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Chapter 1

Abstract

We study the Index Coding problem with side information graphs which are k - outerplanar. For general side
information graphs, solving the Index Coding problem implies a solution to the general (non-multicast) Network
Coding problem — a central open problem in the field of network communication. For outerplanar side information
graphs, we show that the Index Coding problem can be solved efficiently, and characterize its solution in terms of
the clique cover size of the information graph at hand. The clique cover problem on planar graphs is known to be
NP-complete. For k − outerplanar graphs we show that the clique cover problem can be solved efficiently.

Part of this thesis also appeared as: Y. Berliner and M. Langberg, Index coding with outerplanar side information.
In proceedings of IEEE International Symposium on Information Theory (ISIT), 2011, 869-873.
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Chapter 2

Introduction

The Index Coding problem is a fundamental non-multicast network coding problem. The problem has a very clean
and elegant structure yet it captures many important aspects of the more general network coding problem. The
Index Coding problem was introduced by Birk and Kol [4] in the context of data dissemination to clients with local
caches. An instance of the Index Coding problem includes a sender node r, a set C = {c1, . . . , cn} of wireless
clients and a set P = {p1, p2, . . . , pn} of n independent messages that belong to some alphabet Σ. The message
pi needs to be delivered to client ci. Each client ci is assumed to hold certain side information Γi ⊆ P . It is
common to specify the side information by a graph G = (V,E) with vertex set V = {1, . . . , n} in which vertex i
corresponds to client ci and edge (i, j) ∈ E iff j ∈ Γi.

In each round of communication the sender can transmit a single symbol of Σ (i.e., a single message). We
assume that all symbols transmitted by the sender are received by all clients without error. The j’th round of com-
munication is specified by an encoding function gj : Σn → Σ. The objective is to find a set of encoding functions
Φ = {gi}`i=1 that will allow client ci to decode the messages pi it requires while minimizing the number of trans-
missions ` = |Φ|. Client ci ∈ C can decode packet pi if there exists a decoding function γi : Σ` × Σ|Γi| → Σ that
allows ci to obtain pi from the ` characters transmitted by the sender and the |Γi| characters of side information.
The minimum value of ` is defined to be the round complexity of the index coding instance at hand (in cases in
which the alphabet Σ is specified we denote the round complexity as `Σ).

In this work we focus on information graphs G which are undirected (namely i ∈ Γj iff j ∈ Γi), and on the
case in which the encoding functions are linear (or actually scalar linear by common terminology). In this case
we also take Σ to be a finite field. We note that one can extend the definition of the Index Coding problem to
directed side information graphs, to encoding functions which are not scalar linear but rather vector linear (via
time sharing) or non-linear, and to clients ci which require not a single message but multiple ones. We touch on
these extensions in the conclusion of this work.

There exist beautiful connections between combinatorial properties of the undirected side information graph
G and the optimal solution to the corresponding Index Coding problem. In [3] it is shown that the problem of
finding (scalar) linear solutions to the Index Coding problem is equivalent to the problem of minimizing the rank
of a certain matrix with “don’t care” entries. The latter problem, referred to as the MinRank problem (denoted by
MRΣ), has been investigated by Haemers and Peeters [12, 19] in which it is shown that the optimal solution value of
MRΣ(G) is “sandwiched” between the maximum sized independent set in G (denoted by α(G)) and the minimum
sized clique cover of G (denoted by CC(G)). Here, an independent set in G is a subset of vertices that do not share
any edges, a clique in G is a subset of vertices for which every pair share an edge, and a clique cover of G is a
collection of cliques in G such that every vertex in G appears in at least a single clique in the collection. Namely,
for an field Σ and an instance to the index coding problem defined by an undirected graph G, the scalar linear
round complexity `(lin)

Σ is exactly MRΣ(G) which in turn satisfies CC(G) ≥ MRΣ(G) ≥ α(G).
The authors of [3] study the Index Coding problem in the setting of (scalar) linear encoding functions. Lubetzky
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Figure 2.1: Examples of outerplanar graphs. (a) The “star” graph. (b) The “ring” graph. (c) A general outerplanar
graph. The vertices x, y and z illustrate the proof of Claim 2.2.2. (d) The outerplanar graph G presented in (c)
with its corresponding tree representation Ḡ (with dotted edges).

et al. [18] show that non-linear codes can significantly outperform linear codes for certain families of problem
instances. El Rouayheb et al. [9] and Effros et al. [?] show that any instance of the more general network
coding problem can be efficiently reduced to an instance of the Index Coding problem. This reduction implies
that efficiently finding optimal solutions for the Index coding problem implies an efficient solution to the general
(non-multicast) network coding problem — the latter being a central open problem in network communication. In
the scalar linear setting, this implies that it is NP-hard to solve the index coding problem (via the hardness results of
[15] on scalar linear network coding). Such hardness results were also shown independently in [19]. The hardness
of finding approximate solutions for the Index Coding problem has been studied in [14].

2.1 Our contribution

As it is NP-hard to efficiently find scalar linear solutions to the Index Coding problem for arbitrary side information
graphs G, in this work we address the following natural question: On which families of side information graphs
can Index Coding be solved efficiently?

Our work takes a modest step in better understanding this question. Namely, in our study, we investigate
“simple nature” side information graphs G that are so-called k - outerplanar. A graph G is said to be outerplaner,
if it has an embedding in the plane in which (a) all vertices ofG lie on the outer (unbounded) face of the embedding,
and (b) representing edges ofG by straight lines between their corresponding vertices, no two edges ofG intersect.
A graph G is said to be k-outerplanar, if it has a planar embedding satisfying (b) above in which k consecutive
removals of the outer face of the embedding result in the empty graph. Some examples of outerplanar graphs are
given in Figure 2.1.

We show that on outerplaner side informations graphs G, the Index Coding problem can be solved efficiently
and can be characterized by the clique cover number of G. The first contribution of this work can be summarized
by the following theorem.

Theorem 2.1.1. Let Σ be any finite field. The optimal scalar linear solution to the Index Coding problem over Σ
with outerplanar side information graphs G can be found efficiently (i.e., in time which is polynomial in |G|). In
this case, the scalar linear round complexity `(lin)

Σ = MRΣ(G) of the optimal scalar linear index coding solution is
equal to the clique cover size CC(G) of G.

Another natural question that motivated our work addresses the relationship between the index coding round
complexity `linΣ = MRΣ(G) and its combinatorial upper and lower bounds — the clique cover size CC(G) and the
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independent set size α(G). It is not hard to find graphs G for which `linΣ (G) is strictly greater than α(G), for
example the five cycle C5 satisfies `linΣ (C5) = 3 while α(C5) = 2. However, it is significantly more difficult to
find graphs G for which CC(G) is strictly greater than `linΣ (G).

Roughly speaking, the index coding solutions that correspond to clique covers of G are extremely simple in
nature. Specifically, for each clique C in the cover one defines an encoding function g which equals the sum
of messages pi corresponding the vertices in the clique C. Hence asking whether for a certain G it holds that
CC(G) > `linΣ (G) is equivalent to asking whether for a certain side information graph G there is an index coding
solution which is better than the trivial one. Such graphs (of rather complicated nature) are known to exist, e.g.,
[12, 19]. However, in an attempt to construct simpler families of graphsG for which CC(G) > `linΣ (G), it is natural
to ask: For which family of side information graphs G is it the case that `linΣ (G) = CC(G)? This work takes a
small step in better understanding this question.

The second contribution of this work is regarding the clique cover problem. Recall that given an undirected
graph G = (V,E), a clique cover of G of size k is a disjoint partition {V1, . . . , Vk} of V such that each Vi induces
a clique. In the clique cover problem ones objective is to find the minimum sized CC(G). A k-coloring of G, is a
disjoint partition {V1, . . . , Vk} of V such that each Vi induces an independent set. Let χ(G) denote the minimum
sized coloring of G. It holds that CC(G) = χ(Ḡ), where Ḡ = (V, Ē) is the complement of G in which e ∈ E
iff e 6∈ Ē. For any constant ε > 0, the clique cover size CC(G) is NP-hard to approximate beyond a factor of
n1−ε [20].

We address the clique cover problem when restricted to instances which are planar or, to be more precise,
k-outerplanar. The clique cover problem on planar graphs is known to be NP-complete [8, 13]. In this work we
study the clique cover problem on k-outerplanar graphs and present an algorithm that runs in time nO(k) for its
solution. The second contribution of this work can be summarized by the following theorem.

Theorem 2.1.2. Let k be any constant. The optimal solution to the clique cover problem of a k-outerplanar graph
G can be found efficiently (i.e., in time which is polynomial in |G|). Moreover, for any ε > 0, there is a (1 + ε)
approximation for the clique cover problem on planar graphs with running time nO(1/ε).

2.2 Proof techniques

It is well known that many NP-hard graph problems become easier to approximate on planar graphs. One general
technique for coping with planarity is via the vertex separators of Lipton and Tarjan [16, 17]. In this approach, given
G, one finds a subset C of vertices of size O(

√
n) whose removal separates G into two parts of approximately the

same size. Recursing on each set, until one remains with connected components of constant size 1/ε, yields a tree
of separators of total size O(

√
εn). Solving the clique cover problem on each connected component exhaustively

yields an efficient approximation within an additive error of O(
√
εn) (the separator size). As there are no cliques

of size 5 or more in planar instances, the optimal solution is at least of size n/4. This implies that the additive
approximation above yields a multiplicative approximation ratio of 1 + O(

√
ε). The total running time for ε > 0

is bounded by O(nmax(log n, 2log(1/ε)/ε)). Unfortunately, as noted in [5], the approach of [16, 17] is impractical
because of large constant factors. For example, to achieve an approximation ratio of just 2, the base case requires
exhaustive solutions of graphs of up to 22400 vertices.

Another technique widely used in the approximate solution of combinatorial problems on planar instances,
that overcomes the large constant factors involved in [16, 17], is that of Baker [2]. Baker’s approach is based
on a decomposition of the given graph into a set of disjoint k-outerplanar graphs, obtained by removing at most
n/(k + 1) vertices from G. Given such a decomposition, Baker solves the problem under study on each k-
outerplanar instance in the decomposition. Finally, to obtain a solution for G, Baker glues the solutions found on
the k outerplanar instances of the decomposition with a solution on the n/(k + 1) vertices removed. She then
argues that the final solution is a k/(k + 1) approximation for maximization problems (and similarly a (k + 1)/k
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for minimization problems) to the optimal one (the details of this process depend on the problem under study).
The heart of Baker’s approach is in the optimal solution to the problem under study on k outerplanar instances
(obtained by the process mentioned above). To this end, Baker designs a certain partition of k outerplanar graphs
into a tree structure that supports dynamic programming. Based on this paradigm, Baker [2] presents efficient
algorithms for approximating several NP complete problems on planar graphs. These include for example the
maximum independent set (and minimum vertex cover), minimum dominating set, and minimum edge-dominating
set problems. The total running time to obtain a (1 + ε) approximation is typically bounded by O(21/εn). We note
that, to the best of our knowledge, the clique cover problem or the MinRank problem have not been addressed in
the context of [2].

The algorithmic paradigm of Baker [2] lends itself naturally to the problems studied in this Thesis. Namely, in
the first part of this Thesis, we tie the clique cover size of a given outerplanar graph to its MinRank (or equivalently,
its scalar linear index coding round complexity `(lin)

Σ ). As mentioned above, the MinRank of any graph is at most
its clique cover. In this part we show that for outerplanar graphs the clique cover size and MinRank value are
actually equal. Our proof follows the dynamic nature of Baker’s algorithm. We start by showing how to apply
Baker’s paradigm to the problems of computing the MinRank and the clique cover of a given graph G. This
proves that both MinRank and clique cover problems on outerplanar graphs can be solved efficiently. Applying
the work of [2] to these problems involves a delicate analysis that does not follow directly from [2]. To tie the
clique cover number with the MinRank of G, we show that throughout the execution of Baker’s algorithm - no
matter what intermediate objective is being considered (the clique cover size or the MinRank) the value returned
in the intermediate step is identical. This implies that the MinRank of G equals its clique cover in the outerplanar
scenario.

In the second part of this Thesis, we extend the ideas of Baker to show that one can solve clique cover on k-
outerplanar graphs efficiently. As mentioned, the dynamic programming approach of Baker does not adapt directly
to the setting of clique cover. Accordingly, in this part, our extension involves a delicate analysis of the dynamic
programming resulting from an enhanced tree structure when compared to that of [2]. Our running time on k
outerplanar graphs is nO(k).

We note that our results on the clique cover of k-outerplanar graphs imply an approximation algorithm for
clique cover on planar graphs. Indeed, if one could solve clique cover exactly on k-outerplanar instances - then
a trivial gluing procedure via [2] in which each vertex is considered a clique in the cover, yields an additive
approximation of n/(k + 1). Using the fact that the minimum clique cover size of planar graphs is linear - one
obtains a 1 + 4/(k + 1) multiplicative approximation.

Additional works related to this Thesis include generalizations of Bakers approach for families of graphs with
certain local properties. In [10, 7, 6] the notion of bounded local tree-width was addressed, leading to (1 + ε)
approximations on several additional problems on such graphs including maximum triangle matching, maximum
H-matching, maximum tile salvage, and minimum color sum. In [11] the notion of locally tree-decomposable
graphs was considered, and efficient algorithms for deciding any property expressible in first-order logic in such
graphs were developed. In cases, these algorithms imply (1 + ε) approximations on corresponding families of
graphs. To the best of our knowledge, the techniques mentioned above do not apply to our study of clique cover or
MinRank.



Chapter 3

Preliminaries

3.1 Definitions and notation

Definition 3.1.1 (MRΣ(G)). Let Σ be a finite field. We say that a matrix A = aij fits an undirected graph G if for
all i and j: aii = 1, and aij = 0 whenever (i, j) is not an edge of G. MRΣ(G) ≡ min{rankΣ(A) | A fits G}

Definition 3.1.2 (CC(G)). A clique in an undirected graph G is a subset of vertices for which every pair share an
edge. A clique cover of G is a collection of cliques in G such that every vertex in G appears in at least a single
clique in the collection. CC(G) is the size of the minimum clique cover in G.

For a graphG and a node v, letG+{v} denote the graphG with a new isolated node v, and letG−{v} denote
the graph G in which node v ∈ G is removed from G. Similarly, we define G + B and G − B for a subgraph B
including nodes and edges. For two graphs G1 and G2 let G1 ∪ G2 be the graph obtained by taking the union of
the corresponding node sets and edge sets.

3.2 Properties of Clique-Cover

Property 3.2.1. Given a graph G and a node v, CC(G) ≤ CC(G+ {v}) ≤ CC(G) + 1 (Adding a node to a graph
can increase the clique-cover by at most 1).

Proof. The clique which contains the single node v can be added to the original clique cover of G. Thus resulting
in new clique cover with size CC(G) + 1. For the other direction, any clique cover of G + {v} induces a clique
cover of the same size in G.

Property 3.2.2. Given a graph G which contains the nodes {x, y}, and doesn’t contain the edge e = (x, y),
CC(G) ≥ CC(G+ e) ≥ CC(G)− 1 (Adding an edge to a graph can decrease the clique-cover by at most 1 ).

Proof. Consider a graph G, which includes nodes x, y and does not include the edge (x, y). Suppose that adding
an edge (x, y) to the graph can decrease the clique-cover by at least 2, thus CC(G+(x, y)) ≤ CC(G)−2. Removing
the node y (and as a result the edge (x, y)) from (G + (x, y)) causes a new graph with clique-cover that equals
at most (CC(G) − 2). Thus, adding the node y again to that graph and the edges of G adjacent to y, can increase
the clique-cover at most by 1 (according to Property 3.2.2), thus CC(G) ≤ CC(G) − 1, a contradiction. The first
inequality follows easily by the definition of a clique cover.

Property 3.2.3. Let G1, G2 be 2 graphs with one common node x (such that there are no edges between G1−{x}
and G2−{x}). If the following values are known: CC(G1), CC(G2), CC(G1−{x}), CC(G2−{x}), then the clique
cover of the union of G1 and G2 is known and equal to the following:

11
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• If CC(G1) = CC(G1−{x}) or CC(G2) = CC(G2−{x}), then CC(G1∪G2) = CC(G1−{x})+CC(G2−{x}).

• If CC(G1) = CC(G1 − {x}) + 1 and CC(G2) = CC(G2 − {x}) + 1, then CC(G1 ∪G2) = CC(G1 − {x}) +
CC(G2 − {x}) + 1.

Proof. First consider the minimum size clique cover of the union of the disjoint graphs (G1−{x}) and (G2−{x}).
It holds that the minimum size clique cover of the disjoint union equals the sum of the (disjoint) minimum size
clique covers (this follows directly from the definition of a clique cover). Now, we will add the node x to the graph.
By the properties above, the clique-cover size of the new graph can be equal to the clique-cover size of the union
or it may increase by 1. We study two cases:

• If CC(G1) = CC(G1 − {x}) or CC(G2) = CC(G2 − {x}), then adding x to the union of the disjoint graphs
doesn’t increase the clique cover because x belongs to one of the cliques in the optimal cover of G1 or G2.

• If CC(G1) = CC(G1 − {x}) + 1 and CC(G2) = CC(G2 − {x}) + 1, we show that adding x to the union
of the disjoint graphs increases the clique cover size by 1 (in this case {x} will be the clique added to the
clique cover). Assume by contradiction that CC(G1 ∪G2) = CC(G1 − {x}) + CC(G2 − {x}). Consider the
minimum clique cover on G1 ∪ G2. The clique in this cover that contains x can’t contain additional nodes
from both the graphs G1 and G2 as they are disjoint graphs (excluding x). Assume w.o.l.g. that x belongs
to a clique with nodes from G1. Thus, in the clique cover, the number of cliques that cover G1 is exactly
CC(G1∪G2)−CC(G2−{x}) = CC(G1−{x}). This implies that CC(G1−{x}) = CC(G1), in contradiction
to the assumption.

Property 3.2.4. Let G1, G2 be 2 graphs with k common nodes B = {b1, . . . , bk} such that there are no edges
between (G1 \B) and (G2 \B). If the following values are known: CC(G1), CC(G2), CC(G1 −B′), CC(G2 −B′)
for each subset B′ ⊆ B, then the clique cover of the union of G1 and G2 is known and equal to the following:
CC(G1 ∪G2) = min{(CC(G1 \B′) + CC(G2 \ (B \B′))) | B′ ⊆ B}

Notice that this property is a generalization of Property 3.2.3

Proof. Let G′1 = G1 \ B, and G′2 = G2 \ B. Let C(G) be the minimum sized set of cliques in G such that every
node in G appears in at least a single clique in the set. Notice that Size(C(G)) = CC(G). Consider the graph
G1 ∪G2. We can separate C(G1 ∪G2) to 5 groups of cliques:

1. C1 - Cliques that contain nodes from G′1 only

2. C2 - Cliques that contain nodes from G′2 only

3. C3 - cliques that contain nodes from B only

4. C4 - cliques that contain nodes from G′1 ∪B

5. C5 - cliques that contain only nodes from G′2 ∪B

Let B′ be the group of nodes from B that are contained in (C3 ∪C5). That is, B′ = (C3 ∪C5)∩B. It follows
that all the nodes from (B \B′) are contained in C4. Thus, C(G1 \B′) = C1∪C4. Moreover, C(G2 \ (B \B′)) =
C2 ∪ C3 ∪ C5. It follows that C(G1 ∪G2) = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 = C(G1 \B′) ∪ C(G2 \ (B \B′)). This
implies that CC(G1 ∪G2) ≥ min{(CC(G1 \B′) + CC(G2 \ (B \B′))) | B′ ⊆ B}. The other direction follows by
the definition of CC(G1 ∪G2).
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3.3 Properties of MinRank

Property 3.3.1. Given a graph G and a node v, MRΣ(G) ≤ MRΣ(G + {v}) ≤ MRΣ(G) + 1 (Adding a node to a
graph can increase the MinRank by at most 1).

Proof. Consider the matrix M that realizes MRΣ(G). Adding a new row and column corresponding to the new
vertex v, in which all new entries are of value 0 except the new diagonal entry mv,v that is of value 1, we get that
MRΣ(G + {v}) ≤ MRΣ(G) + 1. For the lower bound notice that any matrix that fits G + {v} has a corresponding
restriction (of lower or equal rank) that also fits G.

Property 3.3.2. Given a graph G which contains the nodes {x, y}, and doesn’t contain the edge e = (x, y),
MRΣ(G) ≥ MRΣ(G+ e) ≥ MRΣ(G)− 1 (Adding an edge to a graph can decrease the MinRank by at most 1).

Proof. Consider a graph G, which includes nodes x, y and does not include the edge (x, y). Suppose that adding
an edge (x, y) to the graph can decrease the MinRank by at least 2. Namely, that MRΣ(G+ (x, y)) ≤ MRΣ(G)− 2.
Removing the node y (and as a result the edge (x, y)) from (G + (x, y)) causes a new graph with MinRank that
equals at most (MRΣ(G) − 2) (as one can take any matrix that fits G and turn it into one that fits G − {y} by
removing the row and column that correspond to y). Thus, adding the node y again to that graph and the edges
of G adjacent to y, can increase the MinRank at most by 1 (according to Property 3.3.1). We conclude that
MRΣ(G) ≤ MRΣ(G)− 1, a contradiction. For the upper bound in the assertion notice that any matrix that fits G also
fits G+ e by definition.

Property 3.3.3. Let G1, G2 be 2 graphs with one common node x (such that there are no edges between G1−{x}
and G2 − {x}). If the following values are known: MRΣ(G1), MRΣ(G2), MRΣ(G1 − {x}), MRΣ(G2 − {x}), then the
MinRank of the union of G1 and G2 is known and equal to the following:

• If MRΣ(G1) = MRΣ(G1 − {x}) or MRΣ(G2) = MRΣ(G2 − {x}), then MRΣ(G1 ∪ G2) = MRΣ(G1 − {x}) +
MRΣ(G2 − {x}).

• If MRΣ(G1) = MRΣ(G1 − {x}) + 1 and MRΣ(G2) = MRΣ(G2 − {x}) + 1, then MRΣ(G1 ∪ G2) = MRΣ(G1 −
{x}) + MRΣ(G2 − {x}) + 1.

Proof. Let M be a matrix which fits G1 ∪G2. Assume M has the following structure:

G′1 G′2 x

G′1 G′1l 0

G′2 0 G′2r

x xl 0 1


In the above description we use the following notation. G′1 represents the subgraph (G1−{x}). G′2 represents

the subgraph (G2 − {x}). The row and column labels appear to the left or above the double line, while the matrix
entries appear to the right and below the double line. Each row (and column) of M corresponds to a vertex v in
G1 ∪ G2. An entry muv in M corresponds to the vertices u and v in G1 ∪ G2. For the row vector (v1, . . . , vn)
corresponding to v we denote its entries corresponding to G′1 by vleft or vl, its entries corresponding to G′2 by
vright or vr and its entries corresponding to a vertex w by vw. For example, for the vertex x we have that xx = 1.
Also for a vertex v ∈ G′2 we have that vl = 0 as there are no edges between G′2 and G′1. The submatrix G′1l (G′2r)
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consists of the vectors vl (vr) for v ∈ G′1 (v ∈ G′2). Finally, for any vertex v we abuse notation and refer to the row
vector corresponding to v by the same notation: v. The same goes for subsets of vertices A.

Define M1 and M2 as matrices that fit G1 and G2 correspondingly, and have the minimum rank among all
such matrices. By definition, MRΣ(G1) = rank(M1) and MRΣ(G2) = rank(M2). That is, M1 and M2 can be
expressed as follows: 

G′1 x

G′1 H ′1

x 1




G′2 x

G′2 H ′2

x 1


The submatrix H ′1 (H ′2) consists of the vectors corresponding to v ∈ G′1 (v ∈ G′2). We consider two cases:

• If MRΣ(G1) = MRΣ(G1 − {x}) = rank(M1), we first claim that the rows corresponding to G′1 in M1 span
a vector space of dimension rank(M1), and the vector corresponding to x in M1 is spanned by the rows
corresponding to G′1. Denote the latter vector by x1. The above follows since the submatrix H ′1 fits G′1 and
has rank at most that of the the rows corresponding to G′1. However, there is no matrix that fits G′1 of rank
less than MRΣ(G1 − {x}).

Now consider the matrix M above. In what follows we will suggest values for the entries of M that will
yield rank equal to MRΣ(G1 − {x}) + MRΣ(G2 − {x}). Namely, we set G′1l to be equal to H ′1, we set the
x’th entry of the rows of G′1 in M to be equal to their corresponding entries in M1, we set G′2r to be H ′2, the
(row) vector xlx (the entries of the vector x in M corresponding to vertices in G′1 ∪ {x} = G1) to be the
vector x1, and xr to be 0. As we show above, the vector xlx is spanned by the rows of M corresponding to
G′1. Thus x is spanned by the rows corresponding to G′1 ∪G′2. We conclude that the resulting matrix M has
rank rank(M1) + rank(H ′2) = MRΣ(G

′
1) + MRΣ(G

′
2). This shows that MRΣ(G) ≤ MRΣ(G

′
1) + MRΣ(G

′
2). To

obtain equality, notice that as G′1 and G′2 are disjoint graphs, it is not hard to verify (from the definition of
MinRank) that these rows span a vector space of dimension at least MRΣ(G′1) + MRΣ(G

′
2). The same proof

can be shown for the case that MRΣ(G2) = MRΣ(G2 − {x}).

• MRΣ(G1) = MRΣ(G1−{x})+1 and MRΣ(G2) = MRΣ(G2−{x})+1. Assume by contradiction that the optimal
matrix M satisfies rank(M) = MRΣ(G1 ∪G2) = MRΣ(G1−{x}) + MRΣ(G2−{x}) = MRΣ(G

′
1) + MRΣ(G

′
2).

This implies that x ∈ span(G′1 ∪G′2), as otherwise either rank(G′1l) < MRΣ(G
′
1) or rank(G′2r) < MRΣ(G

′
2)

which is a contradiction to the facts that G′1l fits G′1 and G′2r fits G′2.

Consider the rows of M that participate in the linear combination that yields the vector x. If these rows are
included in G′1, then it follows that the subvector xlx (the left coordinates of the vector x including the coor-
dinate corresponding to x) is in span(G′1) which implies that MRΣ(G1) = MRΣ(G1 − {x}), a contradiction.
To see the contradiction, construct M1 by setting the rows corresponding to G′1 in M1 to be equal to the
corresponding entries in the rows corresponding to G′1 in M , and the vector corresponding to x in M1 to
be equal to xlx. A similar analysis can be done for the case that the rows of M that participate in the linear
combination that yields the vector x are included in G′2.
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If the the rows of M that participate in the linear combination that yields the vector x combine vectors from
G′1 and G′2, one may consider the partial linear combination from G′1 and G′2 separately. Let x1 be the linear
combination resulting from the rows in G′1 and x2 be the linear combination corresponding to the rows in
G′2. Namely x = x1 +x2. Let the coordinate in xi corresponding to the vertex x be ai. As the entry xx = 1,
we have that a1 + a2 = 1. Thus, it cannot be the case that both a1 and a2 are 0. Assume w.l.o.g. that
a1 6= 0. Also assume w.l.o.g. that a1 = 1 (otherwise the entries of M1 to be constructed shortly can be
scaled accordingly). Now construct M1 by setting the rows corresponding to G′1 in M1 to be equal to the
corresponding entries in the rows corresponding to G′1 in M , and the vector corresponding to x in M1 to
be equal to the corresponding coordinates in a revised version of x1 in which the entry corresponding to the
vertex x in x1 is changed to a1. It is not hard to verify that the modified version of x1 is spanned by the rows
corresponding to G′1 in M1 and thus MRΣ(G1) = MRΣ(G1 − {x}), a contradiction.
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Part I

Index coding with outerplanar side
information

17





Chapter 1

Overview of Baker’s algorithm for outerplanar
graphs

In this part of the Thesis we show that on outerplaner side informations graphs G, the Index Coding problem can
be solved efficiently and can be characterized by the clique cover number of G. We start by showing how to apply
Baker’s paradigm to the problems of computing the MinRank and the clique cover of a given graph G. We then
tie the clique cover number with the MinRank of G. The conclusion of this part is the proof of Theorem 2.1.1.

Our work is based on Baker’s algorithmic paradigm [2]. In what follows we give a brief (and rough) overview
of the main ideas that govern the algorithm of [2]. We will identify and isolate the major points that need to be
addressed in order to apply the paradigm at hand to the case of the MinRank and clique cover problems. We start
by presenting Baker’s algorithm in general, and then proceed to the major points we address in this work (which
are discussed in greater detail). We will not give a full and comprehensive description of Baker’s algorithm and
refer the reader to [2] for proofs and details we omit.

Given an outerplanar graph G, the algorithm of Baker [2] has two major steps. In the first step, a tree represen-
tation Ḡ of G is constructed. Every node in Ḡ corresponds to a subgraph of G, where the root of Ḡ corresponds to
G itself, each leaf in Ḡ corresponds to an edge, and internal nodes in Ḡ correspond to the subgraph of G induced
by their children in Ḡ. The construction of Ḡ from G is very simple in nature, and the tree Ḡ tightly resembles the
standard notion of the dual to an (outer)planar graph. See Figure 2.1(d) (of the Introduction) and Figure 1.1 (in
this section of the thesis).

In slightly more detail: Ḡ is constructed as follows (in this presentation we suppose there are no cutpoints in
G, i.e., a vertex whose deletion disconnects the graph). Place a vertex in each interior face and on each exterior
edge of G, and draw an edge from each vertex representing a face f to each vertex representing either an adjacent
face (i.e., a face sharing an edge with f ) or an exterior edge of f . (This tree is closely related to the dual of the
graph; however, the dual would lack vertices for exterior edges and would have an additional vertex for the exterior
face.) An example (taken from [2]) is shown in Figure 1.1.

The planar embedding induces a cyclic ordering on the edges of each vertex in the tree. Choosing a face
vertex v as the root and choosing which child of v is to be its leftmost child determine the parent and ordering of
children for every other vertex of Ḡ. Label the vertices of Ḡ recursively, as follows: Label each leaf of the tree
with the oriented exterior edge it represents. Label each face vertex with the first and last nodes in its children’s
labels. If a face vertex is labeled (x, y), the leaves of its subtree represent a directed walk of exterior edges in a
counterclockwise direction from x to y. For the root, x = y and the directed walk covers all the exterior edges.
For any other face vertex v, x 6= y, and (x, y) is an interior edge shared by the face represented by v and the face
represented by its parent in the tree. We defineG(x, y) to be the subgraph corresponding to the subtree of Ḡ rooted
at tree-vertex (x, y). Namely, G(x, y) contains all edges corresponding to leaves in it’s subtree with the addition
of the edge (x, y).

19
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Figure 1.1: An outerplanar graph and its corresponding tree representation. Taken from [2].

For example, in Figure 1.1, the leaves of the node labeled (3, 7) represent a walk along nodes 3, 4, 5, 6, 7. The
leaves of the root (1, 1) represent a counterclockwise walk around the exterior edges beginning and ending at node
1. The vertex labeled (1, 3) represents the face containing nodes 1 − 3, its parent represents the face containing
nodes 1, 3, 7, 9, and (1, 3) is the interior edge shared by these faces. We refer the interested reader to Baker’s
original work [2] for a full presentation of the tree structure Ḡ.

Once the tree Ḡ is given, the objective in [2] is to dynamically compute the objective function Obj at hand
(e.g., MinRank) in a bottom up manner from the leaves to the root. Namely, for each vertex (x, y) of Ḡ, based on
the algorithm of [2], we will define a table for this vertex which contains 4 values:

• The solution to the objective function at hand for the subgraph G(x, y) including the nodes x and y.

• The solution to the objective function at hand for the subgraph G(x, y) including the node x and not y.

• The solution to the objective function at hand for the subgraph G(x, y) including the node y and not x.

• The solution to the objective function at hand for the subgraph G(x, y) excluding the nodes x and y

The algorithm of [2] to compute the table of a tree vertex v is given in Figure 1.2. We now show how to
compute the table for each vertex in our case, in which Obj is either the MinRank or clique cover. First, for a leaf
vertex (x, y), it holds that G(x, y) = (x, y), and it’s table is defined as follows:

• The solution to the objective function for a leaf vertex (x, y) including the nodes x and y is 1.

• The solution to the objective function for a leaf vertex (x, y) including the node x and not y is 1.

• The solution to the objective function for a leaf vertex (x, y) including the node y and not x is 1.

• The solution to the objective function for a leaf vertex (x, y) excluding the nodes x and y is 0.

It’s easy to see that when Obj is either MinRank or clique cover it holds that Obj(x, y) equals 1. The table for
every other vertex will be computed recursively by merging the tables of its children according to the algorithm of
[2] given in Figure 1.2.

There are two major operations that need to be addressed in the above procedure. The merge operation takes
as input the intermediate table T and the table of a tree node u and returns a “merged” table of the two. More
specifically, let v be a vertex which represents a face vertex (x, y) with the following children: (x, a), (a, b), . . .
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Procedure table(v)

if v is a level 1 leaf corresponding to an edge with label (x, y)
then

return a table representing the edge (x, y);
else * v is a face vertex*

begin
T = table(u), where u is the leftmost child of v;
for each other child u of v from left to right

T = merge (T, table(u));
return (adjust(T));
end

Figure 1.2: The algorithm table from [2].

(i, z), (z, w), . . . (j, y). Assume that we are considering the child (z, w) of (x, y) in Ḡ. LetG(x, z) be the subgraph
of G that includes all the edges that are in the union of the subgraphs G(x, a)∪G(a, b)∪ ...∪G(i, z). The current
table T includes information for the subgraph G(x, z). Namely (by induction) assume the current table T has a
value for each bit pair representing x and z. By the term “bit pair” we refer to each possibility for the existence of
x and z in the subgraph G(x, z), meaning that the table T has 4 solutions to the objective function at hand, each
of a subgraph G(x, z) (solution for the subgraph containing x and z, solution for the subgraph containing x and
not containing z, solution for the subgraph containing z and not containing x, solution for the subgraph without
both x and z.) The child u has label (z, w) for some w, and table(u) has a value for each bit pair representing z
and w. The goal of procedure merge is to construct an updated table T with a solution of the objective function on
G(x,w) ∪G(w, z) for every bit pair representing x and w.

The adjust operation takes as input a table T consisting of the merge of all the children of v, and returns a table
corresponding to v. Specifically, let v be a vertex which represents a face vertex (x, y) with the following children:
(x, a), (a, b), . . . (i, z), (z, w), . . . (j, y). After merging all of the children, we get a table for the subgraphG(x, y),
which includes the objective function of the subgraph G(x, y) for each bitpair of (x, y), but does not include the
edge (x, y) if such an edge exists. The goal of procedure adjust is to solve the objective function at hand after
adding this edge.

To apply Baker’s algorithm to an objective function Obj of our choice, we must show how to implement the
subroutines merge and adjust. It is not hard to verify that to prove that one can implement the merge operation,
it suffices to present an algorithm that takes as input two induced subgraphs G1 and G2 of G that intersect at a
single vertex x and the solutions Obj(G1), Obj(G1 − {x}), Obj(G2) and Obj(G2 − {x}) and returns a solution
for Obj(G1 ∪ G2). Here, as the graphs G1 and G2 are induced subgraphs of G notice that there are no edges
between G1 − {x} and G2 − {x}. Similarly, for the adjust operation, it suffices to present an algorithm which
takes as input an outerplanar graph G that includes vertices x and y but does not include the edge (x, y) on the
outer face of G, the solutions Obj(G−{x}), Obj(G−{y}), Obj(G−{x, y}), and Obj(G) and returns a solution
for Obj(G + e). The implementation of these tasks for the clique cover and MinRank objective functions are in
cases highly non-trivial, and to the best of our knowledge have not been addressed in the past. In the upcoming
sections we will address the task of implementing these subroutines efficiently.
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Chapter 2

The MinRank objective function

As described in the Introduction, finding the optimal (scalar) linear solution to an index coding instance with
undirected side information graphG is equivalent to determining the matrixA for which MinRank(G) = rank(A),
e.g., [3]. Thus, in the remainder of our presentation we will only consider the MinRank problem. Recall that for a
graph G, vertices x and y and an edge e, we denote by G+{x}, G−{x}, G+e, G−e, G+(x, y), and G− (x, y)
the new graph obtained by adding or removing the vertex x, the edge e, or the edge (x, y) to G respectively.

2.1 Merge

In the merge operation one takes two subgraphs that are almost disjoint for which the optimal MinRank is known,
and returns the MinRank of their union (including the corresponding matrix A of minimum rank). If the graphs
were disjoint then the MinRank of the union is just the union of the corresponding MinRanks, however, as the
subgraphs share a vertex, the MinRank of their union might be smaller according to the claim below.

Claim 2.1.1. Let G1 and G2 be induced subgraphs of G that have a single vertex x in common. If MRΣ(G1) =
MRΣ(G1−{x}) or MRΣ(G2) = MRΣ(G2−{x}), then MRΣ(G1∪G2) = MRΣ(G1−{x})+MRΣ(G2−{x}). Otherwise,
MRΣ(G1 ∪ G2) = MRΣ(G1 − {x}) + MRΣ(G2 − {x}) + 1. Moreover, in both cases the corresponding matrix A of
minimum rank that fits G1 ∪ G2 can be obtained efficiently from the matrices corresponding to the MinRank of
G1 − {x} and G2 − {x}.

Proof. G1 and G2 intersect at a single node, thus, using Property 3.3.3, we can find the MRΣ of G1 ∪G2.

2.2 Adjust

In the “adjust” operation one takes an outerplanar graph G with vertices x and y but without the edge (x, y) that
lies on the outer face ofG; and computes the MinRank ofG+e based on the MinRank of the graphG−{x}, the
graph G− {y}, the graph G− {x, y} and the graph G. As we have shown, it holds that MRΣ(G+ e) either equals
MRΣ(G) or is smaller and equals MRΣ(G) − 1, however the correct answer depends strongly on the the values of
the MinRank in the subgraphs of G that do not include the vertices x or y. The following two claims summarize
the adjust operation when applied to the MinRank objective function. The first claim covers almost all possible
settings except one, and can be proven relatively straightforward from the basic properties of MinRank combined
with Property 3.3.3. The second claim addresses the last setting, and is more challenging.

Claim 2.2.1. LetG be an outerplanar graph that includes vertices x and y but does not include the edge e = (x, y)
that sits on the outer face of G. Then the value of MRΣ(G+ e) is determined by the following table which expresses
the possible input values of MRΣ(G−{x, y}), MRΣ(G−{x}), and MRΣ(G−{y}) as a function of λ = MRΣ(G); and
the resulting value of MRΣ(G+ e) as a function of λ = MRΣ(G):
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MRΣ(G− {x, y}) MRΣ(G− {x}) MRΣ(G− {y}) MRΣ(G+ e)
λ λ

λ− 2 λ− 1
λ− 1 λ λ− 1 λ
λ− 1 λ− 1 λ λ

Moreover, the minimum rank matrix A corresponding to MRΣ(G + e) can be computed efficiently using the
matrices corresponding to the MinRank of the subgraphs above.

Proof. We consider the different cases stated in the assertion:

1. MRΣ(G − {x, y}) = MRΣ(G). As e = (x, y), it holds that MRΣ(G + e) ≥ MRΣ(G − {x, y}) (as any matrix
that fits G + e has a minor which fits G − {x, y}). Thus, adding the nodes {x, y} and the edge (x, y) can’t
decrease the MinRank of the former graph MRΣ(G− {x, y}) which is equal to MRΣ(G).

2. MRΣ(G − {x, y}) = MRΣ(G) − 2. Adding the nodes {x, y} plus the edge (x, y) to G − {x, y} increases its
MinRank by at most 1 (one can just append to a matrix that fits G − {x, y} two row vectors that are 1 on
coordinates x and y and 0 otherwise). Thus we get MRΣ(G + e) ≤ (MRΣ(G) − 2) + 1 = MRΣ(G) − 1. The
value MRΣ(G + e) can’t be less than or equal to MRΣ(G) − 2 because of Property 3.3.2 (adding an edge to a
graph can decrease the MinRank by 1 at most).

3. MRΣ(G− {x}) = MRΣ(G). As in the first case it holds that MRΣ(G+ e) ≥ MRΣ(G− {x}) (as any matrix that
fits G+ e has a minor which fits G− {x}).

4. Same as 3.

Claim 2.2.2. LetG be an outerplanar graph that includes vertices x and y but does not include the edge e = (x, y)
that sits on the outer face of G. Then if MRΣ(G − {x, y}) = MRΣ(G − {x}) = MRΣ(G − {y}) = MRΣ(G) − 1 the
MinRank of G + e is determined by the following cases. (a) If there are no vertices z in G + e such that x, y, z
form a triangle (a clique) in G + e then MRΣ(G + e) = MRΣ(G). (b) If there exists a vertex z in G + e such
that x, y, z form a triangle (a clique) in G + e then MRΣ(G + e) depends on MRΣ(G − {x, y, z}). Namely, if
MRΣ(G−{x, y, z}) = MRΣ(G)−2 then MRΣ(G+e) = MRΣ(G)−1, otherwise MRΣ(G+e) = MRΣ(G). Moreover, the
minimum rank matrix corresponding to MRΣ(G+ e) can be computed efficiently using the matrices corresponding
to the MinRank of the subgraphs above.

Claim 2.2.2 is the most challenging claim proven in this part. Examples in which the MinRank of G after
adding the edge (x, y) are equal to MRΣ(G) or MRΣ(G)− 1 are given below.

• If x− z − y is a path, then adding the edge (x, y) closes a triangle and the MinRank is decreased by 1.

• If x− z − u− v − y is a path, then adding the edge (x, y) doesn’t decrease the MinRank.

Proof. We consider the following cases:
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Figure 2.1: The partition of G into 3 graphs in the proof of Claim 2.2.2 (case 1).

Case 1: There is a node ′z′ such that x, y, z close a triangle. According to the tree construction, (x, z) and
(z, y) are children of the node (x, y). Otherwise, the triangle (x, y, z) doesn’t belong to the subgraph represented by
G(x, y). When executing the procedure Table(v) on the vertex (x, y), there is an inductive call to Table(x, z)
and Table(z, y). Thus, the following values are known prior to the ”adjust” operation on the vertex (x, y):
MRΣ(G(x, z)), MRΣ(G(x, z) − {x, z}), MRΣ(G(z, y)), and MRΣ(G(z, y) − {z, y}). Recall that according to our
definitions these values are stored in the tables of (x, z) and (z, y) accordingly. Moreover, MRΣ(G − {x, y, z}) is
known and equals MRΣ(G(x, z)− {x, z}) + MRΣ(G(z, y)− {z, y}) (the subgraphs G(x, z) and G(z, y) excluding
the nodes x, z, y are disjoint graphs because of the outerplanarity constraint, see, e.g., Figure 2.1).

We consider two cases: If MRΣ(G− {x, y, z}) = MRΣ(G)− 2, we claim that MRΣ(G+ e) = MRΣ(G)− 1. This
follows since, given a matrix A that fits G − {x, y, z} one can construct one that fits G + e by expanding A in a
natural way (adding rows/columns corresponding to x, y, z), in which the only new entries that are non-zero are
those corresponding to a pair in {x, y, z} (which can be set to equal 1). Thus, MRΣ(G+ (x, y)) = MRΣ(G)− 1 (the
MinRank is decreased by 1 after adding the edge (x, y)).

For the second case, if MRΣ(G − {x, y, z}) = MRΣ(G) − 1, we now show that adding the edge (x, y) can’t
decrease the MinRank, thus MRΣ(G+ (x, y)) = MRΣ(G).

Claim 2.2.3. If MRΣ(G− {x, y, z}) = MRΣ(G)− 1, then MRΣ(G+ (x, y)) = MRΣ(G).

Proof. We start by noting that the removal of the three vertices {x, y, z} in G disconnects G into 2 disjoint com-
ponents. See, e.g., Figure 2.1. We denote these components by A1 and A2. As G+ e is outerplanar, and the edge
(x, y) is on the outer face of G + e, we can assume w.l.o.g. that vertices in A1 are not connected by an edge to
vertices in A2. Moreover, vertices in A1 are not connected by an edge to y, while vertices in A2 are not connected
by an edge to x.

DefineM as a matrix which fitsG+(x, y), and has the minimum rank among all such matrices. By definition,
MRΣ(G+(x, y)) = min{rank(M) |M fits (G+(x, y))}. Assume in contradiction that after adding the edge (x, y),
MRΣ(G) is decreased by 1, meaning that rank(M) = MRΣ(G+(x, y)) = MRΣ(G)−1. We will see that by changing
a few entries in M we obtain a new matrix M ′, with the same rank as M , which fits G (the original graph without
(x, y)), implying that MRΣ(G) ≤ rank(M ′) = rank(M) = MRΣ(G) − 1, a contradiction. We will thus conclude
that MRΣ(G+ (x, y)) = MRΣ(G). Consider the matrix M :
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

A1 x y z A2

A1 A1l 0 0

x xl 1 xy * 0
y 0 yx 1 * yr
z zl * * 1 zr

A2 0 0 A2r


In the above description we use the following notation. A1 represents the subgraph corresponding to the face

vertex (x, z) in Ḡ, excluding the nodes x, z. A2 represents the subgraph corresponding to the face vertex (z, y) in
Ḡ excluding the nodes z, y. An entry muv in M corresponds to the nodes labeled by u and v in G. Each row of M
corresponds to a node v inG. For the row vector (v1 . . . vn) corresponding to v we denote its entries corresponding
to A1 by vleft or vl, its entries corresponding to A2 by vright or vr and its entries corresponding to a vertex w by
vw. For example, for the vertex x we have that xx = 1. Also for a vertex v ∈ A2 we have that vl = 0 as there are
no edges betweenA2 andA1. Finally, for any vertex v we abuse notation and refer to the row vector corresponding
to v by the same notation: v. Similarly for a set of vertices A we refer to the row vectors corresponding to A in M
by A.

In the description of M above we have specified entries that must be 0, entries that must be 1, and some
entries of interest that can be either 0 or 1 (denoted by *). For each matrix which fits the graph G (the graph that
doesn’t include the edge (x, y)), it is known that xy = 0 and yx = 0, because there is no edge between x and y.
Consider the matrix M above which fits G + (x, y). If xy = 0 and yx = 0, then M also fits G, implying that
MRΣ(G) ≤ rank(M) = MRΣ(G)− 1, a contradiction. Thus, one of the values xy or yx must equal 1. Recall that we
are assuming that MRΣ(G−{x, y, z}) = MRΣ(G)−1, meaning that rank(M) = MRΣ(G)−1 = MRΣ(G−{x, y, z}) =
MRΣ(A1 ∪A2). Consider the rows of M corresponding to A1 and A2. We now claim that these rows span a vector
space of dimension MRΣ(G) − 1 and thus span M . Indeed, if the rows of A1 and A2 spanned a vector space of
lower dimension, then one could construct a matrix that fits the subgraph induced by A1 ∪ A2 with rank lower
than MRΣ(G)− 1. However, as stated above, MRΣ(A1 ∪A2) = MRΣ(G)− 1, a contradiction.

We conclude that the row vector x (corresponding to the vertex x) is in span(A1∪A2). The same holds for the
vectors y and z. Consider the sub vector xl. Potentially, xl could be spanned by the left coordinates in the vectors
of A1 (denoted as A1l) and the left coordinates in the vectors of A2 (denoted as A2l). However, A2l is all zero (as
there are no edges between vertices of A2 and those of A1). Thus, xl ∈ span(A1l). Moreover, it also holds that
the vector (xl, xx) (i.e, the entries of x corresponding to vertices (A1 ∪ x)) is spanned by the coordinates of A1

corresponding to the vertices (A1 ∪ x).
We now suggest to change the vector x to x′ such that x′ ∈ span(A1). This can be done by zeroing out the

value of x in the coordinate y and by changing the value of x in coordinate z according to the following rule. By the
discussion above, let the coefficients {αi} satisfy : (xl, xx) =

∑
ai∈A1

αi(ail, aix). Now set x′ =
∑

ai∈A1
αiai.

Notice that x′y = 0. In a similar (and symmetric) way we can change the vector y to y′ ∈ span(A2) such that
y′x = 0. The resulting matrixM ′ still has rank at most MRΣ(G)−1 = rank(A1∪A2), as all new and old row vectors
are spanned by A1 ∪A2. Moreover, M ′ fits G. Thus, MRΣ(G) ≤ rank(M ′) = MRΣ(G)− 1, a contradiction.

Case 2: There is no node ′z′ such that x, y, z closes a triangle. In Figure 2.2 we present a decomposition of
G into 4 graphs: A1, A2, Z, {x, y,m, n}. We denote by m the neighbor of x (on the corresponding face) which
is furthest away from x in a counterclockwise direction. We denote by n the neighbor of y which is furthest away
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Figure 2.2: The partition of G into 4 graphs in the proof of Claim 2.2.3 (case 2).

from y (on the corresponding face) in a clockwise direction. Removing the vertices x, y,m and n from G, we get
the 4 disconnected components that appear in Figure 2.2.

DefineM as a matrix which fitsG+(x, y), and has the minimum rank among all such matrices. By definition,
MRΣ(G+(x, y)) = min{rank(M) |M fits (G+(x, y))}. Assume in contradiction that after adding the edge (x, y),
MRΣ(G) is decreased by 1, meaning that rank(M) = MRΣ(G+(x, y)) = MRΣ(G)−1. We will see that by changing
a few entries in M we obtain a new matrix M ′, with the same rank as M , which fits G (the original graph without
(x, y)), implying that MRΣ(G) ≤ rank(M ′) = rank(M) = MRΣ(G) − 1, a contradiction. We will thus conclude
that MRΣ(G + (x, y)) = MRΣ(G). Consider the matrix M (we use a similar representation to that given in the
analysis of the previous case).

A1 x m Z n y A2

A1 0 0 0 0

x xl 1 * 0 0 xy 0
m ml * 1 0 0
Z 0 0 0 0
n 0 0 1 * nr
y 0 yx 0 0 * 1 yr

A2 0 0 0 0


For each matrix which fits the graph G (the graph that doesn’t include the edge (x, y)), it is known that xy = 0

and yx = 0, because there is no edge between x and y. Consider the matrix M above which fits G + (x, y). If
xy = 0 and yx = 0, then M also fits G, implying that MRΣ(G) ≤ rank(M) = MRΣ(G)− 1, a contradiction. Thus,
one of the values xy or yx must equal 1. Recall that we are asuuming that MRΣ(G−{x, y}) = MRΣ(G)−1, meaning
that MRΣ(G)− 1 = rank(M) = rank(G− {x, y}) = MRΣ(A1 ∪A2 ∪ Z ∪m ∪ n) (here, “A1 ∪A2 ∪ Z ∪m ∪ n”
refers to the subgraph induced on these vertices of G). Consider the rows of M corresponding to A1 , A2, Z, m,
n. We now claim that these rows span a vector space of dimension MRΣ(G) − 1 and thus span M . Indeed, if the
rows of A1 , A2, Z, m, n spanned a vector space of lower dimension, then one could construct a matrix that fits
the subgraph induced by A1 ∪ A2 ∪ Z ∪ m ∪ n with rank lower than MRΣ(G) − 1. However, as stated above,
MRΣ(A1 ∪A2 ∪ Z ∪m ∪ n) = MRΣ(G)− 1, a contradiction.

As before, for a vertex x we abuse notation and refer to x as the corresponding row vector in M . Similarly for
a set of vertices A we refer to the row vectors corresponding to A in M by A. We conclude that the row vector x
(corresponding to the vertex x) is in span(A1 ∪A2 ∪ Z ∪m ∪ n). The same holds for the vector y.
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The following cases must be considered:

• Both m and n are in span(A1 ∪A2 ∪Z), meaning that rank(A1 ∪A2 ∪Z) = MRΣ(G)− 1. In this case, the
row vector x is in span(A1 ∪ A2 ∪ Z). Consider the sub vector xl. Potentially, xl could be spanned by the
left coordinates in the vectors of A1 (denoted as A1l), the left coordinates in the vectors of A2 (denoted as
A2l), and the left coordinates in the vectors of Z (denoted as Zl). However, A2l is all zero (as there are no
edges between vertices of A2 and those of A1), and Zl is all zero (as there are no edges between vertices of
Z and those of A1). Thus, xl ∈ span(A1l). Moreover, it also holds that the vector (xl, xx) (i.e, the entries
of x corresponding to vertices (A1 ∪ x)) is spanned by the coordinates of A1 corresponding to the vertices
(A1 ∪ x).

We now suggest to change the vector x to x′ such that x′ ∈ span(A1). This can be done by zeroing out the
values of x in the coordinate y and by changing the value of x in coordinate m according to the following
rule. By the discussion above, let the coefficients {αi} satisfy : (xl, xx) =

∑
ai∈A1

αi(ail, aix). Now set
x′ =

∑
ai∈A1

αiai.

Similarly, we change the vector y to y′ ∈ span(A2) with y′x = 0. The resulting matrix M ′ still has rank
at most MRΣ(G) − 1 = rank(A1 ∪ A2 ∪ Z), as all new and old row vectors are spanned by A1 ∪ A2 ∪ Z.
Moreover, M ′ fits G. Thus, MRΣ(G) ≤ rank(M ′) = MRΣ(G)− 1, a contradiction.

• n is in span(A1 ∪ A2 ∪ Z), and m not. We first suggest to change the vector m to m′ by zeroing out the
values of m in the coordinates Z and n. Now consider the vector x, or more specifically the sub vector
xl. Potentially, xl could be spanned by the left coordinates in the vectors of A1 (denoted as A1l), the left
coordinates in the vectors of A2 (denoted as A2l), the left coordinates in the vectors of Z (denoted as Zl),
and the left coordinates in the vector m (denoted as ml). However, A2l is all zero (as there are no edges
between vertices of A2 and those of A1), and Zl is all zero (as there are no edges between vertices of Z
and those of A1). Thus, xl ∈ span(A1l ∪ml) = span(A1l ∪m′l). Moreover, it also holds that the vector
(xl, xx) (i.e, the entries of x corresponding to vertices (A1 ∪x)) is spanned by the coordinates of A1 and m′

corresponding to the vertices (A1 ∪ x).

We now suggest to change the vector x to x′ such that x′ ∈ span(A1 ∪m′). This can be done by zeroing out
the values of x in the coordinate y and by changing the value of x in coordinatem according to the following
rule. By the discussion above, let the coefficients {αi} satisfy : (xl, xx) =

∑
ai∈A1∪{m′} αi(ail, aix). Now

set x′ =
∑

ai∈A1∪{m′} αiai. Notice that as m′ is 0 is coordinates corresponding to Z, n, y and A2 the same
holds for so is x′.

We now address the vector y as we did in the former case (recall that n is in span(A1 ∪ A2 ∪ Z)). Namely,
we change the vector y to y′ ∈ span(A2) with yx = 0. The matrix M ′ with the new rows m′, x′ and y′

still has rank at most rank(A1 ∪ A2 ∪ Z ∪ {m′}) ≤ rank(A1 ∪ A2 ∪ Z ∪ {m}) = MRΣ(G) − 1. This
follows as all new and old row vectors are spanned by A1 ∪ A2 ∪ Z ∪ {m′}. Moreover, M ′ fits G. Thus,
MRΣ(G) ≤ rank(M ′) = MRΣ(G)− 1, a contradiction.

• n is in span(A1 ∪A2 ∪ Z) and m not. Similar to the former case.

• both m and n are not in span(A1 ∪A2 ∪ Z). We need to consider the following cases:

– m is not in span(A1 ∪ A2 ∪ Z ∪ n) and n is not in span(A1 ∪ A2 ∪ Z ∪ m). This implies that
span(A1 ∪A2 ∪Z) = MRΣ(G)− 3. We suggest to change the vector m to m′ by zeroing out the values
ofm in the coordinates Z and n. We also suggest to change the vector n to n′ by zeroing out the values
of n in the coordinates Z and m. Now we can change the vector x to x′ such that x′ ∈ span(A1 ∪m′).
This can be done by zeroing out the values of x in the coordinate y and by changing the value of
x in coordinate m as done before. Similarly, we change the vector y to y′ ∈ span(A2 ∪ n′). The
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resulting matrix M ′ (with m′, n′, x′ and y′) has rank at most rank(A1 ∪ A2 ∪ Z ∪ {m′} ∪ {n′}) ≤
MRΣ(G)− 1, as all new and old row vectors are spanned by A1 ∪A2 ∪ Z ∪m′ ∪ n′, and we noted that
span(A1 ∪A2 ∪ Z) = MRΣ(G)− 3. Moreover, M ′ fits G. Thus, MRΣ(G) ≤ rank(M ′) = MRΣ(G)− 1,
a contradiction.

– n is in span(A1 ∪ A2 ∪ Z ∪ m). As n 6∈ span(A1 ∪ A2 ∪ Z) it follows that n = αmm +∑
ai∈A1∪A2∪Z αiai, where am 6= 0. Consider the sub vector nl = αmml +

∑
ai∈A1∪A2∪Z αiail.

A2l and Zl are all zero, meaning that nl = αmml +
∑

ai∈A1
αiail. Moreover, nl must equal 0 as there

are no edges between vertices of A1 and n. Thus, 0 = αmml +
∑

ai∈A1
αiail where αm 6= 0. This

implies that ml is in span(A1l). Consider the sub vector xl. Potentially, xl could be spanned by A1l,
A2l, Zl, ml and nl. A2l , Zl, and nl are all zero, meaning that xl ∈ span(A1l ∪ml). As we know that
ml ∈ span(A1l), we conclude that xl ∈ span(A1l). Now we can change the vector x to x′ such that
x′ ∈ span(A1) exactly as done before.
To address y, notice that in this case we have that (yr, yy) is spanned by the corresponding coordinates
of A2. Thus as done before we change the vector y to y′ ∈ span(A2) with y′x = 0. The resulting
matrix M ′ (with x′ and y′) still has rank at most MRΣ(G)−1 = rank(A1∪A2∪Z ∪m), as all new and
old row vectors are spanned by A1∪A2∪Z ∪m. Moreover, M ′ fits G. Thus, MRΣ(G) ≤ rank(M ′) =
MRΣ(G)− 1, a contradiction.

– m is in span(A1 ∪A2 ∪ Z ∪ n). Similar to the former case.
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Chapter 3

The clique cover objective function

As in Section 2 one may prove properties for the clique cover objective on the routines “merge” and ”adjust” in
the algorithm of [2]. The claims corresponding to the clique cover objective function are exactly those presented
in Section 2 when the objective MinRank (or MRΣ(G)) is replaced by the term “clique cover” (or CC(G)). We note
that the first and second claims we discuss for the clique cover objective follow relatively straightforwardly from
the basic properties of clique covers in undirected graphs, while the third claim (analogous to Claim 2.2.2) is more
challenging to prove.

3.1 Merge

Claim 3.1.1. Let G1 and G2 be induced subgraphs of G that have a single vertex x in common. If CC(G1) =
CC(G1 − {x}) or CC(G2) = CC(G2 − {x}), then CC(G1 ∪ G2) = CC(G1 − {x}) + CC(G2 − {x}). Otherwise,
CC(G1 ∪G2) = CC(G1−{x}) + CC(G2−{x}) + 1. Moreover, in both cases the optimal clique cover of G1 ∪G2

can be obtained efficiently from those of G1 − {x} and G2 − {x}.

Proof. G1 andG2 intersect at a single node, thus, using Property 3.2.3, we can find the clique cover ofG1∪G2.

3.2 Adjust

We prove the following claims for k-outerplanar graphs (and not only outerplanar graph) as we will use them in
part II of this Thesis.

Claim 3.2.1. LetG be a k-outerplanar graph that includes vertices x and y but does not include the edge e = (x, y)
that sits on the outer face of G. Then the value of CC(G+ e) is determined by the following table which expresses
the possible input values of CC(G− {x, y}), CC(G− {x}), and CC(G− {y}) as a function of λ = CC(G); and the
resulting value of CC(G+ e) as a function of λ = CC(G):

CC(G− {x, y}) CC(G− {x}) CC(G− {y}) CC(G+ e)
λ λ

λ− 2 λ− 1
λ− 1 λ λ− 1 λ
λ− 1 λ− 1 λ λ

Moreover, the optimal clique cover of G+ e can be computed in linear time using the optimal clique covers of
the subgraphs above.

Proof. We consider the following cases of the assertion:
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1. CC(G − {x, y}) equals to CC(G). As e = (x, y), it holds that CC(G + e) ≥ CC(G − {x, y}) (as any clique
cover for G+ e is one for G− {x, y}).

2. CC(G− {x, y}) = CC(G)− 2. Adding the nodes {x, y} plus the edge (x, y) increases CC(G) by 1, because
the new clique cover consists of the cliques of CC(G − {x, y}) with the addition of the clique (x, y). The
new clique cover is (CC(G)− 2) + 1 = CC(G)− 1. The new clique cover (after adding the edge (x, y)) can’t
be less than or equal to CC(G) − 2 because of Property 3.2.2 (adding an edge to a graph can decrease the
clique-cover by 1 at most).

3. CC(G−{x}) = CC(G). As in the first case, it holds that CC(G+ e) ≥ CC(G−{x}) (as any clique cover for
G+ e is one for G− {x}).

4. Same as 3.

Claim 3.2.2. LetG be a k-outerplanar graph that includes vertices x and y but does not include the edge e = (x, y)
that sits on the outer face of G. Then if CC(G−{x, y}) = CC(G−{x}) = CC(G−{y}) = CC(G)− 1 the optimal
clique cover of G + e is determined by the following cases. (a) If there are no vertices z in G + e such that
x, y, z from a triangle (a clique) in G + e then CC(G + e) = CC(G). (b) If there exists a vertex z in G + e
such that x, y, z from a triangle (a clique) in G + e then CC(G + e) depends on CC(G − {x, y, z}). Namely, if
CC(G − {x, y, z}) = CC(G) − 2 then CC(G + e) = CC(G) − 1, otherwise CC(G + e) = CC(G). Moreover, the
optimal clique cover of G + e can be computed in linear time using the optimal clique covers of the subgraphs
above.

We note that the clique cover of G after adding the edge (x, y) can be equal to CC(G) or CC(G) − 1, for
example:

• If x− z − y is a path, then adding the edge (x, y) closes a triangle and the clique cover is decreased by 1.

• If x− z − u− v − y is a path, then adding the edge (x, y) doesn’t decrease the clique cover.

Proof. We consider the following cases:
Case 1: There is no node ′z′ such that x, y, z close a clique. Consider the clique cover of G of size CC(G).

Assume that adding the edge (x, y) decreases CC(G) by 1. The minimum clique cover of G+ e must use the edge
e and contain the clique {x, y}, otherwise, the new edge (x, y) doesn’t have any influence and it can’t change the
value of CC. Here we use the fact that any clique containing {x, y} must be of size 2 at most. Thus, the new graph
without the clique {x, y} contains CC(G) − 2 cliques, in contradiction to the assumption that CC(G − {x, y}) =
CC(G)− 1.

Case 2: There is a node ′z′ such that x, y, z close a triangle. As stated in Section 2, according to the
tree construction (x, z) and (z, y) are children of the node (x, y), Otherwise, the triangle (x, y, z) doesn’t belong
to the subgraph represented by G(x, y). When executing the procedure Table(v) on the vertex (x, y), there is
an inductive call to Table(x, z) and Table(z, y). Thus, the following values are known prior to the ”adjust”
operation on the vertex (x, y): CC(G(x, z)), CC(G(x, z)− {x, z}), CC(G(z, y)), and CC(G(z, y)− {z, y}). Recall
that according to definition these values are stored in the tables of (x, z) and (z, y) accordingly. Moreover, CC(G−
{x, y, z}) is known and equals CC(G(x, z)− {x, z}) + CC(G(z, y)− {z, y}) (the subgraphs G(x, z) and G(z, y)
excluding the nodes x, z, y are disjoint graphs because of the outerplanarity constraint, see, e.g., Figure 2.1.

If CC(G − {x, y, z}) equals CC(G) − 2, then adding the clique {x, y, z} causes the clique cover of G + e to
be of size CC(G) − 1 (the clique cover is decreased by 1). If CC(G − {x, y, z}) equals CC(G) − 1, then adding
the edge (x, y) can’t decrease the clique cover size. This follows as the new clique cover must contain a clique
including the set {x, y} (otherwise the added edge e doesn’t have any influence), and can be assumed without
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loss of generality to contain {x, y, z}. Thus, the clique cover of the remaining graph (without {x, y, z}) equals
CC(G)− 2 in contradiction to our assumption.
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Chapter 4

Proof of Theorem 2.1.1

We now prove Theorem 2.1.1 given in the Introduction and show that MRΣ(G) = CC(G) in outerplanar graphs
(and that both objective functions can be computed efficiently). In order to find the MinRank or the clique cover
for outerplanar graphs, we processed a tree Ḡ (defined in Section 1) that represents the structure of G. We then
used Baker’s algorithm [2] via procedure Table(v) presented in Figure 1.2 to calculate for each tree vertex and
corresponding subgraph G1 of G the solution to the corresponding objective function. These computations were
based on the “merge” and ”adjust” operations studied in Sections 2 and 3. As the analysis for the MinRank
and minimum clique cover given in Sections 2 and 3 are analogous, it follows by induction on the execution of
Baker’s algorithm that for any intermediate vertex in the tree Ḡ corresponding to a subgraph G1 it holds that
MRΣ(G1) = CC(G1). In particular, this also holds for G itself.

For the base case, consider a level 1 vertex in the tree, i.e. a leaf v representing an edge (x, y). The table of v
specifies that the size of the MinRank or the clique cover is 1 if exactly one endpoint of (x, y), or both of them
are in the corresponding subgraph, and 0 if neither x nor y are in the subgraph. Thus, for a leaf v, its table values
are equal for both the clique cover and MinRank problems. Assume that the statement is true for level j < k
vertices in the tree Ḡ (here, a level j vertex is one that has a path of length j − 1 to some leaf). The table for
a level k vertex is calculated according to tables of level j vertices, using the procedures “merge” and “adjust”
analyzed in Sections 2 and 3. As the claims states in Sections 2 and 3 are completely equivalent (given the change
in the objective function), the inductive assertion follows. All in all, for any level k vertex, the calculation of
table(v) depends only on the tables of level j < k vertices. By assumption, these tables are equal for MinRank
and clique cover and thus procedures “merge” and “adjust” give the same results for the same input. We conclude
that MinRank and clique cover are equal for a level k vertex as well. This suffices to conclude our proof. The
efficiency of our calculations follow directly from our constructive proofs.
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Part II

A PTAS for clique cover on planar graphs
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Chapter 1

Overview of Baker’s algorithm for k -
outerplanar graphs

In this part of the Thesis we address the clique cover problem when restricted to instances which are k-outerplanar.
Recall that the clique cover problem on planar graphs is known to be NP-complete [8, 13]. We extend the ideas
of Baker to show that one can solve clique cover on k-outerplanar graphs efficiently. We present an algorithm that
runs in time nO(k) for its solution. The conclusion of this part is the proof of Theorem 2.1.2.

As in Part I, our work is based on Baker’s algorithmic paradigm [2], focusing not only on outerplanar graphs,
but also on the more complex setting on k-outerplanar graphs. We give a brief (and rough) overview of the main
ideas that govern the algorithm of [2], and as before identify the major points that need to be addressed in order to
apply the paradigm at hand to the case of the clique cover problem. The full description of Baker’s algorithms for
k-outerplanar graphs is rather complex and we refer the reader to [2] for complete details.

Given a k outerplanar graph G, the algorithm of Baker [2] has two major steps. In the first step, a tree
representation Ḡ of G is constructed. Every node in Ḡ corresponds to a subgraph of G, where the root of Ḡ
corresponds to G itself, each leaf in Ḡ corresponds to an edge, and internal nodes in Ḡ correspond to the subgraph
of G induced by their children in Ḡ. The construction of Ḡ from G is very simple in nature, for outerplanar graphs
G, the tree Ḡ tightly resembles the standard notion of the dual to an outerplanar graph, while for k-outerplanar
graphs, the construction of Ḡ has a inductive flavor based on k consecutive removal of vertices on the outer face.

In slightly more detail: For outerplanar graphs G, Ḡ is constructed as showed in Part I1. Place a vertex in each
interior face and on each exterior edge, and draw an edge from each vertex representing a face f to each vertex
representing either an adjacent face (i.e., a face sharing an edge with f ) or an exterior edge of f .2 An example
(taken from [2]) is shown in Figure 1.1 of Part I.

Given a k-outerplanar graph G, and a corresponding planar embedding E, we define level i nodes. A node is
at level 1 if it is on the exterior face. A cycle of level 1 nodes is called a level 1 face. For each level i face f , let
Gf be the subgraph induced by the nodes placed inside f in this embedding. Then, the nodes of the exterior face
of Gf are level i+ 1 nodes. Now, a cycle of level i nodes is called a level i face. A k outerplanar graph is a planar
graph in which there are no nodes of level > k in it’s embedding. Throughout the paper, we assume that the graph
is connected and that the level i nodes within every level i− 1 face induce a connected subgraph.3 We refer to this
connected induced subgraph as a level i component. For example, in Figure 1.1, the nodes A,B,C,D,E, F are
level 1 nodes, a, b, c, d, e, s, t, u are level 2 nodes, and x, y, z, w,m, n are level 3 nodes. In addition, {A,B,C,D}

1In this presentation we suppose there are no cutpoints in G, i.e., a vertex whose deletion disconnects the graph.
2This tree is closely related to the dual of the graph; however, the dual would lack vertices for exterior edges and would have an

additional vertex for the exterior face.
3If not, as explained in [2] one adds some fake edges to obtain connectivity, but in computing values in the dynamic programming tables,

ignores these edges.
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Figure 1.1: A k-outerplanar graph and its corresponding tree representation.

and {B,E, F,C} are level 1 faces on the same level 1 component, {a, b, c, d}, {c, d, e} are level 2 faces on a level
2 component, and {s, t, u} is a level 2 face on other level 2 component. {x, y, z, w} and {y,m, n, z} are level 3
faces on the same level 3 component. The first step of the algorithm is constructing a tree representation Ḡ of G.
Note that any level i component is an outerplanar graph, and hence we can use the method of Part I to construct a
tree for it. As before, the leaves of a level i tree represent edges exterior to the level i component, the other vertices
represent faces of the level i component, and the leaves from left to right represent a counterclockwise walk
around the exterior edges of the component. After constructing a tree for each level i component, we construct Ḡ
as follows: Starting from the level 1 tree, each face vertex of this tree can represent a face which contains a level
2 component. If so, add an edge from this vertex to the root of the tree that represents the level 2 component.
Now, repeat this step for each level i component, and add edges from face vertices of level i tree representation of
level i components, to the root of level i + 1 tree representations of level i + 1 components which are induced in
corresponding faces of level i components. We refer the interested reader to Baker’s original work [2] for a full
presentation of the tree structure Ḡ.

To summarize, the tree representation Ḡ of G will hold a vertex for each edge of G (and at times additional
special ”root” vertices corresponding to nodes of G). Each vertex (x, y) in Ḡ will represent a subgraph of G which
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is called G(x, y) spanned by the so called slice of (x, y). In addition, with each vertex (x, y) in Ḡ we associate
an array referred to as the table of (x, y) which holds information regarding the clique cover objective function
of certain subgraphs of G(x, y). Finally each vertex (x, y) in Ḡ is associated with a set of nodes in G called the
boundary of G. We elaborate on the slice, table and boundary of vertices in Ḡ in Section 2.

Roughly speaking, once the tree Ḡ is given, the objective in [2] is to dynamically compute the objective
function at hand (e.g., CC) in a bottom up manner from the leaves to the root. To that end, with each vertex in Ḡ,
[2] associates a table including useful information regarding the objective function being computed on the subgraph
of G corresponding to v. There are two major operations that need to be addressed in the algorithm specified in
[2]. The merge operation which takes as input an intermediate table T and the table of a tree node u and returns
a “merged” table of the two. The adjust operation which takes as input a table T consisting of the merge of all
the children of v, and returns a table corresponding to v. To apply Baker’s algorithm to the objective function Obj

of our choice (here, we study the clique cover problem), we must show how to implement the subroutines merge
and adjust. It is not hard to verify that to prove that one can implement the merge operation, it suffices to present
an algorithm that takes as input two induced subgraphs G1 and G2 of G with intersection B of size ≤ k and the
solutions Obj(G1 \B′), Obj(G2 \B′) for each B′ ⊆ B; and returns a solution for Obj(G1 ∪G2). Implementing
this operation for the clique cover objective follows from Property 3.2.4.

Similarly, for the adjust operation as presented in [2], it suffices to present an algorithm which takes as input
a k outerplanar graph G that includes vertices x and y on the outer face of G, but does not include the edge (x, y)
(also on the outer face ofG), and additional solutions to Obj(G′) forG′ ⊂ G that are stored in the tables computed
recursively by the algorithm, and returns a solution for Obj(G + e). The implementation of this latter tasks for
the clique cover objective function is highly non-trivial and is the main contribution of this part of the thesis. This
implementation does not follows directly from [2], and to the best of our knowledge, has not been addressed in the
past.
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Procedure table(v)

Let v = (x, y) be a vertex on a level i component
if v is a face vertex and face(v) encloses no level i+ 1 component
T = table(u) where u is the leftmost child of v
for each other child c of v from left to right
T = merge(T, table(c))

return adjust(T);

else if v is a face vertex and face(v) encloses a level i+ 1 component C
return adjust(contract(table(root(C̄))))

else if v is a level 1 leaf
return a table representing the edge (x, y)

else /* v is a level i leaf, i > 1 */
Let f be the level i face enclosing the component for v
Let the labels of the children of vertex(f) be (z1, z2), (z2, z3) . . . (zm, zm+1)

/* find zp - a point between nodes adgacent to x and nodes adgacent to y */
if y is adjacent to some zr, LB(v) ≤ r ≤ RB(v)

let p be the least such r
else p = RB(v)

T = create(v, p)

/* extend the leftmost p tables to include x and edges from x to zr, r ≤ p, and merge with T */
j = p− 1
while j ≥ LB(v)
T = merge(extend(x, Table(uj), T )), uj is the jth child of vertex(f)
j = j − 1

/* extend the remaining tables to include y and edges from y to ur, r ≥ p, and merge with T */
j = p
while j ≤ RB(v)
T = merge(extend(y, Table(ur), T )), uj is the jth child of vertex(f)
j = j + 1

return (T )

Figure 1.2: The algorithm table from [2].



Chapter 2

The clique cover objective function for k -
outerplanar graphs

In this section, we modify Baker’s algorithm to compute the clique cover objective for k-outer planner graphs. For
constant k our algorithm will run in time polynomial in the input graph size |G|. More specifically, our running
time will be nO(k) for graphs G with n vertices.

Similar to the outer planer case studied in Part I, the major modification to Baker’s algorithms lies in the details
of the “merge” and “adjust” operations. Roughly speaking, the major modification needed to adapt to the clique
cover objective function is in the adjust operation in which for a subgraphG′ ofG that includes the vertices x, y on
its outer face, but does not include the edge (x, y), we seek to compute CC(G′ + (x, y)). As noted in Claim 3.2.2,
to compute CC(G′+ (x, y)) we need to use the value of CC(G′ \{x, y, z}) for any vertex z that closes a clique with
x, y. In the outerplanar case, the value CC(G′ \ {x, y, z}) was stored in tables computed before the task at hand of
computing CC(G′ ∪ (x, y)). There are two major differences between the k-outerplanar case, and the outerplanar
one. In the outerplanar case, there may only be a single vertex z that closes a clique with x, y, and in such a case
the information CC(G′ \ {x, y, z}) is obtainable due to the fact that the vertex z sits on the “boundary” of the slice
at hand when computing the adjust operation. In the k-outerplanar case, there may be several vertices z that close
a clique with x, y. In addition, the information CC(G′ \ {x, y, z}) for such vertices is no longer accessible via the
tables (before our modification) computed by Baker’s algorithm.

To overcome the need to access CC(G′ \ {x, y, z}) in the adjust operations, we enhance the original tables
suggested by Baker significantly. In the original tables, each tree vertex will have a set of boundary nodes B and
there is an entry for each subset B′ of B. In these entries the value CC(G′ \B) is stored. In our modified tables, we
will carefully define a set system denoted by the term OuterSubsets(G′), and our tables will include the value of
CC(G′ \ B′ \ S′) for each subset B′ of boundary nodes and each subset S′ in the set system OuterSubsets(G′).
The construction of the set system OuterSubsets(G′) and its properties will be defined in detail below. As we
will show, this addition to the tables we define will allow us to use the value of CC(G′\{x, y, z}) when it is needed.

The outline of this chapter is as follows: we first define in detail several notions from [2] that will set the
foundations for our enhanced analysis. We start by discussing the notion of slices and the notion of an “execution
tree” referred to as Galg. We then define the notion of boundary nodes and the new notion of outer nodes used in
this work. Finally we define the enhanced tables that will be used in this work, and turn to study the merge and
adjust operations.

2.1 Slices and Boundary nodes

For each vertex in the tree representation Ḡ, we define a corresponding slice (a subgraph of G). A slice is a
subgraph ofG, which is obtained by ”cutting” its embedding by analogy with cutting a pie into slices. The slice of a
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level i leaf vertex (x, y) contains the edge (x, y) and nodes from lower level components. The boundaries of a slice
of a level i vertex contain i nodes (for each boundary), one for each level from 1 to i, listed in order of decreasing
level. We refer to two groups of boundary nodes, LeftBoundaries(x, y) and RightBoundaries(x, y), each
boundary contains exactly i nodes. All the nodes in the embedding that exists inside the boudaries and the edge
(x, y) are part of the slice. The slice of a level i face vertex contains also higher level nodes - the nodes enclosed
by the face. To define the notion of slices recursively, in [2] every level i vertex in Ḡ is associated with a number of
level i− 1 vertices. This mapping associates each level i− 1 vertex of Ḡ with a single level i vertex; thus implying
that any two slices in G are either disjoint or one is included in the other. In more detail, let v be a tree vertex
labeled (x, y):

• If v represents a level i face with no enclosed nodes, i > 1, its slice is the union of the slices of its children,
plus the edge (x, y).

• If v represents a level i face enclosing a level i+ 1 component C, its slice is that of the root of the tree for C
plus the edge (x, y).

• If v represents a level 1 leaf, its slice is the subgraph consisting of (x, y).

• If v represents a level i leaf, i > 1, then its slice includes (x, y), edges from x and y to level i − 1 nodes,
and the slices computed recursively for appropriate level i − 1 vertices. Here, ‘appropriate’ is determined
exactly by the level i− 1 vertices associated in [2] to v as mentioned above.

For example, consider the vertex (y, z) on Figure 2.1. The set LeftBoundaries(y, z) is equal to {y, d,B},
and the setRightBoundaries(y, z) is equal to {z, e, C}. The slice of the vertex (y, z) contains the follwing edges
(and the corresponding nodes): (y,m), (m,n), (n, z), (d, e), (z, e), (B,C), (B,E), (E,F ), (F,C), (s, t), (t, u),
(u, v), (u,C), (t, F ), (s, E), and (s, E).

Note that the Slice of the root of G is simply the graph G itself. Once the tree Ḡ is given, the objective is to
dynamically compute the clique cover in a bottom up manner from the leaves to the root.

2.2 The execution tree Galg and its properties

In our analysis, it will be useful to refer to the execution tree of our algorithm. The execution tree, denoted Galg,
is the tree (consisting of the vertices of the standard tree representation Ḡ) who’s structure represents the recursive
execution of algorithm Table given in Figure 1.2. Namely, the root of Galg is the vertex in Ḡ representing the
graph G, and the children of each vertex v in Galg are the vertices u ∈ Ḡ for which there is a recursive call to
Table(u) from procedure Table(v). It is shown in [2] that every vertex in Ḡ appears exactly once in Galg.

Definition 2.2.1 (Galg - execution tree). Galg is obtained from Baker’s tree representation Ḡ as follows: The root
of Galg is the same root as the root of Ḡ. Let v be a tree vertex labeled (x, y) in Galg:

• If v represents a level i face with no enclosed nodes, i > 1, its children in Galg are the same children as v
has in Ḡ, namely, the vertices (x, a), (a, b), . . . (z, y), which represent a directed walk of exterior edges of
v’s component, in a counterclockwise direction from x to y.

• If v represents a level i face enclosing a level i+1 component C, its only child is the vertex which represents
the root of the tree for C in Ḡ.

• If v represents a level 1 leaf, it is a leaf on Galg.

• If v represents a level i leaf, i > 1, then its children are the level i − 1 vertices that are determined by the
slice of v described above.



2.2. THE EXECUTION TREE GALG AND ITS PROPERTIES 45

�

�

�

�

��

� �

	




��




�

��

�

�

�

�

�����

���������������

�����

�����

�
�
�

����� ���
�������
���

����� ����� �����

����� �����

���	� �	���

����� �����

�
�
�

�����������
���

����� ����� �����

Figure 2.1: A k-outerplanar graph and its corresponding execution tree Galg.

The tree Galg represents the execution of the algorithm presented in Figure 1.2. In what follows we present some
useful properties of Galg that follow directly by the definition of Galg (and by the analysis appearing in [2]).

Property 2.2.1. Each vertex slice is obtained by its children slices in the following manner:

• If v = (x, y) represents a level i face with no enclosed nodes, its slice is the merge of its children’s slices in
Galg (corresponding to the ”merge” operation), with the addition of the edge (x, y) (corresponding to the
”adjust” operation).

• If v represents a level i face enclosing a level i+ 1 component C, its slice is the slice of its sole child in Galg
with the addition of the edge (x, y) (corresponding to the ”adjust” operation).

• If v represents a level 1 leaf, its slice is the subgraph consisting of (x, y) only.

• If v represents a level i leaf, i > 1, its slice is the merge of its children’s slices in Galg (according to the
”merge” operation), with the addition of the edge (x, y) (corresponding to the ”create” operation).

Property 2.2.2. If w1 is a descendant of w2 in Galg, then Slice(w1) ⊆ Slice(w2).
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Property 2.2.3. If w1 is a descendant of w2, then during the algorithm’s execution, the table for w1 is computed
before the table for w2.

Property 2.2.4. Let α be a level i vertex in Galg that represents a level i edge eα in G, such that eα is enclosed in
a level j face F , j < i. Let β be a level j vertex in Galg that represents a level j edge eβ in G, such that eβ is on
the face F , and β is not the face vertex corresponding to F . Each vertex on the path β, . . . , α in Galg other than
β is of level > j.

For example, to better understand Property 2.2.4, consider the execution tree in Figure 2.1. Let α = (y, z), and
β = (d, e). The only edge in the path from β to α is (m,n). This edge is at the same level as α, and according to
Property 2.2.4 each vertex on the path is of level > j, j is the level of β. A slight variation of Property 2.2.4 that
we will also need later in our proof follows. One may follow the same example for the property below also.

Property 2.2.5. Let α be a level i vertex in Galg that represents a level i edge eα in G, such that eα is enclosed in
a level j face F , j = i− 1. Let β be a level j vertex in Galg that represents a level j edge eβ in G, such that eβ is
on the face F , and β is not the face vertex corresponding to F . Each level i vertex on the path β, . . . , α in Galg is
on the same level i component as α.

2.3 The set OuterNodes

We now turn to define a set of nodes, referred to as OuterNodes that will be central to the definition of the system
OuterSubsets discussed above.

Definition 2.3.1 (OuterNodes(v)). Let v = (x, y) be a vertex on a level i component C̄i in the tree representation
of Baker (Ḡ). A node z is in OuterNodes(v) iff: z ∈ Slice(v), and z belongs to some level j component Cj ,
j ≤ i, such that C̄j is on the route from v to the root of Ḡ. z ∈ OuterNodesj(v) if z ∈ OuterNodes(v) and z
belongs a level j component Cj .

Notice that if v belongs to a level i component, there are exactly i components in the route from v to the root
of Ḡ (namely, at most k components). For example, in Figure 1.1, the outer nodes of the slice of (x, y) are the
nodes in the components corresponding to the following components in the tree representation Ḡ: the component
with the root (x, x), the component with the root (a, a), and the component with the root (A,A). Notice that the
component with the root (s, s) is not on the route from (x, y) to the root (A,A), and thus it’s nodes do not belong
to OuterNodes(v).

We are now ready to define the set system OuterSubsets(v) for vertices v in the tree representation Ḡ. As de-
fined above, each and every level i vertex v will hold a corresponding setOuterNodes(v) = ∪j≤iOuterNodesj(v).
From each set OuterNodesj(v), we will define 4 subsets referred to as OuterNodesj1(v), OuterNodesj2(v),
OuterNodesj3(v), andOuterNodesj4(v). Roughly speaking, the setsOuterNodesj`(v) are defined inductively,
based on the recursion in Baker’s algorithm. In the merge operation, certain sets OuterNodesj`(v) are merged
together, while in the adjust operation certain sets are canceled (i.e., deleted) or their content changed. The set
system OuterSubsets(v) now consists of any subset of nodes obtained by taking at most a single node from each
subset OuterNodesj`(v) where j ≤ i (recall that v is in level i). Notice that the size of OuterSubsets(v) is
bounded by n4k, and thus can be implemented in the tables constructed throughout the algorithm.

Definition 2.3.2 (OuterSubsets(v)). Let v = (x, y) be a vertex on a level i component C̄i in the tree represen-
tation of Baker (Ḡ). An outer subset S′ ∈ OuterSubsets(v) is a subset from OuterNodes(v) which contains
at most 4 nodes from each level j component, j ≤ i. The outer subsets are defined as follows: For each level j
component, given 4 subsets ofOuterNodesj(v): OuterNodesj1(v), OuterNodesj2(v), OuterNodesj3(v), and
OuterNodesj4(v); we define OuterSubsets(v) to consist of all subsets S′ ⊆ OuterNodes(v) which contain at
most 1 node from each OuterNodesj`(v), j ≤ i, ` ≤ 4.
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As an example, if in Figure 1.1 we set OuterNodesj`(v) to be OuterNodesj(v) for all j and `, the following
subsets are part of OuterSubsets(x, y): S1 = {x, d,A}, S2 = {x, y, c, d, A,B}, S3 = {x, y, d}, S3 = {y}.

2.4 Table(v)

We now discuss the content and recursive construction of Table(v), the main data structure that enables the
computation of the clique cover objective. The algorithm from [2] to compute Table(v) is given in Figure 1.2.
As mentioned, the major components of the algorithm are the merge and adjust operations to be discussed in detail
shortly.

Definition 2.4.1 (Table(v)). For each slice corresponding to a vertex v = (x, y) of Ḡ, based on the algorithm of
[2], we define a table for this slice which contains for each subset S′ ∈ OuterSubsets(v) and for each subset
B′ ⊆ Boundaries(v), the value of CC(Slice(v) \B′ \ S′). Note that the size of Table(v) is at most n4k22k.

To compute Table(v), one needs to define the set Boundaries(v) which represents the boundary of the slice
of v, and the set OuterNodes(v) = ∪OuterNodesj(v). These sets are constructed recursively as described in
the upcoming sections.

2.5 Computing Table(v) for level 1 leafs

The case when v is a level 1 leaf corresponding to (x, y) in G is the base of Baker’s recursive algorithm. In our
setting, the following sets will be defined for v: Slice(v) is the edge (x, y), Outernodesj`(v) = φ for j > 1,
Outernodesj`(v) = {x, y} for j = 1, and the boundary of v includes the nodes x and y. Given these settings, the
content of Table(v) follows.

2.6 Computing Table via the merge operation

In Figure 1.2 we present the recursive structure of Baker’s algorithm. In what follows we will specify the merge
operation. In the merge operation one takes two subgraphs G1 = Slice(v1) and G2 = Slice(v2) with at most
k common nodes for which their tables are known, and returns the table corresponding to their union GT =
G1 ∪ G2. To define the table of a union of 2 subgraphs we first specify the sets OuterNodesj`(GT ). Namely,
for each level j component, we define OuterNodesj`(GT ) = OuterNodesj`(G1) ∪ OuterNodesj`(G2). Now,
OuterSubsets(GT ) is defined from OuterNodesj`(GT ), j ≤ i, ` ≤ 4, via Definition 2.3.2. For example, for a
level j component, if the following are the subsets corresponding to G1:

• OuterNodesj1(G1) = {a, b, c, d}

• OuterNodesj2(G1) = {a, b, c}

• OuterNodesj3(G1) = {a}

• OuterNodesj4(G1) = {b}

and the following are the subsets corresponding to G2:

• OuterNodesj1(G2) = {s, t, u, v}

• OuterNodesj2(G2) = {s, t, u, v}

• OuterNodesj3(G2) = {s, t}
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• OuterNodesj4(G2) = {}

then the following are the subsets corresponding to GT :

• OuterNodesj1(GT ) = {a, b, c, d, s, t, u, v}

• OuterNodesj2(GT ) = {a, b, c, s, t, u, v}

• OuterNodesj3(GT ) = {a, s, t}

• OuterNodesj4(GT ) = {b}

In the case above, the set OuterSubsets(GT ) includes several subsets, among them are: S1 = {a, b}, S2 =
{b, s}, S3 = {c, s, b}, S3 = {d, c, s, b}.

We continue with the definition of the merge operation: as in the original work of Baker [2], the boundary set
is defined by Boundaries(GT ) = LeftBoundaries(G1) ∪ RightBoundaries(G2). The table for GT contains
for each subset ST ∈ OuterSubsets(GT ) and for each subset BT ⊆ Boundaries(GT ), the value of CC(GT \
BT \ ST ). If the graphs G1 and G2 were disjoint then the clique cover of their union is just the union of the
corresponding clique covers, however, as the subgraphs share few nodes, the clique cover of their union might be
smaller according to the claim below. Recall that in our setting G1 and G2 may share at most k nodes.

Claim 2.6.1. LetG1 andG2 be induced subgraphs ofG that have k boundary nodes in common. LetBoundaries(GT )
and OuterSubsets(GT ) be the boundary nodes and outer subsets of GT = G1 ∪ G2. One can compute for any
BT ∈ Boundaries(GT ) and ST ∈ OuterSubsets(GT ) the value of CC(GT \ BT \ ST ) given the tables of G1

and G2 which hold the values CC(Gi \Bi \ Si) for every Bi ∈ Boundaries(Gi) and Si ∈ OuterSubsets(Gi).

Proof. By definition, each ST ∈ OuterSubsets(GT ) is composed of two subsets: S1 and S2, with Si in the set
OuterSubsets(Gi). In addition, Boundaries(GT ) ⊆ LeftBoundaries(G1) ∪ RightBoundaries(G2). Thus,
for each ST ∈ OuterSubsets(GT ), and each BT ⊆ Boundaries(GT ), the graph (GT \ BT \ ST ) is the union
of 2 subgraphs: G′1 = (G1 \ B′1 \ S′1) and G′2 = (G2 \ B′2 \ S′2). These subgraphs have (at most) k boundary
nodes in common, and in addition for any B′ on the common boundary of G′1 and G′2 the value of CC(G′1 \ B′)
and CC(G′2 \B′) appears in the tables corresponding to G1 and G2. We conclude that using Property 3.2.4 we can
find CC(G′1 ∪G′2) as desired.

All in all, we have shown that Table can be constructed recursively in the case of the merge operation. We
now specifically address the case of level i leafs.

2.7 Computing Table(v) for a level i leaf

Let v = (x, y) be a leaf vertex on a level i component C̄i. As described in Figure 1.2, in order to calculate the table
for v, we merge certain level i− 1 tables with the edge (x, y) and additional edges from x and y to the level i− 1
nodes. Precisely following the line of analysis in [2], the basic idea for the construction of Table(v) is to create
an initial table which includes the edge (x, y) and a node z from level i−1, turn each relevant level i−1 table into
a level i table by adding the node x or y, and merging these tables together. Because of the planarity constraint,
there is some level i − 1 node z such that all the nodes other than z that are adjacent to x are on one side of z,
while all the nodes other than z adjacent to y are on the other. Only z can be adjacent to both x and y. Thus, the
approach is to find z, use “create” to construct an initial level i table for a subgraph containing z, x, y, and then to
extend the tables on one side using x and the tables on the other side using y. The “create” operation is discussed
shortly. For example, in Figure 2.2, the slice of level 2 leaf vertex v = (s, t) is given. In order to compute the table
of (s, t), we create an initial table with the level 1 node E. That is, this subgraph contains the nodes (s, t, E). The
next steps are merging this initial table with the tables of slices defined for (B,E) and (E,F ).
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Figure 2.2: The slice of the leaf vertex (s, t).

2.7.1 Create

In the create operation we first find the level i − 1 node z such that all the nodes other than z that are adjacent
to x are on one side of z. The following sets are defined for the level i table for the subgraph containing x, y, z:
Outernodesj`(v) = {x, y} for j = i andOuternodesj`(v) = z for j = i−1. Otherwise, Outernodesj`(v) = φ.
The boundary of v includes the nodes x, y, z. Given these settings, the content of Table(v) follows and is
summarized by the following claim.

Claim 2.7.1. Let v = (x, y) be a leaf vertex on a level i component C̄i. OuterNodesi1(v) = OuterNodesi2(v) =
OuterNodesi3(v) = OuterNodesi4(v) = OuterNodesi(v) = {x, y}.

2.8 Computing Table(v) via the adjust operation

In the “adjust” operation one takes a planar subgraph G′ with (outer face) nodes x and y but without the edge
e = (x, y) and computes the clique cover of G′ + e based on the clique covers of the graphs G′, G′ − {x},
G′ − {y}, G′ − {x, y} and others. There are two kinds of “adjust” operations during the algorithm. A “simple
adjust” operation takes place when trying to calculate the table of a level i face vertex with no enclosed nodes (in
this case its slice is the merge of the slices of its children, plus the edge (x, y)). For example, in Figure 1.1, after
merging the slices of vertices (y,m), (m,n), (n, z), the table of the slice of (y, z) is calculated using the “simple
adjust” operation (adding the edge (y, z)). A “complex adjust” operation takes place when trying to calculate the
table of a level i face vertex enclosing a level i + 1 component C (its slice is that of the root of the tree for C
including the edge (x, y) ). For example, in Figure 1.1, after calculating the slice of the vertex (x, x), which is
the root of a component enclosed by the face vertex (d, c), the table of the slice of (d, c) is calculated using the
“complex adjust” operation (adding the edge (d, c)).

2.8.1 Outline of proof technique

The adjust operation is one of the most technically difficult parts in our analysis. Roughly speaking, the major
challenge in our analysis is two fold and has an inductive flavor. First of all we need to prove that at the time we
perform an adjust operation at vertex v of Ḡ corresponding to a certain subgraph G′ (which is in fact, Slice(v) \
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B′ \ S′ for certain sets B′ and S′, or is it Slice(v) itself), the information in the tables already computed by the
algorithm is rich enough to allow the computation of CC(G′ \ {x, y, z}) for vertices z that close a clique with the
edge (x, y) of the adjust operation (here, we follow the discussion in the beginning of Chapter 2). Secondly, we
need to prove that the information stored in Table(v) after the adjust operation will suffice to support future adjust
operations on vertices w in Ḡ. Namely, that we store the value of CC(G′ + (x, y) \ S) for a rich family of subsets
S. This is exactly where we will use the definitions given for the subsets in OuterSubsets(·), or more specifically
the sets OuterNodesj`(·).

For the discussion below, consider the case of a complex adjust operation (performed on a face vertex v that
encloses some component). The case of a simple adjust is very similar. In this case, to compute the table of v, we
use the table of u corresponding to the component enclosed in v.

We start by an example (a thought experiment) which will justify our definition of OuterNodesj`(·) and
OuterSubsets(·). Consider the case in which in G′ (corresponding to v) there is only one node z that closes a
clique with the edge (x, y), and in addition, for u, all sets OuterNodesj`(u) are equal to OuterNodesj(u) (we
refer the reader to Definition 2.3.2 while noticing the subscript j` in the former expression as apposed to j in the
latter). It is not hard to verify (we will do this later in detail) that in this case our first challenge above will be
satisfied. Namely, that z ∈ OuterNodesj`(u), and thus the set {z} is in OuterSubsets(u), which will lead to the
fact that at the time of executing the adjust operation on v it holds that we are able to compute CC(G′ \{x, y}\{z})
as desired.

We are now left to define OuterNodesj`(v) and accordingly the subsets in OuterSubsets(v). Recall that
OuterSubsets(v) includes all subsets that consist of (at most) a single node from any subset OuterNodesj`(v),
and for every S ∈ OuterSubsets(v) the table of v has to include CC(G′ + (x, y) \ S). However, exactly
as in the case of computing CC(G′ + (x, y)), to compute CC(G′ + (x, y) \ S) we will also need to compute
CC(G′ \ S \ {x, y, z}), which can be seen to essentially boil down to requiring that the set S ∪ {z} be included
in OuterSubsets(u). Assume that the vertex z is a level i vertex. A closer look at the system OuterSubsets(u)
reviles that it includes subsets with at most 4 level i nodes. Thus, if S∪{z} is to be included inOuterSubsets(u),
it must be the case that S includes at most 3 level i nodes. Namely, when defining OuterNodesi`(v), one must
rule out the case that OuterSubsets(v) includes sets S with more than 3 level i nodes (in Slice(u)). This is
done in a simple manner. Instead of defining OuterNodesi`(v) to be equal to OuterNodesi`(u) (which may
be a very natural, but naive, choice), we will delete one of the sets OuterNodesi`(u), in the sense that its coun-
terpart corresponding to v will be defined as the empty set (e.g., we may define OuterNodesi1(v) = φ and
OuterNodesi`(v) = OuterNodesi`(u) for ` ≥ 2). This way the set system OuterSubsets(v) will satisfy the
requirement stated above, and it will still remain rich enough to satisfy future adjust operations. Or will it?

At this point in time we have that OuterNodesi1(v) is empty but OuterNodesi`(v) for ` ≥ 2 is still full.
However, potentially, it may be the case that future adjust operations “zero-out” additional sets OuterNodesi`(w)
derived inductively from vertex v, to the extreme that OuterNodesi`(w) = φ for all `. In such a case, adjust
operations that rely on information from Table(w) may not be able to complete the clique cover computations
needed.

Indeed, in our construction and proof to follow, we deal with this problem and show that defining 4 sets of
vertices from each level in Slice(v) will suffice to satisfy all future adjust operations. This is essentially done on
a case analysis based on the relative level of z when compared to that of v. More specifically, for a level i node
v and a level j node z, we define a certain set OuterNodesj`(v) that will be deleted if, when applying the adjust
operation on v, the node z closes a clique with (x, y). This mapping is many to one, however, we show (based on
the planar structure of G) that each set OuterNodesj`(v) will be used (and thus deleted) only once.

2.8.2 Proof of the adjust operation

Before proceeding with the proof, we first define the sets OuterNodesj`(v) and OuterSubsets(v) for a vertex v
after performing the ‘adjust” operation. Let v = (x, y) be a vertex on a level i component C̄i. We will consider
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the two cases for the adjust operation: In the complex adjust case, the face which is represented by the vertex v
encloses a component with a root represented by a vertex u. According to our definition of slices, Slice(v) =
Slice(u) + (x, y). That is, Slice(v) is obtained by adding the edge (x, y) to Slice(u). In the simple adjust case,
the face which is represented by the vertex v has no enclosed nodes and Slice(v) is obtained by merging all the
slices corresponding to children of v, and then adding the edge (x, y). Let Slice(u) be the subgraph which is
obtained by merging the children’s slices. Here, again, Slice(v) = Slice(u) + (x, y). The sets OuterNodesj`(v)
are obtained from the sets OuterNodesj`(u) in the following manner:

• For j ≤ i− 2, and 1 ≤ ` ≤ 4: OuterNodesj`(v) = OuterNodesj`(u).

• For j = i−1 the definition ofOuterNodesj` differs for different values of `. Specifically,OuterNodesj1(v) =
OuterNodesj1(u) and OuterNodesj2(v) = OuterNodesj2(u).

If (x, y) doesn’t close any clique with a node from level j component, thenOuterNodesj3(v) = OuterNodesj3(u)
and OuterNodesj4(v) = OuterNodesj4(u).

If (x, y) closes a clique with one node z1 from level j component, and z1 ∈ OuterNodesj3(u), then
OuterNodesj3(v) = {z1}. Otherwise, z1 ∈ OuterNodesj4(u) (we will prove later that any level i −
1 node z that closes a clique with (x, y) is included in OuterNodesj3(u) or in OuterNodesj4(u)) and
OuterNodesj4(v) = {z1}.
If (x, y) closes a clique with two nodes z1, z2 from level j component (we will prove in Claim 2.8.2 that
follows that there are only 2 nodes from level i − 1 component that can close a clique with (x, y)), then
according to Claim 2.8.1 (that follows) one of the following holds:

1. z1 ∈ OuterNodesj3(u) and z2 ∈ OuterNodesj4(u). In this case we set OuterNodesj3(v) = {z1}
and OuterNodesj4(v) = {z2}.

2. z1 ∈ OuterNodesj4(u) and z2 ∈ OuterNodesj3(u). In this case we set OuterNodesj4(v) = {z1}
and OuterNodesj3(v) = {z2}.

In other words, if (x, y) closes a clique with a node from a level j component, then OuterNodesj3(u) and /
or OuterNodesj4(u) do not appear in the table of v. Rather OuterNodesj3(v) and OuterNodesj4(v) are
set to include the node that closes a clique with (x, y). Otherwise, OuterNodesj3(v) = OuterNodesj3(u)
and OuterNodesj4(v) = OuterNodesj4(u). The sets OuterNodesj3(u) and OuterNodesj4(u) contain
nodes z from a level i−1 component (the component which encloses v), which potentially may close a clique
with the edge (x, y). Removing these sets from Table(v), and the appropriate outer subsets to be defined
in OuterSubsets(v), will allow us to find for each such z, and for each subset S ∈ OuterSubsets(v), the
clique cover value of Slice(v) \ (S ∪ {z}).

• For j = i, as before, the definition of OuterNodesj` differs for different values of `. Specifically, for ` = 1,
OuterNodesj1(v) = OuterNodesj1(u). For ` = 2 we set OuterNodesj2(v) = {x, y}, meaning that
OuterNodesj2(u) is removed and does not appear in Table(v), rather the nodes {x, y} are added. The set
OuterNodesj2(u) is a set that contain nodes z from the same component of v, which may potentially close
a clique with the edge (x, y). As in the case above, removing this set will allow us the necessary slackness in
the definition of OuterSubsets(v). In addition, we set OuterNodesj3(v) = OuterNodesj4(v) = {x, y}.

• For j = i+1, we setOuterNodesj1(v) = φ, meaning thatOuterNodesj1(u) does not appear in Table(v).
The set OuterNodesj1(u) is a set that contain nodes z from a level i+ 1 component (the component which
is enclosed by the face represented by v), which may potentially close a clique with the edge (x, y). As in the
cases above, removing this set will allow us the necessary slackness in the definition of OuterSubsets(v).
In addition, we set OuterNodesj`(v) = OuterNodesj`(u) for ` ≥ 2.



52 CHAPTER 2. THE CLIQUE COVER OBJECTIVE FUNCTION FOR K - OUTERPLANAR GRAPHS

The sets OuterSubsets(v) are obtained from the sets OuterNodesj`(v) as defined in Definition 2.3.2. In the
following claim, we show that for each node z that closes a clique with (x, y), it holds that z belongs to a certain
set OuterNodesj`(u).

Claim 2.8.1. Let v = (x, y) be a vertex on a level i component C̄i. Let Slice(u) be the subgraph of the component
enclosed by v (represented by u) in the complex adjust case, and the subgraph which is obtained by merging the
children of v in the simple adjust case. Let Gv = Slice(v). Let Gu = Slice(u) = Slice(v) \ (x, y). For each
node z ∈ Slice(u) that closes a clique with (x, y), the following states hold:

• If z ∈ Cj , j = i + 1 (z in the component which is enclosed in the face represented by (x, y)), then
z ∈ OuterNodesj1(u).

• If z ∈ Cj , j = i (z in the same component of (x, y)), then z ∈ OuterNodesj2(u).

• If z ∈ Cj , j = i − 1 (z in the component which encloses the face represented by (x, y)), then z ∈
OuterNodesj3(u) or z ∈ OuterNodesj4(u).

• If there are 2 nodes z1, z2 ∈ Cj , j = i − 1 (z1, z2 in the component which encloses the face represented
by (x, y)) that close a clique with (x, y), then one of the following holds: (a) z1 ∈ OuterNodesj3(u) and
z2 ∈ OuterNodesj4(u), or (b) z1 ∈ OuterNodesj4(u) and z2 ∈ OuterNodesj3(u).

Note that these are the only cases in which z can close a clique with (x, y).

Proof. We prove our claim in an inductive manner on the execution of Baker’s algorithm. Namely, based on the
structure of Galg. We consider the following cases:

• z ∈ Cj , j = i+ 1 (z is in the component which is enclosed in the face represented by (x, y)). In this case, u
is a vertex of level i+ 1. As z ∈ Slice(u), it holds that there exists a path w1, w2, . . . , wr in Galg such that
(a) wr = u, (b) w1 is the ”first” vertex in Galg that includes z in it’s slice. That is, all children of w1 in Galg
do not include z in their slice. It follows that w1 is a vertex that represents an edge incident to z (i.e, (z, a) or
(a, z)), and it’s a level i leaf (otherwise, if w1 is a face vertex, then there must be another leaf vertex incident
to z), (c) for all vertices ws on the path it holds that z ∈ Slice(ws), (d) the table for ws is computed before
the table for ws+1. We show by induction on s that z ∈ OuterNodesj1(ws). Notice that (c) and (d) are
properties of Galg. For the base case, as w1 represents an edge incident to z in G, and it’s a level j(= i+ 1)
leaf, it holds that z ∈ OuterNodesj(w1) = OuterNodesj1(w1), according to Claim 2.7.1.

Assume the assertion holds for a certain value of s. To prove the assertion for ws+1, notice that the table for
ws+1 is defined by one (or a combination) of the three following possibilities: the merge operation (includ-
ing the vertex ws), by creating a table for a leaf vertex (if ws+1 is a leaf vertex), or by the adjust operation on
ws as described above. In the case of a merge operation, as OuterNodesj1(ws) ⊆ OuterNodesj1(ws+1)
it follows that z ∈ OuterNodesj1(ws+1). In the case of a table creation for a leaf vertex, as the set
OuterNodesj1(ws+1) is obtained by merging certain sets including the set OuterNodesj1(ws) it follows
that z ∈ OuterNodesj1(ws+1). For the case of adjust, assume by contradiction that z /∈ OuterNodesj1(ws+1).
That is, we delete OuterNodesj1(ws) when performing adjust on ws+1. Thus, ws+1 is a level i face vertex
that represents a face which encloses the component that includes z. This is a contradiction to the fact that
v = (x, y) is the only level i face vertex that encloses the component which includes z.

• z ∈ Cj , j = i (z in the same component of (x, y)). In what follows, in a slight change of notation, if v
is subject to a complex adjust, let w be the root of the component enclosed by v. Similarly, if v is subject
to a simple adjust, let w be a child of v in the tree representation for which z ∈ Slice(w). Notice that
x, y, z ∈ Cj and thus x, y, z is a triangle.
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As z ∈ Slice(w), it holds that there exists a path w1, w2, . . . , wr = w in Galg such that (a) w1 is a level
i vertex represented by (x, z) or (z, y) (represents the edges (x, z) or (z, y)) , (b) for all vertices ws on the
path it holds that z ∈ Slice(ws), (c) the table for ws is computed before the table for ws+1. Notice that each
vertex (x, z) or (z, y) can be a level i leaf, or a face vertex.

We show by induction on s that z ∈ OuterNodesj2(ws). Assume w.l.o.g that w1 = (x, z). For the base
case, if w1 is a leaf, we have by definition that z ∈ OuterNodesj(w1) = OuterNodesj2(w1), according to
Claim 2.7.1. Otherwise, (x, z) is a face vertex, and by definition after calculating Table(x, z) we perform
adjust on (x, z), and OuterNodesj2(x, z) = {x, z}. Thus, z ∈ OuterNodesj2(w1).

Assume the assertion holds for a certain value of s. To prove the assertion for ws+1, notice as before that the
table forws+1 is defined by the merge operation (including the vertexws), by creating a table for a leaf vertex
(if ws+1 is a leaf vertex), or by the adjust operation on ws as described above. Exactly as in the previous
case, in the case of a merge operation or a table creation for a leaf vertex, we have OuterNodesj2(ws) ⊆
OuterNodesj2(ws+1) and thus z ∈ OuterNodesj2(ws+1). In the case of adjust, if ws+1 is of level at least
i + 1, then in the adjust operation the set OuterNodesj2(ws+1) equals OuterNodesj2(ws) by definition,
and thus by induction z ∈ OuterNodesj2(ws+1). If ws+1 is of level i it must be the case that ws+1 =
w1 = (x, z) or (z, y) and this is the base case. In order to prove this assertion, assume, in cotradiction,
that ws+1 6= w1. Notice that ws+1 is a level i face vertex (otherwise, there is no need of adjust operation),
and z ∈ Slice(ws+1). Moreover, ws+1 is descendant of v in Galg (it’s in the path w1, w2, . . . , w and w is
a child of v in Galg). (x, z) and (z, y) (and maybe (z, z)) are the only level i children of v in Ḡ. Thus,
ws+1 is descendant of (x, z) or (z, y) in Ḡ, (and in Galg too), and according to the slices construction,
z /∈ Slice(ws+1), a contradiction.

• z ∈ Cj , j = i − 1 (z in the component which encloses the face represented by (x, y)). Similar to the
previous case, if v is subject to a complex adjust, let w be the root of the component enclosed by v. If v is
subject to a simple adjust, let w be a child of v in the tree representation for which z ∈ Slice(w).

As z ∈ Slice(w), it holds that there exists a path w1, w2, . . . , wr = w in Galg such that (a) w1 is a vertex
that represents an edge incident to z (i.e, (z, a) or (a, z)) in Galg (w1 is a level i − 1 leaf or a level i − 1
face vertex), (b) no vertex above w1 in Galg is incident to z, (c) for all vertices ws on the path it holds that
z ∈ Slice(ws), (d) the table for ws is computed before the table for ws+1. We show by induction on s that
z ∈ OuterNodesj3(ws) or z ∈ OuterNodesj4(ws). For the base case, as w1 represents an edge incident
to z in G, it holds that z ∈ OuterNodesj3(w1) = OuterNodesj4(w1). If w1 is a level j(= i− 1) leaf then
according to Claim 2.7.1 OuterNodesj`(w1) = OuterNodesj3(w1) = OuterNodesj4(w1) = {a, z}. If
w1 is a level j(= i − 1) face vertex then OuterNodesj3(w1) and OuterNodesj4(w1) contain the nodes
represented by w1 (i.e, (a, z)). Here, we use the definitions of OuterNodesj` given in Section 2.8.2 for
j = i− 1.

Assume the assertion holds for a certain value of s. To prove the assertion for ws+1, notice that the table
for ws+1 is defined by the merge operation (including the vertex ws), by creating a table for a leaf vertex (if
ws+1 is a leaf vertex), or by the adjust operation on ws as described above. In the case of a merge operation,
as OuterNodesj3(ws) ⊆ OuterNodesj3(ws+1) it follows that z ∈ OuterNodesj3(ws+1). The same
holds forOuterNodesj4(ws+1). In the case of a table creation for a leaf vertex, asOuterNodesj3(ws+1) is
created by merging certain subsets includingOuterNodesj3(ws) it follows that z ∈ OuterNodesj3(ws+1).
The same holds for OuterNodesj4(ws+1).

In the case of adjust, ifws+1 is of level 6= i or 6= i−1, then in the adjust operation the setOuterNodesj3(ws+1)
equals OuterNodesj3(ws), and the set OuterNodesj4(ws+1) equals OuterNodesj4(ws), by definition
(j = i − 1, and thus, only if ws+1 is of level i or i − 1, OuterNodesj3(·) and OuterNodesj4(·) can be
changed). Thus, it follows that z ∈ OuterNodesj3(ws+1) or z ∈ OuterNodesj4(ws+1).
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If ws+1 is of level i − 1, then ws+1 = w1, and this is the base case. This follows from Property 2.2.4. We
are in the case that z is in the component which encloses the face represented by (x, y). Thus, since w1

represents an edge incident to z in G, it holds that w1 is on the face that encloses the edge in G represented
by w. According to Property 2.2.4, since w1 is a level i − 1 vertex, Each vertex on the path w1, . . . , w in
Galg other than w1 is of level > i − 1. Thus, if ws+1 is a level i − 1 vertex in this path, it must be the case
that ws+1 = w1.

If ws+1 is of level i, and it’s corresponding nodes in G don’t close a clique with any level i − 1 nodes z′

then OuterNodesj3(ws+1) = OuterNodesj3(ws), and OuterNodesj4(ws+1) = OuterNodesj4(ws). So
again, z ∈ OuterNodesj3(ws+1) or z ∈ OuterNodesj4(ws+1).

Finally, we are in the case that ws+1 is of level i and there exist level i − 1 nodes z′ that close a clique
with the nodes in G corresponding to ws+1. We show in Claim 2.8.2 below that (a) there are at most two
level i − 1 nodes z1 and z2 in G that close a clique with the nodes in G corresponding to ws+1 and (b)
that it cannot be the case that both z1 and z2 differ from z. This implies that either z1 = z, or z2 = z, or
there is only a single node in G that closes a clique with the nodes in G corresponding to ws+1. In the first
and second case one of OuterNodesj3(ws+1) or OuterNodesj4(ws+1) will be set by definition to {z}.
In the third case, assume w.l.o.g. that z1 6= z and OuterNodesj3(ws) contains z (by induction), we set
OuterNodesj3(ws+1) = OuterNodesj3(ws) and OuterNodesj4(ws+1) = {z1}. In all three cases we
will have z ∈ OuterNodesj3(ws+1) or z ∈ OuterNodesj4(ws+1).

• z1, z2 ∈ Cj , j = i−1 (z1, z2 in the component which encloses the face represented by (x, y)). z1, z2 close a
clique with (x, y). In the previous case we proved that z` ∈ OuterNodesj3(u) or z` ∈ OuterNodesj4(u),
` ∈ {0, 1}. There exist two paths w1`, w2`, . . . , wr` = w in Galg such that (a) w1` is a vertex that represents
an edge incident to z` (i.e, (z`, a) or (a, z`)) in Galg (w1` is a level i− 1 leaf or a level i− 1 face vertex), (b)
no vertex above w1` inGalg is incident to z`, (c) for all vertices ws` on the path it holds that z` ∈ Slice(ws`),
(d) the table for ws` is computed before the table for w(s+1)`.

We show in the proof of Claim 2.8.2 that for each level i component Ci inside a level i − 1 component
Ci−1 the following statement holds: Let (x, y) be an edge on Ci. Let z1 and z2 be nodes on Ci−1 that close
a triangle with (x, y). See Figure 2.3. Every other node on Ci must be enclosed by one of the triangles
(x, y, z1) or (x, y, z2). This follows directly from planarity properties. Thus, all the edges represented by
level i vertices descendant of v in Galg are enclosed by the triangle x, y, z1 or x, y, z2. Assume w.l.o.g
that they are enclosed by x, y, z1. It follows that all the level i vertices descendant of v in Galg in the
paths w1`, w2`, . . . , wr` = w can close a clique only with z1. According to the inductive proof above,
for each level i vertex ws+1 in one of the paths, if we perform the adjust operation, then one of the sets
OuterNodesj3(ws+1) orOuterNodesj4(ws+1) is set by definition to {z1}, and the other set is not changed.
It follows that if z1 ∈ OuterNodesj3(u) then z2 ∈ OuterNodesj4(u), and if z1 ∈ OuterNodesj4(u) then
z2 ∈ OuterNodesj3(u).

We now state and prove the assertion needed in the third case of the proof of Claim 2.8.1.

Claim 2.8.2. (a) Let v be a level i face vertex of the execution tree Galg. There are at most two level i − 1 nodes
z1 and z2 in G that close a clique with the nodes in G corresponding to v. (b) Let z be a level i− 1 node in G that
closes a clique with the nodes in G corresponding to v. Let w1 be a vertex in Galg that represents an edge in G
with one end point which is z. Let w be any level i descendant of v in Galg such that w is in the path w1, w2, . . . , v
(z ∈ Slice(w)). There are at most two level i − 1 nodes z′1 and z′2 in G that close a clique with the nodes in G
corresponding to w, and it cannot be the case that both of them differ from z.
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Figure 2.3: An illustration of the proof for Claim 2.8.2. Here, v = (x, y).

Proof. (a) Each face vertex v in the execution tree Galg is in fact an edge (x, y) in the graph G. Consider the face
F that contains v (F is a level i − 1 face). According to planarity constraint, there are at most 2 nodes on F that
can close a triangle with x, y. Otherwise, there must be edges that intersect each other. For example, in Figure 2.3,
v is a level i face vertex and z′1, z′2 are nodes in a level i− 1 component. We can see that if v closes a triangle with
z′1 and z′2, there are no other nodes on the level i − 1 component that can close a triangle with v. (b) Let w1 be a
vertex in Galg that represents an edge in G with one end point which is z, and let z close a clique with the nodes
in G corresponding to v. It follows that w1 is a level i − 1 vertex representing an edge which is on the face that
encloses v. According to Property 2.2.5, it holds that any other level i vertex on the path w1, w2, . . . , v is in the
same component as v. Thus, v and w are face vertices on the same level i component. For each level i component
Ci inside a level i − 1 component Ci−1 the following statement holds: Let (a, b) be an edge on Ci. Let c1 and c2

be nodes on Ci−1 that close a triangle with (a, b). Every other node on Ci must be enclosed by one of the triangles
(a, b, c1) or (a, b, c2). This follows directly from planarity properties.

Now, consider the nodes z′1 and z′2 in G that can potentially close a clique with the nodes in G corresponding
to w. If the nodes in G corresponding to w close a clique with only one node the assertion holds. If the nodes in G
corresponding to w close a clique with both nodes z′1 and z′2, then since v and w are on the same level i component,
it holds that the nodes in G corresponding to v are enclosed by the triangle created by nodes in G corresponding
to w and z′1 or enclosed by the triangle created by nodes in G corresponding to w and z′2. Assume, w.l.o.g, that
the nodes in G corresponding to v are enclosed by the triangle created by nodes in G corresponding to w and z′2.
Thus, according to planarity constraint, if v closes a clique with a level i− 1 node z, and the edges from v to z can
not intersect the edges from w to z′2, it must be the case that z = z′2.

For example, in Figure 2.3, v is a level i face vertex that closes a clique with z′1 and z′2, and w is a level i face
vertex enclosed by the triangle created by v and z′2. We can see that the only level i−1 node that can close a clique
with w is z′2.

Using the definitions above we now prove that v can indeed compute its table from the information present in
the tables computed so far.
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Claim 2.8.3. Let v = (x, y) be a vertex on a level i component C̄i. Let Slice(u) be the subgraph of the component
enclosed by v (represented by u) in the complex adjust case, and the subgraph which is obtained by merging the
children of v in the simple adjust case. Let Gv = Slice(v). Let Gu = Slice(u) = Slice(v) \ (x, y) be an
induced subgraph of G, that does not include the edge e = (x, y). Let Bu, Su be the boundary nodes and outer
subsets of Gu respectively. Let Bv, Sv be the boundary nodes and outer subsets of Gv respectively. If for each
S′u ∈ Su, for each B′u ⊆ Bu, the values CC(Gu \B′u \ S′u) are known, then one can compute CC(Gv \B′v \ S′v) =
CC(Gu + (x, y) \B′v \ S′v) for each S′v ∈ Sv, for each B′v ⊆ Bv.

Proof. In what follows, in a slight change of notation, let Sv and Su be outer subsets of Gv and Gu respectively,
such that for each S′v ∈ Sv it holds that S′v ∩ {x, y} = φ, and for each S′u ∈ Su it holds that S′u ∩ {x, y} = φ. In
other words, we will consider only outer subsets that don’t contain the nodes {x, y}. We will show later that these
outer subsets are sufficient for our proof. Let G′v = Gv \ B′v \ S′v. Let G′u = Gu \ B′v \ S′v. That is, we have
to show that one can compute CC(Gv \ B′v \ S′v) = CC(G′v) = CC(G′u + (x, y)). For that purpose, we will use
Claims 3.2.1 and 3.2.2 (of the Preliminaries). According to Claims 3.2.1 and 3.2.2, in order to calculate CC(G′v)
we have to know the following values: CC(G′u \ {x}), CC(G′u \ {y}),and CC(G′u \ {x, y}). We show in Claim 2.8.4
below that (a) Bv = Bu, and (b) Sv ⊂ Su. Thus, for each S′v ∈ Sv, there is a corresponding subset S′u ∈ Su, such
that S′v = S′u. Similarly, for each B′v ∈ Bv, there is a corresponding subset B′u ∈ Bu, such that B′v = B′u. Thus,
we can compute CC(G′u \ {x}), CC(G′u \ {y}),and CC(G′u \ {x, y}) from the table of u. In order to prove that it is
sufficient to consider outer subsets that don’t contain the nodes {x, y}, recall that we have to compute the value of
CC(Gv \B′v \S′v). Notice that for each S′v ∈ Sv, if x ∈ S′v, then CC(Gv \B′v \S′v) = CC(Gv \ (B′v ∪x) \ (S′v \x))
(The same holds for y ∈ S′v). In other words, since x, y ∈ Boundary(v) = Boundary(u), we can ”move” the
nodes x, y from S′v to B′v and thus we can compute the value of CC(Gv \ B′v \ S′v) for outer subsets S′v that don’t
contain the nodes x, y.

The main difference is regarding Claim 3.2.2: In order to find the clique cover after the “adjust” operation, we
must know if there is a node z such that x, y, z close a triangle. There may be many nodes that can close a triangle
with x, y, and we have to know the clique cover value ofGv without any of these nodes. Here we use the values we
saved for Table(u). That is, for each S′v ∈ Sv and B′v ⊆ Bv, we have to find CC(G′u + (x, y)) = CC(G′v). In order
to add the edge (x, y), using Claim 3.2.2, we have to know for each S′v ∈ Sv and for each B′v ⊆ Bv the value of
CC(G′u \ {x, y, z}), for each z that closes a clique with (x, y). According to Claim 3.2.2, if there is no node z such
that x, y, z close a clique, then CC(G′u + (x, y)) = CC(G′u). If there is a node z such that x, y, z close a clique, and
CC(G′u \ {x, y, z}) = CC(G′u) − 2 then CC(G′u + (x, y)) = CC(G′u) − 1, otherwise, CC(G′u + (x, y)) = CC(G′u).
Now, the only challenge is to prove that the value of CC(G′u \ {x, y, z}) for each z that closes a clique with (x, y)
is known. We consider three kinds of nodes that can close a clique with (x, y) (the first one is applicable only in
the “complex adjust” case):

• z ∈ Cj , j = i + 1 (z in the component which is enclosed in the face represented by (x, y)). Accord-
ing to Claim 2.8.1, z ∈ OuterNodesj1(u). In addition, according to definition of OuterNodes, z /∈
OuterNodesj1(v) since OuterNodesj1(v) = φ. We show in Claim 2.8.4 below that (a) Bv = Bu,
(b) Sv ⊂ Su , and (c) Let OuterNodesj`(v), OuterNodesj`(u) be specific sets from OuterNodes(v)
and OuterNodes(u) correspondingly. For each S′v ∈ Sv, if S′v ∩ OuterNodesj`(v) = φ and z ∈
OuterNodesj`(u), then (S′v ∪ z) is an outer subset of u. In our case, S′v ∩ OuterNodesj1(v) = φ
(OuterNodesj1(v) = φ), and z ∈ OuterNodesj1(u). According to Claim 2.8.4 it holds that (S′v ∪ z)
is an outer subset of u. Recall that for each S′u ∈ Su, for each B′u ⊆ Bu, the values CC(Gu \ B′u \ S′u) are
known. Since Bv = Bu and (S′v ∪z) is an outer subset of u, it holds that the value of CC(Gu \B′v \ (S′v ∪z))
= CC(G′u \ {z}) is known. Moreover, {x, y} ⊆ Boundary(v) and we are only interested in B′v that do
not include {x, y}. Otherwise, G′u is a subgraph that doesn’t contain the edge (x, y) and thus there is no
clique (x, y, z). Thus, the value of CC(Gu \ (B′v ∪ {x, y}) \ (S′v ∪ z)) = CC(G′u \ {x, y, z}) is known, since
CC(G′u \ {z}) = CC(Gu \B′v \ S′v) is known for any subset of Bv, especially for B′v ∪ {x, y} .
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• z ∈ Ci (z in the same component of (x, y)). Similar to the previous case, z ∈ OuterNodesj2(u), and
OuterNodesj2(v) = {x, y}. As above by Claim 2.8.4, for each S′v ∈ Sv, it holds that (S′v ∪ z) is an outer
subset of u, and CC(G′u \ {z}) is known. Moreover, as before {x, y} ⊆ Boundary(v) and we are studying
B′v that do not include {x, y}. Thus, the value of CC(Gu \ (B′v ∪ {x, y}) \ (S′v ∪ z)) = CC(G′u \ {x, y, z}) is
known. It follows that CC(G′v \ {x, y, z}) is known.

• z ∈ Cj , j = i−1 (z in the component which encloses the face represented by (x, y)). z ∈ OuterNodesj3(u)
or z ∈ OuterNodesj4(u). According to our definitions, one of the following holds: (a) z ∈ OuterNodesj3(u)
and OuterNodesj3(v) = {z}, (b) z ∈ OuterNodesj4(u) and OuterNodesj4(v) = {z}. Assume
w.l.o.g that z ∈ OuterNodesj3(u) and OuterNodesj3(v) = {z}. For each S′v ∈ Sv, it holds that
(S′v ∩ OuterNodesj3(v)) = φ or (S′v ∩ OuterNodesj3(v)) = {z}. If (S′v ∩ OuterNodesj3(v)) =
φ, then (S′v ∪ z) is an outer subset of u, and like the previous sections CC(G′u \ {z}) is known. If
(S′v ∩OuterNodesj3(v)) = {z}, then (S′v ∪ z) = S′v and it is an outer subset of u. Thus, like the previous
sections CC(G′u \ {z}) is known. Moreover, as before {x, y} ⊆ Boundary(v) and we are studying B′v that
do not include {x, y}. Thus, the value of CC(Gu \ (B′v ∪ {x, y}) \ (S′v ∪ z)) = CC(G′u \ {x, y, z}) is known.
It follows that CC(G′v \ {x, y, z}) is known.

Claim 2.8.4. Let v = (x, y) be a vertex on a level i component C̄i. Let Slice(u) be the subgraph of the component
enclosed by v (represented by u) in the complex adjust case, and the subgraph which is obtained by merging the
children of v in the simple adjust case. Let Gv = Slice(v). Let Gu = Slice(u) = Slice(v) \ (x, y) be an induced
subgraph of G, that does not include the edge e = (x, y). Let Bu, Su be the boundary nodes and outer subsets of
Gu respectively, such that for each S′u ∈ Su it holds that {x, y} /∈ S′u. LetBv, Sv be the boundary nodes and outer
subsets ofGv respectively, such that for each S′v ∈ Sv it holds that {x, y} /∈ S′v. The following statements hold: (a)
Bv = Bu (b) Sv ⊂ Su (c) Let OuterNodesj`(v), OuterNodesj`(u) be specific sets from OuterNodes(v) and
OuterNodes(u) correspondingly. For each S′v ∈ Sv, if S′v ∩OuterNodesj`(v) = φ and z ∈ OuterNodesj`(u),
then (S′v ∪ z) is an outer subset of u.

Proof. (a) Bv = Bu This statement holds according to our definitions. Slice(u) = Slice(v) \ (x, y). In the adjust
operation we only add to Slice(u) the edge (x, y), and there are no changes in the boundary nodes. (b) Sv ⊂ Su.
The sets OuterNodesj`(v) are obtained from the sets OuterNodesj`(u) as defined above. Following are the
possibilities for OuterNodesj`(v):

• OuterNodesj`(v) = OuterNodesj`(u).

• OuterNodesj`(v) = φ.

• OuterNodesj`(v) = {z1}, where z1 is a level j − 1 node that closes a clique with (x, y). According to
Claim 2.8.2, z1 ∈ OuterNodesj`(u).

• OuterNodesj`(v) = (x, y).

From all the possibilities above we can conclude that {OuterNodesj`(v) \ {x, y}} ⊂ {OuterNodesj`(u) \
{x, y}}. As outer subsets are obtained from outer nodes directly, it holds that Sv ⊂ Su.

(c) By definition, S′v ∈ OuterSubsets(v) is a subset which contain at most 1 node from eachOuterNodesj`(v),
j ≤ i, ` ≤ 4. Moreover, for eachOuterNodesj`(v) it holds that {OuterNodesj`(v)\{x, y}} ⊂ {OuterNodesj`(u)\
{x, y}}. Thus, there is an outer subset S′u ∈ OuterSubsets(u) that contain the same nodes as the nodes in S′v
plus one node from OuterNodesj`(u), especially z.
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Chapter 3

Proof of Theorem 2.1.2

We now prove Theorem 2.1.2 given in the Introduction. Namely, that the variant of Baker’s algorithm specified in
Figure 1.2 successfully computes the clique cover size of any k-outerplanar graph in running time nO(k). Building
the trees and computing boundaries of slices requires linear time (as shown in Baker [2]). In addition, [2] proves
that the algorithm is called recursively at most once for each tree vertex. Since each leaf in a tree represents an
oriented exterior edge, the number of vertices in trees is at most the number of edges in the k-outerplanar graph.
For a planar graph, the number of edges is linear in the number of nodes. Therefore, the number of calls on the
main procedure is linear in the number of nodes. Each recursive call computes the table for a certain vertex in the
tree. Each table includes at most n4k22k entries (corresponding to the subsets we defined). To compute the clique
cover for each entry, one must access (via Claim 2.8.3) several entries from other tables. The number of such
entries needed is bounded by n4k (specified by the size of our OuterSubsets set system). All in all, this gives a
total running time of nO(k).
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Chapter 4

Conclusions

The results of this work focus on information graphsGwhich are undirected and on the case in which the encoding
functions are (scalar) linear. The problem of efficiently computing the index coding round complexity for encoding
functions which are not scalar linear but rather vector linear or non-linear is left open in this work. The connection
between the clique cover of G and the scalar linear index coding round complexity holds also for directed side
information graphs as well. However, in the directed case it is not hard to find examples in which these two differ
(e.g., any directed cycle). Finally, the side information graph model does not suffice to represent the index coding
problem in which clients ci require not a single message but multiple ones. In this case one should introduce a
hypergraph side information model (e.g., [1]), which does not fit into the framework discussed in this work.
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