
 

The Open University of Israel 

Department of Mathematics and Computer Science 

 

 

שינויים בתמונות ואיתור מימוש אלגוריתם לזיהוי  

 דיגיטליות 

 

Implementation of digital image tampering 

detection and localization method 

 
 

Final Project 

Submitted as partial fulfillment of the requirements towards an 

M.Sc. degree in Computer Science 

The Open University of Israel 

The Department of Computer Science 

 

 

 

 

By 

Sivan Attias 

 
 
 

 
Prepared under the supervision of Dr. Ran Bittmann 

 
 

March 2022 
 

 



Table of Contents 

1. Introduction ....................................................................................................................................... 3 

2. DOA-GAN ........................................................................................................................................... 4 

2.1 Architecture overview ................................................................................................................ 4 

2.2 Training ...................................................................................................................................... 9 

2.3 Evaluation and results .............................................................................................................. 10 

3. My Implementation ......................................................................................................................... 14 

3.1 Data .......................................................................................................................................... 14 

3.2 Model training configurations ................................................................................................. 16 

3.3 Loss Functions .......................................................................................................................... 17 

3.3.1 Focal loss .......................................................................................................................... 18 

3.3.2 Dice loss ............................................................................................................................ 18 

3.3.3 Generalized dice loss (GDL) .............................................................................................. 19 

3.3.4 Surface (Boundary) loss .................................................................................................... 19 

3.3.5 Summary table ................................................................................................................. 21 

3.4 Training .................................................................................................................................... 22 

3.5 Testing ...................................................................................................................................... 27 

3.6 Results and future work ........................................................................................................... 28 

3.6.1 Results .............................................................................................................................. 29 

3.6.2 Visual results..................................................................................................................... 31 

3.6.3 Future work ...................................................................................................................... 31 

4. References ....................................................................................................................................... 32 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The procedure of image tampering is to replace the content within a region of the original image by 

some new content. The source and composition of the new content determines the specific type of 

tampering. When the new content appears entirely in some other place within the original image 

itself, it is named as copy-move. When the new content is taken entirely from a different source image, 

it is called cut-paste, or splicing. When the new content is a composition of small patches within the 

original image or from another image, it is called erase-fill. 

The most naïve form of copy-move and cut-paste methods is simply copying of pixels, as the names 

suggest. However, obtaining a high-quality tampering (i.e., one that is difficult or impossible to 

observe), usually involves the usage of advanced image editing algorithms such as diffusion, edge 

blending, color change or other more sophisticated image processing steps. 

There are some methods that can detect and sometimes localize the tampered areas. Some of the 

methods are intended for a specific type of tampering and some are general and can detect any 

tampered regions. 

Image forgery detection methods authenticate the genuineness of a digital image. In other words, 

given an input image, they classify the entire image as either authentic or forged. Image forgery 

localization takes a step further and tells us where the forged parts (or pixels) within the image are.  

This paper is a final project description. It first presents a method to detect and localize copy move 

forgeries based on [1]. Then I present my own implementation [2] and show improvements to the 

original research [1]. Finally, I discuss the results with comparison to the method in the original 

research [1]. 

 

 

 

 

 

 

 

 

 

 



2. DOA-GAN 

DOA-GAN [1] is a recent method for image copy-move forgery detection and localization. DOA-GAN 

stands for Dual-Order Attentive Generative Adversarial Network. Like BusterNet, this method detects 

copy-move forged regions in images, including source/target localization. This method consists of two 

sub networks – Generator and Discriminator, as designed in GAN. The generator is a CNN-based end-

to-end network. Given an input image, the generator calculates an affinity matrix based on the 

extracted feature maps. From the affinity matrix it produces two attention maps, A1 and A2, via a Dual-

order Attention Module: A1 is the 1st order region-aware attention map, which highlights regions that 

are likely to involve copy-move manipulations (either source or target regions). A2 is the 2nd order co-

occurrence attention map, that provides localization information by highlighting the locations of 

similar patches. The deep CNN features are then processed with the two attention maps, resulting in 

a fused feature map that is fed into two separate prediction heads: The first one (‘Detection Branch’) 

works on image-level, and predicts whether the entire image is forged or not, by estimating a single 

confidence score. The second one (‘Localization Branch’) works on pixel-level and produces a copy-

move prediction mask in which the source and target/forged regions are distinguished. 

The Discriminator sub-network’s responsibility is to check whether the mask produces by the 

generator looks real (identical to ground truth) or fake. It is only used during training, to facilitate the 

GAN loss component. During inference, only the Generator is used as an end-to-end solution. 

2.1 Architecture overview 

A high-level overview of DOA-GAN pipeline overview is presented in Figure 1. Given an input RGB 

image (𝐻 × 𝑊 × 3), the generator network first extracts features at 3 different scales (×
1

2
, ×

1

4
, ×

1

8
  of 

input resolution) using the first 4 block of VGG-19, and then resizes them to the same size in order to 

concatenate them. The resulting feature map 𝐹𝑐𝑎𝑡 is of size ℎ × 𝑤 × 𝑑 where ℎ =
𝐻

8
 , 𝑤 =

𝑊

8
  (in order 

to reduce computation time). In VGG 19 each block (seen as a gray box in the left of  Figure 1) is 

followed by MaxPool down sampling, such that the output of block #1 (① in  Figure 1) has size 
𝐻

2
×

𝑊

2
 ×  𝑑1 and is downscaled by factor 4. Similarly, ② is of size 

𝐻

4
×  

𝑊

4
 ×  𝑑2 and is downscaled by factor 

2. ③ is of size 
𝐻

8
×

𝑊

8
 × 𝑑3, so that the concatenated feature has 𝑑 = 𝑑1 + 𝑑2 + 𝑑3 channels.  



 

Figure 1 :DOA-GAN architecture overview [1] 

𝐹𝑐𝑎𝑡 is then fed into 3 branches: Affinity matrix (followed by Dual-Order Attention Module) and two 

Atrous Spatial Pyramid Pooling (ASPP) modules, named ASPP-1, ASPP-2. 

The Affinity matrix S is calculated as  𝑆 = 𝐹𝑐𝑎𝑡
′ 𝐹𝑐𝑎𝑡

′𝑇  (matrix multiplication) as illustrated in Figure 2, 

where 𝐹𝑐𝑎𝑡
′  is the result of flattening 𝐹𝑐𝑎𝑡 from ℎ × 𝑤 × 𝑑 to ℎ𝑤 × 𝑑 so that the rows of 𝐹𝑐𝑎𝑡

′  represent 

the feature vectors at each of the ℎ × 𝑤 locations. 

 
Figure 2:Calculation of Affinity Matrix S 

 

The resulting 𝑆 is a symmetric matrix of size ℎ𝑤 𝑥 ℎ𝑤. Since it represents the feature map’s self- 

similarity, the diagonal of 𝑆 represents the correlation of an image patch with itself, so the values in 

the diagonal (and in other locations which represent patches that are spatially very close) are 

obviously very high, possibly masking off-diagonal copy-move regions.  

To resolve this issue, the correlation score between the same (or very close) parts of the image is 

diminished using a gaussian kernel. Specifically, a function G is defined as follows:  𝐺(𝑖, 𝑗, 𝑖′𝑗′) = 1 −

𝑒
−

(𝑖−𝑖′)
2

+(𝑗−𝑗′)
2

2𝜎2  , for each pair of x-y coordinates (𝑖, 𝑗) and (𝑖‘, 𝑗’) . When the Euclidean distance 𝑑 

between 2 locations (𝑖, 𝑗) and (𝑖‘, 𝑗’)  is  0 or very small then 𝐺 ≈ 0 (full reduction), and when 𝑑 is large 



enough then 𝐺 ≈ 1 (no reduction). The goal is to penalize correlations between close or identical 

patches. 𝐺 is applied on 𝑆 and the modified affinity matrix S’ is obtained:  𝑆′ = 𝑆⨀𝐺 , where ⊙ 

denotes the element-wise product. Applying 𝐺 on 𝑆 is the first operation in the Dual-Order Attention 

Module (Figure 3). In the following next steps, two attention maps are obtained through this module: 

The 1st-order copy-move aware attention map A1, and the 2nd-order co-occurrence attention map A2. 

A1 highlights copy-move candidate regions, and 𝐴2 localizes co-occurrences between similar regions. 

In order to normalize the values in  𝑆′ a SoftMax function is applied, and the given result is the matrix 

𝐿 of the same size of  𝑆′, i.e., ℎ𝑤 ×  ℎ𝑤.  

 

 

Figure 3 : The dual-order attention module to obtain the copy-move region attention map A1 and the co-
occurrence attention map A2 [1] 

It is agreed now that 𝐿 contains the likelihood that a patch in the i-th row matches with a patch in 

the j-th column in  𝑆′. 

The next step is to extract the top 𝑘 values from each row in 𝐿, and reshape the result into a tensor 𝑇  

of shape ℎ ×  𝑤 ×  𝑘. This means that 𝑇 contains, for each location, the values with the highest 

likelihood for a copy-move forgeries. Note that due to the max operation, 𝑇 loses the localization, or 

co-occurrence information that exists in 𝐿 (i.e., “patch at location i is similar to patch at location j”), 

therefore both are kept for later use. 𝑇 is fed into an attention module which consists of 3 convolution 

blocks. The first two blocks contain convolution layers with 16 output channels and kernel size 3, 

followed by Batch-Normalization and ReLU. The final block contains two consecutive convolution 

layers with 16 output channels and kernel size 3, and 1 output channel and kernel size 1, respectively. 

The result is given by attention map A1 as shown in Figure 4. The attention map A2 is obtained by 

normalizing the matrix 𝐿 such that the sum of each row equals to 1. Both attention maps will be used 

later to produce the final feature map, as described below. 

 



   
Figure 4 :  Visualization of A1 on two copy-move forgery [1] 

 

So far only one part of the generator was discussed – the branch of the dual-order attention module. 

As mentioned before, 𝐹𝑐𝑎𝑡 is also fed into two Atrous Spatial Pyramid Pooling (ASPP) blocks, ASPP-1, 

and ASPP-2. ASPP block is utilized in semantic segmentation networks to capture context at several 

scales for semantic image segmentation. ASPP works as follows: It takes the input feature map and 

computes 5 operations in parallel: (1) Standard convolution with 1x1 kernel; (2-4) 3 Atrous 

Convolutions with different rates; and (5) global image pooling. 

In Atrous Convolution, the rate is defined as the distance (filled with zeros) between two kernel 

elements, as illustrated in Figure 5 (right). For example, for a 3x3 kernel with rate=4, three zeros are 

separating between every 2 elements of the original kernel [3]. 

The Global Image Pooling operation spatially averages all the input elements. This operation is done 

channel-wise, and the result is upscaled to a new image with the values of the average. 

As mentioned before, two ASPP modules, with different parameters, are applied to extract contextual 

features 𝐹𝑎𝑠𝑝𝑝
1  and 𝐹𝑎𝑠𝑝𝑝

2  , both of size ℎ × 𝑤 × 𝑑𝑠. The second block has atrous rates 6, 12 and 24, as 

shown in Figure 5 (left) 

  

Figure 5: Left: ASPP-1 [1];   Right – Atrous Convolution illustration 

The authors found through experiments that two ASPP blocks are useful to learn two different tasks, 

i.e., source and target detection. 𝐹𝑎𝑠𝑝𝑝
1  and 𝐹𝑎𝑠𝑝𝑝

2  are multiplied elementwise with 𝐴1to get the 

possible copy-move attentive features 𝐹𝑎𝑡𝑡𝑛
1  and  𝐹𝑎𝑡𝑡𝑛

2  :  

𝐹𝑎𝑡𝑡𝑛
1 =   𝐹𝑎𝑠𝑝𝑝

1 ⊙𝐴1     ;    𝐹𝑎𝑡𝑡𝑛
2 =   𝐹𝑎𝑠𝑝𝑝

2 ⊙𝐴1. 

 



𝐴2 is then used to obtain co-occurrence features 𝐹𝑐𝑜𝑜𝑐
1  and 𝐹𝑐𝑜𝑜𝑐

2   from  𝐹𝑎𝑡𝑡𝑛
1  and  𝐹𝑎𝑡𝑡𝑛

2 : 

𝐹𝑐𝑜𝑜𝑐
1 = 𝐴2 ⊗ 𝐹′

𝑎𝑡𝑡𝑛
1

 and 𝐹𝑐𝑜𝑜𝑐
2 = 𝐴2 ⊗  𝐹′

𝑎𝑡𝑡𝑛
2

 , where ⊗ is the matrix product operation. 𝐹′
𝑎𝑡𝑡𝑛 is 

the flattened version of 𝐹𝑎𝑡𝑡𝑛, ℎ × 𝑤 × 𝑑𝑠 → ℎ𝑤 × 𝑑𝑠,  so that 𝐹𝑐𝑜𝑜𝑐 is of size ℎ𝑤 ×  𝑑𝑠 .   

The region attentive features and co-occurrence features from both branches are fused via 

concatenation, to obtain the final feature representation: 

𝐹𝑓𝑖𝑛𝑎𝑙 = 𝑀𝑒𝑟𝑔𝑒 (𝐹𝑎𝑡𝑡𝑛
1 , 𝐹𝑎𝑡𝑡𝑛

2 , 𝐹𝑐𝑜𝑜𝑐
1 , 𝐹𝑐𝑜𝑜𝑐

2  , 𝐴1) 

The next step is to feed the feature vector 𝐹𝑓𝑖𝑛𝑎𝑙 into the detection and localization branches, where 

the per-image detection score and per-pixel segmentation map are created, respectively. The 

detection branch outputs a detection score (forged/non-forged) via 2 fully connected convolutional 

layers.  The localization branch consists of three convolution blocks (each followed by BatchNorm + 

ReLU), and a final convolution of 3 output channels to generate the segmentation mask of pristine 

(background), source and target regions. 

The discriminator is designed to check whether the predicted mask is identical to the ground-truth or 

not i.e., to predict whether each N × N patch in the image is real or fake. The discriminator is fully 

convolutional. It consists of five convolution blocks, each followed by Batch Norm and Leaky ReLU, 

and a final convolution layer. The output channels of the consecutive convolution layers are 32, 64, 

128, 256, 512, and 1, respectively, and the kernel size for all the convolution layers is 4 × 4. The stride 

of the convolution layers is 2 except the last one, which has a stride of 1. Therefore, as the input image 

is passed through each convolution block, the spatial dimension is decreased by a factor of two, and 

finally we get an output feature of size 
𝐻

25 𝑥
𝑊

25 𝑥1, where the spatial size of the input is 𝐻𝑥𝑊. The input 

to the discriminator network is the concatenation of the image I (𝐻𝑥𝑊𝑥3) and mask M (𝐻𝑥𝑊𝑥3).  

 

 

 

 

 

 



2.2 Training 

DOA-GAN is trained with 80,000 copy-move forged images and their ground-truth masks from USC-ISI 

CMFD dataset (from BusterNet), and 80,000 pristine images used as negative examples to train the 

Detection Branch. It is evaluated on the 10,000 testing forged images from USC-ISI CMFD and 10,000 

pristine images. All the pristine images were collected from COCO dataset. 

The loss function used to train DOA-GAN consists of 3 components: 

𝐿 =  𝐿𝑎𝑑𝑣 + 𝛼𝐿𝑐𝑒 + 𝛽𝐿𝑑𝑒𝑡 

The Adversarial Loss 𝐿𝑎𝑑𝑣, is the standard formulation of GAN loss, where the discriminator is trained 

to distinguish the ground-truth mask from the predicted mask, while the generator tries to fool the 

discriminator: 

𝐿𝑎𝑑𝑣(𝐺, 𝐷) = 𝐸(𝐼,𝑀)[log(𝐷(𝐼, 𝑀)) + log(1 − 𝐷(𝐼, 𝐺(𝐼))]] 

The discriminator D tries to maximize the loss, and the generator G tries to minimize it. 

Cross-Entropy Loss 𝐿𝑐𝑒 is applied on the Localization Branch output mask, and is expressed by:  

𝐿𝑐𝑒 =
1

𝐻𝑥𝑊𝑥3
∑ ∑ ∑ 𝑀(𝑖, 𝑗, 𝑘) log �̂�(𝑖, 𝑗, 𝑘)𝑊

𝑗=0
𝐻
𝑖=1

3
𝑘=1 , 

where 𝑀 ̂is the predicted mask of the generator network, and 𝑀 is the ground-truth mask. This 

formulation is a simple averaging of 3-class per-pixel cross entropy, where the 3 classes are source, 

target and pristine. 

Detection Loss 𝐿𝑑𝑒𝑡 is the binary cross-entropy loss between the image-level detection score from the 

detection branch and ground truth label: 

𝐿𝑑𝑒𝑡 = 𝑦𝑖𝑚 log(�̂�𝑖𝑚) + (1 − 𝑦𝑖𝑚) log(1 − �̂�𝑖𝑚),  

where �̂�𝑖𝑚 is the output of the detection branch and 𝑦𝑖𝑚 is 1 if the image contains copy-move forgery 

and 0 otherwise. 

 

 

 

 

 



 

2.3 Evaluation and results 

To test the effectiveness of DOA-GAN approach and compare its performance to other copy-move 

detection/localization methods (such as BusterNet and ManTra-Net, both discussed earlier), 

evaluation experiments were conducted on three benchmark datasets: USC-ISI CMFD dataset (whose 

train set was used to train DOA-GAN), CASIA CMFD dataset, and CoMoFoD dataset.  

To evaluate detection and localization performance, the authors report image-level (for detection) 

and pixel-level (for localization) precision, recall, and F1 score metrics. For the pixel-level evaluation, 

those metrics are computed for 3 classes: Pristine (background), Source, and Target, by averaging the 

scores of each image. As F1 score is ill-defined for pristine images, the testing images for pixel-level 

evaluation include only the forged images 

To assess the effectiveness of different parts of the DOA-GAN system, several ablation models were 

evaluated in addition to the final DOA-GAN model: DOA-GAN without any attention (denoted as NA-

GAN), baselines using the 1st-order (FOA-GAN) or 2nd-order attention (SOA-GAN) only, “DOA-GAN w/o 

𝐿𝑎𝑑𝑣”, and “DOA-GAN w/o 𝐿𝑑𝑒𝑡”, by removing the adversarial and image-level loss components 𝐿𝑎𝑑𝑣, 

and 𝐿𝑑𝑒𝑡, respectively.  

Table 1 summarizes the localization results of the various models, on USC-ISI CMFD test set. 

 
Table 1: The copy-move forgery localization results on the USC-ISI CMFD dataset using pixel-level precision, 
recall, and F1 score metrics for 3 classes: P, S, and T referring to Pristine, Source and Target, respectively [1] 

 

First, we note that DOA-GAN clearly has the best results in most the metrics. Specifically, on the Source 

and Target classes, DOA-GAN shows superior performance by large margin over BusterNet and 

ManTra-Net. 



Also, let us note that the inclusion of adversarial loss component (and Discriminator network) has only 

small contribution to the overall performance, as “DOA-GAN w/o 𝐿𝑎𝑑𝑣”  nearly matches the DOA-GAN 

final model. Apparently, the major boost in performance is due to the dual order attention module 

(NA-GAN vs DOA-GAN). 

Image level evaluation results (for detection) are shown in Table 2 below:  

 
Table 2:Detection results on the USC-ISI CMFD dataset [1] 

Again, it is clear that DOA GAN performs much better also for image-level detection. 

Evaluation experiments also conducted on the popular datasets CASIA CMFD and CoMoFoD. 

 
Table 3: The performance on the CASIA CMFD dataset [1] 

 
Table 3 compared DOA-GAN’s performance vs. other baselines on CASIA CMFD dataset. In contrary to 

USC-ISI, this dataset doesn’t have source/target separation masks (treating both classes as ‘forged’). 

Therefore DOA-GAN adapted to this scenario by modifying its localization head to predict only 1 

output channel (indicating forged/pristine) instead of 3, and retraining.  

As can be seen, DOA-GAN performs the best in terms of all metrics, for both localization and detection, 

except the precision in detection. It also better than BusterNet on all measures. Note that the results 

on BusterNet are different from the results reported in [4], as in the original BusterNet, the 

manipulation branch was trained on external image manipulation datasets, however, for fair 

comparison, both BusterNet and DOA-GAN were trained only on the USC-ISI CMFD dataset and MS 

COCO dataset.  



 
Table 4: The performance on the CoMoFoD dataset [1] 

Table 4 shows the evaluated performance on the CoMoFoD dataset. Again, DOA-GAN achieves the 

best performance except the precision in detection and localization. Note that different types of 

transformations are applied in this dataset to create copy-move manipulated images, e.g., translation, 

rotation, scaling, combination, and distortion. Various post-processing methods, such as JPEG 

compression, blurring, noise adding, and color reduction, are also applied to all forged and original 

images. 

However, DOA-GAN is not perfect – it can fail in some cases. For example, when the copy region is 

extracted from the uniform background and pasted on the same background. It also might fail when 

the scale of the copied object has changed significantly. As shown in Figure 6 below, the backgrounds 

for the first example are uniform, and the scale of the copy-move regions are very small in the second 

example. 

 

 
Figure 6: From left to right – input image, DOA-GAN result, and ground truth [1] 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

  



3. My Implementation 

In general, I used pytorch [5] framework. 

3.1 Data 

To train, validate I used USC-ISI and COCO datasets same as [1]. 

USC-ISI has 10k images to test on. These are forged images used to evaluate localization. It is 

composed of MIT SUN2012 Database and MS COCO Dataset by copy paste random objects. To 

evaluate detection together with USC-ISI, COCO used with 10k images which are non-forged, called 

authentic. 

 

To evaluate, I used CoMoFoD CMFD [6] and CASIA v2.0 CMFD [7]. CASIA v2.0 CMFD  was taken from 

BusterNet repo [7] - it has hd5 file dataset of 1313 positive CASIA-CMFD samples, Both forged images 

and masks are included. To include the authentic images, I downloaded the data itself from Kaggle. 

The forged part is used for localization, and together with the authentic part I evaluate the detection. 

 

The CoMoFoD CMFD dataset contains only copy-move forgeries. 

These forged images and their masks appear in CoMoFoD-CMFD.hd5 file, and to evaluate detection 

on the non-forged images I used the original images (marked with “_O”). 

Every forged image (denoted as “_F_”) is made of one of the following manipulations [7]: 

 Translation - a copied region is only translated to the new location without performing any 

transformation (Images 1 to 40) 

 Rotation - a copied region is rotated and translated to the new location (Images 41 to 80) 

 Scaling - a copied region is scaled and translated to the new location (Images 81 to 120) 

 Distortion - a copied region is distorted and translated to the new location (Images 121 to 159) 

 Combination - two or more transformations are applied on a copied region before moving it 

to the new location (Images 160-200) 

Also, it originally contains binary masks, but BusterNet created RGB masks by: 

 Obtain the target copy by thresholding the difference between the manipulated image and its 

original 

 Obtain the source copy by matching the target copy on the manipulated image using 

SIFT/ORB/SURF features 

 Manually verify all obtained masks 

Postprocessing methods applied on the images: 

https://www.kaggle.com/sophatvathana/casia-dataset


"JC" - JPEG compression, quality factor = [20, 30, 40, 50, 60, 70, 80, 90, 100] (noted as JC1, …, JC9 

respectively) 

"IB" - image blurring, μ = 0, σ2 = [0.009, 0.005, 0.0005]) (noted as IB1, IB2, IB3) 

"NA" - noise adding, averaging filter = [3x3, 5x5, 7x7] (noted as NA1, NA2, NA3) 

"BC" - brightness change, (lower bound, upper bound) = [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)], 

"CR" - color reduction, intensity levels per each color channel = [32, 64, 128] 

"CA" - contrast adjustments, (lower bound, upper bound) = [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)]. 

 

Therefore, for each fake image (we have 200 base, 40 for each manipulation (there are 5))– there are 

25 post processing = 200*25=5000. Same for non-copy move images - 5000 images. 200 colored masks 

+ 200 binary masks =400 

The data sets are described in the following table: 

General transformation for all data used depicted in file “pairwise_transforms.py”. I created an API 

that transforms pairs of image and mask or single image only. 

Transformations used are convert to tensor, resize to 320X320, random 

horizontal flip for training set only, and normalization for images only. “datasets_api.py” contains 

API for USC-ISI, CASIA, CoMoFoD. 

 

 

 

 

 

 

 

 

Set Training Validation Testing Notes 

USC-ISI CMFD 

[7] 

80k 10K Localization & 

detection -10k 

Composed of MIT SUN2012 Database and MS COCO 

Dataset by copy paste objects. 

MS COCO [8] 80k 10k Detection - 10k  Used as pristine images counterparts for USC-ISI. 

CoMoFoD CMFD 

[[6], [7]] 

x x Localization – 5000 

Detection 5000  

Manipulations: translation, rotation, scaling, combination, 

and distortion. Contains RGB masks made by BusterNet 

CASIA v2.0 

CMFD[7] 

x x Localization - 1313 

Detection - 2626 

 

Table 5: Data sets summary 



3.2 Model training configurations 

Learning rates - learning_rate_G=1e-3; learning_rate_D=1e-4; learning_rate_VGG =1e-

4. Following [1], different learning rates are used to train different parts in the model. The feature 

extraction module is based on the first three blocks of the VGG-19 network pretrained on the 

ImageNet dataset. The learning rate of the feature extractor (VGG-19) is set to 0.0001, i.e., is being 

trained additionally to use its pre trained weights (transfer-learning). The authors used two different 

learning rates for the generator and the discriminator networks, 0.001 and 0.0001, respectively. 

Set Adam optimizer for the three models of G, D and VGG19 with betas = [0.9,0.999]. The hyper-

parameters betas of Adam are initial decay rates used when estimating the first and second moments 

of the gradient, which are multiplied by themselves (exponentially) at the end of each training step 

(batch).  

I used k = 20 for the top-k value in the 1st attention block, same as the authors described. The ASPP 

blocks are based on those used in DeepLabV3. Pytorch provides these in torch vision segmentation 

models, the relevant code copied to “aspp.py” 

Patience - The learning rates are decreased by half (factor=0.5) when the training loss plateaus 

after 5*8=40 epochs (in the original paper they train on 80000 samples, but I train on 10000 random 

samples each time. To implement this, I used torch.optim.lr_scheduler that imports 

ReduceLROnPlateau function. 

g_warmup_epochs - In order to prevent the discriminator over-train, there are 

g_warmup_epochs=26 epochs to let net_g warm up. The authors in [1] trained 3 warmup epochs 

and because I train 10k each epoch instead of 80k, I needed to train net_g at least 3*8=24 epochs. 

Even if we consider the adversarial loss, we need to let G plot some reasonable masks before start 

training the discriminator. 

calc_dist_tform - If using boundary loss, a precomputed distance map should be computed in the 

training dataset. 

Localization weights -as a part of the training I tried different losses to improve results. These 

parameters control weather I use a specific loss in a training experiment (=1), or not (=0). 

weight_focal(default=1); weight_gdl(default=0); weight_dice(default=0); 

weight_boundary(default=0).  



3.3 Loss Functions 

When using cross entropy loss for the localization masks, the statistical distributions of labels (masks 

or detection scores) are very important in determining training accuracy. Particularly, cross-entropy 

loss does not work well with highly imbalanced classes. The more unbalanced the label distributions 

are, the more difficult the training will be. In our case, predicting the CMFD masks is a highly 

imbalanced task, where a forged image has many more pristine pixels than source and target pixels, 

as the copied areas are usually small.  

Why is class imbalance a problem? Because most of the ML algorithms assume that the data is 

balanced, i.e., the data is equally distributed among all its classes. When training a model on an 

imbalanced dataset, the learning becomes biased towards the majority classes (pristine pixels). The 

model learns to perform well on the majority classes, but due to the lack of enough examples the 

model fails to learn meaningful patterns that could aid it in learning the minority classes. In case of 

CMFD, this might push the training to predict all the pixels as pristine in order to minimize the cross-

entropy loss. 

 

In order to improve the cross-entropy loss, I added class weights that give more emphasis to source 

and target classes. The general formula for weighted cross-entropy loss is:  

𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑤𝑖,𝑐 ∗ 𝑦𝑖,𝑐 log(𝑝𝑖,𝑐)

𝑐∈𝐶

𝑁

𝑖=1

=⏟
∗∗

−
1

𝑁
∑ 𝑤𝑖,𝑐 log(𝑝𝑖,𝑐)

𝑁

𝑖=1
𝑐∈𝐶

  

(**) since 𝑦𝑖,𝑐  is 1 if item 𝑖 belongs to class c and 0 for others.  

In particular, I used 𝑤𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 = 10 , 𝑤𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 = 1 and 𝑦𝑖,𝑐 , 𝑝𝑖,𝑐 represent tensors with 

labels for each pixel in real computation. 

However, the improvement was not significant, and the core issue of cross entropy loss is not 

solved. In cross entropy loss, the loss is calculated as the average of per-pixel loss, and the per-pixel 

loss is calculated discretely, without knowing whether its adjacent pixels are boundaries or not. As a 

result, cross entropy loss doesn’t see the global context, which is not enough for image level 

prediction. 

 

 

 

 

 

 

 



 

3.3.1 Focal loss 

𝐹𝐿(𝑝𝑡) =  −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) 

The Focal Loss [9] aims to help with imbalanced classes of pristine source and target, as there are 

much more pristine pixels the source and target. The Focal Loss adds a factor (1 − 𝑝𝑡)𝛾 to the 

standard cross entropy criterion, where 𝑝𝑡 represents the predicted probability. Setting 𝛾 > 0 reduces 

the relative loss for well-classified examples (𝑝𝑡 > 0.5), putting more focus on hard, misclassified 

examples (e.g., target and source). Here, I used 𝛾 = 2. Therefore, easily predictable pristine pixels 

(e.g., large background areas) will contribute much less to the overall loss, thus effectively reducing 

the class imbalance. 

Additionally, the focal loss function can also have per-class weights (similarly to weighted cross-

entropy).  

 

3.3.2 Dice loss 

Dice Loss [10] is a popular loss in semantic segmentation problems, which claims to improve the class 

imbalance problem. The Dice Coefficient measures the similarity between two samples – predicted 

and ground-truth: 

𝐷 =
2 ∑ 𝑝𝑖 ∗ 𝑔𝑖

𝑁
𝑖

∑ 𝑝𝑖
2𝑁

𝑖 + ∑ 𝑔𝑖
2𝑁

𝑖

 

Dice coefficient can also be seen as a form of IoU (Intersection-over-Union) overlap between two sets 

and in terms of sets it is 

2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑢𝑛𝑖𝑜𝑛
 

An observation dice coefficient is the same as F1-score (harmonic mean of precision and recall) 

𝐹1 =
1

1
2 (

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
=

𝑇𝑃

2𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃  
 

We know that union equals to TP + FN + FP, and intersection equals to TP. 

Dice Loss aims to maximize the Dice Coefficient (or minimize 1-DiceCoefficient). 

A potential problem with dice, is that it can have high variance. Getting a single pixel wrong in a tiny 

object can have the same effect as missing a whole large object, thus the loss becomes highly 

dependent on the current batch. Originally, Dice coefficient is defined for a binary classification 

problem (e.g., foreground/background). The extension to multi-class problem (which is our case) is 

done by calculating Dice Coefficient per class (P/S/T), then averaging between classes. 

 



 

3.3.3 Generalized dice loss (GDL) 

As another experiment to improve results, I used the Generalized Dice Loss [11] , which is an 

improvement for Dice Loss for coping with extremely imbalanced data. 

Its form is: 

𝐺𝐷𝐿 = 1 − 2
∑ 𝑤𝑙

𝐶
𝑙=1 ∑ 𝑔𝑙𝑖𝑝𝑙𝑖𝑖

∑ 𝑤𝑙
C
𝑙=1 ∑ 𝑔𝑙𝑖 + 𝑝𝑙𝑖𝑖

 , 𝑤𝑙 =
1

(∑ 𝑔𝑙𝑖
𝑁
𝑖 )

2 

Where the class weighting 𝑤𝑙 is determined on the fly such that the contribution of each label is 

corrected by the inverse of its volume, thereby reducing the well-known correlation between region 

size and the standard Dice Coefficient. 

 

3.3.4 Surface (Boundary) loss 

As the resulted masks didn’t exceed my expectations, I tried to add the Boundary Loss [12] additionally 

to GDL. It aims to reduce issues related to regional losses in highly unbalanced segmentation 

problems. It uses the distance metric on the contours or shapes, not regions.  

 

Figure 7: S is the predicted region G is the ground truth. ∆S denotes the region between the two contours 
𝜕𝐺, 𝜕𝑆, the loss is actually the subtraction )union-intersection([12] 

The following equation describes boundary loss [12]  

𝑳𝑩(𝜽) = ∫ 𝛟𝐆(𝒒)𝒔𝜽(𝒒)
𝛀

ⅆ𝒒 

Where 𝑠𝜃(𝑞) is the predicted SoftMax probability output of the network for the relevant class at 

pixel q, and 𝛟𝐆: Ω → 𝑅 denotes the level set representation of boundary 𝜕𝐺: 

𝛟𝐆(𝒒) = {
−𝐷𝐺(𝑞) 𝑖𝑓  𝑞 ∈ 𝐺
𝐷𝐺(𝑞) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



𝐷𝐺 is a distance map with respect to boundary 𝜕𝐺, i.e., 𝐷𝐺(𝑞) is the Euclidean distance between pixel 

𝑞 ∈ Ω and its nearest point on contour 𝜕𝐺. 𝛟𝐆 is computed per class {P, S, T} on the fly, during the 

batch fetching stage (since it depends only on the ground-truth labels). 

In practice, the loss 𝑳𝑩(𝜽) is computed for each class as a multiplication between output probabilities 

𝑠𝜃(𝑞) and distance maps ϕG(𝑞), and then averaged across locations and classes.  

For each class (pristine, source, target), the level-set distance map 𝛟𝐆 is computed from the given 

ground-truth masks as: 

distance(negmask)*negmask - (distance (posmask) - 1) * posmask 

where posmask is 1 if for pixels belonging to the class, and 0 otherwise. negmask is the binary 

complement of posmask. distance is the 2D Euclidean distance transform function. i.e., for each pixel 

x[i] it gives values of the Euclidean distance:   

𝑦𝑖  =  √∑(𝑥[𝑖] − 𝑏[𝑖])2

𝑛

𝑖

 

Where 𝑏[𝑖] is the background point (value 0) with the smallest Euclidean distance to input points 𝑥[𝑖], 

and n is the number of dimensions, in our case n=2. 

Note that the (-1) in the posmask formula above, means that the distance is zero for pixels that are 

right at the boundary (i.e., adjacent to a non-object pixel). 

 

 As illustrated in .שגיאה! מקור ההפניה לא נמצא , (distance(posmask) - 1) * posmask is the 

distance map from inside the object to its boundaries, and distance(negmask)*negmask is the 

distance between the background around the object and its boundaries.  

  

 

Figure 8: Distance map for class 0 (target class). From left to right – positive mask, negative mask, 
distance(negmask)*negmask, (distance (posmask) - 1) * posmask, resulted map. Yellow in the distmap means 
very high values as it is very far from the object. 



3.3.5 Summary table 

A summary table inspired by [13] 

Loss Type Loss Function Use cases 

Distribution-based  

 

Binary Cross-Entropy Works best in equal data distribution among classes scenarios 

Weighted Cross-Entropy Widely used with skewed dataset Weighs positive examples by 𝛽 

coefficient 

Focal Loss works best with highly imbalanced dataset down-weight the 

contribution of easy examples, enabling model to learn hard examples 

Region-based Dice Loss  Inspired from Dice Coefficient, a metric to evaluate segmentation 

results 

GDL Weighted dice loss 

Boundary Boundary loss Aims to minimize the distance between ground truth and predicted 

segmentation. Usually, to make the training more robust, boundary-

based loss functions are used with region-based loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.4 Training 

In this part the training methodology is presented. Same as DOA-GAN, the training set includes the 

USC-ISI dataset with 80000 forged images and the COCO-2014 dataset with 80k non forged images. 

As a starter, the model was trained without the GAN components from few reasons: The first reason 

is to get a stable model that outputs reasonable masks and detection scores, since GAN is harder to 

train. The second reason is that the discriminator should help to train the generator and according to 

the authors results it didn’t improve much. The relevant parameter to indicate that is called 

adversarial_loss. If it is set to true, then net_d is created, and the relevant loss is considered 

in the general loss. As an experiment I tried to use ls-GAN loss which uses MSE (mean square error) 

between prediction and target its training is better converges then vanilla GAN and I got more stable 

training. Let us first focus on the training without the network D. 

In previous section (3.3)  different losses were presented, which the authors didn’t use, but I decided 

to use because the results at the beginning with original loss (as described in section 2.2) didn’t 

perform well. 

Back to the training function. It starts with defining the relevant loss as configured. These losses above 

are intended to train the localization branch. 

The detection loss is the same (almost) as DOA-GAN’s author defined - BCEWithLogitsLoss 

binary cross entropy with logits. Why with logits? Well instead of adding sigmoid layer (or SoftMax if 

the output was more than one class, but in this case, it is a detection score) in the model we do it in 

the loss function itself. This version is more numerically stable than using the sigmoid layer followed 

by a BCEloss. 

During training the collected metrics are accuracy for detection/localization, and localization recall for 

each class (source, target, pristine) named respectively as acc_det, acc_loc, rec_t, rec_s, 

rec_p etc. For the binary case: rec_f, rec_p represents forged and pristine. 

The final loss formulas: 

 
(1)  𝐿𝑙𝑜𝑐 =  𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑜𝑐𝑎𝑙 ∗ 𝐿𝑓𝑜𝑐𝑎𝑙 + 𝑤𝑒𝑖𝑔ℎ𝑡𝑔𝑑𝑙 ∗ 𝐿𝑔𝑑𝑙 + 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑖𝑐𝑒 ∗ 𝐿𝑑𝑖𝑐𝑒 + 𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∗ 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

(2) 𝐿𝑡𝑜𝑡 =  𝐿𝑎𝑑𝑣 + 𝛼 ∗  𝐿𝑙𝑜𝑐 +
1

2
∗  𝛽 ∗ 𝐿𝑑𝑒𝑡 +

1

2
∗ 𝛽 ∗ 𝐿𝑑𝑒𝑡_𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 

 
 

 

 

 



Main training loop  

For each epoch: 

Zero running metrics 

  

Set net_g to train mode – layers such as BatchNorm and Dropout acts differently than in eval 

mode. In training we do use Dropout, in eval we don’t. During training, BatchNorm layer 

keeps a running mean and variance. The running stats are updated with a default momentum 

of 0.1 during training. Mathematically, the update rule for running statistics here is 𝑥𝑛𝑒�̂� =

(1 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) ∗ 𝑥𝑜𝑙�̂� + 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∗ 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, where 𝑥𝑜𝑙�̂� is the estimated statistics so 

far and 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the new observed value.  

During evaluation, this running mean/variance is used for normalization. A note 

no_runing_stats (track_running_stats=False) flag for batch normalization is used 

in my training. In this case in training mode the running mean/variance won’t be kept and thus 

won’t be used in eval mode. When I used the default BatchNorm, there was a big gap between 

training and validation performance. The validation set had worse results and didn’t converge. 

And with no running stats I got similar performance for train and validation. 

  

For each mini- batch: 

Assigning the relevant parts of data variable into forged_images and gt_masks variable 

names. 

 

Zero the gradient of net_g - accumulation of gradients happens when backward is called on 

the loss tensor, i.e., performing update to weights and biases computed. Otherwise, the 

gradient would be a combination of the old gradient, which has already been used to update 

the model parameters, and the newly computed gradient. Therefore, it would point in some 

other direction than the intended direction towards the minimum. 

 

Forward pass of the forged images in net_g. The results are prediction masks and scores for 

each image in the mini batch represented as pred_mask, score_forged. 

Both of shape(batch_size,3,320,320) and (batch_size,1) respectively. 

SoftMax was not applied on pred_mask yet. 

 

Calculating localization loss L_loc which is the weighted sum of L_boundary, L_focal, 

L_dice, L_gdl (if they are configured of course) between pred_mask and gt_mask. 

 

Calculating the detection loss  

𝐿𝑑𝑒𝑡 = 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠(𝑠𝑐𝑜𝑟𝑒_𝑓𝑜𝑟𝑔𝑒𝑑, 𝑡𝑜𝑟𝑐ℎ. 𝑜𝑛𝑒𝑠_𝑙𝑖𝑘𝑒(𝑠𝑐𝑜𝑟𝑒_𝑓𝑜𝑟𝑔𝑒𝑑 ))  

Train net_d if run_gan_in_epoch is true – will elaborate later. 

Calculating the total loss as in Eq. (2) 

 

Forward pass on the pristine batch, to train the detection branch. 

I run net_g(pristine_images) and get their detection scores (the predicted masks are 

not relevant), and computing  𝐿_𝑑𝑒𝑡_𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒. 



 

L_det_pristine.backward() –  

since L_det_both = 0.5 * (L_det + L_det_pristine) is the detection loss for both 

pristine and forged and L_det is part of L_total which has already done backprop, the one 

that left is L_det_pristine. I couldn’t do backward at the same time since it is another 

batch of images, and it might raise some out of GPU memory exception. 

Calling optimizer_g.step() which means that after computing the gradients for all 

tensors in the model, the optimizer iterate over all parameters (tensors) it is supposed to 

update (requires_grad=True  and is_leaf=True) and use their internally stored grad to 

update their values. 

Update running metrics that are showed in tensorboard graphs [see Figure 9] 

 

So, this is basically the training loop. After that there is the validation loop which looks almost the 

same, except that no gradients are computed, and no optimization is done. 

 

Figure 9: Tensorboard of LS-GAN training. Running metrics are updated for each epoch. 

 

  



Let us explain how network D is calculated: 

Network D is trained with real masks and generated masks, both with the forged images. 

I modified the discriminator by adding spectral norm[[14], [15]] after each convolution layer, which 

stabilizes the GAN training. The spectral norm is the maximum singular value of a matrix.  

Train net_d: 

Set requires_grad=True for each of net_d’s parameters – in the end of this loop (starting 

from the second iteration) I set those to false, because I update net_g and make another 

forward pass with net_d , and in this forward pass I don’t need to compute the gradients of 

D again – it saves time. 

Zero the gradient of net_d  

 

Forward pass of net_d – forged images and their “real” (ground truth) masks are passed 

through the Patch-GAN [16] based discriminator. The output is a tensor of shape 

(batch_size, 1, 10, 10) – for every given image the output is a 10𝑥10 patch. Every 

pixel in the output describes a patch in the original image, and the loss of netD looks at the 

average of all this patches. The score of the pixel tells if the patch is real or fake. 

 

Computing the loss errD_real between the output of the discriminator and “real” labels. 

label 1 means that the mask is ground truth. 

 

Calculate gradients for D in backward pass - errD_real.backward 

 

Computing the average output (across the batch) of the discriminator for all batch with 

gt_masks - D(x) – it should start close to 1 then theoretically converge to 0.5 when G gets 

better, because at the beginning G outputs garbage and it is easy for D to guess "correctly". 

Another forward pass, but this time with the predicted masks generated by net_g. 

 

Compute the loss errD_fake, this time with “fake” labels which are 0. Finally, backward. 

 

The final loss of netD is the sum errD = errD_real + errD_fake. 

 

Computing the average output (across the batch) of the discriminator for all batch with masks 

generated by G – 𝐷(𝐺(𝑧1)) – it should start near 0 and converge to 0.5 as G gets better. 



Update D according to the authors policy - When the discriminator loss decreases to 0.3, we 

freeze the discriminator until the loss increases, therefore: 

 if errD > gan_disc_loss_thr: 

     optimizerD.step() 

 

Set requires_grad=False for each of net_d parameters. No need to save gradient for D 

because we don’t do any step for D 

Since we just updated D, perform another forward pass of all-fake batch through D. Then 

Calculate G's loss based on this output (adv_loss) 

Computing the average output (across the batch) of the discriminator for all batch with masks 

generated by G – 𝐷(𝐺(𝑧2)) – it should start near 0 and converge to 0.5 as G gets better. 

A note – why computing backward separately on errD_real and errD_fake and not on errD? Well, 

it is a trade-off between time and GPU memory. Time – it might be slower performing backward twice. 

Memory – keeping memory consumption lower by 2 “small” auto grad graphs instead of one large, so 

we can double the batch size for example. Backward clears the graph. 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.5 Testing 

This part consists of testing each dataset separately for localization and detection: 

For localization task each dataset was tested separately. The metrics used were F1, Precision and 

Recall from torch metrics [17]. The computed metrics are defined as follows: 

 Localization (pixel-level evaluation) – 3 or 2 classes (target, source and pristine or target +source and 

pristine) to evaluate localization, and the applied reduction specified by the “Average” parameter 

calculates the metric for each class separately and returns the metric for every class. On top of this 

parameter, there’s a way to average multi-dimensional multi class inputs called mdmc_average and 

its value is 'samplewise', which means that the statistics are computed separately for each sample 

in the batch (N) axis, and then averaged over samples. The computation for each sample is done by 

treating the flattened extra axes, as the N dimension within the sample, and computing the metric 

for the sample based on that. The localization evaluation is in the test_localizaition.py script. 

 

 Detection (image-level evaluation) – here the number of classes equals to 1, from few reasons: first, 

the output score in this case is (N,1). Second, we have positive samples (forged) and negative 

samples (non-forged). The average parameter is none – it calculates the metric for each class 

separately and returns the metric for every class. 

 

All images and masks are being transformed before testing - transform to tensor representation, 

resize to 320 𝑥 320, normalization 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3.6 Results and future work 

As part of my implementation, I conducted many experiments with different hyper-parameters and 

training configurations but chose the best ones to demonstrate. Table 6 below shows 4 experiments: 

2 experiments without the adversarial loss component (without 𝐿𝑎𝑑𝑣) and 2 that do use it (Full 

GAN), according to the author in [1]. 

The columns of this table are described here in detail. The first one, “No running stats”, means that 

BatchNorm layers run with track_running_stats=False, unlike the default BatchNorm 

behavior (as described in training section 3.4). This is a key hyper-parameter that made the model get 

better results (much better than vanilla BatchNorm), and the 4 experiments shown use it. It is worth 

to mention that I also tried using LayerNorm normalization layer instead of BatchNorm, and 

although it gave good results, the best results were obtained with the modified BatchNorm. 

The second column is the weight that was given to the detection loss 𝐿𝑑𝑒𝑡 – alpha detection (αdet), 

which controls the balance between the localization and detection loss terms. The third one is the 

usage of the vanilla Cross Entropy loss for the pixel-level localization, as described in [1]. The 4th is the 

usage of Focal Loss, which is discussed in detail in section 3.3.1. The 5th and 6th column describe the 

usage of Generalized Dice Loss (GDL) and Boundary Loss (BL), respectively. Both GDL and BL are 

described widely in sections 3.3.3 and 3.3.4 respectively. 0.1 is the given weight for Boundary Loss. 

Those experiments that are not using the adversarial loss were conducted earlier than others, to get 

stable training, as it is well known that GAN is more difficult to train and more sensitive to hyper-

parameters compared to standard CNNs. The experiment called no_runing_stats is a combination 

of track_running_stats=False, Focal Loss and αdet=0.5. The second experiment 

gdl_boundary_nrs stands for combined GDL and BL (nrs=no running stats). 

The experiments in “Full GAN” section are lsgan_gdl_bd_nrs and nrs_ce_lsgan. The former uses 

GDL & BL for localization loss, while the latter uses vanilla CE.  

Both configurations are trained with Least-Squares GAN (LS-GAN) instead of the vanilla GAN: 



 

Figure 10: LS-GAN vs vanilla GAN [18] 

Vanilla GAN was used in some experiments (not shown here), but eventually I preferred LS-GAN which 

turned up to be more stable to train and had better convergence.  

 Methodology/ 
Experiment name 
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Full GAN lsgan_gdl_bd_nrs 
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 (0.1) 

nrs_ce_lsgan 
 

0.3 
 

   

Table 6: Experiments that were conducted 

3.6.1 Results 

In this section the results tables are described and compared to [1]. Table 7  below shows results on 

USC-ISI test dataset, whose training and validation sets used to train my model same as [1]. As a whole, 

the model of gdl_boundary_nrs got better results. And when used the adversarial loss, the model 

of lsgan_gdl_bd_nrs seems to be better as a whole. My models got significantly better results than 

[1]. 

Experiment 
 

Precision Recall F1 

P S T P S T P S T 
no_runing_stats 99.56 61.01 75.49 92.90 91.44 99.12 96.06 71.96 84.32 
gdl_boundary_nrs 99.15 88.59 95.23 99.25 89.71 96.62 99.20 89.04 95.89 

DOA-GAN without 𝐿𝑎𝑑𝑣[1] 95.80 72.30 83.60 96.27 60.32 79.10 96.01 63.25 80.45 

 

lsgan_gdl_bd_nrs 95.89 77.52  94.19  99.50 55.67   94.68   97.62 61.69   94.36   
nrs_ce_lsgan 99.15 71.22 82.59 95.45 88.62 99.22 97.17 76.40 89.87 
DOA-GAN[1] 96.99     76.30      85.60 98.87     63.57      80.45 97.69     66.58       81.72 

Table 7: Localization results for USC-ISI test set 



In detection results (shown in Table 8) almost no difference between the models I trained, besides it 

has better results than [1]. 

 

 

 

 

 

 

 

 

The localization and detection results for CASIA and CoMoFoD datasets are described below in  !שגיאה

 I used the models that were trained only on USC-ISI, same as [1]. The scores in in מקור ההפניה לא נמצא.

Table 9 describe the union of source and target classes i.e., no source target differentiation. The model 

of [1] localized better, even though the gap is not significant. no_runing_stats detected better 

than [1]. Generally, the models that I trained without the adversarial loss got better results than those 

with 𝐿𝑎𝑑𝑣. 

 

 

 

 

 

 

 

 

 

 

Experiment 
 

Precision Recall F1 

no_runing_stats 100.00 100.00 100.00 
gdl_boundary_nrs 100.00 100.00 100.00 
DOA-GAN without 𝐿𝑎𝑑𝑣[1] 95.45 93.09 94.25 
 

   

lsgan_gdl_bd_nrs 99.00 100.00 99.00 
nrs_ce_lsgan 100.00 100.00 100.00 
DOA-GAN[1] 96.83 96.14 96.48 

Table 8: Detection results for USC-ISI 

Dataset Experiment Localization  Detection 

  Precision Recall F1 Precision Recall F1 

CoMoFoD no_runing_stats 29.9729 49.6347 27.4558 99.98 99.94 99.96 
nrs_ce_lsgan 31.5311 45.6249 25.5044 96.5655  24.1800 38.6756 
DOA-GAN [1] 37.84 48.42 36.92 65.98 60.38 63.05 

 

CASIA no_runing_stats 28.686 46.2625 30.231  92.9394 92.2315 92.5841 
nrs_ce_lsgan 25.6598 30.7978 20.797 100 0.1523 0.3042 
DOA-GAN [1] 54.70  39.67 41.44 63.39 77.00 69.53 

Table 9: Localization and detection scores for CASIA and CoMoFoD 



 

3.6.2 Visual results 

Output masks of the Generator network alongside the ground truth mask and original image 

 

Figure 11: test USC-ISI no running_stats.pt from left original image, ground truth mask(middle) and prediction. 

 

3.6.3 Future work 

In my work I focused on two models that the authors of [1] showed the best results for- Full GAN and 

DOA GAN without discriminator. 

There is room to conduct much additional research, specifically: 

 Use a better GAN loss as WGAN[19] 

 Train the model on other popular benchmark datasets like CASIA and CoMoFoD that may have 

used slightly different copy-move techniques which are not fully covered by the original 

training. 

 Experiment with additional forgery techniques like splicing or video as described in a 

supplementary file of [1].  

In summary, the research area of visual forgery detection is gaining popularity and provides demand 

for more research in the future. 
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