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Abstract

This work proposes a novel practical and general-purpose lossless compression algo-

rithm named Neural Markovian Predictive Compression (NMPC), based on a novel

combination of Bayesian Neural Networks (BNNs) and Hidden Markov Models (HMM).

The result is an interesting combination of properties: Linear processing time, con-

stant memory storage performance and great adaptability to parallelism. Though

not limited for such uses, when used for online compression (compressing streaming

inputs without the latency of collecting blocks) it often produces superior results

compared to other algorithms for this purpose. It is also a natural algorithm to be

implemented on parallel platforms such as FPGA chips. 1

1A paper based on this work was presented in Data Compression Conference 2010, Snowbird,

Utah.
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Chapter 1

Introduction

This work presents a lossless compression algorithm named NMPC. The algorithm

is based on prediction methods known in the Artificial Intelligence field as Bayesian

Neural Networks and Hidden Markov Models. The following subsections present a

short introduction to these methods.

1.1 Neural Networks

An artificial Neural Network (NN) may be represented as a weighted directed graph.

To maintain some similarity to the biological model, we shall call the vertices in such

a graph neurons and the arcs axons. We focus on feedforward networks in which the

graph is acyclic and can therefore be seen as a set of ordered layers – the first layer

being the neurons with no input axons and the last layer being the neurons with no

output axons. Each neuron has a predefined activation function – a derivable function

used as the neuron’s final processing of its output. Each neuron in the network can

have a unique activation function. The most widely used activation functions in

neural networks are linear functions, sigmoids and hyperbolic tangents.
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A neural network can be activated as follows. At first, input values are assigned

to the neurons of the first layer – thus this layer is often referred to as the input

layer. Each neuron calculates the results of its activation function using its own value

as a parameter, and then passes the result to all the neurons it is connected to. In

turn, these neurons compute the weighted average of their input values, apply their

activation function and pass the result to the next layer. The output of neuron k

which is passed to the next layer is marked as ok and thus:

ok = fk

 ∑
i∈Pred(k)

wikoi


where fk is the activation function of neuron k, Pred(k) is a set of the neurons

connected to k from the previous layer and wik is the weight of the axon connecting

neuron i to neuron k.

The values of the last layer (after computing the weighted average and applying its

own activation functions), is the result of the network’s activation, thus this layer is

called the output layer. It is easy to see that if we assign the variables x1, · · · , xI to the

input layer of a network with I input neurons, the resulting output is actually a vector

which is a function F (x1, · · · , xI) made of linear combinations and compositions of

activation functions. To add another degree of freedom to this function an extra bias

neuron, which is a neuron that always outputs 1 and is connected to all other neurons,

is often added.

A sample neural network structure and activation is given in Figure 1. Figure

1a shows a sample network with 3 layers – input, hidden and output. Figure 1b

demonstrates a network activation with the values 0.5 and 0.9. The first step of the

activation, assignment to the input layer, is in blue. The values of the hidden layer

are then evaluated (in green), then finally the output layer (in red).
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The most useful property about neural networks is training : a process of gradually

changing the axon weights so it will converge to a given function. The network is

presented with a set of examples – tuples of input vectors and their desirable output

vectors called targets. For each such example, the network is activated with the

input vector, and the difference between the resulting output and the corresponding

target is examined. This difference is called the error vector and often notated as

J (shown in red on Figure 1c). A partial derivative of this vector is calculated

with respect to each of the network’s axon weights (∂J/∂wik) using a process called

backpropagation. The process is based on first deriving the error vector with respect

to the weights connecting the output nodes and then propagating the derivatives

downward. Finally when all the partial derivatives are available, the weights can be

re-calibrated to find a minimum point of the error vector using numerical methods

such as Newton-Raphson. More details are available in [4].

One special kind of neural network is a Bayesian Neural Network (BNN). This

kind of network works the same as described above, but it is trained so that the

output neurons represent values of conditional probabilities. Given a set of n events

A1, A2, ..., An and their probabilities (Σ1≤i≤nP (Ai) = 1), each output neuron oi rep-

resents the probability P (Ai|X) where X is the vector assigned to the network input

layer. In this configuration each example presented to the network will be of the form

< X, V >, X being an input vector of size I and V being a target vector with the

same size as the network’s output layer. Each such example is interpreted as “when

the input was X, the event Ak occurred”, thus for this example the network should

optimally give P (k|X) = 1 and therefore V = (0, · · · , 0, 1, 0, · · · , 0) having 1 only in

the kth component.
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Figure 2: A sample HMM with four states and an alphabet {a, b}

1.2 Hidden Markov Models

A Markov Model is an automaton in which the transition between states is a random

process. Given the states s1, . . . , sn, “activating” the model creates a chain of random

visits by the conditional probabilities P (si|sj) (1 ≤ i, j ≤ n), also known as a Markov

Chain.

A Hidden Markov Model (HMM) is an extension to this idea, in which the model

represents a closed unit that is inaccessible to external observers (thus “hidden”).

The observer can see only a chain of observations generated by the model using a

second random process. For each symbol σi of some alphabet Σ and each state sj of

the model, a value P (σi|sj) is defined as the probability of outputting σi while in the

state sj.

Since the HMM outputs one symbol for each visited state during its activation,

an external observer who inspects a string S may try to perform various estimations.

He can, for example, try to estimate the probability that the HMM visits a specific

sequence of states to generate S. Given the HMM in Figure 2, the string aa was

most likely generated by the sequence A→ D → B. He can also try to estimate the

probability that a specific HMM is the one that generated S. For example, it is easy
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to see that the string bba is generated by the sample HMM in a chance of 0.00224

(= 0.7 · 0.4 · 0.4 · 0.1 · 1 · 0.2). It is much more likely that a string like aab will be

generated by it, as this string has a probability of 0.7 ·0.6 ·0.4 ·0.9 ·1 ·0.2 = 0.03024 to

be generated. This calculation is relatively simple because in this example only one

route can generate strings of length 3. In most cases the string can be generated by

several routes and their corresponding probabilities must be added. We will focus on

this later task, which is accomplished using a method called the Forward Algorithm.

This is a dynamic-programming algorithm which is an extension of the brute-force

calculation we used in the last two examples. It incrementally calculates values in a

matrix in which each cell represents the probability that the HMM generated S up

to a given index and ended in a certain state. The sum of the last matrix column is

the probability of the HMM generating S. The algorithm is fully described in [4].

Additionally, the Forward-Backward algorithm allows training the HMM. It allows

the HMM to adapt to “accepting” a given string, thus increasing the probability that

it would really produce it. This is performed in a similar manner to the Forward

Algorithm, using a second “backward” matrix (representing probabilities of the HMM

generating the suffix of S) and applying an expectation minimization technique. See

[4] for more details.

1.3 Previous Work

In the last 15 years a great progress has been made in the theory and practice of

Neural Networks and Hidden Markov Models. Proving to be useful for various tasks,

several attempts have been made to utilize the unique properties of NNs and HMMs

for data compression.
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In 1995 Forchhammer & Rissanen [6] suggested an expansion of HMM using a

combination with a regular Markov Model and used the new model for compression

of binary images. The compression is based on having the model learn the image,

then saving its resulting parameters.

In 1997 Booksten, Klein & Raita [2] showed that concordances can efficiently

be compressed using Markov models (both hidden and regular). They coded con-

cordances using bit vectors and used a Markov model to represent the movement

between clusters of 1s and 0s. A similar idea of cluster prediction was used by the

same researches in 2000 [1] to compress bit images using a Bayesian network (not a

neural network).

In 2003 it was suggested by Yang Guowei, Li Zhengxhi & Tu Xuyan [9] that neural

networks can be used for generic lossless compression by “folding” a bit stream into

N dimensions and training a neural network to approximate it. A coded form of

the resulting network was saved as the output. The idea was new but the resulting

compression ratio was only 5.5 bits per character (bpc).

In 2006 Durai & Saro [5] proposed an algorithm for compressing images using

neural networks by approximation. The focus there was a transformation proven to

greatly improve the convergence time of the network.

The proposed algorithm of this work, Neural Markovian Predictive Compression

(NMPC), uses neural networks and HMMs in very different manners than previous

works. The neural network here is Bayesian and used for prediction, not for approx-

imation. It is used to filter and pre-order results before sending them to HMMs for

delicate inspection. Being adaptive, this unique structure does not require storing the

HMMs or BNN data in the output file – it is reconstructed during decompression.
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Chapter 2

Description of the Algorithm

This section presents the NMPC algorithm developed in this work. Section 2.1 de-

tails the various components used by the algorithm. Section 2.2 explains how these

components are used together and presents a pseudo-code for NMPC.

2.1 Components

The NMPC algorithm is composed of a single BNN and |Σ| HMMs denoted by

m1, ...,m|Σ|, where Σ = {σ1, σ2, ...} is the alphabet. During the execution of NMPC

the BNN is gradually trained to answer queries of the type – “given that the last

three input characters were abb, what is the probability that the next input character

will be a?”.

We adapt the notation c[i, j] for representing the substring cici+1 · · · cj of the input

string c. Given a string c[k, k + I − 1] of length I, a single network activation will

produce a vector v =
(
v1, ..., v|Σ|

)
, where

vj = P (ck+I = σj|c[k, k + I − 1])

In other words, v is a vector in which component j represents the probability that
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the next input character will be σj (∈ Σ) given the previous I input characters. Note

that this usage of probabilities is only an estimate – the BNN may produce different

results in various stages of its learning process.

The HMMs have a similar role with a slightly different configuration: each HMM is

responsible for the approximation of only one such conditional probability. Executing

the Forward Algorithm on mj given the string c[k, k+I-1] will produce an estimate

for the same probability as vj. (Actually the algorithm uses only a suffix of size

T ≤ I, as experiments show that the HMMs perform best with smaller suffixes.)

This estimate is expected to be different than its BNN counterpart for either better

or worse, based on the strengths and weaknesses of each method. It can generally

be said that while the BNN is good with general data statistics and mathematical

connections between data sets, HMMs are good with long-term memory for patterns.

The BNN is actually a dynamic global prediction function which does not remember

every single character combination. The HMMs, however, take into account the entire

previous input stream – thus the two methods complete each other.

Since the BNN produces a probability for each alphabet character, it must have

exactly |Σ| output units. The size of its input layer is a fixed parameter I. In addition

it has a single hidden layer in a fixed size H. Adjacent layers are fully-connected

and therefore the total number of axons in the network is H (|Σ|+ I). The chosen

activation functions for the network are linear for the input and output layers, and

tanh1 for the hidden layer.

One last important parameter for the neural network is its input normalization

radius. The alphabet letters are represented as integers between 1 and |Σ|, but the

dynamic response of the tanh activation function is roughly in a narrow symmetric

1tanh(x) = sinh(x)
cosh(x) = e2x−1

e2x+1
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area around [−π
2
, π

2
]. Therefore a parameter R is used for normalizing the character

values to a continuous range [−R,R]. Normalization is performed by a simple linear

transformation:

Norm(σ) = 2R · σ
|Σ|
−R

The same range is used when presenting the network with target probabilities and

when reading its output probabilities. Computational methods for finding “good”

values of R are available, but here it was chosen according to empirical experiments.

The HMMs in use are ergodic (the states are fully connected) and have S states

each (S is a constant integer). As explained above, each HMM is used as a statistical

model for predicting the appearance of a single character of Σ. Given a parameter T

(T ≤ I) determining the string prefix length passed to the HMMs (similar to I for

the BNN), it is natural to represent each HMM using two matrices of order S × T

- one for the transition probabilities and the second for the characters that can be

output in each transition.

Each HMM is trained using the Forward-Backward algorithm. Unlike the regular

usage of this algorithm, after setting new transition probabilities for moving out of

a state, the transition probabilities are modified to ensure that the HMMs stays

ergodic – meaning no transition has 0 probability – or for practical matters smaller

than some small ε. The reason is that probabilities of 0 make it difficult for the HMMs

to handle rare combinations of characters. This is performed by counting the number

of outgoing arcs k having a transition probability smaller than ε, and for each such

arc ei applying a new probability:

Pnew(ei) =


P (ei) · (1− U) P (ei) > ε

U
k

P (ei) ≤ ε
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where U is a predefined positive constant smaller than 1.

Each HMM mj, 1 ≤ j ≤ |Σ|, is gradually trained using the Forward-Backward

algorithm to estimate the conditional probability P (ck+T = σj|c[k, k + T − 1]). As

explained in [4] this can be done in O(T · S2) time.

2.2 Flow

The NMPC algorithm has two main phases: Initial training and actual compression.

The first is meant for an initial training in which the first K input characters are

written to the output with no modification while the BNN and HMMs are trained.

The second phase is the compression phase. For each prefix of the input stream to

be compressed, an intermediate product of this phase is a list L, which represents a

forecast for the appearance of the next character. For each such prefix c[i−I+1, i−1],

the first character of L is the one determined to have the greatest chance of being

the next character in the input, ci. Therefore if we look for position yi of the actual

character ci in L, a successful construction of L will usually produce low values of yi.

For instance, in an ASCII coding of text files it was empirically shown that yi = 1 for

about 23% of the characters, and yi ≤ 20 for about 95%. This means that for 95% of

the characters in text files, the next character for each prefix will be among the first

20 items in the list L built for that prefix. (This was measured on text files listed in

the experimental results section below.)

The values of list positions yi are the final output of NMPC’s prediction mechanism

and are then coded to the output. In this work Arithmetic Coding [7] was chosen,

but any other coding method can be used according to the circumstances. Since the

AC algorithm requires a histogram for its input values, NMPC maintains a histogram
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of the produced yi values. Note that the histogram is of the yi values and not the

input values: following the example above, for text files we would get hist[1] = 0.23

and
∑

1≤j≤20 hist[j] = 0.95.

The pseudo-code for the streaming NMPC algorithm is presented in Figure 3.

NMPC is given an input string c[1, n], and it generates a compressed stream. In

addition it is supplied the parameters S (number of states), R (normalization ra-

dius), I (input layer size), T (string prefix size for HMM predictions), K (initial

buffer size), B (number of iterations of backpropagation), and Σ = {σ1, σ2, ...}.

Initialization of the BNN network is done by initializing its input layer, sending

each neuron a normalized character (according to R). In addition, a training vector

v = (−R,−R, . . . , R, . . . ,−R) is constructed so that its jth component is R, while

all other components are −R, given that ci is the jth character of Σ, i.e. ci = σj.

This is the same process as described for BNNs in Chapter 1.1, only normalized to R.

In order to train the network according to vector v backpropagation is then applied,

running B iterations, where at each iteration the network’s output layer is compared

to v. The Forward-Backward algorithm is then used to train mj according to the sub-

string c[i−T + 1, i− 1], of T characters that precede it. If ci is among the characters

of the initialization stage, i.e., it is part of the first K characters of c, the character

is simply output to the compressed file, and the process continues with the following

character of c[1, n] (i is incremented).

Once the training for the first K characters is complete, each additional character

goes through the encoding phase. In this phase the current knowledge of the BNN

and HMMs is used to efficiently encode ci. To do so, the current previous substring of

I characters long, i.e. substring c[i−I+1, i−1] of the input string, is normalized and

is assigned to the network’s input layer. For simplicity we refer to characters instead
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to their normalized values throughout the pseudo-code with the understanding that

the BNN is only activated with the normalized values. A list L of probabilities is

obtained from the output layer of the network, where each probability is associated

to a character of the alphabet Σ. The list L is then sorted in descending order, so the

first character in L is the one predicted by the BNN to have the highest chance of

being equal to ci (note that the network is not yet familiar with ci at this point). The

first D probabilities of L are then re-estimated in order to incorporate the capabilities

of the Markov Model. For each character of the first D elements of L, if k is the index

of that character in Σ, the Forward Algorithm is applied on mk, in order to compute

P (ci = σk|c[i− T + 1, i− 1]). The first D elements of L are resorted with these new

estimations. The position yi of ci in L is then encoded using any static or adaptive

coder and the process continues with the following character of C. In this case an

adaptive Arithmetic Coder was used. The main idea of this phase is illustrated in

Figure 4. In this example the string aadgbb...abbbb is already processed and the

following character should be encoded next. Step 1 shows the list built by the BNN,

step 2 shows how it is modified by the HMMs and in step 3 the actual next character

is exposed and found to be the second item in L.

The encoding phase, activated for ci for all K+1 ≤ i ≤ n, must always take place

before the training phase. This ensures that the encoding of each ci uses a BNN and

HMMs that had no prior knowledge of ci, which is a crucial invariant for allowing the

output to be decompressed. The training procedure is repeated after each encoding

to keep the BNN and mi’s tuned, and it may be skipped when reaching some bound

on the number of characters in order to boost performance. It can also be skipped

when prior knowledge determines that statistics are stable, and probabilities don’t

change more than some given (tiny) lower bound.
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NMPC(c[1, n], out)

1: // Input: a string of n characters to compress, output: a compressed string

2: // The first K characters are copied to the output and are used for training

3: out[1, K]← c[1, K]

4: for i← I + 1 to n do

5: if i > K then

6: // Encoding phase

7: BNN ← c[i− I, i− 1] // Activation, in fact normalized values are used

8: L← BNN // Build L by the network output layer

9: sort(L)

10: for k ← 1 to D do

11: z ← index of Lk in Σ

12: Forward(mz, c[i− T, i− 1])

13: end for

14: sort(first D elements of L)

15: yi ← index of ci in L

16: code(yi, out) // Using adaptive coding

17: end if

18: // Training phase

19: j ← index of ci in Σ (giving ci = σj)

20: v ←− (−R,−R, . . . , R, . . . ,−R) // jth component is R

21: Backprop(BNN, c[i− I, i− 1], v) // Train for the I characters before ci

22: ForwardBackward(mj, c[i− T, i− 1]) // Train for the T characters before ci

23: end for

Figure 3: The NMPC algorithm pseudo-code
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Figure 4: Summary of the NMPC compression stage
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2.3 The Neural Markovian Predictive Decompres-

sion Algorithm

The NMPC-decompression algorithm is symmetric to the NMPC-compression algo-

rithm, and is fully listed in Figure 5. Since compression is performed on a single

character at a time, decompression can be done incrementally by working on the

compressed stream. The BNN and HMMs are trained on the same initial K char-

acters, which were written explicitly to the output stream during the compression

process. All parameters are also supplied to the decompressor; in particular, the

value K is known during decompression, so that it concludes that no decoding is

needed for the first K characters. Once reading the first K characters of the input

stream, it is directly transferred to the decompressed stream, the same network is ini-

tialized and activated and the same HMMs are trained. After the first K characters

are dealt with, the current prefix of the stream corresponds to the encoding of some

list index x in the soon-to-be-constructed list L. Once the list is constructed for the

first character after the K-sized prefix, it is identical to the list L built for the same

index in the compression algorithm. It can be proved by induction on the number of

iterations that this invariant holds – the list L built after terminating the ith itera-

tion in the compression method is identical to the list built after terminating the ith

iteration in the decompression method. Therefore decompression requires outputting

the character in position x of L, and the process continues with the remaining part

of the input stream until the end of the stream is reached.
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NMPCDecompress(s[1, n], out)

1: // Input: a compressed string s of length n, output: a decompressed string

2: // The first K characters are copied to the output and are used for training

3: out[1, K]← s[1, K]

4: // i is used as the output index

5: for i← I + 1 to K do

6: // Training phase for the initial K characters

7: j ← index of si in Σ (giving si = σj)

8: v ←− (−R,−R, . . . , R, . . . ,−R) // jth component is R

9: Backprop(BNN, s[i− I, i− 1], v) // Train for the I characters before s[i]

10: ForwardBackward(mj, s[i− T, i− 1]) // Train for the T characters before s[i]

11: end for

12: while (input stream still has characters to decode) do

13: decode(x, c) // Decode one index x using the adaptive decoder

14: BNN ← out[i− I, i− 1] // Activation, in fact normalized values are used

15: L← BNN // Build L by the network output layer

16: sort(L)

17: for k ← 1 to D do

18: z ← index of Lk in Σ

19: Forward(mz, out[i− T, i− 1])

20: end for

21: sort(first D elements of L)

22: out[i]← Lx // The character at position x

23: i← i+ 1

24: end while

Figure 5: The NMPC Decompression algorithm pseudo-code20



2.4 Complexity

NMPC can naturally be adapted to parallel execution, as its computation compo-

nents such as BNN activation, BNN backpropagation, HMM Forward, and HMM

Forward-Backward algorithms work on many independent units. The operations can

be performed simultaneously on individual neurons of the BNN network and/or the

HMM states. Platforms that allow a big number of independent simple execution

units, such as FPGA chips, can exploit this property of NMPC to achieve great per-

formance and simple design. Being this a strong property of the NMPC algorithm,

the analysis of processing time complexity is given for both the case of serial machines

and the case of full parallelism. In order to accomplish optimal parallel computation,

we assume that max(H · (|Σ|+ I), D · S) parallel execution units are available.

The complexity is analyzed in terms of the following constants, all previously

described in their appropriate context: I (the size of the network’s input layer), H (the

size of the network’s hidden layer), Σ (size of the alphabet), T (size of the string suffix

for HMM processing), S (number of HMM states), B (number of backpropagation

iterations), D (number of list elements for HMM ”second opinion”) and n (number

of characters in the original string).

Populating the network’s input layer of size I takes O(I) for I independent neu-

rons in serial execution, or O(1) parallel time. Since the BNN has exactly |Σ| output

units, attaining the information from the output layer takes O(|Σ|) processing time

with serial computation or O(1) in parallel. Backpropagation with B iterations takes

O (B ·H (|Σ|+ I)) in serial computation or O(B) in parallel, where H · (|Σ| + I) is

the number of axons. The Forward-Backward algorithm’s serial processing time is

O(T ·S2) for HMM with S states and a buffer of size T , or O(TS) in parallel. Sorting

list L of Σ items takes O(|Σ| log |Σ|) for serial computation and only O(log|Σ|) for
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parallel computation. The Forward Algorithm is only applied on the first D elements

and therefore takes O(D · (T ·S2)) in serial processing time or just O(TS) in parallel.

Resorting only D elements, and performing one step of Arithmetic Coding is drowned

out by the bigger time consuming sort of Σ elements. For the total processing perfor-

mance computation, by referring to the most time consuming methods, we sum up

Backpropagation, HMM Forward, HMM Forward-Backward, and sorting algorithms

for a total of O(n · (B · H(|Σ| + I) + D · T · S2 + |Σ| · log |Σ|) serial time, and only

O(n · (B + TS + log |Σ|)) parallel time. NMPC is, therefore, linear in the size of the

string to be compressed, both parallel and serial, but with smaller hidden constants

for the parallel case. Although the supplied parameters have no effect on processing

time complexity the actual running time is affected.
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Chapter 3

Experimental Results

NMPC was tested as an online compression algorithm on a big number of input files

and compared to three popular algorithms. The first is Arithmetic Coding (AC),

which adaptively codes the input into a stream in which each character may get a

non-integer number of bits [7]. The second is Lempel Ziv Welch (LZW), which uses

a dynamically built dictionary and codes indexes of dictionary entries that replace

symbol combinations [8]. The last is Burrows-Wheeler Transform (BWT) which uses

a sophisticated sorting of string permutations, and together with the Bring to Front

transformation (BWT) and AC often produces impressive results [3].

LZW is well-suited for online compression, as it does not require the input stream

to be divided into blocks. Using a fixed size dictionary, LZW can be implemented in

linear time. However, unlike NMPC, it does not significantly utilize parallelism. LZW

was tested with dictionary sizes of 1024 entries (LZW1024) and 2048 (LZW2048) in

order to simulate a similar memory consumption to the tested NMPC instance.

BWT (combined with MTF and AC) is not ideal for online compression; it must

operate on whole blocks of characters so it is not a natural candidate for low-latency

uses. However for some practical uses of online compression small blocks of 512 or
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1024 bytes can be a reasonable compromise.

Arithmetic Coding is a good choice for online compression and is used as a compo-

nent with BWT and in the version of NMPC tested here. Being an entropy encoder,

for some inputs it is the most efficient compression method by itself.

Parameters for NMPC were chosen to produce a good average ratio for text files;

different parameters for different files will produce different results.

The 6 algorithms – NMPC, LZW1024, LZW2048, BWT512, BWT1024, AC –

produced the results shown in Figure 6. The best result in each row is shown in bold.

The results clearly demonstrate NMPC’s strengths and weaknesses. NMPC is

good with text files and gets the best results for more files than any other algorithm

tested. For the cases it does not achieve the best compression performance, its com-

pression results tend to be close to those of the best method. It is not better than

LZW when it comes to compressing source code and some data files, as the repetitive

nature of these files is very suitable for dictionary-based compression.

The above results were measured using a single set of parameters for the NMPC

algorithm. The parameters were chosen to achieve good average results for text files

and are not optimal for each file separately. For each given file, there is usually a set

of parameters for which NMPC achieves a better compression ratio than measured

above. Therefore it would be natural to improve NMPC by adding a parameter esti-

mation phase for each file (based only on the first K characters so the decompression

algorithm can find the same parameters). To demonstrate this point, Figure 7 shows

the result of NMPC compressing the file alice.txt (from Canterbury Corpus) after

changing the value of a single parameter at a time, keeping all the other parameters

unchanged. The default value of each parameter is shown in bold.
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Original NMPC LZW1024 LZW2048 BWT512 BWT1024 AC

English Text

Wikipedia Compression 8,776 4,809 5,539 4,952 6,570 5,567 5,175

Wikipedia Israel 56,783 33,767 38,308 35,167 44,083 37,525 33,967

Alice (Guttenberg) 147,800 82,368 96,400 87,443 113,545 96,789 85,466

Dracula (Guttenberg) 874,665 496,189 569,588 520,338 671,354 575,729 491,805

Far From (Guttenberg) 815,934 455,619 543,613 496,432 634,359 546,037 466,242

Various

numbers.txt 20,265 8,670 10,994 10,452 14,958 13,559 9,329

NeuralApproximator.cpp 33,430 20,667 20,998 18,565 24,472 20,208 22,772

Bach.mp3 364,974 364,006 451,260 491,184 376,906 374,002 363,683

Canterbury Corpus

alice29.txt 152,089 84,951 97,934 88,863 116,839 100,017 87,335

asyoulik.txt 125,179 74,333 84,061 76,803 96,588 82,493 75,704

cp.html 24,603 16,230 16,976 14,980 19,063 15,961 16,373

fields.c 11,150 7,158 6,274 5,843 7,775 6,219 7,281

grammer.lsp 3,721 2,405 1,965 1,944 2,495 2,049 2,370

kennedy.xls 1,029,744 564,340 267,551 279,270 480,972 243,231 454,966

lcet10.txt 426,754 244,835 275,946 250,995 329,046 278,253 249,277

plrabdn12.txt 481,861 265,996 318,334 290,937 375,671 325,578 273,832

ptt5 513,216 97,680 75,038 72,050 253,243 173,094 76,744

sum 38,240 25,950 21,739 21,355 26,231 22,021 26,486

xargs.1 4,227 2,682 2,806 2,470 3,236 2,702 2,799

Large Canterbury

bible.txt 4,047,392 2,083,747 2,381,805 2,134,541 2,935,193 2,423,235 2,197,739

world192.txt 2,473,400 1,584,820 1,706,416 1,594,668 1,941,354 1,697,589 1,545,502

E.coli 4,638,690 1,158,567 1,576,274 1,488,731 2,650,363 2,051,540 1,168,765

Large Calgary

trans 93,695 65,170 59,909 55,178 69,955 58,654 65,300

progp 49,379 30,706 27,584 25,201 35,455 28,178 30,532

progl 71,646 41,592 39,840 35,125 49,940 40,754 43,142

progc 39,611 25,899 25,896 23,930 29,835 25,222 26,161

pic 513,216 97,680 75,038 72,050 253,243 173,094 76,744

paper1 (Latex code) 53,161 32,751 35,889 32,932 40,872 34,568 33,539

paper2 (Latex code) 82,199 46,707 54,148 49,189 63,090 53,418 47,632

paper3 (Latex code) 46,526 26,725 31,359 28,868 36,133 30,777 27,484

paper4 (Latex code) 13,286 7,765 9,009 8,318 10,197 8,639 8,108

paper5 (Latex code) 11,954 7,677 8,149 7,635 9,128 7,731 7,694

paper6 (Latex code) 38,105 24,763 25,244 23,289 28,880 24,305 24,340

obj2 246,814 205,755 154,990 148,029 179,991 147,977 192,114

obj1 21,504 17,132 14,661 14,638 16,499 14,317 16,704

news (Newsgroup dump) 377,109 243,739 280,603 261,633 302,780 263,802 245,630

geo 102,400 72,269 83,458 83,517 89,098 81,925 72,642

book2 610,856 355,001 405,725 371,265 466,435 394,235 366,288

book1 768,771 430,460 523,950 479,231 601,463 517,512 436,199

bib (Bibliography list) 111,261 68,966 79,539 70,923 89,110 74,622 72,723

Figure 6: Experimental Results
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I = 2 I = 3 I = 4 I = 5 I = 6 I = 7

85,107 84,951 84,902 84,876 84,852 84,856

H = 2 H = 3 H = 4

86,438 84,951 86,617

D = 11 D = 12 D = 13

85,544 84,951 85,110

S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8

84,791 84,786 84,951 84,585 84,216 84,216 84,440

T = 1 T = 2 T = 3

87,348 84,951 88,692

Figure 7: Influence of various parameters on compressing alice29.txt
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Chapter 4

Conclusions

The algorithm developed in this work, Neural Markovian Predictive Compression or

NMPC, is a good practical candidate for lossless online compression of various data

types. Empirical experiments show that it performs best when the input includes

predictable statistical patterns that can be learned by the BNN and HMMs. This

includes text files and various textual data lists. It is possible that similar results may

be achieved for non-textual data by using different alphabets (e.g. a 10-bit alphabet

for data that has “10-bit logic”). NMPC’s advantages become extremely important in

parallel environments, since it allows significant-to-optimal utilization of computation

units. NMPC also serves as a platform for many possible customizations and it may

become a convenient base for expansion. Given its encouraging initial results, using

the same platform with different prediction methods may be a promising new direction

for similar algorithms.
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  תקציר
  

האלגורית� ). lossless data compression( לדחיסת מידע ללא הפסדי� וכלליבעבודה זו פותח אלגורית� מקורי 

והוא מבוסס על שילוב של רשת ניורוני� , Neural Markovian Predictive Compressionקיצור של , NMPCמכונה 

�בייסיאנית וHidden Markov Models.  

� ברשת הניורוני� והאופ� השימוש הייחודיHMMמקנה ל �NMPCריצה לינארי:  כמה תכונות חשובות �, זמ

דחיסת מידע זור� (כאשר הוא משמש לדחיסה מקוונת . סיבוכיות מקו� קבועה וגמישות רבה לעבודה מקבילית

הו ז. הוא לרוב משיג תוצאות דחיסה טובות יותר ביחס לאלגוריתמי� מתחרי�) ללא השיהוי של איסו� בלוקי�

  FPGA.1ג� אלגורית� טבעי מאוד למימוש בסביבות מקביליות כמו שבבי 

  

                                                      

�המבוסס על עבודה זו הוצג בהמאמר  1Data Compression Conference 2010, Snowbird, Utah.  
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