The Open University of Israel
Department of Mathematics and Computer Science

Sharing-habits based privacy control in
social networks

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science
The Open University of Israel
Computer Science Division

By
Silvie Levy

Prepared under the supervision of
Prof. Ehud Gudes, The Open University Of Israel and Ben Gurion University,
Israel
Dr. Nurit Gal-Oz, Sapir College, Sederot, Israel

May 11, 2018

Acknowledgments

| would like to express my gratitude to my thesis advisers, Prof. Ehud Gudes and
Dr. Nurit Gal-Oz, for their assistance and support. Ehud and Nurit provided me
encouragement, guidance, practical advice and comments with amazing amount
of vision, dedication and patience, throughout the whole process of writing this
thesis. | learned a great deal from both of them and owe them a huge debt
of gratitude. The theoretical problem was enriched by the help of Prof. Zeev
Nutov, and his great amount of knowledge. Most of all | must thank my family.
My loving husband, ltzik, for his encouragement, faith and support from the very
beginning. My children Hila, Efrat, Assaf and Nadav, for their patience and love
while | was working on this thesis.

Contents

1 Introduction 8
2 Background and problem domain 11
3 Related Work 15
3.1 Social networks and Habits 15
3.2 Privacy preservationo Lo 16
3.3 Privacy and Information flow 19
3.4 Network Flows 21
4 The OSN Sharing-habits based privacy assurance Problem 24
4.1 Problem definition 24
4.1.1 Research Question 28
42 Cutsingraphs 29
4.3 Problem complexity 30
4.3.1 Maximum-Flow Minimum-Leakage problem definition . . 30

4.3.2 Minimum-Distance Maximum-Flow Minimum-Leakage prob-
lem is NP-complete : proof 30
4321 Theorem1 33
4.3.2.2 Proof of Theorem 1 33
43221 Corollary 1. 33
4.4 Solution algorithms L 35
441 Initialization 36
442 Construct Blocked Edges Candidates 37
4421 Block edges by Min-Cut 37
4422 Block edges by Contract 38
443 Compute Final Candidates Set 41
5 Experimental Evaluation 45
5.1 Demonstration on a synthetic community 45
5.1.1 Block edges by Min-Cut method 47

5.1.2 Block edges by Contract method 47

5.2 Test on SNAP Database 48
5.2.1 Test On Facebook Database 49
5.2.2 Test On Twitter Database 56
5.2.3 Test On Google+ Database 61

5.3 General Discussion 64

54 Complexity 67
5.4.1 |Initialization Complexity 68
5.4.2 Find Candidates Complexity 68

5421 Min-Cut Complexity 68
5.4.22 Contract Complexity 69
5.4.3 Compute Final Candidates Set Complexity 70

5.5 Practical Implementation, 70

Conclusion and Future work 72

6.1 Optimizations 72

6.2 Other Extensions, 73

6.3 Practical Aspects. 73
6.3.1 AccessRules 73

Appendices 78
B Prototype Implementation 78

B.1 Description and User Interface 78
B.2 High Level Design 80

B.3 Input Format 80

List of Figures

4.1
4.2
4.3
4.4
45
4.6

4.7

4.8

4.9

5.1
5.2

5.3
54
55
5.6
57
5.8
5.9
5.10
5.11

5.12

w,s Community Graph o 25
The Community Graph of node 0 with close friends of distance 1 26
[llustration to the Maximum-Flow Minimum-Leakage Problem . . 32
Construct Blocked Edges main building blocks 35

ugys 6-community graph: (a) ugs comuunity (b) after initialization 37
Contract: (a) Edge (5,10) was randomly selected, (b) Edge (5,
2) cannot be selected, can not contract a super-vertex containing

uy with a super-vertex containing ugys adversary. 39
Contract: (a) Edge (8, 10) was randomly selected (b) Edge (6,
5) was randomly selected L 40
Contract: (a) Edge (3, 7) was randomly selected (b) The obtained
cut from one run of Contract algorithm 41
Compute Final Candidates Set 41
Synthetic community graph with collision 46
Facebook: (a) V' = 987, FE = 61831,D = 0.06353 (b) V =
780, E = 5205, D = 0.00837 50
Facebook: (a) V = 789, FE = 2038,D = 0.00328 (b) V =
1813, £ =30821,D =0.00938 50
Facebook: (a) V = 345,F = 518, D = 0.00436 (b) V =
269, £ =703,D =0.00975 51
Initial Contract edges, sparse 51
Final Contract edges, sparse 52
Facebook: (a) Initial Min-cut edges (b) Final Min-cut edges . . . 52
Facebook: (a) Initial Min-cut edges (b) Final Min-cut edges . . . 53
Facebook: (a) Initial Contract edges (b) Final Contract edges . . 53
Twitter: (a) V = 75, F = 151,D = 0.0272 edges (b) V =
58, ' =120,D =0.0363 56
Twitter: (a) V =15, =21,D=01(b) V=9,FE=9,D =
0.125 . . . o 57
Twitter: (a) V = 13,F = 26, D = 0.16666 (b) V = 11, E =
9,D=0.08181. 57

5.13
5.14
5.15

5.16
5.17
5.18
5.19

5.20
5.21

Twitter: (a) Initial Min-cut edges (b) Final Min-cut edges
Twitter: (a) Initial Contract edges (b) Final Contract edges . .
Google+: (a) V = 113, F = 886,D = 0.07 edges (b) V =
94 F = 149,0.1704 . - . o o
Google+: (a) V =48, F =89,D = 0.03945 (b) V =16, E =
16,D =0.0625.
Google+: (a) Initial Min-cut edges (b) Final Min-cut edges
Google+: (a) Initial Contract edges (b) Final Contract edges
Facebook sub-community :(a) Initial Min-Cut CPU (b) Initial
Contract CPUo
Facebook community Min-cut and Contract CPU time
%CPU of the two main part of the algorithm

SharingPatternPrivacy main screen
SharingPatternPrivacy after loading a social graph and adver-
saries’ list.

58
58

61
62

62
63

List of Tables

5.1 PIF from Up to his community 46
5.2 Candidates found by Min-Cut 46
5.3 Candidates found by Contract 46
5.4 Candidates found by Contract 46
5.5 Facebook sub-communities Data size 54
5.6 Facebook Evaluation Runs Results. 55
5.7 Twitter sub-communities Datasize 59
5.8 Twitter Evaluation Runs Results 60
5.9 Google+ sub-communities Data size 63
5.10 Google+ Evaluation Runs Results 64
511 CPU % Per Phases. 67
5.12 Max-Flow-Min-Cut known algorithms 69
5.13 Algorithm’s complexity 70

Abstract

We study users behavior in online social networks (OSN) as a means to pre-
serve privacy. People widely use OSN for a variety of objectives and fields,
like updating their profiles and shared media, browsing the internet for social or
professional interactions, or reacting to friends shared data. Each OSN has differ-
ent characteristics, requirements, and vulnerabilities of the private data shared.
Sharing-habits refers to users’ patterns of sharing information. Sharing-habits
are implied by the communication between users and their peers. While social
networks allow users to have some control over the dissemination of their infor-
mation, most users are not aware that the private information they share might
leak to users with whom they do not wish to share it. Most access control models
define access rules in terms of the degree of relationship required to access ones
data. These rules are not refined enough to allow for dynamic denial of content
from certain peers of the community. In this thesis we address the growing need
of social network users to share information with close fiends while hiding it from
others. We apply several different well-known strategies from graph-flow theory
to an OSN graph with sharing-habits insights, to control the information flow
among OSN users. The goal of the method we present is to allow maximum
information sharing while enforcing a user’s pre-defined privacy criteria. We an-
alyze the user's community within a predefined distance, and enable the user to
define the required privacy level for each shared information. The user can define
with whom he would like to share the entire shared information, what would be
the maximum fraction of data he is willing to share with undesired recipients,
and what would be the minimum percentage amount he is willing to avoid from
his community acquaintances, in order to achieve maximum privacy level. Our
method is evaluated using partial real data from well known social networks and
the results are analyzed in terms of correctness and run-time.

Chapter 1

Introduction

Online Social networks (OSN) are websites enabling users to build connections
and relationships among each other. The OSN structure represents social rela-
tionships between its users. Social networks are widely used by their members
for information sharing with the purpose of reaching as many friends and ac-
quaintances as possible. Communication between users hides a lot of private
information that can be deduced from the obvious information they share, like
their work and home address, places they usually visit, and much more. Users
should have control over the dissemination of their information, however they
are not fully aware of the possible consequences of their preferences when spec-
ifying access rules to their shared data. Most access rules are defined in terms
of the degree of relationship required to access ones data and are not refined
enough to allow the dynamic denial of content from certain peers of their com-
munity, referred to as adversaries. It is the responsibility of OSN administrators
to effectively enforce these rules to reduce the risk of information leakage.

For example, consider a chocolatier that owns a small Chocolate boutique
shop. The chocolatier has established a customers club as a closed-group in his
Facebook account. The chocolatier introduces new tastes, sales opportunities
and coupons to his Facebook closed-group. He invents a new taste for the
incoming Valentine's day, and makes a special offer to his customers club in
advance. The chocolatier would like this information to be shared with as many
people as possible, but to remain hidden from his competitors (adversaries).
Currently the Chocolatier has limited control over the information shared on his
Facebook group, each member of the group, can re-post the shared information,
that might reach one of his competitors.

We propose a model for access control that works with minimal user interven-
tion. The model is based on users’ patterns of sharing information denoted as
Sharing-habits. Naturally some users are more likely to share information with
others. To minimize the risk of information leakage, the social network is an-

CHAPTER 1. INTRODUCTION 9

alyzed to determine based on these habits, the probability of information flow
through network connections.

In a graph representation of the network, where nodes represent users and
edges indicate relationship between users, the challenge is to select the set of
edges that should be blocked to prevent leakage of the shared information to
unwanted recipients (adversaries).

We review some methods for handling and preserving privacy in social net-
works, and present our new privacy preserving approach, based on sharing-habits
data. Our model combines algorithms that use graph flow methods such as max-
flow-min-cut, and contract. We analyze a user’'s community within a predefined
distance, and enable the user to define the required privacy level for each shared
information. The user can define a group of close friends, with whom he would
like to share the entire shared information, and what would be the maximum
percentage amount of data he is willing to share with undesired recipients (ad-
versaries). The user can also define what would be the minimum percentage
amount he is willing to avoid from his community acquaintances, in order to
achieve maximum privacy level. Our algorithms define a candidate set of edges
that should be blocked in order to reach the required privacy level. The proposed
set of edges might not be optimal since by blocking these edges (connections),
we might reduce the amount of shared data from the user to his community.
We evaluate the privacy level, using the user’s predefined threshold levels, and
produce the optimal set of edges that should be blocked in order to reduce the
amount of shared data leakage.

While the general problem is NP-complete, we show that our algorithm finds
the optimal solution in many cases.

We based our study on the ideas described by Maheswaran and Ranjbar [1].
In this paper the authors propose to completely share information within the
defined community, and block users that might leak information to adversaries.
We relax the limitation defined in their study, and block only edges on the path
to the adversaries, instead of blocking all the information from the source user
to the users that might leak the information.

We tested our algorithms on a synthetic graph, and on partial data from real
networks taken from the Stanford’s SNAP database. Since the SNAP database
is anonymized, we add random probabilities to the sharing connections (graph
edges).

Experimental results show the effectiveness of these algorithms in controlling
the flow of information to allow sharing with friends while hiding it from others.
To the best of our knowledge, this work is the first to provide dynamic access
control model which is based on users dynamic interactions and not on user
profiles.

The rest of the thesis is structured as follows: in the next two chapters we

CHAPTER 1. INTRODUCTION 10

review the background and the related work, in chapter 4 we define the privacy
assurance in OSN problem, and in chapter 4.4 we present our algorithms for
dealing with this problem. We explain our evaluation method and experimental
results in chapter 5 and conclude by summarizing our contribution and discussing
directions for future work in chapter 6.
The main contributions of this thesis are:

1. Defining the problem and proposing a new model.

2. Developing algorithms to solve the problem.

3. Testing our algorithms on synthetic data.

4. Testing our algorithms on partial real data.

5. Analyzing the results.

A paper based on this thesis was presented in DBSEC16.
A revised paper based on this thesis was accepted for publication in the Journal
of Computer Security (JCS).

Chapter 2

Background and problem domain

Online Social Networks (OSN), are online social services, or websites applica-
tions, used by individuals or organizations, to build and maintain the relationships
(connections) among each other, while sharing information like pictures, videos,
places, and stories, and searching for employment opportunities, business or so-
cial events, and more. Many people beside the user’'s friends and acquaintances
are interested in the information posted and maintained by the user on the social
network. Unauthorized people are using social networks to gather information
that they can use for their needs, either legal usage like business opportunities or
advertisement, or illegal usage like identity theft or tracking people. The com-
panies that operate the social networks are also collecting variety of data about
their users, both to sell to relevant advertisers and to personalize the services for
the users.

Van Dijck [9] reviews the history of social media, providing a critical history of
roughly the first decade of connective media, by analyzing five specific platforms
to the larger ecosystem and the culture in which it evolved. The transformation
from networked communication to "platformed” sociability, and from a partic-
ipatory culture to a culture of connectivity, changes users' behavior regarding
social networks and online services. In December 2011, 82 percent of the world’s
Internet population over age 15, which is 1.2 billion users, were logged on to a
social media site; while in 2007 only 6 percent were logged on to a social media
site. With the availability of online services, and not only utilities, more and
more people are using the Internet, and social media on a regular basis. Users
are now doing more of their everyday activities using online environments, it be-
came a part of their daily routines. Many of the habits that used to be informal
and short-lived phenomenon of social life, have recently become infiltrated by
social media platforms. People use online services for almost everyday routine;
for example, looking up the meaning of a word, checking for movies, restau-
rants, parking etc. Activities like: talking to friends while exchanging gossip,

11

CHAPTER 2. BACKGROUND AND PROBLEM DOMAIN 12

and checking on his well-being, sharing holiday pictures, scribbling notes, were
commonly shared only with selected friends. Now, through social media, these
acts are embedded in the online services, enabling the users to share data with
wider friends and acquaintances. Statements that previously expressed unthink-
ingly, are now released into a public domain where they can reach a great mass
of people, having a long-lasting effects. Social media platforms have altered the
nature of private and public communication, what was previously held as private,
is no more private, when a user uploads data into a social network it is not private
as he thinks. The uploaded data is used to track the users’' desire. Facebook and
other platforms track what people might want by coding relationships between
people, things, and ideas into algorithms, this enabling users’ daily activities, and
habits throughout social networks. For many users social media platforms are
used not only for pleasure but also for profitable business. In less than a decade,
the norms for online sociability have dramatically changed, and they continue
changing. Patterns of behavior that traditionally existed in offline (physical) so-
ciability are increasingly mixed with social and sociotechnical norms created in
an online environment. For example, the norms for "sharing"” private information
and for accepting personalized advertisements in users’ social space were very
different in 2004, than in 2012. Changes and new features are constantly, and
gradually implemented, users are getting habituated to those changes along with
the adaptations of norms for privacy. These normalization occurs through various
levels of adjustments, including technology features and terms of use.

There are different types of OSN [22], each has different characteristics, differ-
ent properties, and different vulnerabilities. Some networks belong to more then
one type. OSN types:

1. Personal networks are social interaction-centered sites that allow users
to create detailed online profiles, connect with other users, and share infor-
mation with friends. Personal networks emphasize on social relationships
such as friendship. An example of a personal network is Facebook.

2. Status-update networks are information distribution-centric services, that
allow users to quickly and publicly, post short status updates in order to
communicate with others quickly. The user can restrict some users from
accessing some status updates by using privacy settings. An example of a
status-update network is Twitter.

3. Shared-interest networks are networks for common interest like hobbies,
educational backgrounds, etc. These networks are directed toward specific
subset of individuals and contain features from other types of social net-
works. An example of a shared-interest network is LinkedIn.

4. Content-sharing networks are designed as platforms for sharing content,
such as videos, music, and photographs, and include interaction features
that enable the content-sharing. When these websites include the ability

CHAPTER 2. BACKGROUND AND PROBLEM DOMAIN 13

to create personal profiles, establish contacts and interact with other users
through comments, they also become social networks. Examples of content
sharing networks are YouTube, Instagram, and Flicker.

5. Location networks use the GPS on cellular phones or tablets to broadcast
the user's real-time location. Most of these networks are built to interact
with other social networks, such that an update made to a location network
could post to the user’s other social networks. An example of a location
network is Google Latitude, and check-in option by Facebook.

People and companies may gather useful information from OSN through data
mining. Companies can use the gathered data to improve their sales and prof-
itability, by customizing sale to customers profiles. Facebook uses "Social Ads”
program that gives companies access to the millions of profiles in order to tailor
their ads to a Facebook user's own interests and hobbies. Facebook also tracks
the websites a user uses outside of Facebook through Facebook Beacon, and
sells the tracked "social actions” without the actual user information.

Two types of information about a user can be gathered from a social network:
1. Information that a user may share: personal details, posts, contacts,
biographical information, media, interests, location
2. Information gathered through electronic tracking

The information that a user shares becomes public in various ways:

e User’s choice: A user uses the available privacy setting, and posts infor-
mation as public.

e Default settings: Some information may be public by default by the social
network settings.

e Social network change of privacy policy: The social network may
change its privacy policy, which may cause a content that was restrictively
posted to become visible.

e Copy and re-post: An acquaintance with authorization to access the
user's shared-information, may copy and re-post some of the shared infor-
mation, without the user’'s permission.

e Third-party applications: Third-party applications may be granted by
the social network itself to access and view information that was posted
privately.

e Bugs and faults: Unauthorized users can discover faults and bugs and
use them to get access to private data.

Most access rules like RBAC [8], are defined in terms of the degree of relationship
required to access a user’s data like friends, friends of friends, etc. These rules

CHAPTER 2. BACKGROUND AND PROBLEM DOMAIN 14

are not refined enough to allow for dynamic denial of content from certain peers
of the user's community. Papacharissi [24] examines self-presentation and social
connection in the digital age, behavioral norms, patterns and routines, etc. They
show that OSN users have surfing habits. We can extract a lot of information
from those surfing habits, like who are the users’ close friends, what are their
shopping habits, what are their reading habits, what is the frequency of informa-
tion sharing with each friend, and use it to define a flexible and refined access
rule model, that allows for dynamic denial of content from certain peers of the
user's community.

Chapter 3
Related Work

3.1 Social networks and Habits

Papacharissi et al. [24], present several aspects of social networks: structure,
evolution, and properties, including identities, communities, and the culture on
social network sites. The authors conclude that there are emerging patterns of
networked sociability that combine newer social habits with old habits, and social
routines that existed in the past have grown in new shape in the new social media.
Social media platforms have introduced a space where boundaries between private
and public space have become fuzzy, which opens up new possibilities for identity
formation. Barabasi [4] examines the structure and evolution of social networks.
Most networks has a "scale-free" property, which means that it doesn’t depend
on a specific node (user), and randomly removing nodes, will not destroy the
social network. Every network has a few hubs that hold the whole network
together, combining communities that are relatively isolated groups of nodes that
work independently. Networks are hierarchical, they are built from communities
of communities, which are communities that are grouped together into bigger
communities. Networks have a purpose, they spread ideas, knowledge, influence,
data, etc. Information is passed from a user to friends, who then pass it on to
their friends, and so on.

LaRose et al. [27] discuss the social networking addiction and media habits.
Some people develop an obsession with some social network sites, known as
"Facebook addiction”. For many Internet users, social networking has become
a media habit, as a form of automatism. People develop an automatic habit of
media consumption, for some it turned into a "bad” habit, that might be termed
compulsive, problematic, pathological, or addictive, and for others it turned into a
"good" habit. A new category of mental illness, called "Internet usage disorder”
has been proposed, including a subcategory of email/text messaging. Models

15

CHAPTER 3. RELATED WORK 16

of media behavior can be extended from an understanding of Internet habits.
Media favorites, which is the preferred media activity within a particular medium,
are themselves habits. Some of them became part of people daily ritual. The
authors also discuss the Problematic Internet Use (PIU), which is pathological
Internet use in relation to symptoms such of impulse control disorders, etc. In
order to examine the structure of media habits within socio-cognitive theory, the
authors conducted a research on Internet use, resulting with a model of habitual
Internet activities. The authors concluded that social networking services are
no more problematic, addictive, or habitual than other online activities, despite
their widespread popularity. Also, social networking behavior is usually guided by
effective self-regulation.

Papacharissi [24] concludes that there are emerging patterns of networked socia-
bility that combine newer social habits with old habits, including social routines
of the past, and reflect social tendencies and tensions that take shape on net-
worked planes of social activity. Social media platforms introduced a space where
boundaries between private and public space have become fuzzy, which opens up
new possibilities for identity formation.

Kim et al. [16], investigate the cultural difference in motivations for using social
network sites, between American and Korean college students. American and
Korean students showed a similar pattern of daily use of social networks. A
notable difference between American students and Korean students was found
in the number of connections included in their "friends” list. The number of
connections defines the Sharing-habits, it shows whether the user tends to share
data. The amount of connections indicates the user's willingness of sharing data
with friends. American students reported having a larger amount of friends on
average. They tend to focus more on entertaining themselves by making new
friends through social networks, while Korean students tend to focus more on
existing relationships with socially close others from whom they can acquire useful
information and social support.

Patterns for using social networks exists, it is similar among different users of the
same community, and it is shaped by culture, history, age, etc.

3.2 Privacy preservation

Privacy preservation can be viewed and handled from various aspects. Carmag-
nola et al. [11] present research about the factors that help user's identification,
and information leakage in social networks, based on entity resolution. They
conducted a study on the possible factors that make users vulnerable to identi-

CHAPTER 3. RELATED WORK 17

fication and personal information leakage. Their study addresses the following
questions:

e How effective are the identification techniques based on cross-site check-

ing?

e How can users protect their privacy?

e What are the main risk factors?

e Do users really care, and is it possible to raise users’ awareness by showing

them the potential possibilities and risks?

The authors used a technique for user identification based on cross-site checking,
and connecting user profiles that are not explicitly linked together by linking of
user attributes from different profiles. They conducted a study on a group of
people that was asked to perform a search using the built prototype, and complete
a questionnaire about their experience of using the prototype. Their prototype
cross-checked the users’ attributes on different profiles, retrieved profiles with
compatible attributes and calculated the probability of match between profiles.
The results of the study were compared and integrated with a larger set of results
automatically extracted by using an identity aggregator. They found that factors
that increase the likelihood of users’ identification and increase the privacy risks
are: the number of social networks used, social networks’ features, and especially
the amount of profiles abandoned and forgotten by the users. A user profile is
more protected in a huge social network like Facebook, since the presence of
users with similar attributes, and homonyms makes the identification process
more difficult. Users’ awareness to the privacy problem can be increased by
encouraging them to use people search engines like 123People [30] to monitor
their scattered data in OSNs.

Kleinberg and Ligett [14] studied the problem of sharing information with friends
while maintaining privacy, and minimizing personal information leakage. Reveal-
ing personal information to social networks’ friends, generally involves trade-offs
between the benefits of sharing information with friends, and the risks that people
will propagate the shared information to someone who is not on friendly terms
with the information owner, but who is within the owner’'s community. The au-
thors characterized the existence and computability of stable information-sharing
configurations, in which users do not have an incentive to change the set of
partners with whom they share information. They describe the social network as
a graph where nodes represent users, and an edge between two nodes indicates
adversaries that do not wish to share information with each other. Users are
unwilling to be members of a group if it contains one of their adversaries, thus
the community is partitioned into disjoint "information-sharing groups”, corre-
sponding to the groups who are privy to each others’ personal information. They
partitioned the community by assigning a label to each node according to the

CHAPTER 3. RELATED WORK 18

node’s set in the partition, and if two nodes are connected by an edge, they must
receive different labels, meaning they are adversaries, and cannot be included in
the same set. Their aim is to partition the nodes of the graph into disjoint groups
such that no group contains nodes with an edge between them. The problem
of information sharing is described as the graph coloring problem, were not all
colorings are "safe". The authors present a group-based model which is a variant
of graph coloring [31]; the coloring problem is augmented with an additional
constraint requiring that the partition into color classes be stable, to a certain
kind of defection. The model focuses on the partition induced by the sharing
of a single type of information, thus different partitions corresponds to sharing
different types of information. A conflict-free configuration is an assignment of
the nodes into groups such that no two adversaries, with an edge between them,
are in the same group. The authors analyzed the stability of solutions for this
problem, and the incentive of users to change the set of partners with whom they
are willing to share information.

Social networks are of interest to researchers from many disciplines, the data
of interest might contain sensitive information, thus, it cannot be released as
is. There is a need for anonymization of the data prior to publication, without
depraving the data in value. Data anonymization trades off with utility, the
released data is anonymized, but still holds enough utility, and preserves privacy
to some accepted degree [25]. In [32], Tassa and Cohen, handle the information
release problem by manipulation of the released data. They present algorithms
to compute an anonymization of the released data to a level of k-anonymity,
the algorithms can be used in sequential and distributed environments, while
maintaining high utility of the anonymized data. In the basic form social networks
are modeled by a graph where nodes correspond to entities, and edges denote
relations between the entities. There are three types of methods for privacy
reserving with k-anonymity:
1. Edge additions or deletions in a deterministic procedure.
It is assumed that the adversary has a background knowledge regarding
some property of its target node, so the graph is modified such that it
becomes k-anonymous with respect to the assumed property.
2. Add noise to the data.
In order to prevent adversaries from identifying their target in the network,
or inferring the existence of links between nodes, perform random additions,
deletions or switching of edges.
3. Clustering.
The graph is not altered, nodes are clustered together into super-nodes of
size at least k, where k is the required anonymity parameter, and the graph
data is published in that coarse resolution.

CHAPTER 3. RELATED WORK 19

The authors present sequential and distributed clustering algorithms for anonymiz-
ing social networks, which produce anonymization with better utility than those
achieved by existing algorithms.

Record linkage is the process of identifying which records in two or more databases
correspond to the same entity. Data quality activities like data pre-processing
and data integration, are important aspects of record linkage. Record linkage
is also known as data matching or entity resolution. Record linkage has several
aspects and challenges, beside privacy and confidentiality, it includes scalability
to large databases, accurate matching and classification. The privacy and con-
fidentiality challenge arises because the linkage process use commonly personal
identifying data of individuals, like names, addresses and dates of birth. Vat-
salan et al. [6] conducted a survey of 'privacy-preserving record linkage' (PPRL)
techniques, with an overview of techniques that allow the linking of databases
between organizations while at the same time preserving the privacy of these
data. In this paper they present taxonomy of PPRL which characterize the
known PPRL techniques along 15 dimensions, highlight shortcomings of current
techniques avenues for future research. The PPRL taxonomy is divided to 5
categories: Privacy aspect, linkage techniques, theoretical analysis, evaluation,
and practical aspects. Each is divided to 3 different categories, thus providing 15
dimensions. The authors review each dimension, and describe the required addi-
tional work needed. For example, regarding privacy aspects, PPRL on multiple
databases is required, most work in PPRL thus far has concentrated on linking
data from two database owners only. PPRL for malicious adversaries is required,
most solutions proposed so far assume the Honest-but-curious behavior (HBC)
adversary model [34, 29].In the HBC model, parties are curious in that they try
to find out as much as they can about the other party’s inputs while following
the protocol.

3.3 Privacy and Information flow

Ranjbar and Maheswaran [1], describe the social network as a graph where nodes
represent users, and an edge between two nodes indicates that those two users
are friends that wish to share information. They present algorithms for defining
communities among users, where the information is shared among users within
the community, and algorithms for defining a set of users that should be blocked
in order to prevent the shared information from reaching undesirable recipients
(adversaries), and leaking outside the community. In online social networks, com-
munities are subsets of users connected to each other; the community members
have common interests and high levels of mutual trust, it can be described by

CHAPTER 3. RELATED WORK 20

a connected graph, where each user is a node in the graph, and an edge con-
necting two nodes indicates a relationship between two users. A community is
defined by the authors from the view point of an individual user. myCommunity
is defined as the largest sub-graph of users who are likely to receive and hold the
information without leaking.

The way information spreads on the web while using social networks is deter-
mined to a large extent by human decisions. They identify two main challenges
in defining new access control techniques and controlling confidentiality of in-
formation on OSNs: the first one is enforcing usage conditions. Since sharing
information in social network is not governed by precise usage policies, it is hard
for a user to track the release information. The second is that information shar-
ing in social networks is not automatically coupled with the level or the direction
of interactions, and there is no simple way to avoid information sharing with
undesirable friends. They provide algorithms that use the Monte Carlo method
to compute an initial release set (user's community), which is the set of users
that are likely to receive data from that user. By defining a sub-community for
each user, the algorithm prevents information from reaching users outside the
initial release set.

This set is called & — myCommunity, where o is a communication intensity
threshold, for a given communication. The authors provide an algorithm that for
an acceptable threshold of information leakage, defined by «, compute the set
of friends who might leak the shared information to an adversary; those friends
should be blocked, and the user should stop sharing information with them.

Our study is based on the ideas described in Ranjbar and Maheswaran [1]'s paper;
while they only share information within the defined community, and block users
that might leak information to adversaries, we relax the limitation defined in their
study, and block only edges on the path to the adversaries, instead of blocking all
the information from the source user to the users that might leak the information.
In a dynamic network there is the problem of enforcing the flow decisions.

Jaehong and Ravi [23] present the ORIGIN CONTROL (ORCON) access con-
trol model where every piece of information is associated with its creator forever.
Originator Control is an access control policy, where recipients must gain approval
for re-dissemination of disseminated digital object from its originator. Originator
control policies address the problem of usage control (UCON) and digital rights
management (DRM). Current commercial DRM are mainly based on payment,
and thus they do not include enforcement of access control policies. The authors
extend the traditional originator control solutions to enforce access control poli-
cies outside of a closed system environment where a central control authority is
not available.

Usage control concept is originally based on virtual machines and control sets

CHAPTER 3. RELATED WORK 21

(the license). Electronic information is available freely, the access to the infor-
mation is controlled by using the control set that represents the approved access
rights or bypassed by the virtual machine.

3.4 Network Flows

Network flows [26] is a problem domain that is common to several research fields,
including applied mathematics, computer science, engineering, management, and
operations research. A flow network or a transportation network in graph theory,
is a directed graph where each edge has a capacity and receives a flow. The
amount of flow on an edge cannot exceed the edge capacity, and the amount of
flow into a node must equal the amount of flow out of it, unless the node is a
source which has only outgoing flow, or sink which has only incoming flow. A
network can be used to model traffic in a road system, fluids in pipes, currents
in an electrical circuit, or anything in which something travels through a network
of nodes.

In a social network described as a directed graph, where users are the nodes of
the graphs, and a relationship between two users is an edge connecting their
respective nodes, we refer to the probability of two users sharing data, as the
flow passing from one user to the other along the connecting edge. An S-T cut
in a graph is a partition of the graph into two non-empty disjoint sets S, and
T. The cut-set contains all the nodes connected by edges crossing from S to T.
The minimum S-T cut problem is to minimize the S-T cut in a graph, that is,
to determine S and T such that the capacity of the S-T cut is minimal.

The max-flow min-cut theorem states that the maximum value of an S-T flow
is equal to the minimum capacity over all S-T cuts. The meaning is that the
maximum amount of flow passing from the source to the sink is equal to the
total weight of the edges in the minimum cut.

There are various implementations of the Max-flow-min-cut algorithm, each
with different complexity; let |V/| be the number of vertices in a graph, | E| is the
number of edges in the graph, U is the maximum edge capacity, and F' is the max-
imum flow value, the min-cut complexity depends on the max-flow-min-cut imple-

mentation, and is varied from O(|V|>.U) [7] to O(|E|'|V\2/3-log(%)'log U) 3]
The Ford-Fulkerson [19] finds the maximum flow by sending the minimum of the
residual capacities on the path to the sink (end node) as long as there is an
open path through the residual graph. It is based on the concept of residual
network. The basic idea behind the method is iterative improvement: start with
a zero flow from source (start node) to sink (end node), and as long as there

is a path from the source to the sink with available capacity on all edges in the

CHAPTER 3. RELATED WORK 22

path, send flow along one of these paths. Then find another path, and so on. A
path with available capacity is called an augmenting path. By adding the flow of
the augmenting path to the flow already established in the graph, the maximum
flow will be reached when no more augmenting paths with flow can be found
in the graph.If all weights are rational the algorithm is guaranteed to terminate
and find the maximum flow, otherwise it is possible that the algorithm will not
converge to the maximum value.

Edmonds-Karp [13] algorithm is a specialization of Ford-Fulkerson algorithm that
uses breadth-first search to find augmenting paths, with guaranteed termination
and a run-time independent of the maximum flow value. It computes the maxi-
mum flow in a flow network in O(V - E?) time

Dinic’s [10] blocking flow algorithm builds in each phase a layered graph with
breadth-first search on the residual graph. The maximum flow in a layered graph
can be calculated in O(|V]|E|) time, and the maximum number of the phases
is [V]| — 1. In networks with unit capacities, Dinic's algorithm terminates in
O(min |V|** |E|"} |E|) time. Another version of Dinic’s algorithm uses dy-
namic trees data structure to speed up the maximum flow computation in the
layered graph to O(|E|log(|V])).

The push-relabel algorithm by Karzanov [18] maintains a preflow, which is a flow
function with the possibility of excess in the vertices. The algorithm runs while
there is a vertex with positive excess that is an active vertex in the graph. The
push operation increases the flow on a residual edge, and a height function on
the vertices controls which residual edges can be pushed. The height function
is changed with a relabel operation. The proper definitions of these operations
guarantee that the resulting flow function is a maximum flow.

Push-relabel algorithm with FIFO vertex selection rule by Goldberg and Tarjan [2]
is a variant to the push-relabel algorithm which always selects the most recently
active vertex, and performs push operations until the excess is positive or there
are admissible residual edges from this vertex.

Another variant of the push-relabel algorithm is the push-relabel algorithm with
dynamic trees, which builds limited size trees on the residual graph regarding to
height function. These trees provide multilevel push operations.

KRT (King, Rao, Tarjan)'s algorithm [33] ia a randomized algorithm that ef-
ficiently play a certain combinatorial game that arises during the computation
along with a strategy that yields a deterministic algorithm for computing the
maximum flow.

Karger and Stein [17, 5] present a randomized strongly polynomial sequential
algorithm for finding the minimum cuts in weighted undirected graph, which
runs in O(E - V?), and when parallelized runs in O(log*V'). The Contraction
algorithm contracts two vertices of the graph into a new multi-vertex, removing

CHAPTER 3. RELATED WORK 23

the edges between them, and replacing the edges to other vertices with edges
from the new multi-vetex to the other vertices. Each iteration randomly selects
an edge and contract the two vertices connected by the selected edge into a
new multi-vertex, until the graph contains only two multi-vertices which are two
sets of vertices that were contracted into two multi-vertices. These sets are the
cut. If we repeat the contract process enough times the algorithm will find the
minimum cut.
We use both algorithms, Edmonds-Karp algorithm [13], and Karger and Stein [17,

5] to find a set of edges that are candidates for removal from the graph, to disable
information flow from the source to the sink, which is the source’s adversary.

Chapter 4

The OSN Sharing-habits based
privacy assurance Problem

Using social networks to share information with friends and acquaintances might
lead to leakage of the shared information to adversaries. To minimize the prob-
ability of information leakage, the social network is analyzed to determine based
on users’ habits, the probability of information flow through network connections.
In a graph representation of the network, where edges indicate relationship be-
tween users, the challenge is to select the set of edges that should be blocked to
prevent leakage of the shared information to unwanted recipients (adversaries).
In this section we define the general problem of privacy assurance in OSN and
our proposed method that uses information from users sharing-habits.

4.1 Problem definition

Let G = (V, E) be a directed graph that describes a social network, where V' is
the set of network's users, and E is the set of directed and weighted edges rep-
resenting the users’ information flow relationships. An edge (u;,u;) € E exists
only if u; shares information with u;.

Ego is an individual focal node, it is the specific user from which we consider the
information flow. A network has as many egos as it has nodes, ego-community
is the collection of ego and all nodes to whom ego has a connection at some
path length.

The distance between two vertices, diste(u;,u;) is the length of the shortest
path from u; to u; in G.

The d-community of a user, represented by the ego vertex u; is the sub-graph
Gs(u;)=(Vs(u;),Es(i)), where for each v; € Vs(w;), v; # w;, distg(u;,v;) < 0.
Let Vs(u;) be the set of nodes that consists the ego-node u; and all the nodes

24

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM?25

u; such that distg(u;, uj) < 0, Es(i) is the set of edges on the paths from the
ego-node u; to the nodes within Vs(u;) where distg(u;,v;) < . The size of
the community is determined by the distance from the ego node and also by the
density of the graph.

Graph density is the ratio between the number of edges and the number of nodes

in the graph: Density = %
@ Adversay
(U) -Acquaintance

(F) :Close Friznd

Figure 4.1: u}s Community Graph

Figure 4.1 describes an ego-community graph for the ego node u;. The dotted
area surrounds us d-community graph where 6 = 4, i.e., all acquaintances within
distance < 4. The blue area surrounds all ;s friends within distance < 2 denoted
w,s B-community where = 2.

As shown by the figure the d-community of friends is usually much larger than
the -community of close friends.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM26

E00 DLET0

5700 I|II I"-I g S000

Iy oy,

{ '\.n 200 10

I||I:'iull II‘\I I{/dm .\\

4

SharingPatternPrivacy

Figure 4.2: The Community Graph of node 0 with close friends of distance 1

Figure 4.2 describes a community graph, where the ego-user is node 0 col-
ored with blue, nodes 1,2, 3,4 are his close friends of distance 1, colored with
turquoise, and nodes 7,8 are his adversaries colored with coral.

The capacity of an edge is a mapping ¢ : £ — ¥, denoted by ¢y,

It represents the maximum amount of flow that can pass through an edge.

A flow is a mapping f : E — R, denoted by f(u;,u;), subject to the following
two constraints:

e Capacity Constraint: V(u;,u;) € E: fu,u; < Cupu;-

¢ Conservation of Flows: Vu;, € V\{uu;} : Xy wup)ery Juun = 2 fus(up ey Jur -
The total incoming flow to V' equals the total outgoing flow from V', there
is no generation of additional flow.

The value of flow is defined by |f| = > u;ev fuiu; where u; is the source of G.
It represents the amount of flow passing from the source vertex u;, to the sink
vertex u;. To compute the flow, we use the log of the edges’ probabilities on a

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM27

path between u; and u;: |f| = > uiuyev 10g pij, where w; is the ego node.
Given aset T C V of vertices let fi(u;, T') denote the maximum flow value from
u; over T

We use the following definitions as defined by Ranjbar et al. [1]:

p; is the probability that user u; is willing to share the information with some of
his friends.

bi = { (out flow/inflow) (outflow < inflow), (41)

1 (out flow > inflow).

In a period of time:
e Qutflow is the number of sharing interactions from w; to his friends.
e Inflow is the number of sharing interactions from wu.s friends to u;.

The likelihood of w; sharing information with u; along the edge (u;,u;) is
represented by the weight on the edge w; ;. This weight is derived from the
relationship between u; and u;, it is a fixed number indicating the willingness of
u; to share information with u;. It may be set by the user and usually it does
not change.

The probability of flow between two neighbor users, u; and u; is denoted as p;;,
and calculated by p; ; = p; X w; ;. (w;; may represent apriori probability, while
pij is the actual probability, based on the number of interactions.)

We assume that the user behavior is consistent; user u; shares all the data with
user u; with probability p; ;. This probability can change with time, but it does
not depend on the content of the shared information.

For example, if in figure 5.1, the number of sharing interactions from user 4 to
his friends is 23, (13 to user 3 and 10 to user 5), and the number of sharing
interactions from 4’s friends to 4 is 30, (9 from user 7 and 21 from user uy), p;
will be 23/30 = 0.77. If wyps is 0.8 and wy 3 is 0.92, the resulting py 5 is 0.62
and py 3 is 0.71.

The Probability of Information Flow (PIF'), is the maximum probability of in-
formation flow throughout the entire paths between w; and u;.

A path probability flow between w; and u; is the flow of the edge with the min-
imum p; ;. It is denoted as PATH, ;. The PIF is the maximum among of all
paths between u; and u; of PATH, ;. The function f which denotes flow is
computed by the PIF.

To prevent information flow from one user to another we search for the minimal
set of edges that when removed from the community graph, or blocked, disables
the flow. We denote this set of blocked edges as B. Note that after edges are
removed, the PIF and therefore f should be recomputed.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM?28

4.1.1 Research Question

Our aim is to enable a user to share information with as many friends and
acquaintances as possible, while preventing information leakage to adversaries
within the user's community. Ranjbar et al. [1] describe a method for shar-
ing information within the source user defined community, while blocking users
(friends and acquaintances) that might leak information to adversaries. We relax
the limitation due to blocking friends, and instead of blocking all the information
from the source user u; to the users that might leak the information, we block
only edges on the path from wu; to her adversaries. For a source u;, we use the
following criteria to define and evaluate the resulting u; ego-community graph:

1. Minimum Friends Information Flow : the minimum information flow
from u; to every user within her community must preserve a certain per-
centage of the original information flow to every user denoted by a.

Let Gs(w;) = (Vs(w;), Es5(u;)) be the §-community of w;, u; € V(u;)

f(uia uj) Z Q- forigz’nal(uz’a uj) (42)

2. Close Friends Distance : Close friends are defined by their distance
from u;. Gg(w;) = (Vs(w;), Es(u;)) is the f-community of u;, u; € V (u;),
B < §. This criteria reflects the requirement that all the users within us
[-community must receive the entire information from wu;, and cannot be
blocked.
Let B be the set of blocked edges, than

B C {(US,Ut)‘dG[S(Ui,uS) Z /B,US,Ut,Ui c VG(g(uz)} (43)
We assume that there are no adversaries within w}s S-community.

3. Maximum Adversaries Information Flow : the maximum information
flow from u; to each of her adversaries cannot be more than ~ from the
original information flow to each adversary. wu,q, € {set of adversaries}

f(uz'7 uadv) S - foriginal(ui; uadv) (44)

4. Fuzziness : the blocked edges list should not be predicted.

For example the threshold parameters can be: « = 0.9, § =2, and v = 0.1.
The problem goal is to remove the least number of edges such that the three
inequalities 2,3,4 are satisfied. A detailed example for this process is given in
Section 5.1.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM?29

4.2 Cuts in graphs

A cut in a graph is a set of edges between two subsets of a graph, one containing
u;, and the other containing u;s adversaries, such that when removed, prevents
information flow from one subset to the other.

A naive algorithm for solving the problem would be an algorithm that finds any
cut between the adversaries’ set and u;s community, and defines this cut as the
blocked edges list. Algorithm 1 is a naive algorithm for blocked users.

Algorithm 1 Naive algorithm for blocked users
Input

G = (V, E) a directed graph that describes the social network.
u; the ego user.

& the community distance.

AdversariesList: the list of u}s adversaries.

Output
B:the set of blocked edges.
1: set B =10
2: for all u; € V and (u; ¢ AdversariesList) and (distg(u;, u;) < J) do
3. insert u; to Vs(u;)
4: for all u; € AdversariesList do
5. insert u; to Vs(adversaries)
6: Find a cut between the community graph, Vs(u;) and the adversaries

Vs(adversaries).
7. C(Vs(u;), Vs(adversaries)) = {(i,j)||i € Vs(u;) and j € Vs(adversaries)}
8: for all e;; € C(Vs(w;), Vs(adversaries)) do
9: insert e;; to B
10: return B

The naive algorithm serves as a basic framework to our proposed solution.

However, it is not suitable for our problem, since it doesn't address (1) Minimum
Friends Information Flow and (2) Close Friends Distance criteria of our problem.
Condition (1) requires maximum information flow from w; to all members in u;s
community, the naive algorithm finds any cut between the two subsets, without
verifying maximum information flow to u}s community.
Condition (2) requires minimum distance to closed friends, the naive algorithm
finds any cut between the two subset, without verifying that edges to close friend
aren’'t removed. While the naive algorithm is not sufficient to our problem, it is
important for understanding the theoretical problem defined here.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM30

4.3 Problem complexity

Here we analyze the Sharing-habits based Privacy Assurance in OSN problem
complexity. We show that a "Minimum-Distance with Maximum-Flow and Min-
imum Leakage” problem, which is a simple subset of the "Sharing-habits based
Privacy Assurance problem” (defined in subsection 4.1 is NP-Complete, and so
does the general Sharing-habits based Privacy Assurance in OSN problem. In
section 4.4 we present a practical approximating solution for the general prob-
lem.

4.3.1 Maximum-Flow Minimum-Leakage problem defini-
tion

Let G = (V + u;, E) be a directed graph with an ego node u;, which is the
source user, and edge capacities/lengths {c. : e € E}.

Given a set T C V of vertices, let fg(u;,T) denote the maximum (u;, T')-flow
value under capacities c,.

T C V is the set of u.s friends.

S C V is the set of u.s adversaries.

Objective:
Given a threshold k, find a subgraph H = (V, Ey) of G with fg(u;,.S)
minimum such that fg(u;, T) > k

A particular case of Maximum-Flow Minimum-Leakage Problem is the Minimum-
Distance Maximum-Flow Minimum-Leakage Problem , which is a simple subset
of our general problem, were the adversaries are in the boundaries of wu}s §-
community : distg(u;, u;) < diste(u;,s) for all u;,u; € T, s € S.

In the next subsection we present the proof for the claim that the Minimum-
Distance Maximum-Flow Minimum-Leakage problem is NP-complete and so does
the simple problem, and furthermore does the general problem.

4.3.2 Minimum-Distance Maximum-Flow Minimum-Leakage
problem is NP-complete : proof
Here we show that the the Minimum-Distance Maximum-Flow Minimum-Leakage

problem is NP-complete and so does the simple problem and furthermore does
the general problem.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM31

We start by showing that the Maximum-Flow Minimum-Leakage Problem is a
Hitting-Set-hard.

The Hitting-Set Problem

Instance: Collection C' of subsets of a set S, positive integer K.
Objective: Does S contain a hitting-set for C' of size K or less, that is,
a subset S” C S with |S'| < K and such that S’ contains at least one
element from each subset in C.

A p-approximation algorithm for a minimization problem runs in polynomial
time and produces a feasible solution of value at most p times the value of an
optimal solution; if such an algorithm exists then we will say that the problem
admits approximation ratio p. If such an algorithm is unlikely to exist (e.g., if
existence of such an algorithm implies P=NP) then we will say that the problem
has approximation threshold p.

Given a subset A of nodes of a graph J, let I';(A) denote the set of neighbors
of Ain J.

The following known problem is NP-hard, and moreover, is known to have a
logarithmic approximation threshold.

The Graph Hitting-Set Problem

Instance:A directed bipartite graph J = (A + B, E;) with I';(A) = B
such that every edge in E; has tail in A and head in B.

Objective: Find a minimum size node subset A" C A such that I';(A") =
B.

Garey and Johnson showed in [20] that the Hitting-Set is NP-HARD by showing
that the hitting-set problem is reduced to the vertex-cover problem.

The Vertex-cover problem

Consider a bipartite graph, with vertices on the left representing sets, vertices
on the right representing the universe of elements, and edges representing the
inclusion of elements in sets. The objective is to find a minimum cardinality
subset of left-vertices which covers all right-vertices.

In the hitting-set problem, the objective is to cover the left-vertices using a
minimum subset of the right vertices; by interchanging the two sets of vertices
we convert the bipartite graph problem into the hitting-set problem.

Let n = |V/|, we prove that Minimum-Distance Maximum-Flow Minimum-
Leakage Problem is Hitting-Set-hard to approximate, and in particular obtain
the result showed by Feige [12].

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM32

Given an instance of Hitting-Set with |A| = |B|, we construct an instance of
Maximum-Flow Minimum-Leakage Problem as follows (see Figure 4.3):

e Assign to each edge in E; a capacity of 1.

e Add a new node u; and a set of edges E,, = {u;v : v € A} of capacity

| B| each.

e Add a new node u; and a set of edges F,, = {vu; : v € B} of capacity 1
each.

o Set S=Aand T = {u;}.

e Set k= |B|.

T: ‘)f i .; '\E/_l

Figure 4.3: lllustration to the Maximum-Flow Minimum-Leakage Problem

Let £ = E; U E; be the set of edges of capacity 1. Note that for any sub-
graph H of the obtained Maximum-Flow Minimum-Leakage Problem instance
we have:

o fuip(u;,S) = fu(u;,S) (adding E' to H does not change the (u;, S)-
flow).

o fuip(ui,u;) > fu(u;,uj) (adding £’ to H cannot decrease the (u;, u;)-
flow).

Feige [12] showed that Hitting-Set cannot be approximated within (1—o(1))in | B|

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM33

unless NP has quasi-polynomial time algorithms, while Raz and Safra [28] es-
tablished a lower bound of C' - in|B|, where C'is a constant, under the weaker
assumption that P # N P. This is so even when |A| = | B].

4.3.2.1 Theorem 1

Minimum-Distance Maximum-Flow Minimum-Leakage Problem cannot be ap-
proximated within:

e (1 —o0(1))In n, unless NP has quasi-polynomial time algorithms.
e (- In n for some constant C, unless P # NP.

Furthermore, this is so even if |T| =1 and k = |n/2].

4.3.2.2 Proof of Theorem 1

Now let H be a feasible solution to the obtained Maximum-Flow Minimum-
Leakage Problem instance, namely, fg(w;,u;) > |B|. Then fyip(u;,u;) >
fu(ui,u;) > |B|, and thus H 4+ E’ is also a feasible solution. Moreover,
fo+e (u;, S) = fu(u;, S) and thus the solutions H and H + E’ have the same
value frip (ui, S) = fu(ui, S).

Let us call a solution H to the obtained Maximum-Flow Minimum-Leakage Prob-
lem instance proper if it contains E’. From the above discussion we see that for
the obtained Maximum-Flow Minimum-Leakage Problem instance, we can re-
strict ourselves to proper solutions, without changing the problem. Furthermore,
it is not hard to see that we have a bijective correspondence between proper
feasible solutions to the obtained Maximum-Flow Minimum-Leakage Problem
instance and the original Hitting-Set instance, as follows.

4.3.2.2.1 Corollary 1

H is a proper feasible solution to the obtained Maximum-Flow Minimum-Leakage
Problem instance if and only if the set of nodes A" = I'(u;) is a feasible solution
to the Hitting-Set instance. Furthermore, if H is a proper feasible solution
to the obtained Maximum-Flow Minimum-Leakage instance then fg(u;,S) =
|B| - [T'm(u;)|; namely, the maximum flow value from w; to S in H equals |B|
times the size of the corresponding solution A’ = I'y(u;) to the Hitting-Set
instance.

This implies that the optimal solution value of the obtained Maximum-Flow
Minimum-Leakage Problem instance equals | B| times the optimal solution value
of the original Hitting-Set instance. Observing that in our construction n =

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM34

|A|+ |B|+1=2|B|+1 and k = |B|, and using the results of [12] and [28],
we get that Theorem 1 is valid for Maximum-Flow Minimum-Leakage Problem.
To get a similar result for Minimum-Distance Maximum-Flow Minimum-Leakage
Problem we slightly modify the construction by adding an edge of capacity 0 from
u; to uj. This gives distg(u;, uj) = 0, hence distg(u;,u;) < distg(u;,v) for
every v € S. Corollary 1 remains valid for this modification. This concludes the
proof of Theorem 1, and our claim that the Maximum-Flow Minimum-Leakage
Problem is a Hitting-Set-hard.

Since the Maximum-Flow Minimum-Leakage Problem, which is a subset of the
simple problem is already NP-hard, so does the general problem: the Sharing-
habits based Privacy Assurance in OSN problem.

It is obvious that since the simple problem is already NP-hard, so is the general
problem.

In the next section we present several approximations algorithms to the general
problem.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM35

4.4 Solution algorithms

As we showed in 4.3 the problem presented here is NP-Complete, here we propose
a model for finding the best set of edges that should be blocked to allow maximum
information sharing with the community of the information source and minimum
information leakage. In section 5.4 we analyze the complexity of the proposed
model, and show that it is O(|V |*+|V|-|E|+|E|?) when using paralleled contract
for finding the initial candidates-set for edges to be blocked, or O(|V|-|E|*+|E*)
when using min-cut for finding the initial candidates-set for edges to be blocked.

Our model consists of two major steps: the first is the initialization step in which
we create a multi-graph with a super-vertex s; containing u;s [S-community,
this step is described in subsection 4.4.1. In the second step we present two
methods for identifying candidate sets of edges to be blocked as described in
subsection 4.4.2.

H Construct Blocked Edges Candidates A
—L‘-"'{ MinCut }—pl ComputeFinalCandidatesSet]
‘ Initialize é
T Contract J_'| ComputeFinalCandidatesSet | |

InitialCandidatesSet BlockedEdges

Figure 4.4: Construct Blocked Edges main building blocks

Figure 4.4 describes the main building blocks of the algorithm for defining the
edges to be removed from us d-community in order to prevent information leak-
age to u.s adversaries.

Algorithm 2 is a skeleton outlines these steps: It starts with the initialization
step (lines 1-8), next it calls the procedure that finds candidates-sets of edges to
be blocked (line 11), by using min-cut algorithm, contract algorithm, or both, and
then it calls the procedure that examines the proposed set against the required
privacy criteria (line 12).

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM36

Algorithm 2 Construct blocked edges
Input
u;: the ego vertex.
Gs(u;) = (Vs(ug), Es(u;)): uls d-community graph.
a,y: Flow thresholds.
B: B-community distance.
AdversariesList: the list of us adversaries.
Output
B:a set with edges to be blocked.
MultiSet function Initialize(u;, Gs(u;), 3, AdversariesList)
set s1 = {UZ}
for all (u; € Gs(w;)) and (distg, (u;, u;) < 3) do
if (u; ¢ AdversariesList) then
insert u; to s;

else
return ()
return s;
{ Main }
9: 51 =Initialize(u;, Gs(u;), B, AdversariesList)
10: if (s; # 0) then
11: InitialCandidatesSet =
ConstructBlockedEdgesCandidates(u;, Gs(u;), s1, AdversariesList, a,)
12: B = SelectBestBlockedEdges(/nitialCandidatesSet)
13: return B
Next we describe in detail each one of these building blocks.

o Nk wn

4.4.1 |Initialization

The d-community of u}s consists of all users u; connected to u; with a path with
distance < 0. The 3 parameter defines the size of the community of close friends.
Therefore, a f-community of u; would be a sub-graph contained in §-community
were 5 < ¢, as demonstrated in figure 4.1. The privacy criteria that is defined
in sub-section 4.1.1 requires that the entire information shared by w; is shared
with u/s close friends (2). To comply with this requirement, the Initialization
step creates a multi-graph with one super-vertex s; containing u; and her close
friends with distance < (3. This step ensures that no edge on a path between
u; and her close friends will be blocked since they all belong to the same super
vertex, sy (see figure 4.5).

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM37

S

¥

Figure 4.5: ugs 6-community graph: (a) ujs comuunity (b) after initialization

Figure 4.5(a) describes a d-community graph for ug, 6=3, with 10 members, 4
are close friends with distances=1 (blue vertices), 4 acquaintances (green ver-
tices) and 2 adversaries (red vertices). Figure 4.5(b) describes the graph after
initialization. The initialization process is depicted in steps 1-8 of the algorithm.

4.4.2 Construct Blocked Edges Candidates

A candidate-set of blocked edges is a cut between two sets of vertices, one set
containing u;, u;s f-community, and some vertices from of u;s -community. The
other set containing the remaining part of u}s §-community, and u;s adversaries.

The candidate-set is evaluated against the privacy criteria we have defined
in section 4 and is described later in section 4.4.3. We use the following two
methods for finding the initial candidate-set of edges to block:

1. Min-Cut: based on Ford-Fulkerson [19] Max-flow-min-cut algorithm, we
find the minimum cut between the super-vertex s; and each of us adver-
saries.

2. Contract: based on Karger et al. [5] contract algorithm, we find any cut
between the super-vertex s; and each of us adversaries.

Each candidate set is later evaluated to achieve maximum information flow to
community members with minimum information flow to adversaries.

4.4.2.1 Block edges by Min-Cut

Algorithm 3 implements the Sharing-habits privacy assurance based on the max-
flow min-cut method by Ford and Fulkerson [19], and then tests for privacy
criteria compliance:
1. Find a minimum cut between super-vertex s; and w;s adversaries [19].
2. Check if the cut complies with the required privacy criteria as defined
in sub-section 4.1.1 and select the final candidates-set. This process is
described in section 4.4.3.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM38

Algorithm 3 Block edges by Min-Cut

Input

u;: the ego vertex.

Gs(u;) = (Vs(w;), Es(u;)): uls d-community graph, after the initialization step.
a,~: Flow threshold.

AdversariesList: the list of u}s adversaries.

Output
B:a set with edges to be blocked.
1: set B=1
2: Initial Blocked Edges= FindMinCut(u;,Gs(u;),AdversariesList)
3. if (Initial BlockedEdges # () then
4: B=ComputeFinalCandidatesSet(u;,Gs(u;),AdversariesList,Initial Blocked Edges,a, v)
5. return B

4.4.2.2 Block edges by Contract

The minimum cut between the beta community of user u;, Gz(u;), and u.s ad-
versaries, found by BlockEdgesByMinCut algorithm, might not be the optimal
solution for our problem, since the edges in this cut may not satisfy the privacy
criteria. We therefore apply the contract algorithm, to find a variety of other
cuts possibly complying with this criteria.

Algorithm 4 implements the Sharing-habits privacy assurance based on the con-
tract method by Karger and Stein [17, 5].

In each iteration, the contract algorithm finds a different cut between the super-
vertex containing Gs(u;) and the super-vertex containing u}s adversaries. The
contract algorithm repeatedly contract vertices to super-vertices until it gets two
super-vertices connected by a set of edges that defines a cut between the two
sets of vertices contained in each super-vertex.

It is important to note three important features of the contract algorithm:

1. The contract algorithm may be called many times until the resulting cut
complies with the required privacy criteria, as defined in section 4.1.1.

2. When repeated enough times the contract will find the min-cut.

3. Fuzziness is inherent in the contract algorithm, where in each iteration we
randomly select an edge and contract the two vertices connected by the
selected edge into a new multi-vertex, thus each time we run the contract
we will get a different cut which defines the initial candidates-set of edges
to be blocked.

Algorithm 4 is composed of the following main steps:
1. Find a cut between super-vertex G3(u;) and u;s adversaries.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEM39

2. Check if the cut complies with the required privacy criteria as defined
in sub-section 4.1.1 and select the final candidates-set. This process is
described in 4.4.3.

Algorithm 4 Block edges by Contract

Input

u; : the source node.

Gs(ui) = (Vs(u;), Es(u;)): uis 6-community graph, after the initialization step.
a,~: Flow thresholds.

AdversariesList: the list of u}s adversaries.

Output
B:the set with the blocked edges.
1: set B=1
2: Initial Blocked Edges= ContractFindCut(u;,Gs(u;), AdversariesList)
3. if (Initial BlockedEdges # () then
4: B=ComputeFinalCandidatesSet(u;,Gs(u;),AdversariesList,Initial Blocked Edges,a,)
5. return B

Algorithm 5 is called by algorithm 4 to find a cut between two vertices by ran-
domly selecting an edge and contracting the two vertices connected by the se-
lected edge into one super-vertex.

Figures 4.6- 4.8 describe a simple community graph and some steps of one run
of the contract algorithm.

Selecting edge : 5-510

©) Aavenssy Selecting edge : 5-72 . Can't contract Adversary with friend:

) Aequaintane Ly
Acquaintance) :Adversay

G5 -
i S () :Close Friand
F | 1 1 \ 2

Figure 4.6: Contract: (a) Edge (5,10) was randomly selected, (b) Edge (5, 2) cannot be
selected, can not contract a super-vertex containing ug with a super-vertex containing u(s
adversary.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEMAQ

Algorithm 5 ContractFindCut

Find a cut in a graph by repeatedly contracting vertices into two super vertices
Input

Gs(u;) = (Vs(u;), Es(u;)): d-community multi-graph, after the initialization step.

u;: the source.

AdversariesList: the list of u}s adversaries.

Output

CutSet: the resulting cut.

1: set CutSet = ()

2: repeat

3: if (all edges (u,v) are tested) then

4 return CutSet

5. else

6: choose an edge (u,v) uniformly at random from E \ testededges
7

8

9

if (v and v do not contain each others’ adversaries) then
contract the vertices v and v to a super vertex w
: keep parallel edges, remove self loops
10: until (G has only two super-vertices)
11: set C'utSet = the edges between the two vertices
12: return CutSet

Selecting edge :8->10
Selecting edge: -3

) Adversay

() Acmusintance

() Close Friend

Figure 4.7: Contract: (a) Edge (8, 10) was randomly selected (b) Edge (6, 5) was randomly
selected

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEMA41

Selecting edge | 37 The cutis {20, 3, 18, 6. 16}

O Adversay

) shemusintance The cutis {7,101, 41,5, (4.5). 12.6), (3,80 O M

) :Dhosa Friand

(b)

Figure 4.8: Contract: (a) Edge (3, 7) was randomly selected (b) The obtained cut from one
run of Contract algorithm

4.4.3 Compute Final Candidates Set

After selecting the initial candidates-set of edges to be blocked, each method
uses algorithm 6 for selecting the final candidates-set of edges that should be
removed from w}s d-community graph. In the first step of the algorithm, we
check if by removing the initial-candidates-set of edges from u}s d-community
graph, the remaining d-community graph for user u; complies with the required
privacy criteria. If it does not comply with the required privacy criteria, we try to
remove edges from the initial blocked candidates-set and insert them back into
u,s 9-community graph, until the remaining community graph complies with the
required criteria, or until we tested the entire edges in the initial candidate-set,
and could not find a set of edges to be blocked.

7 R
[ComputeFinalCandidatesSet

Compute Criteria

[~N]
[InitialCandidatesSet 1- Q’ - BlockedEdges

4 N
{ Insert Edges Back r
|
\ /

/s

, 1//

Figure 4.9: Compute Final Candidates Set

Figure 4.9 describes the flow of computing the final-candidates-set. We keep
checking if the community graph without the edges from the initial-candidates-
set complies with the required privacy criteria and inserting blocked-edges back
to the graph, until the remaining community graph complies with the required
criteria, or until we tested the entire edges in the initial candidate-set.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEMA?2

The contract algorithm may provide at each run different cuts with different
sets of edges to be blocked, the optimal set of edges to be blocked may vary
in terms of the number of blocked edges, the amount of information flow to
acquaintances and the amount of information leakage to adversaries. The order
of selecting the edges to be blocked may provide different acceptable solutions
to our problem. Fuzziness is inherent in the contract algorithm, where in each
iteration we randomly select an edge and contract the two vertices connected by
the selected edge into a new multi-vertex, thus each time we run the contract
we will get a different cut which defines the initial candidates-set of edges to be
blocked. This is important in order that the adversary will not suspect a blocking
which is fixed over a long period of time.
We propose three methods for selecting and removing an edge from the initial
candidates-set, and insert the selected edge back to §-community graph:

1. Randomize: select an edge randomly.

2. Maximum PIF: select the edge with the maximum probability of information

flow.
3. Minimum PIF: select the edge with the minimum probability of information
flow.

The motivation for the first choice is to add fuzziness to our algorithm. The
motivation for the second choice is to reduce maximum flow to adversaries. The
motivation for the third choice is to increase flow to friends. It is hard to find a
balanced set since the general problem is NP-complete.
Algorithm 6 implements the three methods and algorithm 7 tests the criteria.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEMA3

Algorithm 6 Compute final candidates-set

Input

u; : the source.

G, uis 6-community multi-graph, after the initialization step.
AdversariesList: the list of u}s adversaries.

Initial BlockedEdges: the list of edges to be blocked.

a,y: Flow thresholds.

EdgeMethod : the method for selecting the next edge for unblocking.
Output

BlockedEdges: the final set of edges to be blocked.

1: while ((ComputeCriteria(u;, G,,, AdversariesList, Initial Blocked Edges, o,) #
TRUE) and (Initial BlockedEdges # (0))) do
switch (EdgeM ethod)
case Random:
e < select random (u,v) € E,,
case MaxPIF:
€ < argMax, e, PIF
case MinPIF:
e < argming
end switch
10: InitialBlockedEdges = InitialBlockedEdges \ (u, v)
11: BlockedEdges = Initial BlockedEdges
12: return BlockedFEdges

en,, PIF

u,v)

This test verifies that the flow to each community member, a friend or an
acquaintance, is at least avx the original flow to that member before blocking
the set of edges and the flow to each adversary is no more than v x the original
flow to that acquaintance before blocking the set of edges. In terms of flow value,
the set of blocked edges by min-cut algorithm is better than the set blocked by
contract algorithm, although the contract when run enough times will eventually
find the min-cut set of edges.

CHAPTER 4. THE OSN SHARING-HABITS BASED PRIVACY ASSURANCE PROBLEMAA4

Algorithm 7 Compute the required criteria
Input
u; : the source.
G, uis 6-community multi-graph, after the initialization step.
AdversariesList: the list of u}s adversaries.
BlockedEdges: the list of edges to be removed.
a,y: Flow thresholds.
Output
ComplyCriteria: indicator whether the community graph without the blocking-set complies
with the required privacy criteria.
1. for all v € G,, do
2. if (f(wi,v) < a- forigina(ui,v)) then
3: return FALSE
4: for all a,y, € AdversariesList do
5: if (f(u7,7 uadv) > fom’ginal(uia uadv)) then
6: return FALSE
7: return TRUFE

Chapter 5

Experimental Evaluation

In this chapter we describe the evaluation method we use for the proposed algo-
rithm, and the results we obtained using partial real data from SNAP Datasets [15].
We first demonstrate our methods and the difference between them using a toy
community.

5.1 Demonstration on a synthetic community

We demonstrate our algorithms on a small graph representing a community that
is based on the example given in [31], containing 11 vertices, and 23 edges with
the following community parameters: community distance 6 = 3, close friends
distance § = 1, and 2 adversaries, graph density is 0.209. The algorithms are
tested with different probabilities of information flow from source user Uj to the
community members.

Figure 5.1 describes the synthetic community graph with high probability of
information flow on the edges to adversaries. This situation simulates a collision,
for which it is hard to find a cut other than the one that trivially contains the
edges to adversaries. In these cases a cut will be found only for privacy criteria
that allows very low levels of information flow to wuys community (set by «),
and/or very high levels of leakage of information flow to u(s adversaries (set by

7)-

45

CHAPTER 5. EXPERIMENTAL EVALUATION 46

A 0.19) (i (PIF)

— A o Z)
A s =l () Adversay
ol l N{c?. Tl
P S e — R
S s N +_' TN 075wl 3 / Roars () ‘Acquaintance
L_- X %, sy o) | 095
[\ | @' i \ «l
s | \ AEEE v 4 S \ ‘Close Friend
L | \'-. qo.71) fk ""‘;&"EJ i ol \) o O

\ . -
\ A

e P

X o \ v | LR e

b —— (a0 -

s

Figure 5.1: Synthetic community graph with collision

In Figure 5.1 U, is the source, Uy has four close friends: 1,2,3,4, four ac-
quaintances: 5,6, 7,8, and two adversaries: 9, 10.
Adversary 9 has three incoming edges {(6,9), (5,9), (8,9) } with probabilities
(0.19,0.95, 0.8) respectively.
Adversary 10 has also three incoming edges {(5, 10), (7, 10), (8, 10) } with prob-
abilities (1,0.85,0.95) respectively.

The maximum probability of information flow from Uy to all other members in
the graph is depicted in table 5.1.

User 1 2 3 4 5 6 7 8 9

10

MAX PIF | 0.76 | 0.62 | 0.4757 | 0.67 | 0.4332 | 0.4154 | 0.2949 | 0.4281 | 0.4115

0.4332

Table 5.1: PIF from Uy to his community

Next, using this example we show why the contract approach has a better
chance to find a good set of edged that can be blocked while satisfying the

privacy criteria.

Edge | PIF Edge | PIF
Edge | PIF

(5.9) | 0.95 (5.9) | 0.95
(45) | 0.62

(6,9) | 0.19 (6,9) | 0.19
(15) | 0.57

(8.9) | 0.8 (89) | 0.8
(2.6) | 0.67

(38) | 0.9 (7,10) | 0.85
(3.8) | 0.9

(37) | 0.62 (5,10) | 1
(7,10) | 0.85

(510) | 1 (8,10) | 0.95

Table 5.3: Candidates found
Table 5.2: Candidates found by Contract Table 5.4: Candidates found

by Min-Cut by Contract

CHAPTER 5. EXPERIMENTAL EVALUATION 47

5.1.1 Block edges by Min-Cut method

The Minimum cut found by Min-Cut method is depicted in table 5.2.

If we remove the initial candidates-set edges from u(s community graph, the
probability of information flow to 7 and 8 will be 0, meaning no flow at all.
In the final step of algorithm 6, we try to unblock each edge from the ini-
tial candidates-set, to reach the required privacy criteria; in this example the
only edge that improves the probability of information flow (PIF) to the com-
munity without increasing the information leakage to w)s adversaries is (3,7),
thus the final candidates-set is {(3,7)}. However if we block information flow
from (3,7), the max information flow to 7 is obtained through 8 and since ac-
cording to table 5.1, the maximum flow to 8 is 0.428, the maximum flow to 7
is: 0.428 % 0.29 = 0.124, This is clearly a very low value of information flow to
community members.

We next show the detailed Flow, unblocking edges according to max PIF:

First, we try unblocking edge (5, 10), the flow to U, acquaintances is not im-
proved, but the flow to U, adversaries is improved, thus edge (5,10) remains
blocked.

Next we try unblocking edge (5, 9), the flow to Uy acquaintances is not improved,
but the flow to Uj adversaries is improved, edge (5,9) remains blocked.

Next we try unblocking edge (3,8), the flow to 8 is improved and now it is
0.4281, but the flow to 10 was also improved to 0.4067, which is 0.94x original
flow to 10, so we can't unblock edge (3,8), and edge (3,8) remains blocked.
We continue with the rest edges from the initial-candidates set until we comply
with the required privacy criteria, or until we test the entire set of edges from
the initial-candidates set. In this example we see that we can't define o, and
with values that comply with the required privacy criteria, we can try setting «
to 0.9, and improve the information flow to uy, community, but the flow to wujs
adversaries will increase, and we will have to set also v to 0.9 to comply with
criterion (3), and the information from Uy will leak to adversary 10.

5.1.2 Block edges by Contract method

Two Cuts found by iterations of contract method are depicted in tables 5.3
and 5.4.

If we remove the initial candidates-set edges depicted in table 5.3, the prob-
ability of information flow to 5, 6, and 8 will be 0, meaning no flow at all and
this does not comply with the required privacy criteria. Therefore following al-
gorithm 6 we unblock each edge from the initial candidates-set, until we meet
the required privacy criteria; the final candidates-set is empty, since each edge
we unblock not only improves the information flow to ujs community, but also

CHAPTER 5. EXPERIMENTAL EVALUATION 48

increases the information leakage to u(s adversaries. In this case since users 5,7,
and 8 are highly sharing information with the adversaries, the only reasonable
cut must include edges to the adversaries.

We next show the detailed Flow of unblocking edges according to max PIF:
First, we try unblocking edge (3,8), the flow to 8 is improved and now it is
0.4281, but the flow to 10 was also improved to 0.4067, which is 0.94x original
flow to 10, so we can't unblock edge (3, 8), and edge (3, 8) remains blocked.
Next we try unblocking edge (7,10), the flow to Uy acquaintances is not im-
proved, and to U, adversaries is improved, thus edge (7, 10) remains blocked.
Next we try unblocking edge (2, 6), the flow to 5 was improved to 0.1412, which
is 0.32x original flow to 5. It also improved the flow to 10 to 0.14124, which is
0.33x original flow to 10, and the flow to 9 to 0.08, which is 0.15x original flow
to 9. If we set v to 0.4 we can unblock edge(2,6). We continue with the rest
of the edges from the initial-candidates set until we comply with the required
privacy criteria, or until we test the entire set of edges from the initial-candidates
set.

It is obvious that when the edges to the adversaries have high probabilities, the
max-flow-min-cut methods might not select those edges, and might not find a so-
lution that comply with the required privacy criteria, while the contract method
might find the trivial cut that contains only the edges to the adversaries, as
depicted in table 5.4, and thus comply with the required privacy criteria.

5.2 Test on SNAP Database

We evaluated our algorithms using partial real data from Facebook, Twitter
and Google+ networks data, available from Stanford Large Network Data-set
Collection (SNAP) [15]. The SNAP library is being actively developed since 2004
and is organically growing as a result of Stanford research pursuits in analysis of
large social and information networks. The website was launched in July 2009.

The first social network graph describes social circles from Facebook (anonymized)
and consists of 4,039 nodes (users), and 88,234 edges. The social network graph
of Twitter, is a directed graph describing social circles from Twitter which con-
sists of 81, 306 nodes (users), and 1,768,149 edges. The social network graph
of Google+, is a directed graph describing social circles from Google+ which
consists of 107, 614 nodes (users), and 13,673,453 edges.

In real world, the user’s willingness to share information with friends and ac-
quaintances may be set periodically as described in section 4, or by using learning
techniques on user’s sharing habits. Since interactions between members are not
reported in the SNAP datasets, we use the structure and relationship from this
database, and assign random probabilities to the edges in the network graph as

CHAPTER 5. EXPERIMENTAL EVALUATION 49

described next.

We define four types of users, to express a user's willingness to share infor-
mation: very high, medium, low, and very low. For each user in the graph we
randomly assign a type. For each edge from a user node we randomly assign a
probability that conforms to the user’'s type according to the following ranges:
high (0.75-1), medium (0.5-0.75), low (0.25-0.5), very low (0-0.25). The four
types are generated uniformly among all network users. In real life these proba-
bilities can be learned from the traffic patterns and users sharing habits.

In each run a random node is selected as the ego-node, the «, v and § param-
eters are set randomly and the (3 parameter is set to 1. A random number of
adversaries (between 1% and 5% of community vertices) are selected from the
d—community of the ego-node. We used three methods for selecting the final
candidate-set of edges to block: edges with max PIF (Probability of Information
Flow), edges with Min PIF, and random edges. All three methods yield similar
results, thus we only present the results from using the max PIF method.

5.2.1 Test On Facebook Database

Figures 5.2- 5.8 present several sub-communities derived from Facebook database
by randomly selecting a sharing user with 0 = 4, and the results obtained by our
algorithms. From these figures we can see that Facebook database is shaped
as clusters of sub-communities connected together into bigger clusters. The
users in these figures are colored according to their types, the ego-user is col-
ored in steel blue, first degree friends are colored in turquoise, the adversaries
are colored in coral, and community members are colored in gray. The red
lines depict the initial cut edges and the thick red lines depict the final cut
edges,V = Vertices, E = Edges, D = Density.

CHAPTER 5. EXPERIMENTAL EVALUATION 50

Figure 5.2: Facebook: (a) V =987, F = 61831, D = 0.06353 (b) V = 789, F = 5205, D =
0.00837

Figure 5.2 describes two communities derived from Facebook database. The
two communities have the same order of vertices, however we can see a clear
division to clusters of vertices in community (a) which has a larger number of
edges (connections), and consequently larger density.

Figure 5.3: Facebook: (a) V = 789, F = 2038, D = 0.00328 (b) V = 1813, EF = 30821, D =
0.00938

Figure 5.3 describes a second set of two communities derived from Facebook
database. The two communities have the same order of vertices, however we can
see a clear division to clusters of vertices in community (b) which has a larger
number of edges (connections), and consequently larger density.

CHAPTER 5. EXPERIMENTAL EVALUATION 51

Figure 5.4: Facebook: (a) V = 345, F = 518, D = 0.00436 (b) V = 269, F = 703,D =
0.00975

Figure 5.4 describes a third set of two communities derived from Facebook
database. The two communities have the same order of vertices and the same
order of edges, in both communities we can see a clear division to clusters of
vertices connected to the ego-node.

Next we show some examples of the initial and final cuts defined by our algo-
rithms.

Figure 5.5: Initial Contract edges, sparse

Figure 5.5 is a zoom into the sub-community depicted in figure 5.2 (b), with
two adversaries, 182, colored in green, and 209, colored in magenta. The ego-
user is marked with red circle, and the red lines depict the initial candidates-set
of edges found by the contract algorithm.

CHAPTER 5. EXPERIMENTAL EVALUATION 52

Figure 5.6: Final Contract edges, sparse

In figure 5.6 the red lines represent the final set of edges to be blocked, found
after computing the required privacy criteria and unblocking edges from the initial
candidates-set of edges depicted in figure 5.5. We can see that the edges to be
blocked, are edges on the path to adversary 209 (colored in magenta) only; there
is no need to block edges in the paths to adversary 182 (colored in green) since it
is connected to the sub-community with one edge from friend 2 to adversary 182
and the probability of sharing information along that edge is very low, 0.0732.

Figure 5.7: Facebook: (a) Initial Min-cut edges (b) Final Min-cut edges

Figure 5.7 describes the initial (a) and final (b) cuts defined by the min-cut
algorithm when used on a very large community derived from Facebook database.

CHAPTER 5. EXPERIMENTAL EVALUATION 53

Figure 5.8: Facebook: (a) Initial Min-cut edges (b) Final Min-cut edges

Figure 5.8 describes the initial (a) and final (b) cut defined by the min-cut algo-
rithm when used on a medium size community derived from Facebook database.

Figure 5.9: Facebook: (a) Initial Contract edges (b) Final Contract edges

Figure 5.9 describes the initial (a) and final (b) cut defined by the contract
algorithm when used on the a medium size community derived from Facebook
database.

Tables 5.5- 5.6 summarize the results of ten different evaluation runs, for dif-
ferent communities.

CHAPTER 5. EXPERIMENTAL EVALUATION

Run | Density | 6 | Friends | Adversaries | Vertices | Edges
1 0.0087 | 4 15 2 334 968
2 | 0.00226 | 4 26 3 1036 2428
3 | 0.00308 | 4 40 10 1495 6886
4 0.0889 | 4 29 2 206 3755
5 | 0.06353 | 4 36 1 987 61831
6 | 0.00837 | 4 68 2 789 5205
7 | 0.00328 | 4 24 2 789 2038
8 | 0.00938 | 4 24 1 1813 30821
9 | 0.00436 | 4 7 1 345 518

10 | 0.00975 | 4 20 1 269 703

Table 5.5: Facebook sub-communities Data size

54

Table 5.5 presents ten runs of different sub-communities derived from Facebook
database with close friends distance, 3 set to 1. The community size is derived
from the sharing user (ego node) and friends column refers to the amount of first
degree friends of this user. These ten runs are used as input to our algorithms
and the results are presented next.

CHAPTER 5. EXPERIMENTAL EVALUATION 55
Run @ ¥ Density | MinCut | MinCut | Contract | Contract Remark
Initial Final Initial Final
Edges Edges Edges Edges
1 0.5 0.5 0.0087 2 0 7 7 Blocked edges to adversary
1 0.783 | 0.5654 0.0087 2 2 7 7 Blocked edges to adversary
1 | 0.9657 | 0.5802 0.0087 2 2 7 7 Blocked edges to adversary
2 0.5 0.5 0.00226 2 2 2 2 Blocked edges to adversary
2] 0.9587 | 0.5506 | 0.00226 2 2 2 2 Blocked edges to adversary
2 0.056 | 0.4266 | 0.00226 2 2 2 2 Blocked edges to adversary
3 0.5 0.5 0.00308 29 29 5 0 MinCut blocked edges to adversary
3 |0.8867 | 0.0376 | 0.00308 29 29 12 0 MinCut blocked edges to adversary
3]0.8385 | 0.1065 | 0.00308 29 29 5 0 MinCut blocked edges to adversary
4 0.5 0.5 0.0889 2 0 10 6 Blocked mixed edges
4 | 0.7776 | 0.4436 0.0889 2 0 63 43 Blocked mixed edges
4 |0.0846 | 0.6478 | 0.0889 2 0 286 181 Blocked mixed edges
5 0.5 0.5 0.06353 39 0 2 0 No edges to be blocked
5 10.4292 | 0.0226 | 0.06353 39 35 2 2 Blocked edges to adversary
5 | 0.4454 | 0.6157 | 0.06353 39 35 2 2 Blocked edges to adversary
6 0.5 0.5 0.00837 2 1 4 1 Blocked edges to adversary
6 | 09251 | 0.4224 | 0.00837 2 1 4 1 Blocked edges to adversary
6 |0.0971 | 0.5569 | 0.00837 2 1 4 2 Blocked edges to adversary
7 0.5 0.5 0.00328 2 0 18 0 No edges to be blocked,
ego-user rarely shares data
7 0.9183 | 0.408 0.00328 2 0 18 0 No edges to be blocked,
ego-user rarely shares data
7 |0.2047 | 0.746 0.00328 2 0 18 0 No edges to be blocked,
ego-user rarely shares data
8 0.5 0.5 0.00938 16 0 2 0 No edges to be blocked,
adversary is in the middle of sub-community,
users frequently share data with the adversary
8 |0.0764 | 0.679 | 0.00938 16 15 2 2 Blocked mixed edges,
adversary is in the middle of sub-community,
users frequently share data with the adversary
8 | 0.3549 | 0.9095 | 0.00938 16 0 2 0 No edges to be blocked,
adversary is in the middle of sub-community,
users frequently share data with the adversary
9 0.5 0.5 0.00436 1 0 1 0 No edges to be blocked,
ego-user rarely shares data
9]0.4328 | 0.3009 | 0.00436 1 0 1 0 No edges to be blocked,
ego-user rarely shares data
9 0.7397 | 0.9392 | 0.00436 1 0 1 0 No edges to be blocked,
ego-user rarely shares data
10 0.5 0.5 0.00975 1 0 1 0 No edges to be blocked,
ego-user rarely shares data
10 | 0.8289 | 0.9999 | 0.00975 1 0 1 0 No edges to be blocked,
ego-user rarely shares data
10 | 0.3728 | 0.0514 | 0.00975 1 0 1 0 No edges to be blocked,,

ego-user rarely shares data

Table 5.6: Facebook Evaluation Runs Results

Table 5.6 presents the results obtained by ten runs, with close friends distance,
[set to 1.

Columns 2-3 present the threshold parameters used for each run. For each
community graph we performed the algorithms with medium thresholds, (a =
0.5, = 0.5), and with random thresholds. Columns 5-6 and 7-8 present the
initial and final set of edges to be blocked found by min-cut and contract algo-
rithm respectively. The remark indicates which kind of edges are the candidates
for blocking. We can see that when the adversaries are close to the commu-
nity's boundary (6 = 4), and no maximum path to a community member passes

CHAPTER 5. EXPERIMENTAL EVALUATION 56

through an adversary vertex, (e.g., runs 1,2,5,6 and 7) the solution is trivial and
the blocked edges are the edges from community members to the adversaries.

When the adversary is in the middle of the community's boundaries, and there
is a path with maximum information flow to a community member that passes
through an adversary vertex (e.g., runs 8,9 and 10), it is highly likely that the
maximum information flow will be reduced considerably and therefore no good
solution can be obtained for high levels of a.

When the ego-user rarely shares data with community member, there is no
need to block edges, or the solution is the trivial solution (e.g. runs 7 and 9).

5.2.2 Test On Twitter Database

Figures 5.10- 5.14 present six sub-communities derived from Twitter database by
randomly selecting a sharing user with 6 = 4, and the results obtained by our
algorithms. From these figures we can see that Twitter database is shaped as
small clusters of sub-communities with ego-user in the middle, and most of users
community are connected directly to the ego-user. The communities are shaped
as star-communities, generally connected by a small amount of edges

Figure 5.10: Twitter: (a) V = 75, E = 151, D = 0.0272 edges (b) V = 58, E = 120, D =
0.0363

Figure 5.10 describes two communities derived from Twitter database. The two
communities have the same order of vertices and the same order of edges, however
we can see a clear division to two main star-clusters of vertices in community (a)
while community (b) is shaped as sparse clusters connected together.

CHAPTER 5. EXPERIMENTAL EVALUATION 57

Figure 5.11: Twitter: (a) V =15,F=21,D=0.1(b) V=9,E=9,D =0.125

Figure 5.11 describes a second set of two small communities derived from
Twitter database. The two communities have the same order of vertices and the
same order of edges.

Figure 5.12: Twitter: (a) V =13, E = 26, D = 0.16666 (b) V = 11, E =9, D = 0.08181

Figure 5.12 describes a third set of two small communities derived from Twitter
database. The two communities have the same order of vertices while community
(a) has a larger number of edges (connections).

CHAPTER 5. EXPERIMENTAL EVALUATION 58

hann JPAtaTETy SnannJPATemETIay
sipra = 06 spra (5

D= 1

=1
gamma = 0.5 gamea = 0.5

(a) (b)

Figure 5.13: Twitter: (a) Initial Min-cut edges (b) Final Min-cut edges

Figure 5.13 is the same sub-community as figure 5.10 (a), with one adversary
colored in coral (66). The ego-user is colored in steel blue, and the red lines
depict the initial and final candidates-set of edges to be blocked, found by the
Min-cut algorithm.

nann gPABaTET Ry
alpr = 0.5

SnanngPanameThacy
apra =06

Do 1

Dema = 1
gamsa = 0.5 gamea = 0.5

(a) (b)

Figure 5.14: Twitter: (a) Initial Contract edges (b) Final Contract edges

Figure 5.14 is the same sub-community as figure 5.10 (a), with one adversary
colored in coral (66). The ego-user is marked with red circle, and the red lines
depict the initial and final candidates-set of edges to be blocked, found by the

contract algorithm.
Tables 5.7- 5.8 summarize the results of six different evaluation runs, for dif-

CHAPTER 5. EXPERIMENTAL EVALUATION

ferent communities.

Run | Density | 6 | Friends | Adversaries | Vertices | Edges
1 0.0272 | 4 1 1 75 151
2 0.0363 | 4 3 1 58 120
3 0.1 4 1 1 15 21
4 0.125 4 3 1 9 9
5 0.1666 | 4 3 1 13 26
6 | 008181 | 4 2 1 11 9

Table 5.7: Twitter sub-communities Data size

59

Table 5.7 presents six runs with the different sub-communities derived from
Twitter database. The community size is derived from the sharing user (ego
node) and friends column refers to the amount of first degree friends of this
user. These six runs are used as input to our algorithms and the results are

presented next.

CHAPTER 5. EXPERIMENTAL EVALUATION 60

Run @ vy Density | MinCut | MinCut | Contract | Contract Remark
Initial Final Initial Final
Edges Edges Edges Edges
1 0.5 0.5 0.0272 1 1 15 9 MinCut blocked edges to adversary,
Contract blocked edges to community members
1 0.757 | 0.4068 0.0272 1 1 4 3 MinCut blocked edges to adversary,
Contract blocked edges to community members
1 0.797 | 0.1729 0.0272 1 1 4 3 MinCut blocked edges to adversary,
Contract blocked edges to community members
1 |0.2398 | 0.8356 0.0272 1 1 2 2 MinCut blocked edges to adversary,
Contract blocked edges to community members
2 0.5 0.5 0.0363 2 2 4 3 MinCut blocked edges to adversary,
Contract blocked mixed edges
2 | 0.9601 | 0.3916 0.0363 2 2 7 0 MinCut blocked edges to adversary,
Contract did not block edges
2 |0.7307 | 0.3735 0.0363 2 2 6 2 MinCut blocked edges to adversary,
Contract blocked mixed edges
2 [0.8892 | 0.6243 0.0363 2 2 1 0 MinCut blocked edges to adversary,
Contract did not block edges
3 0.5 0.5 0.1 1 1 4 1 MinCut blocked edges to adversary,

Contract blocked edges to community members

users frequently share data with the adversary

3 0.39 |0.3972 0.1 1 1 1 1 MinCut blocked edges to adversary,

Contract blocked edges to community members

users frequently share data with the adversary

3 0.8672 | 0.7831 0.1 1 0 4 0 No edges to be blocked,

users shares data with the adversary with high probability
high ~ value, no need to block edges

4 0.848 | 0.2021 0.125 1 0 1 0 No edges to be blocked,

users rarely share data with adversaries
4 0.1135 | 0.1099 0.125 1 1 1 1 No edges to be blocked,

users rarely share data with adversaries
5 0.5 0.5 0.1666 3 0 4 0 No edges to be blocked,

adversary is in the middle of sub-community,
users frequently share data with the adversary
5 0.9046 | 0.7023 0.1666 3 0 4 0 No edges to be blocked,

adversary is in the middle of sub-community,
users frequently share data with the adversary
5 0.1814 | 0.7266 0.1666 3 0 2 2 Min-cut did not block edges,
adversary is in the middle of sub-community,
users frequently share data with the adversary
6 0.5 0.5 0.08181 1 1 1 1 Blocked edges to adversary

0.6182 | 0.2631 | 0.08181 1 1 1 Blocked edges to adversary

6 0.5058 | 0.9073 0.08181 1 0 5 0 No edges to be blocked,

high threshold to the adversary no need to block edges

o
—

Table 5.8: Twitter Evaluation Runs Results

Table 5.8 present the results obtained by six runs on Twitter database, with
close friends distance, [set to 1.

Columns 2-3 present the threshold parameters used for each run. For each
community graph we performed the algorithms with medium thresholds, (o =
0.5, = 0.5), and with random thresholds. Columns 5-6 and 7-8 present the ini-
tial and final set of edges to be blocked found by min-cut and contract algorithm
respectively. The remark indicates which kind of edges are the candidates for
blocking. The results for Twitter database are similar to the results obtained by
using Facebook database, we can see that when the adversaries are close to the
community’s boundary (§ = 4), and no maximum path to a community member
passes through an adversary vertex, (e.g. run 1,2 and 4) the solution is trivial and
the blocked edges are the edges from community members to the adversaries.

When the adversary is in the middle of the community’s boundaries, and there

CHAPTER 5. EXPERIMENTAL EVALUATION 61

is a path with maximum information flow to a community member that passes
through an adversary vertex (e.g. run 5), it is highly likely that the maximum
information flow will be reduced considerably and therefore no good solution can
be obtained for high levels of a. When the ego-user rarely shares data with
community member, there is no need to block edges, or the solution is the trivial
solution (e.g. run 4).

5.2.3 Test On Google+ Database

Figures 5.15- 5.18 present four sub-communities derived from Google+ database
by randomly selecting a sharing user with 6 = 4, and the results obtained by our
algorithms. From these figures we can see that Google+ database is built from
small clusters of sub-communities with ego-user in the middle, and most of users
community are connected directly to the ego-user.

Figure 5.15: Google+: (a) V =113, F = 886, D = 0.07 edges (b) V = 94, E = 149,0.1704

Figure 5.15 describes two sub-communities derived from Google+ database,
we can see that Google+ database resembles Facebook database and is built
from clusters sub-communities, generally connected by a small amount of edges.

CHAPTER 5. EXPERIMENTAL EVALUATION

62

Figure 5.16: Google+: (a) V =48, E = 89, D = 0.03945 (b) V = 16, E = 16, D = 0.0625

Figure 5.16 describes a second set of two small sub-communities derived from

Google+ database.

Figure 5.17: Google+: (a) Initial Min-cut edges (b) Final Min-cut edges

Figure 5.17 is the same sub-community as figure 5.15 (a), with one adversary,
106, colored in coral. The ego-user is colored in steel blue, and the red lines
depict the initial and final candidates-set of edges to be blocked, found by the

Min-cut algorithm.

CHAPTER 5. EXPERIMENTAL EVALUATION

63

Figure 5.18: Google+: (a) Initial Contract edges (b) Final Contract edges

Figure 5.18 is the same sub-community as figure 5.15 (a), with one adversary,
106, colored in coral. The ego-user is marked with red circle, and the red lines
depict the initial and final candidates-set of edges to be blocked, found by the
contract algorithm.

Tables 5.9- 5.10 summarize the results of several different evaluation runs, for
different communities.

Run | Density | § | Friends | Adversaries | Vertices | Edges
1 0.07 4 7 1 113 886
2 0.1704 | 4 7 1 94 149
3 |0.03945 | 4 1 1 48 89
4 0.0625 4 2 1 16 16

Table 5.9: Google+ sub-communities Data size

Table 5.9 presents four runs with the different sub-communities derived from
Google+ database. The community size is derived from the sharing user (ego
node) and friends column refers to the amount of first degree friends of this user.
These four runs are used as input to our algorithms and the results are presented

next.

CHAPTER 5. EXPERIMENTAL EVALUATION 64

Run « 0% Density | MinCut | MinCut | Contract | Contract Remark
Initial Final Initial Final
Edges Edges Edges Edges

1 0.5 0.5 0.07 2 2 21 12 MinCut blocked edges to adversary,
contract blocked edges to community members

1 |0.6523 | 0.1732 0.07 2 2 60 7 MinCut blocked edges to adversary,
contract blocked edges to community members

1 |0.7732 | 0.0685 0.07 2 2 89 31 MinCut blocked edges to adversary,
contract blocked edges to community members

1 | 0.7411 | 0.0402 0.07 2 2 104 26 MinCut blocked edges to adversary,
contract blocked edges to community members

2 0.5 0.5 0.1704 1 1 1 1 Blocked edges to adversary

2 | 0.8077 | 0.4405 0.1704 1 1 1 1 Blocked edges to adversary

2 0.519 | 0.8825 0.1704 1 1 1 1 MinCut blocked edges to adversary,
contract blocked edges to community members

3 0.5 0.5 0.03945 3 3 3 0 MinCut blocked edges to adversary,

contract did not block edges

3]0.5973 | 0.3756 | 0.03945 3 3 16 5 MinCut blocked edges to adversary,
contract blocked edges to community members

3]0.8614 | 0.151 0.03945 3 3 6 3 MinCut blocked edges to adversary,
contract blocked edges to community members

4 0.5 0.5 0.0625 1 0 1 0 No edges to be blocked

users rarely share data with the adversary
4 | 0.9827 | 0.0816 0.0625 1 1 1 1 Blocked edges to adversary
4 0.869 | 0.8929 0.0625 1 1 1 1 Blocked edges to adversary

Table 5.10: Google+ Evaluation Runs Results

Table 5.10 present the results obtained by four runs on Google+ database, with
close friends distance, [set to 1.

Columns 2-3 present the threshold parameters used for each run. For each
community graph we performed the algorithms with medium thresholds, (o =
0.5, = 0.5), and with random thresholds. Columns 5-6 and 7-8 present the
initial and final set of edges to be blocked found by min-cut and contract algo-
rithm respectively. The remark indicates which edges were found as candidates
for blocking..

The results for Google+ database are similar to the results obtained by using
Facebook database, we can see that when the adversaries are close to the com-
munity’s boundary (6 = 4), and no maximum path to a community member
passes through an adversary vertex, (e.g. run 2) the solution is trivial and the
blocked edges are the edges from community members to the adversaries. When
the ego-user rarely shares data with community member, there is no need to
block edges, or the solution is the trivial solution (e.g. run 4).

5.3 General Discussion

We evaluated our algorithms on various databases with random ego-nodes, com-
munity distance, and information sharing probabilities. When the density of
d—community graph for the selected ego-node is high we got better results using
the contract method in terms of number of blocked edges. When the min-cut
method finds a solution it blocks a larger amount of edges (users) than the

CHAPTER 5. EXPERIMENTAL EVALUATION 65

contract method, (e.g., runs 3,5, 8 using Facebook database). The results are
discussed in terms of efficiency, i.e. CPU time, and Quality, i.e. blocked flow
to community members and leakage of flow to adversaries, and the ability to
find a solution. In average 54% of the initial candidate set found by min-cut did
not lead to a solution that complies with the required privacy criteria, while only
34% in average of the initial candidate set found by contract did not lead to a
solution that complies with the required privacy criteria.

While both algorithms are complete, in the non trivial cases, min-cut finds
the the best solution in terms of flow ratio between the initial and final flow to
community members (e.g. run 3 using Twitter database). Contract, on the other
hand, may not find the best solution but returns a compromised solution that
is less efficient in blocking adversaries but allows more sharing with friends (e.g.
runs 5,8 using Facebook database). Executing the contract algorithm multiple
times ensures that each time a different set of initial candidate- edges is selected
and may result in different final cuts. This way we avoid cases such as 3 using
Facebook database, where contract result in no solution.

We run the contract algorithm only 10 times for each set of parameters, thus
there are runs where the min-cut algorithm finds a solution while the contract
algorithm doesn’t. In the case where min-cut does not find a solution, the
contract algorithm will provide the best cut that satisfies the threshold.

Figures 5.19- 5.20 presents the CPU time results obtained by our algorithms
for the first phase that builds the initial candidate set on sub-communities with
different densities as described in 4.4.2. The sub-communities were derived from
Facebook database by randomly selecting a sharing user with § = 4.

Caraty

(a) (b)

Figure 5.19: Facebook sub-community :(a) Initial Min-Cut CPU (b) Initial Contract CPU

CHAPTER 5. EXPERIMENTAL EVALUATION 66

U Time

0.0z /\
0.015
\ / \ == MinCut
4 =f=Contrac

0.005 -._"
5 L = 2

000270223 0.00306554 0.003272734 0 005385625 0.006203205 0.008703314 0.004260758 0.005824473
Density

Figure 5.20: Facebook community Min-cut and Contract CPU time

The figures present the CPU time for Min-Cut and Contract methods with
a = 0.5 and 7 = 0.5. The Contract is always more efficient than the Min-Cut,
this is more significant for sub-communities with low densities. The results for
different o and values remain with similar CPU time ratio as for « = 0.5 and
v = 0..

Although we did not optimize our algorithms with respect to CPU time and
memory usage, both algorithms run very fast and can be used in real world
networks. For example, using a graph with density 0.0635 ,(987 vertices and
61831 edges), the initial contract run time is 34.86 seconds, and min-cut run
time is 35.85 seconds. The run time of the final step, the compute criteria,
varies according to the size of the initial cut: 0.045 seconds for a cut with 35
edges, and 19.79 seconds for a cut with 286 edges. The CPU time for both
algorithms on sub-community graphs with low density is very low and almost the
same. When running our algorithms on sub-communities with higher density, the
Min-cut algorithm CPU time grows faster than the contract algorithm CPU time.
The contract CPU time depends not only on the density of the graph but also
on the probability of flow on the edges of the graph, thus each run may provide
different CPU time that is bounded to O(|E|log |E|). The contract algorithm
can be optimized and paralleled to obtain better results as described in [5]. In
some cases, as the graph grow denser, contract deteriorate faster than min-cut.
However, in most cases the cuts found by contract lead to solution while the cut
found by min-cut does not.

CHAPTER 5. EXPERIMENTAL EVALUATION 67

120
) /'/\
80

o s ~

Percent

20

o T T T T - T == CutCPU%
0.000848715 0.000848715 0.066054809 0.066054809 0.089646102 0.089646102

Density

CriteriaCPU%

Figure 5.21: %CPU of the two main part of the algorithm

Vertices | Edges | Density | Cut Method | Initial Cut CPU % | Final Cut CPU % | Initial Set | Final Set
787 525 | 0.0008487 Min-Cut 64.01% 35.99% 2 0
787 525 | 0.0008487 Contract 70.34% 29.66% 2 0
968 61831 | 0.0660548 Min-Cut 57.71% 42.29% 39 0
968 61831 | 0.0660548 Contract 70.34% 29.66% 174 164
205 3749 | 0.0896461 Min-Cut 66.75% 33.25% 19 16
205 3749 | 0.0896461 Contract 99.57% 0.43% 4 4

Table 5.11: CPU % Per Phases

Figure 5.21 and table 5.11 demonstrate the relative CPU time of each of the two
main parts of the algorithm: find initial candidate set and compute criteria. The
runs presented were configured with @ = 0.25 and v = 0.25, however similar
results were obtained from all other configurations. The major part of CPU time
is required for finding the candidate set of edged. Once a candidate set is found
the time required to compute the final cut that meets the criteria, depends mainly
on the size of the cut if a solution exists. When no solution exists even for a
small candidate set the relative CPU time is large due to the exhaustive search
for a solution.

5.4 Complexity

The algorithm we propose is composed of three major steps: the first is the
initialization step that creates a multi-graph with a super-vertex s; containing

CHAPTER 5. EXPERIMENTAL EVALUATION 68

u.s [f-community, the second step finds the candidates-sets for blocked edges,
and the last step evaluates the candidates sets of edges and constructs the final
set of edges to be blocked.

5.4.1 Initialization Complexity

In the initialization step, the BFS (Breadth-First Search) traversal algorithm is
used starting at the ego-node. The time complexity is O(|V| + |E]), since in
the worst case, every node and every edge will be explored. O(|E|) may vary
between O(1) and O(|V|?), depending on how sparse the graph is.

5.4.2 Find Candidates Complexity

We use two methods derived from flow problems, to find the initial candidates-set
of edges to be blocked. The candidate set is actually a cut between super-vertex
s1 that contains w; and his close friends, and each of u.s adversaries. Min-Cut
which is based on Ford-Fulkerson [19], Max-flow-min-cut algorithm, finds the cut
with the minimal flow value, and Contract which is based on Karger et al. [5],
contract algorithm, finds any cut.

5.4.2.1 Min-Cut Complexity

There are various implementations of the Max-flow-min-cut algorithm, each with
different complexity; let |V| be the number of vertices in a graph, |E| is the
number of edges in the graph, U is the maximum edge capacity, and F' is the
maximum flow value, the min-cut complexity depends on the max-flow-min-cut
implementation, and is varied from O(|V|*- U) [7] to O(|E| - |[V|*/*- log(%) :
logU) [3].

We implemented the Edmonds-Karp [13] algorithm for finding the initial can-
didates set by Min-Cut, implying time complexity of O(|E|* |V]).

Table 5.12 lists known algorithms for solving the max-flow-min-cut problem
and their complexity:

CHAPTER 5. EXPERIMENTAL EVALUATION 69

Year Presented By Method Complexity
1950 G. B. Dantzig [7] Simplex o(V|*-U)
L. R. Ford and D. R. .
1955 Fulkerson [19] Augmenthing path O(F - ([V|+|E])
oqVvl-Iel-U)
J. Edmonds and R. M. 2
1970 Karp [13] Shortest path O(|EI" V)
J. Edmonds and R. M. . _
1970 Karp [13] Max capacity O(|E|-log U-(|E|+|V]|log|V]))
1970 | Yefim Dinic [10] Shortest path OV |E|)
1974 | A. V. Karzanov [18] Preflow push O(V %)
A. V. Goldberg and R. 2
1986 E. Tarjan [2] FIFO preflow push O(|E|-|V]-log(IV]"/|E|))
V. King, S. Rao, and . . N O(E!l-VI-1 i
1994 R. E. Tarjan [33] Randomized with Deterministic play (1E]- V] Ogm‘lfg‘m\‘/\
A. V. Goldberg and S. . 3/2 W2y g
1997 Rao [3] Length function O(|E[™" - log (‘5) - log U)
2/3 [v[?
O] [VI*"* - 1og() - 1og 1)

Table 5.12: Max-Flow-Min-Cut known algorithms

5.4.2.2 Contract Complexity

The contract algorithm is a randomized algorithm that repeatedly contract ver-
tices to super-vertices, until it gets two super-vertices connected by a set of edges
that defines a cut between the two sets of vertices contained in each super-vertex.
The algorithm randomly selects an edge (u,v) and merges the nodes u and v
into one super-vertex, reducing the total number of nodes of the graph by one.
All other edges connecting either u or v are re-attached to the merged node
producing a multi-graph.

Each iteration of the contract algorithm finds a different cut between the super-
vertex containing u.s S—community and the super-vertex containing u.s adver-
saries.

When using permutations to define the order for selecting edges for contraction,
one iteration takes O(|E|log|E|) [17].

If the algorithm is repeated O(|V|*log® |V]) times, it finds the minimum cut in
some iteration [5]. The algorithm is strongly polynomial, and can be paralleled
to run with O(|V|*) using |V|? processors. However, as we learn from the evalu-
ation, most of the time we do not need the minimum cut solution either because
it does not comply with the privacy criteria or because the contract provides
reasonable solution after a small number of iterations.

CHAPTER 5. EXPERIMENTAL EVALUATION 70

We implemented the KargerStein's [5] contract algorithm using an adjacency list
representation of the graph, for finding the initial candidates set by contract cut.

5.4.3 Compute Final Candidates Set Complexity

The final step of our algorithm attempts to remove edges from the candidates-set
of edges to be blocked, as long as the remaining d-community graph for user u;
complies with the required privacy criteria. We use BFS to find the maximum
flow from wu; to each node in u;s d—community, and check if it complies with
the required privacy criteria, using the original flow, o and ~ thresholds. If it
doesn’t comply with the required privacy criteria, we try to remove edges from
the initial blocked candidates-set, and insert them back into u}s d-community
graph, until the remaining community graph complies with the required criteria,
or until we tested the entire edges in the initial candidate-set, and couldn't find
a set of edges to be blocked. In each iteration we insert one edge back to
the graph, thus in the worst case we have |E)| iterations. The BFS complexity
is O(|]V| + |E]), and in the worst case we have |E| iterations, thus the total
complexity is O(|V| - |E| + |E]?).

As we show in Appendix A the problem presented is NP-Complete, the overall
complexity of our proposed model is O(|V|* 4 V| - |E| + |E|*) when using
paralleled contract for finding the initial candidates-set for edges to be blocked,
or O(|V|-|E|” + |E|’) when using min-cut for finding the initial candidates-set
for edges to be blocked.

Table 5.13 summarizes the overall complexity of our algorithms.

Method Initialization | Find Candidates | Evaluate and Find Final Overall Complexity
Min-Cut OVI+I1E) |_OUEPIV) | O(VI-1EI+IEP) OVI-[EP +1ED)
Contact - one iteration O([V|+|E|)| O(|E|log|E|) o(V|-|E| +|E*) O(|E|log |E| + V|- |E| + |E]*)
Contact - paralleled using |V|* processors | O(|V| + |E|) oV o(V|-|E| + |E®) OV + V|- |E| +|E]®)

Table 5.13: Algorithm’s complexity

5.5 Practical Implementation

In order to evaluate our algorithms we developed a prototype application named
"SharingPatternPrivacy.exe”, described in appendix B.
The "SharingPatternPrivacy.exe” application is able to run on any database saved
in a basic graph structure, kept in text files as described in B.3.
Our application main options are:
e Manipulate a social graph : add or delete vertices and edges, define,
load and save a social graph.

CHAPTER 5. EXPERIMENTAL EVALUATION 71

e Set parameters required by our algorithms : define which vertex is the
ego-node and who are the ego-node’s adversaries, set comunity distance,
set privacy criteria thresholds.

¢ Run our algorithms with different social graphs and privacy cri-
teria : run the main algorithm "ConstructBlockedEdges” by using the
"Evaluate” button that randomly chooses an ego-node, edge's probabili-
ties, and assigns the evaluation parameters, run the algorithm that finds
edge-candidates sets, and computes the required privacy criteria to find the
final set of edges to be blocked. Run each step of the algorithms separately
by using dedicated buttons for each step.

Chapter 6

Conclusion and Future work

The problem of uncontrolled information flow in social network is a true concern
to ones privacy. In this paper we address the need to follow the social trend of
information sharing while enabling the owner to prevent their information from
flowing to undesired recipients. The goal of the suggested method is to find the
minimal set of edges that should be excluded from ones community graph to
allow sharing of information while blocking adversaries. To reduce side effect of
limiting legitimate information flow, we minimize this impact according to the
flow probability.

One of the main purposes of our evaluation was to compare the solutions
obtained by the different algorithms. Based on our experiments we can conclude
that except for cases where adversaries are connected with very few edges, the
solutions acquired by Mincut are inferior to those obtained with the Contract
algorithm. Furthermore contract is usually more efficient even if run for several
iterations.

Our algorithms can be used within the ORIGIN CONTROL access control
model [23]. In this model every piece of information is associated with its creator
forever. The set of cut edges found by our algorithms, is stored for each user when
the data is released and can be checked when the origin controlled information
is accessed. This way the administrator can check whenever this information is
accessed by a certain user, if the edge between them was cut for the originator
user, and thus prevent the information to pass through that edge to that certain
user.

6.1 Optimizations

In the last part of our algorithm we check if by removing all initial-candidates-set
of edges from us 6-community graph, the remaining J-community graph of user

72

CHAPTER 6. CONCLUSION AND FUTURE WORK 73

u; complies with the required privacy criteria. If not, we try to insert the removed
edges back into u;s d-community graph, until the remaining community graph
complies with the required criteria, or until we tested the entire edges in the initial
candidate-set, and couldn't find a set of edges to be blocked. In each iteration
we insert back one edge to the graph, and compute the maximum flow from w;
to all members in u}s 6-community. In the worst case we have |E] iterations,
each computes the maximum flow from wu; to all members in uls §-community.
Instead of computing the shortest path each time, we can examine methods for
building accumulative paths to calculate the best path from u; to all members
in u;s J-community to improve the average computation time.

6.2 Other Extensions

In this work we used two approaches to identify the set of edges to be blocked, the
max-flow-min-cut method, and the contract method that finds any cut between
two sets in a graph.

In future work these algorithms can be extended in several ways. One approach
is to use k-shortest-paths as the source for edges to be blocked. In this method
one can start by finding the k-shortest path from the ego-node (source) to the
adversary (sink), and set the edges on the first shortest-path as candidates for
blocking. If the required privacy criteria is not achievable, the second shortest
path is set as the initial candidates set, etc. Another approach is to set the
combination of all k-shortest paths from the ego-node to the adversaries as the
initial candidates set of edges for blocking. Node centrality can be use to select
edges from central nodes to adversaries as the initial candidates set

Another challenge is to automatically identify u}s adversaries, by fields of interest,
joined groups, posts or pre-defined characteristics.

Finally, this model of controlling flow needs to be integrated not only within the
ORIGIN CONTROL access control model [23], but with other models of privacy
in social networks such as the models described in [21].

6.3 Practical Aspects

6.3.1 Access Rules

Most access control models define access rules in terms of the degree of rela-
tionship required to access the shared data. For example, Facebook restricted
lists enables Facebook users to define a list of undesired recipients from their
direct friends, to whom the shared data will be blocked. Google+ cycles enables

CHAPTER 6. CONCLUSION AND FUTURE WORK 74

Google+ users to define communities (cycles) from their direct friends, for in-
formation sharing. The definition of these lists or cycles are applicable only to
friends and not to friends of friends. Moreover, these definitions are applied to
the entire shared data, and not a specific post. The algorithms we present in this
thesis allow the user to define, for each shared information, the users to block
and the desired privacy level. Accordingly we dynamically create lists of blocked
edges through which the user's shared data does not flow. A user can define
with whom he would like to share the entire shared information, what would be
the maximum percentage of data he is willing to share with undesired recipients
(adversaries), and what would be the minimum percentage amount he is will-
ing to avoid from his community acquaintances, in order to achieve maximum
privacy level. The blocked edges restrict data from any member of the social
network, not only from friends. Our algorithms can be combined with current
access rules. For example Google+ can use our algorithms for defining cycles.
The adversaries can be defined per subject, and our algorithms will automatically
define the cycles. The cycles can be defined for different distances: 1,2,3, etc.
The amount of data that is blocked to friends, and the amount of data that
is leaked to adversaries is computed when trying to define the required privacy
criteria, this data can be displayed to the user that can decide if it is enough or
he would like to change the privacy criteria parameters defined in section 4.1.1.
It is important to understand that an edge is cut always with respect to a specific
ego user and a specific data content. It is never removed from the actual graph,
thus information from other ego users can still flow through that edge.

Bibliography

[1] A. Ranjbar, M. M. (2014). Using community structure to control information
sharing in online social networks. Computer Communications 41, 11-21.

[2] A. V. Goldberg, R. E. T. (1988). A new approach to the maximum flow
problem. Journal of the ACM 35, 921-940.

[3] A.V. Goldberg, S. R. (1997). Length functions for flow computations. Tech-
nical report, NEC Research Institute.

[4] Barabasi, A. L. (2011). Introduction and Keynote to A Networked Self,
Chapter Introduction, pp. 14. New York, NY: Routledge, Taylor and Francis
Group.

[5] D. R. Karger, C. S. (1996). A new approach to the minimum cut problem.
Journal of the ACM 43 (4), 601-604.

[6] D. Vatsalan, P. Christen, V. S. V. (2013). A taxonomy of privacy-preserving
record linkage techniques. Information Systems 38, 946-969.

[7] Dantzig, G. B. (1951). Applications of the simplex method to a transportation
problem. In I. T. C. Koopmans (Ed.), Activity analysis and production and
allocation, New York, pp. 359-373. Wiley.

[8] D.F. Ferraiolo, D. K. (1992). Role-based access control. In In Proceedings
of the 15th National Computer Security Conference, pp. 554-563.

[9] Dijck, J. V. (2013). The Culture of Connectivity : A Critical History of Social
Media, Chapter 1, pp. 240. Oxford: Oxford University Press.

[10] Dinic, E. (1970). Algorithm for solution of a problem of maximum flow in
a network with power estimation. Doklady Akademii nauk 11, 1277-1280.

[11] F. Carmagnola, F. Osborne, I. T. (2014). Escaping the big brother: An
empirical study on factors influencing identification and information leakage
on the web. Journal of Information Science 40(2), 180-197.

75

BIBLIOGRAPHY 76

[12] Feige., U. (1998). A threshold of In n for approximating set cover. Journal
of the ACM 45(4), 634-652.

[13] J. Edmonds, R. M. K. (1972). Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM 19(2), 248-264.

[14] J. Kleinberg, K. L. (2013). Information-sharing in social networks. Games
and Economic Behavior 82, 702-716.

[15] J. Leskovec, A. K. (2014, June). SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data.

[16] K. Yoojung, S. Dongyoung, M. C. S. (2011). Cultural difference in moti-
vations for using social network sites: A comparative study of american and
korean college students. Computers in Human Behavior 27, 365-372.

[17] Karger, D. R. (1993). Global min-cuts in rnc, and other ramifications of a
simple min-cut algorithm. In Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, New York, pp. 21-30. ACM.

[18] Karzanov, A. V. (1974). Determining the maximal flow in a network by the
method of preflows. Soviet Mathematics-Doklady 15, 434—437.

[19] L. R. Ford, D. R. F. (1956). Maximal flow through a network. Canadian
Journal of Mathematics 8, 399—404.

[20] M.R. Garey, D. J. (1990). Computers and Intractability, Chapter 3, pp. 64.
New York, NY: W.H. Freeman & Co.

[21] Nadin Kokciyan, P. Y. (2016). Priguard : A semantic approach to de-
tect privacy violations in online social networks. [EEE Trans. Knowl. Data
Eng. 28(10), 2724-2737.

[22] on Privacy Rights Clearinghouse, P. (2016, December). Social networking
privacy: How to be safe, secure and social. https://www.privacyrights.
org.

[23] P. Jaehong, S. R. (2002). Originator control in usage control. In Proceedings
of the IEEE 3rd International Workshop on Policies for Distributed Systems
and Networks, Washington DC, pp. 60-66.

[24] Papacharissi, Z. (2011). A Networked Self:, Chapter 14, pp. 337. New York,
NY: Routledge, Taylor and Francis Group.

BIBLIOGRAPHY 77

[25] Pierangela Samaratiy, L. S. (1998). Protecting privacy when disclosing in-
formation: k-anonymity and its enforcement through generalization and sup-
pression. Technical Report SRI-CSL-98-04, SRI International.

[26] R. K. Ahuja, T. L. Magnanti, J. B. O. (1993). Network Flows, Chapter 6,
pp. 863. New Jersey: Prentice Hall.

[27] R. LaRose, K. Junghyun, W. P. (2011). Social Networking Addictive, Com-
pulsive, Problematic, or Just Another Media Habit?, Chapter Introduction, pp.
24. New York, NY: Routledge, Taylor and Francis Group.

[28] R. Raz, S.S. (1997). A sub-constant error-probability low-degree test, and a

sub-constant error-probability pcp characterization of np. In IN PROC. 29TH
ACM SYMP. ON THEORY OF COMPUTING, 475-484. EL PASO.

[29] Rob Hall, S. E. F. (2010). Privacy-preserving record linkage. In in: Privacy in
Statistical Databases,, Washington DC, pp. 269-283. Springer Lecture Notes
in Computer Science.

[30] Search, P. (2007, June). People search engine and meta search. https:
//www.123people. com.

[31] T. H. Cormen, C. E. Leiserson, R. L. R. (1990 (2009)). Introduction to
Algorithms, Chapter 27, pp. 581. Cambridge, Massachusetts: MIT Press.

[32] T. Tassa, D. J. C. (Feb2013). Anonymization of centralized and distributed
social networks by sequential clustering. Proceedings of the IEEE Transactions
on Knowledge & Data Engineering 25 Issue 2, 311-324.

[33] V. King, S. Rao, R. E. T. (1994). A faster deterministic maximum flow
algorithm. Journal of Algorithms 17, 447-474.

[34] Yehuda Lindell, B. P. (2009). Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality 1, 5.

BIBLIOGRAPHY 78

Appendices

B Prototype Implementation

We have built a prototype application named "SharingPatternPrivacy.exe” that
enables a user to test our algorithms on different social graphs with different
privacy criteria thresholds, manipulate a social graph, and display the results. It
is a simple Windows application developed in C++ and MFC. The application
is able to run on any database saved in a basic internal graph structure, kept in
text files as described in B.3.

B.1 Description and User Interface

Figure 1 is the main screen of the prototype application which is divided into
four parts:

e Left part that enables the user to manipulate the social graph :
add or delete vertices and edges, define, load and save a social graph, load
SNAP databases and save them in the application internal format described
in B.3.

e The second part enables the user to edit and show the evaluation
parameters : define the ego-users (source), «, (3, and «y, and maximum
community distance.

e The third part enables the user to run our algorithms : use the
"Evaluate” button that randomly chooses the ego-node, assigns the evalu-
ation parameters, and perform the algorithms, or run each algorithm step
by step by using dedicated buttons for every step of the algorithms, and
evaluate the intermediate results which are kept in text files.

BIBLIOGRAPHY

Graph
Manipulation
part
i'sm:rlnqmunbrlu
Load 05N Save 05N
Lead Adversacis Sovn Sorial Gragh
Load SHAP DF] T smend
Load Tweter DB | Lond Social Gragh
Edges- T Wertices - Advessanies '
Fom To Weght ==
(] ¢ o
Add
Add | | -
i)) |
From [Ta | Probobity | ([vertices Advarcaras

Paramaters
Setting part
]
Sowoe
Alpha: a5
Friends Distance (Beta) f
Gamma- 05
Hax Fiow: [
i Loops: 1
Edge Mathad:
Hax Community Detance |4
May Num OF Advarsanes: 15
e Friencs Flow: 1

Figure 1: SharingPatternPrivacy main screen

Erph&
Adwsrcoriss
5.:,._II atal
tsd o | s |
i S0 Socl Gt
Load Stee DA | 7] Feepa
e Tter 05 || Lot S g
- Bdges Vit - Pvraries —
ron_ T —
1
i |
From [To | Probabdt ~ [Vertices Advercaties
i 1 [] H
oor i 1
\a & &7 7
7 am "
i3 s 7
1z e 1
21 +
2 & osr H
k] 2 sl o
Bos ams 5
i w1 M
TR T S
4 3 R

Hax Loogs:

[Fdge: Methad:

My Cormmonidy Destance:
Mo o O cdversaries:

Dperation
buttons part

Figure 2: SharingPatternPrivacy after loading a social graph and adversaries’ list

79

BIBLIOGRAPHY 80

B.2 High Level Design

A class named "GraphAdjList” implements our algorithms, it uses a graph rep-
resented as adjacency list, each vertex in the graph contains the vertex data,
like vertex id, flow values, and a list of neighbors (edge id, destination vertex).
Each edge contains the edge data like edge id, edge probability and from vertex
id , to vertex id. The graph adjacency list contains vertices map which holds
the vertices data, edges map which holds the edges data, adversaries map which
holds the adversaries id list, private function used by the algorithms, and public
functions for each user operation. A user interface MFC class named "Shar-
ingPatterPrivacyDlg” uses the "GraphAdjList” to implement the user interface
functions.

B.3 Input Format

The application uses a basic graph structure, kept in text files, every database
placed in a separate directory. The main file in each directory is "Vertices.txt"
which contains the number of vertices in the social graph. For each vertex there
is a file named "Vertexld.follower” which holds the vertex followers along with
their edge’s probability. The "followers” file has one line per follower id, each
line with two numbers, the followers' vertex id and its edge probability.

For Example, for a social graph containing 482 vertices, "Vertices.txt” will con-
tain the number "482", and the social graph directory will include 482 files,
a file for each vertex. The file names will be "0.followers”, "1.followers”, ...,
"481.followers".

Assuming vertex id 0 has an edge to vertices 403, 334, 372, 436, 416, 428, and
439, the content of file "0.followers” will be:

403,0.988731

334,0.764183

372,0.790628

436,0.867725

416,0.985557

428,0.930807

439,0.794435

Our algorithms can be used on any type of database converted to that structure.

2PN

YN L (OSN) MINPN NPNIIN MNYIL DOWNRNYNRN NNMND NN DMIPIN DX 1T DTV
S5Y 209 PN NIY NNPH NPNIAN MNYIL WHNYND D190 DIVIN .ONPVIS DY NPNYD
TN NIV, NPNXPN IN NPNIIN NPIPRIVIN ,ONOV D¥97990 NITY , 07NN MIVN
NN NV DIY 02N T DY GMVY IUN YT DY 223N 3T IN DNINM XTI N MOVINT
MY AUR YVIN YN DY NNV NINN MTIPI MNY MYOIT 0V DNIMAND W IINPNH
DOYNNYNN NIR-PINOY Y9)IN .OOVNRNYNN DY YTNRN NNV IDINTY DXONONND MY 2597
29099 YN ,NNNY NNVYPNY G0N DX PNDN ,DIPNNIY PPAD DIVNNYNRN P NNYPNIN
DN INMN WHIN OVION YN 2D TOY DIWTIN DN DIVNNWNN 217 10N INYIND TYN TUN
.DOYUNN N DOWNNWNID NTY DIVY DIPOIN

NYITIN NPMN NN DY DOODINN NV YYD DYPTHIN ,DMNIMD DY) NIPAY DYTIND 21
19IND 1IN NYIN IWIRD >TI P290N DNTIVN DR NIN D5 .NON DM NYI) DaAPY 1
.N2NPN DY DIDN DIMNYN T

NN DMYMN ONIPTPN 12 TYN DD NINPHN NNIIND NYIN NN OXIRNND NN T NIV

2 DXONON NN NNXMN OITIPTPN P2 MIINKNN MNVYPN , 012> DIPNPRY ,DIVNNYNN
PNINA WHRNWN SY DX191HM DI12NN NP DY DIIINDN NN .FPNIAND NYIL DIVNHNYNN
IMN YT D 912Y NYITIN NPVIIN NN DX PTHIND YHNWND DIVINRNDY YN TN
PIONY NN XIN D DY PTHIND 912 WHNYNN .1 NPV NN PYND T2 ,9NYD MINI2
TP 19 PIINND YN 1919 XN IMN MIYINN DINTIN NYY 7P 1N ,9MWNIN YTNN NN
P2 0Y PIYND 121 RIN IMN IORDOPNN DINTNN NN

SV YN NNOY 1)1 097)2 NN NNNND MIIT NPIVIVON NN DIVNPNYN NN
,DIVUNY DD O DINNININ PTIND YTI2,MMPHN NPNIAN MNYIL DOVNNYNN
JUNIN NN NPV NPT DY TN DIVNNWYNIN DY YN NPVIY NNVIN DIVINRNDN
NPNIAN MNYI HY DPIHIR DN 7DD 190N HY DNIN NXIN DINTININD N NN TV 3T
DMV DMVNIN VIOV DOV NPDOPAND NN IINIMN

11

15
15
16
19
21

24
24
28
29
30
30
30
33
33
33
35
36
37
37
38
41

45
45
47
47
48
49
56
61
64
67
68
68
68
69
70
70

72
72
73
73
73

78
78
78
80
80

D939y 199N

NYan
NY°y¥2N 2N YPH9

mMI90 NYPpo

NPNHIAN MNYIN YIN.3.1
NPVIY NPV 3.2

YR NPT NPVIS.3.3
YN DRI MNYH.3.4

NPHIIN MNYAIL PINOY 35X DY NDDIINN Y191 NNVANX NYa
7PYaN NN 4.1
IPNNN NONY.4.1.1
91 0DNN 4.2
7PYIN NPNDD 4.3
YN NITHIN YN NYOYT-01PN NNPR-DINOPN.4.3.1
YT NDOT-01PN NNDPIR-DINOPN PNIN -0 NMYL.4.3.2
1 vawn 4.3.2.1
1 VYN NNON 4.3.2.2

1 ARSI 4.3.2.2.1
52N PNINY OMMININ 4.4
9NNN.4.4.1

YONY DXTHYIN MNYP NP N)2.4.4.2
HNDPN-TNN MYSHNA ION .4.4.2.1
DINNY MYSHNI ON .4.4.2.2

D DITHYIN NP 2WON.4.4.3

NN NOIYN
VLI NP DY NNIITN.5.1
YONNPNN-TNNN NVOY MYSNNI MNYP NHON.5.1.1
DINANT NVXY MYNNNI MNP NNDPON.5.1.2
SNAP ommn ©01 5y Npr1a.5.2
Facebook o»»nin o1 by npr71a.5.2.1
Twitter 011N ©01 DY NP>12.5.2.2
Google+ o»mn ©o1a by Np>7a.5.2.3
93 T7.5.3
n»c10.5.4
JINNNN NPD.5.4.1
DYTIVIND NNOINN NPD.5.4.2
MNIPN-TNN 297 NP 5.4.2.1
DINNN Y NPINDD .5.4.2.2
Y9101 TNNN N¥IAP NP1D.5.4.3
YWyN DW».5.5

D901 1PN 319 MIPON
INVDVIIN.6.1
MINN MIANIN.6.2
D»WYN DOVIN.6.3
NN OPIN.G.3.1

0N
DIYVAN DIV -A
UNNYN PYNm NN Al
Sy yon A2
VoPN MIN A3

J

2

3

N

DY, NY0) N NOVPITY DTN IR NOANIY ,NTNY SNIND NPMYN SNTIN IR YIND MINI2
ONTH NN DY MY NPYYN MSY , 7NN, TIDY 2D I1PD 7 TINX .ONINN DNNRY
Y N NN DY PONNT DI TNNY NN MPON NN DY

INIYA NIYNN DOUNNONN OYIAN .DNINY NTIN NIDN ONY NIAN MINY DMIVH M2 ONTHD
A0V ANNIN YN MYYNINDY LIV ANT NN

VI INHM INNININ NTITY DY PINON AMIND DYDY ONNIWND MTIND NA1N NN DN NP
AT RN DY ONTIAY JHI2 ONANN) ONNDAD DY ,2TN GON NI, NP Y TDOD .ADNNNN

ANNSN NVIDIINN
AUNNN SY1NY NPIVHRNNAY NPINNH

NH*Y Y0197 HVDIIN NPV HNVAN
DYHHIN MHNVY92

ININ NOAPO MYITNN POND NYNN T (NNODN NTIAY) NN NTHIAY

avNNN SYT1Na M.SC. 7Dy 1rY TN
NNINON NVIDININA
VNN Y TN NDVLNN

-5y
9290 »Y

S DNOYTNA NN NTIAYN
NIV ;11N 12 NVIDININY NNININ NVIDIDNIND DT TN /979
DNIYY ,MITY 90 NOYIN WD) 1PN T

2018 >N 11

