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1 ABSTRACT AND INTRODUCTION
1.1  ABSTRACT
The purpose of data mining is to identify and predict patterns, trends and relationships in data. The main steps in data mining process are: 
Defining the problem, preparation of information, data analysis, evaluation of the results, displaying the results.

In this work I'll present a number of data mining algorithms using association rules. First I'll present the basic algorithms (Apriori Algorithm and FP Tree) and then we'll discuss algorithms with constraints. We will present the algorithms with constraints in detail, and also we shall discuss the differences between them.
In fact this work will focus on data mining algorithms with constraints. We will focus on the importance of constraints in data mining, on their use, and explore different types of constraints and effective methods of data mining algorithms. As it's well known, since the size of data mining results may sometimes be very large, using constraints help the user find the desired information and improves the system performance. This work will focus on certain types of constraints, and algorithms that were built for them. Specifically, the algorithms that we will review are:
· MINING FREQUENT ITEMSETS WITH CONVERTIBLE CONSTRAINTS[10]
· MINING ASSOCIATION RULES WITH ITEM CONSTRAINTS [11]
· EXAMINER OPTIMIZED LEVEL-WISE FREQUENT PATTERN MINING WITH MONOTONE CONSTRAINTS ALGORITHM [4]
· FP-BONSAI ALGORITHM [5]
In addition we will review briefly six other articles: Four articles on constraints and two advanced algorithms than Apriori.

The last phase of the work is an implementation of two algorithms: Bonsai-tree and FP-tree. The implementation was coded in the JAVA language. The Database input is a synthetic database and it was built by a random generator that was especially developed for this purpose.  The results and conclusions of the evaluation are summarized in the paper.
1.2 INTRODUCTION
BACKGROUND
Over the years, mass storage cost has decreased dramatically, and database technology, incorporating the ubiquitous Internet, has evolved to be more intelligent and powerful. We are now at the equinox where we have too much data yet so few computerized tools to analyze it, let alone apply the knowledge resulted from the analysis to expedite information dissemination, scientific research, and industrial and commercial decision making. We are indeed data billionaires living in the gutter of knowledge.

This is where data mining came in, which started out as a direct consequence of information technology development. Following the amazing progress in the field, data mining can now provide theoretical foundations to implement analyzing software for various kinds of applications.

This paper is mainly focus on how to efficiently generate association rules.
The user is allowed to express his focus in mining, by means of a rich class of constraints that capture application semantics. Besides allowing user exploration and control, the paradigm allows many of these constraints to be pushed deep inside mining (later discussed in basic concepts), thus pruning the search space of patterns to those of interest to the user, and achieving superior performance. 

In this report we discuss 2 main topics algorithms for constraints and efficiency improvements.
PURPOSE

This paper is divided to 4 main topics:

1. Basic concepts and short brief on both Apriori and FP-Tree algorithms– In this section we'll focus on the basic concepts which will help us deal with the rest of the paper and we'll discuss shortly about 2 algorithms: Apriori and FP-Tree.
2. Paper survey –In this section we show the advantage of the constraints. With constraints we obtain fewer patterns which are more interesting. Indeed constraints are the way we use to define what is “interesting”. Here we'll introduce 4 articles, which will use constraints methodology: 
· "Mining Frequent Itemsets with Convertible Constraints" [9]
· "Mining association rules with item constraints" [10]
· "Examiner algorithm" [4]
· "FP Bonsai" [4]
3. Short paper survey – Here we'll describe briefly few articles which deal both improving basic algorithms and constraints algorithms.
4. Application implementation – After describing all the above articles, we'll show the results of an application which was written in java. This application implements 2 algorithms: "FP Tree" and "FP Bonsai". The program was run with data that was generated syntactically. The program will show the duration of each algorithm in addition to the results.
2 basic concepts

a) Association rules mining - Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

[image: image1]
Table 2-1 Market-Basket transactions
b) Itemset

· A collection of one or more items

· Example: {Milk, Bread, Diapers}

· k-itemset

· An itemset that contains k items

c) Support count ((-sigma)

· Frequency occurrence of an itemset

· E.g.   (({Milk, Bread, Diapers}) = 2 

d) Support

· The percentage of the fraction of transactions that contain an itemset represents the support. Or in other words an itemset which appears in x transactions of the database is the support of this itemset.
· E.g.   s({Milk, Bread, Diapers}) appear in 2 transactions in the table above so the support is 2/5 *100 = 40%
e) Confidence

· Confidence denotes the strength of implication in the rule, means the more the confidence higher the relationship between the 2 sets is stronger. The casual link between milk and bread is strong in the example because the confidence is 75%.
· Confidence(X=>Y) = Support(XY) /  Support(X)
· E.g.   s({Milk, Bread}) = 3/5 

    s({Milk}) = 4/5
    Confidence (Milk Bread) = (3/5) / (4/5) = 0.75 - >75%
f) Frequent Itemset

· An itemset whose support is greater than or equal to a minsup threshold

g) Association Rule
· An implication expression of the form X ( Y, where X and Y are itemsets

· Example:
   {Milk, Diapers} ( {Beer} 

Constraints
What are constraints in data mining? Constraints are the rules enforced on data transactions.
The Idea in constraints is to focus on the specific and relevant itemsets which we want to mine. The following bellows are some basic concepts regarding constrains.
h) Constraints mining – Aim to reduce search space. It find all patterns satisfying constraints 
i) Constraints based search - Aim to reduce search space and finds only some (or one) answer
Both Constraints mining and Constraints based search are aimed at reducing search space but the first find the all the patterns and the other find some or one of the patterns. This of course makes the difference in the run time and the memory usage.

j) Anti-monotonic -  When an itemset S violates the constraint, so does any of its superset 

Example:  C: range(S.profit) ( 15 is anti-monotone Itemset ab violates C 

                  range(ab) = 40 ( 15

  So does every superset of ab

k) Monotonic - When an itemset S satisfies the constraint, so does any of its superset 

Example:  C: range(S.profit) ( 15 Itemset ab satisfies C 

 range(ab) = 40 ( 15

      So does every superset of ab

The following tables are for the examples

[image: image58.emf]TID  Items  

1  Bread, Milk  

2  Bread, Diaper s , Beer, Eggs  

3  Milk, Diaper s , Beer, Coke   

4  Bread, Milk, Diaper s , Beer  

5  Bread, Milk, Diaper s , Coke   
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Table 2-2 Convertible Anti monotone
l)  Convertible anti-monotone - Assume there is an order R. Whenever an itemset S satisfies C, so does any prefix of S.

     Example: C: avg(S) ( 20  w.r.t. item value descending order  

                      The itemset “abc” satisfies C

                       avg(abc) = 30 ( 20

                       and so does “ab”  avg(ab) = 35 ( 20  and  “a”   avg(a)   = 40 ( 20

Convertible monotone - Assume there is an order R. Whenever and itemset S violates C, so does any prefix of S.

       Example:  C: avg(S) ( 20  w.r.t. item value descending order The 

                       itemset “abc” violates C  avg(abc) = 30 ( 20 and so does “ab”  
avg(ab) = 35 ( 20 and  “a”     avg(a)   = 40 ( 20

The following tables are for the examples
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Table 2-3 Convertible monotone
m) Strongly convertible constraints

Whenever there exists an order R over the set  of items such that C is convertible 

anti-monotone R and convertible monotone R^-1

      Example  C:  avg(X) ( 25 is convertible anti-monotone w.r.t. item value descending order R

          The itemset “afg” satisfies C  so does “af” and “a”.

                    avg(X) ( 25 is convertible monotone w.r.t. item value ascending order R^-1

    The itemset “ech” violates C so does “ec” and “e”.

Table descending order  


   Table ascending order
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[image: image63.png]Algorithm 2 (FP-growth: Mining frequent pat-
terns with FP-tree by pattern fragment growth)

Input: FP-tree constructed based on Algorithm 1,
using DB and a minimum support threshold ¢

Output: The complete set of frequent patterns.

Method: Call FP-growth (FP-tree , null).

Procedure FP-growth (Tree,a)

{

(1) if Tree contains a single path P

(2) then for each combination (denoted as 3)

of the nodes in the path P do

(3) generate pattern @ Ua with support =
minimum support of nodes in f;

(4) else for each a; in the header of Tree do {

(5)  generate pattern 8 = a; U a with
support = a;.support;

(6)  construct A's conditional pattern base and
then 3’s conditional FP-tree Trecg;

(1) ifTrees 0

(8)  then call FP-growth (Trecy, 3) }




Table 2-4 strongly convertible constraints
n) Succinctness constraints

Given A1, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A1, i.e., S contains a subset belonging to A1. min(S.Price) ( v  is succinct because each subset who satisfy the constraint is a subset of A1., sum(S.Price) ( v  is not succinct.
min(S.Price) ( v 

A1 = {20,30,40,8,5,3}

V = 70

min(A1)< V satisfy the constraint so does each subset of A1 satisfy the constraint.
sum(A1)> V satisfy the constraint but not each subset of A1 satisfy the constraint. For example sum(20,30)<70

2.1 INTRODUCION
Apriori is the most simple and most widely known algorithm for mining frequent itemsets created by R. Agrawal and R. Skrikant. 
The Apriori algorithm works iteratively. It first finds the set of large 1- itemsets, and then set of 2-itemsets, and so on. The number of scan over the transaction database is as many as the length of the maximal itemset. Apriori is based on the following fact: The simple but powerful observation leads to the generation of a smaller candidate set using the set of large itemsets found in the previous iteration.
Disadvantages
Generation of candidate itemsets is expensive (in both space and time)
Unlike Apriori FP-growth uses an extended prefix-tree structure to store the database in a compressed form. It uses a pattern fragment growth method to avoid the costly process of candidate generation and testing used by Apriori.
2.2 APRIORI- Fast Algorithms for Mining Association Rules [1]
Algorithms summarize

[image: image64.png]Algorithm 1 (FP-tree construction)

Input: A transaction database DB and a minimum
support threshold &.

Output: Tts frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following
steps.

1. Scan the transaction database DB once. Collect
the set of frequent items F and their supports.
Sort F in support descending order as L, the list
of frequent items

2. Create the root of an FP-tree, T, and label it as
“null”. For cach transaction Trans in DB do the
following,

Select and sort the frequent items in Trans
according to the order of L. Let the sorted
frequent item list in Trans be [p|P], where p is
the first element and P is the remaining list. Call
insert_tree([p|P], T)

The function insert_tree([p| P}, T) is performed as
follows. 1f 7' has a child N such that N.item-name
= p.item-name, then increment N’s count by 1;
else create a new node N, and let its count be 1,
its parent link be linked to 7' and its node-link
be linked to the nodes with the same item-name
via the node-link structure. If P is nonempty, call
insert_tree(P, N) recursively.
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1  Bread, Milk  

2  Bread, Diaper s , Beer, Eggs  

3  Milk, Diaper s , Beer, Coke   

4  Bread, Milk, Diaper s , Beer  

5  Bread, Milk, Diaper s , Coke   
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Apriori, first scans the transaction databases D in order to count the support of each item i in I, and determines the set of large 1-itemsets. Then one iteration is performed for each of the computation of the set of 2-itemsets, 3-itemsets, and so on. The kth iteration consists of two steps:
· Generate the candidate set Ck from the set of large (k-1)-itemsets, Lk-1.
· Scan the database in order to compute  the support of each candidate itemset in Ck  
The candidate generation algorithm is given as follows:
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The candidate generation procedure computes the set of potentially large k-itemsets from the set of large (k-1)-itemsets. A new candidate k-itemset is generated from two large (k-1)-itemsets if their first (k-2) items are the same. The candidate set Ck is a superset of the large k-itemsets.  The candidate set is guaranteed to include all possible large k-itemsets because of the fact that all subsets of a large itemset are also large. Since all large itemsets in Lk-1 are checked for contribution to candidate itemset, the candidate set Ck is certainly a superset of large k-itemsets. After the candidates are generated, their counts must be computed in order to determine which of them are large. This counting step is really important in the efficiency of the algorithm, because the set of the candidate itemsets may be possibly large. Apriori handles this problem by employing a hash tree for storing the candidate. The candidate generation algorithm is used to find the candidate itemsets contained in a transaction using this hash tree structure. For each transaction T in the transaction database D, the candidates contained in T are found using the hash tree, and then their counts are incremented. After examining all transaction in D, the ones that are large are inserted into Lk. 
The problem is that every pass goes over the all data, and it's no efficient process.
The answer for this problem is aprioriTid. 
· Uses the database only once.

· Builds a storage set C^k

· Members has the form < TID, {Xk} >

· Xk are potentially large k-items in transaction TI.

· For k = 1, C^1 is the database.

· Uses C^k in pass k+1. 

Algorithm aprioryTid
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Advantage

· C^k could be smaller than the database.

· If a transaction does not contain k-itemset candidates, than it will be excluded from C^k .

· For large k, each entry may be smaller than the transaction

· The transaction might contain only few candidates.
Disadvantage

For small k, each entry may be larger than the corresponding transaction.

· An entry includes all k-itemsets contained in the transaction.
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Figure 2.1.1-1 – Per pass execution times of Apriori and AprioriTId
We can see in the figure above that in the earlier passes apriori does better performance but in the later passes aprioriTid beats Apriori. That’s because in the later passes the number of candidate itemsets reduces. AprioriTid doesn't use the database it uses CK instead. CK become smaller and that’s why in the later passes aprioriTid is better.
So who is better?

In the earlier passes, Apriori does better than AprioriTid. However, AprioriTid beats Apriori in later passes. We observed similar relative behavior for the other datasets, the reason for which is as follows. Apriori and AprioriTid use the same candidate generation procedure and therefore count the same itemsets. In the later passes, the number of candidate itemsets reduces. However, Apriori still examines every transaction in the database. On the other hand, rather than scanning the database, AprioriTid scans CK for obtaining support counts, and the size of CK has become smaller than the size of the database. When the CK sets can fit in memory, we do not even incur the cost of writing them to disk.

Based on these observations, we can design a hybrid algorithm, which we call AprioriHybrid that uses Apriori in the initial passes and switches to AprioriTid when it expects that the set CK at the end of the pass will fit in memory. We use the following heuristic to estimate if CK would fit in memory in the next pass. At the end of the current pass, we have the counts of the candidate's iin CK. From this, we estimate what the size of CK would have been if it had been generated. This size, in words, is 
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If CK in this pass was small enough to fit in memory, and there were fewer large candidates in the current pass than the previous pass, we switch to AprioriTid.

The switch takes time, but it still worth it. We can see from the graphs bellow the advantage of AprioryHybrid algorithm. It takes the advantages of both algorithms Apriori and AprioriTid.
T10.12.D100K and the others represent the parameter settings.

|T| - 10 – Average size of the transactions.

|I| - 2 - Average size of the maximal potentially large itemsets.

D – 100K – Number of transactions.

 settings12,14,16 are the average size of the maximal potentially large itemsets.
We can see in the graphs bellow that Apriori has better performance than AprioriTid. The reason is small number of items in all the transactions. 
AprioriTid has good performance when the size of the transactions is big. Because in the specific examples bellow the size is small the Apriori has better performance.
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Figure 2.1.1-2 – Execution times for decreasing minimum support (max potentially large itemset is 2
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Figure 2.1.1-3 – Execution times for decreasing minimum support (max potentially large itemset is 4
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Figure 2.1.1-4 – Execution times for decreasing minimum support (max potentially large itemset is 6
In the graph above we can see how AprioryHybrid algorithm takes the advantages of both algorithms Apriori and AprioriTid.
Note – We must remember that the following conclusions and the summary bellow refer to the algorithms on those times

Conclusions

· The Apriori algorithms are better than the previous algorithms.

· For small problems by factors

· For large problems by orders of magnitudes.

· The algorithms are best combined.

· The algorithm shows good results in scale-up experiments

· AprioriTid uses C^k instead of the database. If C^k fits in memory AprioriTid is faster than Apriori

· When C^k is too big it cannot sit in memory, and the computation time is much longer. Thus Apriori is faster than AprioriTid.

Summary

· Association rules are an important tool in analyzing databases.

· We’ve seen an algorithm which finds all association rules in a database.

· The algorithm has better time results then previous algorithms.

· The algorithm maintains its performances for large databases.

2.3 FP-TREE ALGORITHM [8]
Candidate generation is by far the most time consuming process, so it is desirable to speed this up. FP Tree algorithm directly mines frequent itemsets without generating candidates. The claim is that by gathering sufficient statistics into a special structure which called FP tree, all of the frequent patterns can be generated without going back to the database. And this definitely will lead us to better performance.
As we learn before Apriori works well except when the input is:

· Lots of frequent patterns with big sets of items or  with low minimum support threshold 

· Long patterns

FP tree avoid candidate set explosion by:
· Compact tree data structure (It avoid repeated data scans thus it much smaller than the basic Database).
· Restricted test-only

· Search divide-and-conquer based

Algorithms summarize

The algorithm made up from two phases:

A. Phase 1 - Constructing FP-tree

1. Scan DB to find L

2. Collect the set of frequent items 

3. Sort L and DB in descending frequency 

4. Scan DB again - construct FP-tree

B. Phase 2 - Executing FP-Growth

1. Mining frequent patterns from FP-tree

2. Processing frequent items

· One by one

· Bottom up

3. Each item 

· Generating a conditional FP-tree

Algorithm – Phase 1 [8]

[image: image8]
Algorithm – Phase 2 [8]

[image: image9]
FP-Tree algorithm example [8]
Here we'll show example which will summarize the Algorithm ability.

Step 1

· Scanning DB to find L

· Example: Minimum support = 60%
· Scan each TID and update the frequency for each item in the new table
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Table 2.1.1-1 - FP tree algorithm example Tid, item, and frequency (1)
· Scan DB to find L (List of all items which meet the support).
· After scanning – Mark in green the items which meet the support
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Table 2.1.1-2 - FP tree algorithm example Tid, item, and frequency (2)
Step 2
· Sort L in descending frequency 
· L = {a:3, b:3, c:4, f:4, m:3, p:3}

· L’ = {f:4, c:4, a:3, b:3, m:3, p:3}
· Build a new table which contains only the items which meet the support and in descending order (see L').
· Sort DB
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Table 2.1.1-3 - FP tree algorithm example Tid, item, and frequency (3)
Step 3
In this step we scan the DB again to construct the FP tree tuple by tuple.

We start with the first tuple to build the tree in the same order of the items. For each item we set a number, this number note how many transactions it belongs to.
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Table 2.1.1-4 - FP tree algorithm example Tid, item, and Header table (1)
Step 3 - Cont
Continue building the tree using the second tuple.

We can see the numbers in each node. It indicates the number of transactions which it belongs
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Table 2.1.1-5 - FP tree algorithm example Tid, item, and Header table (2)
Continue building the tree using the third tuple.
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Table 2.1.1-6 - FP tree algorithm example Tid, item, and Header table (3)
Continue building the tree using the forth tuple.
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Table 2.1.1-7 - FP tree algorithm example Tid, item, and Header table (4)
Step 3 cont
Continue building the tree using the last tuple.
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Table 2.1.1-8 - FP tree algorithm example Tid, item, and Header table (5)
Now we'll show the second algorithm - FP Grows
After the database is compressed into a highly condensed and much smaller data structure, we continue to the next step 

Mining frequent patterns from the FP-Tree .Processing frequent items one by one bottom up. Each item generates a conditional FP-Tree.
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Figure 2.1.1-5 - FP grows example
Example for p
First we mark each node which is above P in the same branch
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Figure 2.1.1-6 - FP grows example for p (1)
The only frequent patterns for "P" are {p:3, cp:3}
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Figure 2.1.1-7 - FP grows example p (2)
Example for m

Again, first we mark each node which is above m in the same branch
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Figure 2.1.1-8 - FP grows example for m (1) 

The frequent pattern for "m" are {m:3, am:3, cm:3, fm:3}
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Figure 2.1.1-9 - FP grows example for m (2)
So we recursively constructing conditional FP-tree for:

am,cm,fm.
we'll start with am

The prefix are {f:3, c:3}. So the large itemsets with am are: 

{cam:3, fam:3}}
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Figure 2.1.1-10 - FP grows example for am
The frequent patterns with am are:

{am, cam, fam}. We recursively construct conditional FP-Trees "cam", "fam"
FP-Tree for "cam"

The frequent patterns with cam are:  {fcam}
Cam (   {fcam}
[image: image24.png])

53

53





FP-Tree for "fam"

The frequent patterns with fam is:  {fam}

Fam ( null
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Figure 2.1.1-11 - FP grows example for cam and fam
We'll continue with the FP-Tree "cm"

The prefix are {f:3}. So the large itemsets with cm are: 

{fcm:3}.
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Figure 2.1.1-12 - FP grows example for cm
Finally the last one - FP-Tree "fm" 
  The frequent patterns with fam is:  {fam}
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Figure 2.1.1-13 - FP grows example for fm

Results

Finely the list of all large itemsets with m:

{ m:3, fm:3, cm:3, am:3, fcm:3, fam:3, cam:3, fcam:3 }
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Figure 2.1.1-14 - FP grows example results

Complexity

In the worst case the number of frequent itemsets to be generated depends on the  minsup threshold.
When minsup is low, there exist potentially an exponential number of frequent itemsets 

The worst case is: |L|h
Where 

|L| is the Number of items
h   is the Max length of transactions
Disadvantage

1. Usually not efficient for the real word - Working on batch DB and not on growing DB.

2. High usage memory
Experiments

To evaluate the effectiveness and efficiency of the algorithms, the authors performed an extensive experimental evaluation. In this section, they report the results on a synthetic transaction database with the following data:

· P-450, 128 MB main memory

· Algorithm implemented in VC++ 6.0

· Operational system – Windows/NT

· Parameters

1. Database is from synthetic data sets

2. Two data sets bellow
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Table 2.1.1-9 - FP tree algorithm experiment – Synthetic data set

· Execution time of 

a. FP-tree construction

b. FP-growth mining
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Figure 2.1.1-15 - FP tree algorithm experiment –Run time ,support threshold 
In the graph above we can see lower performance of D1 when the support threshold is low. The combination of large number of transactions with low support threshold lids to this case.
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Figure 2.1.1-16 - FP grows algorithm experiment –Transactions number with threshold=1.5% 
We can see that both FP growth and apriori algorithms show linear scalability with the number of transactions from 10K to 100k. However FP growth has better performance.
3 PAPERS survey
3.1 USING CONSTRAINTS
3.1.1 INTRODUCTION AND MOTIVATION
· Frequent pattern mining usually produces too many solution patterns. This situation is harmful for two reasons:

1. Performance: mining is usually inefficient or, often, simply unfeasible

2. Identification of fragments of interesting knowledge blurred within a huge quantity of small, mostly useless patterns is a hard task. 

· Constraints are the solution to both these problems:

1.  They can be pushed in the frequent pattern computation exploiting them in pruning the search space, thus reducing time and resources requirements;

2. They provide to the user guidance over the mining process and a way of focusing on the interesting knowledge. (LOCAL PATTERNS)

· With constraints we obtain fewer patterns which are more interesting. Indeed constraints are the way we can use to define what is “interesting”

In this section I survey 4 papers which use constraints in detail:
1. MINING FREQUENT ITEMSETS WITH CONVERTIBLE CONSTRAINTS [9]

2. MINING ASSOCIATION RULES WITH ITEM CONSTRAINTS [10]

3. EXAMINER OPTIMIZED LEVEL-WISE FREQUENT PATTERN MINING WITH MONOTONE CONSTRAINTS ALGORITHM [4]

4. FP-BONSAI ALGORITHM [5]
3.1.2 MINING FREQUENT ITEMSETS WITH CONVERTIBLE CONSTRAINTS [9]
Short paper surveyed (Already surveyed in the seminar)
3.1.2.1 Introduction
Frequent pattern mining plays an essential role in many important data mining tasks
But we know that they often generate a very large number of frequent itemsets and rules.

In those cases the efficiency decrease and more then that it makes life hard to the user.

Working on large number of mined rules to find useful ones is very hard.

The recent work emphasizes the importance of constraints based mining. The user can use constraints that will capture / focus his results in database. Pushing constraints deep inside mining will prune the search dramatically and thus improve performance.

Itemset constraints have been incorporated into association mining. A systematic method for the incorporation of two large classes of constraints—anti-monotone
and succinct.
A method for mining association rules in large, dense databases by incorporation of user-specified constraints that ensure every mined rule offers a predictive advantage

over any of its simplifications.

While previous studies cover a large class of useful constraints, many other useful and natural constraints remain. For example, consider the constraints  
avg(S) <>v , median(S) <>v , sum(S) <>v .

The first two are neither anti-monotone, nor monotone, nor succinct. The last one (sum) is anti-monotone when the sign is <= and all items have non-negative values. 
If S can contain items of arbitrary values, sum(S) <=v is like the first two constraints. The authors conclude that these constraints are hard to optimize. In this paper, they discuss this class of constraints.
The following contributions of this paper:

· The authors represent the concept of convertible constraints and classify them into three classes:  convertible anti-monotone, convertible monotone, and strongly convertible. This covers a good number of useful constraints which were previously regarded tough, including all the examples above.

· The authors characterize the class of convertible constraints using. We'll study the arithmetical closure properties of such functions. We'll show that large classes of constraints involving arithmetic are convertible, e.g., max(S) / avg(S) <= V is convertible anti monotone and median(S) - min(S) >= V is convertible monotone.

· The authors show that convertible constraints cannot be pushed deep into the basic      Apriori framework. Under these circumstances they develop algorithms for fast mining of frequent itemsets satisfying the various constraints.

· The authors report the results from a detailed set of experiments, which show the       effectiveness of the algorithms developed.
3.1.2.2 Convertible constraints - motivation

Here the authors show that convertible constraints cannot be pushed deep into the basic Apriori framework. However, they can be pushed deep into the frequent pattern growth mining. The authors thus develop algorithms for fast mining of frequent itemsets satisfying the various constraints.

Suppose we wish to mine frequent itemsets over transaction database in Table 3.1.2-1 (In this page bellow), with the support threshold έ = 2 and with constraint C = avg(S) >= 25 .The complete set of frequent itemsets satisfying can be obtained by first mining the frequent itemsets without using the constraint (i.e., Table 3.1.2-2) and then filtering out those not satisfying the constraint. Since the constraint is neither anti monotone,

nor monotone, nor succinct, it cannot be directly incorporated into an Apriori-style algorithm. E.g., itemset fg satisfies the constraint, while its subset g and its superset

dfg do not.

If we arrange the items in value-descending order, (a(40), f(30), g(20), d(10), b(0), h(-10), c(-20), e(-30)) we can observe an interesting property, as follows. Writing itemsets w.r.t. this order leads to a notion of a prefix. E.g.,afd has af and a as its prefixes. Interestingly, the average of an itemset is no more than that of its prefix, according to this order.


Table 3.1.2-1 Transaction Id AND transaction
	Length
	Frequent itemsets

	1
	a, b, c, d, e, f

	2
	ac, ad, af, bc, bd, bf, cd, ce, cf, cg, df, ef, fg

	3
	acd, acf, adf, bcd, bcf, bdf, cdf, cef, cfg

	4
	acdf, bcdf


Table 3.1.2-2 Frequent itemsets with support threshold

3.1.3 MINING ASSOCIATION RULES WITH ITEM CONSTRAINTS [10]
3.1.3.1 Abstract

The problem of discovering association rules has received considerable research attention and several fast algorithms for mining association rules have been developed. In practice, users are often interested in a subset of association rules. While such constraints can be applied as a post processing step, integrating them into the mining algorithm can dramatically reduce the execution time. We consider the problem of integrating constraints that are Boolean expressions over the presence or absence of items into the association discovery algorithm. We present three integrated algorithms for mining association rules with item constraints and discuss their tradeoffs.
3.1.3.2 Introduction

In practice, users are often interested only in a subset of associations, for instance, those containing at least one item from a user-defined subset of items. When taxonomies are present, this set of items may be specified using the taxonomy, e.g. While the output of current algorithms can be altered out in a post-processing step, it is much more efficient to incorporate such constraints into the associations discovery algorithm. In this paper, we consider constraints that are Boolean expressions over the presence or absence of items in the rules. When taxonomies are present, we allow the elements of the Boolean expression to be of the form ancestors (item) or descendants rather than just a single item.
3.1.3.3 Algorithms

We split the problem into three phases:

1. Find all frequent itemsets (itemsets whose support is greater than minimum support) that satisfy the boolean expression B. Recall that there are two types of operations used for this problem: candidate generation and counting support. The techniques for counting the support of candidates remain unchanged. However, as mentioned above, the apriori candidate generation procedure will no longer generate all the potentially frequent itemsets as candidates when item constraints are present. We consider three different approaches to this problem. The first two approaches, "Multiple Joins" and "Reorder", share the following approach:
a) Generate a set of selected items S such that any itemset that satisfies B will contain at least one selected item.

b) Modify the candidate generation procedure to only count candidates that    contain selected items.

c) Discard frequent itemsets that do not satisfy B. The third approach, \Direct" directly uses the boolean expression B to modify the candidate generation procedure so that only candidates that satisfy B are counted.

2. To generate rules from these frequent itemsets, we also need to find the support of all subsets of frequent itemsets that do not satisfy B. Recall that to generate a rule AB => CD, we need the support of AB to find the confidence of the rule. However AB may not satisfy B and hence may not have been counted in Phase 1. So we generate all subsets of the frequent itemsets found in Phase 1, and then make an extra pass over the dataset to count the support of those subsets that are not present in the output of Phase 1.
3. Generate rules from the frequent itemsets found in Phase 1, using the frequent itemsets found in Phases 1 and 2 to compute confidences, as in the Apriori algorithm. We discuss next the techniques for finding frequent itemsets that satisfy B (Phase 1).
3.1.3.4 Tradeoffs
Reorder and Multiple Joins will have similar performance since they count exactly the same set of candidates. Reorder can be a little faster during the prune step of the candidate generation, since checking whether an k-subset contains a selected item takes O(1) time for Reorder versus O(k) time for Multiple-Joins. However, if most itemsets are small, this difference in time will not be significant. Execution times are typically dominated by the time to count support of candidates rather than candidate generation. Hence the slight differences in performance between Reorder and Multiple Joins are not enough to justify choosing one over the other purely on performance grounds. The choice is to be made on whichever one is easier to implement. 

Direct has a quite different property than Reorder and Multiple Joins. Direct, will not always count fewer candidates than Reorder.

As a matter of fact we expect Direct to count fewer candidates than Reorder at low minimum supports. But the candidate generation process will be significantly more expensive for Direct, since each subset must be checked against a (potentially complex) Boolean expression in the prune phase. Hence Direct may be better at lower minimum supports or larger datasets, and Reorder for higher minimum supports or smaller datasets.
3.1.3.5 Conclusions
We considered the problem of discovering association rules in the presence of constraints that are Boolean expressions over the presence of absence of items. Such constraints allow users to specify the subset of rules that they are interested in. While such constraints can be applied as a post-processing step, integrating them into the mining algorithm can dramatically reduce the execution time. We presented three such integrated algorithms, and discussed the tradeoffs between them.

Empirical evaluation of the Multiple Joins algorithm on three real-life datasets showed that integrating item constraints can speed up the algorithm by a factor of 5 to 20 for item constraints with selectivity between 0.1 and 0.01.
3.1.4 EXAMINER OPTIMIZED LEVEL-WISE FREQUENT PATTERN MINING WITH MONOTONE CONSTRAINTS ALGORITHM [4]
3.1.4.1 Abstract

The key point of this paper is that, in frequent pattern mining, the most appropriate way of exploiting monotone constraints in conjunction with frequency is to use them in order to reduce the problem input together with the search space. Following this intuition, we introduce ExAMiner, a level-wise algorithm which exploits the real synergy of antimonotone and monotone constraints: the total benefit is greater than the sum of the two individual benefits. The resulting algorithm is the generalization of the Apriori algorithm when a conjunction of monotone constraints is conjoined to the frequency antimonotone constraint. Experimental results confirm that this is, so far, the most efficient way of attacking the computational problem in analysis.

3.1.4.2 Introduction
Constrained itemset mining i.e., finding all itemsets included in a transaction database that satisfy a given set of constraints, is an active research theme in data mining. The class of anti-monotone constraints is the most effective and easy to use in order to prune the search space. Since any conjunction of anti-monotone constraints is in turn anti-monotone, we can use the Apriori pruning method: the more anti-monotone constraints are available, the more selective the Apriori pruning method will be. The dual class, monotone constraints, has been considered more complicated to exploit and less effective in pruning the search space. The problem of mining itemsets which satisfy a conjunction of anti-monotone and monotone constraints has been studied for a long time, but all these studies have failed in finding the real synergy between the two opposite pruning opportunities. All the authors have stated that this is the inherent difficulty of the computational problem: when dealing with a conjunction of monotone and anti-monotone constraints we face a tradeoff between anti-monotone and monotone pruning. Our observation is that this prejudice holds only if we focus exclusively

on the search space of the itemsets, which is the approach followed by the work done so far. An algorithm which called ExAnte is a pre-processing data reduction algorithm which reduces dramatically both the search space and the input dataset in constrained

frequent pattern mining. In this paper we show how the basic ideas of ExAnte can be generalized in a level-wise, Apriori-like computation. The resulting algorithm can be seen as the real generalization of Apriori, able to exploit both kinds of constraints to reduce the search space. We named our algorithm Ex-AMiner (ExAnte Miner in contrast with ExAnte preprocessor, but also Miner which Exploits Anti-monotone and

monotone constraints together). Since the most appropriate way of exploiting monotone constraints in conjunction with frequency is to reduce the problem input, which in turn induces a reduction of the search space, the mining philosophy of ExAMiner is to reduce as much as possible the problem dimensions at all levels of the computation. Therefore, instead of trying to explore the exponentially large search space in some smart way, we massively reduce such search space as soon as possible, obtaining a progressively easier mining problem. Experimental results confirm that this is, at this moment, the most efficient way of attacking the computational problem in analysis. Moreover, ExAMiner makes it feasible the computation of extreme patterns, i.e. extremely long or extremely costly patterns, which can be found only at very low support levels where all the other known mining approaches can not always complete the computation.

Even if the support threshold is very low, ExAMiner, exploiting the extremely strong selectivity of the monotone constraint, reduces drastically the problem dimensions and makes the computation affordable.
3.1.4.3 Definitions

There are 5 definitions which will be used in the algorithm.

1. Proposition 1 (μ-reduction) 
Given a transaction database TDB and a monotone constraint CM, we can prune from TDB the transactions that do not satisfy CM, without changing the supports to solutions itemsets.
Example – See at Table 3.1.4-3 - ExaMiner example level one (2)

2. Proposition 2 (α-reduction) 
Given a transaction database TDB and an anti-monotone constraint Cfreq, we can prune from TDB the items that do not satisfy Cfreq, without changing the supports to solutions itemsets.
Example – See at Table 3.1.4-4 - ExaMiner example level one (3)

3. Proposition 3 (Anti-monotone global pruning of an item)
At the iteration k, a singleton item which is not subset of at least k frequent k-itemsets, will not be subset of any frequent (k + 1)-itemset, and thus it can be pruned away from all transactions in the input database.
Example – See at Table 3.1.4-9 - ExaMiner example level two (2) bellow
4. Proposition 4 (Anti-monotone local pruning of a transaction)

Given a transaction<tID, X>, if X is not superset of at least k + 1 candidate k-itemsets, then the transaction can be pruned away since it will never be superset of any frequent (k + 1)-itemset.
Examples – Will use Table 3.1.4-8 - ExaMiner example level two (1) for this example
Example 1

K = 2

Tid 2 . = X = {a, i , k}

Let's look at "Tid 2 ". It contains the itemset X = {a, i , k} . X is not superset of K+1 (3) because F2 contain only 'ak' and not 'ik' and ai.So Tid 2 should be prune.
Example 2
K = 2

Tid 7. = X = {a, c, g, l, j, k}

Let's look at "Tid 7". It contains the itemset X ={a, c, g, l, j, k}. X is superset of K+1 (3) because F2 contains 'ak' 'cg' and 'jk' means there are at least 3 itemsets. So Tid 7 should not be prune.
5. Proposition 5 (Anti-monotone local pruning of an item)
Given a transaction<tID, X>, for each item 'i' in transaction X, if 'i' does not appear in at least k candidate k-itemsets in X, then 'i' can be pruned from X.
Examples – Will use Table 3.1.4-8 - ExaMiner example level two (1) for this example
K = 2

Tid 2 = X = {a, i, k}

Let's look at the item 'i'. It appear in at least K=2 itemsets (See 'ij', 'gi', 'ei' in F2). So 'i' should not be prune.

3.1.4.4 ExAMiner algorithm
[image: image31.png]Procedure: enhanced_local.pruning(ltems. Ca. t)

1. foralli  t do drope[i] = false:
2. i Car = card(X) > n then
3. foralli € tdo
it .count <( 77! ) then dropu[i] = true;
else forall < ¢ do
n = determine_maz_n(i.count, k);

EE

then dropz [i] = true

6
7. if optimisticomonotone_value(i, t,n,Car ) ¥ Car
8
9. veturn dropy[]




[image: image32.png]Procedure: enhanced_global_pruning(Items, Car, Vi)

1. foralli € Ttems do dropali] = false:
ifCar = card(X) > n then
forall i € Items do
iVili] <( 771 ) thendropali] = true;
. dse forall i € Ttems do
n = determine_maz_n(Viil, k);
if optimistic.monotone.value(i, Items,n, Car) ¥ Car
then dropli] = true
. return dropg|]





[image: image33.png]ocedure: count&reduce(minsupp, i, TDBy, Car, Vi1)
1 forall i & Ttems do Vi[i] = 0

2. forall wples ¢ in T DBy do

3. foralli € ¢ doif ((Vies[i] <k — 1) or dropali])
4 then remove i from t: remove i from Ttems;
5. else i.count = 0;

6. if[f] >k then

2 i Ca (1) then

8 forall X € G, X C tdo

9. X count-++ t.count++;

10 foralli € X do.count++:

1 if X count == min_supp then

12 Li=Lyu{X}

13 foralli € X do Vili] ++:

14 i Jt] >k + 1 then

1s if .count > k+ 1 then

16 drop [J=enhanced_local_pruning(Ttems, Car  1);
I foralli ¢ if (i.count < k) or dropr[i])
18. then remove i from ¢;

19 1] > k then
20 i Car (1) then write(t, TD Bega):

21, dropa |=enhanced_global_pruning(I tems, Car, Vi):
22. forall X & Ly do
23 if3i€ X : dropsli] then remove X from Ly:





Essentially ExAMiner is an Apriori-like algorithm, which exploits anti-monotone and monotone constraints to reduce the problem dimensions level-wise. Each transaction, before participating to the support count, is reduced as much as possible, and only if it survives to this phase, it is used to count the support of candidate itemsets. Each transaction which arrives to the counting phase at iteration k, is then reduced again as much as possible, and only if it survives to this second set of reductions, it is written to the transaction database for the next iteration. Therefore, in order to describe the proposed algorithm, is sufficient to provide the pseudo-code for the procedure which substitutes the counting phase of the Apriori algorithm. This new procedure is named count&reduces. In the following with TDBk we indicate the transaction database at the iteration k.
As already stated, each transaction t in the database passes through two series of reductions and tests. The first reduction (lines 3 and 4 of the pseudo-code) is the global pruning of items (Proposition 2 and 5) which exploits the information in the array Vk−1. After this reduction the transaction is first tested for its cardinality (line 6), and then it’s

tested against the monotone constraint (line 7, µ-reduction). Only if both tests are passed the transaction t is matched against candidate itemsets to increase their support counts (lines from 8 to 12). During this phase we collect other information regarding t and each item i in t: the number of candidates itemset contained in t (line 9), the multiplicity of i w.r.t. t at the current iteration (line 10), and the number of frequent itemsets containing i (line 13). If the transaction t has arrived alive to this point, it has

still to pass some tests in order to enter into the database for the next iteration. First of all we check if its cardinality is at least k + 1 (line 14). Then we check if during the counting phase it has participated to the count of at least k + 1 can candidate k-itemsets (line 15, Proposition 3). After this, if the transaction is still alive, it is further reduced by enhanced local pruning of items (lines 16, 17 and 18). After this reduction we check again the size of the transaction t and if it satisfies the monotone constraint. If also these last two tests are positive the transaction t enters in the database for the next iteration. Finally, we collect information for the enhanced global pruning (line 21), and we perform the pruning of generators (line 23).
3.1.4.5  Flowchart of exaMiner 
There are 3 different versions of Examiner algorithm
· ExAMiner0: strictly, allow only one count&reduce round for each level

· ExAMiner1: only at first level, allow infinity rounds until a fix point is reached

· ExAMiner2: only at first two level, allow infinity rounds until a fix point is reached


The first figure describes ExaMiner0 flow. Only one count and reduce. (Each proposition described already at previous paragraph)

Figure 3.1.4-1-A - ExAMiner0

The second figure describe ExaMiner1 and Examiner2 flow
We can see returning to proposition 1 if we succeed pruning. This means that we have a second count and reduce unlike the Exminer0. That for each K it has only one count and reduce Prunning can return to proposition 1 only if K=1 for ExaMiner1 and if K<=2 for ExaMiner2.

Figure 3.1.4-1-B- ExAMiner1 & ExAMiner2

3.1.4.6 ExaMiner algorithm example
Examiner algorithm exploits anti monotone and monotone constraints to reduce the problem dimensions. It shows how in each iteration the datasets size becomes smaller and hence dealing with save I/O costs.
The following tables bellow illustrates an example for the examiner algorithm.
The first figure bellow includes 3 tables.

1. Price for each item.

2. A list of transactions – Each row include it's transaction ID, list of transaction items and it's total price. 
3. Support item list – Support for each item.
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Table 3.1.4-2 - ExaMiner example level one (1)
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Table 3.1.4-3 - ExaMiner example level one (2)

µ Reduction – Tid 1 does not satisfy the constraint sum>30 so we delete this Tid.
We count again the support of each item and change the numbers.(See 'g', 'h', 'I' support change)
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Table 3.1.4-4 - ExaMiner example level one (3)

α Reduction – Here we prune from TDB all the items which Cfreq < 3 and update the total of each transaction.
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Table 3.1.4-5 - ExaMiner example level one (4)

µ Reduction – Tid 3, 5 are no more satisfy the constraint sum>30 so we delete those Tids.

We count again the support of each item and change the numbers for the specific items
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Table 3.1.4-6 - ExaMiner example level one (5)

α Reduction – Here we prune from TDB the item f which Cfreq < 3 and update the total of each transaction
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Table 3.1.4-7 - ExaMiner example level one (6)

µ Reduction – Tid 9, 10 do not satisfy the constraint sum>30 so we delete those Tids from TDB and we count again the support of each and change the numbers for the specific items
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Table 3.1.4-8 - ExaMiner example level two (1)

This is the same table as above (without marking) prepare for level 2.
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Table 3.1.4-9 - ExaMiner example level two (2)

Global pruning – 'a', 'l' are globally pruned from all transaction because they appear in only one frequent 2-itemset.
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Table 3.1.4-10 - ExaMiner example level two (3)

µ Reduction – Tid 2, 12, 14 do not satisfy the constraint sum>30 so we delete those Tids from TDB and we count again the support of each and change the numbers for the specific items
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Table 3.1.4-11 - ExaMiner example level two (4)

Global pruning – 'k' is globally pruned from all transaction because they appear in only one frequent 2-itemset

µ Reduction – Tid 4, 6, 7 are no more satisfy the constraint sum>30 so we delete those Tids from TDB and we count again the support of each and change the numbers for the specific items
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Table 3.1.4-12 - ExaMiner example level two (5)

α Reduction – Here we prune from TDB the items 'c', 'j' which Cfreq < 3 and update the total of each transaction
[image: image45.png]L g 1 31





Table 3.1.4-13 - ExaMiner example level two (6)

Final result
3.1.4.7 Experiments

1. The following tests results were done on Windows 2000 1000MHz CPU with 320MB RAM. 
2. The experiment was done on two datasets:
· POS: Real world dataset containing several years worth of point-of-sale data from a large electronic retailer, aggregated at the product category level.
· Synt is a synthetic dataset obtained with the most commonly adopted dataset generator

Real world dataset containing several years worth of point-of-sale data from a large electronic retailer, aggregated at the product category level
The table bellow includes the number of transactions items ext… for each dataset.


[image: image46]
Table 3.1.4-14 ExaMiner experiment dataset real and synthetic

Figures 3.1.4-3  and figure 3.1.4-4 report the number of transactions considered, iteration by iteration, by different algorithms. The G&T algorithm is the Apriority algorithm. This algorithm doesn't exploit any data reduction technique, as it uses the whole initial dataset during the level-wise computation, so we can see a straight line (means the algorithm will scan the same number of transactions in the next iteration).
We can see in both figures - 3.1.4-3, 3.1.4-4 that all the algorithms except apriori algorithm reduce the datasets in each iteration. We can see that in both figures ExaMiner done the best performance.(See in Figures 3.1.4-3 –At the 6 iteration ExaMiner algorithm few iteration left unlike the others that left at list 500000 transactions (The same idea at figure 3.1.4-4)

[image: image47]
Figure 3.1.4-3 ExaMiner experiment Data Reduction Rate (min_sup = 1100)


[image: image48]
Figure 3.1.4-4 ExaMiner experiment Data Reduction Rate (min_sup = 500)

We can see in figure 3.1.4-5, 3.1.4-6 that performance improved when "m" grows, and ExaMiner done the best performance in each stage.

[image: image49]
Figure 3.1.4-5 - ExaMiner experiment Run time synthetic (min_sup =1200)


[image: image50]
Figure 3.1.4-6 - ExaMiner experiment Run time synthetic (sum(prices) > 2800)

3.1.5 FP-BONSAI ALGORITHM [5]
3.1.5.1 Introduction

The problem of how to push different types of constraints into the frequent itemsets computation has been extensively studied. However, while pushing anti-monotone constraints deep into the mining algorithm is easy and effective, the case is different for monotone constraints. Indeed, anti-monotone constraints can be used to effectively prune the search space to a small downward closed collection, while the upward closed collection of the search space satisfying the monotone constraints cannot be pruned at the same time. Recently, it has been shown that a real synergy of these two opposite types of constraints exists and can be exploited by reasoning on both the itemset search space and the input database together, using the FP-Bonsai.

In this paper they show how this synergy can be exploited within the well known FP-growth algorithm. Thanks to the recursive projecting approach of FP-growth, the data-reduction is pervasive all over the computation. All the FP-trees built recursively during the FP-growth computation can be pruned extensively by using the property, obtaining a computation with a smaller number of smaller trees. We call such a tiny FP-tree, obtained by growing and pruning, an FP-bonsai. The resulting method overcomes the main drawback of FP growth, which is: its memory requirements.
3.1.5.2 FP-bonsai algorithm
Algorithms summarization
The algorithm made up from two phases:

A. Phase 1 algorithm – Run the algorithm FP- pruning
1. Run (-pruning – Remove from the database D each transaction which doesn't satisfy the constraint.

2. Run (-pruning – Remove from all transactions in D singleton items which do not satisfy the minimum support.
3. Do phase 1, and phase 2 until no change will be made.

B. Phase 2 – Run the algorithm FP-growth – (There is a full description for this Algorithm in chapter "basic algorithms").
Algorithm – Phase 1
[image: image51.png]Algorithm FP-pruning
Input: D, Canr.Car,
output: 4, ¢, [D]
repeat
// p-pruning of D
for all transactions ¢ occurring in D
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Remove i from D
until nothing changed




Algorithm – Phase 2
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3.1.5.3 FP-Bonsai algorithm example
The example took from "Fp bonsai algorithm" [5]

Bellow there are 2 tables: 
· Table A - Include the transactions.

· Table B - Include price for each item.

The minimum support is: ε = 4
   The constraint is Monotone constraint – Sum(x) >= 45
       Table A 






Table B
	Item
	a
	b
	c
	d
	e
	f
	g
	h

	Value
	5
	8
	14
	30
	20
	15
	6
	12


	TID
	Itemset

	1
	b, c, d, g

	2
	a, b, d, e

	3
	b, c, d, g, h

	4
	a, e, g

	5
	c, d, f, g

	6
	a, b, c, d, e

	7
	a, b, d, f, g, h

	8
	B, c, d

	9
	b, e, f, g


Table 3.1.5-2 - FP Bonsai example- Tid, items table 
Algorithm – Phase 1

The algorithm runs the FP- pruning. It starts as bellow (All deleted items / transactions marked in red.
Run (-pruning
	TID
	Itemset

	1
	b, c, d, g

	2
	a, b, d, e

	3
	b, c, d, g, h

	4
	a, e, g

	5
	c, d, f, g

	6
	a, b, c, d, e

	7
	a, b, d, f, g, h

	8
	b, c, d

	9
	b, e, f, g


 Sum{a,e,g} = 31 < 44  so it delete from the database
	TID
	Itemset

	1
	b, c, d, g

	2
	a, b, d, e

	3
	b, c, d, g, h

	4
	a, e, g

	5
	c, d, f, g

	6
	a, b, c, d, e

	7
	a, b, d, f, g, h

	8
	b, c, d

	9
	b, e, f, g


Table 3.1.5-3- FP Bonsai example (-pruning – (constraint check)

Run (-pruning
Check the support of each item. All the following items a, e, f, h support are less than 4 so they will be delete from the table support and from the database.
	TID
	Itemset

	1
	B, c, d, g

	2
	A, b, d, e

	3
	b, c, d, g, h

	5
	C, d, f, g

	6
	a, b, c, d, e

	7
	A, b, d, f, g, h

	8
	b, c, d

	9
	B, e, f, g

	TID
	Itemset

	1
	b, c, d, g

	2
	a, b, d, e

	3
	b, c, d, g, h

	5
	c, d, f, g

	6
	a, b, c, d, e

	7
	a, b, d, f, g, h

	8
	b, c, d

	9
	b, e, f, g

	Item
	support

	a
	3

	b
	7

	c
	5

	d
	7

	e
	3

	f
	3

	g
	5

	h
	2


Table 3.1.5-4- FP Bonsai example Run (-pruning (Support check)
Run (-pruning

The sum (Tid 2 ) = 38 < 45

The sum (Tid 7 ) = 44 < 45

The sum (Tid 9 ) = 14< 45

	TID
	Itemset

	1
	b, c, d, g

	2
	b, d

	3
	b, c, d, g

	5
	c, d, g

	6
	b, c, d

	7
	b, d, g

	8
	b, c, d

	9
	b, g


 ( Delete transactions 2,7,9 from the database.

	TID
	Itemset

	1
	B, c, d, g

	2
	b, d

	3
	B, c, d, g

	5
	c, d, g

	6
	b, c, d

	7
	b, d, g

	8
	b, c, d

	9
	b, g


Table 3.1.5-5- FP Bonsai example (-pruning (1)
Run (-pruning
Check the support of each item. The support of the item g is less than 4 so it should be delete from the table support and from the database
	Item
	support

	b
	7

	c
	5

	d
	7

	g
	5

	Item
	support

	b
	4

	c
	5

	d
	5

	g
	3

	TID
	Itemset

	1
	b, c, d, g

	3
	b, c, d, g

	5
	c, d, g

	6
	b, c, d

	8
	b, c, d


Table 3.1.5-6- FP Bonsai example Run (-pruning (2)
Run (-pruning
The sum (Tid 5 ) = 44< 45

( Delete transaction 5 from the database.

	TID
	Itemset

	1
	b, c, d

	3
	b, c, d

	5
	c, d

	6
	b, c, d

	8
	b, c, d

	TID
	Itemset

	1
	b, c, d

	3
	b, c, d

	5
	c, d

	6
	b, c, d

	8
	b, c, d


Table 5.2.3-7- FP Bonsai example (-pruning (3)
Run (-pruning (No change)
Check the support of each item. No change.
	Item
	support

	b
	4

	c
	5

	d
	5

	Item
	support

	b
	4

	c
	4

	d
	4

	TID
	Itemset

	1
	b, c, d

	3
	b, c, d

	6
	b, c, d

	8
	b, c, d


Table 5.2.3-8- FP Bonsai example Run (-pruning (4)
Run (-pruning  (No change)
No change in the database 

	TID
	Itemset

	1
	b, c, d

	3
	b, c, d

	6
	b, c, d

	8
	b, c, d

	TID
	Itemset

	1
	b, c, d

	3
	b, c, d

	6
	b, c, d

	8
	b, c, d


Table 5.2.3-9- FP Bonsai example (-pruning (5)
Algorithm – Phase 2

Now it runs the algorithm FP-Growth. For this algorithm there is a special chapter which describes this algorithm. See Fp tree
Results
“dcb” is the only subset (marked in green) which satisfy the requirements.

	Item
	Frequent Itemsets

	b
	b:4

	C
	c:4, bc:4

	D
	d:4, dc:4, db:4, dcb:4


Table 5.2.3-10- FP Bonsai example results
3.1.5.4 Disadvantage
Usually, it's not efficient for the real word - Working on batch DB and not on growing DB.

3.1.5.5 Experiments
To evaluate the effectiveness and efficiency of the algorithms, they performed an extensive experimental evaluation. In this section, they report the results on a synthetic transaction database with the following data:

FP-Bonsai

      Support (ε ) – fixed 
      Monotone constraint – sum(X) – (minimum price x axis)
We can see the reduction of number of trees built w.r.t FP-growth when minimum price become grater.

The test is running on 2 different datasets.
FP-Bonsai vs Examiner (BMS-POS )
From those pictures we can see that ExAMiner is faster only when the selectivity of one of the two constraints is very strong,

Support (ε ) – 200 
Monotone constraint – sum(X) – (minimum price x axis)
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Figure 3.1.5-1- FP Bonsai Examiner experiment (BMS-POS) (1)
      Monotone constraint – sum(X) >= 3000

[image: image54.png])

time (in se

10000

1000

100

0.

FP-Bonsai vs. Examiner (BMS-POS)

FP-Bonsal ——
Examiner ——

100

200

300

400

500 600
minimum support

700

800 900 1000




Figure 3.1.5-2- FP Bonsai Examiner experiment (BMS-POS) (2)
3.1.5.6 Summary
Here we proposed an algorithm which is better than Examiner. It earns this advantage by the following techniques:

1. It uses pruning before building the fp-tree. (Use the constraints and the support threshold.
2. It constructs a highly compact FP-tree which is much smaller than the basic Data Base.

3. It applies a pattern growth method which avoids costly candidate generation

4. It applies a partitioning-based divide- and-conquer method 

3.2 short papers surveys
The following sections provides brief description of papers which relate to constraint / improve data mining 
ExAnte: Anticipated Data Reduction in Constrained Pattern Mining [3]

As we know, constraints pushing techniques proved being effective (effective in reducing the search space). Nearly most of the algorithms prove it by using anti-monotone constraints while Monotone constraints considered being hard to push in the computation and less effective. The algorithm in this paper [8] proves that monotone constraints can also be used and with good performance.

The monotone constraints have been considered more complicated to exploit and less effective in pruning search space. Pushing monotone constrains in most cases decrease the anti-monotone pruning. In fact it deals with a tradeoff between anti-monotone and monotone pruning.

This algorithm proves that the most effective way of attacking the problem is to meet both the itemsets search space and the transactions input database together. 

In this way, pushing monotone constraints does not reduce anti-monotone pruning opportunities; on the contrary, it improves performance. 
Exploratory mining and pruning optimizations of constrained associations rules [11]

Nowadays model of mining association rules suffers from the following serious shortcomings:

(i) Lack of user exploration and control

(ii) Lack of focus

(iii) Rigid notion of relationships.
As a meter of fact, those functions are just as a black-box. They admitting only little user interaction in between.

In this paper they propose an architecture that opens up the black-box and supports constraint-based, human-centered exploratory mining of associations. 

This article put a focus on the technical challenges and they assure a high level performance when constraints are used in an association queries.

For example if user may want to find associations from sets of items to set of types, or not waste hours by waiting for results if we during the mining relies that we found something that cause to change the query. 

They also show a mining algorithm called CAP. This algorithm achieve maximum degree of pruning for all categories of constraints.

Experimental results indicate that CAP can be executed much faster, in some cases as much as 80 times faster than several basic algorithms. This demonstrates how important the succinctness and anti-monotonic properties are, in delivering the performance.
Exploiting Succinct Constraints using FP-trees [8]
FPS (FP-tree based mining of succinct constraints) tree is an algorithm which avoids generates and test by exploiting succinctness properties of the constraints using FP tree framework.

The algorithm performance is more efficient than the known FP-tree.

The FPS algorithm idea is pushing the succinct constraints deep inside the mining process and thus earn more effective pruning than the existing algorithms like FIC.

The idea using succinct constraints is that without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
Constraint based rule mining in large, dense databases [2]
Data mining rules problem has attracted considerable interest because a rule provides a concise statement of potentially useful information that is easily understood by end users. In the database literature, the focus has been on developing association-rule algorithms that identifies all conjunctive rules meeting user-specified constraints such as minimum support and minimum confidence.
The completeness guarantee provided by association rule miners is what distinguishes them from other rule-mining methods such as decision-tree induction. This completeness guarantee provides a high level of comfort to the analyst who uses rules for decision support, as opposed to building a predictive model for performing automated classification tasks. Association rule algorithms were initially developed to tackle data-sets primarily from the domain of market-basket analysis.
These data-sets cause an exponential blow-up in the resource consumption of standard
Association rule mining algorithms including Apriori and its many variants. The combinatorial explosion is a result of the fact that these algorithms effectively mine all rules that satisfy only the minimum support constraint, the number of which is exorbitant. Though other rule constraints are specifiable, they are typically enforced solely during a post-processing filter step. In this paper they directly address the problem of constraint-based rule mining in dense data. Our approach is to enforce all user-specified rule constraints during mining. 
For example, most association rule miners allow users to set a minimum on the predictive ability of any mined rule specified as either a minimum confidence or an alternative measure such as lift or conviction. They present an algorithm that can exploit such minimums on predictive ability during mining for vastly improved efficiency even given strong minimums on support and predictive ability, the rules satisfying these constraints in a dense data-set are often too numerous to be mined efficiently or comprehended by the end user. A constraint-based rule miner that can be effectively applied to dense data must therefore provide alternative or additional constraints that the user may specify. Ideally, the constraints should be easy to specify, and further, eliminate only those rules that are uninteresting. To this end, they present and incorporate into the algorithm a new constraint that eliminates any rule that can be simplified to yield an equally or more predictive rule. This constraint is motivated by the principle of Occam’s Razor, which states that plurality should not be posited without necessity.

Non recursive generation of Frequent K-itemsets from frequent  pattern tree

Representations [6]
Many algorithms suffer from many problems when mining massive transactional datasets. One of the significant problems is the amount of memory used, memory which is used above the data structure. The recursive mining process to mine these structures use massive memory resources.

This algorithm doesn't use memory beyond the data structure.

For each frequent item, a relatively small independent tree called COFI-tree is built summarizing co-occurrences. The next step is running a simple and non-recursive mining process mines the COFI-trees

Many experiments revealed that this approach is very efficient and it allows the mining of larger datasets than those limited by FP-Tree.

As a meter of fact the Co-Occurrence Frequent Item tree or COFI-tree algorithm is using the core bases of FP-Growth algorithm proposed by Han et al.

The algorithm first builds a compacted tree structure, FP-Tree, which is based on an ordered list of the frequent one itemsets present in the transactional database. 

Now, instead of using the FP-Growing which use the recursive method and cause a large number of relatively large trees (called conditional trees from the built FP-tree),  rather than using FP-Growth which recursively builds a large number of relatively large trees called conditional trees from the built FP-tree, they are building one small tree (called COFI-tree). The next step is mine the small trees, but with a simple non-recursive traversals.

The idea in this algorithm is keeping only one such COFI-tree in the memory at a time.

The COFI-tree use the divide and conquer method, it does not seek to find all frequent patterns at once but it finds independently all frequent patterns related to each frequent item in the frequent 1-itemset. 

The main differences between our algorithms to FP-growth are: 

1- Only one COFI-tree for each frequent item A is being built. This COFI-tree is a non-recursively traversed. 

2- To generate all frequent patterns related to item A. (2) Only one COFI-tree resides in memory at one time and it is discarded as soon as it is mined to make room for the next COFI-tree.

FP- Tree depends heavily on memory size and not only for store data structure but also for generates recursively in the mining process, so COFI- Tree is the answer for those 

Algorithms like FP-Tree. 

COFI-tree mining: A new approach to pattern growth with reduced candidacy generation [4]
Existing association rule mining algorithms suffer from many problems when mining massive transactional datasets. Some of these major problems are: (1) the repetitive I/O disk scans, (2) the huge computation involved during the candidacy generation, and (3) the high memory dependency. This paper presents the implementation of our frequent itemset mining algorithm, COFI, which achieves its efficiency by applying four new ideas. First, it can mine using a compact memory based data structures. Second, for each frequent item assigned, a relatively small independent tree is built summarizing co-occurrences. Third, clever pruning reduces the search space drastically. Finally, a simple and non-recursive mining process reduces the memory requirements as minimum candidacy generation and counting is needed to generate all relevant frequent patterns.
4 IMPLEMENTAION
Attached to this project is FP BONSAI and FP TREE implementation in JAVA.

In this section, we report the results on a synthetic transaction database with the following data:
Purpose
The purpose is - showing the performance of the 2 algorithms - advantages / disadvantages of each one.
I've choose those algorithms because "bonsai" is a sort of an FP upgrade of FP-Tree and, it not always better than FP-Tree.

· Algorithm implemented in java
· Experiments – on Pentium 2.8GHZ , 2G Memory

· Operational  Sys – Windows 2000
· Max items
A. Database structure

The database is a text file which includes rows. Each row contains numbers and spaces. The numbers denote the price of the items. (e.g. – In the first example we can see products with the prices 10  21  23 34 …)
Generator application was belt and used in order to build synthetic Database. The number of items in each row and the data (items in row) are randomly generated. The database was saved as txt file. We can see an example bellow.
Example:
 10  21  23 34  151 7  28  29  11  312  413  116  21  118  19  20  21  23  24  25  27  28  35  
1  3  4  5  6  7  8  14  18  19  20  32  35 2  

1  2  3  4  8  9  10  12  13  14  15  16  17  18  19  20  23  24  25  26  27  28  29  
34  37  41  43  48  49  

1  2  3  4  5  6  8  10  11  14  15  16  17  18  22  23  25  26  28  29  31  39  41  
Bellow we can see and example for 2 tables. The first include the items, the second include a price for each item.
	No
	Items bought

	1
	beer, milk

	2
	meat, fruit, vegetable

	3
	beer, fruit

	4
	fruit, cereals, meat


Table 4-1- Transactions table

	Item
	Price

	Beer
	5

	Milk
	8

	Meat
	2

	Fruit
	6

	Vegetable
	7

	Cereals
	3


Table 4-2- items and prices

δ = # Number of freq itemsets NOT satisfying C / # of freq itemset
       Selectivity δ = 100% - Means every freq itemset violates the constrain 

(Earn GOOD performance)

       Selectivity δ =   0%    - Means every freq itemset satisfies the constrain 
 (BAD performance)

	num of rows
	Constraint - Sum (relevant to bonsai only)
	Min support (%)
	rows after the constrain (in bonsai)
	bonsai time
	FP tree time

	100k
	700
	1
	5805
	0.53
	22.3

	100k
	700
	2
	5805
	0.53
	7.296

	100k
	700
	3
	5805
	0.53
	1.125

	100k
	700
	4
	5805
	0.53
	1.062


	num of rows
	Constraint - Sum (relevant to bonsai only)
	Min support (%)
	rows after the constrain (in bonsai)
	bonsai time
	FP tree time

	100k
	300
	1
	33532
	32.719
	22.3

	100k
	400
	1
	28029
	28.36
	22.3

	100k
	500
	1
	22683
	34.313
	22.3

	100k
	600
	1
	17252
	22.307
	22.3

	100k
	650
	1
	7648
	21.427
	22.3

	100k
	700
	1
	5805
	0.547
	22.3


	num of rows
	Constraint - Sum (relevant to bonsai only)
	Min support (%)
	rows after the constrain (in bonsai)
	bonsai time
	FP tree time

	100k
	700
	1
	5805
	0.53
	22.3

	100k
	500
	2
	15,371
	0.67
	8.1

	100k
	560
	2
	11,866
	0.53
	8.1

	100k
	507
	5
	15,021
	0.703
	0.78


Table 4-3- experiments result
Application examples
Attached bellow result after running database with 

Input

Minimum support - 5%

Sum limit 
       - 40NIS

Result
2.157sec
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Figure 4-1 - Application window – main panel
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Figure 4-2 - FP tree result panel
We can see in the results of the FP Tree above:
1. Generating time – Duration time of the algorithm

2. The tree storage size in bytes.

3. Number of frequent sets according to the example conditions

4. Output subsets results:

· {1} – The depth of the node. {1} Appears 55,291 times and Minimum support > 5%

· {2} – The depth of the node. {2} Appears 46,261 times and Minimum support > 5%

· ….

Conclusions
From those results we can see that the more Min support is lower the FP Bonsai is faster (then FP Tree).  As a meter of fact FP-Tree earns it performance when the support is high. So the gap between the 2 algorithms grows when the support becomes lower. The reason is that FP-Bonsai still has it constraints that help the transactions pruning.
5 summary and conclusions
This work summarizes seven articles in association rules.  Three of them focus in "using constraints" and three focuses on "Improving basic algorithms, performance ". We emphasize the need of both improving basic algorithm and the using constraints, in our summary. Main contribution is showing that by imposing an appropriate order on items, such tough constraints can be converted into ones that possess monotone behavior. We learned that while convertible constraints cannot be literally incorporated into an Apriori-style algorithm, they can be readily incorporated into the FP-growth algorithm.
We show how to deal with sparse and dense data. We also learn how to improve data mining using tree methods, and we also mentioned other kinds sophisticate trees using to manage the new nowadays problems, like online data which must be mined online.
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תקציר
מטרת תהליך כריית נתונים היא לזהות ולנבא תבניות, מגמות וקשרים מתוך הנתונים.
השלבים העיקריים בתהליך כריית נתונים הם:
הגדרת הבעיה, הכנת המידע, ניתוח המידע, הערכת התוצאות, הצגת התוצאות

בעבודה זו נציג מספר אלגוריתמים לכריית מידע באמצעות חוקי הקשר. תחילה נציג את האלגוריתמים הבסיסיים (Apriori Algorithm and FP Tree) ואח"כ נדון באלגוריתמים עם אילוצים,אנו נכיר אותם כמו כן נעמוד על ההבדלים בין הסוגים השונים.
למעשה ההתמקדות בעבודה זו תהיה על אלגוריתמים לכריית מידע עם אילוצים. אנו נעמוד על חשיבות אילוצים בכריית מידע, על השימוש בהם, ונחקור עבור סוגים שונים של אילוצים שיטות ואלגוריתמים לכריית מידע בדרך יעילה. כידוע שימוש באילוצים ממקד את המשתמש באיתור המידע הנדרש ומשפר את ביצועי המערכת. בעבודה זו אתמקד בסוגים מסוימים של אילוצים, ואלגוריתמים  שנבנו עבורם.
והאלגוריתמים שאנו נסקור לעומק הם:

· MINING FREQUENT ITEMSETS WITH CONVERTIBLE CONSTRAINTS[10]
· MINING ASSOCIATION RULES WITH ITEM CONSTRAINTS [11]
· EXAMINER OPTIMIZED LEVEL-WISE FREQUENT PATTERN MINING WITH MONOTONE CONSTRAINTS ALGORITHM [4]
· FP-BONSAI ALGORITHM [5]
כמו כן נסקור 6 מאמרים נוספים בקצרה: 4  מאמרים בתחום אילוצים ועוד 2 אלגוריתמים מתקדמים מ-Apriori.
החלק האחרון בעבודה מממש אפליקציה עבור האלגוריתמים Bonsai Tree  ו- FP Tree(ב- java / C++ ) (ה-DB סינטטי ונבנה על ידי מחולל שנבנה לצורך ההדגמה). וכן דן בסקירת  תוצאות ומסקנות המימוש.
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Example of Association Rules
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Table 3.1.5-1 - FP Bonsai example- item, value table
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