
The Open University of Israel
Department of Mathematics and Computer Science

Practical Approximation Algorithms

for Optimal k-Anonymity

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science

The Open University of Israel
Department of Mathematics and Computer Science

By

Batya Kenig

Prepared under the supervision of Dr. Tamir Tassa

June 2009

I

I wish to express my gratitude to Dr. Tamir Tassa for his devoted counsel,
guidance and patience.

A special thanks to my husband Tal - for his love and encouragement.

I

Contents

1 Introduction 1
1.1 Overview of the thesis . 3

2 k−Anonymization 4
2.1 Preliminaries . 4
2.2 Generalization . 5

2.2.1 Generalization types 5
2.3 The k-anonymization problem 7

3 Measures of Information Loss 9
3.1 Basic measures . 9
3.2 Entropy based measures . 11
3.3 Monotonicity of cost measures 13

4 Approximation Algorithms for k-Anonymization 14
4.1 Preliminaries . 15
4.2 k-anonymization using set cover 16

4.2.1 k-anonymity using frequent itemsets 20
4.3 k−anonymization via the forest algorithm 22

4.3.1 Preliminaries . 22
4.3.2 Phase 1: Creating the initial forest 24
4.3.3 Phase 2: Decomposing large trees 25

5 Heuristic Algorithms for k−Anonymization 28

6 Frequent Itemset Mining Algorithms 31
6.1 The frequent itemset mining problem 31
6.2 The FP-growth algorithm . 33

6.2.1 FP-tree construction 33
6.2.2 FP-Growth, mining FIs from the FP-tree 34

II

CONTENTS III

6.3 Mining closed frequent itemsets 37
6.3.1 Theoretic foundations for mining CFIs from FP-trees 38
6.3.2 The Charm algorithm 43

7 Generalized Frequent Itemset Mining Algorithms 50
7.1 Problem definition . 50
7.2 The basic algorithm . 51
7.3 The Cumulate algorithm . 51
7.4 Proposed generalized itemset mining algorithm 53

7.4.1 The setting . 53
7.4.2 Overview of the algorithm 55
7.4.3 Data structures used for counting itemset support . . 57
7.4.4 The algorithm . 58
7.4.5 Implementation notes 61

8 An Improved Approximation Algorithm for k-Anonymity 64

9 Experiments 69
9.1 Adult dataset experiments . 70
9.2 Nursery dataset experiments 75
9.3 Coil2000 dataset experiments 77
9.4 Scalability of the proposed mining algorithm 79

10 Conclusion 81

III

Abstract

k-Anonymity is a privacy preserving method for limiting disclosure of pri-
vate information in data mining. In a k-anonymized table, every record is
indistinguishable from at least k−1 other records, whence an adversary who
attempts to extract personal information on an individual who is represented
in the released table cannot link that individual to less than k records in
the table. The process of anonymizing a database table involves generaliz-
ing table entries and, consequently, loss of relevant information for the data
miner. This motivates the search for anonymization algorithms that achieve
the required level of anonymization while incurring a minimal loss of infor-
mation. The problem of k-anonymity with minimal loss of information is
NP-hard. In this study we present several known approximation and heuris-
tic algorithms for the k-anonymization problem. Our main contribution is a
practical algorithm that enables solving the k-anonymization problem with
an approximation guarantee of O(ln k). This algorithm improves an algo-
rithm due to Aggarwal et al. [1] that offers an approximation guarantee
of O(k), and generalizes that of Park and Shim [15] that was limited to
the case of generalization by suppression. Our algorithm uses techniques
that we introduce herein for mining generalized frequent itemsets. Experi-
ments show that the new algorithm provides better results than the leading
approximation algorithm, as well as known heuristic algorithms.

Chapter 1

Introduction

In recent years, there has been tremendous growth in the amount of personal
data that can be collected and analyzed. Data mining tools are increasingly
being used to infer trends and patterns. Of particular interest are data
containing structured information on individuals. However, the use of data
containing personal information has to be restricted in order to protect indi-
vidual privacy. Although identifying attributes like ID numbers and names
are never released for data mining purposes, sensitive information might
still leak due to linking attacks that are based on the public attributes, a.k.a
quasi-identifiers. Such attacks may join the quasi-identifiers of a published
table with a publicly accessible table like the voters registry, and thus dis-
close private information of specific individuals. In fact, it was shown in
[20] that 87% of the U.S. population may be uniquely identified via the
combination of the three quasi-identifiers: birthdate, gender and zipcode.
Privacy-preserving data mining [2] has been proposed as a paradigm of ex-
ercising data mining while protecting the privacy of individuals.

One of the most well-studied methods of privacy preserving data mining
is called k-anonymization, proposed by Samarati and Sweeney [17, 18, 21].
This method suggests to generalize the values of the public attributes, so
that each of the released records becomes indistinguishable from at least
k− 1 other records, when projected on the subset of public attributes. The
private data is then associated to sets of records of size at least k. The values
of the table are modified via the operation of generalization, while keeping
them consistent with the original ones. A cost function is used to measure
the amount of information lost by the generalization process. The objective
is to modify the table entries so that the table becomes k−anonymized and
the information loss (or cost function) is minimized. Meyerson and Williams

1

2

[13] introduced this problem and studied it under the assumption that the
table entries may be either left unchanged or totally suppressed. In that
setting, the cost function to be minimized is the total number of suppressed
entries in the table. They showed that the problem is NP-hard by showing a
reduction from the k-dimensional perfect matching problem. They devised
two approximation algorithms; one that runs in time O(n2k) and achieves
an approximation ratio of O(k ln k); and another that has a fully polynomial
running time (namely, it depends polynomially on both n and k) and guar-
antees an approximation ratio of O(k ln n). Aggarwal et al. [1] extended
the setting of suppressions-only to generalizations by hierarchical clustering
trees, and devised an approximation algorithm with an approximation ratio
of O(k). Gionis and Tassa [7] improved the first algorithm of [13] by offer-
ing an approximation ratio of O(ln k), rather than O(k ln k), and applying
it to a wider class of generalization operators (the generalizations in that
class are called “proper” and they include generalization by suppression as
well as generalizations by hierarchical clustering trees), and a wider class of
measures of loss of information. However, the runtime of their algorithm re-
mains O(n2k). Finally, Park and Shim [15] devised, independently of [7], an
improved and practical version of the algorithm in [7] that also provides an
approximation ratio of O(ln k). However, it applies only to generalizations
by suppression.

Another approach to the problem is using heuristical algorithms. The
algorithm of choice is called the agglomerative algorithm [6] and it outper-
forms the approximation algorithm of [1] which is the currently best prac-
tical algorithm with a proven approximation guarantee (for the setting of
generalization, and not just suppressions).

The main contribution of this thesis is a practical anonymization algo-
rithm that guarantees an approximation ratio of O(ln k) and applies to all
proper generalizations and to a wide class of measures of loss of informa-
tion. Our algorithm is based on the algorithm of Park and Shim which was
restricted to suppressions only. It is also based on techniques that we de-
vise herein for mining generalized frequent itemsets. When comparing the
proposed algorithm to the currently best known approximation algorithm
(the algorithm of [1]) and to the currently best known heuristical algorithm
(the Agglomerative algorithm of [6]) it outperforms both of them in terms
of information loss. In terms of runtime, it is a practical algorithm, and in
some cases it is even faster than the above mentioned algorithms.

2

1.1. OVERVIEW OF THE THESIS 3

1.1 Overview of the thesis

In Chapter 2 we present the fundamentals of k-anonymization. Then, in
Chapter 3 we provide an overview of the common measures of information
loss.

In Chapter 4 we present k-anonymization algorithms that have a known
approximation guarantee. The first one (Section 4.2) is the O(ln k)-approximation
algorithm of [7]. Then we review the closely-related approximation algo-
rithm of [15] that offers the same approximation ratio of O(ln k), but has
better runtime performance, although it is restricted to generalization by
suppression (Section 4.2.1). Finally, we discuss in Section 4.3 the O(k)-
approximation algorithm of [1] which is the best practical and general ap-
proximation algorithm for the problem of k-anonymity with minimal loss of
information.

In Chapter 5 we turn our attention from approximation algorithms with
a known approximation guarantee to heuristic algorithms. We focus on the
agglomerative algorithms of [6].

As the main contribution of this thesis borrows ideas from algorithms for
mining generalized frequent itemsets, we proceed to discuss algorithms for
mining frequent itemsets. In Chapter 6 we give an overview of the known
frequent itemset mining algorithms in the standard setting (where all items
in the itemset are single-valued, as opposed to generalized values). Then, in
Chapter 7, we present the problem of mining generalized frequent itemsets
and introduce our novel frequent generalized itemset mining algorithm.

In Chapter 8 we present our practical O(ln k)-approximation algorithm
for the problem of k-anonymization with minimal loss of information. That
algorithm is based on the algorithms that were presented in Section 4.2 and
on the algorithm for mining generalized frequent itemsets that was presented
in Chapter 7.

Finally, in Chapter 9 we compare the performance of our proposed algo-
rithm to the performance of the best available approximation and heuristic
algorithms. The comparison of the best known approximation algorithm
(the algorithm that we devise in Chapter 8) to the best known heuristic
(Chapter 5) reveals the following conclusion: The approximation algorithm
is preferable not only from a theoretical point of view (as it provides an
approximation guarantee) but also from a practical point of view, as it out-
performs the heuristic algorithm in terms of the corresponding information
loss.

The thesis is concluded in Chapter 10.

3

Chapter 2

k−Anonymization

Here we provide the basic definitions and lemmas related to the k-anonymization
problem. These will be used in subsequent chapters of this study.

2.1 Preliminaries

A database table holds information on individuals in some population U =
{u1, . . . , un}. Each individual is described by a set of r public attributes
(a.k.a quasi-identifiers), A1, . . . , Ar, and s private attributes, Z1, . . . , Zs.
Each of the attributes consists of several possible values:

Aj = {aj,l : 1 ≤ l ≤ mj}, 1 ≤ j ≤ r,

and

Zj = {zj,l : 1 ≤ l ≤ nj}, 1 ≤ j ≤ s.

We use the same notation, namely Aj or Zj , to denote both the attribute
name and the domain in which it takes values. For example, if Aj is gender,
then Aj = {M, F}, while if it is the age of the individual, it is a bounded
non-negative natural number. The public table holds all publicly available
information on the individuals in U ; it takes the form

D = {R1, . . . , Rn}, (2.1)

where Ri ∈ A1×· · ·×Ar, 1 ≤ i ≤ n. The corresponding private table holds
the private information

D′ = {S1, . . . , Sn}, (2.2)

4

2.2. GENERALIZATION 5

where Si ∈ Z1×· · ·×Zs, 1 ≤ i ≤ n. The complete table is the concatenation
of those two tables, D||D′ = {R1||S1, . . . Rn||Sn}. We refer to the records
of Ri and Si, 1 ≤ i ≤ n, as public and private records, respectively. Each
cell in the table will be referred to as a table entry. The jth component of
the record Ri (the (i, j)th entry in the table D) will be denoted by Ri(j).
It should be noted that the sets in (2.1) and (2.2) may be multisets, that is
they may include repeated records.

2.2 Generalization

Generalization is the act of replacing the values that appear in the table
with subsets of values, so that an entry Ri(j) ∈ Aj , 1 ≤ i ≤ n, 1 ≤ j ≤ r, is
replaced by a subset of Aj that includes the value of this entry.

Definition 2.2.1. Let Aj, 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be
a collection of subsets of Aj. A mapping g : A1 × · · · × Ar → A1 × · · · ×
Ar is called a generalization if for every (b1, · · · , br) ∈ A1 × · · · × Ar and
g(b1, · · · , br) = (B1, · · ·Br), it holds that bj ∈ Bj, 1 ≤ j ≤ r.

2.2.1 Generalization types

In Definition 2.2.1, each attribute Aj , 1 ≤ j ≤ r, is assigned a collection of
subsets Aj ⊆ P(Aj). According to the choice of Aj we get different types of
generalizations. Let us consider three examples:

• Generalization by suppression. This refers to a mapping g that ei-
ther leaves entries unchanged or replaces them by the entire set of
attribute values. That is, Aj = Aj ∪ {Aj} for all 1 ≤ j ≤ r. Namely,
g(b1, . . . , br) = (b1, . . . , br) where bj ∈ {bj , Aj}, 1 ≤ j ≤ r.

• Generalization by hierarchical clustering trees. In [1], Aggarwal et al.
considered a setting in which for every attribute Aj there is a corre-
sponding balanced tree, T (Aj), that describes a hierarchical clustering
of Aj . Each node of T (Aj) represents a subset of Aj , the root of the
tree is the entire set Aj , the descendants of each node represent a par-
tition of the subset that corresponds to the father node, and the leaves
are all singleton subsets. Given such a balanced tree, the generaliza-
tion operators may replace an entry Ri(j) with any of its ancestors in
T (Aj). Generalization by suppression is a special case of generalization
by clustering trees where all trees are of height 2.

5

2.2. GENERALIZATION 6

• Unrestricted generalization. In this case Aj = P(Aj). Each entry may
be replaced by any subset of Aj that includes it.

Example 2.2.1. Consider a table with two attributes, age (A1) and gender
(A2). An example of a valid generalization by suppression of a record R =
(28,M) ∈ D is

g(R) = (28, ∗) = (28, {M, F}) .

An example of a generalization which is not restricted to suppressions only
is

g(R) = ([20− 29], ∗) = ([20− 29], {M,F}) .

Finally, an example of an unrestricted generalization is

g(R) = ({21, 28, 33},M) .

We will assume hereinafter that the collections of subsets used for gen-
eralization, Aj , 1 ≤ j ≤ r, satisfy the following property [7].

Definition 2.2.2. Given an attribute A = {a1, . . . , am}, a corresponding
collection of subsets A is called proper if it includes all singleton subsets
{ai}, 1 ≤ i ≤ m, it includes the entire set A, and it is laminar in the sense
that B1 ∩B2 ∈ {∅, B1, B2} for all B1, B2 ∈ A.

It is shown in [7, Lemma 3.3] that the class of proper generalization
coincides with the class of generalizations by possibly unbalanced hierarchi-
cal clustering trees. (Such a clustering tree, or a taxonomy is illustrated
in Figure 2.1). Hence, our framework in this study extends the framework
that was considered in [1] (i.e., balanced hierarchical clustering trees) and,
in particular, the framework of generalization by suppression [13, 15].

In this setting, an item may be generalized to any of its ancestors; for
example, in the taxonomy in Figure 2.1, the item Sport-Jacket may be be
left unchanged, or generalized to one of the following: Outdoors, Clothes or
Clothing.

We will now define generalizations for an entire tables.

Definition 2.2.3. Let D = {R1, . . . , Rn} be a table with public attributes
A1, . . . , Ar, let A1, . . . , Ar be a corresponding collection of subsets, and gi :
A1 × · · · × Ar → A1 × · · · × Ar be corresponding generalization operators,
1 ≤ i ≤ n. Let Ri := gi(Ri) be the generalization of record Ri, 1 ≤ i ≤ n.
Then g(D) = {R1, . . . , Rn} is a generalization of D.

6

2.3. THE K-ANONYMIZATION PROBLEM 7

Clothing

Footwear Clothes

Shoes Boots Sandals Shirts Pants Outdoors

Sport -
Jackets Ski-Pants

Figure 2.1: A Proper Taxonomy

There are two main models of generalization. In global recording, each
collection of subsets Aj is a clustering of the set Aj and then every entry
in the jth column of the table is mapped to the unique subset in Aj that
contains it. As a consequence, every single value a ∈ Aj is always generalized
in the same manner. In local recording, the collection of subsets Aj covers
the set Aj but it is not a clustering. In that case, each entry in the table’s
jth column is generalized independently to one of the subsets in Aj which
includes it. In such a model, if the age 34 appears in the table in several
records, it may be left unchanged in some, generalized to 30 - 39, or totally
suppressed in other records. Clearly, local recording is more flexible and
might enable k-anonymity with a smaller loss of information.

Definition 2.2.4. A relation v is defined on A1 × · · · × Ar as follows: If
R,R′ ∈ A1 × · · · × Ar, then R v R′ if and only if R(j) ⊆ R′(j) for all
1 ≤ j ≤ r. In that case, we say that R specifies R′, or equivalently, that R′

generalizes R.

It is easy to see that v defines a partial order on A1× · · ·×Ar. We may
use this partial order to define a partial order on the set of all generalizations
of a given table.

Definition 2.2.5. Let D = {R1, . . . , Rn} be a table, and let g(D) = {R1, . . . , Rn}
and g′(D) = {R′

1, . . . , R
′
n} be two generalizations of D. Then, g(D) v g′(D)

if Ri v R′
i for all 1 ≤ i ≤ n.

2.3 The k-anonymization problem

The k-anonymization optimization problem is defined as follows [1, 7, 13]

7

2.3. THE K-ANONYMIZATION PROBLEM 8

Definition 2.3.1. A k-anonymization of table D = {R1, . . . , Rn} is a gen-
eralization g(D) = {R1, . . . , Rn} where for all 1 ≤ i ≤ n, there exist indices
1 ≤ i1 < i2 < · · · < ik−1 ≤ n, all of which are different from i, such that
Ri = Ri1 = · · · = Rik−1

.

Let Π = Π(D, g(D)) be a measure of the information loss incurred during
the generalization process. Then the k-anonymization optimization problem
is as follows:

Definition 2.3.2. Let D = {R1, . . . , Rn} be a table with public attributes
Aj, 1 ≤ j ≤ r. Given collections Aj ⊆ P(Aj), and a measure of information
loss Π, find a corresponding k-anonymization, g(D) = {R1, . . . , Rn}, where
Ri ∈ A1 × · · · ×Ar, that minimizes Π(D, g(D)).

8

Chapter 3

Measures of Information Loss

In this chapter we survey common measures of information loss that are
used in order to assess the utility of anonymized tables. We begin with the
description of basic cost-measures (Section 3.1), and then continue to discuss
entropy-based measures Section 3.2). Monotonicity, which is an important
property of information-loss measures, is discussed in Section 3.3.

3.1 Basic measures

Let D be the original public table and g(D) be a generalization of D. A
critical question in the context of k-anonymity is how to define Π(D, g(D)) –
the distance between D and g(D) in the sense of the amount of information
lost during the generalization process. Meyerson and Williams [13] consid-
ered the case of generalization by suppression, and their measure counted
the number of suppressed entries in the generalized table. Aggarwal et. al
. [1] used a more general model of generalization by hierarchical clustering,
and proposed the tree measure. According to this measure, generalizing
an exact table entry, belonging to the jth attribute, to the rth level in the
corresponding hierarchical clustering tree, incurs a cost of r

lj
, where lj is the

height of the tree and 0 ≤ r ≤ lj .
The Loss Metric LM [11, 14] is a more precise and more general version

of the above defined measure. According to the LM measure, the cost per
each table entry is a number between 0 (no generalization at all) and 1
(total suppression) that penalizes the generalization that was made in that
entry according to the size of the generalized subset. The overall cost is the
average cost per table entry:

9

3.1. BASIC MEASURES 10

ΠLM (D, g(D)) =
1
nr

·
n∑

i=1

r∑

j=1

|Ri(j)| − 1
|Aj | − 1

. (3.1)

The Ambiguity Metric AM [14] is the average size of the Cartesian prod-
ucts of all generalized entries in each generalized record in the table. This
measure represents the number of (theoretically) possible combinations of
original records that a generalized record can stand for:

ΠAM (D, g(D)) =
1
n
·

n∑

i=1

r∏

j=1

|Ri(j)| .

An immediate drawback of the AM cost measure is that it counts also
combinations of attribute values that do not appear in the original ta-
ble. For example, let D = {(1, 1), (1, 2), (2, 3)} be the original table. Let
R = ({1, 2}, {1, 2}) be a generalized record in g(D).The AM cost of R equals
2 · 2 = 4, which says that there are four combinations that R can stand for,
while in practice only two of these possibilities exist in D.

The Discernability Metric DM [5] defines the cost of each generalized
record Ri as the number of generalized records in the anonymized table
that are indistinguishable from it. A suppressed record is penalized by
the size of the entire table, |D|. Therefore the total cost of the DM mea-
sure is the sum of squares of the sizes of all non-suppressed clusters, plus
the number of totally suppressed clusters multiplied by |D|. Since our k-
anonymization algorithms usually produce clusters with sizes very close to
k, all such anonymizations have approximately the same DM cost, what
makes this measure less useful.

While all of the measures that were described above consider only the
values of the public attributes of the table, the next measure takes into ac-
count also the private attributes. The Classification Metric CM [11] defines
a possible penalty for each generalized record of the table, based on a chosen
classified attribute, called the class label. A record Ri is penalized either if
its class label differs from the majority class label of its cluster S(Ri), or if
Ri is totally suppressed. Formally:

penalty(Ri) =





1 if Ri is suppressed

1 if class(Ri) 6= majority(S(Ri))
0 otherwise

10

3.2. ENTROPY BASED MEASURES 11

The CM measure is then defined as the average penalty of all rows:

ΠCM (D, g(D)) =
1
n
·

n∑

i=1

penalty(Ri) .

The rationale behind the classification metric is that homogeneous clus-
ters have more utility than heterogeneous clusters, because they indicate a
stronger association between the public attribute values of the cluster and
the trained classified attribute.

3.2 Entropy based measures

The measures described in the following sections are based on Shannon’s
entropy definition. Those were first suggested by Tassa and Gionis in [7].

Definition 3.2.1. Let X be a discrete random variable on a finite set χ =
{x1, . . . , xn}, with probability distribution p(x) = Pr(X = x). The entropy
H(X) of X is defined as H(X) = −∑

x∈χ p(x) log p(x) = −E(log p(X)),
where log = log2.

The entropy is essentially a measure of the amount of information that is
delivered by revealing the value of a random sample of X. According to this
definition, the quantity − log p(x) is the amount of information conveyed by
the value x ∈ χ.

The public table D = {R1, . . . , Rn} induces a probability distribution
for each of the public attributes. Let Xj , 1 ≤ j ≤ r, denote the value of the
attribute Aj in a randomly selected record from D. Then

Pr(Xj = a) =
#{1 ≤ i ≤ n : Ri(j) = a}

n
.

The corresponding entropy measure is:

H(Xj) = −
∑

a∈Aj

Pr(Xj = a) log Pr(Xj = a) .

Let Bj be a subset of Aj . Then, the conditional entropy H(Xj |Bj) is defined
as

H(Xj |Bj) = −
∑

b∈Bj

Pr(Xj = b|Xj ∈ Bj) log Pr(Xj = b|Xj ∈ Bj)

11

3.2. ENTROPY BASED MEASURES 12

where

Pr(Xj = b|Xj ∈ Bj) =
#{1 ≤ i ≤ n : Ri(j) = b}
#{1 ≤ i ≤ n : Ri(j) ∈ Bj} , b ∈ Bj .

When Bj = Aj , then H(Xj |Bj) = H(Xj), while in the other extreme, where
Bj consists of one element, H(Xj |Bj) = 0 (0 uncertainty). This allows us
to define the following cost function of a generalization operator:

Definition 3.2.2. Let D = {R1, . . . , Rn} be a table having public attributes
A1, . . . , Ar, and let Xj be the random variable that equals the value of the
jth attribute Aj, 1 ≤ j ≤ r, in a randomly selected record from D. Then if
g(D) = {R1, . . . , Rn} is a generalization of D then

Πe(D, g(D)) =
1
nr

·
n∑

i=1

r∑

j=1

H(Xj |Ri(j))

is the entropy measure of the loss of information caused by generalizing D
to g(D).

The entropy measure is the only measure, presented so far, that uses the
well accepted information measure of Shannon’s entropy in order to capture
information loss due to generalization. Therefore it is more accurate than
the other measures. The entropy measure enables distinguishing between
”simple” attributes (such as gender) and attributes that convey more infor-
mation (such as age or zip-code). It will prefer generalizing or concealing
the less informative attributes. For example ([7]), in the setting of gener-
alization by suppression, if we have a table that contains two attributes,
gender and zip-code.

D =




M 41278
M 98705
F 41278
F 98705




The following two tables are 2-anonymizations of D:

g1(D) =




∗ 41278
∗ 98705
∗ 41278
∗ 98705


 , g2(D) =




M ∗
M ∗
F ∗
F ∗




The LM metric will consider the two generalizations as equally distant from
D in terms of information loss. The entropy measure, on the other hand,

12

3.3. MONOTONICITY OF COST MEASURES 13

will favor g1(D) since the entropy of the gender attribute is smaller that
that of the zip-code attribute. The generalized table g1(D) conceals the
less-informative attribute and leaves in-tact the attribute that may be of
better use for data-mining purposes.

3.3 Monotonicity of cost measures

A natural property that one might expect from any measure of loss of in-
formation is monotonicity:

Definition 3.3.1. Let D be a table, let g(D) and g′(D) be two generaliza-
tions of D, and let Π be any measure of information loss. Then, Π is called
monotone if Π(D, g(D)) ≤ Π(D, g′(D)) whenever g(D) v g′(D).

The tree measure and LM measure are monotone. The entropy measure,
on the other hand, is not always monotone, as we proceed to exemplify:

Example 3.3.1. Consider a table with one attribute that may receive values
{1, 2, 3, 4} with probabilities {1 − 3ε, ε, ε, ε} respectively, where ε ¿ 1. The
entropy of this attribute is h(1−3ε, ε, ε, ε) ≈ 0. Next, assume that the values
of this attribute are arranged in the following hierarchy tree:

*

{1,2} {3,4}

1 2 3 4

Entries with the value 4 may be generalized to {3, 4} or be suppressed.
While the first possibility incurs a cost of 1 bit (since {3,4} contains two
values with an equal probability of ε), the second option entails a cost which
equals the attribute’s entropy, h(1−3ε, ε, ε, ε) ≈ 0. Consequently, the entropy
measure favors the suppression of the value 4 over its generalization to the
partial subset {3, 4}.

From a data mining point of view, monotonicity is essential. However,
the non-monotonicity of the entropy measure is not a severe issue. First,
anomalies such as the one described in the above example are very rare in
practice. Secondly, the non-monotonicity of the entropy measure may be
rectified. Specifically, given any collection of subsets of a given attribute, A,
it is always possible to find a partial collection Â ⊆ A so that the entropy
measure on the new collection is monotone. In [7], the process for finding
such a partial collection is outlined.

13

Chapter 4

Approximation Algorithms
for k-Anonymization

In this section we describe three approximation algorithms for the problem
of k-anonymization with minimal loss of information. The first algorithm
was proposed by Gionis and Tassa [7], and is based on the algorithm of
Meyerson and Williams [13], which runs in time O(n2k). This algorithm is
based on the idea of using the set-cover approximation algorithm in order
to obtain an approximation algorithm for the k-anonymization problem.
Park and Shim [15] also use the set-cover approximation algorithm in order
to devise an algorithm for the k-anonymization problem, when restricted
to the case of generalization by suppression. They introduced the idea of
using data-mining techniques in order to significantly reduce the algorithm’s
runtime. The third algorithm is the forest algorithm, that was introduced
in [1]. It runs in fully polynomial time and guarantees an approximation of
O(k).

Section 4.1 provides definitions and lemmas which will be used in sub-
sequent sections. Section 4.2 provides the general framework for gener-
ating an approximate solution to the k-anonymization problem using the
set-cover approximation algorithm. We also describe how frequent itemsets
algorithms are used in order to reduce the running time of the set-cover
approximation algorithm for the k-anonymization problem. Finally, section
4.3 describes the Forest algorithm.

14

4.1. PRELIMINARIES 15

4.1 Preliminaries

Any k-anonymization of D defines a partition of D into disjoint clusters,
where each cluster consists of all records that were replaced by the same
generalized record. All records in the same cluster are replaced with the
minimal generalized record that generalizes all of them.

Definition 4.1.1. Let A1, . . . , Ar be attributes with corresponding collec-
tions of subsets A1, . . . , Ar that are proper (Definition 2.2.2). Then given
M ⊆ A1 × . . .×Ar, its closure is defined as

M = min
v

{
C ∈ A1 × . . .×Ar : R v C for all R ∈ M

}
.

We now use the notion of closure to define the generalization cost of a
subset of records.

Definition 4.1.2. Let D be a table and let M ⊆ D be a subset of records.
Then the generalization cost of M , denoted d(M), is defined as the gen-
eralization cost of its closure, M , according to the used measure of loss of
information, Π. Furthermore, its anonymization cost is

ANON(M) =
∑

R∈M

d(M) = |M | · d(M) .

For example, for the LM measure:

d(M) = dLM (M) =
r∑

j=1

|M j | − 1
|Aj | − 1

.

The generalization cost of M is the amount of information that we lose
for each record R ∈ M if we replace it by M , the closure of M . Assuming
monotonicity, M is the best generalized record that may replace all elements
in M . The closely related anonymization cost,

ANON(M) = |M | · d(M) = |M | ·
r∑

j=1

|M j | − 1
|Aj | − 1

is the overall generalization cost if we replace each record R ∈ M with the
generalized record M .

The following lemma introduces the property of sub-additivity, which
will be used later in our analysis of the algorithms.

15

4.2. K-ANONYMIZATION USING SET COVER 16

Lemma 4.1.1. Assume that all collections of subsets, Aj, 1 ≤ j ≤ r, are
proper (Definition 2.2.2). Then the generalization cost of any cost measure,
is sub-additive in the sense that for all S, T ⊆ A1 × . . .×Ar,

S ∩ T 6= ∅ =⇒ d(S ∪ T) ≤ d(S) + d(T) .

Proof. Denote U = S ∪ T , and let Sj , Tj , Uj be the sets of values of the jth
attribute, 1 ≤ j ≤ r, that appear in S, T, U respectively. Let Sj , T j , U j be
the jth components of the closures S, T , U , respectively. Since S ∩ T 6= ∅,
also Sj ∩ Tj 6= ∅. But since Aj is proper, we have that Sj ⊆ T j or T j ⊆ Sj ,
so either U j = Sj or U j = T j . This implies

d(U j) =

{
d(Sj), T j ⊆ Sj

d(T j), Sj ⊆ T j

≤ d(Sj) + d(T j) .

4.2 k-anonymization using set cover

Given a k-anonymization of a table, we can assume that all of its induced
clusters are of sizes between k and 2k − 1; otherwise, each cluster of size at
least 2k could be arbitrarily split into two clusters of size at least k; assuming
monotonicity, the amount of information loss would not increase by such a
split.

Definition 4.2.1. An [`,m]-cover (` ≤ m) is a cover γ of D by subsets
S ⊂ D where all subsets S ∈ γ are of size ` ≤ |S| ≤ m. An [`,m]-clustering
is an [`,m]-cover where all subsets are disjoint.

Let P[k,2k−1] be the set of all [k, 2k − 1]-clusterings of a given table D.
Clearly, any optimal k−anonymization corresponds to a member of this set.
Let Γ[k,2k−1] be the set of all [k, 2k−1]-covers of D. Given a [k, 2k−1]-cover
γ ∈ Γ[k,2k−1] of the table D, we define its generalization cost as:

d(γ) =
∑

S∈γ

d(S) . (4.1)

Furthermore, if γ ∈ P[k,2k−1] we define its anonymization cost as

ANON(γ) =
∑

S∈γ

|S| · d(S) . (4.2)

16

4.2. K-ANONYMIZATION USING SET COVER 17

If g(D) is the k-anonymization that corresponds to the [k, 2k− 1]-clustering
γ, then ANON(γ) = Π(D, g(D)).

Given a table D and a positive integer k, the [k, 2k − 1]-minimum clus-
tering problem is the problem of finding γ ∈ P[k,2k−1] that minimizes d(γ).
Note that the problem of finding γ ∈ P[k,2k−1] that minimizes ANON(γ) is
the k-anonymization problem.

The following lemma describes the relation between the two cost func-
tions.

Lemma 4.2.1. For all γ ∈ P[k,2k−1],

k · d(γ) ≤ ANON(γ) ≤ (2k − 1) · d(γ) (4.3)

Proof. As we have

k ≤ |S| ≤ 2k − 1 for all S ∈ γ (4.4)

and
ANON(γ) =

∑

S∈p

|S| · d(S) (4.5)

inequality (4.3) follows from (4.5), (4.4) and (4.1).

The following theorem [13, 7] asserts that given an α-approximation algo-
rithm for the [k, 2k−1]−minimum clustering problem, the k-anonymization
problem can be approximated within a factor of 2α.

Theorem 4.2.2. Let α ≥ 1, and let γ be a [k, 2k − 1]-clustering with cost
at most α times that of an optimal solution to the [k, 2k − 1]-minimum
clustering problem. Then the algorithm that anonymizes each S ∈ γ by
replacing each R ∈ S with S (the closure of S with respect to generalization,
Definition 4.1.1) is a 2α−approximation algorithm to the problem of optimal
k- anonymization.

Proof. Let γOPT be an optimal solution to the [k, 2k− 1]-minimum cluster-
ing problem. Let γ be another [k, 2k−1]−clustering with generalization cost
d(·) no greater than α times that of γOPT . In addition, let γ∗ be an opti-
mal k−anonymization and OPT (D) = ANON(γ∗), its anonymization cost.
Since, as argued earlier, γ∗ may be assumed to be a [k, 2k − 1]-clustering,

17

4.2. K-ANONYMIZATION USING SET COVER 18

we may argue as follows:

ANON(γ) =
∑

S∈γ |S| · d(S)
≤ ∑

S∈γ(2k − 1) · d(S) (since |S| ≤ 2k − 1 for all S ∈ γ)
= (2k − 1) · d(γ) (by the definition of the function d, (4.1))
≤ α · (2k − 1) · d(γOPT) (since d(γ) ≤ α · d(γOPT))
≤ α · (2k − 1) · d(γ∗) (since d(γOPT) = minγ d(γ) ≤ d(γ∗))
≤ α2k−1

k ·OPT (D) (by Lemma 4.2.1, OPT (D) = ANON(γ∗) ≥ k · d(γ∗))
< 2α ·OPT (D)

We now proceed to describe the approximation algorithm of [7] to the
problem of k-anonymization with minimal loss of information. The two
main procedures in that algorithm are described in Algorithms 1 and 2.
Algorithm 1, which will be referred to hereinafter as Gen-Cover, is the well-
known greedy algorithm for approximating the weighted set cover problem.
It receives as input a table D and a collection C of subsets of D. It out-
puts a cover of D with subsets from C, that approximates an optimal cover
to within O(lnκ(C)), where κ(C) := max{|S|, S ∈ C}. The approxima-
tion algorithm for the optimal k-anonymity problem, Algorithm 3, starts by
invoking Gen-Cover with the special collection

C = F[k,2k−1] := {S ⊂ D : k ≤ |S| ≤ 2k − 1} . (4.6)

Consequently, the resulting cover, γ, is an O(ln k)-approximation to the
problem of optimal [k, 2k − 1]-cover. In the second phase, Algorithm 3
invokes Algorithm 2 which translates the cover γ to a [k, 2k−1]-clustering γ0.
Finally, that clustering is translated into the corresponding k-anonymization
of D.

Theorem 4.2.3. The k−anonymization g, that is produced by Algorithm 3,
satisfies

Π(D, g(D)) ≤ 2(1 + ln 2k) ·OPT (D), (4.7)

where OPT (D) is the cost of an optimal k−anonymization.

Proof. Let γ ∈ Γ[k,2k−1] be the cover that is produced by Algorithm 1 (Gen-
Cover), and let γOPT be the optimal cover (one that minimizes d(·) in
Γ[k,2k−1]). As the greedy algorithm approximates the optimal solution of
the set-cover problem to within a factor of (1 + ln 2k), we have d(γ) ≤
(1 + ln 2k) · d(γOPT).

18

4.2. K-ANONYMIZATION USING SET COVER 19

Algorithm 1: k-anonymization via set-cover: Phase 1
Input: Table D, integer k, collection of subsets C ⊆ P(D).
Output: Cover γ of D with subsets from C

1: Set γ = ∅ and E = ∅.
2: while E 6= D do
3: for all S ∈ C do
4: compute the ratio ρ(S) = d(S)

|S∩(D\E)| .
5: end for
6: Choose S that minimizes ρ(S).
7: E = E ∪ S, γ = γ ∪ {S}, C = C\{S}.
8: end while

Algorithm 2: k-anonymization via set-cover: Phase 2
Input: Cover γ = {S1, . . . , St} of D = {R1, . . . , Rn}.
Output: A [k, 2k − 1]-clustering, γ0 of D.
1: Set γ0 = γ.
2: while γ0 has intersecting subsets do
3: Let Sj , Sl ∈ γ0 be such that Sj ∩ Sl 6= ∅ and let R ∈ Sj ∩ Sl

4: if |Sj | > k then
5: Sj = Sj\{R}
6: else if |Sl| > k then
7: Sl = Sl\{R}
8: else {(|Sj | = |Sl| = k)}
9: remove Sl and Sj from γ0 and replace them with Sj ∪ Sl.

10: end if
11: end while

Algorithm 3: k-anonymization via set-cover
Input: Table D, integer k.
Output: Table g(D) that satisfies k−anonymity
1: Invoke Algorithm 1 with C = F[k,2k−1], (4.6).
2: Convert the resulting [k, 2k− 1]-cover γ into a [k, 2k− 1]-clustering, γ0,

by invoking Algorithm 2.
3: Output the k-anonymization g(D) of D that corresponds to γ0.

19

4.2. K-ANONYMIZATION USING SET COVER 20

Now, let γ0 be the clustering that is achieved by Algorithm 2. In each
iteration of the algorithm, it performs one of two possible actions - either
the deletion of a record from a subset of the cover, or the unification of two
intersecting subsets. As implied by our monotonicity assumption (Definition
3.3.1) and by Lemma 4.1.1, neither of these operations increases the cost of
the cover, so we have d(γ0) ≤ d(γ). To summarize, we get that d(γ0) ≤ (1+
ln 2k) · d(γOPT). Finally, by Theorem 4.2.2, the resulting k−anonymization
satisfies (4.7).

Meyerson and Williams [13] used the same algorithm for finding a k−anonymization
that approximates the optimal one, in the case of generalization by suppres-
sion. However, their choice of cost measure led them to an approximation
factor of 3k · (1 + ln 2k). Their cost measure was

d(S) = maxR,R′∈Sd({R,R′}),
where

d({R,R′}) = |{1 ≤ j ≤ r : R(j) 6= R′(j)}| ,
as opposed to the choice made in [7] that was

d(S) = |{1 ≤ j ≤ r : ∃R, R′ ∈ S for which R(j) 6= R′(j)}| ;
it is the latter choice of cost function that enabled the improvement of the
approximation ratio by a factor of O(k).

Algorithm 3 has an impractical runtime because of its first phase, Gen-
Cover. The runtime of Gen-Cover is O(|C||D|) where C is the input col-
lection of subsets from which a cover is to be selected. Since Algorithm 3
invokes Algorithm 1 with an input collection of size |C| = O(n2k−1), we end
up with an impractical runtime of O(n2k).

4.2.1 k-anonymity using frequent itemsets

To improve the running time of Algorithm 3, Park and Shim [15] introduced
the usage of frequent itemsets. Their algorithm runs faster by restricting the
size of the collection C used in Gen-Cover (Algorithm 1), while still guaran-
teeing the approximation ratio of 2(1 + ln 2k). They considered the case of
generalization by suppression only. One of the contributions of this thesis is
the extension of their algorithm for more general types of generalization.

Definition 4.2.2. Let S be a set of records from table D. We define d(S)
as the number of attributes with multiple distinct values in the record set S,
namely:

20

4.2. K-ANONYMIZATION USING SET COVER 21

d(S) = |{1 ≤ j ≤ r : ∃R, R′ ∈ S, R(j) 6= R′(j)}| ,
where R(j), R′(j) are the values of the jth attribute of the records R, R′

respectively.

Let D = {R1, . . . , Rn} be a table with r quasi-identifiers. Let S be a
subset of records from D. If the number of suppression attributes of S ⊆ D is
p (i.e d(S) = p), then all records in S coincide in the other (r−p) attributes.
Without loss of generality, we can assume that the attributes A1, . . . , Ap are
the suppression attributes of S. The representative of S is defined as the set
consisting of only the values in the other (r − p) attributes Ap+1, . . . , Ar in
S. There is a close relationship between the representative of S and frequent
itemsets in association rule mining. An itemset in this setting is the set of
values belonging to the representative of a group of records S. The support
of an itemset is defined as the subset of records in D that contain the same
values for the attributes appearing in the itemset. Given the anonymity
parameter k, an itemset is called frequent if its support size is at least k.
Thus, if S ⊆ D has size of at least k, then its representative rS is a frequent
itemset. Frequent itemsets with a minimum support size of k are desirable
candidates for C, given as input to Gen-Cover (Algorithm 1). Let f denote
a frequent itemset in D with a minimum support size of k. Let S(f) be
the subset of records in D that contain f (the support of f). Let FFQ be
the collection consisting of all S(f)s (the supports of all frequent itemsets)
together with the whole record set, D (that may be viewed as the support
of f = ∅). FFQ may be a multiset because two frequent itesets may have
the same support set. Supplying FFQ as an input to Gen-Cover, instead
of the collection C of all subsets of sizes between k and 2k − 1, reduces
Gen-Cover’s complexity from O(|C||D|) = O(n2k) to O(|FFQ||D|). Park
and Shim [15] go on to prove that the possible solutions obtained by passing
FFQ to Gen-Cover are always possible solutions in the original version of
Gen-Cover where the input collection of subsets consists of all subsets of
records whose size is in the range [k, 2k − 1]. They thus conclude that
optimal k-anonymization may be approximated to within 2(1 + ln 2k) in
time O(|FFQ||D|).

Since the number of frequent itemsets may be very large, some propos-
als have been made to generate only a concise representation of frequent
itemsets from which all frequent itemsets can be produced.

Definition 4.2.3. A frequent itemset is called closed if there exists no proper
super-set with the same support.

21

4.3. K−ANONYMIZATION VIA THE FOREST ALGORITHM 22

In practice, a lot of frequent itemsets are not closed. Namely, if we let
FCF denote the support sets of all closed frequent itemsets, then usually
|FCF | ¿ |FFQ|. It is shown in [15] that the use of closed frequent itemsets
support sets FCF , instead of frequent itemsets support sets FFQ as input
to Gen-Cover still guarantees the same approximation ratio, but its running
time is reduced to O(|FCF ||D|).

4.3 k−anonymization via the forest algorithm

Let D = {R1, . . . , Rn} be a table having public attributes Aj , 1 ≤ j ≤ r,
and assume that all collections of subsets Aj , 1 ≤ j ≤ r are proper. Such
a table may be represented by a graph. The forest algorithm relies on the
graph representation of the table D.

Definition 4.3.1. The graph representation for the table D = {R1, . . . , Rn}
is the complete weighted graph G = (V, E) where V = D, E = {ei,j =
{Ri, Rj} : 1 ≤ i < j ≤ n}, and w(ei,j) = d({Ri, Rj}), where d(·) is the
generalization cost which corresponds to the measure in use, Π.

Let D be the table to be anonymized and let G = (V, E) be its graph
representation. A spanning forest F of a graph G = (V, E) is a partition
of V to disjoint trees, namely every v ∈ V belongs to exactly one tree,
Tv ∈ F . If all trees in F are of size at least k, it induces a k−anonymization
of D, where all records that belong to the same tree are anonymized in the
same manner by replacing them with the closure of the subset of records
in that tree. We proceed to describe the forest algorithm [1, 12] which has
an approximation factor of O(k), and consists of two phases. In section
4.3.1 we prove some basic results that we need for the approximation factor
proof. Then, in Sections 4.3.2 and 4.3.3 we describe the two phases of the
algorithm.

4.3.1 Preliminaries

Let G be a graph representation of a given table D, and let F = {T1, . . . , Ts}
be a spanning forest of G. In the case that k ≤ |Ti| for each 1 ≤ i ≤ s then
the forest induces a k−anonymization. The cost of this k−anonymization
g(D) that corresponds to F is:

Π(D, g(D)) =
s∑

j=1

|Tj | · d(Tj), (4.8)

where d(·) is the generalization cost function as described in Definition 4.1.2.

22

4.3. K−ANONYMIZATION VIA THE FOREST ALGORITHM 23

Lemma 4.3.1. Let F be a spanning forest of G, which corresponds to some
anonymization of table D. Then for each T ∈ F ,

d(T) ≤ w(T) =
∑

e∈T
w(e).

Proof. We prove the claim by induction on the size of T . If |T | = 1 then
d(T) = w(T) = 0. If |T | = 2 then T has exactly one edge, therefore by
Definition 4.3.1, d(T) = w(T). Now let |T | = n > 2, and assume that the
claim holds for all trees of size smaller than n. Then there exist two subtrees
T1, T2 ⊂ T , whose union is T and whose intersection contains exactly one
node. By sub-additivity, Lemma 4.1.1,

d(T) = d(T1 ∪ T2) ≤ d(T1) + d(T2) .

By the induction hypothesis for both T1 and T2,

d(T1) + d(T2) ≤ w(T1) + w(T2) .

Finally, since T1 and T2 have no edges in common,

w(T1) + w(T2) = w(T),

thus completing the proof.

Theorem 4.3.2. Let OPT be the cost of an optimal k−anonymization of
D with respect to some measure of loss of information Π, and let L be an
integer such that L ≥ k. Let F = {T1, . . . , Ts} be a spanning forest of G
such that:

(a) |Tj | ≥ k, 1 ≤ j ≤ s,
(b) The total weight of F is at most OPT ,
(c) |Tj | ≤ L, 1 ≤ j ≤ s.
Then the k−anonymization gF which is induced by the forest F , is an

L−approximation for the optimal k−anonymization, i.e.,

Π(D, gF (D)) ≤ L ·OPT.

Proof. By (4.8) and Lemma 4.3.1, and since all trees are of size at most L,
we get

Π(D, gF (D)) =
s∑

j=1

|Tj | · d(Tj) ≤
s∑

j=1

L · w(Tj) ≤ L ·OPT,

as required.

23

4.3. K−ANONYMIZATION VIA THE FOREST ALGORITHM 24

In the first phase of the forest algorithm we find a spanning forest F of
G, whose total weight is at most OPT , and in which all trees are of size
at least k. Then, in the second phase we decompose all components of the
forest of size greater than L = 3(k − 1) into smaller components of size at
least k, without increasing the total weight of the forest. By repeating this
procedure sufficiently many times, we arrive at a forest that satisfies the
three conditions in Theorem 4.3.2. That forest induces a k−anonymization
that approximates the optimal one to within a factor of L = 3(k − 1).

4.3.2 Phase 1: Creating the initial forest

The first phase is described in Algorithm 4. That algorithm constructs a
directed forest in which all trees are directed towards the roots. In each
iteration we pick a node R ∈ T whose out-degree is 0, that belongs to a tree
whose size is smaller than k (i.e.,|T | < k). We connect R to one of its k− 1
closest neighbors in G, say R′, with the restriction that R′ /∈ T (otherwise,
T would no longer be a directed tree). Since at this stage |T \{R}| ≤ k− 2,
such a node R′ must exist. Therefore, for each edge (R, R′) in the resulting
forest, it is guaranteed that R′ is one of the k − 1 closest neighbors of R.

Algorithm 4: Forest: Forest construction
Input: Table D, integer k.
Output: A forest F that satisfies conditions (a),(b) in Theorem
4.3.2.
1: Initialize F = (V, E) where V = D and E = ∅.
2: while there exists a component T of F of size less than k do
3: Find a node R ∈ T without any outgoing edges.
4: Find a node R′ outside T that is one of the k − 1 nearest neighbors

of R.
5: Add the directed edge (R, R′) to E.
6: end while

Lemma 4.3.3. Algorithm 4 terminates with a forest F , which has a mini-
mum tree size of k and a weight at most OPT .

Proof. The algorithm starts up with the trivial forest which contains |V |
singleton trees and no edges. In every iteration a single edge is added
that connects two of the trees. Therefore, the forest structure is preserved
throughout the algorithm. It is evident from the algorithm description that

24

4.3. K−ANONYMIZATION VIA THE FOREST ALGORITHM 25

each component of the forest it produces has at least k vertices. In order
to prove that F has a total weight at most OPT , we first note that each
node R ∈ F has at most one outgoing edge. If we show that the weight
of each such edge, denoted (R, R′), is at most the generalization cost of
the record R in the optimal k−anonymization, then by summing up for
all edges in F we get that w(F) ≤ OPT . Let S be the cluster of R in
the optimal k−anonymization, and let R

′′
be the (k − 1)th closest record

to R in S. Since R′ is, in the worst case, the (k − 1)th closest record to
R in the whole table D, we have w(e(R,R′)) ≤ w(e(R,R′′)). By monotonic-
ity, w(e(R,R′)) = d({R,R′}) ≤ w(e(R,R′′)) = d({R, R′′}) ≤ d(S), (because
S ⊇ {R,R′′}), leading to the desired inequality w(e(R,R′)) ≤ d(S).

4.3.3 Phase 2: Decomposing large trees

The second phase of the k−anonymization algorithm turns the forest which
was constructed in Algorithm 4 into a forest that satisfies also condition (c)
in Theorem 4.3.2, for L = 3(k − 1). To that end, we define the following
terms.

A component H ⊆ V in the graph G = (V, E) will be called

• legal, if |H| ≥ k;

• large, if |H| > L;

• small, if k ≤ |H| ≤ L.

Let T be a large tree in G. Algorithm 5 breaks it into two legal components,
which may take one of the following forms:

• (F1) Two legal trees.

• (F2) A small forest and a legal tree.

A large tree which is produced by the algorithm will be subjected to it
recursively, until we are left with only small components.

Lemma 4.3.4. Let j be the index that is chosen in Step 3 of Algorithm 5.
If j = 1 then Sj is a legal tree and so is T \Sj (form (F1) above). Otherwise
it is a small forest and T \Sj is a legal tree (form (F2) above).

Proof. If j = 1 then S1 = T1 (namely, it is a tree) and, by the definition of
j, we have |S1| = s1 ≥ k (namely, it is legal). Since Step 3 is activated only
when s− s1 ≥ k, we infer that in this case also T \S1 is a legal tree.

25

4.3. K−ANONYMIZATION VIA THE FOREST ALGORITHM 26

Algorithm 5: Forest: Decompose trees
Input: A large tree T of size s, an integer k.
Output: Decomposition of T to one of the forms (F1) or (F2).
1: Pick a vertex u ∈ T and root the tree at that vertex. Let l be the

number of children of u; let T1, . . . , Tl be the subtrees rooted in those
children, and si = |Ti|, 1 ≤ i ≤ l. Without loss of generality, assume
that s1 = max{s1, . . . , sl}.

2: if s− s1 ≥ k then
3: output the following trees: Sj and (T \Sj), where Sj =

⋃j
i=1 Ti and j

is the minimal index such that
∑j

i=1 si = k.
4: else
5: replace u with the root of T1 and return to Step 1.
6: end if

If j > 1, we infer that si < k for all 1 ≤ i ≤ l. As j is set to be the
minimal index for which

∑j
i=1 si ≥ k (i.e , the minimal j for which Sj is

legal), we conclude that k ≤ |Sj | =
∑j

i=1 si ≤ 2k − 2. Hence, Sj is legal
and small. As Sj is a unification of subtrees, it is an unconnected forest.
Finally, T \Sj is a legal tree, since T is a large tree, therefore |T \Sj | ≥
(L + 1)− |Sj | = [3(k − 1) + 1]− (2k − 2) = k

Lemma 4.3.5. Algorithm 5 terminates.

Proof. We prove the statement by showing that in a subsequent iteration of
the loop in the subroutine, either we reach a stage in which it stops (i.e., the
stopping criterion in Step 2 is satisfied), or the size of the largest subtree,
s1, decreases.

Assume that the loop did not stop when the root of the tree was u. Let
v be the root of the largest subtree T1. Then s − s1 ≤ k − 1. In the next
iteration, when v becomes the root of the whole tree, and u becomes a child
of v, there are two possibilities:

Case 1: The subtree rooted at u is the largest subtree under v. The
size of that subtree is, by assumption, at most k − 1. In that case, as
s ≥ L + 1 = 3(k − 1) + 1 = 3k − 2, then the stopping criterion in Step 2 is
satisfied since 3(k − 1) + 1− (k − 1) = 2k − 1 ≥ k.

Case 2: The largest subtree under v is one of the subtrees that were
under v in the previous loop. In that case the value of s1 must be smaller
than its value in the previous iteration (in which the largest subtree was
rooted at v).

26

4.3. K−ANONYMIZATION VIA THE FOREST ALGORITHM 27

Let F be the forest that is created by Algorithm 4. We have shown that
by activating Algorithm 5 repeatedly on all of the large trees in F , we get
a partition into legal and small components, (

⋃Ai) ∪ (
⋃Bi) , where the

components Ai are trees, and the components Bi are forests. Each of the
forests consists of trees that were connected through a common parent in
F . Let B̂i be the tree that is obtained from Bi by connecting all trees in
Bi through a common parent, in the same way that they were connected
in F , but instead of the original parent u (which is not part Bi), we will
use a Steiner vertex u′. This Steiner vertex is, essentially, a dummy vertex,
which neither contributes to the size of its component nor to the weight of
its component due to the added edges. By applying that to all forests B̂i, we
get the forest F ′ = (

⋃Ai)∪ (
⋃ B̂i). Since the set of edges of F ′ is contained

in the set of edges of F we have w(F ′) ≤ w(F).
Thus, the conditions in Theorem 4.3.2 are all satisfied by the forest F ′,

implying that the k−anonymization induced by F ′ is a 3(k−1)-approximation
for the optimal k−anonymization.

The overall running time of the forest algorithm may be shown to be
O(kn2).

27

Chapter 5

Heuristic Algorithms for
k−Anonymization

In this chapter we present a heuristic algorithm for the k−anonymization
problem, called the agglomerative algorithm [6]. Experiments show that this
algorithm outperforms, in practice, the Forest algorithm from Section 4.3.

Given a table D = {R1, . . . , Rn} and an integer k > 1, we compute a
clustering of D, γ = {S1, . . . , Sm}, such that |Si| ≥ k for all 1 ≤ i ≤ m. The
algorithm assumes a distance function, dist(·, ·), between subsets of D, i.e.,
dist : P(D)×P(D) → R.

The basic agglomerative algorithm, Algorithm 6, starts with singleton
clusters and then keeps unifying the two closest clusters until they mature
into clusters of size at least k. As it may produce clusters of size greater
than k, while it is preferable to have clusters of size k or close to k in order to
reduce the clustering anonymization cost, another variant, called the modi-
fied agglomerative algorithm, is proposed in [6]. Algorithm 7 describes how
to replace line 12 of Algorithm 6 in order to achieve that goal. Essentially,
before moving a ”ripe” cluster Ŝ to the final clustering γ, we shrink it to a
sub-cluster of size k.

Finally, the clustering of D that is produced by either of the above ag-
glomerative algorithms is translated into a corresponding k−anonymization
g(D), by replacing every record Ri ∈ D with the closure of the cluster to
which Ri belongs.

A key ingredient in the agglomerative algorithms is the definition of
distance between clusters. It is natural to define the distance so it best
fits the cost function of the k−anonymization. Since all records in a given
cluster are replaced by the same generalized record, we have

28

29

Algorithm 6: Basic Agglomerative algorithm
Input: Table D, integer k.
Output: Table g(D) that satisfies k−anonymity
1: for all Ri ∈ D do
2: create a singleton cluster Ŝi = {Ri} and let γ̂ = {Ŝ1, . . . , Ŝn}.
3: end for
4: Initialize the output clustering γ to ∅.
5: while |γ̂| > 1 do
6: Find the ”closest” two clusters in γ̂, namely, the two clusters

Ŝi, Ŝj ∈ γ̂ that minimize dist(Ŝi, Ŝj) .
7: Set Ŝ = Ŝi ∪ Ŝj .
8: Remove Ŝi and Ŝj from γ̂.
9: if |Ŝ| < k then

10: add Ŝ to γ̂.
11: else
12: add Ŝ to γ.
13: end if
14: end while [At this stage, γ̂ has at most one cluster,

Ŝ = {Ri1 , . . . , Ril}, the size of which is l < k]
15: For each record Rij , 1 ≤ j ≤ l, add that record to the cluster S ∈ γ

that minimizes dist({Rij}, S).

Algorithm 7: Modification of line 12 of Algorithm 6

Input: Ŝ = {R̂1, . . . , R̂l} where l ≥ k
Output: Sub-cluster of Ŝ of size k.
1: while |Ŝ| > k do
2: for all 1 ≤ i ≤ l do
3: compute di = dist(Ŝ, (Ŝ\{R̂i})).
4: Find the record R̂i that maximizes di.
5: Remove R̂i from Ŝ and add the corresponding singleton cluster

{R̂i} to γ̂.
6: end for
7: end while
8: Place the shrunk cluster Ŝ in the final clustering γ.

29

30

Π(D, g(D)) =
∑

S∈γ

|S| · d(S) . (5.1)

Several distance functions are discussed and compared in [6]. We used the
first function that was proposed there, which is

dist(A,B) = |A ∪B| · d(A ∪B)− |A| · d(A)− |B| · d(B) . (5.2)

In view of (5.1), the quantity dist(A,B) expresses the change in the overall
distance Π(D, g(D)) that results from the unification of the two clusters A
and B.

30

Chapter 6

Frequent Itemset Mining
Algorithms

Efficient algorithms for mining frequent itemsets are crucial for mining asso-
ciation rules as well as for many other data mining tasks. Frequent itemset
mining leads to the discovery of associations and correlations among items
in large transactional or relational data sets. The discovery of interesting
correlations among huge amounts of business transaction records can help
in many business decision-making processes.

6.1 The frequent itemset mining problem

Let M = {I1, I2, . . . , Im} be a set of items. Let D =
〈
T1, T2 · · ·Tn

〉
be a

table of transactions, where Ti = (tid, I) is a transaction with identifier tid
which contains a set of items I such that I ⊆ M . The support of a set of
items, I ⊆ M , is the set of transactions in D that contain I.

I is frequent if I’s support size is no less than a minimum support thresh-
old min sup. Given a transaction table D and a minimum support threshold
min sup, the problem of finding the complete set of frequent itemsets (FI)
is called the frequent itemset mining problem.

Frequent itemsets are downward closed in the itemset lattice, meaning
that any subset of a frequent itemset is frequent.

A major challenge in mining frequent itemsets from a large or dense
dataset, is the fact that such mining often generates a huge number of fre-
quent itemsets satisfying the minimum support threshold, especially when
min sup is set low.

31

6.1. THE FREQUENT ITEMSET MINING PROBLEM 32

For example, if there is a frequent itemset with size l, then all 2l − 1
nonempty subsets of that itemset are also frequent, and hence have to be
generated. This can potentially be too huge a number for any computer to
compute or store. To overcome this difficulty, we introduce the concepts of
closed frequent itemsets and maximal frequent itemsets [8].

A frequent itemset X is called maximal if there does not exist a fre-
quent itemset Y such that Y ⊃ X. Due to the downward closure property
of frequent itemsets, all subsets of maximal frequent itemsets (MFIs) are
frequent, while all supersets of such items are infrequent. Therefore, mining
frequent itemsets can be reduced to mining the MFIs, which may be viewed
as the “boundary” of the itemset lattice. However, mining only MFIs has
the following deficiency: Given an MFI and its support size s, we know that
all its subsets are frequent and the support of any of its subsets is of size at
least s; however, we do not know exactly what is that support. For several
purposes, one of which is the generation of association rules, we do need to
know the support of all frequent itemsets.

To solve this problem, another type of frequent itemset, called closed
frequent itemset (CFI), is proposed. A frequent itemset X is closed if none
of its proper supersets have the same support. For any frequent itemset,
there exists a single closed frequent itemset that includes it and has the
same support. CFIs are lossless in the sense that they uniquely determine
the set of all frequent itemsets and their exact support. At the same time,
the set of CFIs can be orders of magnitude smaller than the set of FIs,
especially in dense tables. The relationship among these groups is:

FI ⊇ CFI ⊇ MFI .

The problem of mining frequent itemsets was first introduced by Agrawal
et al. [3]. They proposed an algorithm called Apriori for mining frequent
itemsets. Apriori employs a bottom-up, breadth-first search that enumerates
every single frequent itemset. Apriori uses the downward closure property
of itemsets in order to prune the search space. Thus, only the frequent
k−itemsets are used to construct candidate (k+1)−itemsets. The algorithm
starts by finding all itemsets of size 1 that are frequent, and then generates
itemsets of size 2 that are candidate to being frequent. It then scans the
table in order to detect which of the candidates is indeed a frequent itemset.
Frequent itemsets of size 2 are joined in order to create candidate itemsets
of size 3. Another table scan is issued in order to find the frequent itemsets
among the candidates. This procedure is repeated until no more frequent
itemsets are found.

32

6.2. THE FP-GROWTH ALGORITHM 33

Apriori uses hash-trees to store frequent itemsets and candidate frequent
itemsets. These hash-trees are also used for frequent itemset generation and
subset testing.

An Apriori-like algorithm may suffer from the following two non-trivial
costs:

• It is costly to handle a huge number of candidate sets. For example,
if there are 104 frequent 1-itemsets, the Apriori algorithm will need
to generate more than 107 length-2 candidates and test their support
sizes. Moreover, to discover a frequent pattern of size 100, it must
generate and examine 2100 − 2 ≈ 1030 candidates in total.

• When the size of the largest frequent itemset is l, Apriori will need l
table scans.

In [9], Han et al. introduced a novel algorithm, known as the FP-Growth
method for mining frequent itemsets. The FP-Growth method is a depth-
first search algorithm. In that method, a data structure called the FP-tree is
used for storing frequency information of the original table in a compressed
form. Only two table scans are needed for the algorithm and no candidate
generation is required. This makes the FP-Growth method much faster than
Apriori. We proceed to describe it.

6.2 The FP-growth algorithm

The FP-Growth algorithm utilizes a structure that is called the FP-tree
(frequent pattern tree), which is a compact representation of all relevant
frequency information in the table. Every branch of the FP-tree represents
a frequent itemset and every node along those branches represents an item
in the itemset. The nodes along the branches are stored in decreasing order
of frequency of the corresponding items, where the leaves represent the least
frequent items. Compression is achieved by building the tree such that
overlapping itemsets share prefixes of the corresponding branches.

6.2.1 FP-tree construction

The FP-Growth method performs two table scans in order to construct the
FP-tree (as opposed to Apriori and its variants that need as many table
scans as the length of the longest frequent itemset). After constructing the
FP-tree, the algorithm uses it in order to mine the frequent itemsets.

33

6.2. THE FP-GROWTH ALGORITHM 34

Transaction ID Items in transaction
1 a, c, d, e, f

2 a, b, e

3 c, e, f

4 a, c, d, f

5 c, e, f

Table 6.1: Example transaction DB

The first table scan finds all frequent items. These items are inserted
into an item header table in decreasing order of their support sizes. In the
second scan of the table, as each transaction is scanned, the frequent items in
it are sorted according to their order in the header table (namely, according
to their support size), while the infrequent items are removed. Then, the
items in the reduced and sorted transaction are inserted into the FP-tree as
a branch. If the new itemset shares a prefix with an itemset that already
exists in the tree, the part of the branch that corresponds to that prefix will
be shared by those itemsets. In addition, there is a counter that is associated
with each node of the tree. The counter stores the number of transactions
that contain the itemset that is represented by the path from the root to
that particular node. The counter is updated during the second scan.

To facilitate tree traversal, the item header table is built such that each
item points to its occurrence in the tree via a head of node-link. Nodes with
the same item-name are linked in sequence via such node-links.

To summarize, the first scan finds frequent items and their support sizes
and uses them to fill the header table. The second scan fills the tree with
the relevant frequency information which enables, at a later stage, to mine
the frequent itemsets. Table 6.1 displays an example transaction table
and Figure 6.1(a) illustrates the constructed FP-tree for that table, with
min sup = 2.

6.2.2 FP-Growth, mining FIs from the FP-tree

At the completion of the first stage, we have the FP-tree that contains all
frequency information about the table. In the second stage, we use that
structure in order to mine the frequent itemsets, without needing to scan
the table ever again. This is done by a method that is called The FP-
Growth. The FP-Growth method relies on the following principle, called
the pattern growth property : If X and Y are two itemsets, the count of
itemset X ∪Y in the table is exactly that of Y in the restriction of the table

34

6.2. THE FP-GROWTH ALGORITHM 35

Header Table

item
Head of

node-links

c:4

e:4

f:4

a:3

d:2

Root:7Root:7root:5

c:4 e:1

e:3 f:1 a:1

f:3 a:1

a:1 d:1

d:1

(a) T∅

Header Table

item
Head of

node-links

c:2

e:2

f:2

Root:7Root:7root :3

c:2 e:1

e:1 f:1

f:1

(b) Ta

Header Table

item
Head of

node-links

c:4

e:3

Root:7Root:7root:4

c:4

e:3

(c) Tf

Figure 6.1: Example FP-tree

35

6.2. THE FP-GROWTH ALGORITHM 36

to those transactions that contain X.
Given an item i in an FP-tree’s Header Table, T.header, one may visit

all branches that contain item i by following the linked list that starts at
i in T.header. In each branch encountered, the set of nodes on the path
from the node representing the item i to the root, form an itemset. The
support size of the discovered itemset is i’s support size as available in the
node representing i in the branch.

The set of itemsets collected in this manner is called the conditional
table of itemset {i}, and is denoted DB{i}. The FP-tree constructed from
the conditional table is called {i}′s conditional FP-tree, and denoted T{i}.

The items in the header table are processed from the item with least
support size to the item with the highest support size. After an item has
been processed, it is disregarded when constructing the conditional tables
and trees for the items which come after it in the header table (with higher
support size).

For example, in T∅ (Figure 6.1(a)), if we follow item f ’s linked list, the
first branch we encounter is c : 4, e : 3 (notice that we disregarded items
a and d), therefore the first itemset in DBf is c, e : 3. Moving on to the
next node in the linked list, we encounter itemset c : 4, therefore the second
itemset in DBf is c : 1.

In order to construct the FP-tree T{i}, two scans as described above need
to be conducted. The first scan extracts the itemsets in the conditional
table, removes infrequent items, and sorts the rest of the items in support-
size descending order. This set of actions constructs T{i}’s header table. In
the example above, we found that the conditional table DBf contains two
itemsets, c, e : 3 and c : 1, therefore the header table will contain items
c : 4, e : 3.

Now, that the infrequent items were removed, and the order of the items
is established, a second scan of the FP-tree can take place. This time, each
itemset found in the FP-tree is processed by removing infrequent items, and
sorting the rest of the items according to their order in the header table
(initialized in the first scan). After this, the itemset is inserted into the T{i}
FP-tree. In our example, itemset c, e : 3 will be inserted into the tree in
that order, and after that, itemset c : 1 will be inserted into the tree. The
resulting tree, Tf can be seen in Figure 6.1(c).

The FP-tree constructed from the original table is denoted by T∅, and
it may be viewed as the conditional FP-tree that corresponds to the empty
itemset. The FP-tree constructed from the original table is illustrated in
Figure 6.1(a). Figure 6.1(b) displays the conditional FP-tree T{a}.

The above procedure is applied recursively, and it stops when the re-

36

6.3. MINING CLOSED FREQUENT ITEMSETS 37

sulting new FP-tree contains only a single branch (According to [9], the
complete set of frequent itemsets can be generated from all single-branch
FP-trees), or when the tree is empty.

Algorithm 8 summarizes the steps for mining the full set of FIs for a given
table D. It is a recursive algorithm that accepts two inputs – an itemset X
and its corresponding FP-Tree T . We call it with the empty itemset X = ∅
and the corresponding tree T = T∅ which holds information on the entire
table D. The algorithm may call itself with other, nonempty itemsets X,
and their corresponding FP-trees. The output of the algorithm is the list of
all frequent itemsets in D together with their count.

Algorithm 8: Mining frequent patterns with FP-tree by pattern frag-
ment growth

Procedure FPGrowth(itemset X, FP-tree T)
Input: An itemset X and its corresponding conditional FP-tree T
Output: The complete set of all FIs corresponding to T

1: if T only contains a single branch B then
2: for all Y ⊆ B do
3: Output itemset Y ∪X with count = minimum support-size of

nodes in Y .
4: end for
5: else
6: for all i in T.header do
7: Output Y = X ∪ {i} together with i’s count.
8: Construct Y ’s conditional table, and Y ’s conditional FP tree, TY .
9: if TY 6= ∅ then

10: call FPGrowth(Y, TY)
11: end if
12: end for
13: end if

6.3 Mining closed frequent itemsets

An itemset X is closed if none of the proper supersets of X have the same
support. As explained earlier, mining closed frequent itemsets (CFIs) has
numerous advantages over mining frequent itemsets. In this section we will
survey algorithms designed for mining CFIs. The first algorithm, CLOSET
[16] mines CFIs using the FP-tree. The second algorithm surveyed, CHARM

37

6.3. MINING CLOSED FREQUENT ITEMSETS 38

[10], uses a different approach.

6.3.1 Theoretic foundations for mining CFIs from FP-trees

The optimizations applied in algorithm CLOSET [16] aim at identifying
CFIs quickly. They are based on the following lemmas which enable to
prune the search space as well as to reduce the size of the FP-tree being
processed. The proofs of these lemmas are available in [16]. These lem-
mas and optimizations can be applied to any algorithm for mining CFIs
from FP-trees. The use of the optimizations resulting from these lemmas is
later illustrated in Example 6.3.1. The CLOSET algorithm is specified in
Algorithms 9 and 10.

Lemma 6.3.1. If X is a closed frequent itemset, then there is no item that
appears in every transaction in the X-conditional table.

Lemma 6.3.2. If an itemset Y is the maximal set of items appearing in
every transaction in the X−conditional table, and X∪Y is not subsumed by
some already found closed frequent itemset with identical support size, then
X ∪ Y is a closed frequent itemset.

The optimization corresponding to Lemma 6.3.2 can be applied at the
item counting phase, after only a single scan of the FP-tree that is being
processed. The items in itemset Y should be excluded from both the header
table and the conditional table of the conditional FP-tree being constructed.
From this point, the conditional table and header table are associated with
itemset X∪Y (as opposed to itemset X). This optimization has the following
benefits:

1. It reduces the size of the FP-tree because the conditional table contains
itemsets with a smaller number of items after the extraction.

2. It reduces the level of recursions since it combines a few items into one
itemset.

Definition 6.3.1. Let i be a frequent item in the X-conditional table. As-
sume that the following three conditions are met:

1. There is only one node N labeled i in the corresponding FP-tree.

2. Every ancestor of N has only one child.

3. N has either no children, or one child with a support-size smaller than
that of N , or more than one child.

38

6.3. MINING CLOSED FREQUENT ITEMSETS 39

Then the i-single segment itemset is defined as the union of itemset X and
the set of items including i (represented by node N), and the items repre-
sented by N ’s ancestors.

Lemma 6.3.3. The i−single segment itemset Y is a closed frequent itemset
if the support of i within the conditional table passes the given threshold and
Y is not a proper subset of any closed frequent itemset already found.

The above lemma enables to identify CFIs quickly. It reduces the size
of the remaining FP-tree to be processed, and reduces the level of recursion
since it combines multiple items into one itemset.

Lemma 6.3.4. Let X and Y be two frequent itemsets with the same support
size. If X ⊂ Y , then there exists no closed frequent itemset containing X
but not Y −X.

Example 6.3.1 illustrates how the above optimizations are applied. The
itemset X is represented as an attribute of TX , TX .base. TX .header will
denote the header table of the FP-tree TX . The items in TX .header are
sorted in descending order of their support size.

Example 6.3.1. The CLOSET example will be run on transaction table
illustrated in table 6.1. After scanning the table, we derive the set of frequent
items (or f list), f list =

〈
c : 4, e : 4, f : 4, a : 3, d : 2

〉
. We then continue to

construct the FP-tree T∅ for the table (see FP-tree construction procedure in
sub-section 6.2.1), the resulting FP-tree can be seen in Figure 6.1(a).

We now create the conditional table of item d : 2. According to the FP-
tree T∅ in Figure 6.1, f listd = {c : 2, f : 2, a : 2}. According to Lemma
6.3.2, since c, f and a appear in every transaction in the d-conditional table,
then cfad : 2 is a CFI. After the extraction of these items from f listd, it is
empty. Therefore, there is no need to perform another scan of T∅ in order
to compute DBd or construct Td.

We now move on to explore a : 3’s conditional table, after the first scan
of T∅ we have f lista = {c : 2, e : 2, f : 2}. Since a’s support is 3, and there
is no item appearing in every transaction in DBa, and a : 3 is not subsumed
by any CFI with the same support size, then a : 3 is a CFI. We now perform
another scan of T∅ in order to construct DBa = {cef : 1, cf : 1, e : 1}. To
find the rest of the CFIs containing a, we need to explore a’s conditional
FP-tree, Figure 6.1(b).

We recursively continue to mine Ta. Therefore we explore CFIs which
contain fa : 2. We can see that since fa is a subset of formerly found CFI

39

6.3. MINING CLOSED FREQUENT ITEMSETS 40

cfad, and they both have the same support size, then according to Lemma
6.3.4, there is no need to build or process the fa-conditional table, DBfa.

We move on to to explore CFIs containing ae : 2. Since f listae is
empty, the only potential CFI is ae : 2, and since it isn’t subsumed by any
other CFI with the same support size, it is added the set of CFIs.

For itemset ca : 2, we again have that ca is subsumed by cfad, and has
the same support size. Therefore, ca is not closed, and according to lemma
6.3.4, can be pruned.

Now, we move on to exploring f : 4’s conditional table and tree, see
Figure 6.1(c). After scanning T∅ we have that f listf = {c : 4, e : 3}. Since
c appears in every transaction that f appears in, f cannot be closed according
to Lemma 6.3.1. Itemset cf : 4 is a CFI as it is not subsumed by any other
CFI with the same support size. At this stage, we can extract item c : 4
from f listf . Furthermore, we can combine items f and c into one for the
rest of the mining process. Therefore, we now have f listcf = {e : 3}. After
performing the second scan of T∅ in order to compute DBcf , we have that
DBcf = {e : 3}. Now the tree contains only a single node e : 3, and we can
easily verify that cef : 3 is a CFI.

For item e : 4, f liste = {c : 3} and DBe = {c : 3}. Therefore e : 4
is a CFI. Itemset ec : 3 is also a potential CFI, but it is not a CFI as it is
subsumed by formerly found CFI cef : 3, which has the same support size.

Finally we are left with the last itemset c : 4, which is not closed because
it is subsumed by cf : 4.

The full set of CFIs mined throughout this example is

cfad : 2, a : 3, ae : 2, cf : 4, cef : 3, e : 4.

Algorithm 9 summarizes the steps for mining the full set of CFIs for a
given table D. It calls the recursive Closet procedure (procedure 10) that
accepts three inputs – an itemset X, its corresponding FP-Tree T and the
set of closed frequent itemsets to be updated. We call it with the empty
itemset X = ∅ and the corresponding tree T = T∅ which holds information
on the entire table D. The set of closed frequent itemsets is initialized to
the empty set. The algorithm may call itself with other, nonempty itemsets
X, and their corresponding FP-trees. The output of the algorithm is the
list of all closed frequent itemsets in D.

40

6.3. MINING CLOSED FREQUENT ITEMSETS 41

Algorithm 9: CLOSET Algorithm
Input:

1. Transaction table TDB.

2. Support threshold min sup.

Output: The complete set of closed frequent itemsets.
1: Initialization. Let FCI be the set of closed frequent itemsets.

Initialize FCI ← ∅.
2: Find frequent items. Scan the transaction table TDB, find the

frequent items. Insert the items in support size descending order into a
list, f list.

3: Construct the conditional FP-tree for ∅, T∅.
4: Mine closed frequent itemsets recursively. Call

CLOSET (∅, T∅, FCI).

41

6.3. MINING CLOSED FREQUENT ITEMSETS 42

Algorithm 10: CLOSET Procedure
Procedure CLOSET(X,T ,FCI) Input:

1. An itemset, X;

2. The corresponding FP-tree, T ;

3. The set of closed frequent itemsets that was already mined, FCI.

Output: Updated FCI

1: for all items i ∈ T.header, starting from the one with smallest
support-size do

2: if there is only a single node N labeled i in T and the branch B
which contains it abides to the conditions of Lemma 6.3.3 then

3: if X ∪B is not subsumed by any itemset in FCI with the same
support size then

4: FCI ← FCI ∪ (X ∪B)
5: end if
6: Remove the item i from T and T.header.
7: end if
8: end for
9: for all remaining items i ∈ T.header, starting from the one with

smallest support-size do
10: if X ∪ {i} is not subsumed by any item in FCI with the same

support size then
11: Scan T in order to find the list of frequent items which co-occur

with i, f listi .
12: Sort the items in f listi in support-size descending order.
13: Let Y be the set of items in f listi such that

support size(Y) = support size(i).
14: Z ← X ∪ {i} ∪ Y .
15: if Z is not subsumed by any itemset in FCI with the same

support-size then
16: FCI ← FCI ∪ Z {Lemma 6.3.2}
17: end if
18: Exclude the set of items in Y from the list f listi.
19: Build the conditional table for itemset Z, DBZ .
20: Construct FP-tree TZ from DBZ .
21: Call CLOSET(Z, TZ , FCI)
22: end if
23: end for

42

6.3. MINING CLOSED FREQUENT ITEMSETS 43

6.3.2 The Charm algorithm

CHARM [10] is also a depth-first CFI mining algorithm, but it does not
depend on the FP-tree. The CHARM Algorithm introduces the following
ideas:

1. It simultaneously explores both the itemset space and the transaction
space. In contrast, most previous methods exploit only the itemset
search space.

2. It uses a method that enables to prune the search space of itemsets
which cannot lead to undiscovered closed frequent itemsets.

3. It uses a hash-based approach to eliminate non-closed itemsets during
subsumption checking.

4. It utilizes a vertical data representation called diffset for fast support
computations. Diffsets keep track of differences in the support of can-
didate itemsets from their prefix itemset. They cut down the size of
memory required to store the supports of the itemsets.

The set of all transaction ids (tids) in the table will be denoted as T .
A set Y ⊆ T will be referred to as a tidset. For an itemset X, we denote
its corresponding tidset as t(X), i.e., the set of all tids that contain X.
For a tidset Y , we denote its corresponding itemset as i(Y), i.e., the set
of items common to all tids in Y . We can see that t(X) = ∩x∈Xt(x), and
i(Y) = ∩y∈Y i(y). The notation X×t(X) is used to refer to an itemset-tidset
pair, and it is called an IT-pair.

Itemset-TidSet search tree and equivalence classes

Let I be a set of items. Define a function p(X, k) = X[1 : k] as the k-length
prefix of X, and a prefix-based equivalence relation θk on itemsets as follows:

∀X,Y ∈ I, X ≡θk
Y ⇐⇒ p(X, k) = p(Y, k).

That is, two itemsets are in the same class if they share a common k-prefix.
CHARM performs a search for CFIs over an IT-tree search space, as

shown in Figure 6.2 (that corresponds to the table in Table 6.1). Each node
in the IT-tree is an itemset-tidset pair X × t(X), which is also a prefix-
based class. All the children of a given node X belong to its equivalence

43

6.3. MINING CLOSED FREQUENT ITEMSETS 44

{} x 12345

c x 1345e x 1235f x 1345d x 14

df x 14 dc x 14 fe x 135 fc x 1345

fec x 135

ec x 135

a x 124

af x 14 ae x 12 ac x 14

afc x 14daf x 14

da x 14

dac x 14 dfc x 14

dafc x 14

Figure 6.2: IT-Tree:Itemset-tidSet Search tree

class since they share the same prefix X. An equivalence class is denoted
by [P] = {l1, . . . , ln}, where P is the parent node (the prefix), and each li is
a single item, representing the node Pli × t(Pli).

A class is the set of items that the prefix can be extended with to obtain
a new itemset-tidset node. Clearly, no subtree of an infrequent prefix needs
to be processed. For any subtree rooted at node X, one can treat it as
a completely new problem; one can enumerate the patterns under it and
simply prefix them with the item X and so on.

Frequent pattern enumeration is done as follows in the IT-tree frame-
work. For a given node, one can perform intersections of the tidsets of all
pairs of elements in a class and check if the support threshold (min sup) is
met. Each resulting frequent itemset is represented by a node in the IT-tree,
with its own elements, that will be recursively expanded. Algorithm 11 gives
a pseudo-code description of a depth-first exploration of the IT-tree for all
frequent itemsets. The IT-tree for the frequent items mined from Table 6.1
is illustrated in Figure 6.2.

Mining CFIs using the Itemset-TidSet search tree

The closure of an itemset X, denoted by c(X), is the smallest CFI that
contains X. To find the closure of an itemset X we first compute its support,
t(X). We next map t(X) to its image in the itemset space, i.e., i(t(X)). X
is a CFI if and only if c(X) = i(t(X)) = X. For example, itemset {c, e, f}
is closed because i(t({c, e, f})) = i({1, 3, 5}) = {c, e, f}. The support of an
itemset also equals the support of its closure. There are four basic properties

44

6.3. MINING CLOSED FREQUENT ITEMSETS 45

Algorithm 11: Frequent Pattern enumeration using the IT-tree
Procedure Enumerate-Frequent
Input: [P] the node, or class to be enumerated
Output: Enumeration of the IT-tree with prefix represented by [P]
1: for all li ∈ [P] do
2: [Pi] = ∅
3: for all lj ∈ [P] s.t j > i do
4: I = Plilj
5: T = t(Pli) ∩ t(Plj)
6: if |T | ≥ min sup then
7: [Pi] ← [Pi] ∪ {I × T} {new Itemset-TidSet node}
8: end if
9: end for

10: Call Enumerate-Frequent([Pi])
11: end for

of IT-Pairs that CHARM leverages for fast exploration of CFIs. Assume that
we are currently processing a node P × t(P) where [P] = {l1, . . . , ln} is the
prefix class. Let Xi denote the itemset Pli, then each member of [P] is an
IT-Pair Xi × t(Xi).

Theorem 6.3.5. Let Xi × t(Xi) and Xj × t(Xj) be any two members of a
class [P], with |t(Xi)| ≤ |t(Xj)|. The following four properties hold:

1. If t(Xi) = t(Xj), then c(Xi) = c(Xj) = c(Xi ∪Xj)

2. If t(Xi) ⊂ t(Xj), then c(Xi) 6= c(Xj), but c(Xi) = c(Xi ∪Xj)

3. If t(Xi) ⊃ t(Xj), then c(Xi) 6= c(Xj), but c(Xj) = c(Xi ∪Xj)

4. If t(Xi) 6= t(Xj), then c(Xi) 6= c(Xj) and c(Xi), c(Xj) 6= c(Xi ∪Xj)

Proof. We prove each of the four properties:

1. If t(Xi) = t(Xj) then obviously c(Xi) = c(Xj). Furthermore, t(Xi) =
t(Xj) implies that t(Xi ∪Xj) = t(Xi) ∩ t(Xj) = t(Xi) = t(Xj), there-
fore c(Xi ∪Xj) = c(Xi) = c(Xj). This property implies that neither
Xi or Xj are closed, and that every occurence of Xi can be replaced
with Xi∪Xj , and we can prune itemset Xj since its closure is identical
to the closure of Xi ∪Xj .

45

6.3. MINING CLOSED FREQUENT ITEMSETS 46

2. If t(Xi) ⊂ t(Xj) then t(Xi ∪ Xj) = t(Xi) ∩ t(Xj) = t(Xi), giving
us c(Xi ∪ Xj) = c(Xi). Therefore, Xi is not closed, and instead of
processing it, we can directly process Xi ∪ Xj . But since t(Xi) ⊂
t(Xj) =⇒ c(Xi) 6= c(Xj), Xj still needs to be processed, and cannot
be pruned.

3. Case 3 is symmetrical to the case above.

4. If t(Xi) 6= t(Xj), then clearly t(Xi ∪Xj) = t(Xi) ∩ t(Xj) 6= t(Xi) and
also t(Xi ∪Xj) = t(Xi)∩ t(Xj) 6= t(Xj), giving us c(Xi ∪Xj) 6= c(Xi)
and also c(Xi ∪Xj) 6= c(Xj), therefore no element in the class can be
pruned, as both Xi and Xj lead to different closures.

The pseudo-code for CHARM appears in Algorithm 12.
The algorithm starts by initializing the prefix class [P], of nodes to be

examined, to the frequent items and their tidsets in Line 1. The items are
sorted in increasing order of their support sizes in Line 2, this increases the
opportunity for pruning elements from a class [P] according to properties 1
and 2 in Theorem 6.3.5.

The main computation is performed in CHARM-Extend, Algorithm 13,
which returns the set of closed frequent itemsets. CHARM-Extend is a
recursive procedure that is responsible for considering each combination of
IT-pairs appearing in the prefix class of [P]. For each IT-pair Xi× t(Xi), it
combines it with other IT-pairs Xj× t(Xj) that come after it (i.e., |t(Xj)| ≥
|t(Xi|).

Each Xi generates a new prefix class [Pi] that is initially empty (Line 2).
Line 4 tests which of the four IT-pair properties, discussed in theorem 6.3.5,
can be applied by calling CHARM-Property (Algorithm 14). This routine
will modify the current class [P] by deleting IT-Pairs that have no chance of
representing CFIs. It also inserts the newly generated IT-Pairs in the new
class [Pi]. Once all Xj have been processed, we recursively explore the new
class [Pi] in a depth-first manner (Line 8).

The itemset Xi is inserted into the set of closed itemsets (Line 11),
provided that Xi is not subsumed by a previously found closed itemset. At
this stage any CFIs containing Xi have already been generated.

In order to check whether an itemset is subsumed by an itemset with the
same support size, CHARM uses a hash table. It computes a hash function
on the itemset’s tidset and stores in the hash table the itemset along with
its support size (the actual tidset cannot be stored in the hashtable as space

46

6.3. MINING CLOSED FREQUENT ITEMSETS 47

requirements would be prohibitive). Before adding an itemset X to the
set of closed itemsets C, CHARM retrieves from the hash table all entries
with the same hash key. For each matching closed itemset c, it then checks
whether |t(c)| = |t(X)|. If yes, then it checks whether c ⊃ X. If yes, then
X cannot be a CFI, otherwise it is inserted into the hash table.

Algorithm 12: The CHARM Algorithm
Input:

1. Transaction table D.

2. Minimum support threshold min sup.

Output: The set of CFIs, C
Procedure CHARM(D, min sup):
1: [P] = {Xi × t(Xi) : Xi ∈ I and |t(Xi)| ≥ min sup}
2: Sort the items in P in increasing order of their support size.
3: Call CHARM-Extend([P],C = ∅).
4: return C {the set of CFIs}

47

6.3. MINING CLOSED FREQUENT ITEMSETS 48

Algorithm 13: CHARM-Extend
Input:

1. Equivalence class [P] = {X1 × t(X1), . . . , Xn × t(Xn)}.
2. CFI set C to be updated.

Output: Updated set C

1: for all Xi × t(Xi) in [P] do
2: [Pi] ← ∅
3: for all Xj × t(Xj) in [P], such that j > i do
4: Call CHARM-Property([P], [Pi], Xi × t(Xi), Xj × t(Xj))
5: end for
6: if [Pi] 6= ∅ then
7: Sort the nodes in [Pi] in increasing order of support size.
8: CHARM-Extend([Pi], C)
9: end if

10: delete [Pi]
11: C ← C ∪Xi {if Xi is not subsumed by another itemset with the

same support size}
12: end for

48

6.3. MINING CLOSED FREQUENT ITEMSETS 49

Algorithm 14: CHARM-Property
Input:

1. Equivalence class [P] = {X1 × t(X1), . . . , Xn × t(Xn)}.
2. Equivalence class [Pi].

3. TID-pairs to examine X × t(X), Y × t(Y) s.t |t(X)| ≤ |t(Y)|.
Output:

1. Updated class [P].

2. Updated class [Pi].

1: if |t(X)| ≥ min sup then
2: if t(X) = t(Y) then
3: Remove Y from [P]
4: Replace X with X ∪ Y in [P] while retaining the increasing

support size sort order
5: else if t(X) ⊂ t(Y) then
6: Replace X with X ∪ Y in [P] while retaining the increasing

support size sort order
7: else if t(X) 6= t(Y) then
8: if |t(X) ∩ t(Y)| ≥ min sup then
9: Add X ∪ Y × t(X) ∩ t(Y) to [Pi]

10: end if
11: end if
12: end if

49

Chapter 7

Generalized Frequent
Itemset Mining Algorithms

For many applications, it is difficult to find strong associations among data
items at low levels of abstraction due to the sparsity of data at those lev-
els. Furthermore, associations discovered at higher levels of abstraction may
reveal important trends, which may not be discovered by rules containing
only items from the lower levels of abstractions. Therefore, data mining
systems should provide capabilities for mining association rules at multi-
ple levels of abstraction, with sufficient flexibility for easy traversal among
different abstraction levels. This chapter begins by describing the problem
of mining frequent itemsets from various levels of abstraction (Section 7.1).
In Sections 7.2 and 7.3 we describe algorithms for mining frequent itemsets
which contain items from different levels of abstractions. Then, in Section
7.4, we introduce a novel algorithm for mining generalized frequent itemsets
for the setting of structured tables (see Section 2.1), as is the case in the
k-anonymity problem. That algorithm will be used later in our proposed
approximation algorithm to the k-anonymization problem.

7.1 Problem definition

Let M = {a1, a2, · · · am} be a set of items, and let D =
〈
T1, T2 · · ·Tn

〉
be a

transaction table where Ti is a transaction that contains a subset of items
in M . Let Tax be a directed acyclic graph on the items (Figure 7.1). An
edge in Tax represents an is-a relationship, and Tax represents a set of
taxonomies. We will call x̂ an ancestor of x (and x a descendant of x̂) if
there is an edge from x̂ to x in the transitive closure of Tax. We say that

50

7.2. THE BASIC ALGORITHM 51

clothes

outwear shirts

jackets ski-pants

footwear

shoes hiking-boots

Figure 7.1: Taxonomy

transaction T supports an item x ∈ M if x is in T or x is an ancestor of some
item in T . Given a transaction table D and a minimum support threshold σ,
we would like to be able to mine frequent itemsets whose items range from
all parts of the taxonomy Tax. An important note is that the size of the
support for an item in the taxonomy does not equal the sum of the support
sizes of its descendants, since several of the descendants could be present in
a single transaction.

7.2 The basic algorithm

This algorithm [19] is a variation on the Apriori algorithm. The change
is that for each transaction in the table, all the ancestors of each item in
the transaction are added to the transaction (after removing duplicates).
Namely, for each transaction T ∈ D, T ′ ← T ∪ ancestors(T). Thus, an
itemset X which may contain items from any place in the taxonomy hierar-
chy, is supported by the transaction T if X is included in T ′.

7.3 The Cumulate algorithm

This algorithm [19] adds several optimizations to the basic algorithm:

1. Instead of traversing the taxonomy graph for each item, we can pre-
compute the ancestors for each item. The list of all ancestors of all
items is stored in a table, to which we refer as Tax∗.

2. We do not need to add all ancestors of the items in a transaction
to it. Instead, we just add the ancestors that appear in at least one
of the candidate itemsets that are being counted in the current pass.

51

7.3. THE CUMULATE ALGORITHM 52

As an example, assume the taxonomy in Figure 7.1 and consider the
following table with four transactions:

{shirts, boots}, {jacket, boots}, {shirts, shoes}, {jacket, shoes} .

If the minimum support size is 3 then the following are the frequent
itemsets:

{footwear}, {clothes}, {clothes, footwear} .

If the above items are the only ones being currently counted then in any
transaction containing “jacket” we can safely add only the “clothes”
ancestor, since there is no need to add the “outwear” ancestor which at
this point is already known to be not frequent. That is, any ancestor
in Tax∗ that does not appear in any of the current candidates Ck, is
pruned.

3. We can prune itemsets that contain an item and one of its ancestors.
The justification for this is that the support of an itemset X that
contains both an item x and its ancestor x̂ will be the same as the
support for the itemset X \{x̂} (and that candidate was considered in
the former pass over the table). The pruning should be performed for
each Ck (and not only for C2 as originally claimed in [19]).

4. An item in a transaction t can be pruned if it is not present in any
candidate in Ck. It is safe to prune such items because if an item is
not contained in any candidate in Ck then there is no chance that it
will belong to an itemset in Fk and thus to larger candidate sets, Ck+1,
Ck+2, etc. It is important to note that this improvement should be
performed only after improvement step (2) that was discussed above.
If not, then we might prune items which do not belong to Ck because
they are not frequent enough, but their ancestors are frequent. So
we should add the ancestors before pruning the items. For example,
assume that {clothes, shoes} is the only candidate being currently
inspected. If a transaction contains “jacket”, we need to first add the
“clothes” ancestor to the transaction and only then prune the “jacket”
item. Otherwise, if we first remove “jacket” for not being frequent, we
would miss its ancestor “clothes” that is frequent.

The Algorithm is illustrated in Algorithm 15.

52

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 53

Algorithm 15: Algorithm Cumulate
Input: Table D of transactions, minimum support threshold σ.
Output: F (D, σ) // frequent generalized itemsets in table D with
support threshold at least σ

1: Compute Tax∗ the set of ancestors of each item from Tax
{improvement 1}

2: F1 = {frequent 1-itemsets}
3: k = 2
4: while (Fk−1 6= ∅) do
5: Ck={New candidates of size k generated from Fk−1}
6: Delete any candidates in Ck that contain an item and its ancestor

{improvement 3}
7: Delete any ancestors in Tax∗ that are not present in any of the

candidates in Ck {improvement 2}
8: for all T ∈ D do
9: for all x ∈ T do

10: Add all ancestors of x in Tax∗ to the transaction T , omitting
duplicates

11: end for
12: Delete any items in T that are not present in any of the

candidates in Ck {improvement 4}
13: Increment the count of all candidates in Ck that are contained in T
14: end for
15: Fk= {All candidates in Ck with support size at least σ}
16: k = k + 1
17: end while
18: return

⋃
k Fk

7.4 Proposed generalized itemset mining algorithm

7.4.1 The setting

When dealing with k-anonymity, the table consists of records that contain
quasi-identifier information. Those records (as opposed to the more general
case of transactions) have a very specific structure. Letting Aj , 1 ≤ j ≤ r,
denote the r attributes (or quasi-identifiers), each record belongs to A1 ×
· · · × Ar (see Section 2.1). Each attribute has a corresponding collection of
subsets, Aj ⊆ P(Aj). We assume that this collection is proper (Definition

53

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 54

2.2.2). It is shown in [7, Lemma 3.3] that the class of proper generalization
coincides with the class of generalizations by taxonomies. Therefore, the
subsets in collection Aj form a taxonomy, tax(j). The root of that taxonomy,
which will also be denoted as tax(j), corresponds to the entire set Aj ; every
node in the tree tax(j) corresponds to a subset of values of Aj , and the
leaves correspond to the singleton values in Aj .

Definition 7.4.1. A generalized itemset is a record R ∈ A1 × · · · × Ar. A
generalized itemset is called frequent if its support is of size at least k. A
generalized frequent itemset is called closed if none of its proper specifications
has the same support.

Comment. Our notion of a generalized itemset extends the notion of an
itemset that was used in [15]; correspondingly, our notion of a closed frequent
generalized itemset extends that of a closed frequent itemset. While the
itemset notions were suitable for the restricted setting of generalization by
suppression only, our generalized itemset notions offer the proper extension
for the case when any generalization is allowed.

There is an apparent difference between the definition of closed frequent
itemsets with regard to generalization, as defined above, and the standard
definition of closed frequent itemsets, as defined in Definition 4.2.3. Defini-
tion 7.4.1 considers an itemset as closed if it has no specification that has
the same support, while Definition 4.2.3 considers an itemset as closed if
it has no superset that has the same support. Both definitions follow the
same logic: Specifying a generalized itemset, as well as extending a standard
itemset – both are operations that may shrink the support of the itemset.
Hence, the two definitions are consistent in the sense that they consider an
itemset as closed if all operations that may potentially shrink its support
indeed do.

There are several differences between the setting of structured tables and
transactional tables:

• All of the frequent itemsets are of fixed size, r, as opposed to the
general setting in which the frequent itemsets may be of any length.

• In the general setting, two or more items in a transaction may belong
to the same taxonomy hierarchy; for example “jackets” and “ski pants”
may appear in the same transaction. Therefore, in such a case the size
of the support set of an item in the taxonomy does not equal the sum
of the sizes of the supports of its children. But, in tables that are
subjected to the k-anonymity transformation, no transaction, namely

54

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 55

- a record in such a table, contains two items which belong to the same
quasi-identifier (e.g., more than one age, or more than one zipcode).
Therefore, we can say that the distinct values of each quasi-identifier
form a partition of the records in the table.

We assume hereinafter that the cost function is monotone, (Definition
3.3.1). Under that assumption, we would be interested only in generalized
frequent itemsets that have minimal generalization costs. In other words,
if R and R

′ are both generalized frequent itemsets, R @ R
′, and they have

the same support, we shall not be interested in R
′ since cost(R′) ≥ cost(R).

Hence, we are interested only in generalized frequent itemsets that are closed.
Our algorithm will recursively traverse the space of generalized itemsets
while pruning branches which cannot lead to generalized closed frequent
itemsets. As our solution will only require the closed frequent itemsets, we
do not need to accumulate all of the frequent itemsets that we encounter
during the search.

The main underlying property exploited by this algorithm is that the
support size is monotonically decreasing with respect to specification of an
itemset. Namely, if R, R

′ are two itemsets and R v R
′, then |support(R)| ≤

|support(R′)|. Therefore, if an itemset is infrequent, then all of its specifi-
cations must be infrequent as well.

7.4.2 Overview of the algorithm

Let D = {R1, R2 · · ·Rn} be a table with r quasi-identifiers. The values Ri(j),
1 ≤ i ≤ n, 1 ≤ j ≤ r, belong to the first level of the hierarchy of quasi-
identifier j (i.e no generalization). An itemset, (a1, . . . , ar), is an r-length
record, in which aj , 1 ≤ j ≤ r, is a node from quasi-identifier j’s taxonomy
tree, tax(j). (Alternatively, we can say that (a1, . . . , ar) ∈ A1 × · · · × Ar.)
The support of such an itemset is the set of records ids in D which support
it. The itemset is frequent if its support size is of size at least k.

Our algorithm will traverse the search space by beginning with the most
generalized itemset, (A1, . . . , Ar). That itemset is supported by all records
of D since every record in D belongs to A1× · · ·×Ar. Hence, it is frequent.
The algorithm will explore the search space in a depth-first manner, pruning
infrequent branches according to the downward-closure property (A speci-
fication of an infrequent itemset cannot be frequent). Branches which have
no chance of leading to closed itemsets will be pruned as well (see Lemma
7.4.1 below).

Figure 7.2 illustrates an example of a table with ten records and two
attributes (n = 10, r = 2) and the accompanying taxonomies for each of

55

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 56

gb

ea

fc

eb

gb

ed

gc

hb

hd

ea

BA

gb

ea

fc

eb

gb

ed

gc

hb

hd

ea

BA

*

{a,b} {c,d}

a b c d

*

{e,f} {g,h}

e f g h

(a) (b)

Figure 7.2: (a) Table (b) Taxonomies

the two attributes. That toy example will be used in order to exemplify the
action of the algorithm.

Since we are interested in mining only the closed frequent itemsets, it
would be beneficial to prune the search space by removing those frequent
itemsets which would not lead to undiscovered closed frequent itemsets. To
that end, we will apply Lemma 7.4.1.

Lemma 7.4.1. Let X be a frequent itemset, and let X ′ be an itemset such
that X ′ @ X. If support(X) = support(X ′), then X is not closed. Moreover,
assume that Y is an itemset such that Y v X and there exists an index
1 ≤ j ≤ r for which X ′(j) $ Y (j). Then Y is not closed either.

Proof. Since X ′ @ X, but the two itemsets have the same support, X is not
closed.

Now, consider an itemset Y = (Y (1), . . . , (Y (r)) as described in the
second part of the lemma. Since Y v X then

support(Y) ⊆ support(X) = support(X ′) . (7.1)

Since the taxonomy structures, tax(j), 1 ≤ j ≤ r, are proper (Definition
2.2.2), one of the following holds for each 1 ≤ j ≤ r:

X ′(j) ⊆ Y (j) , or X ′(j) ⊇ Y (j) , or X ′(j) ∩ Y (j) = ∅ .

We separate our discussion into two cases.
Case 1. Assume that there exists an index 1 ≤ j ≤ r for which X ′(j) ∩
Y (j) = ∅. In this case, support(X ′(j)) ∩ support(Y (j)) = ∅, since no
record can contain in its jth entry items from both X ′(j) and Y (j), (oth-
erwise, there would exist a record whose jth attribute contains more than

56

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 57

one value, in contradiction to the assumed table structure). Consequently,
support(X ′)∩ support(Y) = ∅, because for any itemset Z, support(Z(j)) ⊇
support(Z) for every 1 ≤ j ≤ r. As support(X ′) = support(X), we infer
that support(X)∩ support(Y) = ∅. Finally, in view of (7.1) we arrive at the
conclusion that support(Y) = ∅.

Consider now the itemset

Y ′ = (Y (1), . . . , Y (j − 1), X ′(j), Y (j + 1), . . . , Y (r))

where j is the index for which X ′(j) $ Y (j). As Y ′ @ Y and support(Y) =
∅, we conclude that support(Y ′) = ∅. Hence, Y has a proper specification
Y ′ with the same support. Therefore, Y is not closed. This settles the proof
in Case 1.
Case 2. Assume that for all 1 ≤ j ≤ r, X ′(j) ⊆ Y (j) or X ′(j) ⊇ Y (j).
Consider the itemset Y ′ = (Y ′(1), . . . , Y ′(r)), where:

Y ′(j) =

{
X ′(j) X ′(j) $ Y (j)
Y (j) X ′(j) ⊇ Y (j)

, 1 ≤ j ≤ r .

In other words, Y ′(j) = Y (j) ∩X ′(j) for all 1 ≤ j ≤ r. Therefore,

support(Y ′) = support(Y) ∩ support(X ′) = support(Y) .

Hence, we found an itemset Y ′ @ Y for which support(Y ′) = support(Y).
Consequently, Y is not closed. This settles the proof in the second case as
well.

Example 7.4.1. Consider the table in Figure 7.2 and take

X = ({a, b}, {g, h}) , X ′ = ({b}, {g, h}) .

Clearly, X ′ @ X, but they both have the same support, namely {3, 6, 10}.
As implied by Lemma 7.4.1, there is no need to process itemsets such as
Y = ({a, b}, {g}) (indeed, Y @ X and X ′(1) $ Y (1)). The reason is that
the support of Y equals that of Y ′ = ({b}, {g}) (the set of records {6, 10}),
whence it is not closed.

7.4.3 Data structures used for counting itemset support

The taxonomy structures illustrated below may be exploited in order to
design an efficient algorithm for finding the support of a given generalized
itemset. To that end, we begin by passing over the table and constructing

57

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 58

augmented taxonomies in which each leaf is augmented by the list of all
records which contain the value in that leaf. This way, the union of the lists
of all leaves under a given node in the taxonomy will be the support for that
node. Figure 7.3 illustrates the augmented taxonomies for the example in
Figure 7.2.

Assume next that we wish to compute the support of itemset (a1, . . . , ar),
where aj is a node in taxonomy tax(j). Then all we need to do is to intersect
the supports of each of the sets of records that are associated with the r
nodes aj . For example, if we wish to compute the support of the itemset
({a, b}, {g}), we first compute the list of records in which the first entry
supports the set {a, b}, then compute the list of records in which the second
entry supports the set {g}, and then intersect the two lists. The first list is
{1, 3, 6, 7, 9, 10} (it is the union of the two lists under the node {a, b} in the
first taxonomy in Figure 7.3), while the second list is {4, 6, 10}. The support
of ({a, b}, {g}) is the corresponding intersection, {6, 10}.

Computing the itemset support in such a manner is much more efficient
than traversing the complete table and inspecting each record. After mak-
ing one pass over the entire table, the algorithm needs only to mine these
compact taxonomy structures, no other table traversals are required.

7.4.4 The algorithm

Algorithm 16 starts by augmenting the taxonomies with the lists of sup-
ports for each leaf in each taxonomy (Step 1). It then prunes from tax(j)
nodes whose support is of size less than k since no itemset that includes the
corresponding generalized value in its jth entry can be frequent (Steps 2-4).
Then it starts with the most generalized itemset, (A1, . . . , Ar) = (∗, . . . , ∗)
(which is obviously frequent, but not necessarily closed), and starts travers-
ing the search space, which is tax(1)× · · ·× tax(r), in a depth-first manner.
An itemset will be added to the output list, FCF (D, k), if it is frequent and
closed, i.e., none of its direct specifications has the same support as it does.
Both checks can be made quickly and easily using the special data structures
that were constructed in Step 1. Since this depth-first search may attempt to
examine the same itemset more than once, we keep a hashtable (processed)
of all itemsets that were already examined in order not to check them again.
(See Section 7.4.5 for more details regarding the actual implementation.)

58

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 59

Algorithm 16: Proposed algorithm
Input:

• Table D of n records and r quasi-identifiers;

• Minimum support threshold k;

• Taxonomy trees for quasi-identifiers 1 ≤ j ≤ r, tax(1), · · · , tax(r).

Output: FCF (D, k) – the list of all closed frequent generalized
itemsets of support size at least k.
1: Make a single pass over D and augment the trees tax(1), · · · , tax(r)

with the supporting record ids.
2: for all 1 ≤ j ≤ r do
3: Remove from tax(j) all nodes that are supported by less than k

records.
4: end for
5: root ← (A1, . . . , Ar) {The most generalized itemset, which is supported

by all of D, consists of the roots of all taxonomy trees}
6: processed ← ∅
7: FCF (D, k) ← ∅
8: call GetClosedFrequentItemsets(root, k, processed, FCF (D, k))
9: return FCF (D, k)

The main function in this algorithm is called in Step 8: That function,
which is implemented in Algorithm 17, receives as an input a root itemset
and adds to the list of closed frequent itemsets all the closed frequent item-
sets that are specifications of the given root. That function implements the
depth-first search, starting from the given root downward.

It starts (Steps 1-3) by checking whether the given root was already
processed, or if its support is of size less than k; in either case it returns
without going on further. It then continues and adds the root to the list of
processed itemsets (Step 4) and marks it as closed (Step 5). The mark of
the root as being closed will remain so until we are convinced otherwise.

Next, we start the loop over all quasi-identifiers (j = 1, . . . , r) (Step 6)
and for each identifier over all the children of aj (Step 7). This double loop
scans all itemsets that are immediate specifications of the input itemset.
(To this end, an itemset X ′ is an immediate specification of itemset X if
X and X ′ coincide in all entries except for one entry, say the jth entry, in
which X ′(j) is an immediate child of X(j).) We first compute the support

59

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 60

Algorithm 17: Generalized Closed Itemset Mining Algorithm
Input:

• An itemset (a1, . . . , ar), referred to as root, where each aj is a node
in the taxonomy hierarchy of quasi-identifier j, tax(j);

• k, the minimum support for itemsets;

• processed, the set of the processed itemsets;

• closed, a set of closed frequent itemsets;

Output: Adding to the given list closed all the closed frequent
itemsets which are specifications of root.
1: if ((root∈ processed) OR (|support(root)| < k)) then
2: return
3: end if
4: processed ← processed ∪ {root}
5: isRootClosed ← true
6: for j = 1 to r do
7: for all children taxChild(j) of aj in tax(j) do
8: new itemset support ← support(taxChild(j)) ∩ support(root)
9: if (|new itemset support| ≥ k) then

10: if (|new itemset support| = |support(root)|) then
11: isRootClosed ← false
12: end if
13: new itemset ← (a1, . . . , aj−1, taxChild(j), aj+1, · · · , ar)
14: GetClosedFrequentItemsets(new itemset,k,processed,closed);
15: if (isRootClosed = false) then
16: break loop;
17: end if
18: end if
19: end for
20: end for
21: if (isRootClosed = true) then
22: closed ← closed ∪ {root}
23: end if

60

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 61

of that specification (Step 8). If that support is of size less than k (Step
9) there is no need to further process it, and it does not contradict our
current assumption that the input itemset is closed. If the support of that
specification equals that of the input itemset then we mark the input itemset
as not closed (Steps 10-12). Then we activate the depth-first strategy by
calling the function, recursively, with that specification as an input. Finally,
if the input itemset has been already established as not closed, we can break
the double-loop and not proceed to check the rest of its specifications. To
see why, let us assume that the root is X = (a1, . . . , ar) and assume that
aj has in tax(j) the children b1, . . . , bt. Assume that while examining the
specification X ′ = (a1, . . . , aj−1, b1, aj+1, . . . , ar), we discovered that X and
X ′ have the same support (whence, we set isRootClosed to be false). Then
that means that the support of (a1, . . . , aj−1, bi, aj+1, . . . , ar) for all i > 1 is
empty and so we can break out of the inner loop on the children. Moreover,
there is no need to continue the loop over j since the resulting specifications
there cannot be closed and cannot lead to other closed itemsets as implied
by Lemma 7.4.1.

Finally, at the end of the loop over all immediate specifications, if the
root survived all checks and proved to be closed, we add it to the list of
closed frequent itemsets (Steps 21-23).

Comment. We attempted to apply the optimizations that are provided by
the Charm Algorithm and specified in Theorem 6.3.5. Although this caused
the algorithm to process less frequent itemsets, we observed that it did not
reduce the overall running time in our experiments. This is due to the fact
that computing these optimizations took more time than the time that was
saved by processing less frequent itemsets. It should be noted that most
of the frequent itemsets which could not lead to undiscovered CFIs were
pruned as a result of the optimization provided by Lemma 7.4.1.

7.4.5 Implementation notes

Algorithms 16 and 17 were implemented in Java. The main issue to over-
come was the program’s memory consumption. This led to the decision to
implement the algorithm in a depth-first manner. Other optimizations that
we implemented were as follows:

• We implemented an object pool of frequent itemset objects. This
greatly helped in reducing the memory consumption by reusing for-
merly processed frequent itemset objects.

61

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 62

• The frequent itemsets form a lattice (not a tree), whence it was im-
portant not to process the same frequent itemset more than once, in
order to avoid much larger running times and memory consumption.
For this purpose, we used an integer hash table that contained the
hash codes of the already processed itemsets.

• The supports of the nodes were represented as bit vectors. Apart
from reducing the memory that was used for that purpose, it enabled
efficient calculation of the support sizes of the frequent itemsets due
to the fact that the intersection process could be performed quickly.

• The closed frequent itemsets that were found during the execution of
the algorithm, were serialized and saved in a database table due to
memory limits. The writing to the database table was performed in a
separate thread in order to make the processing thread as efficient as
possible.

• The immediate children of a certain frequent itemset X in Algorithm
17 (lines 6-7), and their supports, are calculated before anyone of them
is recursively processed. The incentive for this is that if X is not
closed, then one of its immediate children has the same support as
X. By first creating all of X’s immediate children (along with their
support cardinalities), we ensure that if X has such a child, it would
be the only one to be processed (Lemma 7.4.1). In such a case, we
skip the processing of the remaining children of X and accelerate the
mining process by pruning the maximum number of itemsets.

It is useful to note that the set of closed frequent itemsets that was com-
puted for a certain value of k can be utilized in order to run the anonymiza-
tion algorithms for all other larger values of k, because the size of the set of
closed frequent itemsets decreases monotonically (with respect to inclusion)
when the minimum support parameter k increases.

62

7.4. PROPOSED GENERALIZED ITEMSET MINING ALGORITHM 63

*

{a,b} {c,d}

a b c d

4,83,6,7,101,9 2,5

*

{e,f} {g,h}

e f g h

4,6,101,5,7,9 8 2,3

Figure 7.3: Taxonomy structures

63

Chapter 8

An Improved Approximation
Algorithm for k-Anonymity

In this chapter we describe and discuss our improved approximation algo-
rithm for k-anonymity. The algorithm and the accompanying proofs follow
the lines of those that were provided in [15] for the case of k-anonymization
by suppression. We will adjust these algorithms and proofs to the general
case of k-anonymity.

The idea is to use Algorithm 3. In that algorithm there were two phases.
In the first phase we invoke Algorithm 1 (Gen-Cover) that outputs a cover
of D that approximates the optimal [k, 2k − 1]-cover of D to within an
approximation ratio of O(ln k). In the second phase we convert that cover
into a [k, 2k − 1]-clustering. As shown in Theorem 4.2.3, that clustering
induces a k-anonymization that approximates the optimal k-anonymization
within a factor of O(ln k).

The main disadvantage of Algorithm 3 is the runtime of its first phase
(Gen-Cover), which is O(n2k). Here, we will present a modification of that
algorithm, to which we refer as Gen-Cover-CF (Algorithm 18). That algo-
rithm will also produce a cover of D that approximates the optimal [k, 2k−1]-
cover of D to within an approximation ratio of O(ln k). However, its runtime
will be a practical one.

Both algorithms – Gen-Cover and Gen-Cover-CF – receive as an input a
collection of subsets of C ⊆ P(D) from which they select the subsets for the
cover. The runtime of both algorithms is bounded by O(|D| · |C|). Hence,
the key idea is to reduce dramatically the size of the input collection C. In
the original algorithm Gen-Cover, the input collection is C = F := {S ⊂
D : k ≤ |S| ≤ 2k − 1}. Its size is O(n2k−1). In the modified algorithm Gen-

64

65

Cover-CF, the input collection is C = FCF , where FCF contains only sets
of records, S, whose closure, S, corresponds to a closed frequent generalized
itemset; here, a frequent itemset is one whose support is of size at least k.
While the runtime of Gen-Cover is O(|F | · |D|) = O(n2k), the runtime of
Gen-Cover-CF is O(|FCF | · |D|). Generally, the size of FCF is much smaller
than that of F . Hence, the runtime of Gen-Cover-CF is much smaller than
that of Gen-Cover.

This change in the input collection of subsets requires us also to modify
the algorithm itself. In Gen-Cover, it was essential that all subsets in the
cover are of size between k and 2k−1. In Gen-Cover-CF, the input collection
of subsets is FCF , and it may include subsets of any size greater than or equal
to k. Hence, whenever the greedily selected subset S has a size larger than
2k − 1, we create a subset by randomly selecting up to 2k − 1 records from
S, such that the number of uncovered records is maximized, and then insert
that subset into the cover γ.

The modified algorithm Gen-Cover-CF is given in Algorithm 18. That
algorithm is then used as a procedure in Algorithm 19, which is the approx-
imation algorithm for k-anonymity.

65

66

Algorithm 18: Gen-Cover-CF
Input: Table D; a collection of the supports of all closed frequent
itemsets, FCF

Output: A cover of D, where each set has size between k and 2k− 1,
that has cost at most O(ln k) times the cost of the minimal cost cover
1: γ = ∅ {the current cover}
2: E = ∅ {currently covered records in D}
3: while (E 6= D) do
4: for all S ∈ FCF do
5: Compute the ratio ρ(S) = d(S)

min(|S∩(D−E)|,2k−1)
6: end for
7: Choose a set S such that ρ(S) is minimized
8: if (|S| ≤ 2k − 1) then
9: SR ← S {the set is in the right size}

10: else if (|S ∩ (D −E)| ≥ 2k − 1) then
11: Choose SR ⊆ S ∩ (D −E) s.t |SR| = 2k − 1 {select 2k − 1

uncovered records}
12: else {|S| ≥ 2k and |S ∩ (D − E)| < 2k − 1}
13: Choose SR ⊆ S s.t SR ⊇ S ∩ (D − E) and

|SR| = max(k, |S ∩ (D − E)|)
14: end if
15: E ← E ∪ SR

16: γ ← γ ∪ {SR}
17: end while
18: return γ

Algorithm 19: k-anonymization via set-cover using frequent itemsets
Input: Table D, integer k.
Output: Table g(D) that satisfies k−anonymity
1: Find all closed generalized itemsets in D whose support size is at least

k (Algorithm 16).
2: Set FCF to be the set of supports of all the found closed generalized

frequent itemsets.
3: Produce a cover γ of D, by using Algorithm 18, with FCF as an input.
4: Convert the resulting [k, 2k− 1]-cover γ into a [k, 2k− 1]-clustering, γ0,

by invoking Algorithm 2.
5: Output the k-anonymization g(D) of D that corresponds to γ0.

66

67

Comment. In Algorithm Gen-Cover-CF we use the same notation ρ as
used in Algorithm Gen-Cover. In both algorithms this function has the
same meaning, namely, the price paid per uncovered record.

We proceed to show that Gen-Cover-CF is an appropriate substitute to
Gen-Cover, in the sense that it produces a cover of D that approximates
the optimal [k, 2k− 1]-cover to within O(ln k). Once we show that, we may
conclude that Algorithm 19 produces a k-anonymization that approximates
the optimal one to within O(ln k) by arguing along the same lines as in
Theorem 4.2.3. First of all, it is clear that the cover γ produced by Gen-
Cover-CF includes only subsets of size between k and 2k − 1. It remains to
show that γ achieves the same approximation ratio as Gen-Cover (Algorithm
1).

Lemma 8.0.2. If S and SR are the subsets that are selected in each iteration
of Gen-Cover-CF, then ρ(SR) ≤ ρ(S).

Proof. We will prove this claim for every set S and its corresponding subset
SR (namely, not only for sets S that minimize ρ). Since SR ⊆ S then, by
monotonicity, d(SR) ≤ d(S). Furthermore, it is easy to see that in each of
the three cases in Gen-Cover-CF, we have

min{|S ∩ (D − E)|, 2k − 1} = min{|SR ∩ (D − E)|, 2k − 1} .

This implies that ρ(SR) ≤ ρ(S).

Gen-Cover and Gen-Cover-CF may produce different solutions for a
given input collection of subsets (F in the case of Gen-Cover and FCF in
the case of Gen-Cover-CF), since in each iteration there may exist more
than one set that minimizes ρ(·), and the algorithms randomly select one
of them. Let Sol and SolCF be the sets of all possible solutions that may
be produced by Gen-Cover and Gen-Cover-CF, respectively. We proceed to
show that SolCF ⊆ Sol. Namely, every solution that may be produced by
Gen-Cover-CF is also a possible solution for Gen-Cover. Since all solutions
of Gen-Cover achieve an approximation ratio of O(ln k) (since it is simply
the greedy algorithm for the set-cover problem), we may infer a similar
conclusion for all solutions of Gen-Cover-CF.

Lemma 8.0.3. The possible solutions obtained by Gen-Cover-CF are always
possible solutions for Gen-Cover.

Proof. Let SolCF and Sol be the set of all possible solutions that may be
produced by by Gen-Cover-CF with FCF and Gen-Cover with F respectively.

67

68

Consider any solution ΠCF ∈ SolCF . We will show that there exists a
solution Π ∈ Sol such that Π = ΠCF . In other words, SolCF ⊆ Sol.

Let ΠCF = {S′R1 , S
′R
2 , · · · , S

′R
m } where the subscript denotes the selection

order by Gen-Cover-CF. S
′R
i is selected in lines 8-14 of Gen-Cover-CF as a

subset of S′i which was selected greedily among the subsets in FCF in lines
4-7. We claim that there exists a solution Π = {S1, S2 . . . Sm} ∈ Sol where
the subscript denotes the selection order of the subsets and Si = S

′R
i for

1 ≤ i ≤ m. That will prove that ΠCF = Π ∈ Sol. We will prove this claim
by induction.

When i = 0, we have ∅ = ∅ and thus the base case of our inductive proof
holds. Assume that there exists a solution Π ∈ Sol such that Si = S

′R
i for

1 ≤ i ≤ j − 1, where 1 ≤ j ≤ m. We want to show that it holds for i = j
too. If Sj 6= S

′R
j , we will show that there exists a different solution Π′ ∈ Sol

such that Si = S
′R
i for 1 ≤ i ≤ j. Assume, towards contradiction, that there

does not exist such a solution. We consider two cases:
When ρ(Sj) < ρ(S

′R
j): Let S

′′
be the support of Sj in D. As S′′ = Sj , by

the definition of S
′′
, it follows that d(S

′′
) = d(Sj) (Definition 4.1.2). Since,

S
′′ ⊇ Sj we have that ρ(S

′′
) ≤ ρ(Sj), this is because we have accomplished

that d(S
′′
) = d(Sj) and S

′′ ⊇ Sj . So we have that ρ(S
′′
) ≤ ρ(Sj) < ρ(S

′R
j) at

the j-th iteration of Gen-Cover-CF. Since S′j is the greedily selected subset
at the j-th iteration of Gen-Cover-CF, we have ρ(S

′R
j) ≤ ρ(S′j) by Lemma

8.0.2. Therefore, ρ(S
′′
) < ρ(S′j). By the definition of S

′′
, there is no other

set, X, such that X ⊃ S
′′

which has the same closure, namely Sj . This,
combined with the fact that |S′′ | ≥ k, gives us that S

′′ ∈ FCF . But then,
we should have selected S

′′
instead of S′j at the j-th iteration of Gen-Cover-

CF, and this contradicts that ρ(S′j) is minimum at the j-th iteration of
Gen-Cover-CF.

When ρ(Sj) > ρ(S
′R
j): Since k ≤ |S′Rj | ≤ 2k− 1 and F is the collection

of all subsets of D with cardinalities between k and 2k − 1, we have that
S
′R
j ∈ F . Then we should have selected S

′R
j instead of Sj at the j-th

iteration of Gen-Cover. This contradicts that ρ(Sj) is the minimum at the
j-th iteration of Gen-Cover.

Thus, we have shown that ρ(Sj) = ρ(S
′R
j). Since we have that k ≤

|S′Rj | ≤ 2k − 1, we must have that S
′R
j ∈ F . Then, if Gen-Cover selected

{S1, . . . , Sj−1} until the (j − 1)-th iteration, it can select S
′R
j instead of Sj

at the j-th iteration. It results in another solution, that is, there exists a
solution Π′ ∈ Sol such that it contains S1, . . . , Sj−1 and S

′R
j .

68

Chapter 9

Experiments

We tested our algorithm versus the Forest (Section 4.3) and the modified
Agglomerative algorithm (Chapter 5). The tests were conducted on three
datasets from the UCI Machine Learning Repository [4]. These include
Adult, Nursery and Coil2000.

• Adult: The dataset was extracted from the US census Bureau Data Ex-
traction System. It contains demographic information of a small sam-
ple of US population with 14 public attributes such as age, education-
level, marital-status, occupation, and native-country. The private in-
formation is an indication whether that individual earns more or less
that 50 thousand dollars annually. The Adult data contains 30162
records after the records with missing values are removed.

• Nursery: The Nursery Database was derived from a hierarchical de-
cision model that was originally developed to rank applications for
nursery schools. The Nursery dataset contains 12960 records after
deleting those with missing values. It has 8 quasi-identifier attributes.

• Coil2000: This data set used in the CoIL 2000 Challenge contains
information on customers of an insurance company. The data consists
of 86 variables and includes product usage data and socio-demographic
data derived from zip area codes. The Coil2000 database contains 5822
records after deleting those with missing values. We used a set of 9
quasi-identifiers out of the 86 available.

We ran each of the four algorithms with five values of the anonymity param-
eter, k = 50, 75, 100, 150, 200. The information loss measure that we used in
order to compare the algorithms is the LM measure, (3.1). We also verified
the results on the entropy measure (Definition 3.2.2).

69

9.1. ADULT DATASET EXPERIMENTS 70

All of the algorithms that we tested were implemented in Java and run
on a core 2 (R) quad (Q6600) CPU 2.4 GHz, 8GB of RAM.

9.1 Adult dataset experiments

The comparison between the various algorithms can be seen in the following
figures. Figure 9.1 compares between the algorithms when run using the LM
measure. Figure 9.2 compares between the algorithms when run using the
entropy measure (EM). Figure 9.3 displays the runtime differences between
the algorithms.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

k

L
M

 c
o

st

Forest

Agglomerative

Algorithm 19

Figure 9.1: Algorithm score comparison (LM) - Adult dataset

70

9.1. ADULT DATASET EXPERIMENTS 71

0

0.5

1

1.5

2

2.5

0 50 100 150 200

E
M

 c
o

st

Forest

Agglomerative

Algorithm 19

Figure 9.2: Algorithm score comparison (Entropy) - Adult dataset

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200

k

ru
n

ti
m

e
(s

ec
o

n
d

s)

Algorithm 19

Agglomerative

Forest

Figure 9.3: Algorithm runtime comparison - Adult dataset

71

9.1. ADULT DATASET EXPERIMENTS 72

As k decreases, the number of closed frequent itemsets increases, as can
be seen in Table 9.1. This directly affects the runtime of both the closed
frequent itemset mining phase of the algorithm as well as the Gen-Cover
phase (see table 9.2).

k Number of closed frequent itemsets
50 1,199,494
75 819,991
100 612,617
150 390,126
200 278,672

Table 9.1: k vs. the number of closed frequent itemsets – Adult dataset

k Mining Algorithm runtime Gen-Cover-CF runtime total runtime
50 971 4389 5360
75 591 2050 2641
100 436 1131 1567
150 261 478 739
200 188 247 435

Table 9.2: k vs. mining and Gen-Cover-CF runtimes (seconds) – Adult
dataset

72

9.1. ADULT DATASET EXPERIMENTS 73

We also investigated the relation between the number of public attributes
in the table, and the attributes’ hierarchy structure, to the runtime of Al-
gorithm 19. To that end, we ran Algorithm 19 on four versions of the Adult
dataset. The first was the original dataset, which has 14 public attributes.
The second was a reduced version that had 11 public attributes; we removed
attributes fnlwgt, capital-gain and capital-loss. The third dataset had 8 pub-
lic attributes; we further removed attributes education-num, hours-per-week
and native-country. The fourth dataset had five public attributes; we further
removed marital-status, relationship and race attributes. We also ran the
algorithm on the full Adult dataset using “flat” hierarchies, namely, general-
ization by suppression only. Figure 9.4 displays the total algorithm runtime
as a function of k in each of the above described tests. The vast differences in
the running times as a function of the number of public attributes is due to
the fact that the number of closed frequent itemsets depends exponentially
on the number of public attributes.

As we can see, our anonymization algorithm, Algorithm 19, provides
much better anonymizations than the Forest algorithm, in consistency with
the improvement in the approximation factor from O(k) (for the Forest algo-
rithm) to O(ln k) (for Algorithm 19). The information loss in the solutions
produced by Algorithm 19 are also better than that in the solutions issued
by the Agglomerative Algorithm, which is a heuristical algorithm with no
approximation guarantee. This better performance in terms of information
loss is accompanied by slower (but still practical) runtimes for smaller values
of the security parameter k. However, as shown in Figure 9.3, already for
k > 100 Algorithm 19 runs faster than the Agglomerative Algorithm, which
was until now the algorithm of choice in terms of information loss.

73

9.1. ADULT DATASET EXPERIMENTS 74

1

10

100

1000

10000

100000

0 50 100 150 200

k

T
o

ta
l r

u
n

ti
m

e
(s

ec
o

n
d

s)

14 atts

11 atts

flat

8 atts

5 atts

Figure 9.4: k vs. total runtime– Adult dataset

74

9.2. NURSERY DATASET EXPERIMENTS 75

9.2 Nursery dataset experiments

Figure 9.5 displays the LM-scores achieved by the three algorithms on the
Nursery dataset. Figure 9.6 displays the runtimes of the three algorithms
when run on this dataset. Table 9.3 lists the number of closed frequent
itemsets mined as a function of k.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200

k

L
M

 c
o

st

Forest

Agglomerative

Algorithm 19

Figure 9.5: Algorithm score comparison (LM) – Nursery dataset

k Number of closed frequent itemsets
50 28,575
75 17,301
100 13,685
150 7,421
200 5,604

Table 9.3: k vs. the number of closed frequent itemsets – Nursery dataset

In this dataset as well, we see that Algorithm 19 provides better anonymiza-
tions than the Forest and the Agglomerative algorithms. Here, it performs
much better than the other two algorithms also in terms of runtime. The
reason for that is that the Nursery dataset includes only 8 public attributes
and, as exemplified earlier on the reduced versions of the Adult dataset,
the number of public attributes affects dramatically the overall runtime of
Algorithm 19.

75

9.2. NURSERY DATASET EXPERIMENTS 76

0

50

100

150

200

250

300

0 50 100 150 200

k

ru
n

ti
m

e
(s

ec
o

n
d

s)

Agglomerative

Forest

Algorithm 19

Figure 9.6: Algorithm runtime comparison - Nursery dataset

76

9.3. COIL2000 DATASET EXPERIMENTS 77

9.3 Coil2000 dataset experiments

Figure 9.7 displays the LM-scores achieved by the three algorithms on the
Coil2000 dataset. Figure 9.8 displays the runtimes of the three algorithms
when run on this dataset. Table 9.4 lists the number of closed frequent
itemsets mined during the algorithm run.

Here, like in the Nursery dataset, Algorithm 19 performs better than the
Forest and Agglomerative algorithms in terms of information loss as well as
runtime.

In this experiment it can be seen that the runtime of the Agglomerative
algorithm (5) increases with k, as opposed to the behavior of Algorithm 19.
The runtime of Algorithm 19 decreases as k increases due to the fact that the
number of closed frequent generalized itemsets decreases as k increases, and
the runtimes of both phases of Algorithm 19 directly depend the number of
closed frequent generalized itemsets. The Agglomerative algorithm, on the
other hand, begins with |D| singleton clusters. In each iteration the number
of clusters decreases by one. Since the algorithm aims at creating clusters
of size close to k, the algorithm terminates when the number of clusters is
roughly |D|

k . Therefore, the Agglomerative algorithm will go through about
|D| − |D|

k = |D| · (1− 1
k) iterations, a number which increases as k increases.

k Number of Closed frequent itemsets
50 14,113
75 8,985
100 6,234
150 3,499
200 2,227

Table 9.4: k vs. the number of closed frequent itemsets- Coil2000 dataset

77

9.3. COIL2000 DATASET EXPERIMENTS 78

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

k

L
M

 c
o

st

Forest

Agglomerative

Algorithm 19

Figure 9.7: Algorithm Comparison - Coil2000 dataset

0

10

20

30

40

50

60

70

0 50 100 150 200

k

ru
n

ti
m

e
(s

ec
o

n
d

s)

Agglomerative

Forest

Algorithm 19

Figure 9.8: Algorithm runtime Comparison - Coil2000 dataset

78

9.4. SCALABILITY OF THE PROPOSED MINING ALGORITHM 79

9.4 Scalability of the proposed mining algorithm

We examined the performance of the the proposed algorithm for mining
generalized closed frequent itemsets (Algorithm 16) from two aspects. The
first was the dependence on the size of the table (Figure 9.9). For this
purpose, we ran the algorithm over four versions of the Adults table; the
original table that has roughly 30000 records, and extended versions (that
were obtained by means of duplicating records) containing 60000, 90000 and
120000 records. We also tested the algorithm’s performance as a function
of the number of attributes in the table (Figure 9.10). For this purpose, we
ran the algorithm over four versions of the Adults table, containing 14,11,8
and 5 attributes.

According to these experiments we see that the number of generalized
closed frequent itemsets grows linearly with the table size (Figure 9.9 (a)).
We also observed that the runtime of the algorithm grows quadratically
with the table size (Figure 9.9 (b)). This can be explained due to the fact
that the algorithm’s runtime depends on two factors. First, the number of
generalized closed frequent itemsets which are mined. Second, the amount
of time taken to perform support computations, which is expected to grow
linearly with the size of the table.

On the other hand, there is an exponential dependency between the
number of attributes in the table and the number of generalized closed fre-
quent itemsets which can be mined (see Figure 9.10 (a) in which the y axis
is scaled logarithmically). Therefore, the runtime of the algorithm depends
exponentially on the number of attributes (Figure 9.10 (b)).

79

9.4. SCALABILITY OF THE PROPOSED MINING ALGORITHM 80

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 50 100 150 200

k

n
u

m
b

er
 o

f
o

f
C

F
Is

120000 records

90000 records

60000 records

30000 records

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200

k

ru
n

ti
m

e
(s

ec
o

n
d

s)

120000 records

90000 records

60000 records

30000 records

(a) Number of CFIs vs. k (b) Runtime (seconds) vs. k

Figure 9.9: Table size scaling

1

10

100

1000

10000

100000

1000000

10000000

0 50 100 150 200

k

n
u

m
b

er
 o

f
C

F
Is

14 atts

11 atts

8 atts

5 atts

1

10

100

1000

10000

0 50 100 150 200

k

ru
n

ti
m

e
(s

ec
o

n
d

s)

14 atts

11 atts

8 atts

5 atts

(a) Number of CFIs vs. k (b) Runtime (seconds) vs. k

Figure 9.10: Attribute scaling

80

Chapter 10

Conclusion

In this study we discussed the concept of k-anonymization as a privacy-
preserving method used for publicizing data sources for research and data-
mining purposes. In particular, we concentrated on the problem of k-
anonymization with minimal information loss. We surveyed several approx-
imation algorithms for that problem. We also described the heuristic Ag-
golomerative algorithm which was shown to provide better anonymizations
than the known approximation algorithms.

The main contribution of this study was a practical anonymization algo-
rithm that uses techniques for mining closed generalized frequent itemsets.
To that end, we surveyed various algorithms which efficiently mine closed fre-
quent itemsets. Leveraging the ideas of frequent itemset mining algorithms,
we introduced an approximation algorithm for the k-anonymization problem
that apply for the case of generalization (as opposed to suppressions-only).
We went on to show that this approximation algorithm provides smaller in-
formation losses than both the best known approximation algorithm as well
as the best known heuristic algorithm, and that it is practical in terms of
running time.

81

Bibliography

[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,
D. Thomas, and A. Zhu, “Approximation algorithms for k-anonymity,”
in Proceedings of the International Conference on Database Theory
(ICDT), 2005.

[2] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in ACM-
SIGMOD Conference on Management of Data, May 2000, pp. 439–450.

[3] ——, “Fast algorithms for mining association rules,” in Proc. 20th Int.
Conf. Very Large Data Bases, VLDB, 1994, pp. 487–499.

[4] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[5] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-
anonymization,” in International Conference on Data Engineering
(ICDE), 2005, pp. 217–228.

[6] A. Gionis, A. Mazza, and T. Tassa, “k-anonymization revisited,” in
International Conference on Data Engineering (ICDE), 2008, pp. 744–
753.

[7] A. Gionis and T. Tassa, “k-anonymization with minimal loss of infor-
mation,” IEEE Trans. on Knowl. and Data Eng., vol. 21, no. 2, pp.
206–219, 2009.

[8] J. Han and M. Kamber, Data Mining Concepts and Techniques, 2nd ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[9] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data Min.
Knowl. Discov., vol. 8, no. 1, pp. 53–87, 2004.

82

BIBLIOGRAPHY 83

[10] C.-J. Hsiao, “Efficient algorithms for mining closed itemsets and their
lattice structure,” IEEE Trans. on Knowl. and Data Eng., vol. 17, no. 4,
pp. 462–478, 2005.

[11] V. S. Iyengar, “Transforming data to satisfy privacy constraints,” in
KDD ’02: Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 2002, pp. 279–288.

[12] A. Mazza, “Anonymization of databases: New models and algorithms,”
Master’s thesis, The Department of Mathematics and Computer Sci-
ence, The Open University of Israel, 2008.

[13] A. Meyerson and R. Williams, “On the complexity of optimal k-
anonymity,” in PODS ’04: Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, 2004, pp. 223–228.

[14] M. E. Nergiz and C. Clifton, “Thoughts on k-anonymization,” Data
Knowl. Eng., vol. 63, no. 3, pp. 622–645, 2007.

[15] H. Park and K. Shim, “Approximate algorithms for k-anonymity,” in
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, 2007, pp. 67–78.

[16] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets,” in Workshop on Research Issues in
Data Mining and Knowledge Discovery, DMKD, 2000, pp. 21–30.

[17] P. Samarati, “Protecting respondents’ identities in microdata release,”
IEEE Trans. on Knowl. and Data Eng., vol. 13, no. 6, pp. 1010–1027,
2001.

[18] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity
when disclosing information (abstract),” in PODS ’98: Proceedings
of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, 1998, p. 188.

[19] R. Srikant and R. Agrawal, “Mining generalized association rules,” in
VLDB ’95: proceedings of the 21st International Conference on Very
Large Data Bases, 1995, pp. 407–419.

[20] L. Sweeney, “Uniqueness os simple demographics in the u.s. popula-
tion,” Laboratory for international Data Privacy (LIDAP-WP4), 2000.

83

BIBLIOGRAPHY 84

[21] ——, “k-anonymity: A model for protecting privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

84

