
The Open University of Israel

Department of Mathematics and
Computer Science

a project report on

Flue
a Fluent Library for Utilizing EBNFs

submitted by
Noam Rotem

The Open University

under the advisory of Yossi Gil,
Dept. Comp. Sc., the Technion

(2020-2021)

Acknowledgement
Many thanks to my wife and daughters who tolerated the fact that my nights and
weekends are not theirs but this work’s…

I wish to thank Yossi for his guidance, his responsiveness and his patience with me
along the way…

Open University, Israel
Math & Computer Science

1 Flue by N. Rotem

Contents

1 Introduction 1
1.1 About . 1
1.2 Code . 1
1.3 Basic Terminology . 1

1.3.1 DSL . 2
1.3.2 Groovy . 2
1.3.3 Library . 2
1.3.4 Grammar . 3
1.3.5 EBNF . 3
1.3.6 AST . 3

2 Grammar Specification 4
2.1 The EBNF class . 4

2.1.1 Order of rules . 5
2.2 Non terminals . 5

2.2.1 Non terminals in Flue . 5
2.2.2 Non terminal Labels . 5

2.3 Terminals . 6
2.3.1 Deterministic Terminals . 6
2.3.2 Pattern Terminals . 6
2.3.3 Epsilon (ε) . 6

2.4 Production Rules . 7
2.5 Root non-terminals . 7

2.5.1 Explicit Root Non terminals . 8
2.5.2 Implicit Root non-terminals . 8

2.6 Expressions . 9
2.6.1 Sequences . 9
2.6.2 Choices (Alternatives) . 10
2.6.3 Options . 10
2.6.4 Repetitions . 11
2.6.5 Precedence . 12

3 How Flue is Implemented 13
3.1 Challenges . 13
3.2 Rule Capturing . 13
3.3 Expression Statement . 14
3.4 Operator Overloading . 14

2

CONTENTS CONTENTS

3.5 How Can Expressions “Do Something”? 14
3.6 A Timing Problem . 15
3.7 Thread Safety . 16
3.8 Precedence . 16

3.8.1 Options and Repetitions . 17
3.8.2 Terminals . 17
3.8.3 Overloading Methods of System Types 17
3.8.4 The +{} Syntax . 18

4 EBNF API 19
4.1 clone() . 19
4.2 nonTerminalGraph() . 19
4.3 entryPoints() . 20
4.4 cycles() . 20
4.5 inlined() . 21
4.6 nullable() . 21
4.7 first() . 22
4.8 follow() . 23

5 Further Tools 26
5.1 Rule API . 26

5.1.1 rules and ruleMap . 26
5.1.2 Rule . 26
5.1.3 Expression . 26
5.1.4 Terminal . 27
5.1.5 Non terminal . 27
5.1.6 Optional . 27
5.1.7 Repeated . 27
5.1.8 Then . 27
5.1.9 Or . 27

5.2 Visitors . 27
5.3 ExPath . 28

6 The Java Grammar 32
6.1 Syntax . 32
6.2 Cycles . 34
6.3 Inlining . 34
6.4 Optimization . 34

A The follow() Method Code 35

B Flue Grammar for EBNF 40

Open University, Israel
Math & Computer Science

3 Flue by N. Rotem

List of Algorithms

1 Finding Grammar’s non-terminal Root 9
2 Graph of non-terminals . 19
3 Finding Entry Points . 20
4 Finding Cycles . 20
5 Inlining Grammar . 21
6 Evaluating Nullability . 22
7 Evaluating Nullability . 23
8 FOLLOW Closure Calculation . 25

4

Abstract

Flue is a Groovy library that allows specifying language grammatical rules by a fluent,
elegant and clear EBNF-like DSL. When the grammar creation is run, it builds a data
structure (AST) that represents the language, and allows studying and manipulating
the language rules. Finally, Flue provides a collection of algorithms and tools that
make optimizing, investigating and reviewing grammars easy. To test the capabilities
of Flue, this work also included the implementation of the Java grammar with Flue,
and a demonstration of some of Flue’s tools and techniques on this grammar.

Keywords: Fluent API, groovy, EBNF, Embedded DSL, grammar, language, AST,
Java

Chapter 1

Introduction

1.1 About
Flue is a Groovy library for fluent specification of language grammars. This report will
summarize the development work, the challenges in implementing it, the results and
the way to use Flue.

Chapter 2 will explain how to use Flue for specifying grammatical rules.

Chapter 3 will then allow a peep into the challenges in building Flue, and tell the story
of how Flue overcomes all those obstacles.

Chapter 5 will review and explain the EBNF API that provides handy tools and algo-
rithms for the grammar developer.

Chapter 5 will complete the review with the API for using rules and additional tools
that allow working with the rules and expressions created in Flue.

And finally, chapter 6 will touch the work done with the Java grammar, to try out Flue
and its tools.

1.2 Code
Flue’s source code is in Github: https://github.com/metormaon/flue

The code is well documented and tested.

1.3 Basic Terminology
From the abstract of this paper:

Flue is a Groovy library that allows specifying language grammatical rules by a fluent,
elegant and clear EBNF-like DSL. When the grammar creation is run, it builds a data
structure (AST) that represents the language, and allows studying and manipulating
the language rules.

This section will explain the terminology found in this description, and hopefully make
it clear.

1

https://github.com/metormaon/flue

1.3. BASIC TERMINOLOGY CHAPTER 1. INTRODUCTION

Note: the definitions in this chapter aim to clarity and readability. There may be more
accurate or generic definitions of the terms, but this chapter focuses on the definitions
that serve the understanding of this project.

1.3.1 DSL
A domain specific language (DSL) is a computer language for a specific purpose (typ-
ically an application domain). As opposed to a general-purpose language like Java or
C++, a DSL draws its commands and capabilities from a singular world from which
the problems to be solved by this DSL arrive. A dedicated language for game pro-
gramming makes a good example of a DSL. It focuses on a specific domain (games),
and draws its commands and statements from the world of game programming, rather
from the generic world of computer languages.

Often, DSLs are embedded within generic programming languages. For example, a DSL
for programming games, can be offered as a library of Java, that uses the Java syntax to
create a set of functions or other language tools that “speak the language of games”. It
will probably offer commands for game setting creation, character movement, character-
object interactions etc.

1.3.2 Groovy
Apache Groovy is a Java-syntax compatible, object-oriented programming language
that runs on Java JVMs. It could be used both as a programming language and a
scripting language.

Groovy and Java are quite similar, but Groovy is more dynamic and flexible. It was
selected for this project thanks to its DSL-friendliness and its dynamic nature.

DSL-friendliness means that Groovy is flexible enough to allow creating DSLs that
look natural, and are relatively free of programming symbols—dots, parentheses etc.
In other words, Groovy allows statements that resemble fluent English sentences. The
flexibility is not perfect (Scala, for example, is much more flexible), but compared to
Java, one can do a lot to make Groovy fluent and English-like.

The dynamic nature of Groovy deserves documents of its own, but specifically for this
project, Groovy’s operator overloading and system-class extensions were used (among a
few more dynamic capabilities), and the fact that the Groovy IDEs adapt their syntax
highlighting and apply the “Intellisense” technology to support these dynamic changes
immediately when they are punched into the code, made it possible to create this fluent
EBNF-like DSL.

1.3.3 Library
A programming library is a packaged set of classes, tools, and programming aids that
may be linked to a program and be used by it programmatically.

As opposed to a framework that controls the developer’s flow and runs the developer’s
code, a library provides tools that a developer may run or invoke from his code from
within his program flow.

Open University, Israel
Math & Computer Science

2 Flue by N. Rotem

1.3. BASIC TERMINOLOGY CHAPTER 1. INTRODUCTION

1.3.4 Grammar
Grammar is a level of language syntax that focuses on phrases, expressions, statements
etc. A programming language’s grammar is a specification of how programs in this
language may look like.

1.3.5 EBNF
EBNF—Extended Backus–Naur Form—is a grammar for formally defining grammars.

There is no standard EBNF, and the web is full of variants and implementations of it.
However, the concept is quite the same among most of the variants.

EBNF specifies terminals, non-terminals, concatenations, alternations, choices, repeti-
tions and more.

Note: EBNF specification by EBNF (and coded by Flue) can be found in Appendix B

1.3.6 AST
AST—Abstract Syntax Tree—is a tree that represents the syntax of some text that
complies with a programming language’s specifications.

In this project, the Expression composite tree of the rule API (Section 5.1) is an AST
of the EBNF-like language specified by the developer using Flue.

Open University, Israel
Math & Computer Science

3 Flue by N. Rotem

Chapter 2

Grammar Specification

2.1 The EBNF class
The EBNF class encapsulates and represents a grammar. Instantiating an EBNF object
is done by specifying a block of production rules:

EBNF grammar = ebnf {
A >> B | C
B >> "hello" & [C] & "world"
C >> "."

}

Listing 2.1: Specifying Grammar

This piece of code creates an EBNF instance (to be referred to as grammar) that
represents a grammar of three production rules. The rules define the non-terminals A,
B and C:

• A is defined as B or C.

• B is defined as a sequence of the token "hello" then an optional C, then the
terminal "world".

• C is defined as the terminal "."

Flue does not parse, but just for the completion, the rules of grammar allow the
following phrases:

• hello world

• hello . world

• .

Note: phrases are expected to comply with rule A, which is the implicit root of the
grammar. See section 2.5.2 below.

4

2.2. NON TERMINALS CHAPTER 2. GRAMMAR SPECIFICATION

2.1.1 Order of rules
Order of rules is not important—a grammar is a set of rules. Nevertheless, Flue
remembers the order by which the rules were specified, so a printout of the grammar,
for example, will be deterministic.

2.2 Non terminals
A, B and C in code listing 2.1 are non-terminals. Non terminals are variables that
represent a piece of grammar, and may be used within other pieces of grammar.

Non terminals are expected to be defined within the grammar by rules (see later).
In other words, each non-terminal A in grammar x is expected to have at least one
production rule in grammar x that explicitly specifies its meaning.

2.2.1 Non terminals in Flue
In Flue, non-terminals are elements of an Enum that must implement the NonTer-
minal trait:

enum V implements NonTerminal { A, B, C, D, E, F, G }

Listing 2.2: Defining non-terminals

Note: it is recommended to statically import the non-terminals Enum such that the
non-terminals A, B, etc., are recognized by the IDE by their short names, and need not
to be prefixed by the Enum name: V.A, V.B, etc.,

import static il.ac.openu.flue.test.V.*

Listing 2.3: Static Import of non-terminal Enum

2.2.2 Non terminal Labels
The Enum elements representing the non-terminals in Flue, have a label that repre-
sents them in grammar printouts. By default, the label is taken from the Enum element
name. In other words:

A.label == "A"

However, it is possible to set the label explicitly, if needed. For example:

enum V implements NonTerminal { A, B, C, UNDERSCORE("_")}

Listing 2.4: Setting non-terminal’s Label

Open University, Israel
Math & Computer Science

5 Flue by N. Rotem

2.3. TERMINALS CHAPTER 2. GRAMMAR SPECIFICATION

When UNDERSCORE is to be expressed as a string, it will be expressed as _ and not as
UNDERSCORE. Since _ is not a valid Enum element name in Groovy, this name/label
redundancy is required in this hypothetical implementation.

2.3 Terminals
Terminals are the leaves of the syntax tree—they are elements that explicitly specify
their appearance. In code listing 2.1, "hello", "world" and "." are Terminals.

Terminals usually reflect identifiers, literals, keywords, symbols and operators. Key-
words, symbols and operators are explicit at definition time, i.e, their string is deter-
ministic. Literals and identifiers, on the other way, are often defined as a pattern,
regular expression, on strings rather than a deterministic string.

2.3.1 Deterministic Terminals
Deterministic terminals are specified in Flue as a quoted string (single or double
quotes):

• ”hello”

• ’+=’

• ”else”

2.3.2 Pattern Terminals
Pattern terminals are specified in Flue as a quoted string prefixed by a tilde:

• ~"float|double|int"

• ~"[_a-zA-Z][_a-zA-Z0-9]+"

Note: When the quoted pattern is prefixed with a tilde, its content has to comply with
the specifications.

2.3.3 Epsilon (ε)
For various implementations, a special Terminal is needed for representing an empty
state (empty expression; empty token).

For that purpose, the Epsilon Terminal is defined by Flue, and may be used by grammar
rules (see later) this way:

A >> ε

Epsilon is declared as a static Terminal in the Terminal class of Flue:

public static final Terminal ε = new
Terminal("ε")

Listing 2.5: Definition of Epsilon in the Terminal Class

Open University, Israel
Math & Computer Science

6 Flue by N. Rotem

2.4. PRODUCTION RULES CHAPTER 2. GRAMMAR SPECIFICATION

Note: it is highly recommended to statically import epsilon:

import static il.ac.openu.flue.model.rule.Terminal.ε

Listing 2.6: Static Import of Epsilon

Otherwise referring to epsilons can be done by their full name:

A >> Terminal.ε

2.4 Production Rules
Production rules (usually referred in this document just as rules) are grammatical
phrases that specify the meaning of Non Terminals. This is a rule from code listing 2.1:

B >> "hello" & [C] & "world"

The rule structure consists of two elements: a non-terminal and an expression. Between
these elements separates an arrow symbol (>>):

non-terminal >> expression

Note: The left part and the right part of a production rule are often referred to in
academic literature as LHS and RHS, respectively.

Note: Expressions will be explained in section 2.6.

A rule states that the non-terminal on its left stands for the expression on its right,
and can be replaced by it when it appears in expressions of the grammar. In other
words, the rules in code listing 2.1 define A as an expression on B and C; B is defined
as an expression on C; C is defined by an expression that consists of a Terminal only.

Grammars may specify more than one rule for a non-terminal. It would mean that the
non terminal has more than one expression that may stand for it. Such multiple rules
may be grouped into a single rule that defines the non terminal as expression 1 OR
expression 2 OR expression 3 etc.

2.5 Root non-terminals
Grammars in Flue must have a Root non-terminal. The root is a non terminal which is
not referred to by the right side of any rule of the grammar, i.e., no other non terminal
is defined by it in the grammar.

Note: The rule(s) that has the Root non-terminal on its left side is often referred to as
the Start rule in the academic literature.

Flue can represent a grammar as a directed graph of non-terminals, such that a node is
a non terminal and an edge is a dependency of this non terminal in other non terminals
by which it is defined in the grammar. In such a graph, a Root non-terminal is a node
that has no edges coming in.

Open University, Israel
Math & Computer Science

7 Flue by N. Rotem

2.5. ROOT NON-TERMINALS CHAPTER 2. GRAMMAR SPECIFICATION

Root non-terminals have a practical meaning—they are being used in various methods
of the EBNF class and could be used by programmers in various use cases. For example,
when calculating the FIRST and FOLLOW of a grammar (see sections 4.7, 4.8).

2.5.1 Explicit Root Non terminals
Root non-terminals of grammars may be explicitly specified when the grammar is
created. An explicit root non-terminal is simply provided by the programmer as an
argument to the EBNF specification:

EBNF grammar = ebnf(A) {
A >> B | C
B >> "hello" & [C] & "world"
C >> "."

}

Listing 2.7: Grammar with Explicit Root non-terminal

In this example, A is passed as a parameter to the EBNF block, declaring that A is the
Root non-terminal.

An explicit non-terminal declaration is not checked by Flue, assuming the programmer
knows what she is asking for. Therefore, the following code is accepted by Flue:

EBNF x = ebnf(C) {
A >> B | C
B >> "hello" & [C] & "world"
C >> "."

}

EBNF y = ebnf(D) {
A >> B | C
B >> "hello" & [C] & "world"
C >> "."

}

Listing 2.8: Suspicious Explicit Root Declarations

In grammar x, C is explicitly specified as the Root, which may look wrong. But the
programmer may have an idea why this is relevant and it will become clear when the
grammar is used.

Same goes with D in grammar y. It is not even part of the grammar, but it might
become part later, so it is left in the responsibility of the programmer.

2.5.2 Implicit Root non-terminals
When a Root non-terminal is not explicitly provided as an argument to the EBNF
specification, it is assumed automatically by Flue.

Open University, Israel
Math & Computer Science

8 Flue by N. Rotem

2.6. EXPRESSIONS CHAPTER 2. GRAMMAR SPECIFICATION

Flue would assume the root with the following algorithm:

Algorithm 1 Finding Grammar’s non-terminal Root
1: e← entryPoints()
2: if |e| ≥ 1 then
3: return e[0]
4: else
5: fail
6: end if

• (1) Populate e with all the entry points of the grammar, using the entryPoint
algorithm 4

• (2), (3) If there are entry points, return the first one, arbitrarily.

• (4), (5) If there are no entry points, fail root finding.

2.6 Expressions
Expressions are what is found on the right side of production rules. They are spec-
ifications of a composite (meaning—a syntax tree), that consists of Terminals, non-
terminals, and compounds of them.

The very basic expressions are made of a single Terminal or a single Non Terminal.
Here are some rules based on such basic expressions:

• A >> B

• C >> "hello"

B is an expression made of a non-terminal. "hello" is an expression made of a
Terminal.

But expressions may also be compound. There are four compound structures that may
be used in expressions:

• Sequences

• Choices

• Options

• Repetitions

These compounds are discussed in the following sections.

Elements in an expression may be either simple—Terminals or non-terminals, or com-
pound. Elements in compounds, may also be simple or compound.

2.6.1 Sequences
A sequence is a specification of expression elements that are expected to appear one
after the other.

Open University, Israel
Math & Computer Science

9 Flue by N. Rotem

2.6. EXPRESSIONS CHAPTER 2. GRAMMAR SPECIFICATION

Flue offers the ampersand operator (&) for sequence specification. Here are some
examples of rules that use sequences in their expressions:

1. A >> "hello" & "world"

2. B >> C & D

3. C >> D & E & F

4. D >> E & "+" & D & "."

5. E >> (A | [B & {C}]) & F

• (1) defines A as the Terminal "hello" and then the Terminal ”world”.

• (2) defines B as the non-terminal C, and then the non-terminal D.

• (3) specifies C as a sequence of D, then E, then F.

• (4) is a sequence of E, then the Terminal "+", then D, then a period token.

• (5) defines E as a sequence of a compound statement and then F. The compound
statement is a choice between A and an optional sequence of B and a repeating
C. Choices, Options and Repetitions will be explained in the following sections.

2.6.2 Choices (Alternatives)
A choice is the suggestion of a few alternatives from which only one should be selected.
For example, when a statement in the language represented by a Flue grammar is being
parsed, a parser may expect to find x or y or z, as a Choice in the grammar allows.

Some rule examples using Choices:

1. A >> "a" | B

2. B >> A & ("+" | D & ".")

• (1) specifies A as a choice between the token ”a” and the non-terminal B

• (2) defines B as A, then a choice between two options: the plus sign, or a D with a
period at its end. The need in parentheses and the precedence of operators will
be discuss in section 2.6.5.

2.6.3 Options
Elements in Flue expressions may be marked as Optional by surrounding them with
square brackets. For a potential parser it would probably mean that an element is
expected but is not mandatory when parsing statements by the grammar.

Examples:

• ["x"] is an optional "x" Terminal

• [B] is an optional B non-terminal

• A & [B] is a compound of A and then, optionally, also B.

• [A | B] is an optional choice between A and B.

Open University, Israel
Math & Computer Science

10 Flue by N. Rotem

2.6. EXPRESSIONS CHAPTER 2. GRAMMAR SPECIFICATION

2.6.4 Repetitions
Elements in Flue expressions may be marked as repeated, by surrounding them with
curly brackets. By default, the repetition is of zero or more times. A potential parser
that follows grammar specified by Flue may expect an element to be skipped, to appear
once or to appear multiple times, when it is marked as a repetition.

A repetition may be treated as a sequence of zero or more occurrences of the repeated
element.

Examples:

• {"x"} means zero or more "x" Terminals

• {B} is a repetition of the B non-terminal zero or more times

• A | {B} is a compound of A and then zero or more B occurrences.

• {A & B} is a repletion of A and then B. It could be zero times A then B, or one
time A then B, or A then B then again A then B etc.

One or More

The default form of repetitions reflects zero-or-more repetitions. Often, one needs a
way to specify a repetition of one-or-more. It is possible to specify a one or more
repetition of B this way:

A >> B & {B}

Flue offers the +{} syntactic sugar to simplify this requirement:

A >> +{B}

Prefixing a repetition with a unary plus operator marks it as a one-or-more case. The
+{} syntax may of course apply also to compound repetitions.

List Separators

With repetitions, it is possible to specify lists of one or more elements:

A >> B & {"," & B}

A is defined as a single B, or B comma B, or B comma B comma B etc.

Flue answers the list-with-separator requirement with another syntactic sugar – the
/”” syntax:

A >> B & {B}/","

The slash operator may trail repetitions, to specify the separator between sequential
repetitions of the repeating element.

{B}/"," means therefore: either no occurrence of B, or a single B, or B comma B, or B
comma B comma B etc.

Using the {}/"" syntax combined with the + syntax, a list of one or more becomes
simple and clean:

Open University, Israel
Math & Computer Science

11 Flue by N. Rotem

2.6. EXPRESSIONS CHAPTER 2. GRAMMAR SPECIFICATION

A >> +{B}/","

This would mean: A is defined as a one or more occurrences of B, with a comma between
consecutive B occurrences.

Note: the separator must be a Terminal.

2.6.5 Precedence
Sequences in Flue use the & operator, while Choices use the | operator. Groovy gives
& a higher precedence than |. Therefore, the following rule means a choice between A
and the sequence of B and then C:

A >> A | B & C

If we want a decision between A and B, and only then a C, Groovy’s precedence will
require us to put parentheses in the right place:

A >> (A | B) & C

Flue will respect the parentheses.

Open University, Israel
Math & Computer Science

12 Flue by N. Rotem

Chapter 3

How Flue is Implemented

3.1 Challenges
Flue is designed and implemented to simplify the task of specifying grammars for
Groovy implementations. As such, it requires a simple yet powerful syntax with very
high readability and general elegance.

On one hand, syntax simplicity may be achieved by adhering to the EBNF specification
and keeping rule specification as clean as possible for the user. On the other hand, the
syntax should also comply with Groovy’s syntax. After all, it is Groovy.

Most of the challenges in implementing the grammar syntax, therefore, came from the
tension between Groovy and EBNF.

Flue is a library. As such, its classes and APIs are in use in runtime by implementations.
However, one aspect of Flue should be available in development time, i.e.—while writing
the rules: the IDE (e.g., IntelliJ) should accept the grammar syntax and not mark it
as an error.

The following sections describe some of these challenges and the way Flue overcomes
them.

3.2 Rule Capturing
Flue uses the following syntax for specifying grammars:

EBNF grammar = ebnf {
A >> B | C
B >> "hello" & [C] & "world"
C >> "."

}

Listing 3.1: Sample Grammar Code (repeated from previous chapter)

ebnf() is a static method of the EBNF class (that is statically imported to avoid writing

13

3.3. EXPRESSION STATEMENT CHAPTER 3. HOW FLUE IS IMPLEMENTED

EBNF.ebnf{}). It accepts a single argument: a Groovy Closure that is specified as a
block of code within curly brackets.

A Closure is an anonymous method body. It may accept parameters and return a
value, but the FLue user does not expect to handle parameters and return a value when
creating a grammar. The user expects to merely specify, line by line, the production
rules of the grammar.

A production rule should therefore be a code statement in valid Groovy.

A >> B | C

3.3 Expression Statement
The rule above doesn’t look like valid Groovy, but in fact it is. The operator >> is
a shift-right operator in Groovy. The operator | means or. A, B and C are Enum
elements, i.e.—objects of the Enum type (which are eventually non-terminals). Thus,
the rule is parsed by Groovy as:

non-terminal-A shift-right non-terminal-B or non-terminal-C

To begin with, this is an expression. Groovy allows expressions to appear where state-
ments are expected (this is called Expression Statement), but such an expression seems
like a calculation of some value, rather than an action. In particular, no assignment is
visible. Luckily, while a typical Java IDE would at least warn against an expression
that ”does nothing”, in Groovy expressions are valid statements, because the last ex-
pression in a code block is the value to return from the code block (the return keyword
is optional). Closures may return a value; therefore, the IDE accepts expressions within
it.

3.4 Operator Overloading
The next challenge is the meaning of these operations against the objects. How can
we shift-right A by B bits? What does it mean for non-terminals?

Luckily again, Groovy allows operator overloading, and thanks to its non-strict type
checking, it even allows setting the return value to be of any type we need.

Note: this type-flexibility with operator overloading is undocumented in Groovy. It
required empirical tests to be discovered and mastered. There’s no guarantee therefore,
that all IDEs will respect it, forever. Currently, IntelliJ allows such flexible overloading,
and does not warn once the overloading method is in place—not about the overloading
method itself, and not about the statements that use it.

3.5 How Can Expressions “Do Something”?
Expressions are usually immutable entities that calculate a value and “do nothing” by
themselves. However, the operator overloading of Groovy allows side effects to take
place, while the expression is calculated.

Open University, Israel
Math & Computer Science

14 Flue by N. Rotem

3.6. A TIMING PROBLEM CHAPTER 3. HOW FLUE IS IMPLEMENTED

Which overloaded operator should “do the magic” of storing the specified rule in the
EBNF instance? Apparently, the method of the operator that every rule specification
uses, and uses only once, is the method of the >> operator:

1 // Inaccurate code. Will be corrected in the following sections
2 trait NonTerminal /*...*/ {
3 Rule rightShift(Expression e) { grammar.add(new Rule(this, e)) }
4 /*...*/
5 }

Listing 3.2: First (Inaccurate) Attempt on rightShift

• (line 2) The rightShift operator belongs to the NonTerminal class (it’s a trait
and not a class to allow Enums to implement it).

• (line 3) rightShift operates on the non-terminal on its left, and accepts the
expression to its right as a parameter. Then it creates a rule that gets both sides
as construction arguments. The rule is then added to the grammar instance.

3.6 A Timing Problem
The above code, though, has a major flaw. Let’s refer back to the grammar definition:

EBNF grammar = ebnf {
A >> B | C
B >> "hello" & [C] & "world"
C >> "."

}

The grammar instance is not accessible from the Closure block, because it is declared
outside of the block. Furthermore, it is the call to ebnf {} that instantiates the
grammar instance, so grammar does not even exist when the closure is executed.

Therefore, the rules should be added to a static object that is accessible from within
the Closure, and after the entire Closure is executed, the ebnf{} method should take
the rules from this static object and instantiate with it the grammar object.

1 trait NonTerminal implements Expression /*...*/ {
2 Rule rightShift(Expression e) { EBNF.add(new Rule(this, e)) }
3 /*...*/
4 }

Listing 3.3: Method rightShift of NonTerminal

(line 3) add() is a static method of the EBNF class, and therefore is accessible from
the Closure.

Open University, Israel
Math & Computer Science

15 Flue by N. Rotem

3.7. THREAD SAFETY CHAPTER 3. HOW FLUE IS IMPLEMENTED

3.7 Thread Safety
EBNF.add() may be used in parallel by multiple threads. If add is a static method
that operates on a shared object, the rules of the parallel constructions will get mixed
up. How can that be prevented?

Flue’s work around the challenge is by using a ThreadLocal:

class EBNF {
private static final ThreadLocal<EBNF> context

= new ThreadLocal<>()

static Rule add(Rule r) {
/*..*/
context.get().rules += r
/*..*/

}

/*..*/
}

Listing 3.4: Using ThreadLocal in EBNF

The EBNF.ebnf{} method initiates the ThreadLocal grammar object of the current
thread. After the rule block is executed and all the rules are processed, it cleans the
ThreadLocal so it is usable for this thread for the next grammar.

Note: Flue implementations are expected to use a single thread along the block that
builds the grammar. This is reasonable to assume, but—as learned during this project
in the hard way—this is not guaranteed. The Groovy testing framework Spock does
not use a single thread throughout the rule-building Closure, and therefore was not
used for testing grammars in this project. Other frameworks may do the same.

3.8 Precedence
Back to the rule processing, the challenges are yet to be over. The following statement
needs to overcome precedence challenges as well:

A >> B & C

One may expect that everything to the right side of the >> operation will be parsed as
an expression, and passed as an expression to the rightShift method of NonTerminal
(code listing 3.3). However, the precedence of rightShift is higher than of the &
operator. Therefore, the parsing order of statement is done as if this was the statement:
(A >> B) & C

A >> B is processed first. The operator & with the argument C will run as a method
of whatever A >> B returns. Therefore, Flue makes A >> B return the generated rule.

What is left to process is therefore:

Open University, Israel
Math & Computer Science

16 Flue by N. Rotem

3.8. PRECEDENCE CHAPTER 3. HOW FLUE IS IMPLEMENTED

rule & C

& is implemented as the overloaded operator and() of the class Rule:

class Rule {
Rule and(Expression e) { definition &= e; this }
/*...*/

}

Listing 3.5: Rule’s and() method

The rule object holds a NonTerminal (its left side) and an Expression (its right side).
The operator and() adds what comes after the & to that expression.

To sum it up, the rule A >> B & C & D & E will evaluate A >> B and return a rule
object. The rule object’s and() method will be called with C as an argument. Then it
will be called again with D. Then with E.

3.8.1 Options and Repetitions
Flue expects Options in square brackets. For Groovy, the expression [B] is an instan-
tiation of a new list, with B as a member. [”abcd”] is a list of Strings. [~”abcd”] is a
list of Patterns.

It means that EBNF.add() and many other methods need to have an overloaded method
that accept List<?>, should check what the member type is, and other complications.

Luckily, all of this was proven to be achievable in Groovy (though sometimes in tricky
ways).

As for Repetitions, {B} is a Closure that returns B. To support it, EBNF.add() and
many other methods need an overloaded version that accepts Closure<?>.

3.8.2 Terminals
Deterministic Terminals and Pattern Terminals are Strings and Patterns respectively
in Flue.

So EBNF.add() and many other methods need an overloaded version that accepts a
String and a version that accepts a Pattern.

3.8.3 Overloading Methods of System Types
Consider the following rule:

A >> B | [C] & "break"

As before, A >> B is evaluated first by a call to NonTerminal’s rightShift method
that accepts B and returns a rule instance.

Open University, Israel
Math & Computer Science

17 Flue by N. Rotem

3.8. PRECEDENCE CHAPTER 3. HOW FLUE IS IMPLEMENTED

But now there’s a change from the previous examples. Since & precedes |, the next
thing to get evaluated is ([C] & "break"). This evaluation calls the and() method of
List, with a String argument!

List is not a class. It’s an interface. But further than that—it’s a system interface.

Slightly changing the rule makes it even more scary –

A >> B | "break" & [B]

Now ("break" & [B]) is an expected overriding of String’s and() method. And String
is a final system type.

Luckily again—this is Groovy and not Java, and Groovy is more flexible than Java. It
allows introducing an Extension class, that allows overriding system class methods.

An extension class requires special registration in Groovy’s configuration, and extra
care in development, but eventually, Flue manages to override and(String, List),
and(List, String), and(String, String) etc. Same goes with or(...).

3.8.4 The +{} Syntax
As a final example of the challenges in Flue, it is interesting to look into the one-or-more
paradigm expressed by the +{} syntax.

A >> +{B & C}

The one-or-more attribute of a Repetition is captured in a field of the class Repeat.
This class is instantiated in various places, and in these places it is important to know
if it’s a +{} or a regular {}.

Flue’s solution is the class AtLeastOneClosure that extends Closure. The above
mentioned Extension class specifies the method positive(Closure<?>) that over-
rides the unary plus operator when it prefixes a Closure. It creates an instance
of AtLeastOneClosure, and returns it as a Closure. So +{} returns the closure
within the curly brackets, but the fact that it’s not an ordinary Closure but an
AtLeastOneClosure, helps raising the atLeastOne flag in Repeated when it is in-
stantiated.

Open University, Israel
Math & Computer Science

18 Flue by N. Rotem

Chapter 4

EBNF API

Once an object of the EBNF class is instantiated and representing a grammar, it is
possible to use its capabilities and apply actions on the grammar.

The next sections will describe EBNF object’s methods and the various grammar tools
they provide.

4.1 clone()
grammar.clone() deep copies the grammar. It uses a visitor for traversing the gram-
mar’s expressions and instantiating copies of expressions.

Terminals and non-terminals which follow the FlyWeight1 design pattern, do not need
to get copied.

4.2 nonTerminalGraph()
grammar.nonTerminalGraph() creates a directed graph from a grammar. Each node
is a non-terminal in the grammar. Each edge from node x to node y means that
non-terminal x is defined using non-terminal y (i.e., x is dependent on y).

The graph is returned as a map from NonTerminal to a set of NonTerminals it is
dependent of. The algorithm is straightforward:

Algorithm 2 Graph of non-terminals
(1) For each rule in the grammar that specifies non-terminal x by Expression y:

(a) Visit y with a non-terminals finding Visitor (about visitors—see section 5.2)
(b) Add all the found non-terminals to the Set mapped from x.

The graph is useful for investigating the relationship between non-terminals in the
grammar, for finding entry points, cycles etc.

1https://en.wikipedia.org/wiki/Flyweight_pattern

19

4.3. ENTRYPOINTS() CHAPTER 4. EBNF API

4.3 entryPoints()
grammar.entryPoints() is a method for retrieving all the potential root NonTerminals
of a grammar. An entry point is a NonTerminal that no NonTerminal (including itself)
is dependent on in its definition.

For efficiency, if a nonTerminalGraph was already generated, it can be passed to the
method. Otherwise, the method will generate such a graph.

Algorithm 3 Finding Entry Points
(1) Make a set of the graph nodes, i.e., a set of all the non-terminals that have a

definition rule.
(2) Make a set of all the non-terminals that have edges coming into them, i.e., non-

terminals that are used in definitions
(3) Subtract (2) from (1) to get all the defined non-terminals that are not involved in

definitions.

Entry points are used in cycle searches, and other traversals of the grammar graph
that need to start with entry nodes.

4.4 cycles()
grammar.cycles(), as its name implies, finds all the cycles in the graph. A cycle could
be of one non-terminal—if it is defined by itself, or of multiple non-terminals, if they
point to one another, until one points back to the first one.

The returned cycles are unique—If A points to B and B points to C, the returned cycle
may be [A, B, C], but [B, C, A] and [C, A, B] will not be returned, since they describe
the same cycle. Function cycles() uses the DFS algorithm to find cycles, and once a
loop is discovered, it uses an additional stack to map the cycle members.

Algorithm 4 Finding Cycles
(1) Prepare a stack. Prepare a way to keep for each non-terminal node—its status.

Initialize all statuses to Not Visited. Prepare a non-terminal graph.
(2) For each rule in the grammar, refer to its non-terminal. If its status is Not Visited:

(a) Put it in the stack
(b) Change its status to In Stack
(c) Let’s assume the top of the stack (without popping) is x.
(d) For each non-terminal y pointed by x in graph:

(i) If the status of y is In Stack—report a cycle
(ii) If the status of y is Not Visited:

1 Push y to the stack
2 Set y’s status to In Stack
3 Repeat from (2).c

(e) Set x’s status to Visited.
(f) Pop the stack.

Reporting a cycle that starts at x means using a temporary stack and pushing into it

Open University, Israel
Math & Computer Science

20 Flue by N. Rotem

4.5. INLINED() CHAPTER 4. EBNF API

pops from the first stack until x is found in the stack. Then, starting pushing back
into the stack pops from the temp stack, while reporting the node.

Cycle finding is used when inlining grammars, and for various analysis purposes.

4.5 inlined()
grammar.inlined() returns an optimized copy the grammar by eliminating redundant
rules that can be skipped.

For example, in the following set of rules:

A >> B & C

B >> [D]

C >> "x"

D >> ~"a*"

The following optimization actions may be takes:

(1) B can be optimized into B >> [~"a*"] and D may be deleted

(2) A may be optimized into A >> [~"a*"] & C and B may be deleted

(3) A may be optimized into A >> [~"a*"] & "x" and C may be deleted

Algorithm 5 Inlining Grammar
(0) Prepare a non-terminal graph; prepare a reversed graph—from a non-terminal to

all the non-terminals that are dependent on it; prepare a set of grammar entry
points.

(1) While there are changes:
(a) Find in the graph node x that has no edges (= a non-terminal that depends

on no non-terminals)
(b) For each node y in the dependency graph that is dependent on x:

(i) Replace in y the reference to x with the definition of x
(c) Delete x from the grammar unless it’s an entry point

The method returns a clone of the original grammar and does not change it.

4.6 nullable()
grammar.nullable() is a method that maps each non-terminal into the Boolean answer
to the question—could it resolve to null? Null, in this context, means either an explicit
epsilon, or an empty resolution.

Examples:

Open University, Israel
Math & Computer Science

21 Flue by N. Rotem

4.7. FIRST() CHAPTER 4. EBNF API

Rule nullable() of A
A >> "abc" false
A >> [B] true
A >> {B | "a"} true
A >> +{B | "a"} false
A >> B & [C] nullable() of B
A >> "a" & [B] false
A >> B | [C] true
A >> "a" | B nullable() of B

Algorithm 6 Evaluating Nullability
(1) Prepare a map from non-terminal to Boolean nullability. Set all to be false.
(2) While there are still any changes to the map:

(a) For each rule in the grammar:
i Use a dedicated Visitor to evaluate the rule definition’s nullability. Visitor’s

logic:
1 Terminal—false, unless the Terminal is epsilon
2 non-terminal—whatever the nullability map says
3 Optional—true
4 Repeated—true, unless the atLeastOne flag is set to true
5 Choice—true if any of the options is true
6 Sequence—true if all the elements are true

ii Set the evaluated nullability of the non-terminal in the nullability map.

Nullability is used for follow() calculation (see following sections) and may serve au-
tomata algorithms and more.

4.7 first()
grammar.first() maps each non-terminal to all the Terminals that may appear first in
its definition.

EBNF grammar = ebnf {
A >> B
A >> "g"
B >> "e" | C
C >> "f"
C >> A | ε
D >> {C} & [E] & "m" & "m" | ["r"]
E >> "q"

}

Listing 4.1: Grammar for FIRST Algorithm

first() mapping from non-terminal to Terminals:

Open University, Israel
Math & Computer Science

22 Flue by N. Rotem

4.8. FOLLOW() CHAPTER 4. EBNF API

A: ["e", "f", "g", "�"]
B: ["e", "f", "g", "�"]
C: ["f", "e", "g", "�"]
D: ["f", "e", "g", "�", "q", "m", "r"]
E: ["q"]

Algorithm 7 Evaluating Nullability
(1) Prepare an empty map from non-terminal to a set of Terminals
(2) While there are still any changes to the map:

(a) For each rule in the grammar:
i Use a dedicated Visitor to evaluate its non-terminal’s FIRST closure. Vis-

itor’s logic:
1 Terminal—add the Terminal to the FIRST closure
2 non-terminal—add the non-terminal’s closure to the FIRST closure
3 Optional—add epsilon as well as the closure of the child, to the FIRST

closure.
4 Repeated—add the closure if the child to the FIRST closure. If atLeas-

tOne is not true, add also epsilon.
5 Choice—add to the FIRST closure the closures of all the options.
6 Sequence—add to the FIRST closure the closures of the child elements

one by one. If a child’s closure does not contain epsilon, do not continue
to the next child.

ii Add the calculated FIRST closure to the non-terminal’s FIRST map entry.

first() is used for follow() calculations (see next), but may serve for automata algo-
rithms, parsing algorithms etc.

4.8 follow()
grammar.follow() maps every non-terminal in the grammar to the set of Terminals that
might appear right after it.

To support the algorithm, a special Terminal is defined in the EBNF class, to represent
end-of-input—the emptiness after the last character in the language’s statements:

public static final Terminal ṩ = new Terminal("ṩ")

Listing 4.2: End-of-Input Symbol Declaration

Note: it is not exactly the dollar symbol. It’s another Unicode character, since $ is not
a valid constant name, and surprisingly, ṩ is.

The FOLLOW closure of a non-terminal is made of all the Terminals that might appear
right after the resolution of the Non-Terminal. In other words – the potential next
Terminals of the non-terminal. Calculating the FOLLOW closure uses the NULLABLE
table and the FIRST closure of the grammar. For efficiency, it is possible to provide

Open University, Israel
Math & Computer Science

23 Flue by N. Rotem

4.8. FOLLOW() CHAPTER 4. EBNF API

these data structures to the follow() method, if they were already calculated before
(see sections 4.6 and 4.7 for nullable() and first() respectively).

The discovery loop runs while there are changes to the FOLLOW closure map. The
map keeps accumulating additional values due to the recursive nature of the rules (in
other words: the calculation process is a bootstrap).

Based on the NULLABLE and FIRST data, visitors will be able to answer specific
questions.

The algorithm needs a visitor and not merely the nullable and first maps, because the
maps tell the nullability or the FIRST closure of a non-terminal, but the algorithm
needs to know also if a sub-expression is nullable, or what is the FIRST closure of a
sub-expression. Not only of non-terminals.

EBNF grammar = ebnf(A) {
A >> B & C
C >> "+" & B & C | ε
B >> D & E
E >> "*" & D & E | ε
D >> "(" & A & ")" | "id"

}

Listing 4.3: Grammar for follow() Evaluation

follow() mapping from non-terminal to Terminals:

A: ["ṩ", ")"]
B: ["ṩ", ")", "+"]
C: ["ṩ", ")"]
D: ["ṩ", ")", "+", "*"]
E: ["ṩ", ")", "+"]

Open University, Israel
Math & Computer Science

24 Flue by N. Rotem

4.8. FOLLOW() CHAPTER 4. EBNF API

Algorithm 8 FOLLOW Closure Calculation
(1) Prepare an empty FOLLOW map from non-terminal to a set of Terminals
(2) While there are still any changes to the map:

(a) For each rule in the grammar, apply 3 rules:
(i) Case #1: S -> $ => FOLLOW(S) += $

What follows the root, is $—end of input. If the rule’s non-terminal is
the root—add $ to its FOLLOW closure.

(ii) Case #2: A -> αBβ => FOLLOW(B) += FIRST(β)
Regardless of A, if B is followed by some β in any rule, then the follow of
B should include also the first of β

(iii) Case #3: A -> αB || (A -> αBβ and NULLABLE(β) => FOL-
LOW(B) += FOLLOW(A)
In this situation, if a non-terminal ends a rule or what comes after it is
nullable, it means that its FOLLOW should contain the FOLLOW of the
non-terminal of that rule.

(b) Add the calculated FOLLOW closure of the rule’s non-terminal’ FOLLOW
closure.

Note: the algorithm uses the grammar’s root. It could have just the same used entry-
Points() set.

Note: The algorithm uses visitors to evaluate case #2 and case #3.

Note: The full code of follow() is enclosed in Appendix A, and may be also found here:
https://bit.ly/3lISwC8

Open University, Israel
Math & Computer Science

25 Flue by N. Rotem

https://bit.ly/3lISwC8

Chapter 5

Further Tools

5.1 Rule API
The rule API allows looking into grammar rules, running Visitors, manipulating gram-
mars, etc.

Note: instead of manipulating the ruleset of a grammar, it is possible to clone the
grammar and manipulate the clone.

5.1.1 rules and ruleMap
ebnf.rules is a list of rule objects that preserves the order of the rules specified when
the grammar was created. It may include, naturally, rules for the same non-terminal
duplicates, etc.

ebnf.ruleMap is a map from non-terminal to a set of rule objects that define it. It is
generated for efficiency, but needs manual recreation whenever the rules list is changed.

5.1.2 Rule
The rule object is a POGO (Plain Old Groovy Object) that represents a rule. It refers
to the rule’s non-terminal and to the rule’s right-side expression.

5.1.3 Expression
Expression is a trait (similar to interface) for all the elements of the rule composite.

All expression elements know how to print themselves (toString) and how to compare
themselves (hash and equals).

Unary

Unary is an abstract class for unary expressions—Optional, Repeated. A descendant
of this class will have a single child.

26

5.2. VISITORS CHAPTER 5. FURTHER TOOLS

Multinary

Multinary is an abstract class for multinary expressions—Then, Or. A descendant of
this class will have a list of ordered children.

5.1.4 Terminal
Terminal represents a deterministic string or a pattern within a grammar. It has a
terminal field that holds the string, and a Boolean pattern field to indicate if the
terminal is a pattern.

5.1.5 Non terminal
non-terminal represents a variable in the expression composite. It has to be defined as
an Enum element.

Non-terminals have labels that by default are equal to their variable name, but may
be overwritten in construction.

5.1.6 Optional
Optional is a Unary that marks its single child as non-mandatory in the syntax.

5.1.7 Repeated
Repeated is a Unary that marks its single child as repeating. The atLeastOnce Boolean
flag tells if this is a zero-or-more repetition (when the flag is false) or one-or-more (when
it’s true).

Repeated has a separator field that might be null, but if not—it represents a separator
Terminal between repetitions.

5.1.8 Then
Then is a Multinary that represents a sequence and has multiple children.

5.1.9 Or
Or is a Multinary that represents a choice and has multiple children.

5.2 Visitors
Traversing an expression composite could be done with loops and switches, but it is
convenient to use Visitors for that.

Following the Visitor1 design pattern, every Expression element has an accept(Visitor)
method that expects an instance of the Visitor<T> interface, which is included in the
rule API.

1https://en.wikipedia.org/wiki/Visitor_pattern

Open University, Israel
Math & Computer Science

27 Flue by N. Rotem

5.3. EXPATH CHAPTER 5. FURTHER TOOLS

The generic T is the expected return value from the visit method. Here’s an example
from the code: the clone() method from the EBNF class:

/** Deep copies a grammar */
EBNF clone() {

EBNF copy = new EBNF()
copy.root = root
copy.rules = rules.collect {Rule rule ->

new Rule(rule.nonTerminal, rule.definition.accept(
new Visitor<Expression>() {

@Override Then visit(Then t) {
new Then(t.children.collect {it.accept(this)})

}

@Override Or visit(Or o) {
new Or(o.children.collect {it.accept(this)})

}

@Override Optional visit(Optional o) {
new Optional(o.child.accept(this))

}
@Override Repeated visit(Repeated r) {

new Repeated(r.child.accept(this),
r.separator, r.atLeastOne)

}
@Override Expression visit(NonTerminal nonTerminal) { nonTerminal }
@Override Expression visit(Terminal terminal) { terminal }

}))
}
/*...*/
copy

}

Listing 5.1: clone() Implementation with a Visitor

The anonymous Visitor<Expression> deep copies a full expression. Each of its visit()
methods handles the deep copy of a single Expression descendant. Each method returns
an Expression (hence the Visitor’s generic is Expression).

5.3 ExPath
ExPath holds a followable path to a sub-expression within an expression. It consists of
PathNodes, which represent the nodes of a path in the expression composite tree. Each
node points to the sub-expression it represents. If the sub-expression is a Multinary
expression, and it is not the last node in the path, it also remembers the serial of the
child through which the path continues.

Open University, Israel
Math & Computer Science

28 Flue by N. Rotem

5.3. EXPATH CHAPTER 5. FURTHER TOOLS

For example, the path to D in the expression B | (C & [D]), is made of the following
nodes:

(1) Multinary node that points to an Or expression, and keeps the position of the
next node: 1 (0 is B; 1 is C & [D]).

(2) Multinary node that points to a Then expression, and keeps the position of the
next node: 1 (0 is C; 1 is [D]).

(3) A PathNode that points to an Optional (i.e., to [D]).

(4) A PathNode that points to D.

An ExPath may also hold an info object that provides custom data. Most probably the
info better-describes the last node—the target. If the path points to a Multinary, the
info may specify, for example, the exact effective children of it (i.e - the reason why it
was pointed at).

Often the info will provide all the additional data needed to transform the expression
by the ExPath—peripheral or contextual info, without which the user of the ExPath
will need to re-search for the referred-to sub-expression.

The method match() uses a closure parameter to find all the sub-expressions in a
provided expression, that match some specified pattern or behavior. The function
will traverse the expression composite tree, apply the closure on each node, and build
an ExPath to each node that matched the criterion (i.e., for which the closure has
evaluated to a non-null). The closure is expected to return an info object with extra
information about the found location.

Note: even if no info is needed, match() will need some object to be used as a match
indication, so one may use Boolean for the info. The value of that Boolean in this case
will be ignored, and the match indication will be Boolean object or null.

The following example uses ExPath.match() to find all the terminals in the grammar,
including terminals as separators of Repeated expressions.

Open University, Israel
Math & Computer Science

29 Flue by N. Rotem

5.3. EXPATH CHAPTER 5. FURTHER TOOLS

static class TerminalInfo { // An info class
Rule rule
String terminal
boolean isSeparator

}

EBNF grammar = ebnf { // Some grammar
A >> B | C | +{D}/"."
B >> ["a"] & "."
C >> D & ".." & ["."]
D >> "-"

}

List<ExPath<TerminalInfo>> matches = []

// Matching for each rule. Capturing the information.
grammar.rules.each { Rule r ->

matches += ExPath<TerminalInfo>.match(r.definition) {
switch (it) {

case Terminal:
return new TerminalInfo(

rule: r,
terminal: (it as Terminal).terminal

)
case Repeated:

if ((it as Repeated).separator) {
return new TerminalInfo(

rule: r,
terminal: (it as Repeated).separator.terminal,
isSeparator: true

)
} else return null

default:
null

}
}

}

// Using the matches to print the information:
matches.each { ExPath<TerminalInfo> path ->

TerminalInfo info = path.info
NonTerminal nonTerminal = path.info.rule.nonTerminal
String token = (info.isSeparator? "/" : "") + info.terminal

println("$nonTerminal: $token ($path)")
}

Listing 5.2: ExPath Example

Open University, Israel
Math & Computer Science

30 Flue by N. Rotem

5.3. EXPATH CHAPTER 5. FURTHER TOOLS

Running the code above prints the following:

A: /. (*/|2/{})
B: a (*/&0/[]/'a')
B: . (*/&1/'.')
C: .. (*/&1/'..')
C: . (*/&2/[]/'.')
D: - (*/'-')

The ExPaths captured the information and also the path to where it was found.

Note: more examples of the usage of ExPath may be found in
ExPathUsageTest.groovy within the project code.

Open University, Israel
Math & Computer Science

31 Flue by N. Rotem

Chapter 6

The Java Grammar

To experiment with Flue and demonstrate its capabilities, the Java EBNF was ported
to Flue, and some experiments were applied to it.

6.1 Syntax
The Java grammar specification was taken from Oracle’s documentation: https://
docs.oracle.com/javase/specs/jls/se16/html/jls-19.html and was rewritten in
Flue. In fact, it was a cyclic work: once the Java syntax was captured, it required more
support from Flue. Once the support was added, it was tested on the Java syntax etc.

The full Java syntax may be found here: https://github.com/metormaon/flue/
blob/main/src/test/groovy/il/ac/openu/flue/JavaEbnf.groovy

The syntax contains about 230 rules.

Here is a short quote:

32

https://docs.oracle.com/javase/specs/jls/se16/html/jls-19.html
https://docs.oracle.com/javase/specs/jls/se16/html/jls-19.html
https://github.com/metormaon/flue/blob/main/src/test/groovy/il/ac/openu/flue/JavaEbnf.groovy
https://github.com/metormaon/flue/blob/main/src/test/groovy/il/ac/openu/flue/JavaEbnf.groovy

6.1. SYNTAX CHAPTER 6. THE JAVA GRAMMAR

EBNF java = ebnf {
Identifier >> IdentifierChars

IdentifierChars >> JavaLetter & { JavaLetterOrDigit }

JavaLetter >> ~"[A-Za-z]"

JavaLetterOrDigit >> ~"[A-Za-z0-9_]"

TypeIdentifier >> Identifier

UnqualifiedMethodIdentifier >> Identifier

Literal >> IntegerLiteral
| FloatingPointLiteral
| BooleanLiteral
| CharacterLiteral
| StringLiteral
| NullLiteral

Type >> PrimitiveType | ReferenceType

PrimitiveType >> { Annotation } & NumericType | { Annotation }
& "boolean"

NumericType >> IntegralType | FloatingPointType

IntegralType >> "byte" | "short" | "int" | "long" | "char"

FloatingPointType >> "float" | "double"

ReferenceType >> ClassOrInterfaceType | TypeVariable | ArrayType

ClassOrInterfaceType >> ClassType | InterfaceType

ClassType >> { Annotation } & TypeIdentifier & [TypeArguments]
| PackageName & "." & { Annotation } & TypeIdentifier

& [TypeArguments]
| ClassOrInterfaceType & "." & { Annotation }

& TypeIdentifier & [TypeArguments]

/*...*/
}

Listing 6.1: Java Grammar (Partial)

Open University, Israel
Math & Computer Science

33 Flue by N. Rotem

6.2. CYCLES CHAPTER 6. THE JAVA GRAMMAR

6.2 Cycles
The cycles() method was tested on the Java syntax and found 123 different cycles. A
random sample of 20 cycles were manually tested and found to be correct.

6.3 Inlining
As part of the experiments with Flue and with the Java syntax, the syntax was inlined.
The experiment helped testing the inlining method, but unfortunately, due to the highly
cyclic nature of the Java syntax, inlining it had a very small effect on the grammar.
Before inlining, there were 228 rules. After inlining—there were 210. Only 18 rules
were eliminated by inlining.

Further investigation may find other reasons for that, but until then the assumption
is that the high amount of cycles prevents inlining from being significant, since cycles
cannot be inlined the way inlining works currently in Flue.

It is possible to enhance the inlining method such that it inlines also cycles to some
extent, then to experiment again with the Java syntax.

6.4 Optimization
To experiment with ExPath, an optimization was performed on the Java rules.

There are some rules in the Java grammar that specify lists with separators this way:

TypeArgumentList >> TypeArgument & { "," & TypeArgument }

Here are some additional examples:

ModuleDirective >> "requires" & { RequiresModifier } & ModuleName & ";"
| "exports" & PackageName & ["to" & ModuleName & { "," & ModuleName }] & ";"
| "opens" & PackageName & ["to" & ModuleName & { "," & ModuleName }] & ";"
| "uses" & TypeName & ";"
| "provides" & TypeName & "with" & TypeName & { "," & TypeName } & ";"

SwitchLabel >> "case" & CaseConstant & { "," & CaseConstant }
| "default"

LambdaParameterList >> LambdaParameter & { "," & LambdaParameter }
| Identifier & { "," & Identifier }

Using ExPath.match(), a test program found all the occurrences of this pattern (21
occurrences), and replaced:

A & {"," & A} With

+{A / ","}

A demonstration of this ExPath may be found here: https://bit.ly/3oMsS1f

Open University, Israel
Math & Computer Science

34 Flue by N. Rotem

https://bit.ly/3oMsS1f

Appendix A

The follow() Method Code

The code of the method follow() of the EBNF class may be found also here: https:
//bit.ly/3lISwC8

/**
Calculates the follow closure for each non-terminal in the rule set. The
follow closure of a non-terminal is made of all the terminals that might
appear after the resolution of the non-terminal. In other words---the
potential next terminals of the non-terminal. Calculating the follow closure
uses the nullable table and the first-closure of the non-terminals. If
nullable and first are provided, the method will use them. Otherwise it will
calculate them. This option is meant for efficiency. The discovery loop runs
while there are changes to the follow-closure map. The map keeps accumulating
additional values due to the recursive nature of the rules (in other words:
the calculation process is a bootstrap).
*/

Map<NonTerminal, Set<Terminal>> follow(
Map<NonTerminal, Set<Terminal>> first = null,
Map<NonTerminal, Boolean> nullable = null

) {
//IF first and/or nullable are not provided as parameters, calculate them:
if (first == null) {

first = this.first()
}

if (nullable == null) {
nullable = this.nullable()

}

/** Based on the nullable and first table, visitors will be able to answer
* specific questions. We will need a visitor and not merely the nullable
* and first maps, because the maps tell us the nullability or the first of
* a non-terminal, and we will need to know if a sub-expression is
* nullable, or what is the first of a sub-expression. Not only of
* non-terminals. */

FirstVisitor firstVisitor = new FirstVisitor(first)

NullableVisitor nullableVisitor = new NullableVisitor(nullable)

Map<NonTerminal, Set<Terminal>> follow = [:]

35

https://bit.ly/3lISwC8
https://bit.ly/3lISwC8

APPENDIX A. THE FOLLOW() METHOD CODE

def copyOfFollow

do {
copyOfFollow = follow.clone()

rules.forEach {rule ->
// Rule #1: S -> $ // What follows the root, is $. End of input. So
// add $ to the follow of the root.
if (rule.nonTerminal == root) {

follow.merge(root, [ṣ]̇.toSet(),
(

Set<Terminal> oldFirst,
Set<Terminal> newFirst

) ->
oldFirst + newFirst)

}

// Rule #2: A -> αBβ => FOLLOW(B) +=
// FIRST(β) Regardless of A, if B is followed by some
// β in any rule,
// then the follow of B should include also the first of

// For the follow calculation we will need a visitor that could
// find all the non-terminals to which an expression resolves
// (expression x resolves to non-terminal y if and only if one of
// the resolution options of x is x -> y. Without any prefix or
// suffix). It will be used later in the code.

Visitor<Set<NonTerminal>> nonTerminalResolver
= new Visitor<Set<NonTerminal>>() {

@Override
Set<NonTerminal> visit(Then then) {

// Collect all the children expressions that are NOT
// nullable

List<Expression> nonNullables = then.children.findAll{
!it.accept(nullableVisitor)

}

switch(nonNullables.size()) {
// If all the children are nullable, then each one may
// be resolvable to a non-terminal, while all the
// others are null. So try to resolve every child.
case 0:

return then.children.inject([].toSet(), { set, e ->
set + e.accept(this)

})

// One non nullable child? Try to resolve it to non
// terminal, assuming the others are null

case 1:
return nonNullables[0].accept(this)

// More than one non nullable child means that this
// Then expression cannot be resolved into a
// non-terminal, because there are more than one
// adjacent elements in

Open University, Israel
Math & Computer Science

36 Flue by N. Rotem

APPENDIX A. THE FOLLOW() METHOD CODE

the resolution
default:

return []
}

}

@Override Set<NonTerminal> visit(Or or) {
or.children.inject([].toSet())

{a, b -> a + b.accept(this)}
}
@Override Set<NonTerminal> visit(Optional optional) {

optional.child.accept(this)
}
@Override Set<NonTerminal> visit(Repeated repeated) {

repeated.child.accept(this)
}
@Override Set<NonTerminal> visit(NonTerminal nonTerminal) {

[nonTerminal]
}
@Override Set<NonTerminal> visit(Terminal terminal) { [] }

}

// Another visitor we will need---a visitor that detects Rule #2
// situations, i.e.: Bβ, and adds the first of β to
// the follow of B.
Visitor<Void> sequenceVisitor = new Visitor<Void>() {

@Override
Void visit(Then then) {

// For each child in the Then expression
then.children.init().eachWithIndex{ Expression e, int i -> {

// Find the set of non-terminals to which the child
// resolves

Set<NonTerminal> childNonTerminalResolution =
e.accept(nonTerminalResolver)

// For each non-terminal to which this child resolves,
// make a Then expression with all the children that
// come after it
childNonTerminalResolution.forEach{NonTerminal v ->

Expression restOfSequence =
new Then(then.children.drop(i+1))

// Calculate the first of the rest of the sequence,
// and add to the follow of the current child
follow.merge(

v,
restOfSequence.accept(firstVisitor) -

[Terminal.�],
(

Set<Terminal> oldFirst,
Set<Terminal> newFirst

) ->
oldFirst + newFirst

)
}

}}
null

Open University, Israel
Math & Computer Science

37 Flue by N. Rotem

APPENDIX A. THE FOLLOW() METHOD CODE

}

@Override Void visit(Or or)
{ or.children.forEach{e -> e.accept(this)}

null }

@Override Void visit(Optional optional)
{ optional.child.accept(this)

null }

@Override
Void visit(Repeated repeated) {

// Repeated is zero or more times. So the follow of {A} is
// the follow of A by itself, plus the follow of A in
// AA.
repeated.child.accept(this)
new Then(repeated.child, repeated.child).accept(this)
null

}
// NonTerminal and Terminal cannot be resolved into
// αBβ? sequences, so we use the base
// implementation that returns null

}

// Apply the sequence visitor on the rule. It will detect and
// update follow closures.

rule.definition.accept(sequenceVisitor)

// Rule #3: A -> αB || A -> αBβ &&
// NULLABLE(β) => FOLLOW(B) += FOLLOW(A) In this situation,
// if a non-terminal ends a rule or what comes after it is
// nullable, it means that its follow should contain the follow of
// the non-terminal of that rule.
// This helping visitor finds all the non-terminals at the end of
// an expression

Visitor<Set<NonTerminal>> nonTerminalsAtEndVisitor
= new Visitor<Set<NonTerminal>>() {

@Override
Set<NonTerminal> visit(Then then) {

// In a Then expression, find all the non-terminals to
// which the *last* child resolves
Set<NonTerminal> nonTerminalsAtEnd =

then.children.last().accept(this)

// If the last child is nullable
if (then.children.last().accept(nullableVisitor)) {

if (then.children.size() > 2) {
// Create a new Then expression with all but the
// last child, and recurse over it
nonTerminalsAtEnd += new Then(then.children.take(

then.children.size()-1)).accept(this)
} else {

// One child. Recurse over it.
nonTerminalsAtEnd += then.children[0].accept(this)

Open University, Israel
Math & Computer Science

38 Flue by N. Rotem

APPENDIX A. THE FOLLOW() METHOD CODE

}
}

nonTerminalsAtEnd
}

@Override Set<NonTerminal> visit(Or or) {
or.children.inject([].toSet())

{a, b -> a + b.accept(this)}
}
@Override Set<NonTerminal> visit(Optional optional) {

optional.child.accept(this)
}
@Override Set<NonTerminal> visit(Repeated repeated) {

repeated.child.accept(this)
}
@Override Set<NonTerminal> visit(NonTerminal nonTerminal) {

[nonTerminal]
}
@Override Set<NonTerminal> visit(Terminal terminal) { [] }

}

// Use the visitor to find the non-terminals the current
// rule ends with
Set<NonTerminal> nonTerminalsAtEnd = rule.definition.accept(

nonTerminalsAtEndVisitor)

// For each of these non terminals, add to their follow the
// current rule's non-terminal's follow,
// as Rule #3 suggests
nonTerminalsAtEnd.forEach { endingNonTerminal ->

follow.merge(endingNonTerminal, follow.get(rule.nonTerminal,
new HashSet<Terminal>()) - [Terminal.ε],

(Set<Terminal> oldFirst, Set<Terminal> newFirst)
-> oldFirst + newFirst)

}
}

} while (copyOfFollow != follow)

follow
}

Open University, Israel
Math & Computer Science

39 Flue by N. Rotem

Appendix B

Flue Grammar for EBNF

The following grammar specified by Flue, describes the grammar of EBNF itself.

Note: since there’s no single standard for EBNF, this is based on an unattributed
random specification found on the web.

EBNF ebnfGrammar = ebnf {
lower >> ~"[a-z]"
upper >> ~"[A-Z]"
digit >> ~"[0-9]"
special >> ~"[\\-_\"&’()*+,./:;<=>]"
character >> lower | upper | digit | special
string >> "\"" & character & {character} & "\""
empty >> Terminal.ε
lhs >> lower & {["_"] & lower}
option >> "[" & rhs & "]"
repetition >> "{" & rhs "}"
sequence >> empty | {string | lhs | option | repetition}
rhs >> sequence & { "|" & sequence}
ebnf_rule >> lhs & ":=" & rhs
ebnf_description >> {ebnf_rule}

}

40

Bibliography

[1] Groovy Language Documentation, Version 3.0.9, viewed 12 July 2020,
<http://docs.groovy-lang.org/docs/latest/html/documentation/>

[2] Oracle, Java Language Specifications, viewed 28 July 2020,
<https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html>

[3] Roth O, Gil, Y, Fling—A Fluent API Generator (Github Repository), viewed 2
June 2020, <https://github.com/OriRoth/fling>

[4] Gil, Y, Tsoglin, Y, JAMOOS—A Domain-Specific Language for Language Process-
ing, viewed 23 August 2020, <https://hrcak.srce.hr/file/69426>

[5] Hayun, A, Eyal, B, Zur-Lotan, L, LL(1) Parsers, viewed 7 March 2021,
<https://www.cs.bgu.ac.il/ comp171/wiki.files/ps5.pdf>

[6] Wikipedia—EBNF, viewed 20 July 2021,

<https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form>

41

	Introduction
	About
	Code
	Basic Terminology
	DSL
	Groovy
	Library
	Grammar
	EBNF
	AST

	Grammar Specification
	The EBNF class
	Order of rules

	Non terminals
	Non terminals in Flue
	Non terminal Labels

	Terminals
	Deterministic Terminals
	Pattern Terminals
	Epsilon (ε)

	Production Rules
	Root non-terminals
	Explicit Root Non terminals
	Implicit Root non-terminals

	Expressions
	Sequences
	Choices (Alternatives)
	Options
	Repetitions
	Precedence

	How Flue is Implemented
	Challenges
	Rule Capturing
	Expression Statement
	Operator Overloading
	How Can Expressions ``Do Something"?
	A Timing Problem
	Thread Safety
	Precedence
	Options and Repetitions
	Terminals
	Overloading Methods of System Types
	The +{} Syntax

	EBNF API
	clone()
	nonTerminalGraph()
	entryPoints()
	cycles()
	inlined()
	nullable()
	first()
	follow()

	Further Tools
	Rule API
	rules and ruleMap
	Rule
	Expression
	Terminal
	Non terminal
	Optional
	Repeated
	Then
	Or

	Visitors
	ExPath

	The Java Grammar
	Syntax
	Cycles
	Inlining
	Optimization

	The follow() Method Code
	Flue Grammar for EBNF

