant background on
planarity testing. Then, in Section 3 we cover the relevant cryptographic background: Oblivious
transfer, Yao’s Millionaires’ problem, Yao’s garbled circuit protocol, the BGW protocol, and ho-
momorphic encryption. Apart from those general purpose tools, we also describe the work of [35]
about oblivious testing of the solvability of an encrypted linear system of equations, and the work
of [28] about computing the rank of an encrypted matrix. Section 4 holds the main part of this
work — our novel privacy-preserving planarity testing protocols. In Section 5 we describe further
results, regarding graph coloring and testing outer-planarity, that rely on the protocols described in
the previous section. We conclude in Section 6.

2

2 Background: Planarity testing

A graph G = (V,E) is called planar if it is possible to draw it in the Euclidean plane with
no crossings among the edges. Well known characterizations for planar graphs were proposed by
both Wagner [43] and Kuratowski [29]. For example, the Wagner’s characterization states that a
graph is planar iff it does not have the graphs K5 or K3,3 as a minor (see Figure1). Namely, K5

or K3,3 cannot be obtained from G by a sequence of these operations: contracting edges, deleting
edges and deleting isolated vertices. However, directly applying either Wagner’s or Kuratowski’s
characterizations in order to test the planarity of a given graph yield exponential-time algorithms
[38]. Moreover, there exist linear-time algorithms for testing planarity, but they are rather iterative
or using a DFS-subroutine [38]. However, those features of these algorithms turn out to be signifi-
cant obstacles when trying to devise corresponding privacy-preserving variants of these algorithms.
Thus, none of the above-mentioned approaches seem to be adequate in order to base on them an
efficient privacy-preserving planarity testing algorithm.

1

2

34

5

1

2

3

1

2

3

Figure 1: The minors that cannot appear in a planar graph — K5 and K3,3.

In this paper we focus on testing the planarity via Hanani-Tutte theorem. Before we introduce
the theorem, we give some preliminary definitions.

• Every graphG = (V,E) has many possible embeddings in R2; each such embedding is called
a drawing and is denoted by D.

• Independent edges: edges that have no vertex in common. We let Eind2 denote hereinafter the
set of all pairs of independent edges (e, f) in E.

• iocr(D): the number of pairs of independent edges of G that cross in D an odd number of
times.

• iocr(G) is the minimum of iocr(D) over all drawings D of G.

• If e ∈ E we let a(e) and b(e) denote the two vertices that it connects.

• For a drawing D and a pair of edges e and f , parityD(e, f) denotes the parity of the number
of crossings between e and f in D.

• Let D be a drawing of G. Then for a given edge e and a vertex v, an (e, v)-move consists of
taking a small section of e and deforming it in a narrow tunnel to make it pass over v (while
avoiding passing over vertices other than v). The effect of an (e, v)-move in a drawing D is
that parityD(e, f) changes for all edges f that are adjacent to v and remain unchanged for
all other edges f (see Figure 2).

3

Figure 2: Performing an (e, v)-move.

Theorem 2.1 (Hanani-Tutte). A graph G is planar iff iocr(G) = 0. Namely, G is planar iff it has a
drawing in which every two independent edges cross evenly.

The Hanani-Tutte Theorem gives rise to the following planarity testing algorithm. It starts with
an arbitrary drawing D of the input graph G, preferably a drawing in which parityD(e, f) can be
computed efficiently for every pair of independent edges in G. Then, the algorithm tries to find
another drawing D′, by making a series of (e, v) moves, such that iocr(D′) = 0. If it succeeds,
then the graph is planar, otherwise it is not. WLOG, it is assumed that the position of all vertices
remains unchanged; the only changes in D′ with respect to D is in the curves that represent the
edges.

The existence of D′ can be determined by considering the following system of linear equations.
Define the following |E| · (|V | − 2) binary variables

{xe,v : e ∈ E, v ∈ V \ {a(e), b(e)}} . (1)

The binary variable xe,v will equal 1 iff the transition from D to D′ included an (e, v)-move. It is
now clear that for any pair (e, f) ∈ Eind2 ,

parityD′(e, f) = parityD(e, f) + xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) mod 2 .

Hence, given the drawing D, there exists a drawing D′ with iocr(D′) = 0 iff there exists a solution
to the system of |Eind2 | equations

parityD(e, f) + xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) = 0 mod 2 (e, f) ∈ Eind2 . (2)

Hence, G is planar iff the system of equations (2) has a solution over F2.
So, to summarize: the algorithm starts with an arbitrary drawing D of G, in which parityD(e, f)

can be computed efficiently for all (e, f) ∈ Eind2 . Then, it attempts to solve the system in Eq. (2).
Let us denote n = |V |. It is well known the graph is planar only if |E| ≤ 3n − 6. Therefore,

the number of unknowns in the system in Eq. (2) is O(n2). This implies that the complexity of the
algorithm is O(n6).

4

3 Background: Cryptographic tools and protocols

In this section we provide a description of the cryptographic tools and protocols that we will use
in our privacy-preserving planarity testing. The first ones are classical and general-purpose building
tools: homomorphic encryption (Section 3.1), oblivious transfer (Section 3.2), Yao’s protocol for
solving the Millionaires’ problem [44] (Section 3.3), Yao’s garbled circuit protocol (Section 3.4),
and the BGW (Ben-Or Goldwasser Wigderson) protocol [7] (Section 3.5). We then describe a
protocol for performing Gaussian elimination of an encrypted matrix (Section 3.6), which it is based
on [35]. Finally, we describe a protocol for computing the rank of an encrypted matrix (Section 3.7),
which is based on [28].

3.1 Homomorphic encryption

An encryption function F is called (additively) homomorphic if the domain of plaintexts is a
commutative additive group, the domain of ciphertexts is a commutative multiplicative group, and
for every two plaintexts, m1 and m2, F(m1 + m2) = F(m1) · F(m2). When the encryption
function is randomized (in the sense that F(m) depends on m as well as on a random string) then
F is called probabilistic.

Homomorphic encryption functions allows performing arithmetic computations in the ciphertext
domain. A probabilistic encryption function is essential when dealing with plaintexts that come
from a small and publicly known domain (such as binary plaintexts, as is the case in our problem).
The Paillier cipher [36] is both homomorphic and probabilistic; it is semantically secure under
the decisional composite residuosity assumption [36]. Its plaintext domain is the group Zν for a
modulus ν which is a product of two large primes.

An example of a homomorphic cipher over F2 can be found in [20] (GM). We proceed to describe
a generalization of that cipher that works over the extension field F2k that was proposed in [17]. Let
p(x) be an irreducible polynomial of degree k. Then F2k is the set of all polynomials of degree
strictly less than k with coefficients in F2. Addition of two polynomial elements in F2k is defined as
a regular polynomial addition, whereas multiplication is defined by multiplying the two polynomials
and then taking the residue of the product modulo p(x).

To encrypt an element a ∈ F2k , one encrypts separately each coefficient of the polynomial that
a describes, with an encryption scheme over F2 (such as GM). Hence, the addition of encrypted
values is done coefficient-wise using the homomorphic property of the encryption over F2, which
requires O(k) homomorphic additions of encrypted elements. Performing encrypted multiplication
of F(a · b), where a, b ∈ F2k , a is given in the clear and b is given in its encrypted form, F(b), is a
bit more complicated. Let A[x] and B[x] be the polynomials with degree strictly less than k which
a and b represent, respectively. Then, our goal is to compute C[x] = A[x]B[x] mod p(x) =∑2k−2

j=0 cjx
j mod p(x), where C[x] is encrypted. It is easy to see that the multiplication of the

publicly known polynomial A[x] with the coefficient-encrypted polynomial B[x] can be carried out
using the homomorphic properties of the GM encryption. The more tricky part is to compute the
reduction of C[x] modulo the publicly known polynomial p(x).

Let us denote the encrypted coefficients of C[x] by F(c0), . . . ,F(c2k−2) and ui[x] = xk+i

mod p(x) for 0 ≤ i ≤ k − 2. Since p(x) is publicly known, ui[x] are publicly computable polyno-
mials of degree k − 1 with coefficients in F2. Let α[x] = ck−1x

k−1 + . . . + c0x
0 and let αi[x] be

5

defined as ui[x] if ck+i = 1, and 0 otherwise, 0 ≤ i ≤ k − 2. Then, we need to compute

C[x] mod p(x) = α[x] +
k−2∑
i=0

αi[x] . (3)

Given ui[x] and F(ck+i) for 0 ≤ i ≤ k − 2, it is possible to compute the encryption of αi[x] for
0 ≤ i ≤ k − 2 using the homomorphic properties of the GM encryption. Finally, the sum on the
right hand side of Eq. (3) can be computed via addition of homomorphic encrypted values. The
overall computation can be done by O(k2) operations and it is worth mentioning that once ui[x] are
computed, they can be reused for future homomorphic computations.

Boneh et al. [9] proposed a special encryption function that preserves homomorphism over any
number of additions, but, in addition, preserves homomorphism over a single multiplication. Hence,
their cipher can be used to compute any quadratic polynomial of the plaintexts in the ciphertext
domain. In their method there are two groups, G and G1, and a bilinear map between them, e :
G×G 7→ G1. Both groups are of order ν = q1q2. We can encrypt in either G or in G1.
E — Encryption in G: g is a generator of G and h is an element of order q1 in G. Then, we can

encrypt every integer in Fν by m 7→ gmhr, for some random r ∈ Fq1 .
E1 — Encryption in G1: Define g1 = e(g, g) and h1 = e(g, h). Then g1 is a generator of G1 and

h1 is an element of order q1 in G1. Then we can encrypt every integer in Fν by m 7→ gm1 h
r
1, for

some random r ∈ Fq1 .
In our algorithm we assume that P1 and P2 generate such a cipher and keep the private key secret

from T . In addition, they create another homomorphic encryption function F over F2, such that
F(x1

⊕
x2) = F(x1) · F(x2).

6

3.2 Oblivious Transfer

A 1-out-of-2 Oblivious Transfer protocol (OT) involves two players. P1 has two values v0, v1,
while P2 has a selection bit i. At the end of the protocol P2 gets vi but learns nothing about v1−i,
while P1 learns nothing. There are many implementations of that functionality. We present here
one such implementations in Protocol 1.

Protocol 1 begins with P2 generating a key pair (kpub, kpri) in some public-key cipher and an-
other public key, k⊥. As we assume that the players are semi-honest, P2 does not cheat and does
not generate the private key of k⊥. In addition, k⊥ should be indistinguishable from kpub in order
to prevent P1 from identifying the index of the correct public key. A known cryptosystem that has
this property is El-Gamal, because the public keys in that cipher can be any member in some cyclic
group. Next, P2 sends the two public keys to P1. P1 proceeds to encrypt v0 and v1 with those public
keys and sends the two encryptions to P2. Finally, P2 is able to receive the value vi by decrypting
the relevant encrypted value that it gets. P2 is unable to receive the value v1−i, because it does not
have the private key corresponding to k⊥.

The protocol entails two public-key encryptions for P1 followed by one decryption for P2. It has
two communication rounds and 2k + 2c bits transfer, where k and c are the number of bits needed
to represent encryption keys and ciphertexts in the chosen cipher.

Protocol 1 1-out-of-2 Oblivious Transfer
Input: P1 holds two values: v0, v1; P2 has one bit i ∈ {0, 1}.
Output: P2 receives vi without learning v1−i; P1 learns nothing.

1: P2 generates a key pair (kpub, kpri) in some public key cipher, and another public key k⊥ that P2 does
not have its corresponding private key.

2: P2 sends (kpub0 , kpub1) to P1, where kpubi ← kpub and kpub1−i ← k⊥.
3: P1 computes cj = Ekpub

j
(vj), j = 0, 1, and sends c0, c1 to P2.

4: P2 decrypts vi = E−1kpri(ci).

7

3.3 Yao’s Millionaires’ problem

Yao’s millionaires’ problem involves two parties P1 and P2. P1 holds a private integer a while
P2 holds a private integer b. They wish to determine whether a ≤ b without disclosing anything
more than the final result to each of the participants. Yao proposed a solution to this problem in
[44], but herein we describe the more efficient algorithm of [32]. It relies on reduction from the
latter problem to the set intersection problem as we proceed to explain.

Let s = snsn−1 . . . s1 ∈ {0, 1}n be a binary string of length n. We denote the 0-encoding of s
as the following set S0

s of binary strings,

S0
s = {snsn−1 . . . si+11| si = 0; 1 ≤ i ≤ n} .

The 1-encoding of s is defined similarly as follows:

S1
s = {snsn−1 . . . si| si = 1; 1 ≤ i ≤ n} .

It easy to see that each of the sets S1
s , S

0
s have at most n elements.

Theorem 3.1 states that a > b iff the sets S1
a and S0

b have a common element (where here a and
b are the the binary encodings of the corresponding integers). In order to get some intuition for this
claim, we consider the following example. Let a = 7 = 1112 and b = 6 = 1102. Both integers
are of length n = 3 bits. We have S1

a = {1, 11, 111} and S0
b = {111}. Since S1

a ∩ S0
b 6= ∅ we can

conclude that a > b as excepted. In the opposite case, where a = 6 = 1102 and b = 7 = 1112,
we have S1

a = {1, 11} and S0
b = ∅. Since S1

a ∩ S0
b = ∅, the inequality a > b does not hold (or,

equivalently, a ≤ b).

Theorem 3.1. Let a = anan−1 . . . a1 ∈ {0, 1}n, b = bnbn−1 . . . b1 ∈ {0, 1}n. Then a > b if and
only if the sets S1

a, S
0
b have a common element.

Proof. If a > b, there exists 1 ≤ i ≤ n such that ai = 1 and bi = 0, while aj = bj for all
i < j ≤ n. Thus, anan−1 . . . ai ∈ S1

a while bnbn−1 . . . bi+11 ∈ S0
b . Hence, both S1

a and S0
b include

the common element anan−1 . . . ai = bnbn−1 . . . bi+11.
Assume next that S1

a and S0
b have a common element, t = tntn−1 . . . ti ∈ S1

a ∩ S0
b , for some

i ∈ [n] and ti = 1. Since t ∈ S1
a , then anan−1 . . . ai = tntn−1 . . . ti; at the same time, since t ∈ S0

b ,
then bnbn−1 . . . bi+11 = bnbn−1 . . . bi+1bi = tntn−1 . . . ti. Therefore, a > b.

It remains to develop a protocol that relies on Theorem 3.1, by implementing private set inter-
section efficiently. To that end we rely on the fact that one should only compare strings of the same
length in S1

a and S0
b . This restriction of the number of needed comparisons reduces the overall

number of comparisons from O(n2) to O(n). Protocol 2 implements the private set intersection.
In Step 1, P1 generates an additively homomorphic encryption function F , such as Paillier (see

Section 3.1)2. In Step 2, P1 sends to P2 a 2 × n matrix M [i, j], i ∈ {0, 1}, j ∈ [n], that encodes
its input a = anan−1 . . . a1 in the following manner: M [aj , j] = F(0), while M [aj , j] = F(rj)
where rj is a random element from Zν , the plaintext domain of the chosen encryption function F .

Assume now that P2 wants to compare one of its own 0-encoding strings t = tntn−1 . . . ti ∈ S0
b ,

i ∈ [n], with the corresponding string of the same length in S1
a . To that end, P2 computes in Step 4

the value
ct = Πn

j=iM [tj , j] .

2It is possible also to implement the protocol with a multiplicatively homomorphic encryption function with some
minor changes; see [32].

8

If t ∈ S1
a then, with certainty, ct = F(0), owing to F’s homomorphism and the definition of the

matrix M . If, on the other hand, t /∈ S1
a , then ct would equal the encryption of a random value in

Zν so that, with overwhelming probability, ct 6= F(0).
Let us denote yt := F−1(ct). The only information that matters for us is whether yt = 0 (a

case that indicates non-empty intersection) or yt 6= 0. The exact value of yt, in case it is not
zero, is irrelevant and in fact can leak to P1 some sensitive information on P2’s input b. Hence, to
eliminate such information, P2 updates the value of ct in Step 5 to ct ← crtt where rt ∈ Z∗ν . By
the homomorphism of F , we get as a result that ct = F(zt) where zt = ytrt. Clearly, the selection
of rt from Z∗ν (namely, rt is not a multiple of either p or q, where ν = pq) ensures that zt 6= 0 iff
yt 6= 0. Moreover, zt does not surrender any information on yt, beyond the equality or inequality of
yt to zero, since any given zt 6= 0 could have originated from any yt 6= 0 by a suitable selection of
rt.

It remains now to check whether zt = 0 for any t ∈ S0
b (in which case the intersection is non-

empty) or not. To hide the size of S0
b (as it equals the number of zero bits in b), P2 generates in Step

7 ` := n − |S0
b | random elements zj , j ∈ [`]. It then sends to P1 a random permutation of the n

elements {ct : t ∈ S0
b }∪{zj : j ∈ [`]} (Step 8). Finally (Step 9), P1 decrypts the received n values.

It decides that the intersection is non-empty, with high probability, iff one of the n decrypted values
is zero. In that case it outputs that a > b. Otherwise, a ≤ b.

Protocol 2 A protocol for solving Yao’s millionaires’ problem
Input: P1 holds an integer a = anan−1 . . . a1 ∈ {0, 1}n; P2 holds an integer b = bnbn−1 . . . b1 ∈ {0, 1}n.
Output: Whether a > b.

1: P1 generates a probabilistic public key encryption function F which is additively homomorphic and
keeps to itself the private key.

2: P1 initializes a matrix M of size 2 × n where M [aj , j] = F(0) and M [aj , j] = F(rj) for j ∈ [n] and
rj ∈R Zν . Then it sends the matrix M to P2.

3: for each t = tntn−1 . . . ti ∈ S0
b do

4: P2 assigns ct ← Πj=n
j=iM [tj , j].

5: P2 computes ct ← crtt for rt ∈ Z∗ν .
6: end for
7: P2 generates `← n− |S0

b | encrypted random values zj = F(rj), j ∈ [`], where rj ∈R Zν .
8: P2 sends to P1 a random permutation of the n elements {ct : t ∈ S0

b }∪{zj : j ∈ [`]}. Let {w1, . . . , wn}
denote the sequence that P2 sends to P1.

9: P1 decrypts mi = F−1(wi) for i ∈ [n] and outputs a > b if ∃mi where mi = 0; otherwise, it outputs
that a ≤ b.

Complexity. Step 2 entails 2n encryptions for P1. Then, in Steps 4-5, since the n− i− 1 prefix
bits between ti and ti−1 are equal, P2 performs at most 2n − 3 multiplications and O(n) modular
exponentiations. Finally, in Step 9 P1 performs at most n decryptions. The protocol entails two
communication rounds in which 3n encrypted values are transferred (Steps 2 and 8).

Privacy. Privacy can be lost whenever the players exchange messages. In Step 2, P2 gets the
encrypted matrix M . Since all of M entries are encrypted, and owing to the fact that the encryption
function is probabilistic, P2 cannot distinguish between zero encryptions and random encryptions.
Next, in Step 8, P1 receives from P2 n encrypted values wi, i ∈ [n]. P1 cannot reveal the number of
elements in S0

b due to the bogus n−|S0
b | encrypted elements that P2 added. When P1 decrypts those

values and reveals a value mi that equals to 0, it cannot learn for which bit that value corresponds,
due to the random permutation that P2 applied in Step 8. Furthermore, to prevent from P1 to infer
information from the decrypted random values, P2 performed the scaling in Step 5, as explained

9

earlier. Thus, the protocol does not reveal anything more than the desired output of whether a > b
or not.

10

3.4 Yao’s garbled circuit Protocol

Yao’s garbled circuit protocol [44] is a cryptographic protocol that enables two parties, P1 and
P2, to evaluate a function over their inputs without a trusted third party and without revealing to
each other their private inputs. Assume that Pi has an input ai which we think of as a binary string,
i = 1, 2. The two parties wish to compute f(a1, a2), for some function f known to both of them.

Let C be a boolean circuit that realizes the function f . It is sufficient to note that there exists
a mapping from any polynomial time function with fixed sized inputs to a boolean circuit that
calculates the same output [19]. The two parties can generate C together.

Let g be a gate that receives two input wires x and y (both are single bits) and outputs a single
bit-wire z. The gate can be implementing any boolean functionality (say OR, AND, their negations
etc.). Such a gate can be represented by a truth table; Table 1 shows an example when the gate is an
AND gate.

x y z = AND(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

Table 1: Truth table of the AND gate

P1 garbles, independently, each of the circuit’s gates. Letting g be one of those gates, P1 takes
its truth table and generates a random and independent encryption key, in some symmetric cipher,
for each possible value of each wire. Namely, it generates:

• two keys k01 and k11 for each of the two possible values of the first input x;

• two keys k02 and k12 for each of the two possible values of the second input y;

• two keys k03 and k13 for each of the two possible values of the output z = g(x, y).

Furthermore, P1 computes, for each of the four possible values of (x, y), the valueEkx1
(
Eky2 (k

z=g(x,y)
3 ||0n)

)
,

where n is some security parameter; see Table 2.

x y z = AND(x, y) garbled value

k01 k02 k03 Ek01

(
Ek02(k03||0n)

)
k01 k12 k03 Ek01

(
Ek12(k03||0n)

)
k11 k02 k03 Ek11

(
Ek02(k03||0n)

)
k11 k12 k13 Ek11

(
Ek12(k13||0n)

)
Table 2: Garbled values for an AND gate

Next, P1 sends to P2 the encrypted garbled values for each of the gates in the circuit. Specifically,
if g is such a gate, P1 sends to P2 the four values

Ekx1

(
Eky2 (k

z=g(x,y)
3 ||0n)

)
, x = 0, 1, y = 0, 1 (4)

11

in a random order. In addition, P1 sends to P2 the garbled values corresponding to each of its own
input wires. For example, if g is some gate in the circuit that is fed by an input bit x which P1 owns,
then P1 will send to P2 the garbled value kx1 corresponding to that gate — k01 if x = 0 and k11 if
x = 1.

Now, P2 starts computing the garbled circuit, gate by gate, as we proceed to describe. Let g be
a gate of which the two input wires are inputs from P1 and P2; the first wire x corresponds to the
input from P1 and the second wire y corresponds to the input from P2. Assume that x = a and
y = b. Then P2 has at this stage the garbled value ka1 , which P1 has sent to it, but it does not have
kb2. So P2 engages in a 1-out-of-2 OT protocol (see Section 3.2) vis-a-vis P1 to receive its own
garbled value kb2. Namely, while P1 holds the two values (k02, k

1
2), P2 receives from it the relevant

garbled value, which is kb2, and only that value. Next, P2 decrypts the four values associated with
the gate g, as given in Eq. (4), by applying on them the decryption E−1ka1 followed by the decryption

E−1
kb2

. With probability 1 − O(2−n), only one of the decrypted values will end with 0n. That value

equals kc=g(a,b)3 ||0n; after stripping the suffix 0n, P2 gets the garbled value corresponding to the
correct value of g’s output wire.
P2 can now proceed to traverse the entire circuit in a similar manner, until it gets the garbled

values on all output wires. Those values can be converted into their bit values by having P1 publish
upfront conversion tables for those output wires.

We provide a summary of the protocol in Protocol 3.

Protocol 3 Yao’s Garbled Circuit Protocol – Summary
Input: P1 and P2 hold integer inputs x1, x2 respectively, and an integer function f(·, ·).
Output: P2 gets f(x1, x2).

1: P1 generates a boolean circuit C that receives as inputs x1 and x2 and outputs f(x1, x2).
2: P1 generates two random and independent encryption keys for each input wire.
3: P1 computes for each of C’s gates the encrypted garbled values for each of the four possible values of

the gate’s inputs (Eq. (4)).
4: P1 sends those encrypted garbled values, in a random order, to P2 (for each gate); in addition, P1 sends

to P2 its own garbled input values corresponding to x1.
5: For each of the input gates, P2 performs a 1-out-of-2-OT protocol to receive from P1 its garbled values

for that gate.
6: P2 uses the garbled values and calculates each gate output by decrypting the four possible values of the

garbled circuit, as received in Step 4, and it identifies the correct output as the one that ending with 0n.
7: P2 uses the correct garbled value for the gate’s output wire as the garbled input to the next gates.
8: When P2 gets the garbled values of all output gates, it translates those values to the correct bit values

according to the conversion tables.

Complexity. Let |G| denote the number of gates in the circuit C. The protocol entails only 3
communication rounds (one for Step 4 and two for implementing the OT in Step 5, see Section 3.2).
Messages are sent in Steps 4 and 5; it is easy to see that the overall communication complexity is
O(|G|). The overall computational cost is bounded byO(|G| · [E] + |G| · [OT]) where [E] denotes
the cost of a single encryption or decryption and [OT] denotes the cost of an OT protocol.

Privacy. A full proof of the protocol’s privacy is given in [33].

12

3.5 The BGW Protocol

In this section we describe the Ben-Or Goldwasser Wigderson (BGW) protocol [7], with the
efficiency improvement of [18]. Consider n parties, Pi, 1 ≤ i ≤ n, each holding a private integer xi
in some finite field F. They wish to jointly compute a function over those inputs, f(x1, . . . , xn) =
(y1, . . . , yn), without disclosing to each other their private input. To that end, the parties P1, . . . , Pn
agree on some arithmetic circuit C that computes f over the finite field F; the field’s size must
be greater than the number of participating parties as well as greater than the apriori bound on the
input and output values. The circuit consists of two different types of gates: addition gates, and
multiplication gates. Let α1, . . . , αn be distinct non-zero elements in F; then αi will be used as
a public identifier of Pi. The parties preserve the following invariant during the computation: the
value of each wire of the circuit is secret-shared using a Shamir’s (t + 1)-out-of-n secret sharing
scheme (see [41]), with t < n/2. The protocol consists of the following three stages: input sharing
phase, circuit emulation phase and output reconstruction phase.
The input sharing phase. In this phase, each party Pi shares its input xi with all parties; i.e., it
chooses a random polynomial gi of degree t such that gi(0) = xi, and it then sends to each party Pj
the value gi(αj).
The circuit emulation phase. In this phase, the parties emulate the computation of C(x1, . . . , xn),
where in each gate, the parties compute shares of the value of the output wire using their shares of
the input wire by invoking a secure protocol. There are two types of gates to consider: addition
gates and multiplication gates.

Addition gates. The computation of the output shares can be performed locally and without any
interaction, since if f1(αi) and f2(αi) are the shares that Pi holds for the two input wires to an
addition gate, then f(αi) = f1(αi) + f2(αi) is a valid sharing of the output wire. Indeed, the
polynomial f(x) := f1(x) + f2(x) has the same degree as f1(x) and f2(x), and its constant term
satisfies f(0) = f1(0) + f2(0).

Multiplication gates. The case of multiplication gates is more involved as it requires interaction
among the parties. In particular, given shares f1(αi) and f2(αi) for the two input wires of a multipli-
cation gate, then f(αi) := f1(α) · f2(αi) are shares of a polynomial f(x) with the correct constant
term f(0) = f1(0)·f2(0), as required, but its degree is 2t and not t. Hence, the players must interact
in order to reduce the degree of that polynomial. The degree reduction procedure can be done using
the method of [18], which is based on the fact that if f is a polynomial of degree at most n − 1
and α1, . . . , αn are n distinct non-zero points in the field, then the constant term f(0) is a linear
combination of the other points on that polynomial. That is, f1(0)·f2(0) = f(0) =

∑n
i=1 λi ·f(αi),

where λi :=
∏
j 6=i αj/(αi − αj) are the Lagrange coefficients.

The multiplication sub-protocol proceeds as follows. Given the shares f1(αi), f2(αi) of the
party Pi, the party Pi locally multiplies these two shares and gets the point f(αi). Then, it chooses
a polynomial gi(x) of degree t such that gi(0) = f(αi) = f1(αi) · f2(αi). It then shares the
polynomial gi with all parties, so that each party Pj receives the share gi(αj). At the end of this
stage, each party Pj holds the shares g1(αj), . . . , gn(αj). Next, let us define the polynomial h(x) :=∑n

i=1 λi ·gi(x), which has a degree at most t. Each party Pj locally computes the linear combination∑n
i=1 λi · gi(αj) = h(αj), which is its share in the implicitly defined polynomial h(x). Note that

h(x) is a polynomial of degree-t, and h(0) =
∑n

i=1 λi · gi(0) =
∑n

i=1 λi · f(αi) = f1(0) · f2(0).
Output reconstruction phase. In this phase, each party Pi receives all the shares of the output wire
that hides its respective output yi, reconstruct yi and outputs it.

The security of the BGW protocol was proven in [4].

13

3.6 Oblivious testing of the solvability of an encrypted linear system of equa-
tions

In this section we describe a method for an oblivious testing of the solvability of a system of
linear equations. That method is based on a protocol that performs oblivious Gaussian elimination
for the purpose of testing whether a given matrix has a full rank or not. (All protocols that are
presented here are based on [35].)

Throughout this section we assume a setting that involves two players – T and P . P holds the
key pair in a homomorphic encryption function F over F2. T holds an encryption F(M) of some
matrix over F2. The goal is for T to perform some computations on M , without learning anything
about M .

The first computation will test whether a given square matrix has a full rank or not. The main
ingredient in that computation will be Gaussian elimination. The input that T holds at the beginning
of that computation is F(M), where M is a square matrix of dimensions k × k. At the end of the
computation T will have an encryption F(M ′) of another k × k matrix M ′ such that M ′ is upper
triangular and M ′ has full rank if and only if M has a full rank. The protocol presented in Section
3.6.1 achieves that goal with high probability.

Next, we present in Section 3.6.2 a related protocol for a non-square matrix M . Assume that T
holds F(M) where M is of dimensions ka × kb, where ka ≤ kb, and rank(M) = r. Then, with
high probability, the protocol ends with T getting F(M ′) where M ′ is a ka × kb upper triangular
matrix with rank(M ′) ≤ r. In addition, with constant probability it holds that rank(M ′) = r.

Finally, we present in Section 3.6.3 a protocol for the oblivious testing of the solvability of a
system of linear equations. Assuming that T holds, in addition to F(M), also F(b) where b is a
row vector of dimension kb, the protocol ends with T having F(flag) where flag is a binary flag
indicating whether the system xM = b has a solution x ∈ Fka2 .

3.6.1 Oblivious Gaussian elimination of a square matrix

In preparation to describing the main protocol, we begin by describing basic computations that T
can perform over values that are encrypted by the homomorphic cipher F , even though T cannot
decrypt F (a cipher whose decryption key is known only to the other player P).

Routine 1: Linear combinations. Assume that T holds the encryption of two k-dimensional
vectors, F(v1), F(v2). Let a1, a2 ∈ F2 be two scalars. Then F(a1v1 +a2v2) = F(v1)a1 ·F(v2)a2 .

Routine 2: Multiplication by a random matrix. Assume that T has a random matrix R of dimen-
sions ` × k and it wishes to compute F(RM). Since each row in RM is a linear combination of
M ’s rows, such a computation can be carried out along the lines described above.

Routine 3: Multiplying scalars. Assume that T has F(a) and F(b) and it wishes to get F(ab).
Towards that end, it generates two randoms ra and rb, computes F(a + ra) = F(a) · F(ra) and
F(b+ rb), and sends those two encrypted values to P . P decrypts them and gets a+ ra and b+ rb.
Owing to the randomness of ra and rb, P learns no information from the two decrypted values. P
then sends to T the encrypted value F((a+ ra) · (b+ rb)). Finally, T computes

F(ab) = F((a+ ra) · (b+ rb)) · [F(a)rb · F(b)ra · F(rarb)]
−1 .

Routine 4: Computing OR operation. Assume that T has F(a) and F(b) and it wishes to get
F(a∨ b). Towards that end, T and P applying Routine 3 to get F(ab) in the hands of T . Finally, T

14

uses Routine 1 to compute
F(a ∨ b) = F(a) · F(b) · F(ab) .

Routine 5: Basic column elimination. T has F(M) and a row index j, 1 ≤ j ≤ k. The goal is to
let T have F(M ′) where M ′ is the matrix whose rows are given by3

M ′i = Mi ∀i ∈ [1, j] and M ′i = Mi + (M [i, 1]M [j, 1]) ·Mj ∀i ∈ [j + 1, k] . (5)

In case where the leading term in Mj is 1, then such a procedure results in a matrix M ′ where all
leading terms in the first column below the jth row are zeroed. If, on the other hand, the leading in
Mj is 0, then M ′ = M . Protocol 4 performs that computation.

Protocol 4 Basic Column Elimination
Input: T has F(M) and j ∈ [1, k].
Output: T gets F(M ′) where M ′ is defined in Eq. (5).

1: for j < i ≤ k do
2: T computes with P the value F(M [i, 1] ·M [j, 1]) (by Routine 3 - Multiplying scalars).
3: T computes with P the vector: F((M [i, 1]M [j, 1]) ·Mj) (by applying Routine 3 on each

entry).
4: T computesF(M ′i)← F(Mi+(M [i, 1]M [j, 1])·Mj) (by Routine 1 - Linear combinations).
5: end for

Routine 6: Oblivious column elimination. Protocol 4 is effective only if T selects a row Mj that
has a leading term that equals 1. But as T does not have the clear matrix M , Protocol 4 cannot be
applied as is. Towards resolving this obstacle, we make the following observation.

Claim 3.2. Assume that T knows that at least one of the first m rows of M , for some m < k, has a
leading term that equals 1. Then by applying Protocol 4 m times, each time with a different index
j = 1, . . . ,m, T will end up with F(M ′) where the left column of M ′ includes exactly one entry
that equals 1, among the first m rows, while all the other entries equal 0.

Proof. Let j0 be the first index such that M [j0, 1] = 1. Hence, applying Protocol 4 for each
j = 1, . . . , j0 − 1 will leave the matrix unchanged (since the leading term in those rows is zero).
Then, applying Protocol 4 with j = j0 will zero all the leading terms in all rows. Finally, applying
Protocol 4 with j = j0 + 1, . . . ,m will also leave the matrix unchanged since, again, those rows
have a leading term that equals zero.

Hence, Claim 3.2 enables us to perform Gaussian elimination on the first column, but it relies on
the assumption that the matrix M has a nonzero leading entry in at least one row among the first m
rows, for some m. To enable such an assumption, we state the following theorem.

Theorem 3.3. Let M be a k × k matrix over F2 and R be a random matrix of same dimensions
over F2. Let m = ω(log(k)) such that m < k/2. Then:

(a) With probability 1− neg(k), R is of full rank.
(b) IfR is of full rank and the leftmost column ofM is non-zero, then with probability 1−neg(k),

at least one of the top m rows in RM will have a non-zero leading entry.
3Hereinafter, if M is a matrix then Mi is its ith row and M [i, j] is the jth entry in that row.

15

Protocol 5 Oblivious Column Elimination
Input: T has F(M).
Output: (WHP) T gets F(M ′) where M ′ is also a square k × k matrix, has the same rank as M ,

and its left most column is et14.
1: T and P pick a random non-singular matrix R ∈ (F2)

k×k.
2: T computes F(M ′) where M ′ = RM (Routine 2).
3: for every i ∈ [m(k)] do
4: T and P compute F(M ′)← BasicColumnElimination(F(M ′), i).
5: end for
6: T updates the first row in M ′ by M ′1 ←

∑m(k)
i=1 M ′i (Routine 1).

7: T and P compute F(M ′)← BasicColumnElimination(F(M ′), 1).

Proof. (a) The process of selecting R consists of k consecutive selections of row vectors in Fk2 . It is
easy to see that if the first ` row vectors are independent, then the probability to select the next row
vector which would be independent of its predecessors is 1 − 2`−k, ` = 0, . . . , k − 1. Hence, the
probability of selecting k independent vectors is 1− O(2m−k). Since m < k/2, that probability is
1− neg(k).

(b) Denote the leftmost column in M by c, and the top m rows in R by r1, . . . , rm. Then
(RM)[i, 1] = ric, for 1 ≤ i ≤ m. Since r1, . . . , rm are random and independent vectors in Fk2 ,
then (RM)[i, 1] = 0 with probability 1/2. Hence, the probability that at least one of those values is
non-zero is at least 1− 2−m = 1− neg(k).

Therefore, if T selects a random square matrix R and computes F(RM) (using Routine 2), then
with high probability it can proceed to apply the procedure described in Claim 3.2 towards getting
F(M ′) where M ′ has a left most column with all leading terms 0, except one that equals 1. Note
that due to the multiplication by R, M ′ is not row equivalent to M (namely, it is not the result of
applying only Gaussian elimination on M), but it has the same rank as M .

We are now ready to present Protocol 5 for oblivious column elimination.
The protocol begins by a selection of a random non-singular matrixR (Step 1). Then, T computes

F(M ′) where M ′ = RM , using the previously described Routine 2. Afterwards, T and P perform
the basic column elimination procedure with each of the first m(k) rows. (We note that m(k) can
be set to any value which makes the probability of failure 2−m(k) sufficiently small.) At this stage,
the matrix M ′ that T holds encrypted, has a first column that equals etj0 for some j0 ∈ [1,m(k)]. In
Steps 6-7, we “move” the 1 entry in the first column to be in the first row. To do that, T replaces the
first row with the sum of the first m(k) rows by invoking Routine 1. At this point, the first column
has a 1 entry both in the first and j0th rows. In order to zero the 1 entry in the j0th row, we invoke
the basic column elimination procedure with the first row. Hence, we end up with T holding F(M ′)
where M ′ is as required. The rank of M ′ equals the rank of RM since it is obtained from RM only
by means of elementary row operations, and the rank of RM equals the rank of M since R is of full
rank.

Routine 7: Oblivious Gaussian elimination of a square matrix. Protocol 6 implements Protocol
5 recursively on the input matrix M . It starts by applying Protocol 5 on the first column of the
matrix and then it continues by recursion on the minor M ′−1,−1 — the (k− 1)× (k− 1) matrix that
is obtained from M ′ (the matrix that T hold encrypted after the first step of applying Protocol 5 on

4ej denotes the vector in which the jth entry is 1 and all other entries are 0.

16

Protocol 6 Oblivious Gaussian Elimination
Input: T has F(M).
Output: (WHP) T gets F(M ′) where M ′ is an upper triangular k × k matrix which has full rank

iff M has a full rank.
1: T and P compute F(M ′)← ObliviousColumnElimination(F(M)).
2: T and P compute F(M ′−1,−1)← ObliviousGaussianElimination(F(M ′−1,−1)).

the first column) by removing the first row and first column. At the end of this recursive process, T
holds an encryption of an upper triangular matrix M ′ that has a full rank iff the original matrix M
has a full rank.

Computational # rounds # messages # bits
Routine 1 k[Mul] 0 0 0

Routine 2 lk(k − 1)[Mul] 0 0 0

Routine 3 T : 3[F] + 5[Mul] + [Inv];
P : 2[F−1] + [F]

2 2 3λ

Routine 4 T : 2[Mul] ; [Routine 3] 2 2 3λ

Routine 5 (k−j) ·((k+1) · [Routine 3]+[Routine
1])

4 4 O(λ · k)†

Routine 6 k2(k − 1)[Mul] + m · ([Routine 5] +
[Routine 1])

m m Õ(λ · k)†

Routine 7
∑n

i=1[Routine 6(Mi×i)] = Õ(k4 ·([F]+
[Mul] + [Inv]))

Õ(k0.275)† Õ(k0.275)† Õ(λ · k2)†

Table 3: Computational and communication costs of Routines 1-7. The computational column
refers only to T computations, except for routines that depend on Routine 3. Herein, if f is any
operation or Routine, we let [f] denote its cost. Assume the security parameter of F is λ and denote
encryption, decryption, multiplication, inverse in the cipher domain as: [F], [F−1], [Mul], [Inv]
respectively. The lower bound of m is ω(log(k)) and the upper bound is k/2. Cells that are denoted
by †, are updated according to the improvement technique that is desribed in [35].

3.6.2 Oblivious Gaussian elimination of a non-square matrix

It is possible to handle non-square matrixM , of dimensions ka×kb, where ka ≤ kb, by multiplying
the matrix from left and right by square full-rank random matrices, Ra and Rb, of dimensions
ka× ka and kb× kb respectively: M∗ = RaMRb. The two parties perform the Oblivious Gaussian
elimination protocol on M∗ towards triangulating the left ka × ka block of the matrix (the right
kb − ka columns are updated but are not eliminated). We now state a simple claim from [10].

Claim 3.4. Under the above assumptions, if rank(M) ≥ r then with constant probability rank(M∗) =
r.

Claim 3.4 (see [10, Theorem 3] for a proof) implies that after applying the Oblivious Gaussian
elimination protocol on M∗, T will get F(N∗) where N∗ is upper triangular; moreover, with con-
stant probability, N∗ has exactly r nonzero terms on its diagonal.

17

Protocol 7 Solvability of a Linear System

Input: T has F(M) and F(b) where M ∈ Fka×kb2 and b ∈ F1×kb
2 .

Output: (WHP) T gets F(flag) where flag is a binary flag indicating whether the system xM =
b has a solution x ∈ Fka2 .

1: T picks randomly two non-singular matrices Ra and Rb of dimensions ka × ka and kb × kb
respectively.

2: T computes F(M∗) and F(b∗) for M∗ = RaMRb and b∗ = bRa (by Routine 1 - Linear
combinations).

3: T and P perform Oblivious Gaussian Elimination on the top left ka × ka block of

(
M∗

b∗

)
.

4: Denote by M ′′ the resulting (ka + 1)× kb matrix for which T holds its F encryption.
5: T and P compute the product

∏kb
i=1(1−M ′′[ka + 1, i]) (by Routine 3 - Multiplying scalars).

3.6.3 Oblivious testing of the solvability of a system of linear equations

Assume that T holds, in addition to F(M), also F(b) where b is a row vector of dimension kb.
We present here a protocol that ends with T having F(flag) where flag is a binary flag indicating
whether the system xM = b has a solution x ∈ Fka2 .

LetRa andRb be two random matrices of full rank of dimensions ka×ka and kb×kb respectively.
Denote M∗ = RaMRb and b∗ = bRa.

Claim 3.5. Under the above conditions, xM = b is solvable iff yM∗ = b∗ is solvable.

Proof. Assume there exist a vector c ∈ Fka2 where cM = b, then the rows of M spans b. Multi-
plying M by a full-rank matrix Ra does not change the row space of M . Thus, there exist c∗ such
that c∗RaM = b. Multiplying both sides with matrix Rb results in c∗RaMRb = bRb as expected.
Similar approach may prove the other direction.

By Claim 3.4, if rank(M) = r then with constant probability the rank of the top left ka × ka
block of M∗ is also r. Hence, with constant probability, the original system xM = b is solvable iff
the row vector b∗ is spanned by the rows of the matrix M∗. In order to check whether b∗ belongs
to the row space of M∗, we apply the Oblivious Gaussian elimination on the top left ka × ka block

of

(
M∗

b∗

)
. In doing so, we apply on the last row of the matrix all operations of column elimination.

Now, b∗ belongs to the row space of M∗ iff at the end of that process, all elements in the last row
are zeroed. That condition holds iff

∏kb
i=1(1 − M ′′[ka + 1, i]) = 1, where M ′′ is the resulting

(ka + 1) × kb matrix for which T holds its F encryption. By applying Routine 3 for multiplying
scalars, T gets F(flag) where flag is a binary flag indicating the solvability of the original system.

The protocol has a one-sided error. If the original system is not solvable then T will always get
at the end F(0). If, on the other hand, the system is solvable then if in the first step the rank of
the top-left ka × ka sub-matrix of M∗ is the same as that of M , T will get eventually F(1), as
needed. However, as the latter condition holds only with constant probability, T and P can execute
the protocol several times and take the OR of the results in order to make the error probability
negligible. Assume we denote the error constant as c < 1, so the probability that the protocol
outputs the correct value becomes 1 − (ct) = 1 − neg(t) after T performs Routine 4 t times over
the outputs of Protocol 7.

18

In [35, Theorem 7], the authors continue to improve the complexity of Solvability of a Linear
System and get the following results:

Complexity. Consider the notations from Table 3. Then, the computational complexity costs are
O(kak

2
b · [Mul]) in Step 2, Õ(k4a · ([Mul+ [F] + [Inv])) in Step 3, and kb · ([Routine 3] + [Mul])

in Step 5.
By executing Protocol 7 t times, and performing Routine 5 between the results, we get a compu-

tation complexity of Õ(t · (kak2b · [Mul] + k4a · ([Mul+ [F] + [Inv]))), communication rounds and
messages equals to Õ(t · k0.275a), and Õ(t · λkakb) bits transferred.

Privacy. Since T does not hold the private key to the encryption scheme, all the operations that
it performs locally via the homomorphic property of the encryption do not reveal any information
about the plain values of the matrix. Only Routine 3 involves player P in the computation and it
easy to see that it is not leak any information to P and therefore not to T due the random values that
masks the values that transmitted. In the end, the only value that get reveal is the output, i.eF(flag)
that indicates (W.H.P) whether the linear system xM = b has a solution x ∈ Fka2 , as excepted.

19

3.7 Computing the rank of an encrypted matrix

In this section we describe a method for obliviously computing the rank of a matrix M that is
encrypted under an additively homomorphic encryption. This method is based on [28].

Assume a setting that involves two players – T and P . T holds an encrypted matrix F(M) where
M ∈ Fka×kb , and F is an additively-homomorphic encryption over F = F2k . The parameter k that
defines the size of the field is assumed to be sufficiently large. Without loss of generality we assume
that ka ≤ kb. The goal of those two players is to compute the rank of the matrix M , so that at the
completion of the protocol T will hold F(rank(M)).

The computation is separated into two major stages. In the first stage, the purpose is to trans-
form the encrypted matrix F(M) into F(N) where N is a precondition square matrix such that
rank(M) = deg(pN)− 1, where pN denotes the minimal polynomial of the matrix N . The goal of
the second stage is to compute the minimal polynomial of the encrypted matrix N by using related
linearly recurrent sequences.

This section is organized as follows. In Section 3.7.1 we provide the necessary background
regarding linearly recurrent sequences. Next, in Section 3.7.2 we describe how to compute the
minimal polynomial of an encrypted matrix using a recurrent sequence. Finally, in Section 3.7.3 we
describe the necessary preparations that are needed to compute the matrix’s rank via the minimal
polynomial computations.

3.7.1 Preliminaries

Let F be a field and V 6= {0} be a vector space over F. Then V N is the (infinite-dimension) vector
space of infinite sequences (mi)i∈N, where mi ∈ V .

Definition 3.6. A sequence (mi)i∈N is linearly recurrent (over F) if there exist n ∈ N and
f0, · · · , fn ∈ F with fn 6= 0 such that∑

0≤j≤n
fj ·mi+j = f0mi + f1mi+1 + · · ·+ fnmi+n = 0 ∀i ∈ N .

The polynomial f =
∑

0≤j≤n fj · xj ∈ F [x] of degree n is called the generating polynomial for
the sequence m := (mi)i∈N. (Other common names for f are the characteristic or the annihilating
polynomial.) The set of all generating polynomials for m, together with the zero polynomial, forms
an ideal in F[x]. It is worth mentioning that V N is a F[x]-module over F and also a principal ideal
domain. Thus, there exists a unique monic polynomial that generates that ideal. We denote that
polynomial by pm and call it the minimal polynomial of the sequence m = (mi)i∈N. The degree of
pm is called the recursion order of the sequence.

Given a square matrix M ∈ Fkb×kb , we are interested in the following three sequences:

• M := (M i)i∈N where the sequence elements are from V = Fkb×kb .

• m := (M iv)i∈N where the sequence elements are from V = Fkb .

• m′ := (uTM iv)i∈N, where u, v ∈R Fkb and the sequence elements are from V = F.

The following lemma describes some basics properties of those sequences.

Lemma 3.7. Let pcharM = det(λI−M) be the characteristic polynomial of the matrixM ∈ Fkb×kb ,
and let pm′ , pm, and pM be the minimal polynomials of the sequences m′,m,M, respectively.
Then pm′ | pm | pM | pcharM , where p|q means here that the polynomial p divides the polynomial q.

20

The proof of Lemma 3.7 is based on the Cayley-Hamilton theorem; details can be found in [28].

Corollary 3.8. The sequences m′,m,M are linearly recurrent of order at most kb.

We also define the minimal polynomial of a matrix M , as follows.

Definition 3.9. The minimal polynomial pminM of the matrix M ∈ Fkb×kb is defined as pminM = pM,
i.e. as the minimal polynomial of the sequence M = (M i)i∈N.

3.7.2 Oblivious computation of the minimal polynomial

Assume that the player T holds the encrypted matrix F(M), where M ∈ Fkb×kb and F is a public-
key additively-homomorphic encryption scheme over F = F2k . The other player, P , holds the key
pair for F . T wishes to compute an encryption of the minimal polynomial of M , F(pminM) (namely,
the encryption of each one of the polynomial’s coefficients).

In order to compute the minimal polynomial of the latter matrix, we use Lemma 3.10 which
claims that, with high probability, it is sufficient to compute the minimal polynomial of the linearly
recurrent sequence m′ = (uᵀM iv)i∈N where u,v ∈R Fkb .

Lemma 3.10. Let pminM be the minimal polynomial of a matrix M ∈ Fkb×kb , and define the related
sequence m′ = (uᵀM iv)i∈N, where u, v ∈R Fkb are two randomly selected vectors. Then pM =
pm′ with probability at least 1− 2deg(pM)/|F|.

(The proof of Lemma 3.10 is omitted here; it can be found in [42, Exercise 12.15].)
Since, by Corollary 3.8, the recursion order of the sequence m′ is at most kb, it is sufficient to

compute the minimal polynomial using only the first 2kb elements of the sequence. To that end, we
shall invoke the Berlekamp–Massey algorithm, which we describe later on.5

In view of the above, we proceed to show how T can obtain the encryption of the first 2kb
elements in the sequence m′ = (uTM iv)i∈[2kb] where u,v ∈R Fkb , from the input F(M) that it
holds. First, T and P compute F(M2j) for 0 ≤ j ≤ log(kb). This is done by performing log(kb)
sequential matrix multiplications by using the square-and-multiply method. The multiplication of
encrypted matrices is done by invoking Routine 3 (see Section 3.6.1) for multiplying encrypted
scalars.

Next, T computes F(Mv) using Routine 2 (Section 3.6.1). Then, T uses F(M2) in order to
compute

F(M3v|M2v) = F(M2) · F(Mv|v)

where hereinafter, if X and Y are matrices with the same number of rows then X|Y denote their
horizontal concatenation. T proceeds to use the same technique in order to get

F(M7v|M6v|M5v|M4v) = F(M4) · F(M3v|M2v|Mv|v) .

T proceeds in this manner until it gets

F(M2kb−1v|M2kb−2v| . . . |Mkbv) = F(Mkb) · F(Mkb−1v| . . . |Mv|v) .

Finally, by holding the vectors F(M iv)i∈[2kb] and uᵀ, T computes F(uᵀM iv) for 0 ≤ i ≤ 2kb − 1
using Routine 2 from Section 3.6.1.

5We note that it is also possible to compute the minimal polynomial via the extended Euclidean algorithm, see [14].

21

By holding the latter 2kb encrypted values and because the recursion order of m′ is at most kb,
it is possible to compute the minimal polynomial of the sequence m′ via the Berlekamp–Massey
algorithm. As that algorithm is well-known, we omit herein further details; the interested reader
may refer to [8].

The Berlekamp-Massey Algorithm implies that it is possible to construct a boolean circuit of size
O(k2b) that computes the minimal polynomial. However, in our setting, it is necessary to compute
the boolean circuit over encrypted values. Hence, we proceed to describe a general method that
applies Yao’s garbled circuit protocol (Section 3.4) in such settings.

Computing Yao’s garbled circuit protocol over encrypted values. Suppose that T holds an
encrypted value F(a) where a ∈ F and P holds F’s private key. They wish to compute g(a) for
some function g, where g can be described as a boolean circuit, Cg. To that end, we describe a
modified version of Protocol 3 from Section 3.4.

First, T generates a random value r ∈ F and computes F(a + r) (using Routine 1 in Section
3.6.1) and sends it to P , who proceeds to decrypt it and recover a + r. Then, both players create a
boolean circuit C ′g that uses r as the input of T and a + r as P ’s input. They also create ”adapter”
gates in the beginning of the circuit C ′g that subtract the values r from a + r, and then feeds the
result s as an input to the garbled circuit Cg. Finally, they continue to follow Yao’s GC protocol,
until they get the output value g(a). It is easy to see that the privacy and the complexity remain the
same as in the original protocol. Furthermore, the extension of that idea in order to compute the
circuit with n ∈ N encrypted values as inputs, F(xi)i∈[n], is straightforward.

We are now ready to describe Protocol 8 for computing an encryption of the minimal polynomial
of an encrypted matrix. In Steps 1-3, T computes F(uᵀM iv) for 0 ≤ i ≤ 2kb − 1 and u,v are
randomly selected vectors as descibed above. Next, it invokes the algorithm of Berlekamp–Massey
on the latter sequence in order to compute its minimal polynomial. To that end, as we explained
above, T should construct a modified Yao’s garbled circuit that enables the two players to compute
the circuit over encrypted values (Step 4). Finally, in Step 5, T outputs the result.

Protocol 8 Computing an Encryption of the Minimal Polynomial Of an Encrypted Matrix (MinPoly)

Input: T has F(M) where M ∈ Fkb×kb , F = F2k .
Output: T gets F(pminM) where pminM is the minimal polynomial of the matrix M .

1: T computes F(M2i) ∀i ∈ [log(kb)].
2: T chooses two random vectors u,v ∈R Fkb .
3: T computes F(m′i) = F(uᵀM iv) ∀i ∈ [2kb] using the method that is described in Section 3.7.2.
4: T computes F(pm′) from {F(m′i) : i ∈ [2kb]}, using Yao’s-garbled circuit for the Berlekamp-Massey

algorithm.
5: Return F(pm′) as the encryption of the minimal polynomial of the matrix M .

Complexity. Consider the notations from Table 3. Then, Step 1 entails log(kb) encrypted matrix
multiplications of size kb × kb. The cost of such operations is Õ(k3b · ([F] + [Mul] + [Inv]));
they entail 2 rounds, 2 messages and O(λ · k2b) bits transferred. Then, Step 3 is more involved and
consists of computing F(M · v), F(M i · v) and then F(uᵀM i · v) for all i ∈ [2kb] in complexity of
Õ(k3b · [Routine 3]) with log(kb) rounds, log(kb) messages and O(λ · kb) bits transferred. Finally
in Step 4, by using the results from Section 3.4, the computation costs O(k2b ([F] + [OT])) with 3
rounds, 2 messages, and O(λ · k2b) bits transferred.

22

Remark 3.11. The cost of [Routine 3] over F2k equals 2·O(k)·[Mul]+3[Mul]+2·O(k2)+[Inv]
for T ; and [F−1] and one multiplication in the field F2k for P . Due to the technique of multiplying
a plain value with an encrypted value over F2k , which is described in Section 3.1.

3.7.3 Computing the rank of an encrypted matrix

The computation of the encrypted matrix’s rank is done by computing its minimal polynomial and
using the following lemma [26].

Lemma 3.12. Let B ∈ Fkb×kb be a matrix of (unknown) rank r for which the first r leading
principals, B1, . . . , Br are invertible. Let X be a randomly chosen diagonal matrix in Fkb×kb .
Then B’s rank r equals deg(pXB)− 1 with probability greater than 1− kb

2

|F| .

In our case, the matrix M ∈ Fka×kb for which the rank is sought is not square and does not have
the property of leading principals as states in Lemma 3.12. Hence, before applying the lemma, the
two players T and P has to perform some preparations. First, in order to transform the matrix M
into a square matrix with the same rank, T pads it with kb − ka zero columns so that it becomes
a square kb × kb matrix of the same rank. Then, in order to transform the matrix to one that has
leading invertible principals up to the r’th one, T multiplies the square matrix that it holds by upper
and lower Toeplitz matrices. Lemma 3.13 [26] ensures that the resulting matrix has the required
property with high probability.

Lemma 3.13. LetM be a matrix in Fkb×kb of (unknown) rank r. Let U and L be two random upper
and lower unitriangular Toeplitz matrices in Fkb×kb . (Triangular matrix is called unitriangular, if
the entries on the main diagonal are all 1.) Let B = UML and denote the i × i leading principal
of B by Bi. Then, the probability that det(Bi) 6= 0 for all 1 ≤ i ≤ r is greater than 1− kb

2

|F| .

Finally, in order to have a matrix that fulfills all requirements of Lemma 3.12, T multiplies
the matrix with a random diagonal matrix X ∈ Fkb×kb (by using Routine 2 from Section 3.6.1).
By combining the probabilities of Lemmas 3.13 and 3.12, we infer that the probability of the latter
matrix having the same rank r as the original matrixM is greater than 1−2kb

2

|F| . Since our underlying
field F = F2k can be made as large as desired by picking k large enough, we can choose k so that
the latter probability is smaller than ε for any given threshold ε.

It is worth mentioning that Lemmas 3.12 and 3.13 follow from the well-known Schwartz-Zippel
lemma [40, 46], which (in its weaker version) states the following. (A proof can be found in [34].)

Lemma 3.14 (Schwartz-Zippel). Let f be an m-variate polynomial of degree exactly d ≥ 1 over a
field F. Then the number of zeros of f is at most d|F|m−1, or alternatively,

Prx∈Fm [f(x) = 0] ≤ d

|F|
.

We may now describe Protocol 9 for rank computations. In Steps 1-3, T performs the needed
transformations on the matrix M to a matrix N that has the same rank (with high probability) and
complies with the conditions of Lemma 3.12 that allow computing the rank by the degree of the
minimal polynomial. Then (Step 4), T and P invoke Protocol 8 to obtain the encrypted degree of
the minimal polynomial which is, with high probability, the rank of the original matrix.

23

Protocol 9 Computing the Rank of an Encrypted Matrix (ComputeRank)

Input: T has F(M) where M ∈ Fka×kb , F = F2k , and ka ≤ kb; P has the private decryption key of
additively-homomorphic encryption function F .

Output: T gets F(rank(M)).
1: T pads kb − ka columns of F(M) with F(0) and gets F(M ′) of size kb × kb.
2: T picks a random upper unitriangular Toeplitz matrix U , a random lower unitriangular Toeplitz matrix
L, and a random diagonal matrix X , all from Fkb×kb .

3: T computes F(N) where N = XUM ′L, using Routine 2 from Section 3.6.
4: T and P invoke Protocol 8 (MinPoly) on N except that in the last step, they use a circuit that only

outputs to T the encrypted degree of the minimal polynomial deg(pminN) instead of the encryption of the
actual polynomial pminN .

Complexity. Consider the notations from Table 3 and Remark 3.11. Then, Step 1 costs are
[F] · k(kb − ka). Next in Step 3, the multiplication of two unitriangular Toeplitz matrices and one
diagonal matrix costs O(k3b ([Mul] + k2)). Finally, Step 4 costs are: Õ(k3b · [Routine 3]) with
log(kb) rounds, log(kb) messages and O(λ · k2b) bits transferred, according to Protocol 8.

Privacy. Since all computations are done on F-encrypted values, the protocol’s privacy derives
from the security of F and the security of Yao’s garbled circuit protocol and Routines 1,2 from
Section 3.6.1.

24

4 Privacy preserving planarity testing

We begin this section with a formal definition of our problem (Section 4.1). We then provide a
birds-eye view of the way in which we intend to tackle it (Section 4.2). In the subsequent Sections
4.3, 4.4, 4.5, 4.6, we provide the details of our proposed solutions. We analyze the privacy of the
proposed protocols in Section 4.7, and their computational and communication costs in Section 4.8.

4.1 Problem definition

There are two players, P1 and P2, each one holding a private planar graph on the same set of
vertices, G1 = (V,E1) and G2 = (V,E2). They wish to determine whether the union graph
G = (V,E), where E = E1 ∪ E2 is planar as well, without revealing any additional information
to the other player on one’s private graph. The algorithm that we proceed to describe assumes a
third party which is non-trusted. The third party T will help in executing the computations but it is
not allowed to learn information on the private graphs. We assume that all parties are semi-honest.
Namely, they follow the protocols’ specifications, but at the same time they try to extract from their
own view during the protocols’ run information on the input private graph of the other players.

Comment. We assume that there are only two players merely for the sake of simplicity. The
extension of our protocols to any number of players is straightforward.

4.2 Overview of the proposed solutions

4.2.1 First stage – testing the number of edges in the unified graph

Denote V = {v1, . . . , vn}. The unified graph G = (V,E) is planar only if

|E| = |E1 ∪ E2| ≤ 3n− 6 . (6)

Hence, in the first stage, the three players, P1, P2 and T , engage in a secure protocol for checking
whether inequality (6) holds or not. If it does not, they know that the unified graph G is not planar.
If it does hold, they proceed to the second stage in the protocol which we outline in Section 4.2.2.

The protocol for verifying inequality (6) is given in Section 4.3. The only information that the
three players learn after running this protocol is whether the inequality holds or not; they do not
learn any further information on the size of E1, E2, E1 ∩ E2, or E1 ∪ E2.

4.2.2 Second stage – a privacy-preserving implementation of the Hanani-Tutte planarity test

The idea in this stage is that the three players construct the Hanani-Tutte (HT hereinafter) system
of linear equations, Eq. (2), for the unified graph G. Towards that end, they begin by constructing
the HT system of linear equations for the complete graph on V , denoted KV (i.e., KV is the graph
on V that has all

(
n
2

)
edges). That stage can be constructed publicly with no privacy risks, since

the vertex set V is known to all and KV is simply the complete graph on V . The main effort
is in extracting from that large system of equations the subset of HT equations corresponding to
the unified graph G; in other words, the goal of that part of the protocol is to let the mediator T
have the subset of equations that relate to two independent edges in KV which both exist in G. To
protect the unified graph data from T , it will get only an encrypted version of the subset of linear
equations corresponding to G. The last part of the computation is dedicated to determining whether

25

that system has a solution or not (where no party actually sees the system as it is held only by T and
it is encrypted using a cipher that T cannot decrypt).

To allow this approach, we must start with a basic drawing of KV (which induces also a basic
drawing for the sub-graph G). Let us consider the following embedding of V in R2. If V =
{v1, . . . , vn}, then vj is mapped into the point

vj 7→ χ(vj) := (cos(2πj/n), sin(2πj/n)) , 1 ≤ j ≤ n . (7)

Then KV ’s edges are
ei,j = {vi, vj} , 1 ≤ i < j ≤ n . (8)

Let D denote the drawing of KV in which the vertices are embedded as in Eq. (7) and an edge
ei,j is represented by the straight line segment between χ(vi) and χ(vj). Consider now the two
edges ei,j and ek,` and assume, WLOG, that i < j, k < `, and i < k. Then it is easy to see that
parityD(ei,j , ek,`) = 1 iff i < k < j < `.

The system of linear equations (2) can be constructed publicly, by each of P1, P2 and T , for this
drawing D of the complete graph KV . Let us denote the set of all pairs of independent edges in KV

by Kind
2 . Since KV has

(
n
2

)
edges, we infer that

NKV
:= |Kind

2 | =
1

2
·
(
n

2

)
·
(
n− 2

2

)
. (9)

The system (2) will include an equation for each such pair of independent edges. As stated earlier,
the main problem will be to identify, among those NKV

equations, the |Eind2 | equations that relate
to pairs of edges e and f that are both in E.

The graph G = (V,E) is planar, iff that partial system of |Eind2 | equations has a solution. In
Sections 4.4 and 4.5 we present our protocols for carrying out the computation that we outlined
herein.

4.3 First stage: Testing the size of the unified edge set

Here we present Protocol 10 that allows the two parties, P1 and P2 (with the help of T) to
compare the size of the unified edge set E = E1 ∪ E2 against the planarity upper bound 3n − 6,
Eq. (6), in order to decide whether they need to proceed with the planarity testing.

Let EKV
:= {ei,j : 1 ≤ i < j ≤ n} denote the edge set in the complete graph KV , where ei,j

were defined in Eq. (8). For each e ∈ EKV
and h ∈ {1, 2}, let αhe be a bit that indicates whether

Eh contains the edge e. Then e ∈ E iff

α1
e ∨ α2

e = α1
e + α2

e − α1
e · α2

e = 1 . (10)

Hence,
|E| =

∑
1≤i<j≤n

(α1
ei,j + α2

ei,j − α
1
ei,j · α

2
ei,j) . (11)

Therefore, P1 and P2 may invoke the BGW protocol to compute additive shares in |E| in a secure
manner. Specifically, by fixing a prime p >

(
n
2

)
, the two players may run the BGW protocol

for computing shares s1 and s2 in |E| over the field Fp so that each of the two shares distributes
uniformly in Fp (and, hence, conveys no information on |E| to the party that holds it) and s1 + s2 =
|E| mod p. This first stage in the computation is described in Steps 1-5 of Protocol 10.

26

Next, the two players continue to check whether |E|, which is the sum modulo p of the two
random shares that they hold, is greater than 3n − 6. That part of the computation is carried out in
Steps 6-10 of Protocol 10, which we proceed to explain.

In Step 6, P1 generates a random number r ∈ [0, p −
(
n
2

)
). Since s1 + s2 mod p = |E| and

|E| ≤
(
n
2

)
, then the value y which T recovers in Step 9 equals |E|+ r, where the latter sum is in the

standard sense of integers. (The selection of p to be significantly larger than the theoretical upper
bound on |E| is made so that T can extract almost no information on |E| from y, as we discuss later
on. For the correctness of the protocol, any p >

(
n
2

)
would do.) Finally, T (that has y = |E| + r)

and P1 (that has r + (3n − 6)) compare the two values in order to check the necessary condition
for planarity. They do so by running a protocol for Yao’s Millionaires’ problem [37] (which we
described in Section 3.3).

Protocol 10 Testing the size of the unified edge set
1: for h = 1, 2 do
2: Ph sets values to αhe for all e ∈ EKV

; specifically, αhe = 1 if e ∈ Eh and αhe = 0 otherwise.
3: end for
4: P1 and P2 choose a finite field Fp where p�

(
n
2

)
.

5: P1 and P2 invoke BGW protocol in order to compute additive shares, s1 and s2, in |E| =∑
1≤i<j≤n(α1

ei,j + α2
ei,j − α

1
ei,j · α

2
ei,j) over Fp.

6: P1 will generate a random r ∈ [0, p−
(
n
2

)
].

7: P1 sends to T the value s1 + r mod p.
8: P2 sends to T the value s2.
9: T computes y := s1 + s2 + r mod p.

10: T and P1 engage in a Yao’s millionaires’ protocol to check whether y ≤ r + (3n− 6).
11: If the last inequality verification fails, then the unified graph is not planar.

Privacy analysis. The first part of the protocol (Steps 1-5) involves only P1 and P2. They engage
in a BGW protocol for computing shares in |E|. The latter protocol is information-theoretic secure
[7] and, hence, neither of the two players gets any wiser during that part of the protocol. In the
second part P2 is not involved and P1 and T engages in a Yao’s millionaires’ protocol, which is
also perfectly secure. Finally, we consider T who recovers in Step 9 the value y = |E| + r. That
value may reveal some information on |E| in probability that is O(1/p), as implied by Lemma 4.1
below. Hence, by choosing p to be sufficiently large, P1 and P2 can guarantee that the probability
of T inferring an upper or a lower bound on |E| to be negligible.

Lemma 4.1. Let: (a) w be an integer random variable taking values in [B] = {0, 1, 2, . . . , B}; (b)
r be uniformly distributed over [R] for R ≥ B; and (c) x = w + r. Then in probability 1− B

R+1 , x
reveals no information on w, while otherwise x reveals either an upper or a lower bound on w, but
nothing beyond that.

Lemma 4.1 (see [21, Lemma 4] for a proof) implies that the probability of T inferring anything

on |E| is no larger than (n2)
p−(n2)

= O(1/p).

Complexity. The bulk of the computational and communication costs of Protocol 10 is due to the
BGW sub-protocol and Yao’s millionaires’ protocol on integers from Fp. In the BGW sub-protocol,
the two players need to compute

(
n
2

)
multiplication gates and 3

(
n
2

)
− 1 addition gates.

27

4.4 A first algorithm for private HT testing

Let
EKV

:= {ei,j : 1 ≤ i < j ≤ n} (12)

denote the edge set in the full graphKV , where ei,j were defined in Eq. (8). For each edge e ∈ EKV

and h ∈ {1, 2}, let αhe be the boolean variable denoting whether e ∈ Eh or not. Then, e ∈ E iff
α1
e ∨ α2

e . Consequently, the equation that corresponds to the pair of potential edges e and f , where
(e, f) ∈ Kind

2 , is relevant iff

χe,f := (α1
e ∨ α2

e) ∧ (α1
f ∨ α2

f) = 1 . (13)

Each of P1, P2 and T can construct the following system of linear equations for the drawing D
of KV which we described in Section 4.2.2:

xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) = parityD(e, f) mod 2 (e, f) ∈ Kind
2 . (14)

That system has NKV
equations (see Eq. (9)) – one equation for each pair of independent edges

in KV . The system of equations which determines the planarity of G = (V,E) is a subset of the
system in (14), see Eq. (2). That subset of equations includes only the equations relating to pairs of
edges (e, f) where both e and f are in E. Hence, the problem now is to enable T to identify (in an
oblivious manner) the subset of |Eind2 | equations, out of the system of NKV

equations in (14), that
correspond to pairs of independent edges in Eind2 (namely, pairs of edges (e, f) where both e and f
are in E and they are independent). Once that subset of equations is constructed, we proceed to test
its solvability. This is done in Protocol 11 which we proceed to describe.

The protocol begins with P1 and P2 generating, privately, homomorphic encryption functions, as
we described in Section 3.1 (Steps 1-2). They keep all decryption keys secret from T but notify it
of the corresponding public encryption keys.

In Steps 3-5, each player sends to mediator T the encrypted bit values αhe for all every edge in
the full grave KV . Each such bit indicates whether that edge exists in Ph’s private edge set Eh.

Next, in Steps 6-11, T computes for all pairs of independent edges in the full graph (Kind
2) an

E1-encryption of ξe,f = (α1
e + α2

e) · (α1
f + α2

f). Specifically, it first computes E(α1
e + α2

e) by
multiplying E(α1

e) and E(α2
e) (relying on the additive homomorphism of E); then it computes, in

a similar manner E(α1
f + α2

f); finally, from the latter two values it constructs the E1-encryption of
ξe,f by the multiplication scheme that was devised at [9] (see Section 3.1).

Table 4 lists all possible values of ξe,f as a function of the private bits αhe , α
h
f , h = 1, 2. The

goal is now to identify the equations in the linear system for which ξe,f = 0 since those equations
correspond to pairs of edges that neither of which exists in E; those equations should be omitted.
All equations corresponding to pairs of edges for which ξe,f ∈ {1, 2, 4} should be retained.

In order to identify those equations it is necessary to decrypt E1(ξe,f). T cannot do that but P1

and P2 can. However, T cannot just hand over those encrypted values to P1 (or P2) since they may
reveal sensitive information on the private graph of the other player. Indeed, as can be seen from
Table 4, the value of ξe,f reveals to P1 (who knows the column index) information on P2’s input
(which is the row index).

Hence, T performs two actions before handing over to P1 all of the E1-encrypted values to de-
crypt. In Steps 8-9, T replaces E1(ξe,f) with E1(ξe,f)ρe,f , for some nonzero random multiplier ρe,f .

28

ξe,f 0,0 0,1 1,0 1,1

0,0 0 0 0 1
0,1 0 0 1 2
1,0 0 1 0 2
1,1 1 2 2 4

Table 4: The values of ξe,f as a function of the values of (α1
e, α

1
f) (columns) and (α2

e, α
2
f) (rows)

Owing to the homomorphism with respect to addition, then the latter value equals E1(ξe,f · ρe,f). It
is easy to see that ξe,f ·ρe,f = 0 iff ξe,f = 0. However, if ξe,f ∈ {1, 2, 4}, then the value of ξe,f ·ρe,f
reveals no information on the original value of ξe,f (except for the fact that it was nonzero). The
second action that T takes is in Step 12. Here, T sends to P1 the values of w(e, f) under some
secret permutation. Therefore, while P1 can decrypt the entries of w(e, f), it will only be able to
know how many pairs of edges in the full graph had ξe,f 6= 0, but not the identity of those edges.
We defer the full discussion of privacy to Section 4.7.1.

In addition to the above, T computes for each pair of independent edges, (e, f), the bit σe,f which
indicates whether they intersect or not (Step 10). Here we rely on the specific drawing of the graph
as given in Eqs. (7)+(8).

Then, in steps 13-21, P1 decrypts the entries of the ŵ that it received from T . If the decryption
of a given entry, w′, is zero then χe,f = 0 (see Eq. (13)); otherwise χe,f = 1. P1 sends back to T
the vector ŵ in which every entry that had w′ = 0 is replaced with F(0) and all others are replaced
by F(1). Then, in Step 22, T applies the inverse permutation on the entries of ŵ and gets for each
(e, f) ∈ Kind

2 a value F(χe,f) where χe,f is a binary flag indicating whether (e, f) ∈ Eind2 .
Next, in the loop in Steps 23-35, T constructs the full system of linear equations corresponding

to Eind2 , under the encryption F . Recall that T has the full set of NKV
equations in the clear. The

goal of this stage in the computation is to allow T to compute an F-encryption of the subset of
|Eind2 | relevant equations. Specifically, if a given row in the full matrix is relevant, we wish for T
to get an entry-wise F-encryption of it. If, on the other hand, a given row is not relevant, we wish
for T to get an entry-wise F-encryption of the row which consists of zeroes. It is needed to do so
without T learning which rows were zeroed and which rows remained.

This is how it is done: Let re,f be the row in the augmented matrix that corresponds to (e, f) ∈
Kind

2 . re,f is a binary vector of dimension N + 1, where N =
(
n
2

)
· (n − 2), since it includes

the coefficient of each unknown variable (and there are N such variables, one for each coupling of
an edge and a non-adjacent vertex) plus the right hand side (σe,f = parityD(e, f)). In the linear
equation corresponding to (e, f) the coefficients of all variables are zero, except for 4 of those
variables (see Eq. (2)). Hence, in the inner loop in Steps 26-33, T goes over the first N entries of
re,f ; in each of the 4 entries that should be 1, T places the value F(χe,f), while in all the remaining
ones it places the value F(0) (recall that F is a public-key cipher, so T can compute encryptions).
In the last position in re,f , corresponding to the right hand side of the equation for the pair (e, f),
T places the value F(χe,f) in case that σe,f = 1; otherwise T places the value F(0), in order to
prevent from the parity’s value to affect a row that is not relevant (Steps 34-38). As a result, if
χe,f = 0, T constructs (in a manner oblivious to it) an encryption of the all-zero equation; but if
χe,f = 1, T constructs an encryption of the equation for the pair (e, f), as in Eq. (2). In summary,
T gets a system of NKV

encrypted equations: |Eind2 | of those equations are the F-encryption of the
system (2), while the remaining ones are F-encryptions of the trivial equation with all coefficients

29

and right hand side being zero.
Finally, in Steps 40-45, T and P1 execute the the algorithm SOLVABLE in order to find out

whether the above-constructed encrypted system of equations has a solution. The graph is planar iff
the system is solvable.

30

Protocol 11 Privacy preserving HT planarity testing
1: P1 and P2 generate public key encryption functions E , E1 as described in [9] and send to T the public

encryption key.
2: P1 and P2 generate a probabilistic public key encryption function F which is additively homomorphic

over F2k and send to T the public encryption key.
3: for h = 1, 2 do
4: Ph sends the encrypted values {E(αhe) : e ∈ EKV

} to the mediator T .
5: end for
6: for all (e, f) ∈ Kind

2 do
7: T computes E1(ξe,f) where ξe,f := (α1

e + α2
e) · (α1

f + α2
f).

8: T generates a random integer multiplier 1 ≤ ρe,f < ν = |G1|.
9: T computes w(e, f) := E1(ξe,f)ρe,f = E1(ξe,f · ρe,f).

10: If e = ei,j and f = ek,` where i < j, k < ` and i < k, T sets σe,f ←

{
1 k < j < `

0 otherwise
11: end for
12: T sends to P1 the vector ŵ ← (w(e, f) : (e, f) ∈ Kind

2), where the entries of ŵ are secretly and
randomly permuted by T .

13: for 1 ≤ i ≤ NKV
= |Kind

2 | do
14: P1 computes w′ := E−11 (ŵ(i))
15: if w′ = 0 then
16: ŵ(i)← F(0)
17: else
18: ŵ(i)← F(1)
19: end if
20: end for
21: P1 sends to T the vector ŵ.
22: T applies the inverse permutation on the entries of ŵ and gets for each (e, f) ∈ Kind

2 a value F(χe,f)
where χe,f is a binary flag indicating whether (e, f) ∈ Eind2 .

23: for all (e, f) ∈ Kind
2 do

24: T allocates a vector re,f of dimension N + 1 where N :=
(
n
2

)
· (n− 2).

25: T creates a bijection Φ : [N]→ {(g, v) : g ∈ EKV
, v ∈ V \ {a(g), b(g)}}.

26: for i ∈ [N] do
27: (g, v)← Φ(i).
28: if (g = e and v ∈ {a(f), b(f)}) or (g = f and v ∈ {a(e), b(e)}) then
29: re,f (i)← F(χe,f)
30: else
31: re,f (i)← F(0)
32: end if
33: end for
34: if σe,f=1 then
35: re,f (N + 1)← F(χe,f)
36: else
37: re,f (N + 1)← F(0)
38: end if
39: end for
40: Execute SOLVABLE(re,f : (e, f) ∈ Kind

2).
41: if SOLVABLE returns true then
42: Output ”The union graph is planar”.
43: else
44: Output ”The union graph is non-planar”.
45: end if

31

4.5 A second algorithm for private HT testing

Our second algorithm for testing graph planarity using HT theorem is given in Protocol 12. It
has a significantly reduced computational complexity compared to algorithm in Protocol 11, as we
proceed to explain. The idea behind this variant of the algorithm is to reduce the HT linear system
of equations only to those equations corresponding to pairs of edges in Eind2 (see Eq. (2)) before
verifying its solvability. Specifically, this is done by sending the whole full encrypted matrix (that
contain an equation for every pair of edges in Kind

2) to T , along with the information needed to
determine the subset of relevant edge pairs from Eind2 , and to do that in an oblivious manner.

The protocol begins in Step 1 by generating an homomorphic encryption function, in similarity
to Step 2 in Protocol 11. Next, in Step 2, P1 and P2 agree on a permutation π over Kind

2 ; that
permutation will be used in order to hide from T the exact order of the rows that it will receive and
prevent from it from inferring which specific rows it will eliminate later (in Step 23). In Step 3,
P1 and P2 generate a bijection Φ, in similarity to the one defined in Step 25 in Protocol 11; that
bijection determines the order of columns (variable) in the linear system of equations.

In the next loop (Steps 4-18), P1 and P2 construct an entry-wise F-encryption of the linear equa-
tion corresponding to each edge-pair in Kind

2 ; in addition they generate for each such pair random
additive shares in a flag that determines whether that edge-pair is in Eind2 or not. Specifically, they
generate in Step 5 a row vector for each potential equation (i.e., an edge-pair in Kind

2) and then fill
its entries with the entry-wise F-encrypted values: the coefficients are treated in Steps 6-13, while
the right hand side is treated in Steps 14-15. At this stage, P1 and P2 has an F-encryption of the
full linear system over Kind

2 . In order to enable the identification of the relevant subset of equations
corresponding to edge-pairs in Eind2 , P1 and P2 proceed to jointly compute random additive shares
in the expression ξe,f = (α1

e +α2
e) · (α1

f +α2
f) (Step 16). The computation is done by invoking the

BGW protocol (Section 3.5). Because the value ξe,f can be any value in {0, 1, 2, 4}, it is sufficient
to do the computation over a field of size at least 5. The value ξe,f contains “too much” information;
we only care whether ξe,f = 0 or ξe,f 6= 0. Revealing the exact value of a non-zero ξe,f may reveal
to T excessive information on the overlapping between the two private graphs. Hence, in order to
eliminate that excessive information, P1 and P2 multiply their shares with some nonzero random
multiplier (Step 17), in similarity to Step 9 in Protocol 11.

Then, in Steps 19-20, T gets from P1 and P2 the full encrypted matrix of |Kind
2 | equations and

the shared values of the randomly multiplied ξe,f for all {e, f} ∈ Kind
2 .

In Steps 21-24, T combines the shares that it received from P1 and P2 in order to see which rows
correspond to relevant edge pairs in Eind2 . Subsequently, T holds an entry-wise F-encryption of
the relevant |Eind2 | equations. Finally, Steps 26-31 are the equivalent of Steps 40-45 in Protocol 11:
in those steps the players test whether the linear system has a solution and consequently find out
whether the union graph is planar.

4.6 Testing the solvability of an encrypted system of linear equations

Here we describe two possible implementations of the sub-protocol SOLVABLE, which is
invoked by Protocols 11 and 12. That sub-protocol receives a system of linear equations over
N =

(
n
2

)
· (n − 2) unknowns (which are {xg,v : g ∈ EKV

, v ∈ V \ {a(g), b(g)}}). The num-
ber of equations, which we denote below by Ne, is Ne = NKV

, in the case of Protocol 11, and
Ne = |Eind2 | in the case of Protocol 12. We let M denote the Ne × N matrix of coefficients, b
denote the right hand side vector, and M ′ = (M,b) be the corresponding augmented matrix. There
are two players in the sub-protocol SOLVABLE: T and P1. T holds an encryption F(M ′), where

32

Protocol 12 Privacy preserving HT planarity testing
1: P1 and P2 generate a probabilistic public key encryption function F which is additively homomorphic

over F2k and send to T the public encryption key.
2: P1 and P2 secretly agree on a random permutation π over Kind

2 .
3: Letting N :=

(
n
2

)
· (n − 2), P1 and P2 create a bijection Φ : [N] → {(g, v) : g ∈ EKV

, v ∈ V \
{a(g), b(g)}}.

4: for all (e, f) ∈ Kind
2 do

5: P1 and P2 allocate a vector re,f of dimension N + 1.
6: for i ∈ [N] do
7: (g, v)← Φ(i).
8: if (g = e and v ∈ {a(f), b(f)}) or (g = f and v ∈ {a(e), b(e)}) then
9: re,f (i)← F(1)

10: else
11: re,f (i)← F(0)
12: end if
13: end for

14: if e = ei,j , f = ek,`, i < j, k < ` and i < k, then σe,f ←

{
1 k < j < `

0 otherwise
15: re,f (N + 1)← F(σe,f)
16: P1 and P2 invoke the BGW protocol in order to compute additive shares s1e,f , s2e,f in the expression

ξe,f = (α1
e + α2

e) · (α1
f + α2

f) over some field Fq where q is a prime ≥ 5.
17: P1 and P2 generate a secret random ρe,f ∈ F∗q and then update she,f ← she,f · ρe,f , h = 1, 2.
18: end for
19: P1 sends to T the matrix (re,f : (e, f) ∈ Kind

2).
20: Ph, h = 1, 2, sends to T the vector (she,f : (e, f) ∈ Kind

2).
21: for all (e, f) ∈ Kind

2 do
22: if s1e,f + s2e,f = 0 then
23: T discards the row vector re,f from the matrix (re,f : (e, f) ∈ Kind

2).
24: end if
25: end for
26: Execute SOLVABLE(re,f : (e, f) ∈ Eind2).
27: if SOLVABLE returns true then
28: Output ”The union graph is planar”.
29: else
30: Output ”The union graph is non-planar”.
31: end if

F is a probabilistic additively homomorphic encryption over some binary field F2k . In the first im-
plementation, SOLVABLE1 (described in Sub-Protocol 13), the field is F2k for some sufficiently
large k. In the second implementation, SOLVABLE2 (Sub-Protocol 14), the field is F2. The private
decryption key of F is held by P1. The goal is to determine whether the system M ′ = (M,b) has
a solution.

33

4.6.1 Solvable : version 1

Sub-Protocol 13 SOLVABLE1

Input: T has F(M ′); P1 has the private decryption key of F .
Output: A bit indicating whether the linear system of equations M ′ is solvable.

1: T , with the help of P1, computes F(rank1)← ComputeRank(M ′).
2: T , with the help of P1, computes F(rank2)← ComputeRank(M).
3: T computes F(δ) := F(rank1) · F(rank2)−1 = F(rank1 − rank2) and sends it to P1.
4: P1 decrypts and recovers δ.
5: if δ = 0 then
6: return true
7: else
8: return false
9: end if

In Steps 1-2 of Sub-Protocol 13, T , the mediator, computes the F-encrypted rank of the aug-
mented matrixM ′ and the matrix of coefficientsM , using Protocol 9, which we described in Section
3.7.

Next, in Step 3, using the homomorphic property of the encryption F , T computes the encrypted
value of the difference between the two ranks and sends it to P1, who decrypts it in Step 4. By
Rouché-Capelli theorem, the system represented in M ′ (namely, Mx = b) is solvable if and only
if the rank of M equals that of M ′, or equivalently, if and only if δ = 0. Hence, P1 outputs true or
false accordingly (Steps 5-9).

4.6.2 Solvable : version 2

Sub-Protocol 14 SOLVABLE2

Input: T has F(M ′); P1 has the private decryption key of F .
Output: A bit indicating whether the linear system of equations M ′ is solvable.

1: T invokes Protocol 7 with inputs F(M), F(b) and gets F(flag).
2: T sends to P1 the value F(flag).
3: P1 decrypts and recovers flag.
4: if flag = 1 then
5: return true
6: else
7: return false
8: end if

In Sub-Protocol 14 we rely upon the procedure that was given in [35] (and we described here in
Section 3.6) that enables performing oblivious Gaussian elimination over a system of linear equa-
tions that is encrypted by an additively homomorphic encryption over F2.

Sub-Protocol 14 starts with T invoking Protocol 7 on the encrypted coefficient matrix M , con-
catenate with the encrypted parity vector b (Step 1). The output that it received is the encryption
of the variable flag. This variable determines (with high probability) whether the system of equa-
tions is solvable. Because T does not has the decryption key, in Step 2 it sends the value to P1,
who decrypts it (Step 3). Then, in Steps 4-8, P1 returns whether the augmented matrix is solvable
according to the value of flag.

34

4.7 Privacy analysis

4.7.1 Protocol 11

The potential leakages of information to any player is due to messages that it receives from other
players. We proceed to analyze below what each player may deduce from the messages that it
receives during the algorithm.

In Steps 3-5, T receives from each of P1 and P2, their indicator variables under the encryption
E . Assuming that the subgroup decision problem [9] is hard, then breaking E is hard. Therefore,
under that assumption, T cannot decrypt the messages that it receives in this stage, nor learn any
information on the underlying plaintexts. Furthermore, as the encryption function E is probabilistic,
given E(x) and E(y), it is hard to decide whether x = y or x 6= y. Hence, as T expects to receive
from each player a vector of length

(
n
2

)
, T does not learn from this step any information on the

private graphs of P1 and P2.
In Step 12, P1 gets the vector w′. Owing to the random and secret permutation applied by T , P1

does not know the pair of edges (e, f) that correspond to each entry. It only knows for each entry
in that vector whether χe,f = 0 or χe,f = 1. Due to the multiplication by the random multiplier
ρe,f ∈ F∗ν , P1 does not learn any information on ξe,f beyond what is implied by χe,f . Namely, if
χe,f = 1 then P1 may infer that ξe,f ∈ {1, 2, 4} but nothing further.

We see that P1 may infer from w′ the size of Eind2 (which is the number of nonzero entries in
w′). Note that the size of Eind2 does not determine the size of E, but it may be used to infer a lower
bound on |E| and hence a lower bound on |E2|. If such information leakage is considered sensitive,
we may mitigate it by having T adding to the vector w, at random positions, entries of the form
E1(0) or E1(1) at random (where each encryption is computed from fresh). While T can remove
those entries from the vector ŵ that it receives back in Step 6, such random noise obfuscates the
value of |Eind2 | from P1. Another possibility is to split this computation between P1 and P2. Or of
course to combine the two suggestions.

In Step 21, T receives a vector which is encrypted under F . Assuming that F is a secure cipher,
T does not learn any information here either.

In Step 40, we rely upon the security of the algorithms in [35] and [28].

4.7.2 Protocol 12

We analyze the privacy leakage during executing, by examining the messages that each player re-
ceives during the algorithm.

The first time that P1 and P2 share values happens in Steps 16-17, where the players involve in
invoking the BGW protocol to compute shares of the equation in ξe,f = (α1

e + α2
e) · (α1

f + α2
f).

Since the BGW protocol is secure, the players does not learn about each other edges.
In Step 19, T receives from P1, the encrypted matrix (re,f : (e, f) ∈ Kind

2). Relying on the
security of the encryption scheme of F and because T does not holds the private key of this scheme,
it will not learn anything from the encrypted elements. In addition, since |V | is publicly known, T
might not deduce any new information from the size of the matrix it receives (i.e Kind

2).
Next, in Step 20, the information that T receives when it combines the shares (she,f : (e, f) ∈

Kind
2), h ∈ {1, 2}, is only whether (e, f) ∈ Eind2 , hence it may deduce the number of independent

edges in E. That is without knowing them explicitly, nor the structure of the union graph owning
the secret permutation π of the rows applied by P1. If the latter is consider undesired leakage, P1

can sends a random number of bogus zeros rows that their shares equals that 1. This way, those rows

35

may blur the exact number of independents edges while keeping the solvability of the new matrix
the same as (re,f : (e, f) ∈ Eind2). Note that due the multiplication with ρhe,f , h ∈ {1, 2}, T will
not be able to distinguish in the case whether just one player holds the independent edges or both.

Finally, the privacy of executing SOLV ABLE routine relies upon the security of the algorithms
in [35] and [28].

4.8 Computational and communication costs

We analyze below the computational and communication costs of the suggested algorithms.
Herein, if f is any operation, we let [f] denote its cost. We use it for the cryptographic opera-
tions, E , E−1, E1, E−11 ,F ,F−1, for multiplications in G and G1, denoted [Mul], and for pairing
computations, denoted [e]. As for the communication costs, we will denote them (in steps where
there are such) by [nR, nM , nB] where nR is the number of communication rounds, nM is the
number of messages sent, and nB is the overall size of those messages in bits.

4.8.1 Protocol 11

1. Step 1-2: Negligible costs.

2. Steps 3-5:
(
n
2

)
[E] for each of P1 and P2. Communication costs: [1, 2, n(n− 1) log ν].

3. Step 7: For each {e, f} ∈ Kind
2 , T has to perform two multiplications in G (for the two

addition operations) and one pairing computation (for the single multiplication). Hence, the
total computational cost for T is NKV

· (2[Mul] + [e]). (No need to multiply by the random
exponent of h, it is not essential.)

4. Steps 8-10: T performs here NKV
exponentiations in G1 and NKV

operations for computing
the parity vector, the overall cost is NKV

(log ν[Mul] + 1).

5. Step 12: Communication costs: [1, 1, NKV
log ν].

6. Steps 13-20: NKV
[E−11] plus NKV

[F] for P1.

7. Step 21: Communication costs: [1, 1, NKV
logµ], where µ is the modulus of the F encryp-

tion.

8. Step 22: Negligible costs.

9. Steps 23-39: [N − 3] ·NKV
· [F] for T .

10. Step 40: We focus here on the case where the two players invoke Solvable2. The two
players invoke that sub-protocol on a matrix of size ka =

(
n
2

)
· (n − 2) = O(n3) over

kb = NKV
= O(n4), which costs: Õ(n12 · ([Mul] + [F] + [Inv])). The communication

costs: [Õ(n0.825), Õ(n0.825), Õ(n7 · log(µ))].

11. Steps 41-45: Negligible costs.

36

4.8.2 Protocol 12

1. Step 1-3: Negligible costs.

2. Steps 6-13: P1 performs (N · |Kind
2 |) · [F] = O(n7 · [F]) operations.

3. Step 14-15: P1 performs |Kind
2 | · [F] = O(n4 · [F]) operations.

4. Steps 16-17: P1 and P2 perform |Kind
2 | = O(n4) operations.

5. Step 19: Communication costs : [1, 1, O(n7)].

6. Step 20: Communication costs : [1, 2, O(n4)].

7. Step 21-25: T performs |Kind
2 | = O(n4) operations.

8. Step 26: T and P1 invoke Solvable2 sub-protocol on a matrix of size kb =
(
n
2

)
· (n −

2) = O(n3) over ka = |Eind2 | = O(n2), which costs Õ(n8 · ([Mul] + [F] + [Inv])). The
communication costs: [Õ(n0.55), Õ(n0.55), Õ(n5 · log(µ))].

9. Steps 27-31: Negligible costs.

37

5 Further results - Graph coloring and outer-planarity testing

Herein we present further results that benefit from the protocols that were proposed in the previ-
ous section. In Section 5.1 we describe an algorithm that tests the 3-colorability of a graph that is
shared by two players and that was already found to be planar (using the algorithms of Section 4).
Afterwards, in Section 5.2 we show how to test in a privacy preserving manner whether a distributed
graph is outer-planar.

5.1 An algorithm for testing 3-colorability of planar graphs

Algorithm 15 is based on Grötzsch’s theorem [45] which states that every planar triangle–free
graph is 3-colorable6. Note that the triangle-free property alone, without the planarity property,
does not assure that the graph is 3-colorable as is demonstrated by the so-called Grötzsch’s Graph,
see Figure 3.

Assume the same setting as was considered in Section 4, where two players P1 and P2 share a
graph, and let us assume that the two players had already found that the union graph is planar. They
wish to proceed and check the 3-colorability of that graph, while still preserving privacy. To that
end they invoke the BGW protocol which was described in Section 3.5 and rely on Corollary 5.2
that derives from Lemma 5.1.

Lemma 5.1. Let G = (V,E) be a graph and let A be its adjacency matrix. Then for any k ≥ 1 and
vertices u, v ∈ V , the entry Ak(u, v) equals the number of paths from u to v.

Proof. The proof is by induction on k. The case of k = 1 is trivial. Let us assume that the lemma
holds for k and we will prove it for k+1. Consider any path of length k+1 from u to v. Then there
must be a vertex w that is adjacent to v. By induction, the number of paths from u to w of length
k is given in Ak(u,w). Now, the value of each entry A(w, v) indicates the existence of the edge
(w, v). Thus, Ak(u,w)A(w, v) gives the number of paths of length k + 1 from u to v, in which
the one before the last vertex is w. By summing over all possible w, we get that Ak+1(u, v) is the
overall number of paths of length k + 1 from u to v. As that term is the (u, v) entry in Ak · A, the
claim follows.

Corollary 5.2. A graph is triangle-free iff all the diagonal entries in A3 are zero.

Proof. A graph is triangle-free iff it includes no cycles of length 3, that is, no paths of length 3 from
a vertex to itself. Hence, the corollary follows from Lemma 5.1.

Figure 3: Grötzsch’s graph. An example of triangle-free graph which is not planar and has chromatic
number: 4.

6Triangle-free graph is a graph that does not contain any cycle of length 3.

38

Let Gh = (V,Eh) be the private graph of player Ph, where Eh can be described by an adjacency
matrix Ah : V 2 → {0, 1}, h ∈ {1, 2}. The entries in Ah that corresponds to a pair of vertices (u, v)
is 1 if and only if Eh has an edge between u and v. Those private graphs Gh induce the unified
matrix G = (V,E) for E = E1 ∪ E2.

Assume z is any integer that the players Ph share between themselves, then [z] denotes the set of
all h shares that sum to z and [z]h denotes Ph’s share, for h ∈ {0, 1}.

Note that because the graph is undirected, the adjacency matrix is symmetric i.e,Ah = ATh . Thus,
we can reduce the number of computation only for the elements that are above the main diagonal,
i.e. for the entries’ indexes 1 ≤ i ≤ j ≤ n.

The algorithm begins when the players choosing a field Fp to be larger than the maximum value
that appear in [A3] which is n2, and greater than the sum of the diagonal entries which is equal to the
maximal value of triangles in a a planar graphs, that according to [23] is ≤ 3n− 8. This restriction
is necessary in order to enable us to use BGW for the computation that we explain subsequently. In
Step 2 the players create and share with each other their own adjacency matrix entries. Then, in Step
3 they compute the shared value of matrix entry [ai,j]h where ai,j = (α1

ei,j + α2
ei,j − α

1
ei,j · α

2
ei,j)

and 1 ≤ i ≤ j ≤ n using BGW over the field Fp (see Eq. 10).
Next, via the BGW protocol the players compute their shared values of the entries of [A3]h,

by performing the computation of [bi,j]h =
∑k=n

k=1 [aik]h[akj]h for all 1 ≤ i ≤ j ≤ n, then they
continue and compute [ci,i]h =

∑k=n
k=1 [bik]h[akj]h for all 1 ≤ i ≤ n, where the values are over the

field Fp (Steps 4-5).
Then, in Steps 6-7 they compute the sum of those shared values in the main diagonal, [s]h =∑i=n
i=1 [ci,i]h, multiply it with a random non-zero term q ∈ F∗p to prevent from T to reveal any

information beside whether the trace is zero or not. Then, they send the the value, q · [s]h, to T .
Finally, in Steps 8-9 T combines the shared values and conclude that the graph is triangle free iff
the latter sum equals to zero.

Complexity. The bulk of the computational and communication costs of Protocol 15 is due to the
BGW sub-protocol that happens in Steps 2-5. In that sub-protocol, the two players need to compute
at most

(
n
2

)
+ n2(n+ 1) multiplication gates and (n− 1)[n(n+ 2) + 1] addition gates.

Privacy. Derived from the information–theoretic security of the BGW protocol there is no a
privacy concern. The only value that is revealed during the protocol is the value in the final step as
excepted.

Protocol 15 Privacy-preserving testing of the triangle-freeness of a distributed graph
Input: Each Ph holds its adjacency matrix Ah of its own graph Gh = (V,Eh), h ∈ {1, 2}.
Output: A bit that indicates whether G = (V,E), E = E1 ∪ E2, is triangle-free.

1: P1 and P2 choose a finite field Fp where p > n2.
2: Each Ph creates two shares in each entry in its own adjacency matrix Ah and sends to P3−h its shares,
h = 1, 2.

3: The two players invoke the BGW protocol to compute shares in each of the entries in the adjacency
matrix A = A1

∨
A2.

4: The two players invoke the BGW protocol to compute shares in each of the entries in A2.
5: The two players invoke the BGW protocol to compute shares in each of the entries on the diagonal of
A3.

6: P1 and P2 agree on a random nonzero term q ∈ F∗p.
7: Ph computes the sum [s]h of its own shares in the diagonal entries of A3 and sends to T the value q · sh,
h = 1, 2.

8: T recovers from q[s]1 and q[s]2 the value qs, where s is the trace of A3.
9: T outputs ”The graph is triangle-free” if qs 6= 0 and ”The graph has triangles” otherwise.

39

To summarize, by applying first the protocols of Section 4 and then, if the unified graph G was
found to be planar, proceeding to apply Protocol 15, it is possible to test, in a privacy-preserving
manner and in polynomial time, whether G is 3-colorable or not. We mention that testing 3-
colorability of general graphs is an NP-complete problem [13, 6].

5.2 Algorithm for testing whether a graph is outer-planar

An outer-planar graph is a graph that has a planar drawing for which all the vertices belong to
the outer face of the drawing. Leveraging the protocols that we presented in Sections 4.4, 4.5, we
will show how to build a privacy preserving algorithm that can test whether a graph is an outer-
planar. In [16] it states that a graph G is an outer-planar iff the graph formed from G by adding a
new vertex and edges connecting it to all the other vertices is a planar graph. Thus, we can test the
outer-planarity property via a reduction to the problem of planarity testing that we already solved,
as we proceed to describe.

Protocol 16 begins with P1 and P2 who agree on an extra vertex vn+1 /∈ V (Step 1). Then, in
Step 2 P1 adds an edge between all the vertices in V and vn+1. Next, as we already explained above,
in Steps 3-8 the players execute Protocol 117 to test if the modified graph is planar and output the
result corresponding to that answer.

It is easy to see that the computational complexity and the correctness of this algorithm is similar
to Protocol 11.

Protocol 16 Privacy preserving outer-planarity testing
1: P1 and P2 agree on an extra vertex vn+1 /∈ V , and map it to a point outside of the unit circle.
2: P1 computes E1 ← E1 ∪ {(v1, vn+1), . . . , (vn, vn+1)}
3: T , P1 and P2 invoke Protocol 11 on their inputs.
4: if Protocol 11 returns ”The union graph is planar” then
5: Output ”The union graph is outer-planar”.
6: else
7: Output ”The union graph is not outer-planar”.
8: end if

7Protocol 12 is also appropriate, we use Protocol 12 for the sake of convenience.

40

6 Conclusion

In this thesis we introduced the problem of privacy-preserving planarity testing of distributed
graph. Our main contribution in this thesis are two algorithms for solving that problem. The two al-
gorithms follow two different approaches that are based on the Hanani–Tutte Theorem. In addition,
we showed how our algorithms can be leveraged in order to reduce the complexity of computing
various privacy preserving algorithms that are based on the fact that the graph is planar, such as test-
ing 3-colorability of planar graphs, or testing whether a given graph is outer-planar. The proposed
algorithms are privacy-preserving in the sense that they protect the private edge sets of each of the
players.

The work is based on theoretical cryptographic primitives such as homomorphic encryption,
oblivious transfer, Yao’s garbled circuits and Yao’s millionaires’ protocol, along with more compli-
cated protocols like oblivious Gaussian elimination and rank computation of an encrypted matrix.

This study raises the following two problems for future research:

• To devise an improvement in terms of computation complexity of our planarity testing algo-
rithms in order to render them efficient for larger graphs. This can be done by improving
our approach using Hanani–Tutte Theorem with more efficient ways to test the solvability
of the HT system equations, or to design a privacy preserving version of a planarity testing
algorithm that is based on another approach.

• To devise privacy-preserving algorithms for solving graph problems, which are more efficient
to planar graphs than they are for general graph. Examples of such problems are: the sub-
graph isomorphism problem or the maximal clique problem.

41

References

[1] Joël Alwen, Abhi Shelat, and Ivan Visconti. Collusion-free protocols in the mediated model. In
Advances in Cryptology - CRYPTO, 28th Annual International Cryptology Conference, pages
497–514, 2008.

[2] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Mathieu Van Vyve.
Securely solving simple combinatorial graph problems. In Financial Cryptography and Data
Security - 17th International Conference, pages 239–257, 2013.

[3] Gilad Asharov, Francesco Bonchi, David Garcı́a-Soriano, and Tamir Tassa. Secure centrality
computation over multiple networks. In Proceedings of the 26th International Conference on
World Wide Web, pages 957–966, 2017.

[4] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly-secure
multiparty computation. Journal of Cryptology, 30(1):58–151, 2017.

[5] Baruch Awerbuch and Yossi Shiloach. New connectivity and msf algorithms for shuffle-
exchange network and pram. IEEE Transactions on Computers, 36(10):1258–1263, 1987.

[6] Richard Beigel and David Eppstein. 3-coloring in time o(1.3289n). Journal of Algorithms,
54(2):168–204, 2005.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 1–10, 1988.

[8] Richard E. Blahut. Algebraic codes for data transmission. Cambridge University Press, 2003.

[9] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In
Theory of Cryptography, Second Theory of Cryptography Conference, pages 325–341, 2005.

[10] Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. Fast parallel matrix and GCD
computations. In 23rd Annual Symposium on Foundations of Computer Science, pages 65–71,
1982.

[11] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified o(n) planarity by edge
addition. Journal of Graph Algorithms and Applications (JGAA), 8(2):241–273, 2004.

[12] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest
model. In Advances in Cryptology - ASIACRYPT, 11th International Conference on the Theory
and Application of Cryptology and Information Security, pages 236–252, 2005.

[13] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are
np-complete. Discrete Mathematics, 30(3):289–293, 1980.

[14] Jean-Louis Dornstetter. On the equivalence between berlekamp’s and euclid’s algorithms.
IEEE Transactions on Information Theory, 33(3):428–431, 1987.

[15] David Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of
Graph Algorithms and Applications (JGAA), 3(3):1–27, 1999.

42

[16] Stefan Felsner. Geometric graphs and arrangements: Some chapters from combinatorial ge-
ometry. Combinatorics, Probability & Computing, 15(6):941–942, 2006.

[17] Matthew K. Franklin and Payman Mohassel. Efficient and secure evaluation of multivariate
polynomials and applications. In Applied Cryptography and Network Security, 8th Interna-
tional Conference (ACNS), pages 236–254, 2010.

[18] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In Proceedings of the Seventeenth
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 101–111,
1998.

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, pages 218–229, 1987.

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, pages 365–377, 1982.

[21] Tal Grinshpoun and Tamir Tassa. P-syncbb: A privacy preserving branch and bound DCOP
algorithm. Journal of Artificial Intelligence Research (JAIR), 57:621–660, 2016.

[22] Frank Hadlock. Finding a maximum cut of a planar graph in polynomial time. The SIAM
Journal on Computing, 4(3):221–225, 1975.

[23] Seifollah L. Hakimi and Edward F. Schmeichel. On the number of cycles of length k in a
maximal planar graph. Journal of Graph Theory, 3(1):69–86, 1979.

[24] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of the ACM (JACM),
21(4):549–568, 1974.

[25] Tamás Horváth, Jan Ramon, and Stefan Wrobel. Frequent subgraph mining in outerplanar
graphs. Data Mining and Knowledge Discovery, 21(3):472–508, 2010.

[26] Erich Kaltofen and David Saunders. On wiedemann’s method of solving sparse linear systems.
In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 9th International Sym-
posium, pages 29–38, 1991.

[27] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In Advances in
Cryptology - ASIACRYPT - 20th International Conference on the Theory and Application of
Cryptology and Information Security, pages 506–525, 2014.

[28] Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew K. Franklin. Secure linear algebra
using linearly recurrent sequences. In Theory of Cryptography, 4th Theory of Cryptography
Conference (TCC), pages 291–310, 2007.

[29] Kazimierz Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15:271–283, 1930.

43

[30] Peeter Laud. Parallel oblivious array access for secure multiparty computation and privacy-
preserving minimum spanning trees. Proceedings on Privacy Enhancing Technologies,
2015(2):188–205, 2015.

[31] Josef Leydold and Peter F. Stadler. Minimal cycle bases of outerplanar graphs. The Electronic
Journal of Combinatorics, 5(16):1–14, 1998.

[32] Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’ problem
based on homomorphic encryption. In Applied Cryptography and Network Security, Third
International Conference (ACNS), pages 456–466, 2005.

[33] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party com-
putation. Journal of Cryptology, 22(2):161–188, 2009.

[34] Dana Moshkovitz. An alternative proof of the schwartz-zippel lemma. Electronic Colloquium
on Computational Complexity (ECCC), 17:96, 2010.

[35] Kobbi Nissim and Enav Weinreb. Communication efficient secure linear algebra. In Theory
of Cryptography, Third Theory of Cryptography Conference (TCC), pages 522–541, 2006.

[36] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in Cryptology - EUROCRYPT, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, pages 223–238, 1999.

[37] Christos H. Papadimitriou and Mihalis Yannakakis. The clique problem for planar graphs.
Information Processing Letters, 13(4/5):131–133, 1981.

[38] Maurizio Patrignani. Handbook on graph drawing and visualization. chapter Planarity Testing
and Embedding, pages 1–42. CRC Press, 2013.

[39] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal
of Graph Algorithms and Applications, 17(4):367–440, 2013.

[40] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Jour-
nal of the ACM (JACM), 27(4):701–717, 1980.

[41] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[42] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra (2. edition). Cam-
bridge University Press, 2003.

[43] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114:570–590, 1937.

[44] Andrew C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual Sym-
posium on Foundations of Computer Science, pages 160–164, 1982.

[45] Dvořák Zdeněk, Kawarabayashi Ken-Ichi, and Thomas Robin. Three-coloring triangle-free
planar graphs in linear time. The ACM Transactions on Algorithms (TALG), 7(4):41:1–41:14,
2011.

[46] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, EUROSAM, An International Symposiumon Symbolic and Algebraic Computa-
tion, pages 216–226, 1979.

44

הפתוחה האוניברסיטה
המחשב ולמדעי למתמטיקה המחלקה

גרפים של מישוריות של משמרת־פרטיות בדיקה
מבוזרים

תואר לקבלת מהדרישות כחלק הוגשה זו תזה עבודת
המחשב במדעי M.Sc. למדעים" "מוסמך

הפתוחה באוניברסיטה
המחשב למדעי החטיבה

על־ידי
ברשפ גיא

טסה תמיר פרופ' של בהדרכתו הוכנה העבודה
2017 אוקטובר

תודות.
מספר של תמיכתם בזכות והתאפשרה ומאתגרת, ממושכת מטלה עבורי הייתה התיזה עבודת הכנת
טסה. תמיר פרופ' שלי, למנחה כנה הערכה להביע רוצה אני ובראשונה, בראש להם. להודות שברצוני אנשים
המרובה, וזמינותו השקעתו שלי. הראשון האקדמי המאמר את לכתוב כיצד בשקדנות אותי לימד תמיר
שספגתי המחקריות והיכולות הגישה על מודה אני המחשב. במדעי המאסטר תואר את להשלים לי סייעו
מוגמר תוצר להעמדת מתפשרת והבלתי הסבלנית והכוונתו הקודמים ממאמריו ששאבתי הרעיונות ממנו,
הדרך כל לאורך בי האמינו אשר למשפחתי גם להודות ברצוני בנוסף, מאוד. בו גאה שאני גבוהה, באיכות
עודד אשר לאבי במיוחד הזה. התובעני הפרוייקט הכנת במהלך לו נדרש שהייתי המרחב את לי ונתנו
וחביבה אחרונה תודה נגמרת. הבלתי וההשקעה התמיכה על ואמי אלון, הקטן אחי במחקר, לעסוק אותי
הבנה וגילתה התיזה, בכתיבת הארוך המסע מתחילת אותי ליוותה אשר זוגתי, בת שוורץ, לטליה מוקדשת

ואהבה. חיבה רגשות הפגנת תוך רבה

תקציר

בין המבוזרים גרפים של מישוריות של לבדיקה פרטיות משמרי אלגוריתמים נציג זאת בעבודה
הקשתות הוא החישוב במהלך לשמר רוצים אנו אשר שחקן כל של הפרטי המידע שחקנים. מספר
בעבודה שיוצגו הפרטיות משמרי האלגוריתמים לכולם. ידועים הגרף שצמתי בעוד שלו, לגרף השייכות
מסוימת מערכת אם ורק אם מישורי הוא נתון שגרף המראה Hannani־Tutte משפט על מבוססים זו
פתרון קיום לבדיקת בטכניקות משתמשים האלגוריתמים פתירה. היא F2 מעל לינאריות משוואות של
דירוג לחישוב באלגוריתם שימוש עושים אנו בפרט, .F2 מעל מוצפנות לינאריות משוואות למערכות
הראשונה הפעם זו מוצפנת. מטריצה של הדרגה לחישוב ובאלגוריתם מוצפנות מטריצות של גאוס

נחקרת. מבוזרים גרפים של מישוריות של הפרטיות משמרת הבדיקה שבעיית

עניינים תוכן
1 . הקדמה 1
3 . מישוריות בדיקת רקע: 2
5 . קריפטוגרפיים ופרוטוקולים כלים רקע: 3
5 . הומומורפית הצפנה 3.1
7 . עלומה העברה 3.2
8 . Yao של המיליונרים בעיית 3.3
11 . Yao של המעורבל המעגל פרוטוקול 3.4
13 . BGW פרוטוקול 3.5
14 מוצפנת ליניאריות משוואות מערכת פתירות של עלומה בדיקה 3.6
14 ריבועית מטריצה של עלום מטריצות דירוג 3.6.1
17 ריבועית שאינה מטריצה של עלום מטריצות דירוג 3.6.2
18 לינאריות משוואות מערכת פתירות של עלומה בדיקה 3.6.3
20 . מוצפנת מטריצה של דרגה חישוב 3.7
20 . הקדמות 3.7.1
21 המינימאלי הפולינום של עלום חישוב 3.7.2
23 מוצפנת מטריצה של דרגה חישוב 3.7.3
25 . משמר־פרטיות באופן מישוריות בדיקת 4
25 . הבעיה הגדרת 4.1
25 . המוצעים הפתרונות של סקירה 4.2
25 הקשתות איחוד קבוצת של גודל בדיקת ראשון־ שלב 4.2.1

Hanani־Tutte משפט על המבוסס אלגוריתם מימוש שני־ שלב 4.2.2
25 . משמר־פרטיות באופן
26 הקשתות איחוד קבוצת של גודל בדיקת ראשון: שלב 4.3
28 HT משפט על המבוסס משמר־פרטיות ראשון אלגוריתם 4.4
32 HT משפט על המבוסס משמר־פרטיות שני אלגוריתם 4.5
32 מוצפנת לינאריות משוואות מערכת פתירות של בדיקה 4.6
34 1 גרסה : Solvable תת־פרוטוקול 4.6.1
34 2 גרסה : Solvable תת־פרוטוקול 4.6.2
35 . פרטיות ניתוח 4.7
35 . 11 פרוטוקול 4.7.1
35 . 12 פרוטוקול 4.7.2
36 . ותקשורת ריצה זמן סיבוכיות ניתוח 4.8
36 . 11 פרוטוקול 4.8.1
37 . 12 פרוטוקול 4.8.2
38 חוץ־מישוריות ותכונת גרף של צביעה בדיקת ־ נוספות תוצאות 5
38 3־צביע הוא מישורי גרף האם לבדיקה אלגוריתם 5.1
40 חוץ־מישורי הוא גרף האם לבדיקה אלגוריתם 5.2
41 . סיכום 6

