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Abstract

The general synchronous broadcasting paradigm refers to the process of message dissemination in communication networks. The communication network is modeled by a graph G = (V, E), where the set of vertices, V, represents the network members and set of edges, E, represents the communication links between two given vertices. The originator uses some broadcasting scheme, which is described by a sequence of transmissions made between the vertices in every time unit. There are several known broadcasting models. The local model assumes that messages pass only between adjacent vertices. The line model assumes that the informed vertex can call each of the vertices in G and transmit the message through a path, as long as two transmissions do not use the same edge at the same time. Meaning that all the paths that participate in the calls in the same time unit must be edge disjoint. In the line model, each call requires only one time unit. The vertices on the path between the caller and the receiver do not receive the message from that call.
In this work, lower and upper bounds on the cost of optimal (minimum-time) line-broadcasting scheme are examined for particular graph families. Balanced caterpillar graphs and chain-of-chains graph are examined, extending Fujita and Farley's work [13]. Complete tree graphs are examined, extending Averbuch, Gaber and Roditty [1]. Lower and upper bound are presented, and the relation between the structure of a graph and the cost of broadcasting is examined.
1. Introduction
1.1 Background

Broadcasting is the process of message transmissions in a communication network.

A broadcasting communication network can be described as a finite, connected, undirected graph 
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, in which the vertices represent processors and the edges represent direct communication lines between processors.

Broadcasting in our context is subject to the following rules: 

1. At a given time each processor will perform one (and only one) of the following actions:

· receive a single message,

· send (transmit) a single message to another processor(s), 
· be idle.

2. No more than one processor may send a message, at a given time, to a given processor (i.e. a processor may not receive more than one message at a given time).
The vertices that initiate any broadcasting scheme are called the originators. The aim of each such originator is to transmit its message(s) to all other vertices of the network, according to the broadcasting rules.
Several models for broadcasting communication network were investigated. A k-port broadcasting is the model in which each vertex transmits the message to at most k vertices in each time unit where each call requires one time unit. Next, we shall concentrate on two other models. One is  local broadcasting, in which a processor sends its message only to one adjacent processor at a given time. The other model is line broadcasting, in which the following rules apply:

1. A processor, 
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,  may send a message, to a (not necessarily adjacent) processor, 
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,  along a path in the graph, which starts in 
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 and ends in 
[image: image6.wmf]v

.

2. At a given time unit, no more than one transmission may be passed along a given edge. 
Example: Suppose 
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at the same time unit, then the paths 
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 may intersect only in a vertex.
Two transmissions, at a given time unit, that intersect in an edge are said to have a conflict. 
Notice that a local broadcasting is a particular case of line broadcasting, in which all broadcasting paths are of length 1. 

The broadcasting time of a vertex 
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, is defined as the minimum number of time units required to broadcast one message from 
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Observe that 
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, since during each time unit the number of informed vertices can at most be doubled.
Broadcasting time of a graph, 
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We measure the total time and the cumulative cost of the broadcasting scheme. The total time of the broadcasting scheme is measured as the number of time units the broadcasting scheme needs to complete the broadcasting.  The cost of a call (transmission) is the number of edges used by the call, which is the number of edges in the path between the call's transmitter and receiver. The total cost of a broadcasting scheme is the sum of the cost of the calls at each time unit, cumulated on all time units.  One goal is to have the minimum possible total time.  Another goal is to minimize the total cost.

A broadcasting scheme is the way in which broadcasting is taken care from

an originator(s). The broadcasting scheme is a specification of which transmissions are scheduled at each time unit and which paths are used in each transmission. For trees, there is only one path between any two vertices, so specifying the path is unnecessary. 
A scheme that completes the broadcasting within a minimal number of time units is referred to as minimum-time scheme, or an optimal scheme.

In this work we concentrate in minimum-time line broadcasting schemes for particular network topologies. Several families of trees are examined: The balanced caterpillar, the chain of chains, and the complete tree. In each family: a lower bound on the cost is determined by analyzing broadcasting in the tree, and an upper bound on the cost is determined by presenting a broadcasting scheme. For the balanced caterpillar, and the chain of chains families, the relation between the distribution of vertices in parts of the graph and the broadcasting cost is examined. 

The work is organized as follows: Section 1.3 of this chapter contains the notation and definitions that are relevant to this work.  Chapter 2 finds lower and upper bounds for chain of trees, which is a generalization of both balanced caterpillar and chain of chains. Chapter 3 explores the particular case of a balanced caterpillar, relying on the results of chapter 2. Chapter 4 explores the particular case of a chain of chains, relying on the results of chapter 2. Chapter 5 finds lower and upper bounds for a complete k-ary tree. In chapter 6 the results are summarized.
1.2 Related work

The analysis of broadcasting in communication networks has been investigated in the literature since the early 1950's (see the survey on broadcasting under various model different topologies [16]). With the growing interest in parallel and telecommunication systems, a vast literature has been devoted to specific group of communication setups on specific network topologies.  

The general broadcasting problem under the single-port local model has been shown to be NP-complete, however, if the graph is a tree, finding an optimal broadcasting scheme was shown to be polynomial ([19], [21]).  

Other topologies that have been investigated are complete graphs, torus graph, ring, grid, hypercube, shuffle-exchange, and butterfly graph, with a recent generalization in weighted trees in [2]. 


Analysis of broadcasting in grids was first investigated by Farley and Hedetniemi [12]. Van Scoy and Brooks [22] extend their result to broadcasting m messages from a corner of a 2- and 3-dimensional grid. These results were extended to a d-dimensional grid by Roditty and Shoham [20], where they also showed an efficient broadcasting algorithm from any originator in a d-dimensional grid. 

The line-broadcasting model is an approximation model of the wormhole and cut-through communication protocols. It was introduced by Farley [10]. In his work, he studied the problem of line broadcasting in general trees under the edge-disjoint single port model. He proved that a minimum time line broadcasting scheme, that runs in 
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 time units, always exists in any undirected graph by presenting a minimum-time line broadcasting scheme on any given tree. The scheme is generated in a polynomial time.  In other words, Farley proved that given a tree 
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Cohen, Fraigniaud, and Mitjana [7] summarized the known results and proposed new schemes how to achieve minimum-time line broadcasting in trees and directed trees. In the single-port edge-disjoint path model, the result is that every undirected graph (and hence a tree) has a broadcasting time 
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 (see [10]). For directed trees, Cohen, Fraigniaud and Mitjana [7] show a 
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-time algorithm in which, given any directed tree 
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 rooted at 
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, returns an optimal broadcasting protocol from 
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 to the vertices of 
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. In the all-port edge-disjoint model they showed that there is an 
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A restriction to the general single-port model in which the length of the calls is limited by a given parameter 
[image: image36.wmf]k

 was proposed by Fujita and Farley and investigated by Gaber in [14]. Gaber introduced an algorithm that produces an efficient line-broadcasting scheme for a given tree, where each call's length is at most 
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. Notice that the line model ([10]) is a special case of this model, when 
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When a minimum-time single-port line broadcasting scheme is explored, the question is how to minimize the cumulative cost of such a scheme. The cost of Farley's scheme in [10] is 
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is the number of vertices in the graph. Following his work, other researchers focused on particular graphs whose structure was known in advance, and presented minimum-time schemes that minimize the cumulative cost. 

Kane and Peters [18] determined the value of the minimum cost for a minimum-time line broadcasting in any cycle with 
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 they gave an estimate, while for other choices of 
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 an upper bound was presented. In each case the cost is about 
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Fujita and Farley [13] discussed minimum-time line broadcasting in paths. The cost of their scheme depends on the position of the originator in the path. They proved that the end-vertex of a path has the greatest cost of any source vertex, and that a minimum-cost line broadcasting scheme from any source vertex in a path 
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 has cost that is not more than that of an end vertex and not less than that cost minus 
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Averbuch, Roditty and Shoham [3] obtained efficient line broadcasting algorithms in a d-dimensional grid, which produce a linear cost as a function of the number of vertices in the graph. 


In another paper, Averbuch, Gaber and Roditty [1] studied the line broadcasting in complete binary trees. They provided a minimum-time line broadcasting scheme that minimizes the cumulative cost. 

Another model that was investigated was the all-port model (see [5]). Although it clearly yields faster schemes than those derived from the single-port model, it was shown that the decision problem for general graphs is NP-complete ([6]). Few particular topologies have been investigated. Efficient schemes for trees were given by Cohen [5]. 

Our work examines some more classes of graphs for the single-port line broadcasting model. Three families of trees are discussed: balanced caterpillar of 
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. The former two extends Fujita and Farley's work on paths, while the latter is a generalization of Averbuch, Gaber and Roditty's [1] work on complete binary trees.

1.3 Notation and Definitions

Definition 1.1 A line broadcasting scheme in a tree 
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where 
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is the set of natural numbers, and 
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indicates no transmission.
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Its cardinality is denoted by 
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Definition 1.3 An optimal line broadcasting scheme (or a minimum-time line broadcasting scheme) in 
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* In the sequel all logarithms are in base 2. 

Definition 1.4 The cost of broadcasting in a tree, 
[image: image72.wmf])

,

(

E

V

T

=

, from an originator vertex, 
[image: image73.wmf]V

v

Î

,  using a line broadcasting scheme 
[image: image74.wmf]v

S

 , 
[image: image75.wmf])

(

S

Cost

, is the sum of the costs of all transmissions made in the scheme:


[image: image76.wmf]å

å

¥

=

Î

º

1

))

,

(

,

(

)

(

t

V

u

v

T

t

u

S

u

d

S

Cost


where 
[image: image77.wmf])

,

(

2

1

v

v

d

T

 is the distance between vertices 
[image: image78.wmf]1

v

 and 
[image: image79.wmf]2

v

 in 
[image: image80.wmf]T

, and  
[image: image81.wmf]0

)

,

(

=

null

u

d

T

.

Definition 1.5 Denote the minimum cost of  minimum-time line broadcasting in a tree, 
[image: image82.wmf])

,

(

E

V

T

=

, from an optimal vertex: 
[image: image83.wmf]}

|

}

 v

originator

 

from

 

scheme

 

 time

minimum

 

a

 

is

 

|

)

(

min{min{

)

(

V

v

S

S

Cost

T

v

v

Î

=

j


Observe that 
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 is the cost of the least-costly minimum time line broadcasting scheme that can be produced for 
[image: image85.wmf]T

.
Definition 1.6 Denote the minimum cost of  minimum-time line broadcasting in a tree, 
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Observe that 
[image: image88.wmf])

(

T

f

 is the cost of the most-costly minimum time line broadcasting scheme,  among least-costly scheme for their originator, that can be produced for 
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. In other words, it is the minimum cost from the "worst" originator vertex.
Definition 1.7 Given a tree, 
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Figure 1.1: a chain-of-trees
Definition 1.8 A Chain Of Chains is a path, in which every vertex is the start of a secondary path, where all the secondary paths are of the same length. 

Notice that a Chain of Chains is a particular case of chain-of-trees where the tree is a path.
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Figure 1.2: a chain-of-chains graph

Definition 1.9 A Caterpillar is a tree such that if its leaves and their incident edges are removed, the remainder of the tree forms a path. In other words, all the vertices of a caterpillar are within distance 1 from a central path. A Balanced-Caterpillar is a caterpillar in which  all the vertices in the central path have the same number of leaves. 
Notice that a balanced caterpillar is a particular case of chain-of-trees where the secondary trees are stars.
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Figure 1.3: a balanced caterpillar graph

Definition 1.10 A Complete k-ary Tree is a rooted tree where all internal vertices (i.e. vertices that are not leaves) have k children, and all the leaves are all at the same level. All vertices except the root have a single parent
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Figure 1.4: a complete binary tree

Definition 1.11 Given a rooted tree 
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For other basic graph theoretical definitions see [15] or [23].

1.4 Main Results
The main results of the work are formulated in the following theorems.
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Theorem 1.2 Given 
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Theorem 1.3 Given 
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Theorem 1.4 Given 
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2. Line Broadcasting in a Chain of Trees
2.1 Lower bound on the cost of Line-Broadcasting in a in a Chain of Trees 

In the next theorem we establish the lower bound of theorem 1.1.
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In Order to prove Theorem 2.1 we need the following lemmas and definitions. 
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Consider a minimum-time line broadcasting scheme in 
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Namely, the difference in number of informed vertices between 
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Since the broadcasting scheme is a minimum-time, the number of informed vertices is multiplied at every time unit, so for time unit  
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Lemma 2.2 At 
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Suppose, WLOG, that at time 
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Proof:
The proof is by induction on 
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Lemma 2.5 For each time unit, 
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The proof is by induction on 
[image: image267.wmf]x

.

For
[image: image268.wmf]0

=

x

: there is a single secondary graph and no edges in the main chain, so that the result follows immediately.
Assume the lemma is correct for 
[image: image269.wmf]k

x

=

 (
[image: image270.wmf]1

0

-

£

£

x

k

).

Which is: for a Chain-of-Trees of size 
[image: image271.wmf]k

y

+

2

 there will be no transmission passing through the edges of the main chain for time units 
[image: image272.wmf]y

k

t

k

+

£

£

+

1

.

Let 
[image: image273.wmf]1

+

=

k

x

.
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Lemma 2.6 The cost of the first 
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Proof:
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From [13] we have that the cost of broadcasting in a path of 
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Thus, the result of the lemma follows.

Lemma 2.7 The cost of the last 
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Proof:
From lemma 2.5 it follows that in the last 
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Now we are ready for proof of theorem 2.1.

Proof of Theorem 2.1:

Combining the results of lemmas 2.6 and 2.7 we have that for every minimum time line broadcasting scheme, 
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Observation:

It follows from theorem 2.1 that: 
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2.2 Upper bound on the cost of Line-Broadcasting in a Chain of Trees

Theorem 2.2 Given 
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In this section an algorithm for generating a minimum-time line-broadcasting scheme in a chain of trees is presented, yielding a proof of above theorem.
In the following algorithm we produce a broadcasting scheme in a chain of trees. We use an algorithm (specified in the input) to perform the broadcasting in the secondary trees. In the first 
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time units we broadcast in the main chain of the tree, while the originator acts as the root of its secondary tree (as if the originator is on the main chain). In the last 
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 time units we use the given algorithm to broadcast in each of secondary trees, separately. 
Algorithm Broadcast-In –Chain-Of-Trees(
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Algorithm:
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In the following algorithm we produce a broadcasting scheme in a chain graph (a simple path) from a given originator. We divide the chain into 2 isomorphic sub-chains connected by an edge. The originator transmits to the vertex closest to it, in the sub-chain that does not contain the originator. We continue the transmission recursively until the chain is of size 1.
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[image: image359.wmf]G

,
[image: image360.wmf]v

,
[image: image361.wmf]0

t

)

Input: 

[image: image362.wmf]G

 - a Chain graph (path), 
[image: image363.wmf])

,

(

E

V

G

=

, 
[image: image364.wmf]x

n

V

2

|

|

=

=

.


[image: image365.wmf]v

 - the originator.

[image: image366.wmf]0

t

 - the starting time of the broadcasting.

Output:

A broadcasting scheme in 
[image: image367.wmf]G

 from 
[image: image368.wmf]v

starting of time 
[image: image369.wmf]0

t

t

=

. 

Algorithm:

1. If 
[image: image370.wmf]0

=

x

 then: return 
[image: image371.wmf]Æ

.

2. Label the vertices in 
[image: image372.wmf]G

: 
[image: image373.wmf]x

v

v

2

1

,...,

, where 
[image: image374.wmf]1

v

 and 
[image: image375.wmf]x

v

2

 are the leaves, and 
[image: image376.wmf])

,

(

)

,

(

2

1

x

v

v

d

v

v

d

<

. Divide 
[image: image377.wmf]G

into two chains 
[image: image378.wmf]1

G

, and 
[image: image379.wmf]2

G

; separated by the edge 
[image: image380.wmf])

,

(

1

2

2

1

1

+

-

-

x

x

v

v

. This means that 
[image: image381.wmf]1

G

contains v.
3. 
[image: image382.wmf])}

,

,

{(

1

2

0

1

+

-

=

x

v

t

v

S

 

4. 
[image: image383.wmf]1)

 t

 v,

,

(G

Chain 

-

In

-

Broadcast

0

1

+

È

=

S

S


5. 
[image: image384.wmf]1)

 t

 v,

,

(G

Chain 

-

In

-

Broadcast

0

2

+

È

=

S

S


6. Return 
[image: image385.wmf]S


Lemma 2.8 
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Proof:

The proof is by induction on 
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Proof:
Consider the cost of the transmissions at a given time unit of a scheme returned by Broadcast-In-Chain. At each time unit 
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Lemma 2.10 Broadcast-In-Chain-of-Trees returns a minimum-time broadcasting scheme, that has no conflicts.
Proof:
Consider a broadcasting scheme returned by Broadcast-In-Chain-of-Tree
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Proof:

Consider the cost of a scheme returned by Broadcast-In-Chain-of-Trees for 
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Proof of theorem 2.2:

From lemma 2.10 algorithm Broadcast-In-Chain-of-Trees returns a minimum-time, conflict-free, line broadcasting scheme for 
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Proof of theorem 1.1:

Combining the results of theorem 2.1 and theorem 2.2 we obtain:
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3. Line Broadcasting in a Balanced Caterpillar

3.1 Lower bound on the cost of Line-Broadcasting in a Balanced Caterpillar 

Theorem 3.1:  Given 
[image: image468.wmf]0

,

³

y

x

  and a Balanced Caterpillar 
[image: image469.wmf])

2

,

(

)

,

(

2

x

y

S

chain

E

V

T

=

=

, 
[image: image470.wmf]y

x

V

+

=

2

, then,



[image: image471.wmf])

(

)

2

3

1

(

2

2

2

T

f

y

x

x

y

x

£

-

-

×

+

×

+


In this section we will prove the above theorem.
Lemma 3.1 Let 
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Proof:
Every transmission that its cost is 1 is from or to the central vertex, say 
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Proof:
In a star every transmission is either of cost 1 (from or to the central vertex) or of cost 2 (from and to the leaves). Let the number of vertices that receive a transmission of cost 1 be 
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Proof of theorem 3.1:

Since a balanced caterpillar is a chain of trees (chain of stars), then from theorem 2.1: 
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3.2 Upper bound on the cost of Line-Broadcasting in a Balanced Caterpillar graph 

Theorem 3.2 Given 
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In this section an algorithm for generating a minimum-time line-broadcasting scheme in a balanced caterpillar, yielding a proof of the above theorem. 

In the following algorithm we produce a broadcasting scheme for a balanced-caterpillar. We simply use Broadcast-In –Chain-Of-Trees algorithm, introduced in chapter 2. The algorithm to broadcast in the secondary trees is Broadcast-In-A-Star (follows later in this section).
Algorithm Broadcast-In-Balanced-Caterpillar (
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Algorithm:
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In the following algorithm we produce a broadcasting scheme in a star graph. First, we transmit to the central vertex of the star, if it is not the originator. Then, each informed vertex transmits to an arbitrary uninformed vertex until all vertices are informed.
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Algorithm:
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Observe that conflict on any edge 
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Finally, the algorithm produces a minimum-time scheme, which is within 
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) transmits, so the number of informed vertices is multiplied in every time unit (iteration).

Lemma 3.4 The accumulated cost of a broadcasting scheme returned by Broadcast-In-A-Star, for star of size 
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Proof:
The first transmission is either from 
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 (line 7.2.2) or to 
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 (line 6.1), therefore it is of cost 1. 
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Lemma 3.5 Broadcast-In-Balanced-Caterpillar returns a minimum-time broadcasting scheme, that has no conflicts.
Proof:
Broadcast-In-Balanced-Caterpillar returns a minimum-time broadcasting scheme, that has no conflicts. This follows from the fact that Broadcast-In –Chain-Of-Trees and Broadcast-In-A-Star return minimum-time broadcasting schemes that have no conflicts (from lemma 2.9, and lemma 3.3).

Lemma 3.6 The accumulated cost of a broadcasting scheme returned by 
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Proof:
From lemma 2.10, for any minimum time broadcasting scheme for secondary tree (in particular the one returned by Broadcast-In-A-Star), a broadcasting scheme returned by Broadcast-In-Chain-of-Trees for a chain of trees of size 
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From lemma 3.4: the cost of broadcasting in a star of size 
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It follows that the cost of a scheme returned by Broadcast-In-Balanced-Caterpillar for a balanced caterpillar of size 
[image: image571.wmf]y

x

+

2

 is at most 
[image: image572.wmf]x

y

x

y

x

x

x

y

x

x

y

x

+

-

-

+

×

=

×

-

×

-

×

+

+

×

+

)

2

2

1

(

2

2

2

2

)

2

2

2

2

(

2

2

1

1


Proof of theorem 3.2:

Algorithm Broadcast-In-Balanced-Caterpillar provides a minimum time broadcasting scheme for every balanced caterpillar graph. Its correctness follows from lemma 3.5 and its cost is at most 
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Proof of theorem 1.2:
Combining the results of theorem 3.1 and theorem 3.2 we get:
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Observation:

As mentioned before (in chain-of-trees), having tree size 
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 will result in a non-linear scheme cost. From theorem 1.2 the cost for broadcasting in a balanced caterpillar is
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 the cost of the broadcasting scheme will be linear. In other words: if the size of the star is at least of order 
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4. Line Broadcasting in a Chain-of-Chains

4.1 Lower bound on the cost of Line-Broadcasting in a in a chain-of-chains 

Theorem 4.1 Given 
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Proof:
Because a chain of chains is a chain of trees, from theorem 2.1, for every broadcasting scheme in a chain of chains, 
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4.2 Upper bound on the cost of Line-Broadcasting in a in a chain-of-chains
Theorem 4.2 Given 
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In this section we present an algorithm for generating a minimum-time line-broadcasting scheme in a chain of chains, thus proving the above theorem. 

In the following algorithm we produce a broadcasting scheme for chain-of-chains graph. We simply use Broadcast-In –Chain-Of-Trees algorithm, introduced in chapter 2. The algorithm to broadcast in the secondary trees is Broadcast-In-Chain (also in chapter 2).
Algorithm Broadcast-In-Chain-of-Chains (
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Output:

A broadcasting scheme in 
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Algorithm:

1. Return Broadcast-In –Chain-Of-Trees (
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,
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,Broadcast-In-Chain)

Lemma 4.3 Algorithm Broadcast-In-Chain-of-Chains returns a minimum-time broadcasting scheme that, has no conflicts.

Proof:
Algorithm Broadcast-In-Chain and algorithm Broadcast-In –Chain-Of-Trees both return minimum-time broadcasting schemes  (lemma 2.8) and Broadcast-In-Chain (lemma 2.10). Hence, algorithm Broadcast-In-Chain-of-Chains also returns such a scheme.
Lemma 4.4 A broadcasting scheme returned by Broadcast-In-Chain-of-Chains has cost of at most: 
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Proof:
From lemma 2.11, for any minimum time broadcasting scheme for 
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From lemma 2.9: the cost of broadcasting in a chain of size 
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It follows that the cost of a scheme returned by Broadcast-In-Chain-of-Chains for a chain-of-chains of size 
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Proof of theorem 4.2:

Algorithm Broadcast-In-Chain-of-Chains provides a minimum time broadcasting scheme for every chain of chains graph. Its correctness follows from lemma 4.3 and its cost is at most 
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, from lemma 4.4. Therefore a scheme with the specified cost exists for every chain of chains graph, 
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Proof of theorem 1.3:

Combining the results of theorem 4.1 and theorem 4.2 we get:
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4.3 An optimal Chain-of-Chains graph for line broadcasting
In this section we find a of a chain-of-chains graph, which is determined by the size of 
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 (as a function of 
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),  that has a minimal line broadcasting cost complexity. Thus, we will determine what is the lowest cost for a minimum-time line broadcasting scheme in a chain-of-chain  (and more specifically, if it is linear).
4.3.1 Broadcasting cost lower bound analysis: 

As mentioned before, the minimum cost of broadcasting is at least
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Now, we'll calculate the bound of the minimum cost.
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Following [3] (simplifying result 4.19) we have:
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 (For some constant, c).
Therefore, for optimal structure, the lower bound on the minimum cost is
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4.3.2 Broadcasting cost upper bound analysis: 

The upper bound as a function of 
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Observation:

As result from 4.3.1 and 4.3.2:

An optimal structure of a chain-of-chains graph of size 
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5. Line Broadcasting in a complete k-ary Tree

5.1 Lower bound for minimum time line-broadcasting in a complete k-ary tree 

Theorem 5.1 Let 
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In Order to prove Theorem 5.1 we need the following lemmas and definitions. 
Let 
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Lemma 5.1 Let 
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For every 
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Summarizing 1, and 2 we get that for every 
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Therefore, we can say that if 
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In particular, this is true for 
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Lemma 5.2  For any broadcasting scheme in 
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Proof:
Each of the 
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Proof of theorem 5.1
Consider the last 
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It follows then that the internal vertices transmit during the 
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Since, every transmission from a leaf is excessive, except perhaps the first of them:
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Observation: As 
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5.2 Upper bound for minimum time line-broadcasting in a complete k-ary tree 
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In this section an algorithm will be provided for line-broadcasting in a complete k-ary tree, when 
[image: image727.wmf]a

k

2

=

, for some integer, 
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. The scheme generated by the algorithm will cost at most 
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, yielding a proof of the above theorem. 
In the following algorithm we produce a broadcasting scheme in a complete k-ary tree. We assume some order between the children of each vertex. We replace that order in such a way that the originator is in the path from the leftmost leaf to the root. After reordering the tree, use Broadcast-In-Complete-Tree-From-Leftmost-Path (following later in this section) algorithm to get the broadcasting scheme.
Algorithm Broadcast-In-Complete-Tree (
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Algorithm:
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In the following algorithm we produce a broadcasting scheme in a complete k-ary tree, from an originator that is in the path from the leftmost leaf to the root. First, as the originator acts as the leftmost leaf, we use algorithm Transmit-To-Complete-Tree-Leaves –From-Leftmost-Leaf (following later in this section) to transmit the message to all the leaves. Then, we use algorithm Transmit-To-Complete-Tree-Inner-Vertices to transmit the message to the internal vertices of the tree in the last time unit (it also transmits to the leftmost vertex, if not already informed).
Algorithm Broadcast-In-Complete-Tree-From-Leftmost-Path (
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Output:
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Algorithm:
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In the following algorithm we produce a broadcasting scheme from a set of informed vertices to the rest of the tree. The set of informed vertices is assumed to be all the leaves, except the leftmost leaf, with the addition of a single specified vertex on the path between the root and the leftmost leaf. The transmissions are made in the last time unit. We mark all vertices and edges that are to be transmitted to/trough to avoid conflicts. First, if the specified vertex is not the leftmost leaf, it transmits to it. Then,  Each leaf (from left to right) transmits the message to a vertex between it and the root, such that the vertex is not yet marked to receive the message, and the edges in the path to it - not yet marked to be used. Among the possible vertices, the vertex chosen to receive the message will be the closest vertex to the root. 
Algorithm Transmit-To-Complete-Tree-Inner-Vertices(
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7. return 
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In the following algorithm we produce a broadcasting scheme from the leftmost leaf to all other leaves in the tree. Within 
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 time units we make transmissions to the leftmost leaf of every sub-tree rooted on the second level. This is done by having each informed vertex transmit the message to an arbitrary uninformed vertex from the ones specified (leftmost leaves of sub-trees rooted on the second level). After all specified vertices are informed, we recursively repeat the algorithm for each of the sub-trees rooted on the second level. This is done until the tree had only one level.  
Algorithm Transmit-To-Complete-Tree-Leaves –From-Leftmost-Leaf(
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In the proof of theorem 1.8 we will use the following lemmas:

Lemma 5.3 Algorithm Transmit-To-Complete-Tree-Leaves –From-Leftmost-Leaf returns a minimum-time broadcasting scheme that has no conflicts.
Proof:
If 
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Assuming the algorithm returns a minimum-time broadcasting scheme that has no conflicts for tree with 
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In the first 
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 time units vertices from that group (the leftmost leaves of the 
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 sub-trees rooted at the second) are the only vertices that transmit, and they only transmit to other vertices within the group. Therefore after the first 
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 time units they are all informed.

Assume, to contrary, that there is a conflict in first 
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Since all transmissions are coming and going to different sub-trees rooted at the second level, the conflict must occur in the edges connecting the root to its direct children (the vertices of the second level). Suppose that there was a conflict in the 
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 contains a single vertex in each sub tree rooted at the second level.

This is a contradiction, and therefore there are no conflicts in the first 
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 time units.
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levels (sub-trees rooted at the second level), each with only its leftmost leaf informed. From correctness assumption for a tree with 
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levels, this leads to the conclusion that the scheme returned by the algorithm is a conflict free scheme (since from the assumption there are no conflicts in the transmissions among the sub-trees) and it is a minimum time scheme (from the assumption that the transmissions among the sub-trees are in a minimum time).

Lemma 5.4 The cost of a broadcasting scheme, 
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Proof:

In the first 
[image: image880.wmf]k

log

time units the transmissions go to height of 
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time units, the height of transmission (the height of the sub-tree) is reduced by 1. The cost of every transmission is twice the height. Therefore the cost is:
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as required.
Lemma 5.5 Algorithm Transmit-To-Complete-Tree-Inner-Vertices returns a broadcasting scheme that has no conflicts.

Proof:
Notice first that in the input assumption of the algorithm all leaves are informed (except, maybe, for one, which is replaced by an internal vertex). The internal vertices (non-leaves) are uninformed (except, maybe, for one, which is replaced by a leaf). There are 
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, every uninformed vertex can receive a transmission. Hence, the algorithm can terminate successfully.

The variable 
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 represents the set of edges that the algorithm already used for transmission, and the variable 
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 represents the set of internal vertices that are already informed.

Notice that in the algorithm every edge used for a part of a transmission is added to 
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, every edge is used in no more than one transmission, and every internal vertex receives no more than a single transmission. In addition if 
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to 
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, so that there is no conflict with other transmissions. Thus, the algorithm is conflict free.

Notice that 
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[image: image900.wmf]v

.

There is only left to prove that every internal vertex receives the message. Assume the contrary: that there is an internal vertex, say, 
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, which does not receive the message at the last time unit. Suppose, WLOG, that 
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 is the closest uninformed vertex to the leaves.
At most one transmission goes to 
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 (because the algorithm exited the while-loop in line 5.3). This is a contradiction. Thus, all internal vertices are informed after the last time unit, and 
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 is also informed. 

Lemma 5.6 The cost of a broadcasting scheme, 
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Proof:
The accumulation cost of the scheme obtained by applying the algorithm is the value of 
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Lemma 5.7 Algorithm Broadcast-In-Complete-Tree-From-Leftmost-Path returns a minimum-time broadcasting scheme that has no conflicts.

Proof:
The algorithm returns a minimum time, conflict free, scheme from lemma 5.5 and lemma 5.3, given that the loop to replace 
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in the scheme (line 3 of the algorithm) returned by Transmit-To-Complete-Tree-Leaves –From-Leftmost-Leaf has no conflicts.

At any time unit in Transmit-To-Complete-Tree-Leaves –From-Leftmost-Leaf all vertices transmit to the same height, i.e. to some vertex at the minimal level and back to a leaf, in any transmission. 

Consider the transmissions at time 
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Lemma 5.8 The cost of a broadcasting scheme, 
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Proof:
Consider the additional cost to the scheme returned by Transmit-To-Complete-Tree-Leaves –From-Leftmost-Leaf caused by replacing 
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Therefore, the upper bound on the accumulation cost of a scheme returned by the algorithm, from lemma 5.4 and lemma 5.6 is:

For 
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Therefore, the upper bound is:
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Lemma 5.9 Algorithm Broadcast-In-Complete-Tree returns a minimum-time broadcasting scheme that has no conflicts.
Proof:
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is in the leftmost path. This is done by replacing the sibling order, such that 
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 and its ancestors will be the leftmost child of their parent (the root obviously has no parent). Therefore, from lemma 5.7 the algorithm returns a valid minimum time broadcasting scheme for 
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In order to prove that the scheme is also valid for 
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we need to prove that there are no conflicts in 
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The latter is trivial since the vertices of 
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Indeed, the order of sibling vertices has no importance, other than to determine some order in the inner algorithms transmissions.
Lemma 5.10 The cost of a broadcasting scheme, 
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, for a k-ary tree, 
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,   returned by Broadcast-In-Complete-Tree is at most: 
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Proof:
From lemma 5.8, and the fact that the scheme returned by Broadcast-In-Complete-Tree is the same as returned by Broadcast-In-Complete-Tree-From-Leftmost-Path is follows that a scheme returned by Broadcast-In-Complete-Tree has transmissions cost of at most 
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Proof of theorem 5.2:  

Given 
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The cost is at most 
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Observation:

From theorem 5.2, the upper bound on broadcasting in a complete k-ary tree (where 
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is a power of 2) is linear in the number of vertices (Actually, at most 
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Proof of theorem 1.4:

Combining the results of theorem 5.1 and theorem 5.2 we get:
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6. Summary

6.1 Conclusions
In this work we showed upper and lower bounds on the cost of minimum-time line broadcasting in several families of graphs.
For Balanced-Caterpillar and Chain-of-Chains graphs (where 
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) we determined lower and upper bounds as a function of the number of vertices in the secondary trees (i.e. stars or paths). For a Balanced-Caterpillar we determined that the cost of broadcasting is linear if the size of the star is at least of order 
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, and otherwise – the cost is non-linear.
For Chain-of-Chains we determined that the cost of a broadcasting scheme is 
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, and presented an example of a graph that realizes that cost  (where the number of vertices in the secondary chains is 
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, the cost of a broadcasting scheme is non-linear. 

For a complete k-ary trees (where 
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) we determined a linear upper bound, and established a specific linear lower bound.
6.2 Future work
In this work, lower and upper bounds were found for Chain-of-Chains graph, and Balanced-Caterpillar graph where 
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. A generalization of those results for any 
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 is a further natural topic for research.
A lower and upper bound were established for a complete k-ary trees where 
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. A generalization of this result for any 
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 is another possible topic for research. 
Another direction is to find lower and upper bounds on the cost of broadcasting in other particular families of trees, or in a different line-broadcasting model (such as Time-Relaxed, or k-port).   
Finally, it was shown in [10] that the cost to broadcast by the line model in paths is 
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, while in [1] it was shown that the cost is linear in 
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) for particular trees. It would be of great interest to characterize the trees for which that cost is linear and those for which it is not.
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