The Open University of Israel
Department of Mathematics and Computer Science

Synchronization Complexity Metric

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science
The Open University of Israel
Computer Science Division

By
Peter Yastrebenetsky

Prepared under the supervision of Dr. Mark Trakhtenbrot

December 2009

Abstract

As multitasking environments and applications become more and more common, the
quality and efficiency of these applications becomes more and more important. While for
single-threaded programs there are many complexity metrics in use since the 1970’s, so
far there was no way to efficiently measure and compare the complexity of multitasking
programs, and the affect of the concurrency on the overall program complexity.

In this thesis we propose a solution to this problem. Namely, we introduce a new
metric that characterizes program complexity based on the kind and amount of the various
synchronization means used for coordination between its concurrent components. Similar
to McCabe’s metric for single-threaded programs, the new Synchronization Complexity
metric allows for assessment of the amount of tests needed to achieve a proper coverage in
testing of a concurrent program. It also enables comparison between different system’s
implementations based on the synchronization complexity analysis.

SYNCHRONIZATION COMPLEXITY METRIC

Table of Contents

ABSTRACT 2
LIST OF TABLES 6
LIST OF FIGURES 6
CHAPTER 1 7
Introduction 7
The Goal of This Work 8
Metrics and Code Measures 9
Test Coverage vs. Code Metrics 11
Concurrency Coverage Models 12
“Access-Relation”-based Definition of “Interleaving” 16
Work Outline 16
CHAPTER 2 18
Interleavings 18
Examples of Interleaving 18
“Execution Path”-based Definition of “Interleaving” 20
Intentional Interleaving 22
Examples of Intentional and Unintentional Interleaving 23
Definition: Intentional Interleaving 25
Minimizing Interleavings 27
Synchronization Complexity Metric (SCM) 27
Synchronization Points’ Types 27
Synchronization Patterns 29
Cost Parameters Definition 30
Formal Definition of the SCM (Synchronization Complexity Metric) 32
Soundness of the SCM 35
Evaluating the Usability Properties of the SCM 38
Usability (Soundness) Properties Evaluation - Conclusion 44
CHAPTER 3 45
Applying the SCM in Practice 45
Analysis of Interleaving Potentials 45
Interleaving Potentials Analysis for Basic Syncronization Types 46
Try-Lock synchronization point type 46
Lock 47
Peter Yastrebenetsky Page 3

SYNCHRONIZATION COMPLEXITY METRIC

Unlock 48
Wait 48
Notify 49
Yield - Pass Control (Explicit) 49
Volatile access 49
Task/Thread initiation 50
Synchronization Patterns Analysis 50
Acquire/Release a Semaphore/Mutex 50
Enter/Exit Critical Section 51
Send/Receive a Message 51
Unprotected (Volatile) Shared Variables Access in ANSI C and in JAVA 52
Thread/Task Initiation 53
Pass Control (Implicit) 53
Interleaving Potentials Analysis for Syncronization Types and Patterns - Summary 54
Competition Potentials Analysis for Basic Synchronization Types and Patterns 54
Data Dependant Competition Potentials 54
Data Independent Competition Potentials 55
Competition Potentials Analysis for Synchronization Types and Patterns - Summary 56
CHAPTER 4 57
CCCC Introduction 57
CCCC Implementation 58
CCCC Implementation Changes 59
The SCM Manager class 59
The ParseStore class 60
CHAPTER 5 61
BusyBox HTTP Server Analysis 61
IKI HTTP Server Analysis 63
Comparative Analysis 64
Conclusions 66
Feasibility and Usability 66
CHAPTER 6 68
Future Work 68
BIBLIOGRAPHY 75
Peter Yastrebenetsky Page 4

SYNCHRONIZATION COMPLEXITY METRIC

APPENDIX A 77
Message Queue Implementation 77
soup-message-queue.c 77
Busybox HTTP server implementation 86
httpd.c — Current Version as of May 25, 2009. 86
httpd.c — Older Version (Ver. 1.35, Oct. 6, 2004) 155
IKI HTTP server implementation 214
httpd.c — Current Version as of May 25, 2009. 214
APPENDIX B 272
The SCM Manager Class 272
cccc_scm.h 272
ccec_scm.cc 276
The ParseStore Class 282
cccc_utils.h 282
The ANTLRToken Class 292
cccc_tok.cc 292
APPENDIX C 299
BusyBox — Old Version Analysis Results 299
Detailed report on module anonymous 299
BusyBox — New Version Analysis Results 304
Detailed report on module anonymous 304
IKI Analysis Results 309
Detailed report on module anonymous 309
PN 314

Peter Yastrebenetsky Page 5

SYNCHRONIZATION COMPLEXITY METRIC

List of Tables

TABLE 1: SYNCHRONIZATION POINTS’ TYPES FOR THE SYNCHRONIZATION
COVERAGE MODEL.....cccinmmmnsmmsssmmmssssmmsssssss s s s s sssssssssssssssssssssssasassssnas 15

TABLE 2: BASIC SYNCHRONIZATION STATEMENTS’ TYPES FOR THE METRIC. ...29
TABLE 3: METRIC SOUNDNESS COMPARISON TABLE.. ..o 44

TABLE 4: SYNCHRONIZATION TYPES AND PATTERNS ANALYSIS SUMMARY -
INTERLEAVING POTENTIALSooiinminssmssssmssasssssns 54

TABLE 5: SYNCHRONIZATION TYPES AND PATTERNS ANALYSIS SUMMARY -

COMPETITION POTENTIALS.....cciimmmmmmsmmsssssssssssssssssss s sssssssssssssssssssssssssassssns 56
TABLE 6: HTTP SERVER ANALYSIS SYNCHRONIZATION POINTS VALUES.............. 62
TABLE 7: BUSYBOX HTTPD.C ANALYSIS RESULTS ... 62
TABLE 8: IKI HTTPD.C ANALYSIS RESULTS ... 64
TABLE 9: HTTP SERVERS COMPARISON......cccmmnmmmmnmmmssmsssssss s s 64

List of Figures

Fig. 1. Graphic representation of the possible execution paths of the sample program..... 34

Fig. 2. Flowchart of the Try-Lock synchronization point type........cccccceeeeveeriiieeniieeenneennns 46
Fig. 3. Flowchart of the Lock and Unlock synchronization point types.cccccveervrennes 47
Fig. 4. Flowchart of the Wait and Notify synchronization point types.........c..ccceeevveerueenns 48
Fig. 5. Execution paths’ graph for the getLine function.ccccceeeviieiiieeniieesciieeeieens 73

Peter Yastrebenetsky Page 6

SYNCHRONIZATION COMPLEXITY METRIC

Chapter 1

Introduction

Amir Pnueli starts his foreword to [6] with the following statement:

"It is widely agreed that the main obstacle to “help computers help us more” and relegate
to these helpful partners even more complex and sensitive tasks is not inadequate speed
and unsatisfactory raw computing power in the existing machines, but our limited ability
to design and implement complex systems with sufficiently high degree of confidence in
their correctness under all circumstances.”

This is the opening statement for the book dedicated entirely to the problem of model
checking and formal verification, but the general intention of model checking and formal
verification is, as also stated in the foreword, to ensure the correctness of the design at the
earliest stage possible.

The methods of formal verification and model checking are used in software development
in a limited way, partly because of their complexity and costs, and partly because of what
is known as “the state explosion problem”. The state explosion problem, in a nutshell, is
that the number of states in even a reasonably small system grows to be too large for it to
be possible to be handled by a realistic computer. In order to avoid it, numerous
techniques are used. Many of them basically take only a subset of the analyzed system,
thus reducing the amount of system states to a number that can be handled [6, 29]. Another
popular approach is that formal verification is performed not for the real system, but only
for its abstraction, a design model. Once the design has been verified using model
checking and formal verification methods, we still face the problem of validating the real
system accordance to the design. To solve it we need the good old simulation and testing
techniques, known in the industry as the “Software Testing” process [3].

The software testing is, generally speaking, a process based on performing experiments on
the software prior to its deployment, and comparing the results of each of the experiments
to the expected results based on the software specifications, customer expectations, or, in
some cases where the behavior is otherwise undefined — common sense.

The definition of software testing, as stated in [3] is: “Testing is any activity aimed at
evaluating an attribute or capability of a program or a system and determining that it meets
its required results”.

In [26], it is defined slightly differently: “Software testing involves running an
implementation of the software with test data. You examine the outputs of the software
and its operational behavior to check that it is performing as required. Testing is a dynamic
technique of verification and validation”.

As stated in [3], it is impossible to achieve total confidence by just testing, whatever form
of testing it is. Due to the state explosion problem, it is not feasible to run tests that will
reach every possible state of the system, especially in concurrent systems, where the
theoretical amount of system states is exponential in the number of processes in the system

Peter Yastrebenetsky Page 7

SYNCHRONIZATION COMPLEXITY METRIC

[17]. So, additional activities and methods are required to ensure software quality.

Some of the additional methods are based on the concept of “code inspection” [10]. The
formal inspection process defined by Fagan in [10] is in fact in a widespread use in
various, mainly safety critical systems' development processes [26]. Also, various
alternative methods were developed for less formal peer code reviews, such as pair
programming, or lightweight code reviews [7, 26]. Combination of system testing and
code inspections is considered by some organizations as the optimal verification and
validation technique [26], and even lightweight and informal code reviews help reduce the
amount of errors found during the further development phases [7].

As noted in a software management oriented research published in 2001 ([4]), postponing
error detection to later development phases results in very high fixing costs, up to 100
times more than if discovered during the design a coding phases, and higher.

Another observation in [4] is that the software development projects spend 40-50% of
their effort on avoidable rework, in other words — almost half of the effort goes on fixing
bugs which should have been avoided altogether, or at least discovered earlier. This
observation also means that some rework is unavoidable, the fact which is important to
the background of the current work.

As any code change, rework of existing code, whether necessary or unnecessary, will
potentially introduce new defects. Part of this thesis will be dedicated to analysis of
changes in order to estimate the effort needed to discover these defects.

The Goal of This Work

In this work it is shown that it is possible to evaluate the impact of the various concurrent
programming patterns (mutual exclusions, accessing shared data, creating new threads and
processes, etc.) on the programs' complexity.

For this, a novel Synachronization Complexity Metric is introduced, that provides the
lower bound for the number of interleavings on the program language level, possible in
the application under certain predefined conditions. This metric allows the programmers
and testers to assess the impact of the various implementation choices for concurrency
patterns on the overall complexity of their products. In particular, it shows the amount of
unique tests required to cover the expected interleavings on the program language level
(based on known branching and synchronization coverage models described below, and on
the formal definition of “interleaving” given in chapter 2).

The novel metric is compatible with metrics currently in use for sequential programs, thus
easing the effort of complexity comparison and competitive analysis of various solutions.

As part of the experiments during the work, the actual usage of the metric on real-life
applications is demonstrated.

Peter Yastrebenetsky Page 8

SYNCHRONIZATION COMPLEXITY METRIC

Metrics and Code Measures

Usage of metrics is based on selecting certain measures that are believed to be predictive
of an aspect of system quality, and are used as an aid to requirements, design, test, and
code reviews [3]. These measures include information which may be useful for the code
readability and maintainability assessment. For example the ratio of lines of code per
function — it is considered that a function should not be longer than two-three screens
(some industry coding standards, like [15], set the limit to 200 lines of logical code).
Another example: ratio of comments per line of code — it is considered to be bad practice
to write code without any comments at all (as noted in another coding standard which is
used widely in the industry — the MISRA C standard [13]). Knowing the ratio for the code
pending the review will allow to save the time of the review if the code doesn't follow the
minimum required on the metrics, and will assure better structured and better documented
software. Static analysis tools often enforce these metric limitations (like the CCCC tool
which will be described in details in chapter 4).

In [4] it is noted that peer reviews catch 60% of the defects. Although empirical findings
in [18] show that the mere use of code metrics during peer review doesn't necessarily
change the process effectiveness, the metrics can provide valuable information for both
peer reviews [7] and software test designers [3].

There are various types of metrics, and one of them is a complexity metric. Probably the
most well-known is the McCabe's cyclomatic complexity metric [19, 21], which is
accepted as a basic measure in areas like safety critical development (e.g.: The MISRA C
coding standards, already mentioned above, which are enforced throughout the motor
industry), and generally in software testing [3, 18, 19, 26]. The McCabe's metric provides
a number (CCN — Cyclomatic Complexity Number) which can be directly related to the
amount of tests needed to perform full coverage testing based on the branch coverage
model (various coverage models will be discussed later in this chapter). The number is
also directly related to the branching of the code in question, thus providing an insight on
the code complexity (hence the name of the metric).

The cyclomatic complexity number is calculated based on the control graph model of the
program analysis. The graph consists of nodes and edges, where the nodes represent
execution statements and the edges represent the transfer of control between those
statements. For each possible execution flow of the program, there’s a corresponding path
in the control flow graph.

There are several equivalent definitions for the cyclomatic complexity number, described
in details in [32]:

The cyclomatic complexity number value is calculated by the following formula:
CCN = e-n+2
In which:

e — The number of edges in the program’s control flow graph,
n — The number of nodes in the program’s control flow graph.

Peter Yastrebenetsky Page 9

SYNCHRONIZATION COMPLEXITY METRIC

By this definition, the cyclomatic complexity number is in fact the number of different
paths through the standard control flow graph model.

Additional and equivalent definition for the CCN is this:
CCN=p+1

In which:
p — The number of binary decision predicates (i.e.: number of nodes with exactly two
edges coming out of them).

Another and more intuitive definition for the CCN is this:
CCN =R

In which:

R - The number of “regions” — full circles defined by the edges of the control flow graph
(including the region outside all the edges). This definition allows assessing the CCN
value quickly by just looking at the flow graph, however it requires the graph to be planar,
i.e.: no edges crossing each other.

Several examples of the CCN calculation will be given in chapters 2, 3 and 5.

The CCN is one of the first code complexity measures, and additional code complexity
measures appeared later (for example data flow complexity measures; the effort measure;
various object oriented programming metrics which measure coupling, inheritance depth,
etc.) [18, 19, 33]. Code complexity is a number and for each one of code complexity
measures, different numbers are considered “good”. For CCN, for example, value over 10-
15 [32] is considered bad, whereas for code coupling there's no precise definition of what
a “good” or “bad” number is [15].

For sequential programs with a single thread of execution, CCN can provide valuable
information with regards to the structured testing of the program. As described in [32], it is
possible to assess the minimum number of tests needed for testing of the basic control
paths (control paths which cannot be represented as a combination of any other control
paths, i.e.: their representation on the control flow graph described earlier will differ by at
least one edge) of the program (branch coverage).

However, in case of concurrent programs, the same code may provide different results on
the same input, depending on the order (interleaving) in which the code statements are
executed. In this case, the CCN won’t provide enough information for assessing the
amount of tests needed for adequate testing.

Metrics will be the main topic of this work, specifically a metric which allows assessing
the amount of tests needed for adequate testing of a concurrent program. As other metrics,
this will go together with a set of coverage detection techniques described below based on
the prior work.

Peter Yastrebenetsky Page 10

SYNCHRONIZATION COMPLEXITY METRIC

Test Coverage vs. Code Metrics

There are several different coverage models in existence, some of them are orthogonal,
and some are somewhat overlapping. The common property of all the coverage models is
that they come to measure test adequacy with respect to certain testing goal [10]. For
example, test set which provides 100% statements coverage doesn't necessarily provide
also 100% path coverage — statements might be covered during the tests fully, but not
necessarily all the paths using the statements will be covered.

This is true in the following example:

Example 1.
The code:

#include <iostream>

int main(int argc, char *argv[]) {
bool fEnter = false;

int val;
std::cin >> wval;
if (argc==0) {

std::cout << “Nothing”;

}

return 0;

}

The test set:
1. Run the code with no parameters; expect “Nothing” on the output.

The statements will all execute during the full execution of the test set, thus the test set
provides 100% statements coverage. However, it doesn't provide full path coverage,
because the path where no output is printed will never execute. The CCN value for the
above code is 2 (The “if” is the only binary predicate, thus the complexity is 2), so we
could know that one test is not sufficient for branch and path coverage by just looking at
that number.

Obviously, number of tests by itself doesn't fix the problem. For example adding the test
2. Run the code with no parameters, expect nothing on the output
won't help, and the test will always fail.

Adding another test:
3. Run the code with a parameter, expect nothing on the output
will fix the issue and provide also 100% branching and path coverage.

In some cases, however, full statements coverage means also full path coverage, and the
simplest example would be the classic C++ “Hello word!” program:

Peter Yastrebenetsky Page 11

SYNCHRONIZATION COMPLEXITY METRIC

Example 2.
The code:

#include <iostream>

int main() {
std::cout << “Hello World!”;
return 0;

}

The test set:
1. Run the program; expect “Hello World!” on the output.

This set provides 100% statements, branching and path coverage. We could know that we
only need one test in the set by looking at the CCN for the above program, which is 1 (no
binary predicates).

Example 3

#include <iostream>
int main() {
unsigned int I;
std::cout << "Enter the loop counter value..";
std::cin >> I;
for (; I > 0; I--){
std::cout << "\nIterating number " << I;

}

return 0;

}

The 100% branch coverage may be achieved easily by running the test set:

1. Run the program with I =0

2. Run the program with I = 1.
However, that doesn't guarantee loop coverage. Loop coverage requires that each loop will
be executed 0 times, 1 time, and more than 1 times, so in order to have full loop coverage,
an additional test will be required:

3. Run the program with I > 1.
This example shows us that full coverage based on one criterion doesn't necessarily
guarantee full coverage on any other criterion, and each test set should be measured for
each coverage goal required separately.

Concurrency Coverage Models

Test coverage metrics provide valuable information regarding the test adequacy against the
stated goals, and are in wide industrial usage. There are several tools and algorithms
designed to provide full test coverage under certain coverage models. For example — the
IBM® ConTest tool [5, 9], the Microsoft® CHESS tool [24], interleaving and concurrency
oriented code review procedures [6], incremental structure testing [17], mock-based unit-
testing [25], and many more

In [5, 12, 20, 31] there are several ways of describing context-aware/concurrency-aware

Peter Yastrebenetsky Page 12

SYNCHRONIZATION COMPLEXITY METRIC

tests' development, including a coverage model for synchronization coverage adequacy
described in [5, 20, 24]. The models described in [5, 20] will be described in details
below, the model described in [24] is similar ot the model described in [5].

Concurrency Coverage Definitions

In [5] additional coverage model is defined. In it, all the pre-defined synchronization
points’ types are considered, and the coverage is considered full if during the tests all the
synchronized sections have been observed to be “blocking” and “blocked”. Synchronized
sections that weren’t observed in these states during the tests should be analyzed for either
redundancy or test completion.

The synchronization point is a code statement which includes a potential of an
interaction between the thread currently being executed and another execution thread, i.e.:
synchronization point is a point in the code which may cause an intentional
interleaving. The concept of interleaving and the concept of intentional interleaving will
be defined later in this work, in chapter 2.

For example, in the code for SOUP message queue implementation (full listing can be
found in appendix A), we can see this function:

void
soup_message_queue_append (SoupMessageQueue *queue,
SoupMessage *msqg)
{
g_mutex_lock (gqueue->mutex);
if (gueue->head) {
queue->tail = g_list_append (queue->tail, msg);
queue->tail queue->tail->next;
} else
queue->head = queue->tail = g_list_append (NULL,

msg) ;

g_object_add_weak_pointer (G_OBJECT (msg), &gueue-
>tail->data);
g_mutex_unlock (queue->mutex);

}

Statements g_mutex_lock and g_mutex_unlock are examples of a synchronization
point. For the external callers, the function call to soup_message_queue_append ()
will, in turn, represent a synchronization point, encapsulating its internal structure.

There are many more various possible types of synchronization points, which will be
described later in the work (Chapter 3), with detailed examples in different programming
languages and systems.

This coverage model provides a way to calculate information regarding the test adequacy
of the tests set for a concurrent system under tests. It assumes that there's a test set in
existence and operates on the given tests, providing coverage information.

Peter Yastrebenetsky Page 13

SYNCHRONIZATION COMPLEXITY METRIC

One of the difficulties in using this coverage criterion for the concurrency testing, is that it
is not always easy to calculate, and requires certain code alterations. The main difficulty is
to find at the run-time which execution path has been covered out of many possible.

Opposed to the single-threaded program when the given input defines the execution path
uniquely, in multithreaded applications, it is not only the input for the given thread that
defines the execution path but also inputs of other threads, timing and order of execution.
These factors may not always be predictable or controllable during testing, so in order to
know when a certain execution path is being executed certain alterations in the code
should be made to make track of the execution of the program.

An example for such alterations can be found in the IBM’s ConTest framework [9], the
Mircosoft® CHESS tool [24], and a completing “desk checking” procedure described in
[12].

The “desk checking” procedure is “an extremely effective code review technique used for
early detection of sequential program errors” [12]. It defines a semi-formal code
walkthrough which is, according to the authors’ conclusion, a very beneficial in finding
concurrency problems on the early stages of the development process.

The ConTest, designed as a framework for testing concurrent Java applications, relies on
changes of the software bytecode that add, without changing the original functionality,
calls to some of the ConTest modules during certain stages of the software execution (so
called “coverage enabled irritators”, as described in [9]). These “irritators” are design to
make “interesting” iterations to occur, and in fact force certain orders of execution during
different execution iterations to achieve the required level of coverage. The heuristics and
methods to achieve that goal are described in more details in [9].

The results of each execution are analyzed by the ConTest components which then decided
whether additional executions are necessary or the coverage requirement had been met
The coverage model in use by the ConTest tool is defined in [5] and is described later in
details in this work.

Another similar tool is CHESS [24], designed by a team of researches at Microsoft®. This
tool is similar to the ConTest, except for wrapping Microsoft® .NET CLR or Windows
API calls instead of the JVM libraries, and providing the coverage in much more
systemized manner (it controls the scheduling and preemption of the tasks and allows
covering all the possible interleavings systematically).

The metric suggested in this work allows using the ConTest, CHESS and other similar
tools in a more controlled manner, so that at each point of the test execution the tester
would be able to know how many paths were covered, and more importantly — how many
are still remain to be covered.

Peter Yastrebenetsky Page 14

SYNCHRONIZATION COMPLEXITY METRIC

The model described in [5] is based on these synchronization points’ types:

Synchronization Description

point

Try-lock Entrance to a mutual exclusion portion of the code, and represents a
mutex call that can fail or succeed (but not necessarily block), for
example a C pthread library pthread_mutex_try_lock () call.

Wait Wait on a condition, such as a select call in a POSIX system, or
pthread_cond_wait () call in a C pthread library.

Semaphore- A semaphore or critical section entry point, where a task may proceed,

wait or will be blocked if not

Semaphore- A synchronization method similar to try-lock.

try-wait

Notify A synchronization method used to signal a waiting (on Wait) thread

that the condition it is waiting for has been met. For example, POSIX
signal () call.

Volatile access Access to a volatile variable

Table 1: Synchronization points’ types for the synchronization coverage model

The detailed examples of these synchronization points’ types will be given in chapters 3
and 4 of this work.

There are several additional difficulties when using this coverage model. These difficulties
were not addressed in [5, 9, 12], and the most important of them is the assumption that the
software is encapsulated (i.e. no external events can change the internal state of the
system).

This is not true for many concurrent programs on embedded platforms, which have also
interaction with hardware using shared memory access (through, for example, C volatile
variables) or interrupts handling. It is hard to consider system interrupts in the model, as
they can occur independently of the software under test; however it is crucial for the
testing process success that volatile variables access would be considered under the
synchronization coverage models.

Thus, the model above, as it was defined in [5], cannot be considered complete, and
requires certain supplements, which will be detailed in chapter 2.

Peter Yastrebenetsky Page 15

SYNCHRONIZATION COMPLEXITY METRIC

Interleaving definition and Coverage Criteria Based On It

In [20] a formal definition for “interleaving” is provided:

“Access-Relation”-based Definition of “Interleaving”

“Consider a concurrent program P, executed under an input /, consisting of M threads:
1,2,....,M. Similar to previous work [33], we model the concurrent execution of P by a
sequence of shared variable access events. We use E to denote the set of all shared variable
accesses, and Pg for a program P with access set E under a given input. At any moment
only one thread i is active and executes one event. When i finishes, one thread j (j might
be equal to i) will be chosen and executes its next event. The event execution order within
each thread is fixed. The order among different threads might change. Each different order
to execute Pg is called an interleaving. Formally speaking, an interleaving < of Pgis a
total order relation on E. An event e is executed before an event e’ iff e < e’. The whole
interleaving domain of Pg is the set of all total order relations on E that maintain the
sequential order within each thread.*

In [20] several interleaving coverage criteria are proposed based on the above definition,
starting with the most exhaustive definition. These coverage criteria are based on rules
according to which the interleavings are being chosen to be considered for coverage.
Basically they define “filters” on the set of all the possible interleavings in the system,
which select only the certain types. These selection filters are based on certain usage
patterns chosen by the authors (there are patterns not discussed in [20], for example
“write-write” access interleaving).

The authors performed costs analysis for the criteria suggested in [20], and found that
some of them can be achieved in time polynomial in the number of threads and shared
variables.

However, there was no practical suggestion as to how to implement the coverage criteria
in practice. The coverage criteria were defined based on a model representation of the
system, which doesn’t allow precise calculations based on the actual code. As it will be
shown in chapter 5, even the simplest “innocent” changes to the code may influence
greately the amount of possible interleavings, and when testing a model, rather than the
actual source code, these difference may be lost.

Work Outline

In Chapter 2, an additional definition will be provided for the concept of “interleaving”,
and the relation between the two definitions shown in the work will be analyzed. These
two different definitions are at base of two different synchronization coverage models that
this work will relate to.

Then, there will be provided a formula which will allow calculating a code metric
supporting the coverage models described above. The formula, as defined, will allow
calculating the actual metric values from the real-life source code, as opposed to the cost

Peter Yastrebenetsky Page 16

SYNCHRONIZATION COMPLEXITY METRIC

analysis done in the prior work [20], which only allows estimating boundaries based on
the model representation of the system.

The definitions for concepts used in the formula will be provided and explained, and the
connection between different definitions of the concept of “interleaving” (the one above,
and an additional one that will be shown in chapter 2) will be shown and proven.

Also, the usage of the formula parameters to adjust the usage of the metric to the required
coverage model (of these mentioned earlier and defined in [20]) will be explained and
exampled,

In Chapter 3, the metric will be tested for metric properties defined by E.J.Weyuker in
[33]. These properties provide a way to evaluate metric soundness, and several of well-
known and accepted code metrics (e.g.: the McCabes cyclomatic complexity) have already
been tested for these properties. Hence it is essential to check that the metric defined in
this work also satisfies these soundness properties in a manner comparable with the
existing measures that are in use in the industry. It is agreed upon [18] that not satisfying
all of the properties doesn’t necessarily disprove soundness of the metric; however a
metric that does not satisfy several or most of the properties may not be accepted as valid
and sound.

In Chapter 4 an example of a tool implementing the metric will be shown. The tool is
based on an existing tool for C and C++ code measuring, the CCCC. The changes and
additions to the tool in order to implement the metric will be shown and explained.

In Chapter 5, examples of usage of the metric will be provided and analyzed, including the
examples of comparative analysis done on various implementations of the same
functionality. Several different implementations of HTTP servers will be analyzed and
compared using the metric, and the usage of the comparison results to improve the
existing code will be demonstrated.

In Chapter 6, additional topics related to this work are considered for the future research.

Peter Yastrebenetsky Page 17

SYNCHRONIZATION COMPLEXITY METRIC

Chapter 2

Interleavings

In the previous chapter a definition for interleavings was quoted from [20]. According to
it, an interleaving is a total order relation on the set E of shared data access events in the
system P. For each set of events Pg (for the given program P under a given input), there
may be several different interleavings (total order relations between the events).

The order of event follows directly from the order of statements' execution by each thread,
i.e.: for each execution flow path, there is an interleaving by definition quoted from [20] in
the previous chapter.

In [21], the CCN is defined based on the graph representation of the execution flows. The
graph as defined in [21] is for a single threaded program (single path of execution), but a
similar graph can also be built for multithreaded programs as well.

The definition of such graph will be given below as part of an additional definition for the
concept of “interleaving”. This definition will be marked “Path” to distinct it from the
definition previously quoted from [20], and which will be marked as "Relation” (being
defined through relations). Later in the work, it is shown that both definitions are closely
related.

Examples of Interleaving
Below is a listing of a simple UNIX program illustrating the concept of interleaving:

The program creates (using the fork system call) two processes, each executing a
different pr int f statement and a s1eep statement.

#include <unistd.h>
#include <stdlib.h>
int main() {
int pid;
if ((pid = fork()) != 0) {
sleep(1l);
printf ("\nChild Process\n");
}
else {
sleep(1l);
printf ("\nParent Process\n");
}
return pid;

}

These are the results of several consecutive executions of the program (all on the same PC
with Intel Core 2 Duo processor, running Microsoft Windows XP and Cygwin UNIX
emulation environment). The program was run from the console, and below is the capture
of the console with the results of the program several executions. In this capture we see

Peter Yastrebenetsky Page 18

SYNCHRONIZATION COMPLEXITY METRIC

that each time the program executes the resulting output differs: sometimes the two strings
are printed out separately, and sometimes there are concatenated, in different order. The
interleaving occurs in all the cases when the new-line character is expected, probably
because of the implementation of the pr int f function in the system

<Start of capture>
<Execution starts>

Child ProcessParent Process
<Execution ends>
<Execution starts>

Child Process

Parent Process
<Execution ends>

<Execution starts>
Parent ProcessChild Process
<Execution ends>

Parent Process
Child Process

<Execution ends>

<Execution starts>

Parent ProcessChild Process

<Execution ends>

<Execution starts>

Parent Process

<Execution ends>

<End of capture>

We can see that the order of the sentences printed by each of the two processes created by
the program differs between runs. The processes run concurrently, in some cases the
behavior of one process can affect the other (for example, in the last run the parent process
terminated before the child process was woken after the sleep, and caused for it to

terminate before executing part of its code). Each run that provides a different result is in
fact an interleaving.

Peter Yastrebenetsky Page 19

SYNCHRONIZATION COMPLEXITY METRIC

Another example of interleaving is using volatile variables:

volatile int* foo = 0x82004;
while (*foo != 0);

In this example, the different execution paths can occur because of concurrent execution
of operations in the code above and a hardware (or a separate software) application that
changes the contents of the memory address 0x8200A. For example — it can result in
infinite loop if the hardware never in fact updates the value in the memory location, or on
the other hand the loop may never be executed if the value is already not O when the
program execution reaches the while statement. Such examples are common in
embedded systems or device drivers.

“Execution Path”-based Definition of “Interleaving”

Intuitively, if we have more than one thread, and it is possible that when executed several
times, the order of the commands of all the threads will not remain constantly the same,
then there must be an interleaving (like the examples shown above, where different runs of
the same code provide different results, i.e.: clearly the execution steps were different
although the original source code, and in the case of the first example — the input, never
changed).

There had already been given a definition for “Interleaving” as a relation between shared
variables’ accesses. Here another definition will be given, which is based on execution
paths. The reason for giving this new definition is so that it could serve as a “bridge”
between the complexity measure used for single-threaded applications (the CCN) and the
new synchronization complexity metric defined in this work. Later in the chapter a
discussion will be held regarding the relation between the two diffinitions, in order to tie
the new synchronization metric with the prior work.

In mathematical formalization, the definition of Interleaving is this:

Let G be a directed graph representing all the possible control flows of the application.
Each path in the graph is a single execution flow of the application.

Let S be the set of states of G, and E the set of edges (transitions).
S is the product of states all n possible threads of the system:

S =81 x §2 x ... x Sn. According to this definition, each member in S is in fact a n-
dimensional tuple, where n is the number of threads in the system. Each element in the
tuple represents a state of the appropriate thread when the whole system is in the state
represented by the tuple.

Each edge ¢ € E connects two states p, ¢ € S, so that p and ¢ differ by exactly one
element of the tuple (i.e.: each transition in the path changes state of exactly one thread in
the system, a transition cannot occur without changing a state of at least one thread, and it
cannot change states of more than one thread).

Peter Yastrebenetsky Page 20

SYNCHRONIZATION COMPLEXITY METRIC

Let P be a path in the graph G (which represents an execution flow of the application). Ep
is the set of edges in the path, and Sp is the set of states. Since P is a path in the graph G, it
means that P < G, thus Ep C E and Sp C S.

Each different path in the graph G representing a different execution flow of the system
given the same input (starting node of the path) is an interleaving. Each path
(interleaving) can be represented by the set of edges that it covers.

This new definition differs slightly from the one given in chapter 1 in the semantics and
methods of definition used, so that the common language would be kept when using the
CCN 1in this work. However, as it will be shown in Lemma 1 below, the definitions define
virtually the same thing. The difference is that the “relations” definition given in chapter 1
refers only to the order relation of shared variables’ access events, whereas the new
“paths” definition can be used to define interleavings in a finer granulation. However, as it
will be shown in Lemma 1, for two different execution paths, there must be two different
order relations, thus every interleaving by the “paths” definition, is also an interleaving by
the “relations” definition. Thus the boundaries and costs calculated in [20] still hold when
using the new definition.

Lemma 1: (a) For each interleaving by the ‘relations” definition there exists at least one
path in the execution flow graph of the multithreaded program , and (b) for each such
path there exists exactly one interleaving relation that implements this path.

The lemma specifically mentions multithreaded programs, since for single threaded
programs there is an execution flow path which has no interleaving relation correlating to
it. The reason for that is that by the “relations” definition (defined in chapter 1), there are
no interleaving relations for single threaded programs since there's no shared data to
access. Since the work is targeting multithreaded programs only, this corner case is
excluded from the lemma.

Proof of Lemma 1:
a)

1. Let < be an interleaving relation on a certain set of data access events during
the program P execution with a certain input.

2. Shared data access is either a "read" (which means that a value of the shared
data is assigned internally in the accessing thread), or "write" (which means
that a value internal to the accessing thread is assigned to the shared data).

3. Each data access has to be an execution statement which changes a state of at
least one thread (according to (a-2), either “read” access which includes an
internal “write” or a “write” access to the shared variable), thus each event of
data access ordered by the relation < has also a representation as an edge in
the flow graph G for the program P built as defined above.

4. Thus, there is a path in G in which all the data access events ordered by
< appear in the same order.

b)
1. Let P be a path of an execution flow in graph G for the given program with the

Peter Yastrebenetsky Page 21

SYNCHRONIZATION COMPLEXITY METRIC

given input. Since we're limiting the discussion to multithreaded programs,
there is a point in the program where a thread will be created, thus there has to
be a point with shared data access (passing the control to the thread and its
initialization based on the main thread state).

2. Let S'p be set of states in P where the state of a thread changes as the result of
a shared data access. Since there is at least once such state, as described above,
this set is not empty.

3. By definition, this set correlates with a set of events E of shared data accesses
as defined in [20], for the same run of the same program with the same inputs

as represented by P: for each state s € S'p there's an event e € E, so that a
state of a thread is changed in S'p as the result of the event e.
4. The path P is a directed sub-graph of graph G, and the states in S'p can be

sorted by order of their appearance in P. The series of events correlating to S'p
and ordered so that each event will be in the same place as the state it correlates
to, is interleaving by the “relations” definition.

5. Let P be a path of an execution flow as described in (b-1), and assume there's
more than one interleaving it relates to. It means that more than one order of
shared data accesses is possible in the same execution flow path.

6. However, the execution flow path defines the order of every state change,
including those imposed by the shared data accesses (according to (a)). Thus
there's a contradiction to the assumption => there could not be more than one
interleavings relating to the same execution flow path.

]

The meaning of Lemma 1 for this work is that for each path of execution flow of a
multithreaded program, which is an interleaving by the “paths” definition (defined in
chapter 2), there's an exactly one interleaving by the “relatons” definition (defined in
chapter 1). Thus, the boundaries described in [20] for various coverage models are valid
when discussing interleavings based in the definition (2), including the boundaries
provided by the cost analysis in [20].

From this point onward, this work will only discuss interleavings as defined in the “paths”
definition in this chapter.

Intentional Interleaving

In actual software programs, interleavings can be caused at the machine instruction level,
and even a single threaded program will have different interleavings (possible execution
paths) because of the interrupts. For example, single threaded program can have different
interleavings due to hardware interrupts.

Intuitively it is easy to see that there are two different kinds of interleavings —
“intentional” and ‘“‘unintentional”. While unintentional interleaving are those caused, for
example, by interrupts or other external unpredictable events, intentional interleaving is a
case where the programmer intentionally added code that can potentially lead to more than
one execution path as the result of concurrency.

Peter Yastrebenetsky Page 22

SYNCHRONIZATION COMPLEXITY METRIC

Examples of Intentional and Unintentional Interleaving

In the examples above there are intentional and unintentional interleavings. Using the
volatile variable may trigger an intentional interleaving at every access to it. Using calls
like fork will cause intentional interleavings between the child and the parent tasks until
the next statement for each task. Using the sleep statement will cause intentional
interleavings as well since while one task sleeps, another will certainly be running.

However, there may be unintentional interleavings which the programmer didn't want to
occur:

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

#define THREADS 3

void *thread_start (void¥*);
char string[100] = {0};
int counter=0;
int main() {
int i;
pthread_t pid;
pthread_attr_t attr;
pthread_attr_init (&attr);
for (i = 0; i < THREADS; i++){
pthread_create (&pid, &attr, thread_start, NULL);
}
sleep(l);
printf ("\n%s - %d\n",string, counter);
return 0;

void *thread_start (void*arqg) {
pthread_t pid = pthread_self();
sleep(l);
sprintf (string, "Thread %d counter = %d\n",
pid, counter++);
printf (string);
return NULL;
}

The program creates 3 concurrent threads, each of them incrementing a shared variable,
and printing it out.

Below are the results of several consecutive executions of the program (all on the same PC
with Intel Core 2 Duo processor, running Microsoft Windows XP and Cygwin UNIX
emulation environment).

The program was run from the console, and below is the capture of the console with the
results of the program several executions. In this capture we see that each time the
program executes the resulting output differs: the order of the thread prints and the
resulting values are not consistent between the runs. We can also see that in some cases all

Peter Yastrebenetsky Page 23

SYNCHRONIZATION COMPLEXITY METRIC

the printouts or some of them are identical, although it would be expected that each thread
would print a different string, with the last one being duplicated from the main function.
In fact in all the results, the main function printed an unexpected result (marked bold in
the capture) of only the counter value.

We can see clearly in the capture below that using unprotected global variables "string"
and "counter" leads to unpredictable results in the output if all the threads are running
in the same scheduled time (all sleep the same period, and are scheduled without
priorities). This is clearly a behavior which is not wanted in a normal system: a so called
racing between the threads; it is considered as a bug.

The access to the shared variables is an interleaving, but it was not intended by the
programmer to have these interleavings.

<Start of capture>
<Execution starts>

-0

Thread 6685208 counter = 2
Thread 6685208 counter = 2
Thread 6685208 counter = 2
<Execution ends>

<Execution starts>
Thread 6685072 counter = 1
Thread 6685344 counter = 2

Thread 6685344 counter = 2
-3
<Execution ends>

<Execution starts>
Thread 6685208 counter =0

Thread 6685344 counter = 2
-1

Thread 6685344 counter = 2
Thread 6685344 counter = 2
<Execution ends>

<End of capture>

There are many more potential bugs related to the unintentional interleavings, these

Peter Yastrebenetsky Page 24

SYNCHRONIZATION COMPLEXITY METRIC

include, for example, well-known problems like buffer overflows and other memory
access violations which may result in data corruption, stack corruption, and other risks.

Also, we regard interrupts as unintentional interleavings, since these cannot be anticipated
by the programmers and can (and will) occur at almost any possible point of time. Bugs
occur in interrupt handlers as well, but these can be avoided by full and exhaustive testing
of the interrupt handler routines (which are usually compact and uncomplicated by nature,
thus exhaustive testing for them is feasible).

Work Assumptions

In this work we will ignore unintentional interleavings, and will only discuss intentional
interleavings — code that was specifically and intentionally marked by the programmer as
a potential interleaving trigger (by using the synchronization points, that will be discussed
later on in the work).

For this work, it is also assumed that the synchronization is an atomic operation, and no
interleaving on the machine instructions level is possible during the execution of a
synchronization statement. This assumption is not restricting the application of the
methods described in the work in the real world, since the atomicity can be achieved using
various known techniques, for example [11] and [30].

Definition: Intentional Interleaving

After the intuitive explanation and examples, it is time to formally define the concept of
the intentional interleavings.

Intentional interleaving is an interleaving (a different possible execution path for the
program under the given input), caused by an explicit statement in the code which by its
nature can cause several alternative execution flow paths for the multithreaded application.
For example, the fork system call in the example above is such explicit statement.

It is similar to a branching statement for a single-threaded application, except that the
result of this “concurrency” branching will be different order of state changes in different
threads.

During the discussions below, the following notation will be used:

G: Graph of all the states and transitions (as defined above) possible in the given
application (may be also referred as "the application G"). Reminder, the set of states and
transitions of the graph G is defined as follows:

S =81 x §2 x ... x Sn. According to this definition, each member in S is in fact a n-
dimensional tuple, where n is the number of threads in the system. Each element in the
tuple represents a state of the appropriate thread when the whole application is in the state
represented by the tuple.

Each edge ¢ € E connects two states p, ¢ € S, so that p and ¢ differ by exactly one
element of the tuple (i.e.: each transition in the path changes state of exactly one thread in

Peter Yastrebenetsky Page 25

SYNCHRONIZATION COMPLEXITY METRIC

the application, a transition cannot occur without changing a state of at least one thread,
and it cannot change states of more than one thread).

Additional definitions:

Ei(G): Set of all the interleavings possible in graph (systemapplication) G under a given
input i.

Eimt(G)Z Set of all the interleavings in systemapplication G under a given input i, and
only include the execution of the synchronization statements put intentionally by the
programmer in the program (i.e.: infentional interleavings). This set will not include
execution paths (interleavings) influenced by unintentional synchronization statements
(for example — hardware interrupts).

In this thesis, only the intentional interleavings are considered when discussing the novel
measure. This is because it is intended to show a measure that provides a minimum
boundary for the complexity encurred by the synchronization constructs in the application.
Based on the definition, the intentional interleavings are subset of the set of all
interleavings possible in the application under the given input 1 (i.e.: under the given input
1, Eimt(G) C Ei(G)). In the next lemma, it is shown why the intentional interleavings
are part of any minimal set of interleavings that can occur in the application running under
a given input, thus ensuring that the rest of the discussion, concentrating on the intentional
interleavings, does in fact provides the required minimum boundary.

In the lemma 2 below, the interleavings that can occur when the application is running
under a given input i are discussed Using the lemma, it is shown that if the program under
the given input i includes a synchronization statement that will be executed, then the
intentional interleavings (interleavings incurred by that particular statement) will
necessarily be part of the execution flow graph of the application reachable when running
under that input. This to oppose the unintentional interleavings that cannot be anticipated
by their nature.

Intuitively speaking, the proof of the lemma below shows that if, for example, we have a
fork call in the application — we can assume that the least interleavings possible are the
interleavings incurred by the fork call. It is possible however that there will be additional
interleavings incurred, for instance, by the clock interrupt.

Lemma 2: The set of all intentional interleavings is the smallest set of interleavings
possible in the application during the executions under a given input i

ie.: VIEF™ (G) CE(G)], E™MG) c EF™(G)).

Proof of Lemma 2. Intuitively the Lemma claims that for any execution of the application
with the given input #, the total amount of possible interleavings cannot be less than the
number of the intentional interleavings possible for an execution with the given input i.

Peter Yastrebenetsky Page 26

SYNCHRONIZATION COMPLEXITY METRIC

Let G be an application.

Assume there's a set EiSUb(G)gEi(G), so that |Eisub(G)| < |Eiim(G)|. According to

the definition above, Eim (G)CE{(G), ie.: in an execution of a application, if there are
intentional interleavings in the execution path under the given input i then they will be a
part of all the interleavings possible during the executions of the system under the given

input i. However, according to the assumptlon |E; sub (G)| <I|E; lm(G)| = there's an

interleaving ¢ € E;(G), so that e € E (G)ande ¢ E; sub (G), which contradicts the
definition.®

Minimizing Interleavings

It is obvious that the theoretical upper bound to the number of interleavings is the product
of all the states in all the threads in the system (i.e.: exponential). However, in real life,
this boundary is most likely not to be met. In [2], for example, it is shown that some
values may never be assigned to variables on certain execution paths, thus the states of the
system which include these values will not be reachable, and the actual interleavings
represented by these states will never occur.

The goal of the work, as was mentioned in the first chapter, is to provide a way to
calculate boundaries to the number of possible actual interleavings in an actual real-life
program. The intention is to define a lower bound; however upper bounds will be
discussed as well. The lower boundaries will be estimated using the synchronization
complexity metric which is defined below.

Synchronization Complexity Metric (SCM)

Synchronization Points’ Types

The synchronization metric is calculated based on a static code analysis; it helps to
estimate the required amount of tests which would be needed to provide full coverage
under the synchronization coverage model defined in [5], and the coverage models
hierarchy defined in [20], and discussed above..

The metric is based on static code analysis, during which the statements which belong to
one of the synchronization points’ types defined here will be found and analyzed. The
synchronization metric described in this work provides synchronization branching
coverage estimation, i.e.: the metric will provide the number which will be the minimum
amount of tests required in the test set, so that each branch of code execution which
include a synchronization statement will be tested at least once with regards to
synchronization (i.e.: all the interleaving options for each occurence of a
synchronization point will be covered at least once).

In order to present the concept of the synchronization point in this work, let us first return
to the first example of interleavings:

Peter Yastrebenetsky Page 27

SYNCHRONIZATION COMPLEXITY METRIC

#include <unistd.h>
#include <stdlib.h>
int main() {

int pid;
if ((pid = fork()) != 0) {
sleep(1l);
printf ("\nChild Process\n");
}
else {
sleep(1l);
printf ("\nParent Process\n");
}

return pid;

In order to cover all the interleaving options for each synchronization point at least once,
we need the following tests:
1. After the fork call let the child run
2. After the fork call let the parent run
3. After the sleep expiration for the parent — choose the child to run first
4. After the sleep expiration for the child — choose the parent to run
first.

5. After the sleep expiration for the parent — choose the parent to run
first
6. After the s1leep expiration for the child — choose the child to run first.

The steps 3 - 6 may be redundant, depending on the system, since the order of getting into
the waiting state for each task is preset by the order of execution (steps 1 & 2). However,
since the times are identical and the sleep precision may not be small enough to allow
distinction for when to wake each process, both of them may be scheduled by the
operating system to wake up at the same time, and the choices will again be relevant.

Note, that the condition in the "if" statement affects the CCN of the program, had it been
single threaded. However, that is misleading, since for each of the tasks (the parent and the
child), there's no actual branching option: for the parent task the “if”” statement will always
evaluate to false, while for the child task the same statement will always evaluate to true.
Thus, in fact there's no branching in the execution paths of the processes in question. This
nuance will be discussed later in chapter 6.

The table below lists several basic synchronization points’ types. The types have been
chosen based on the coverage definition in [5], and completed with additions in order to
cover cases not covered by the types in [5] (the last three items in the table are the
completion: volatile access to cover the cases where the system is not encapsulated to the
software, thread/task creation and voluntary preemption cases not covered by [5]).

Peter Yastrebenetsky Page 28

SYNCHRONIZATION COMPLEXITY METRIC

Synchronization Description

point

Try-lock Entrance to a mutual exclusion portion of the code, and represents a
mutex acquire call that can fail or succeed (without blocking), for
example a C pthread library pthread_mutex_trylock call.

lock Entrance to a mutual exclusion portion of the code, and represents a
mutex acquire call that can block or succeed, for example a C pthread
library pthread_mutex_lock call.

Unlock Exit from the mutual exclusion portion of the code, and represents a
mutext release call, for a example a C pthread library
pthread_mutex_unlock call.

Wait Wait on a condition, such as a select call in a POSIX system, or
pthread_cond_wait call in a C pthread library.
Functions like sleep or delay can also be considered as “wait”
synchronization points.

Notify A synchronization method used to signal a waiting (on Wait) thread
that the condition it is waiting for has been met. For example, POSIX
signal call, or pthread_cond_signal pthread library call.

Pass Control A synchronization method used to release the CPU control by a thread.
For example, Java method yield.
Volatile access Access to a non-synchronized variable with concurrent access, for
example a C volatile variable.

Task/Thread Creation of a new thread, for example a C pthread library
Initiation pthread_create call, a POSIX fork system call or C exec calls.

Table 2: Basic synchronization statements’ types for the metric.

The synchronization points’ types defined above are basic, since they define types, or
classes, of synchronization points which will behave similarly in different systems and
implementations, rather than specific functions.

For example, the wait synchronization point may be implemented as a call to either
sem_wait, pthread_cond_wait or mg_receive pthread library function calls.
Each of these implements different functionality, but the synchronization effect is the
same: they will block until an event occurs.

Synchronization Patterns

Various synchronization mechanisms can be constructed using the implementations of the
basic synchronizations, and such mechanisms will be called synchronization patterns.
Many times such patterns appear as a single function call in the program code, thus for the
analysis they can be treated as separate synchronization points . Good example is sending
a message to a queue: a function call SendMessage (or a similar name) would often
conceal a combination of (mutex) lock and unlock synchronization points.

Detailed examination of various examples of synchronization patterns will be done in
chapter 3.

Peter Yastrebenetsky Page 29

SYNCHRONIZATION COMPLEXITY METRIC

Cost Parameters Definition

For each type of a synchronization point listed above, the following parameters are
defined:

I. Interleaving potential (IP) — this parameter is the novelty of the metric. The
parameter gives a cost of the synchronization point as a linear function of potential
interleavings, assuming another thread is synchronizing on the same point.

In more details, this is the minimum number of interleavings (branches in the
execution paths graph) that are created by the use of the synchronization point of
the given type on the given system or implementation. In other words, this is the
minimum number of other threads that can preempt the current thread at the
considered synchronization point.

This number should be calculated for each operating environment (specifically —
the operating system scheduler and/or implementation of the synchronization point
— C or Java, for instance). However, once calculated — the value will never change
in this system (e.g.: once calculated the /P for the “Task Initiation” under the Linux
real-time scheduler — it can be used on all the programs that use this
synchronization type and intended for this system).

For example, consider the synchronization point of the “Task/Thread initation
type”, intended to spawn a new task/thread. When used in a system where
tasks/threads with the same priority are treated by a Round-Robin or a similar
algorithm (as in the case of UNIX fork system call), the control can switch to the
newly created task/thread or not, in which case it remains in the calling task (or
switches to some other ready to run task if such available, and the next parameter,
the competition potential, will reflect it). Thus, the interleaving potential of this
synchronization point type is 2: if called, there are at least two possible
interleavings. When the program is written, it is not known which of the two will
occur at the run-time; at each run of the program a different interleaving may
occur,

Situation is different when scheduling is based on fixed priorities and no two
tasks can have the same priority, like in pCOS operating system used in various
embedded devices. Namely, when a new task is spawn, there can only be one
interleaving option: whether the current task will continue and the new task will
wait (if its priority is lower than the current), or the new one will start immediately
and the current will be put on hold (if the new task’s priority is higher than the
current). The decision is deterministic deterministic (since the priority is defined in
the spawn command by the caller), and will always be the same when the program
is run under the same input, Therefore, in this case the IP of the same
synchronization point will be 1.

Thus, in order to properly use this parameter, the user of the metric (usually the
programmer or tester) must be familiar with specifics of the target system for
which the application is being tested. A sample analysis of such parameters for

Peter Yastrebenetsky Page 30

SYNCHRONIZATION COMPLEXITY METRIC

some specific systems will be shown in chapter 3.

II. Competition potential (CP) — this parameter equals to the total number of
threads competing for the synchronization point. The threads competing for the
synchronization point are the threads that can possibly change states next to the
execution of the synchronization point (i.e.: In the graph representation discussed
above — these number of tuples in the graph that can be immediately reached from
the current state as the result of the synchronization point execution). Intuitively
CP equals to the number of threads that can be in their ready-to-run state
immediately after execution of the considered synchronization point. During the
static analysis stage, at which the SCM is calculated, his value can only be
estimated, and can be different for the same synchronization point type, whet used
in different portions of the program.

The more threads are competing for the same synchronization point, the higher
is the competition potential. The competition potential value is an integer greater or
equal to 1 (there has to be at least one thread in the system).

For example, let us look again at the task initiation synchronization point under
the Round-Robin scheduling algorithm. The /P would be 2 (the control either goes
to the newly created task, or not), but the competition potential, that influences the
resulting SCM value as well, denotes the number of tasks to which the control may
pass in this particular instance..

As opposed to IP, the CP does not depend on the underlying scheduling
algorithm, as the amount of threads/tasks created by the program depends on its
logic, not the scheduling algorithm that manages the program execution. Thus, as
opposed to IP, which is constant, the CP varies for each occurrence of the
synchronization statement in the code, based on the program logic.

Generally, we will treat all the threads as if they exist throughout the application
execution life time. This is due to the fact that the metric in question is intended to
be calculated based on the static code analysis, and at this stage it is hard to
evaluate the exact periods at which different threads will exist in the system.

The possibility of extracting the information from the source code depends on
the language and coding standards in use (examples of limitations of the existing
tools will be shown in chapters 5 and 6) and sometimes it may not be feasible to
extract that information (for example when the number of actual threads/tasks in
the system depends on the input). When this information is not available from
static code analysis, it should be assumed that there're at least 2 threads competing
for each synchronization point. Else, if it is possible to extract this information
from analyzing the source code, and the value of this parameter is 1 — it means that
the synchronization point is only used in a single thread, and thus redundant.

For simpler programs, it may be possible to simulate execution and analyze the
amount of threads accessing the synchronization points based on the given input
(as it is done, for example, in [5]), but this is not feasible for more complex

Peter Yastrebenetsky Page 31

SYNCHRONIZATION COMPLEXITY METRIC

applications, or applications with many different input options. The process of
extracting the information is beyond the scope of this work.

Formal Definition of the SCM (Synchronization Complexity Metric)

The synchronization complexity metric (SCM) is a branching metric, and refers to
execution paths’ branching as a result of concurrent execution. While McCabe's CCN is
the most common branching complexity metric for sequential programs (see Chapter 1),
SCM can be viewed, in a sense, as its extension to the case of concurrent programs.

The metric, with the parameters defined above, can be used to estimate the minimum
number of tests required to provide full branching coverage for every synchronization
point in the program at least once, for branching as a result of concurrency
(“concurrency” branching).

Calculation of SCM combines the classic branching metric with the newly defined
parameters. The obtained value is affected by all the branching options — the single-thread
condition branching (the McCabe’s metric) and the synchronization branching based on
the concurrency parameters defined above. This resulting value provides estimation for the
amount of testing needed to achieve the complete branching coverage (i.e. every branch
covered at least once) for all the possible system execution paths. Recall that we assume
existence of only intentional interleavings, as discussed above, in the section titled “Work
Assumptions” in this chapter).

The synchronization complexity metric will now be presented. The metric relies on the
CCN, and provides an extension to the existing McCabes cyclomatic complexity measure.

As already mentioned before, the metric is based on static code analysis, during which the
statements which are categorized to one of the synchronization points’ types defined here
will be found and analyzed. The synchronization metric provides branching coverage
estimation (i.e.: all the interleaving options for each such statement or predicate will be
covered at least once). For single threaded programs, the metric that provides the
minimum number of test required for the full branch coverage testing (all interleavings
covered for each predicate) is the CCN. Thus, the SCM metric is defined so that when
applied on a single threaded program, its value will be the CCN for that program. It is
designed in that way so that it could be more easily understood and integrated into the
existing processes.

Following is the formal definition of the new metric:

SCM = JICCN,,*IP,, ") (1)

Here for each synchronization point sp :
- CCN,, 1s the cyclomatic complexity number of the branch at which the
synchronization point was detected (see definition and a detailed example below)
- [Py, is the interleaving potential of the synchronization point
- CPy, is the competition potential of the synchronization point.

Peter Yastrebenetsky Page 32

SYNCHRONIZATION COMPLEXITY METRIC

The CCN;), 1s defined as follows. As a reminder, CCN is defined to be a value charactering
the entire execution flow graph G(S,E) of a single threaded program [16]. In order to find
CCN;, , a sub-graph G, < G is defined as follows:

Ssp — all the states in S reachable from the state by, € S. The state by, is the state in which
the application was after executing the most recent branching statement (for example i f
or while), on the execution path leading to sp.

E, — all edges in E, connected to states in S, (any direction).

CCNj, is then defined as cyclomatic complexity of the graph Gy,

For example consider again the following program:

1 #include <unistd.h>

2 #include <stdlib.h>

3 int main{()

4, {

5. int pid;

6 if ((pid = fork()) !'= 0)

7 {

8. sleep(1);

9. printf ("\nChild Process\n");
10. }

11. else

12. {

13. sleep(1);

14. printf ("\nParent Process\n");
15. }

16. return pid;

17. 1}

The fork system call is a synchronization point on the top branching level (i.e.: the
CCN;, for it will be the CCN for the whole program if analyzed as a simple single
threaded application). In this program, the CCN for the whole program is 2 (CCN = p+1,
where p is the number of binary decision predicates . In this case there’s only one such
predicate — the 1 £ Statement).

The sleep system calls are each inside the branches created by the if statement. Each
branch includes simple non-branching statements:

First branch:

8. sleep(l);
9. printf ("\nChild Process\n");
Second branch:

13. sleep(1l);

14. printf ("\nParent Process\n");

Graphically, the execution paths graph for the example will look like the figure 1 below,
with the synchronization statements marked in different colors (numbers in the circles

Peter Yastrebenetsky Page 33

SYNCHRONIZATION COMPLEXITY METRIC

represent the relevant line numbers of the example code):

Fig. 1. Graphic representation of the possible execution paths of the sample program.

From the graph it can be clearly seen that each of the synchronization points is on a single
possible execution path. Thus, in both cases the CCNg), for the s1eep statements will be 1
— the CCN value of the branches in which the synchronization point was found.

From the definition of SCM, it is clear that :
- in case of a single thread (CP,=1), the value of SCM will be the same as CCN for
the same code branch
- the value of SCM can never be less than the CCN for the same program.

Based on the above definition, SCM can be used to describe the complexity incurred by
the synchronization points over the existing code complexity. The usage of CCN is
necessary to allow comparability of SCM values for single threaded (which would equal
the CCN) and multithreaded implementations.

The value of SCM is exponential in the number of application threads competing for the
same synchronization point (because of the CP that magnifies the concurrency impact
exponentially based on the current number of threads); however this by itself should not
be an immediate obstacle to using the metric. Most of the real-life applications have only
handful of threads competing over the same resources, and thus require synchronization.
For example, in [5], 16 classes out of 575 (3% of all classes) having synchronization
primitives is considered reasonable. For such loosely coupled applications where there are
no more than 2-3 threads competing for a single synchronization point, the number of
interleaving options represented by the SCM will be feasible for full exhaustive testing.

Also, the metric can be used for comparative analysis between various implementations,
thus only the ratio between the numbers would be required, and not the actual metric
values. Examples of such comparative analysis using the SCM will be given in chapter 5.

Peter Yastrebenetsky Page 34

SYNCHRONIZATION COMPLEXITY METRIC

Soundness of the SCM

As described in [22], validation of a code complexity measure through the measurement
theory cannot be justified, i.e.: there’s no definitive way to prove if a complexity metric is
correct or not. This is because each complexity metric measures different aspects of the
program, with some being more important to the developer than the others (for example, it
is sometimes more important that the space complexity will be as low as possible on the
account of the time complexity, and sometimes exactly the opposite would be important,
etc). However there are several soundness properties defined which, when satisfied by the

measure, define a complexity measure as “sound”, according to the study described in
[33].

These properties will be described in details and applied to the metric, and the results will
be compared to the applications of these properties on other well-known metrics. It is
important to note, that it’s been claimed [18] that these properties are too strict, and the
properties which are found useful and accepted as sound in the real world (such as the
CCN) do not satisfy all of them [18, 33]. Thus the results application of the properties on
the metric defined in this work do not, in their own stand, prove that the metric is or is not
“useful” for real world applications.

Definition of “Program”

The program definition for the measure evaluation will be similar to the one defined in
[33], with certain additions required to take into the account the synchronization.

In [33] there are the following standard definitions for a “program” (quoted):

"Definitions:
1. Arithmetic expressions are to be constructed using constants, identifiers and
arithmetic operators, "+", "-", "*" "/" in the usual manner.
2. An assignment statement of the form: VAR <- EXP (where VAR is an identifier
and EXP is an arithmetic expression).
3. A predicate is a Boolean expression having one of the forms: Bl = B2, Bl #
B2, Bl < B2, Bl <B2 (where Bl, B2 are either constant or identifier).

A program is defined recursively:
1) An assignment statement is a program body.
2) IF PRED THEN P
ELSE Q
END
3) IF PRED THEN P END
4) WHILE PRED DO P
ENDWHILE
5) P
0
Program of type 5) is said to be composed from P and Q, and will be denoted P; Q.
Program bodies of types 2), 3) and 4) will be referred to as conditionals.

Peter Yastrebenetsky Page 35

SYNCHRONIZATION COMPLEXITY METRIC

A program statement has the form:
PROGRAM(variables)
Where variables is a list of input variables.
An output statement has the form:
OUTPUT (variables)
Where variables is a list of output variables.

Finally, a program consist of a PROGRAM statement, followed by the program body,
followed by the OUTPUT statement."

To this, we will add two more definitions, and change Definition 5). They add the concept
of synchronization to the program model described above, and allow to use the extended
model for a metric that addresses synchronization complexity. The additions are:

1.

Synchronized conditional (PREDy): This is a conditional which has a
synchronization statement as part of the predicate. For example, access to a
volatile variable as part of the predicate statement makes the predicate a
“synchronized conditional”.

Synchronized assignment («<—): This is an assignment that represents the
"Volatile access" synchronization point type statement as the identifier, or
as part of the expression. An example for a synchronized assignment would
be a statement “int result = fork();” or “sleep(1000);”
(Note that it is mentioned in the quoted definition, that an assignment
statement is program body, but any statement can be considered assignment
to some unused variable, which is discarded. For example, in C
programming language, every function has to return a value, even if it is of

a void type, which can be ignored when the function is actually called).

It is worth noting that putting a synchronization statement like fork in a
condition (like the C code “if (fork () == 0)”) would be translated
in a model to a “synchronized assignment” statement followed by a
“regular conditional” statement. Accessing a synchronized variable will
also be treated similarly — the mutual exclusion lock and unlock statements
will be considered as “synchronized assignment” statements, while the
actual access to the variable will be a regular statement or predicate.

In addition to the composition defined in type (5) above, the following
kind of composition will be used: PIQ . It is called a parallel composition,
and creates a program (called "parallel composed") with two components P
and Q running concurrently.

Launch of each of the components P and Q can be implemented as a
synchronized assignment, that includes a synchronization statement of the
“thread/task initiation" type. A program can only be considered as “parallel
composed” if at it meets at least one of these conditions:

- there’s a common shared object on which P and Q synchronize at least
once during their lifetime, or

- they were both initiated by program(s) already considered as “parallel
composed”.

Peter Yastrebenetsky Page 36

SYNCHRONIZATION COMPLEXITY METRIC

For all the evaluations below, every property which includes the sequential
composition defined in [33], will also be evaluated using the parallel
composition defined now.

When either interleaving or competition potential for the synchronized conditional or
synchronized assignment is 1 (i.e.: no synchronization) — they will behave exactly as a
conditional or assignment defined above.

For a given program P, the program complexity (value of the considered metric) will be
marked as |PI.

Lemma 3: Synchronization points' competition potentials will not be reduced as the result
of parallel composition.

Proof: Competition potential is the number of different entities competing for the
synchronization point during the run of the program. Composing two programs (i.e.:
running to programs in parallel) doesn't influence any other entity than the two composed
programs.

Thus, if they don't compete for the same synchronization point — the other entities remain
uninfluenced, thus continue to compete for the synchronization point, thus the competition
potential won't change.

If the programs composed compete for the same synchronization point — the competition
potential will have to grow.

]

Lemma 4: If P,Q are programs, then SCM(P,;Q) 2 SCM(P)+SCM(Q) (l.e.: |P;Q| = |P|+|QJ).
In other words — if a program is composed by the sequential composition of two programs,
its synchronization complexity will be at least as high as the sum of the original (i.e.:
stand-alone) complexities of the composing programs.

Proof: Assume there are two programs P and Q so that: |IP;QI < |PI+1Ql). This means, that
even if the competition potentials don’t change (i.e.: both programs don’t use threading or
don’t synchronize on the same data), the CCN of the main program is less than the CCN
of the programs it’s being composed of, which contradicts the definition of the CCN.

The competition potentials, by definition, cannot lessen as the result of composition, they
can either remain the same (if the programs are not synchronizing on the same data), or
grow (if the programs synchronize on the same data).

Thus, the SCM cannot lessen = the assumption is incorrect.

]

Lemma 5: If PQ are programs, then SCM(P|Q) =2 SCM(P)+SCM(Q) (l.e.: |(P|Q)] =
[PI+[Q)).

In other words — if a program is composed by the parallel composition of two programs,
its synchronization complexity will be at least as high as the sum of the original (i.e.:
stand-alone) complexities of the composing programs.

Proof: Assume the claim is not true, i.e.: there are programs P, Q so that I(PIQ)I < IPI+IQI).

Peter Yastrebenetsky Page 37

SYNCHRONIZATION COMPLEXITY METRIC

Since the CCN part of the SCM formula is not influenced by the parallel composition, it is
true to say that the only change would occur in the synchronization dependency
calculation. The P and Q are not changed by the parallel composition = 1P, Pl yalue
for at least one of the synchronization points of at least one of the programs will be less in
composition than when running stand-alone. The /P, of a synchronization point is a value
that is not, by its definition, affected by the program being run in composition with another
or not, thus the CPy, (the competition potential) is the only value in the formula which is
affected by the parallel composition (number of parallel executions competing over the
given resource).

According to the assumption, the SCM of the composed program is less than the sum of
the SCM's for the programs running standalone = there is a synchronization point in at
least one of the programs, for which the competition potential lessens as the result of the
parallel composition, but according to Lemma 3, the competition potential cannot lessen,
which contradicts the assumption = I(PIQ)| > |PI+IQI.

]

Evaluating the Usability Properties of the SCM

The “soundness” properties are defined fully in [33], and are cited and evaluated here in
the order of their presentation in that study. It has already been noted before, that a
measure is not considered “sound” if it doesn’t satisfy all the properties [18], and in fact
some of the well-known measurements (like statements count, or the CCN) do not satisfy
all the properties [33], yet they are by all means accepted as sound in the industry.
However evaluating the properties will allow better assessment of the measure limitations
and the measure values’ impacts.

For programs without synchronization points, the SCM value is equal to CCN, which has
already been analyzed in [33]. Thus, below we will only analyze programs which have
synchronization points.

Property 1
The property: (3P)(FQ)(IPI * 1Ql)

This property is clearly satisfied. For example, these two programs:

Program P
INPUT (V1, V2)
A s V1

B «s A+V2
OUTPUT (B)

Program Q
INPUT (V1, V2)
A «s VI1I+V2
OUTPUT (A)

The SCM of Q will be half of that of P, since (other variables equal) the interleaving
Peter Yastrebenetsky Page 38

SYNCHRONIZATION COMPLEXITY METRIC

potential of the two synchronized assignments in P will be, combined, twice as high as of
the single assignment in Q, thus:
[Pl = 2IQI.

Property 2

The property: Let ¢ be a nonnegative number. Then there are only finitely many programs
of complexity c.

It is shown in [33] that this property doesn't hold for CCN, which means it doesn't also
hold for SCM for the trivial case when there are no synchronization points in the program.

However, for the case where the synchronization points exist and affect the value of the
SCM for the program (i.e.: the interleaving and the competition potentials are both greater
than 1), the situation is different.

In [33] it is shown that the statements count satisfies this property, i.e.: there're finitely
many programs with statements count ¢, for any nonnegative c. Synchronization
statements are subset of all the statements in the program, thus, for any nonnegative c,
there are finitely many programs with synchronization statements count ¢ (in a program
with statement count c it is not possible to have more than ¢ statements, synchronization or
not). The synchronization statements’ count directly affects the SCM value by its
definition, but there are statements which do not affect the SCM — namely all the
statements which do not result in branching of any kind of the execution path.

Thus, the SCM doesn't hold this property (similarly to the CCN [33]).

Property 3

The property: (3P)(FQ)((P * Q) A (IP1=1Ql))
The SCM satisfies this property. For example the programs P and Q below:

Program P
INPUT (V1, V2)
A «s VI1I+V2
OUTPUT (A)

Program Q
INPUT (V1)
A s V1

OUTPUT (A)

The SCM of the two programs is the same, even though the programs aren't identical.

Peter Yastrebenetsky Page 39

SYNCHRONIZATION COMPLEXITY METRIC

Property 4

The property: (AP)EQ)((P = Q) A (IPI £1Ql))

The SCM satisfies this property. The example given for property 1 is also valid here. Both
P and Q in the example calculate the same function (f{vI, v2)=vI+v2), however their
SCM values differ.

Property 5
The property: (VP)(VO)((IPI <1P;Ql) A (10l <1P;Ql))
This is Lemma 4, which has been proven for the SCM to be correct.

Also, the property has to be evaluated for the parallel composition:

The property: (VP)(VO)((IPI <I(PIQ)1) A (101 <I(P1Q)I))
This is Lemma 5, which also has been proven for the SCM to be correct, thus SCM
satisfies this property.

Property 6
The property 6a: (FP)(FQ)(FR)((1Pl = 1Q1) A (IP;RI #1Q;RI))
The property 6b: (FP)(FQ)(FR)((IP1 = 1Q1) A (IR; Pl #IR;Ql))

The proof is by example:

Program P
INPUT (V1, V2)
A «s VI1I+V2
OUTPUT (A)

Program Q
INPUT (V1)
B «s V1
OUTPUT (A)
Assume R = Q, and x be the competition potential of the operation «— (for which, since
it’s a synchronization point, the IP value is greater than 1).

Pl =[P
IRI =10l = IP_,*'

IP;RI = IR:Pl = 2#IP_,"', since the competition potentials don't change (the
synchronization points are not related, thus programs running in sequentially don't
compete on them).

Peter Yastrebenetsky Page 40

SYNCHRONIZATION COMPLEXITY METRIC

IQ;RIl = IR;Q| = 2*IP_ el , since the competition potentials do change: Both Q and R
compete for the synchronization point B on operation «— in the same rate, thus th
sequential composition doubles the competition potential (since it doubles the number of
total threads competing).

X>1,IP ;>1=2%P > > 2%IP_ """ =|R:;P| # IR;Ql and |\P;R| # |Q;R)|.

Same property should also be evaluated with regards to the parallel composition (defined
as an addition to the sequential composition used above):

The property 6¢: (FP)(FQ)(FR)((IP1 = 1Q1) A (I(PIR)I #1(QIR)!))
The property 6d: (ZP)(FQ)(ZR)((1P! = 101) A (I(RIP)I # 1(RIQ)I))

Taking the same programs P, Q and R as above we will also receive the same results, since
the analysis for parallel composition will also be influenced by the additional threads
competing for [(QIR)l and I(RIQ)! and will not for compositions of R and P.

Peter Yastrebenetsky Page 41

SYNCHRONIZATION COMPLEXITY METRIC

Property 7

The property: there are programs P and Q such that Q is formed by permuting the order of
the statements in P, and |PI| # |QI.

According to [11], neither the statements' count nor the CCN satisfy this property. Thus,
for programs without any synchronization points, neither does the SCM.

However for programs with synchronization points, the analysis is different.
Example:

Program P

INPUT (V1, V2)

A s VI1+V2

WHILE V1 > O
WHILE V2 > O

B<—B+1,’
V2 « V2-1;
ENDWHILE
ENDWHILE
OUTPUT (B)

Program Q
INPUT (V1, V2)
WHILE V1 > O
WHILE V2 > 0
A «s V1+V2

B« B + 1,'
V2 <—V2-1,’
ENDWHILE
ENDWHILE
OUTPUT (B)

Let IP be the interleaving potential of the synchronized assignment to the variable A, and
CP - the competition potential of that assignment. Assume CP>] and IP>] (i.e.: there's a
potential interleaving).

The IPl = SCM(P) = 1*(IP"")+2
The 101 = SCM(Q) = 1+2*IP")

QI > |IP| = the property holds for SCM provided there're synchronization statements in
the program.

Peter Yastrebenetsky Page 42

SYNCHRONIZATION COMPLEXITY METRIC

Property 8
The property: For any two programs P and Q such that Q is a renaming of P, I[Pl = 10I.

The SCM satisfies the property since the naming conventions have no influence on the
calculation formula

Property 9
The property: (FP)(FQ)(|PI+1QI < IP;Ql).
For parallel composition: (FP)(FQ)(IP1+IQI < I(P1Q)I).

This is a stronger version of the fifth property.

Example given for property 7 is good for demonstration of the above: Both programs
access the same synchronized variable A, thus when running concurrently or
sequentially — in addition to the other entities they've been competing against, they will
also be competing against each other, thus the competition potential of the synchronized
access to A for both concurrently run programs will grow by 1.

Let IP be the interleaving potential of the synchronized assignment to the variable A, and
CP - the competition potential of that assignment. Assume CP>/ and IP>] (i.e.: there's a
potential interleaving).

Before the composition:

The IPl = SCM(P) = 1*(IP“"")+2

The 101 = SCM(Q) = 1+2*IP")

IPI+10l = 1¥(IP"")+2 + 1+2%(IP") = 3+4%(1P")

After the composition:
The IPI' = SCM'(P) = I5(IP""*)+2 = 1%(1P")+2
The 101" = SCM(Q) = 1+2*(IP""*) = 142%1P ")

The IP;Ql = IPI' +QI' = I¥(IP")+2 + 1+2%1IP") = 3+4*(IP") > 3+4*1P"') =
IPI+1Q]

Peter Yastrebenetsky Page 43

SYNCHRONIZATION COMPLEXITY METRIC

Usability (Soundness) Properties Evaluation - Conclusion

As seen above, the SCM for programs with synchronization points satisfies 8 of the 9
properties of the complexity measure soundness, as defined in [33]. Comparing to other
complexity measures evaluated against these properties in [33], the SCM is satisfies the
most of them (for programs with synchronization points):

Property Statements =~ CCN Halstead's Data Flow SCM (for

Count Programmin programs with
g Effort synchronization
points)

1 YES YES YES YES YES

2 YES NO YES NO NO

3 YES YES YES YES YES

4 YES YES YES YES YES

5 YES YES NO© NO YES

6 NO NO YES YES YES

7 NO NO NO YES YES

8 YES YES YES YES YES

9 NO NO YES YES YES

Table 3: Metric soundness comparison table.

Peter Yastrebenetsky Page 44

SYNCHRONIZATION COMPLEXITY METRIC

Chapter 3
Applying the SCM in Practice

Once all the theoretical parameters had been defined and properties tested, the time has
come to apply the metric on the real world applications. The most important part of the
metric is the synchronization points' interleaving potentials. These vary between various
operating systems and implementation, as will be shown in this chapter, and thus provide
the basis for comparison of the same code over different systems using the metric.

Once the interleaving potentials for all types of the synchronization points in use had been
defined, the static code analysis tool implementing the metric can be applied to the code in
question, to provide the required information on various levels. In the examples used for
this work the CCCC [19] will be altered to implement the SCM and to provide the SCM
values for each function in the C code under analysis.

Analysis of Interleaving Potentials

Interleaving Potentials are the core part of the metric calculation. The potentials are
constant per each type of the synchronization points in the same system; however they
may vary between different systems, as it will be shown.

In this chapter, each of the synchronization points’ types defined in chapter 2 will be
analyzed for various implementations, and the interleaving potential values will be given
for each. Also, examples of synchronization patterns will be discussed and analyzed.

The analysis for the basic synchronization points’ types will be provided with regards to
the following non-preemptive scheduling algorithms:

1. Static Priority Scheduling.

2. Round Robin Scheduling.

The above two scheduling algorithms had been chosen because of their simplicity and
popularity on the embedded and real-time software development market. Both algorithms
are described in details in [27].

Other, more complicated scheduling algorithms exist, but those will not be covered in the
analysis below. For example dynamic priority scheduling, combination scheduling
algorithms (e.g.: combining priorities scheduling and round robin between tasks of the
same priority), etc.

Non-preemptive priority based algorithms are in use in various real-time and/or embedded
operating systems (for example VxWorks® or Embedded Linux® OS's).

Round Robin is one of the simplest basic scheduling algorithms which is easy to
implement, and can be used on various applications which require their own thread-
scheduling (for example when programming an embedded application which will run
without an underlying operating system).

Peter Yastrebenetsky Page 45

SYNCHRONIZATION COMPLEXITY METRIC

The scheduling systems are not usually being used in their "pure" non-preemptive
implementation, and are frequently combined (for example Linux 2.6 kernel scheduler that
combines priority and round-robin in its real-time scheduling algorithm [1]). However, for
the simplicity of explanation and example calculations, the pure non-preemptive
implementations will be considered in this chapter.

The analysis for the synchronization patterns will also be provided based on all, or some
of the following distinctions:

a) C Pthread library (POSIX IEEE Std 1003.1¢c-1995 compliant) [14].

b) Unix (Open Group Specifications, POSIX IEEE Std 1003.1b-1993/1003.1i-1995

compliant) [28]

¢) Standard ANSI C Implementations [16]

d) Microsoft Windows API [23].

e) Java standard thread and synchronized objects [8].

Interleaving Potentials Analysis for Basic Syncronization Types

Try-Lock synchronization point type

Synchronization statements of this type are intended to block the calling thread until a
certain event occurs. It may not necessarily block, if the event has already occurred or
non-blocking lock testing is requested.

This is the basic flowchart for this functionality:

Try-lock begin

Is the lock
available?

No
Yes
Return “available” Return “Not
and lock available”

Fig. 2. Flowchart of the Try-Lock synchronization point type.

Peter Yastrebenetsky Page 46

SYNCHRONIZATION COMPLEXITY METRIC

Interleaving potential analysis:

For the priority based scheduling: If the current thread is running, it will not be
preempted as the result of the call, since the priority scheduling will let the highest priority
thread running until a higher priority thread is ready. Having current thread running means
it's a highest priority thread, and acquiring a lock will not release a higher priority thread.
Thus, in non-preemptive priority based scheduling system, the synchronization point of
this type will not have an interleaving potential greater than 1.

For round-robin based scheduling: The rationalization is the same — once the thread is
running, it means it has its slice, and it will not be blocked until its time slice is over,
regardless of the synchronization point. Thus, the interleaving potential will not be greater
than 1.

Lock

Synchronization statements of this type are intended to block the calling thread until the
requested resource is available.

The flowchart for the lock and unlock functionalities:

Lock/Try-
lock

Lock begin

Is the lock
available?

Perform statements in the locked part

Block until
Yes Available Unlock

.

Return “available”
and lock

Fig. 3. Flowchart of the Lock and Unlock synchronization point types.
Interleaving potential analysis:

For the priority based scheduling: If the lock is released at the time of the call, the
current thread will acquire the lock and will continue running, as in try-lock. If the lock is
locked at the time of the call, the current thread will be blocked (will be in waiting state),

Peter Yastrebenetsky Page 47

SYNCHRONIZATION COMPLEXITY METRIC

and the highest priority thread in ready state will be given the CPU. The interleaving
potential is the number of threads in the system, because in the worse case, any other
thread can theoretically be in ready state while the calling thread will be blocked waiting.

For round-robin based scheduling: For this functionality the analysis for the round-robin
scheduling is the same, and so is the interleaving potential.

Unlock

Synchronization statements of this type are intended to release a lock acquired earlier by a
lock or a try-lock call. The flowchart for this functionality can be seen under lock.

Interleaving potential analysis:

For the priority based scheduling: If the thread waiting on the lock has a higher priority
— it will be released from waiting and allowed to run. Otherwise the thread waiting for the
lock will be marked as "ready", and the current thread will be allowed to continue. Thus
the interleaving potential of this point is the amount of threads in the system with
priority higher than the releasing thread (i.e. potentially the amount of threads in the
system, but in fact it is safe to assume that rarely a single lock will be shared between all
the threads).

For round-robin based scheduling: The current thread will continue to run until it has
exhausted the time slice given to it, while the thread waiting for the lock will be marked as
waiting and will run the next time its turn comes. Thus the interleaving potential is 1.

Wait
Synchronization statements of this type are intended to block the calling thread until
another thread notifies that the required event has occurred.

According to [5], a statement of this synchronization point type should be used in a loop in
order to avoid known synchronization related bug pattern, thus increasing its de-facto
synchronization impact (the CCN value in the SCM formula for the branch in which it is
used).

The flowchart for the wait and notify functionalities:

Wait Begin

Block Notify

Resume

Fig. 4. Flowchart of the Wait and Notify synchronization point types.

Peter Yastrebenetsky Page 48

SYNCHRONIZATION COMPLEXITY METRIC

Interleaving potential analysis:

The analysis is the same as for the lock synchronization point, since the functionality is
basically the same except that wait will always lock.

Notify

Synchronization statements of this type are intended to release the thread waiting for an
event (using the wait functionality). When "notify" is called, the waiting thread receives
notification and is released from its block. The difference between the unlock and the
notify points lay in the statements prior to the point itself: unlock synchronization point
requires a lock or successful try-lock call before it can be used, whereas notify requires
no prerequisites.

Interleaving potential analysis: The analysis for this point is the same as for the Unlock
synchronization point.

Yield - Pass Control (Explicit)

Synchronization statements of this type are intended to pass the CPU control to a different
thread.

JAVA

In Java, the explicit pass control synchronization point is a yield method call from
java.lang.Thread class.

Interleaving potential analysis:

For the priority based scheduling: if the current thread is running — it means that it's the
highest priority state available to run (this remark is based on the fact, that in this work we
consider only static priorities; for dynamic priorities this property doesn't hold) . The
synchronization point doesn't block, it only gives the scheduler a chance to reschedule,
thus the running thread will remain the thread with the highest priority available to run,
and will continue running. The interleaving potential is 1.

For round-robin based scheduling: The scheduler will reschedule, and may either return
control to the current thread to finish its time slice, or give the control to the next thread
according to the scheduling algorithm. Thus, the interleaving potential is 2.

Volatile access

Synchronization statements of this type are intended to access a variable which can be
accessed by other threads without locking protection.

Interleaving potential analysis:

Regardless of scheduling algorithms, the interleaving potential of this point is the
number of threads that access the variable and are able to run concurrently. For
example, if the system runs on 5 processors with 20 threads being able to access the
variable, the interleaving potential will be 5. The reasoning is that if the variable is
accessed while no other thread can change it, there will be no intentional interleaving.
Since volatile variables are usually used to share data with hardware components, there
will be, usually, more than one processor which will be able to access it at a time.

Peter Yastrebenetsky Page 49

SYNCHRONIZATION COMPLEXITY METRIC

Task/Thread initiation
Synchronization statements of this type are intended to create a new execution thread.

Interleaving potential analysis:

For the priority based scheduling: If the new thread has priority higher than the current
— it will start running immediately, otherwise it will be marked "ready" and the current
thread will continue to run. Thus, the interleaving potential is 2.

For round-robin based scheduling: The current thread will continue to run until it has
exhausted the time slice given to it, while the new thread will be marked "ready" and will
wait for its time slice. Thus, the interleaving potential is 1.

Synchronization Patterns Analysis

In this section several common synchronization patterns will be discussed and analyzed.
Some of them are quite standard and have no differences with regards to the interleaving
potentials, whereas others may be implemented differently on various systems the
interleaving potentials of the same pattern may vary depending on the implementation.

Acquire/Release a Semaphore/Mutex

This pattern is the direct implementation of the "lock" or "try-lock" and "unlock" basic
synchronization points, and the analysis provided.

On systems which don't have built-in support for such functionalities, they may be
implemented using the "wait" and "notify" functionalities, through interrupts or other
similar facilities.

Pthread library

Pthread library provides set of functions prefixed with "pthread_mutex" for mutexes'
management, which implement the lock, unlock and the try-lock functionalities.

UNIX

In UNIX there are several functions for semaphore management and usage, which start
with the "sem_" prefix. For example: sem_wait, sem_trywait and sem_post for
"lock", "try-lock" and "unlock" accordingly.

Microsoft Windows API

There are several different WinAPI functions for semaphores. The simplests are
CreateSemaphore and ReleaseSemaphore which are parallel to UNIX
sem_wait and sem_post functions. As opposed to the POSIX complient functions,
CreateSemaphore allows to create semaphores which can be locked multiple times.
Simpler Critical Section constructs can also be used.

JAVA

Java provides the reserved word "synchronized" to mark the objects/methods which
require to be locked for access. Every access to a synchronized method/variable performs
the lock operation prior to the actual access, and the unlock operation once the access was
finished. There's no try-lock construct built into the language.

Peter Yastrebenetsky Page 50

SYNCHRONIZATION COMPLEXITY METRIC

Enter/EXxit Critical Section
Synchronization statements that implement this pattern are intended to ensure a single
thread to be executing the critical code section at a time.

The functionality can typically be implemented using semaphores; however some systems
provide explicit support for this pattern.

Microsoft Windows API

In Microsoft Windows, there are functions for critical section management similar to other
mutual exclusion mechanisms: EnterCriticalSection behaves like the lock
synchronization point, LeaveCriticalSection behaves like the wunlock
synchronization point, and TryEnterCriticalSection behaves like the try-lock
synchronization point.

JAVA

Critical sections can be implemented in Java using the synchronized block construct
(example from [8]):
synchronized (syncObject) {

// This code can be accessed

// by only one thread at a time
}

The interleaving potential is the same as for the lock synchronization point type on the
entry to the block, and the same as for the unlock synchronization point type on the exit
from the block.

Send/Receive a Message

Synchronization statements that implement this pattern are intended to pass certain
information from one thread to another. Sending a message can be implemented in several
different ways:

Messaging can be implemented by the system developer using the synchronization
patterns described earlier (semaphores and mutexes) and standard data structures (queues
or cyclic buffers) protected by them. In this case the interleaving potentials will be
calculated based on the chosen implementation details.

UNIX
There are several messaging options available in a UNIX system:

Using kernel-managed message queues (mg_send/mg_recv function), using sockets
(send, sendmsg or sendto/recv, recvmsg or recvfrom functions) or using
pipes (write/read function) — all the methods can be blocking or non-blocking, based
on the queue/socket/pipe settings.

In case the blocking methods are used, the interleaving potentials are the same as for lock
synchronization point, otherwise the same as try-lock.

Microsoft Windows API

Peter Yastrebenetsky Page 51

SYNCHRONIZATION COMPLEXITY METRIC

There's no messaging support similar to the POSIX definitions in the Microsoft Windows
API, but as for UNIX, sockets or files can be used for messaging. Also, shared memory
objects can be used for that, using semaphore constructs to guard access. The closest thing
to the message receiving functionality is WaitForSingleObject. The interleaving
potential for this function is the same as for the wait synchronization point.

Also, as for UNIX, sockets can be used for messaging.
ANSI C Implementation

In Appendix A an example of messaging module is provided, taken under LGPL license
from one of the open source projects available in the Internet. This implementation doesn't
use operating system provided messaging mechanisms described above, and implements
queue based messaging system, locking the access to the queue to a single thread at a time
using the described above "Acquire/Release Semaphore/Mutex" pattern.

Adding a message to the queue is done using soup_message_queue_append call.
The function uses the lock/unlock synchronization points to guard access to the queue,
thus the IP value for the SCM calculation of the callers will be the sum of IP values of
the synchronization pints used in each branch of execution.

The SCM of this function can be calculated as follows (assuming there are 2 threads in the
system):

CCN=2
IP for priority based scheduling:

IP = (IP(g_mutex_lock)+IP(g_mutex_unlock))=2+2 =4
IP for round robin based scheduling:
IP = (IP(g_mutex_lock)+IP(g_mutex_unlock))=2+1=3

SCM = 2#4*'=8 for priority based scheduling or 2#3%1=6 for round robin based
scheduling.

As it can be seen, using OS-provided functions like mg_send/send provide better SCM
values for the implementation, since the synchronization is done internally by the kernel,
and under the assumption of correctness, doesn't lead to multiple intentional interleavings.

Similarly to soup_message_queue_append call, the messaging module provided in
Appendix A includes functions to remove (receive) messages from the queue:
soup_message_queue_first and soup_message_qgueue_next. Similarly,
these messages (which implement one way iteration over the queue) include locking
functionality, and on each execution path of each of the functions, there's a lock and
unlock synchronization point. The interleaving potential of each of the functions is the
same as for soup_message_queue_append, by the same reasoning. It should be
noted that the CCN value for the soup_message_queue_first and
soup_message_queue_next is higher than for soup_message_queue_append
because of the internal while loop, which means that the SCM value will also be higher.

Unprotected (Volatile) Shared Variables Access in ANSI C and in JAVA
Both ANSI C and JAVA provide reserved word volatile to mark variables that should

Peter Yastrebenetsky Page 52

SYNCHRONIZATION COMPLEXITY METRIC

not be optimized by the compiler. This is used to mark variables which can be accessed
concurrently from different threads of execution, specifically when sharing data with
hardware (separate processors which access shared memory with the software systems) or
with other threads, without using synchronization protection.

Thread/Task Initiation

Synchronization statements that implement this pattern are intended to create a new
execution thread. When writing multi-threaded/multi-process system, the function calls
used to create a new thread while leaving the current intact will perform as analyzed in the
basic synchronization point section. However, there is a function that implements this
pattern differently, and should be analyzed separately.

ANSI C
In the C language there are several functions defined which perform task initiations:

system: this function executes a shell command, and blocks the calling thread until the
execution is finished. The interleaving potential of this function is 2: The call will
always block until the requested command returns.

exec: the family of functions which replace the calling thread with a new one. These
functions, if called, have interleaving potential of 1: If the call succeeds then the new
thread will run, if the call fails — the old one.

Pass Control (Implicit)

Synchronization statements that implement this pattern are intended to pass the CPU
control to a different thread, however it is done implicitly. A common occurrence of this
pattern is using a blocking system call such as “sleep”, which puts the calling thread
into a “waiting” state, and allows running other “ready” threads in the system. Thus,
regardless of the scheduling, the interleaving potential is 2, since the scheduler can either
return control to the calling thread or give it to the next thread available, if the call blocks.

Peter Yastrebenetsky Page 53

SYNCHRONIZATION COMPLEXITY METRIC

Interleaving Potentials Analysis for Syncronization Types and
Patterns - Summary

The table below summarizes the interleaving potentials for the synchronization types and
patterns analyzed above.

Synchronizatio
n Point/Pattern

IP when Priority based IP when Round Robin
scheduling (standard based scheduling (standard
system call) system call)

P when
standard
implementation is
used, or exceptions

non-

Try-Lock 1
Lock, Critical Number of threads in the system
Section Entry
Pattern
Unlock Number of threads with 1
priority higher than the
calling, accessing the lock
Critical Section Number of threads with 1

Exit Pattern priority higher than the
calling, accessing the
critical section
Wait Number of threads in the system
Notify Same as Unlock, but not higher than number of threads
accessing “Wait”.

Pass Control 1 2 System calls can be

(Explicit) treated as such
synchronization point
(implicit), with IP=2.

Volatile Access The higher of: number of threads accessing the data or

number of processors in the system.

Task/Thread 1 2

initiation

Message Same as Lock IP(Lock)+IP(Unlock)

Send/Receive

Pattern

Table 4: Synchronization Types and Patterns Analysis Summary — Interleaving Potentials

Competition Potentials Analysis for Basic Synchronization Types
and Patterns

Data Dependant Competition Potentials

For all the synchronization types and patterns which rely on specific data, the competition
potentials are the number of threads using that data.

Peter Yastrebenetsky

Page 54

SYNCHRONIZATION COMPLEXITY METRIC

For example: Lock, Unlock, Try-Lock, Wait, Notify, Volatile Access types and
Semaphore/Mutex/Critical Section related patterns all have competition potentials
equal to the number of threads using the data (using the lock/semaphore/mutex or
accessing the code in the critical section, or using the signal used in the wait-notify
construct (either waiting or notifying), or using the message queue (either sending or
receiving), etc).

Worst case would be the total number of threads (if, for example, static code analysis
doesn’t allow analyzing the exact number of threads which will access certain
synchronized data variable).

Data Independent Competition Potentials

Pass Control

When the control is passed, whether explicitly or implicitly, the thread given the CPU can
be any of the threads available in the system, thus the competition potential is the
number of threads in the system.

Task Initiation

Task initiation is essentially a pass control construct, except that each task initiation
increases the following call competition potential. Initiating all the threads in the system in
the initialization stage is a common practice in embedded software implementations with
limited resources. Such systems acquire all the needed resources in the initialization stage,
including threads initiations and memory allocations, in order to avoid resource deficit
during the life time of the running system. In this case the competition potential for each
thread initiation synchronization point will increase by 1 every call, so that for each new
thread z, the CP, will be CP,;+1, with CPy = 0 (thus CP; = i).

A common practice is to initiate threads in one loop, in a code that looks similar to this:

int i, maxTasks = n; /* n is the total number of tasks to be
created */

for (i = 0; 1 < maxTasks; i++)

createTask (i) ;

In this pattern usage the CP of the “createTask” synchronization point changes at each
iteration, but for the static analysis the average value can be considered (calculated as the
sum of all the numbers in the range, divided by the number of iterations of execution of

this code). So, for such case, the CP for each call will be lZ:(zf +1)= nTH ,where n is
n -

the total number of threads.

In another case, when thread initiations and exits are performed in an arbitrary order (e.g.
Web Server which starts a separate thread on each connection, and exits when the
connection ends), the competition potential would be the maximum number of threads
allowed to run in the system concurrently (i.e. n).

Peter Yastrebenetsky Page 55

SYNCHRONIZATION COMPLEXITY METRIC

Competition Potentials Analysis for Synchronization Types and
Patterns - Summary
The table below summarizes the interleaving potentials for the synchronization types and

patterns analyzed above.

Synchronization Competition Value (as Comments

Point/Pattern Type function of n — number of
threads in the system)

Data Dependant Number of threads in the O(rn) — in worse case or
system with the access to when cannot be
the data (can be used undetermined, all the
together with a coupling threads are assumed to be
metric which can provide able to access the variable.
the needed data to assess Since the metric is used
the number of additional when the system design is
modules accessing the data known, the worse case can
as part of the static code and should be avoided.
analysis, or by prior design
knowledge).

Data Pass Control n — the number of threads

Independent in the system.

Thread/Process Depends on the system The case where the threads
Initiation design: are being initiated and
n — the maximum number never terminate is very
of threads in the system, if common in
the threads are being embedded/reactive
initiated and terminated systems.
interchangeably;
ntl_ when all the threads
are being initialized before
any thread has a chance to
terminate, or never
terminate.
Table 5: Synchronization Types and Patterns Analysis Summary — Competition Potentials
Peter Yastrebenetsky Page 56

SYNCHRONIZATION COMPLEXITY METRIC

Chapter 4

CCCC Introduction

The CCCC tool [19] is a tool developed by Tim Littlefair as part of his advanced graduate
studies at the Edith Cowan University. The CCCC stands for C and C++ Code Counter,
and as the name suggests — this is an utility that gathers metrics for C and C++ (and also
Java) code.

The tool is distributed as an open-source software under the GPL license, through the
“Sourceforge” project.

The tool is based on a command-line interface, its input is a C/C++/Java file (for the
purpose of this thesis, C and C++ examples are used), and the output is a directory with a
set of HTML pages which include the metrics calculated for the file, on the file, class and
function levels with source cross-reference.

The tool implements measurement of the following metrics [18]:
Procedural metrics:
1. McCabe’s Cyclomatic Complexity Number
2. Lines of Code
3. Lines of Comments
Object Oriented Design (OOD) Metrics:
1. Depth of Inheritance Tree
2. Number of Children
3. Coupling Between Objects
4. Weighted Methods per Class
Structural Metrics:
1. Fan-In
2. Fan-Out
3. Information Flow.

According to [18], a weak consensus was achieved between the participants of the tool
evaluation experiment regarding the positive value of the procedural metrics the tool
provides, while the OOD and the structural metrics received marginally negative
responses.

Although the experiment conducted by Dr. Littlefair had shown that using the tool-
provided metrics as part of the code review process doesn’t change the process outcome
significantly, it is reasonable to assume that the procedural metrics, especially the
McCabe’s CCN, can also be used as part of the testability evaluations by the QA and QC
groups, and that the direct connection between the CCN and the test coverage, as shown
above, is of benefit for these groups. This assumption is not put to test as part of this work,
and is left to be tested as part of a future work on this topic.

In this thesis, the CCCC ability of measuring the McCabe’s Cyclomatic Complexity
Number (CCN) is used to implement the measurement of the SCM as defined above, as an

Peter Yastrebenetsky Page 57

SYNCHRONIZATION COMPLEXITY METRIC

additional procedural metric the tool will provide. It is assumed (although the task to
prove or disprove this assumption is left for future work) that the SCM will prove itself
beneficial in the similar manner as the CCN is, for the purposes of testability evaluations
of concurrent software.

The CCCC also provides totals per module analyzed. In case of the CCN (tagged in the
CCCC reports as “MVG”for historical reasons) counter and the SCM counter, the totals
are the sums of the relevant values for all the functions in the module.

CCCC Implementation

The CCCC is implemented in C++, using object oriented design and programming. The
grammar for the C++ and Java languages is compiled using the PCCTS Antlr and Dlg
tools.

Each token found by the parser is passed to the CCCC__t ok class.

The McCabes, Lines of Code and Comments metrics are calculated directly in the parser.

The increase of the CCN is triggered by the C++ reserved words:
break

for

if

return

switch

throw

while

Each encounter of any of the above reserved words triggers an increase of the CCN (the
MVG counter) by one. As shown in chapter 6, the result is not necessarily correct in all

cases, but is close enough to be usable for the purposes of demonstration.

The module CCCC_ut1 includes the implementation of the class ParseStore, which
handles the metric counting.

The module CCCC_met is responsible for metrics’ calculations and representations in the
final reports (including excessive values marking).

The module CCCC_htm is responsible for creating the reports, including formatting.
The module CCCC_tok is respnsible for the source code parsing and the token handling.
There are additional modules that are responsible for interim data storage, specific metrics’

calculations, etc., which were not changed for this work, and their source code is available
on the internet.

Peter Yastrebenetsky Page 58

SYNCHRONIZATION COMPLEXITY METRIC

CCCC Implementation Changes

The changes were made on the latest available stable version (version 3.1.4) that can be
downloaded under the GPL from the Sourcforge project site [19]. Listings of all the non-
trivial additional code added for the purpose of implementing the SCM are in the
Appendix B of this work. Original sources are freely available over the Internet, for
reference.

The trivial changes include the changes required for additional metric representation in the
final report in the modules CCCC_htm and CCCC_met. The changes are made so that the
SCM metric values will be represented immediately after the CCN in the reports.

The main non-trivial addition to the original code is the new CCCC_ScmManager class
and the existing ParseStore class.

The SCM was implemented for and tested on C programs.

The SCM Manager class

The CCCC_ScmManager class is the core functionality added to the CCCC as part of
this work. The class holds all the data needed for the SCM calculation: the competition
potential, the interleaving potentials for each type of the synchronization points, the table
which allows translating a specific code statement to an abstract synchronization point,
and keeps track of volatile variables.

The class is implemented as a static C++ class (i.e.: the methods can be called directly
without instantiation of the class).

The class has to be initialized prior to starting the calculation. The initialization will be
done by a call to the ITnitialize method. In order to avoid the need to track the state
of the class object (which is used as singletone) elsewhere, the Initialize method can be
called by the ConsumeToken method (which will be described later) on the first call.

Initialization

The Initialize method calls TnitIds and InitPotentials methods. These
methods initialize the values for the interleaving and competitional potentials, and fill the
list of the synchronization points’ tokens.

Calculation

The ConsumeToken method is called by the ANTLRToken: : Count Token method
that scans the tokens stream. For each token in the stream, the ConsumeToken method
checks whether it exists in the table of synchronization points’ tokens (loaded from the
initialization file as described above).

If the token is found in the table then the /P and CP values for that token and the current
value of the “MVG” counter will be added to a list of synchronization points’ values

Peter Yastrebenetsky Page 59

SYNCHRONIZATION COMPLEXITY METRIC

encountered in the current function.

When the nesting level is decreased to O (i.e.: end of the function is reached, in the C
code), the method will call the CalculateScm method of the SCM_Manager class, that
calls the IncrementSCM function of the ParseStore class for each synchronization point
stored.

For each of the IP’s/CP’s pair saved for the current nesting level, the formula calculations
will be performed, as defined in chapter 2 (“The Formal Definition of the SCM”). The
CCN for the calculations will be taken from the current value of the “MVG” counter,
which represents the cyclomatic complexity metric in the CCCC. The difference between
the values of the “MVG” counter at the time the synchronization point was encountered in
the code, and the end of the function, is taken as the CCN;), value.

The CCN required for the calculation should be the CCN),, the cyclomatic complexity of
the smallest sub-graph that includes the synchronization point. The CCCC is not able to
calculate the CCNj, as defined for all the possible cases (it is also not able to calculate
CCN for all the possible cases as well, see chapter 6 for examples of such cases).

However, the calculation of the CCN (through the “MVG” counter) is implemented by
incremental calculation based on the binary decision statements encountered during the

single pass of the code analysis (for example, “1 £, “switch-case”, “for”, and other
C constructs).

Such calculation provides intermediate values allowing calculation of the CCNj, value, as
it was defined in this work, when the code parser reaches the end of the function in which
the synchronization points were found. The problems which prevent the CCCC to
calculate the CCN correctly in certain cases have the same influence on the CCN,,
calculation as well (several examples are given in chapter 6). These corner cases were not
dealt with during the work on this thesis.

The calculation is done in ParseStore::IncrementSCM member function (see
below).

The ParseStore class

The ParseStore class is responsible for storing the metric values during the parsing
process. It has IncrementCount member function which increments any given
measure during the parsing and stores the current value.

The IncrementCount member function was changed so that it would increase the
SCM measure each time the CCN is increased (since, by definition, unless a
synchronization point is found, the SCM tracks the CCN).

A new member function, IncrementSCM, was added. This function performs the
actual calculation of the SCM value based as described above, and stores the calculated
value in the existing CCCC data structures, for further processing and formatting as
HTML output (existing CCCC functionality).

Peter Yastrebenetsky Page 60

SYNCHRONIZATION COMPLEXITY METRIC

Chapter 5

In this chapter several examples of usage of the changed CCCC tool will be provided. The
actual output of the CCCC for each of the modules discussed is provided in appendix C.

BusyBox HTTP Server Analysis

“Busybox” is a Linux distribution targeting embedded systems’ developers. This Linux
distribution is characterized by small size, achieved by only bundling the minimal
software required for running the device. Many common UNIX utilities have been
rewritten to provide smaller and optimized replacements, sometimes using single
executable for various related utilities. Busybox distribution is used in the industry in
various Linux-powered embedded devices, such as cable and satellite TV set top boxes,
network devices, home appliances, etc.

For this work, the HTTP server implementation in the Busybox package was chosen as a
good candidate for analisys. The reasons to chose this particular utility are:

1) Itis a stand-alone application with many synchronization points

2) The Busybox implementation has been improved significantly in the past years, so it is
a good candidate for comparative analysis

3) This particular implementation is used in embedded devices where task
synchronization problems are of high importance, while the schedulers are of a simpler
design (for example simple priority based schedulers can be found in applications
using this implementation).

4) There are many other similar HTTP server implementations which can be used for
comparison (I chose to compare the BusyBox implementations with the IKI
implementation, as described below)..

Busybox httpd.c file version used is 1.35 (dated Oct. 6, 2004), and the current (as of May
25, 2009) version, both are available under GPLv2 license from the BusyBox project at
http://www.busybox.net/.

The source listings are available in appendix A of this work.

The analysis was performed based on an assumption of a single instance of the http
daemon running, with a single connection (i.e.: competitional potential is 2: the main task
and the listener task forked from it). Such implementations are used, for example, in some
embedded devices with HTTP configuration interfaces.

Peter Yastrebenetsky Page 61

SYNCHRONIZATION COMPLEXITY METRIC

The synchronization points defined (based on the scheduling constraints described in the
table 4 above):

Table 6: Http Server Analysis Synchronization Points Values
The results, per function (only functions with synchronization points listed):

Table 7: Busybox httpd.c Analysis Results

Peter Yastrebenetsky Page 62

SYNCHRONIZATION COMPLEXITY METRIC

Using the results of analysis of the new and the old version, we can compare the versions
with regards to their synchronization complexity.

We can see from the table 7 above, that while in some cases the CCN for a function
become higher, the SCM become lower or changes insignificantly due to a more careful
usage of synchronization points within the code (for example — following the simple
guidline of limiting the CCN per function to below 20 [13, 15] will probably do marvels to
the SCM values and the overall testability of the concurrent function as well).

A good example would be the function “handleIncoming”. In the old implementation
it had the CCN value of 78 and the SCM value of 466. In the new implementation, the
CCN is 94 and the SCM — 288. We can see that although the CCN got higher, the SCM
became considerably lower (improvement of over 38%). The listing of the function in the
old implementation starts at the line 1481 of the file listing, and in the new implementation
its on line 1769 (called “handle_incoming_and_exit”).

The high difference in the SCM values in a function which basically implements the same
functionality is explained in this case by the removal of the error handling from the
handleIncoming function in the old implementation to the
send_headers_and_exit in the new one (sendHeaders in the old
implementation). This caused the increase of 27 in the SCM value from 15 to 42 in
send_headers_and_exit but a dramatic decrease of 288 in the SCM value of the
function handle_incoming_ and_exit.

Overall the comparison shows that the improvements made over the time between the two
versions improved significantly the testability of the program both in the “classical” way
(the CCN per module reduced drastically, and especially for functions with large values
like sendCgi), and also with regards to the synchronization complexity (as shown in
example of the handleIncoming function, the changes in the SCM are not derived
directly from changes of the CCN, as one might claim, but are actual changes in the usage
of the synchronization mechanisms and code reorganisation).

IKI HTTP Server Analysis

Additional analyzed HTTP server implementation is the one written by Tero Kivinen; it
can be found on the finnish site called IKI: http://www.iki.fi/iki/src/httpd.c.

It is published as is, and the source is provided in Appendix A with the copyright notice
allowing the reprinting and the redistribution.

This version of the HTTP server is in use by the IKI site (www.iki.fi1), and probably others.
For the analysis of this module, the same competition and interleaving potentials were

used, for the same synchronization points, as for the Busybox implementations (see table
6).

The results are as follows (only functions with synchronization points listed):

Peter Yastrebenetsky Page 63

SYNCHRONIZATION COMPLEXITY METRIC

Function Name MVG (CCN) SCM
do_write 10 22
http_server 29 75
main 25 90
new_connection | 12 34
open_service 7 13
read_data 8 26
read_page 9 15
Total per module 312 487

Table 8: IKI httpd.c Analysis Results

Comparative Analysis

Above, the SCM and CCN values were measured for two versions of the BusyBox HTTP
Server implementation, and for an additional (IKI) implementation of the same
functionality.

The SCM number by itself may not be useful (especially with large IP and CP values), but
it is very useful when we want to compare different implementations of the same
functionality. For example, we may want to know the SCM values for the modules, and
the additional complexity we get when using SCM versus the classic CCN.

In this case we’re comparing three implementations of an HTTP server, all three assumed
to be running in the same environment (percentage of the SCM addition is calculated as
((SCM/CCN) -1)%. In the table below we can see the totals of the CCN, the SCM and the
SCM addition to the totals (sum of metric values for all the functions):

Module CCN SCM SCM addition
Old BusyBox 374 1416 278%

New BusyBox | 326 615 87%

IKI 312 487 56%

Table 9: HTTP Servers Comparison

It can be clearly seen that the synchronization complexity of the IKI implementation is
less than that of the busybox implementation, both nominally and realtevly to the total
CCN of the module.

This suggests possibility of more efficient and careful usage of system calls and inter-
process communication mechanism in the IKI implementation, and can be used as a basis
for review of the implementations in order to find better ways (or identify better patterns)
of doing things in one, learning from the other.

For example: the function new_connection in the IKI implementation and the
function handle_incoming_and_exit in the (new) BusyBox implementation
handle the new HTTP request.

Peter Yastrebenetsky Page 64

SYNCHRONIZATION COMPLEXITY METRIC

However, the IKI implementation has much lower CCN and SCM values, since the
parsing of the command portion of the request is not done in the scope of the function,
thus reducing the potential of synchronization-related (and other) problems in the function
which handles the actual connection.

Additional interesting observation seen in Table 9 is that the SCM doesn’t grow
exponentially, as might be expected based on the metric formula. This is because of the
decoupling between the modules and very low de-facto competition potential for each
synchronization point. For the analyzed HTTP servers’ implementations, the CP value was
2, since all the implementations used two tasks: the main task and a listener task forked
from it

Peter Yastrebenetsky Page 65

SYNCHRONIZATION COMPLEXITY METRIC

Conclusions

The goal of this work was to show that it is possible to evaluate the impact of using
concurrent programming patterns (such as mutual exclusions, accessing shared data,
creating new threads and processes, etc.) on the programs' complexity.

In this work a metric was defined that can represent this impact with relation to the
amount of unique execution paths required to cover the expected interleavings on the
program language level. Thus, this number also represents the amount of unique tests
required for proper coverage of these paths (based on the known branching and
synchronization coverage models described in chapter 1). This is important for example,
when trying to reach full coverage based on the concurrency coverage criteria with tools
like ConTest [S] or CHESS [24]. The CHESS tool is especially relevant since it attempts
to systematically cover all the possible interleavings based on the synchronization
statements divided by types, similarly to the classification described in this work. Thus
SCM, as it is defined in this work, can be used for the estimation of the effort required for
achieving the full coverage when using this tool.

In the comparative analysis done in the work for various implementations of the same
concurrent programming patterns, we could see the direct and specific benefits that a
developer could have gained, had he been using the SCM as part of the development
process.

The conclusion is that the metric provides a valuable information for the developers and
testers when considering usage of different implementations of the same functionality in
their applications, or usage of the same implementation in different operation
environments. This information is useful for assessment of the testability, the risk
potential (the higher the SCM - the higher the risk and potential of different problems to
occur), and the quality of the product.

Feasibility and Usability

The metric is defined by a formula which is exponential. However, the exponent, which,
for every synchronization point analyzed represents the number of threads competing for
it, is usually not large.

In the real life applications, the tendency is towards loose coupling between modules, thus
creating very little dependencies and synchronization amongst threads in the system. For
example, in [15] the requirement is that “[the] Source code should be developed as a set of
modules as loosely coupled as reasonably feasible”. Similar requirements exist throughout
the industry, and are measured by CCCC and other similar tools. Therefore, as it has
already been mentioned before in this work, it can be assumed that most of the real-life
applications have only handful of threads competing over the same resources, and thus
require synchronization. For example, in [5], 16 classes out of 575 (3% of all classes)
having synchronization primitives is considered reasonable. Although it is not clear from

Peter Yastrebenetsky Page 66

SYNCHRONIZATION COMPLEXITY METRIC

[5] how many threads are in the system, it is reasonable to assume that in such a large-
scale system, due to the loosely coupling, the amount of threads sharing data will be small
relatevly to the total number of the threads. In [24] it is also shown that there are very
limited amounts of threads for even large scale projects.

The example analysis performed in this work on a real life HTTP server applications has
shown that the SCM provides valuable and useful information. On the actual real life
HTTP server implementation, the SCM provided both an estimation of the test effort to
achieve the coverage based on the branching/synchronization criteria, and a comparison
between various implementations which can be used to suggest a better option to choose.
In this real life program, the competition potential is as low as it can possibly be for a
multi threaded application, and this program is not an exception, but rather the opposite —
one of the reasons for it to be chosen is its being widely spread (BusyBox Linux
distribution is very popular in the embedded devices world). Also, many other applications
are built in a similar manner (in the BusyBox distribution additional server and client
protocol implementations such as FTP, TFTP etc, are built with a similar architecture).

Although there are possible cases where the SCM will provide extremely large values
which by themselves will appear not to be useful, in fact such values can still be useful
and suggest that there are coupling issues in the code under analysis which should be
checked. Even then, comparative analysis using the SCM to choose the better option out
of several “bad” (with high SCM values) options can be performed.

Thus the conclusion is that the SCM is a measure which provides usable results for real
life applications, and apart from it direct uses as test effort estimation and comparative
analysis, it also provides an indication for the adequacy of the coupling between the
threads in the system.

Peter Yastrebenetsky Page 67

SYNCHRONIZATION COMPLEXITY METRIC

Chapter 6
Future Work

Coverage Models’ Suitability

The SCM was developed based on the definitions of some of the coverage models
described in Chapter 1. However, the implementation in Chapter 4 doesn’t allow us to
draw a direct line between the actual calculations of the SCM as implemented and the
coverage criteria described in Chapter 1. The reason is that based on the static code
analysis it is hard to identify and to order various types of accesses for the different
variables. For example, during the static code analysis it is hard to identify the write-write
access across a pair of threads, when it is not necessarily known in advance (i.e. before the
execution) what threads are going to be there, and what code are they going to execute.
Further development needs to be done on the implementation of the SCM in order to
provide values precise enough to be used in pair with coverage calculations based on one
of the models described in Chapter 1. This additional development is not part of this
thesis, and is left for future work.

Real World Effectiveness

As part of future work it is left to evaluate the effectiveness of the SCM and its ability to
prove itself useful in the real world of applications, for real-world quality control and
quality assurance personnel.

It is assumed in this work, that having a metric which allows comparing the impact of the
synchronization on the overall program complexity between various possible solutions
may be beneficial for software developers and testing engineers. However, evaluation of
the correctness of this assumption was not in the scope of this work and should be done as
part of the future work left on this topic.

Implementation

The current CCCC implementation is very limited and is intended for demonstration and
proof-of-concept usage rather than actual industrial application.

The current implementation (that was used for the SCM implementation) has limited
language parser, and is limited to working on one file at a time, and cannot follow
execution flows between different files or projects. It also cannot always extract the pre-
compiler macros (“#define”s) or type substitutions correctly thus sometimes being
unable to detect correct type usages or execution flows.

Below are several examples of code which would lead to incorrect metric calculations by
the CCCC (in its current form).

Peter Yastrebenetsky Page 68

SYNCHRONIZATION COMPLEXITY METRIC

If run on the following code, the CCCC will not be able to identify the
hidden_volatile type variable “test” as volatile or as a pointer:

typedef volatile int * hidden_volatile;
hidden_volatile test;

In the current CCCC implementation, this would affect the SCM calculations and provide
incorrect result.

If run on the following code, the CCCC will not detect execution flow branching, thus
calculating the CCN and the SCM incorrectly:

#define DO _BRANCHING_HERE (x) \
if (x) { select();} else {fork();}

void foo(bool some_flag) {
DO_BRANCHING_HERE (some_flaqg) ;

return;

The CCCC will return CCN=1 and SCM=CCN for the function foo, both incorrect. If
there will be no “return” statement (which is valid for functions with return type of
void), the CCN reported would be O (for SCM this bug was fixed if there are
synchronization points, but not if the SCM follows the CCN).

Another example was given just prior to defining the synchronization metric, in chapter 2.
The example is :

#include <unistd.h>
#include <stdlib.h>
int main () {

int pid;
if ((pid = fork()) != 0) {
sleep(1l);
printf ("\nChild Process\n");
}
else {
sleep(1l);

printf ("\nParent Process\n");

}

return pid;

As it was mentioned in chapter 2, the condition in the "if" statement affects the CCN of
the program, had it been single threaded. However, that is misleading, since for each of the
tasks (the parent and the child), there's no branching option: for the parent task the “if”

Peter Yastrebenetsky Page 69

SYNCHRONIZATION COMPLEXITY METRIC

statement will always evaluate to false, while for the child task the same statement will
always evaluate to true. Thus, in fact there's no branching in the execution paths of the
processes in question. Analyzing the code statically by tools like CCCC would provide
incorrect calculations results for this code.

Additional example of problematic CCN calculation is in the HTTPD Busybox
implementation of the function getLine analyzed below.

Here the root cause for the incorrect calculations is in “erratic” coding with many exit
points and branching constructs that don’t create actual branching (like the “while (1)”
infinite loop) combined with “break” constructs which act as “goto” statements.

This is considered bad coding style, and in the MISRA C coding standard, for example
[13], it is advised to keep a single exit point (single “return” statement, as opposed to
the get Line implementation below), and avoid infinite loops with “break” statements
(like the “while (1) loop in the new get_line implementation below).

Thus the CCCC can help to detect coding style problems indirectly by showing the CCN
values higher than expected for such trivial functions, but this of course is a side effect of
the CCCC simple and limited implementation.

Peter Yastrebenetsky Page 70

DO = = b e e e e e e
OO0 NPV, OOVEIN N W —

SYNCHRONIZATION COMPLEXITY METRIC

The old version:

static int getLine(void)

{

0;
config->buf;

int count
char *butf

while (read(config->accepted_socket, buf + count, 1) == 1) {
if (buf[count] == '\r') continue;
if (buflcount] == "'\n') {
buf [count] = 0;

return count;

}
if (count < (MAX_ MEMORY BUFF-1))
count++;

}
if (count) return count;
else return -1;

Peter Yastrebenetsky

/* check overflow */

Page 71

DO = = e et e e e e e
OOV NP WNN—ROOVOIANNIAWN —

NN\ SN O}
W =

N NN
O 00 1 O\ 1

SYNCHRONIZATION COMPLEXITY METRIC

The new version:

static int get_line(void)
{

int count = 0;

char c¢;

alarm (HEADER_READ_TIMEOUT) ;
while (1) {
if (hdr_cnt <= 0) {

hdr_cnt = safe_read(STDIN_FILENO, hdr_buf, sizeof (hdr_buf));

if (hdr_cnt <= 0)
break;
hdr_ptr = hdr_buf;
}

iobuf[count] = ¢ = *hdr_ptr++;
hdr_cnt——;
if (¢ == "\r'")
continue;
if (¢ == '"\n') {
iobuf [count] = "\0';
break;

}
if (count < (IOBUF_SIZE - 1))
count++;

}

return count;

Peter Yastrebenetsky

/* check overflow */

Page 72

SYNCHRONIZATION COMPLEXITY METRIC

Following is the execution flow graph (as a single threaded program) of the function
getLine (the synchronization point is marked yellow):

buf = config-=buf

Tmp =
read(buf[count])

if (Tmp == 1)

ireannbi=R If buf{count] == ¢
True

If buffcount] == 'frv’

If Count == Ma

2
-

True

buflcount] =0

Return Res

L\ Res =

count

Fig. 5. Execution paths’ graph for the getLine function.

The CCCC calculated the CCN for the first function to be 8, and the SCM to be 24.
Analyzing the function manually we can see that this is incorrect. The SCM counter is

Peter Yastrebenetsky Page 73

SYNCHRONIZATION COMPLEXITY METRIC

incorrect because of the wrong CCN calculation, which in turn is skewed by the
“return” statement on the line 11.

The correct CCN value for this function is 6 (as can be seen directly from the graph above,
which has 5 enclosed regions and 5 binary predicats), and the correct SCM value for this
function would be 18 (see the calculation below).

Similarly, the new version is skewed by the “while (1)” statement on line 8 and
“break” statements on lines 12 and 22, which lead the CCCC to calculate the CCN to be
9 instead of expected 6 and the SCM to be 25 instead of expected 18.

For both functions, the CCNy, is the CCN of the whole function (sine the synchronization
point is unavoidable in the function, and all the branching constructs in the function are
reachable from the synchronization points in both the cases), so the additional of the
synchronization point would be 6*2! (where 6 is the CCNy,, 2 is the IP and 1 is the CP-1),
plus the SCM additions of other non-synchronized branching constructs, which equals to
the CCN additions.

Handling all these and other possible corner cases that are currently not supported by the
CCCC is not part of this work and is left for the future work on this topic.

Peter Yastrebenetsky Page 74

SYNCHRONIZATION COMPLEXITY METRIC

Bibliography

[1]. J. Aas, "Understanding the Linux 2.6.8.1 CPU Scheduler", Silicon Graphics
Inc. (SGI), 2005

[2]. M.Bilberstein, E.Farchi, S.Ur, Choosing among alternative pasts, Concurrency
and Computation: Practice and Experience, Vol.19/3, John Wiley & Sons Ltd,
pp-:341-353, 2006

[3]. B. M. Hetzel, The Complete Guide to Software Testing, 2nd ed. (John Wiley
& Sons, 1993).

[4]. B. Boehm and V. Basili, "Software Defect Reduction Top 10 List", IEEE
Computer, IEEE Computer Society, Vol. 34, No. 1, January 2001, pp. 135-137
[5]. A.Bron, E.Farchi, Y.Magid, Y.Nir, S. Ur, Applications of synchronization
coverage, Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, ACM New York, USA, pp.: 206-212, 2005

[6]. E.Clarke, O.Grumberg, D.Peled, Model Checking, The MIT Press, 1999.

[7]. Jason Cohen, Best Kept Secrets of Peer Code Review (Modern Approach.
Practical Advice.), SmartbearSoftware.com, 2006

[8].B. Eckel, "Thinking in Java", 3 ed., Prentice-Hall, 2002

[9].0.Edelstein, E.Farchi, E.Goldin, Y.Nir, G.Ratsaby, S.Ur, “Framework For Testing
Mutithreaded Programs”, Concurrency and Computation: Practice and
Experience 15(3-5): 485-499 (2003)

[10]. M.Fagan, Design and Code Inspections to Reduce Errors in Program
Development, IBM Systems Journal, 15(3), 1976, pp.: 182-211

[11]. C. Fanagan, S. Freund, M. Lifshin, “Type Inference for Atomicity”,
Proceedings of the 2005 ACM SIGPLAN international workshop on Types in
languages design and implementation, pp.: 47-58, 2005.

[12]. A.Hayardeny, S.Fienblit, E.Farchi, Concurrent and Distributed Desk
Checking, In 18" International Parallel and Distributed Processing Symposium
(IPDPS'04) — Workshop 16, April 2004

[13]. "Guidelines for the use of the C language in vehicle based software"
(MISRA-C:1998), Motor Industry Software Reliability = Association,
http://www.misra-c2.com/index.htm, 1998.

[14]. "IBM POSIX thread APIs", IBM®,
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/apis/rzah4mst.
htm

[15]. Joint Strike Fighter Air Vehicle C++ Coding Standards, Lockheed-Martin
Corporation, Document Number 2RDU00001, Rev. C, 12/2005.

[16]. B. Karnighan, D. Ritchie, "The C Programming Language", 2" ed.,
Prentice-Hall, 1988

[17]. P.V. Koppol, K. Thai, An Incremental Approach to Structural Testing, ACM
SIGSOFT Software Engineering Notes, 21(3), 1996, pp.: 14-23

[18]. T. Littlefair, An Investigation into the use of Software Code Metrics in the
Industrial Software Development Environment, PhD thesis, Faculty of
Communications, Health, and Science, Edith Cowan University, Mount Lawley
Campus, June 2001

[19]. T. Littlefair, C and C++ Code Counter, http://cccc.sourceforge.net, 2003

[20]. S. Lu, W. Jiang, Y. Zhou, A Study of Interleaving Coverage Criteria,
POSTER SESSION: ESEC/FSE'07 posters, 2007, pp.: 533-536

Peter Yastrebenetsky Page 75

SYNCHRONIZATION COMPLEXITY METRIC

[21]. T. McCabe, A Complexity Measure, IEEE Transactions on Software
Engineering, SE-2(4), 1976, pp.:308-320.

[22]. Sanjay Misra, Hurevren Kilic, Measurement theory and validation criteria
for software complexity measures, ACM SIGSOFT Software Engineering Notes,
32(2), 2007, pp.: 1-3

[23]. "MSDN — Microsoft Developer Network", Microsoft®,
http://msdn.microsoft.com

[24]. M. Musuvathi, S. Qadeer, and T. Ball. CHESS: A Systematic Testing Tool
for Concurrent Software. Microsoft Research Technical Report MSR-TR-2007-
149, 2007.

[25]. B. Pasternak, S. Tyszberowicz, A. Yehudai. GenUTest: A Unit Test and
Mock Aspect Generation Tool, Haifa Verification Conference, 2007.

[26]. L. Sommerville, “The Software Engineering”, 7™ edition, Addison-Wesley,
2004

[27]. A. Tanenbaum, "Modern Operating Systems", nd ed., Prentice-Hall, 1992.

[28]. "The Single UNIX Specifications, Version 2", The Open Group,
http://www.opengroup.org/

[29]. A. Valmari, “The State Explosion Problem”, Lectures on Petri Nets I: Basic
Models, Lecture Notes in Computer Science 1941, Springer-Verlag 1998, pp.:
429-528.

[30]. L.Wang, S.Stoller, "Static Analysis of Atomicity for Programs with Non-
Blocking Synchronization", Principles and Practice of Parallel Programming,
Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, 2005, pp.:61-71.

[31]. Z. Wang, S. Elbaum, D. Rosenblum, Automated Generation of Context-
Aware Tests, Proceedings of the 29th International Conference on Software
Engineering, 2007, pp.:406-415

[32]. S. N. Weiss. A formal framework for the study of concurrent program
testing. In Proceedings of the Second Workshop on Software Testing,
Verification and Analysis, 1988.

[33]. E.J. Weyuker, Evaluating Software Complexity Measures, IEEE
Transactions on Software Engineering, 14(9), 1357-1365, September 1988

Peter Yastrebenetsky Page 76

OO NP WN—

SYNCHRONIZATION COMPLEXITY METRIC

Appendix A

In this appendix there are code examples used in this work.

Message Queue Implementation

Soup-message-queue module was published under LGPL license at
http://www.angstrom-distribution.org/unstable/sources/libsoup-2.2.7.tar.bz2/libsoup-2.2.7/libsoup/

soup-message-queue.c

/* —*— Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 —-*- */
/*

* soup-message—queue.c: Message queue

*

* Copyright (C) 2003, Ximian, Inc.
*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "soup-message-queue.h"
struct SoupMessageQueue {
GList *head, *tail;

GList *iters;

GMutex *mutex;

}i
/**

* soup_message_queue_new:

Peter Yastrebenetsky Page 77

SYNCHRONIZATION COMPLEXITY METRIC

SoupMessageQueue *
soup_message_queue_new (void)
{

SoupMessageQueue *queue;

*

* Creates a new #SoupMessageQueue

*

* Return value: a new #SoupMessageQueue object
~k~k/

queue = g_new0 (SoupMessageQueue, 1);

queue->mutex = g_mutex_new ();
return queue;

}

/**

* soup_message_queue_destroy:
* @gueue: a message queue

*

* Frees memory associated with Qqueue,
**/

void

which must be empty.

soup_message_dgqueue_destroy (SoupMessageQueue *queue)

{

g_return_if_fail (queue->head == NULL);

g_list_free (queue->head);
g_list_free (queue->iters);
g_mutex_free (queue->mutex);
g_free (queue);

}
/'k'k

* soup_message_dueue_append:
* @queue: a queue

Peter Yastrebenetsky

Page 78

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

SYNCHRONIZATION COMPLEXITY METRIC

* @msg: a message
*
* Appends @msg to the end of @queue
‘k‘k/
void
soup_message_dgueue_append (SoupMessageQueue *gqueue, SoupMessage *msg)
{
g_mutex_lock (queue->mutex);
if (queue->head) {
queue—->tail g_list_append (queue->tail, msgqg);
queue->tail = queue->tail->next;

} else
queue->head = queue->tail = g_list_append (NULL, msqg);

g_object_add_weak_pointer (G_OBJECT (msg), &queue->tail->data);
g_mutex_unlock (gqueue->mutex);

/'k'k

* soup_message_queue_first:

* @queue: a queue

* @iter: pointer to a #SoupMessageQueuelter

*

* Initializes @iter and returns the first element of @queue. If you

* do not iterate all the way to the end of the list, you must call

* soup_message_queue_free_iter () to dispose the iterator when you are
* done.

*

* Return value: the first element of @queue, or SNULL if it is empty.
*

*
~

SoupMessage *
soup_message_queue_first (SoupMessageQueue *queue, SoupMessageQueuelter *iter)
{

g_mutex_lock (queue->mutex);

Peter Yastrebenetsky Page 79

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120
121
122

124
125
126
127

SYNCHRONIZATION COMPLEXITY METRIC

if (!queue->head) {
g_mutex_unlock (queue->mutex);
return NULL;

}

queue->iters = g_list_prepend (queue->iters, iter);
iter->cur = NULL;
iter->next = queue->head;

g_mutex_unlock (gqueue->mutex);

return soup_message_dgueue_next (queue, iter);

}

static SoupMessage *

queue_remove_internal (SoupMessageQueue *queue, SoupMessageQueuelter *iter)

{
GList *i;
SoupMessageQueuelter *iter2;
SoupMessage *msg;

if (!iter->cur) {

/* We're at end of list or this item was already removed */

return NULL;
}

/* Fix any other iters pointing to iter—->cur */

for (i = queue->iters; 1i; 1 = i->next) {
iter2 = i->data;
if (iter2 != iter) {
if (iter2->cur == iter->cur)
iter2->cur = NULL;
else if (iter2->next == iter->cur)
iter2->next = iter->cur->next;
}
Peter Yastrebenetsky

Page 80

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

SYNCHRONIZATION COMPLEXITY METRIC

msg = iter->cur->data;
if (msg)
g_object_remove_weak_pointer
/* If deleting the last item, fix tail */
if (queue->tail == iter->cur)
queue->tail = queue->tail->prev;

/* Remove the item */
queue->head = g_list_delete_link

iter->cur = NULL;

return msg;

*

soup_message_queue_next:
@queue: a queue
@iter:

Returns the next element of @queue

Return value: the next element, or

b S I S e

*
~

SoupMessage *
soup_message_dgueue_next

{

(SoupMessageQueue *queue,

g_mutex_lock (queue->mutex);
(iter->next) {
iter->cur = iter->next;
iter->next = iter->cur->next;
if (iter->cur—->data) {

while

Peter Yastrebenetsky

(G_OBJECT

(gqueue->head,

(msg), &iter->cur->data);

iter->cur) ;

pointer to an initialized #SoupMessageQueuelter

$NULL if there are no more.

SoupMessageQueuelter *iter)

Page 81

163
164
165
166
167
168
169
170
171
172
173

175
176
177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

SYNCHRONIZATION COMPLEXITY METRIC

g_mutex_unlock

return iter->cur—->data;

}

/* Message was finalized,
queue_remove_internal

}

/* Nothing left */
iter->cur = NULL;
queue->iters = g_list_remove

(queue—->iters,

g_mutex_unlock (gqueue->mutex);

return NULL;

*

soup_message_dqueue_remove:
@qgueue: a queue

soup_message_queue_next () .

to by @iter was already removed.

b T . S S N S N

*
~

SoupMessage *

soup_message_dueue_remove (SoupMessageQueue *queue,

{

SoupMessage *msg;

g_mutex_lock (queue->mutex);
msg = queue_remove_internal

Peter Yastrebenetsky

Return value: the removed message,

(queue,

(queue,

Removes the queue element pointed to by (@iter;
message returned by soup_message_queue_first ()

iter);

(queue—->mutex) ;

remove dead queue element */
iter);

iter);

@iter: pointer to an initialized #SoupMessageQueuelter

that is, the last

or %NULL if the element pointed

SoupMessageQueuelter *iter)

Page 82

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

214
215
216

218
219
220
221
222
223

225
226
227

229
230
231
232

SYNCHRONIZATION COMPLEXITY METRIC

g_mutex_unlock (gqueue->mutex);

return msg;

}

/ *
soup_message_dqueue_remove_message:
@qgueue: a queue

@msg: a #SoupMessage

L R e

Removes the indicated message from @queue.
*/

void

soup_message_dueue_remove_message (SoupMessageQueue *queue, SoupMessage *msqg)

{

SoupMessageQueuelter iter;
SoupMessage *msg2;

for (msg2 = soup_message_queue_first (queue, &iter); msg2; msg2 = soup_message_dueue_next (queue, &iter))
{
if (msg2 == msg) {
soup_message_queue_remove (queue, &iter);
soup_message_queue_free_iter (queue, &iter);
return;
}
}
}
/ * *
* soup_message_queue_free_iter:
* @queue: a gqueue
* @iter: pointer to an initialized #SoupMessageQueuelter
*
* Removes (@iter from the list of active iterators in @Qqueue.
Peter Yastrebenetsky Page 83

233
234
235
236
237
238
239
240
241

SYNCHRONIZATION COMPLEXITY METRIC

**/

void

soup_message_queue_free_iter (SoupMessageQueue *queue,

{

SoupMessageQueuelter *iter)

g_mutex_lock (queue->mutex);

queue->iters =
g_mutex_unlock

Peter Yastrebenetsky

g_list_remove (queue->iters, iter);
(queue—->mutex) ;

Page 84

SYNCHRONIZATION COMPLEXITY METRIC

Peter Yastrebenetsky Page 85

ORI N AW

SYNCHRONIZATION COMPLEXITY METRIC

Busybox HTTP server implementation

HTTPD module was published under GPLV2 license at http://git.busybox.net/busybox/plain/networking/httpd.c.

httpd.c — Current Version as of May 25, 2009.

/*
/*

*

b S I S i SRR . . S S N S N S S O T

vi: set sw=4 ts=4: */
httpd implementation for busybox

Copyright (C) 2002,2003 Glenn Engel <glenne@engel.org>
Copyright (C) 2003-2006 Vladimir Oleynik <dzo@simtreas.ru>

simplify patch stolen from libbb without using strdup

Licensed under GPLv2 or later, see file LICENSE in this tarball for details.

AR AR A A A A A A A A A A A A A AR A AR A AR A AR A A A A I A A I A A I KA A I A A I A A I A AR A A A AR A AR A AR A AR A AR A A A A XA K

Typical usage:
for non root user
httpd -p 8080 —-h $HOME/public_html
or for daemon start from rc script with uid=0:
httpd -u www
This is equivalent if www user have uid=80 to
httpd -p 80 -u 80 -h /www —c /etc/httpd.conf -r "Web Server Authentication"

When a url starts by "/cgi-bin/" it is assumed to be a cgi script. The
server changes directory to the location of the script and executes it
after setting QUERY_STRING and other environment variables.

Doc:
"CGI Environment Variables": http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Peter Yastrebenetsky Page 86

SYNCHRONIZATION COMPLEXITY METRIC

L S R e . S S N S S i A . S S S S S S S S S S S S S S S

The applet can also be invoked as a url arg decoder and html text encoder
as follows:
foo="httpd -d $foo’ # decode "Hello%20World" as "Hello World"
bar="httpd -e "<Hello World>"" # encode as "<Hello World>"
Note that url encoding for arguments is not the same as html encoding for
presentation. -d decodes an url-encoded argument while —-e encodes in html
for page display.

httpd.conf has the following format:

H:/serverroot # define the server root. It will override -h
A:172.20. # Allow address from 172.20.0.0/16

A:10.0.0.0/25 # Allow any address from 10.0.0.0-10.0.0.127
A:10.0.0.0/255.255.255.128 # Allow any address that previous set
A:127.0.0.1 # Allow local loopback connections

D:* # Deny from other IP connections

E404:/path/ed404.html # /path/ed404.html is the 404 (not found) error page
I:index.html # Show index.html when a directory is requested

P:/url: [http://lhostname|[:port]/new/path
When /urlXXXXXX is requested, reverse proxy
it to http://hostname[:port]/new/pathXXXxXXX

Require user foo, pwd bar on urls starting with /cgi-bin/
Require user admin, pwd setup on urls starting with /adm/
or user toor, pwd PaSsWd on urls starting with /adm/
additional mime type for audio.au files

run xxx.php through an interpreter

/cgi-bin:foo:bar
/adm:admin:setup
/adm:toor:PaSsWd
.au:audio/basic
*.php:/path/php

H= o3 W 3

A/D may be as a/d or allow/deny - only first char matters.
Deny/Allow IP logic:

- Default is to allow all (Allow all (A:*) is a no-op).

— Deny rules take precedence over allow rules.

— "Deny all" rule (D:*) is applied last.

Peter Yastrebenetsky Page 87

SYNCHRONIZATION COMPLEXITY METRIC

/*

Example:

1. Allow only specified addresses
A:172.20 # Allow any address that begins with 172.20.
A:10.10. # Allow any address that begins with 10.10.
A:127.0.0.1 # Allow local loopback connections
D:* # Deny from other IP connections

2. Only deny specified addresses
D:1.2.3. # deny from 1.2.3.0 - 1.2.3.255
D:2.3.4. # deny from 2.3.4.0 - 2.3.4.255
A:x* # (optional line added for clarity)

If a sub directory contains a config file it is parsed and merged with
any existing settings as if it was appended to the original configuration.

subdir paths are relative to the containing subdir and thus cannot
affect the parent rules.

Note that since the sub dir is parsed in the forked thread servicing the
subdir http request, any merge is discarded when the process exits. As a
result, the subdir settings only have a lifetime of a single request.

Custom error pages can contain an absolute path or be relative to
'home_httpd'. Error pages are to be static files (no CGI or script). Error
page can only be defined in the root configuration file and are not taken
into account in local (directories) config files.

If -c is not set, an attempt will be made to open the default

root configuration file. If -c is set and the file is not found, the
server exits with an error.

TODO: use TCP_CORK, parse_config() */

#include "libbb.h"

Peter Yastrebenetsky Page 88

SYNCHRONIZATION COMPLEXITY METRIC

100 #if ENABLE_FEATURE_HTTPD_USE_SENDFILE
101 # include <sys/sendfile.h>

102 #endif

103

104 #define DEBUG 0

105

%86 #define IOBUF_SIZE 8192 /* 10 buffer */
7

108 /* amount of buffering in a pipe */
109 #ifndef PIPE_BUF

110 # define PIPE_BUF 4096

111 #endif

112 #if PIPE BUF >= IOBUF_SIZE

113 # error "PIPE BUF >= IOBUF_SIZE"
114 #endif

115

116 #define HEADER_READ_TIMEOUT 60

117

118 static const char DEFAULT_PATH_HTTPD_CONF[] ALIGNLl = "/etc";
119 static const char HTTPD_CONF[] ALIGN1 = "httpd.conf";

120 static const char HTTP_200[] ALIGN1 = "HTTP/1.0 200 OK\r\n";
121

122 typedef struct has_next_ptr {

123 struct has_next_ptr *next;

124 } has_next_ptr;

125

126 /* Must have "next" as a first member */

127 typedef struct Htaccess {

128 struct Htaccess *next;

129 char *after_colon;

130 char before_colon[1l]; /* really bigger, must be last */
131 } Htaccess;

132

133 /* Must have "next" as a first member */

134 typedef struct Htaccess_IP {

Peter Yastrebenetsky Page 89

SYNCHRONIZATION COMPLEXITY METRIC

135 struct Htaccess_IP *next;

136 unsigned ip;

137 unsigned mask;

138 int allow_deny;

139 } Htaccess_1IP;

140

141 /* Must have "next" as a first member */
142 typedef struct Htaccess_Proxy {

143 struct Htaccess_Proxy *next;

144 char *url_from;

145 char *host_port;

146 char *url to;

147 } Htaccess_Proxy;

148

149 enum {

150 HTTP_OK = 200,

151 HTTP_PARTIAL_CONTENT = 206,

152 HTTP_MOVED_TEMPORARILY = 302,

153 HTTP_BAD_REQUEST = 400, /* malformed syntax */
154 HTTP_UNAUTHORIZED = 401, /* authentication needed, respond with auth hdr */
155 HTTP_NOT_FOUND = 404,

156 HTTP_FORBIDDEN = 403,

157 HTTP_REQUEST_TIMEOUT = 408,

158 HTTP_NOT_IMPLEMENTED = 501, /* used for unrecognized requests */
159 HTTP_INTERNAL_SERVER_ERROR = 500,
160 HTTP_CONTINUE = 100,

161 #1if 0O /* future use */

162 HTTP_SWITCHING_PROTOCOLS = 101,
163 HTTP_CREATED = 201,

164 HTTP_ACCEPTED = 202,

165 HTTP_NON_AUTHORITATIVE_INFO = 203,
166 HTTP_NO_CONTENT = 204,

167 HTTP_MULTIPLE_CHOICES = 300,

168 HTTP_MOVED_PERMANENTLY = 301,

169 HTTP_NOT_MODIFIED = 304,

Peter Yastrebenetsky Page 90

SYNCHRONIZATION COMPLEXITY METRIC

170 HTTP_PAYMENT_ REQUIRED = 402,
171 HTTP_BAD_GATEWAY = 502,

172 HTTP_SERVICE_UNAVAILABLE = 503, /* overload, maintenance */
173 HTTP_RESPONSE SETSIZE = Oxffffffff
174 #endif

175 };

176

177 static const uintl6_t http_response_type[] ALIGN2 = {
178 HTTP_OK,

179 #if ENABLE_FEATURE_HTTPD_RANGES

180 HTTP_PARTIAL_CONTENT,

181 #endif

182 HTTP_MOVED_TEMPORARILY,

183 HTTP_REQUEST_TIMEOUT,

184 HTTP_NOT_IMPLEMENTED,

185 #if ENABLE FEATURE_HTTPD_ BASIC_AUTH
186 HTTP_UNAUTHORIZED,

187 #endif

188 HTTP_NOT_FOUND,

189 HTTP_BAD_ REQUEST,

190 HTTP_FORBIDDEN,

191 HTTP_INTERNAL_SERVER_ERROR,
192 #if o /* not implemented */

193 HTTP_CREATED,

194 HTTP_ACCEPTED,

195 HTTP_NO_CONTENT,

196 HTTP_MULTIPLE_CHOICES,

197 HTTP_MOVED_PERMANENTLY,

198 HTTP_NOT_MODIFIED,

199 HTTP_BAD GATEWAY,

200 HTTP_SERVICE_UNAVAILABLE,
201 #endif

202 }i

203

204 static const struct {

Peter Yastrebenetsky Page 91

SYNCHRONIZATION COMPLEXITY METRIC

205 const char *name;

206 const char *info;

207 } http_response[ARRAY_SIZE (http_response_type)] = {

208 { "OK", NULL },

209 #if ENABLE_FEATURE_HTTPD_RANGES

210 { "Partial Content", NULL },

211 #endif

212 { "Found", NULL },

213 { "Request Timeout", "No request appeared within 60 seconds" },
214 { "Not Implemented", "The requested method is not recognized" },
215 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

216 { "Unauthorized", "" },

217 #endif

218 { "Not Found", "The requested URL was not found" },

219 { "Bad Request", "Unsupported method" },

220 { "Forbidden", "" 1},

221 { "Internal Server Error", "Internal Server Error" },

222 #if 0 /* not implemented */

223 { "Created" 1},

224 { "Accepted" },

225 { "No Content" },

226 { "Multiple Choices" },

227 { "Moved Permanently" },

228 { "Not Modified" },

229 { "Bad Gateway", "" 1},

230 { "Service Unavailable", "" },

231 #endif

232 }i

233

234

235 struct globals {

236 int verbose; /* must be int (used by getopt32) */
237 smallint flg deny_all;

238

239 unsigned rmt_ip; /* used for IP-based allow/deny rules */

Peter Yastrebenetsky Page 92

240
241
242

244
245
246

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

274

SYNCHRONIZATION COMPLEXITY METRIC

time_t last_mod;

char *rmt_ip_str;

const char *bind_addr_or_port;

const char *g_query;

const char *opt_c_configFile;

const char *home_httpd;

const char *index_page;

const char *found_mime_type;

const char *found_moved_temporarily;

Htaccess_IP *ip_a_d; /* config allow/deny lines */

IF_FEATURE_HTTPD_BASIC_AUTH (const char *g_realm;)
IF_FEATURE_HTTPD_ _BASIC_AUTH (char *remoteuser;)
IF_FEATURE_HTTPD_CGI (char *referer;)

IF_FEATURE_HTTPD_CGI

IF_FEATURE_HTTPD_CGI

char *user_agent;)

char *http_accept;)

(
IF_FEATURE_HTTPD_CGI (char *host;)

(

(

IF_FEATURE_HTTPD_CGI

char *http_accept_language;)

off_t file_size; /* -1 — unknown */
#if ENABLE FEATURE_HTTPD_RANGES

off_t range_start;

off_t range_end;

off_t range_len;

#endif

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH

Htaccess *g_auth;

#endif

Htaccess *mime_a;

/* config user:password lines */

/* config mime types */

#1f ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR
Htaccess *script_i; /* config script interpreters */

#endif

Peter Yastrebenetsky

/* for $REMOTE_ADDR and S$REMOTE_PORT */

Page 93

275
276
277

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

SYNCHRONIZATION COMPLEXITY METRIC

char *iobuf; /* [IOBUF_SIZE] */
#define hdr_buf bb_common_bufsizl

char *hdr_ptr;

int hdr_cnt;
#if ENABLE_FEATURE_HTTPD_ERROR_PAGES

const char *http_error_page[ARRAY_SIZE (http_response_type)];

#endif

#if ENABLE FEATURE_HTTPD_PROXY
Htaccess_Proxy *proxy;

#endif

}i

#define G (*ptr_to_globals

)
#define verbose (G.verbose)
#define flg_deny_all (G.flg_deny_all)
#define rmt_ip (G.rmt_ip)
#define bind_addr_or_port (G.bind_addr_or_port)
#define g_query (G.g_query)
#define opt_c_configFile (G.opt_c_configFile)
#define home_httpd (G.home_httpd)
#define index_page (G.index_page)
#define found_mime_type (G.found_mime_type)
#define found_moved_temporarily (G.found_moved_temporarily)
#define last_mod (G.last_mod)
#define ip_a_d (G.ip_a_d)
#define g_realm (G.g_realm)
#define remoteuser (G.remoteuser)
#define referer (G.referer)
#define user_agent (G.user_agent)
#define host (G.host)
#define http_accept (G.http_accept)

#define http_accept_language (G.http_accept_language)

#define file size (G.file_size)
#if ENABLE_FEATURE_HTTPD_RANGES

#define range_start (G.range_start)
#define range_end (G.range_end)

Peter Yastrebenetsky

Page 94

SYNCHRONIZATION COMPLEXITY METRIC

310 #define range_len (G.range_len)
311 #else

312 enum {

313 range_start = 0,

314 range_end = MAXINT (off_t) - 1,

315 range_len = MAXINT (off_t),

316 Vi

317 #endif

318 #define rmt_ip_str (G.rmt_ip_str)
319 #define g_auth (G.g_auth)
320 #define mime_a (G.mime_a)
321 #define script_i (G.script_i)
322 #define iobuf (G.iobuf)
323 #define hdr_ptr (G.hdr_ptr)
324 #define hdr_cnt (G.hdr_cnt)
325 #define http_error_page (G.http_error_page)
326 #define proxy (G.proxy)
327 #define INIT _G() do { \

328 SET_PTR_TO_GLOBALS (xzalloc (sizeof (G))); \
329 IF_FEATURE_HTTPD_BASIC_AUTH(g_realm = "Web Server Authentication";) \
330 bind_addr_or_port = "80"; \

331 index_page = "index.html"; \

332 file_size = -1; \

333 } while (0)

334

335

336 #define STRNCASECMP (a, str) strncasecmp((a), (str), sizeof(str)-1)
337

338 /* Prototypes */

339 enum {

340 SEND_HEADERS = (1 << 0),

341 SEND_BODY = (1 << 1),

342 SEND_HEADERS_AND_BODY = SEND_HEADERS + SEND_BODY,
343 Vi

344 static void send_file_and_exit (const char *url, int what) NORETURN;

Peter Yastrebenetsky Page 95

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

SYNCHRONIZATION COMPLEXITY METRIC

static void free_llist (has_next_ptr **pptr)
{

has_next_ptr *cur = *pptr;
while (cur) {
has_next_ptr *t = cur;
cur = cur->next;
free(t);

}
*pptr = NULL;
}

static ALWAYS_INLINE void free_Htaccess_list (Htaccess **pptr)

{
free_llist ((has_next_ptr**)pptr);

}

static ALWAYS_INLINE void free_Htaccess_IP_list (Htaccess_IP **pptr)
{

free_1llist ((has_next_ptr**)pptr);
}

/* Returns presumed mask width in bits or < 0 on error.
* Updates strp, stores IP at provided pointer */
static int scan_ip(const char **strp, unsigned *ipp, unsigned char endc)

{

const char *p = *strp;
int auto_mask = §;
unsigned ip = 0;

int j;

if (*p = '/")

return -auto_mask;

for (j = 0; 7 < 4; Jj++) {

Peter Yastrebenetsky Page 96

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

414

SYNCHRONIZATION COMPLEXITY METRIC

unsigned octet;

if ((*p < '0" || *p > '9") && *p != '/' && *p)
return -auto_mask;
octet = 0;
while (*p >= '0' && *p <= '9') {
octet *= 10;
octet += *p - '0';
if (octet > 255)
return -—-auto_mask;
pt+t;
}
if (*p == '.")
pt++;
if (*p != '/'" && *p)
auto_mask += 8;
ip = (ip << 8) | octet;
}
if (*p) |
if (*p != endc)
return —-auto_mask;
pt++;
if (*p == '\0")
return -auto_mask;
}
*ipp = 1ip;
*strp = p;

return auto_mask;

}

/* Returns 0 on success.

Stores IP and mask at provided pointers

*/

static int scan_ip_mask (const char *str, unsigned *ipp, unsigned *maskp)

{

int 1i;

unsigned mask;

Peter Yastrebenetsky

Page 97

415
416
417

419
420
421

423
424
425

427
428
429
430
431
432
433
434
435
436
437
438
439
440

442
443
444
445
446
447

449

SYNCHRONIZATION COMPLEXITY METRIC

char *p;

i = scan_ip(&str, ipp, '/');
if (1 < 0)
return 1i;

if (*str) {
/* there is /xxx after dotted-IP address */
i = bb_strtou(str, &p, 10);
if (*p = '.") {

/* '"xxx' itself is dotted-IP mask, parse it */

/* (return 0 (success) only if it has N.N.N.N form)

return scan_ip(&str, maskp, '\0') - 32;

if (*p)
return -1;

}

if (1 > 32)
return -1;

if (sizeof (unsigned) == 4 && 1 == 32) {
/* mask >>= 32 below may not work */
mask = 0;

} else {

mask = Oxffffffff;
mask >>= 1i;

}

/* 1 == 0 -> *maskp = 0x00000000

* 1 == 1 -> *maskp = 0x80000000

* 1 == 4 -> *maskp = 0xf0000000

* i == 31 -> *maskp = Oxfffffffe

* 1 == 32 -> *maskp = Oxffffffff */
*maskp = (uint32_t) (~mask);

return 0;

Peter Yastrebenetsky

Page 98

*/

SYNCHRONIZATION COMPLEXITY METRIC

450

451

452 /*

453 * Parse configuration file into in-memory linked list.

454 *

455 * Any previous IP rules are discarded.

456 * If the flag argument is not SUBDIR_PARSE then all /path and mime rules
457 * are also discarded. That is, previous settings are retained if flag is
458 * SUBDIR_PARSE.

459 * Error pages are only parsed on the main config file.

460 *

461 * path Path where to look for httpd.conf (without filename).
462 * flag Type of the parse request.

463 */

464 /* flag param: */

465 enum {

466 FIRST_PARSE = 0, /* path will be "/etc" */

467 SIGNALED_PARSE = 1, /* path will be "/etc" */

468 SUBDIR_PARSE = 2, /* path will be derived from URL */
469 };

470 static void parse_conf (const char *path, int flag)

471 {

472 /* internally used extra flag state */

473 enum { TRY_CURDIR_PARSE = 3 };

474

475 FILE *f;

476 const char *filename;

477 char buf[160];

478

479 /* discard old rules */

480 free_Htaccess_IP_list(&ip_a_d);

481 flg_deny_all = 0;

482 /* retain previous auth and mime config only for subdir parse */
483 if (flag != SUBDIR_PARSE) {

484 free_Htaccess_list (&mime_a) ;

Peter Yastrebenetsky Page 99

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

SYNCHRONIZATION COMPLEXITY METRIC

#if ENABLE_FEATURE_HTTPD_BASIC_AUTH

#endif

free_Htaccess_list (&g_auth);

#if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

#endif

free_Htaccess_list (&script_1i);

}

filename = opt_c_configFile;

if (flag == SUBDIR_PARSE || filename == NULL) {
filename = alloca(strlen(path) + sizeof (HTTPD_CONF) + 2);
sprintf ((char *)filename, "%s/%s", path, HTTPD_CONF) ;

}

while ((f = fopen_for_read(filename)) == NULL) {
if (flag >= SUBDIR_PARSE) { /* SUBDIR or TRY_CURDIR */
/* config file not found, no changes to config */
return;
}
if (flag == FIRST_PARSE) {

/* —c CONFFILE given, but CONFFILE doesn't exist? */
if (opt_c_configFile)
bb_simple_perror_msg_and_die(opt_c_configFile);
/* else: no -c, thus we looked at /etc/httpd.conf,
* and it's not there. try ./httpd.conf: */

}

flag = TRY_CURDIR_PARSE;

filename = HTTPD_CONF;

}

#if ENABLE_FEATURE_HTTPD_BASIC_AUTH

#endif

/* in "/file:user:pass" lines, we prepend path in subdirs */
if (flag != SUBDIR_PARSE)
path —_n n;

Peter Yastrebenetsky Page 100

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

SYNCHRONIZATION COMPLEXITY METRIC

/* The lines can be:
*
* I:default_index_file
* H:http_home
* [AD] :IP[/mask] # allow/deny, * for wildcard
* Ennn:error.html # error page for status nnn
* P:/url:[http://]lhostname[:port]/new/path # reverse proxy
* _ext:mime/type # mime type
* * . php:/path/php # run xxx.php through an interpreter
* /file:user:pass # username and password
*/
while (fgets(buf, sizeof(buf), f) != NULL) {

unsigned strlen_buf;
unsigned char ch;
char *after_colon;

{ /* remove all whitespace, and # comments */
char *p, *pO0;

p0 = buf;

/* skip non-whitespace beginning. Often the whole line
* is non-whitespace. We want this case to work fast,
* without needless copying, therefore we don't merge
* this operation into next while loop. */

while ((ch = *p0) != "\0' && ch != '"\n' && ch != "#'
&& ch != " ' && ch != "\t'
) A
p0++;
}
p = p0;

/* if we enter this loop, we have some whitespace.
* discard it */

while (ch != "\0' && ch != '"\n' && ch != "#") {
if (ch !'= ' ' && ch != "\t') {
*p++ = ch;

Peter Yastrebenetsky Page 101

SYNCHRONIZATION COMPLEXITY METRIC

555 }

556 ch = *++p0;

557 }

558 *p = '"\0"';

559 strlen_buf = p - buf;

560 if (strlen_buf == 0)

561 continue; /* empty line */

562 }

563

564 after_colon = strchr(buf, ':'");

565 /* strange line? */

566 if (after_colon == NULL || *++after_colon == '\0"'")
567 goto config_error;

568

569 ch = (buf[0] & ~0x20); /* toupper if it's a letter */
570

571 if (ch == '"I") {

572 index_page = xstrdup(after_colon);

573 continue;

574 }

575

576 /* do not allow jumping around using H in subdir's configs */
577 if (flag == FIRST_PARSE && ch == 'H') {

578 home_httpd = xstrdup(after_colon);

579 xchdir (home_httpd) ;

580 continue;

581 }

582

583 if (ch == 'A' || ch == 'D') {

584 Htaccess_IP *pip;

585

586 if (*after_colon == '*'") {

587 if (ch == 'D') {

588 /* memorize "deny all" */
589 flg_deny_all = 1;

Peter Yastrebenetsky Page 102

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

SYNCHRONIZATION COMPLEXITY METRIC

}

}
/* skip assumed "A:*", it is a default anyway */
continue;
}
/* store "allow/deny IP/mask" line */
pip = xzalloc(sizeof (*pip));
if (scan_ip_mask(after_colon, &pip->ip, &pip->mask)) {
/* IP{/mask} syntax error detected, protect all */
ch = 'D';
pip->mask = 0;
}
pip->allow_deny = ch;
if (ch == 'D") {
/* Deny:from_IP - prepend */
pip->next = ip_a_d;
ip_a_d = pip;
} else {
/* A:from_IP - append (thus all D's precedes A's) */
Htaccess_IP *prev_IP = ip_a_d;
if (prev_IP == NULL) {
ip_a_d = pip;
} else {
while (prev_IP->next)
prev_IP = prev_IP->next;
prev_IP->next = pip;
}
}

continue;

#if ENABLE_FEATURE_HTTPD_ERROR_PAGES

if

Peter Yastrebenetsky

(flag == FIRST_PARSE && ch == 'E') {
unsigned ij;
int status = atoi(buf + 1); /* error status code */
Page 103

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

SYNCHRONIZATION COMPLEXITY METRIC

#endif

if (status < HTTP_CONTINUE) {
goto config_error;
}
/* then error page; find matching status */
for (i = 0; i < ARRAY_SIZE (http_response_type); i++) {
if (http_response_type[i] == status) {
/* We chdir to home_httpd, thus no need to
* concat_path_file(home_httpd, after_colon)
* here */

#1f ENABLE_FEATURE_HTTPD_PROXY

if

Peter Yastrebenetsky

http_error_page[i] = xstrdup(after_colon);
break;
}
}
continue;
(flag == FIRST_PARSE && ch == 'P'") {

/* P:/url:[http://]lhostname[:port]/new/path */
char *url_from, *host_port, *url_to;
Htaccess_Proxy *proxy_entry;

url_from = after_colon;
host_port = strchr(after_colon, ':');
if (host_port == NULL) {

goto config_error;

}

*host_port++ = '"\0"';

if (strncmp (host_port, "http://", 7) == 0)
host_port += 7;

if (*host_port == '\0'") {

goto config_error;

}
url_to = strchr (host_port, '/');

Page 104

SYNCHRONIZATION COMPLEXITY METRIC

660 if (url_to == NULL) {

661 goto config_error;

662 }

663 *url_to = "\0';

664 proxy_entry = xzalloc(sizeof (*proxy_entry));
665 proxy_entry->url_from = xstrdup(url_from);
666 proxy_entry->host_port = xstrdup(host_port);
667 *url_to = '/';

668 proxy_entry->url_to = xstrdup(url_to);

669 proxy_entry->next = proxy;

670 proxy = proxy_entry;

671 continue;

672 }

673 #endif

674 /* the rest of directives are non-alphabetic,

675 * must avoid using "toupper'ed" ch */

676 ch = buf[0];

677

678 if (ch == '.' /* " _ ext:mime/type" */

679 #if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

680 || (ch == '"*' g& buf[l] == '.') /* "* _php:/path/php" */
681 fendif

682) |

683 char *p;

684 Htaccess *cur;

685

686 cur = xzalloc(sizeof (*cur) /* includes space for NUL */ + strlen_buf);
687 strcpy (cur->before_colon, buf);

688 p = cur->before_colon + (after_colon - buf);
689 pl-1]1 = "\0';

690 cur->after_colon = p;

691 if (ch == '.") {

692 /* .mime line: prepend to mime_a list */
693 cur—>next = mime_a;

694 mime_a = cur;

Peter Yastrebenetsky Page 105

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

SYNCHRONIZATION COMPLEXITY METRIC

}

#if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

#endif

}

else {
/* script interpreter line: prepend to script_i list */
cur->next = script_i;
script_i = cur;

}

continue;

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH

if

Peter Yastrebenetsky

(ch == '/") { /* "/file:user:pass" */

char *p;
Htaccess *cur;
unsigned file_len;

/* note: path is "" unless we are in SUBDIR parse,
* otherwise it does NOT start with "/" *x/
cur = xzalloc(sizeof (*cur) /* includes space for NUL */

+ 1 + strlen(path)
+ strlen_buf
)i
/* form "/path/file" */
sprintf (cur->before_colon, "/%s%.*s",
path,
after_colon - buf - 1, /* includes "/", but not ":" */
buf);
/* canonicalize it */
p = bb_simplify_abs_path_inplace (cur->before_colon);
file_len = p - cur->before_colon;
/* add "user:pass" after NUL */
strcpy (++p, after_colon);
cur->after_colon = p;

Page 106

SYNCHRONIZATION COMPLEXITY METRIC

730 /* insert cur into g_auth */

731 /* g_auth is sorted by decreased filename length */

732 {

733 Htaccess *auth, **authp;

734

735 authp = &g_auth;

736 while ((auth = *authp) != NULL) {

737 if (file_len >= strlen(auth->before_colon)) {
738 /* insert cur before auth */

739 cur—->next = auth;

740 break;

741 }

742 authp = &auth->next;

743 }

744 *authp = cur;

745 }

746 continue;

747 }

748 #endif /* BASIC_AUTH */

749

750 /* the line is not recognized */

751 config_error:

752 bb_error_msg("config error
753 } /* while (fgets) */

754

755 fclose(f);

756

757

758 #1f ENABLE_FEATURE_HTTPD_ENCODE_URL_STR
759 /=

760 * Given a string, html-encode special characters.

761 This is used for the -e command line option to provide an easy way
762 for scripts to encode result data without confusing browsers. The
763 returned string pointer is memory allocated by malloc().

764

A} A} A}

%$s' in '%$s'", buf, filename);

b S

Peter Yastrebenetsky Page 107

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

SYNCHRONIZATION COMPLEXITY METRIC

*

*/

Returns a pointer to the encoded string (malloced).

static char *encodeString(const char *string)

{

/* take the simple route and encode everything */

/* could possibly scan once to get length. */
int len = strlen(string);

char *out = xmalloc(len * 6 + 1);

char *p = out;

char ch;

while ((ch = *string++)) {

/* very simple check for what to encode */
if (isalnum(ch))

*p++ = ch;
else
p += sprintf(p, "&#%d;", (unsigned char) ch);
}
*p = "\0';
return out;
}
#endif /* FEATURE_HTTPD_ENCODE_URL_STR */
/*
* Given a URL encoded string, convert it to plain ascii.
* Since decoding always makes strings smaller, the decode is done in-place.
* Thus, callers should xstrdup() the argument if they do not want the
* argument modified. The return is the original pointer, allowing this
* function to be easily used as arguments to other functions.
*
* string The first string to decode.
* option_d 1 if called for httpd -d
*
* Returns a pointer to the decoded string (same as input).
*

Peter Yastrebenetsky Page 108

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

SYNCHRONIZATION COMPLEXITY METRIC

static unsigned hex_to_bin(unsigned char c)

{

unsigned v;

v=c-"0";
if (v <= 9)
return v;

/* ¢ | 0x20: letters to lower case, non-letters
* to (potentially different) non-letters */
v = (unsigned) (c | 0x20) - 'a';

if (v <= 5)
return v + 10;
return ~0;
}
/* For testing:
void t(char c) { printf("'%c'(%u) %u\n", c, c, hex_to_bin(c)); }
int main() { t(0x10); t(0x20); t('0"); t('9"); t('A"); t('F"'"); t('a"); t('£");
£('0'-1); £('9'+1); t('A'-1); t('F'+1); t('a'-1); t('£'+1l); return 0; }
*/
static char *decodeString(char *orig, int option_d)
{
/* note that decoded string is always shorter than original */
char *string = orig;

char *ptr = string;
char c;
while ((c = *ptr++) != '\0'") {

unsigned v;

if (option_d && c == "+"') {
*string++ = ' ';
continue;

}

if (¢ !'= '%") {
*string++ = c;

Peter Yastrebenetsky Page 109

835
836
837
838
839
840
841
842
843
844
845
846
8477
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

SYNCHRONIZATION COMPLEXITY METRIC

continue;

v = hex_to_bin(ptr[0]);
if (v > 15) {
bad_hex:
if (loption_d)
return NULL;

*string++ = '$';
continue;

}

v = (v * 16) | hex_to_bin(ptr[l]);

if (v > 255)
goto bad_hex;

if (loption_d && (v == "'"/' || v == "\0")) {
/* caller takes it as indication of invalid

* (dangerous wrt exploits) chars */

return orig + 1;

}

*string++ = v;

ptr += 2;

}
*string = '\0';

}

return orig;

#if ENABLE_FEATURE_HTTPD_BASIC_AUTH

/*

*

Xk X

*

*/

Decode a base64 data stream as per rfclb21l.
Note that the rfc states that non base64 chars are to be ignored.
Since the decode always results in a shorter size than the input,
it is OK to pass the input arg as an output arg.
a pointer to a base64 encoded string.
Decoded data is stored in-place.

Parameter:

static void decodeBase64 (char *Data)

Peter Yastrebenetsky

Page 110

SYNCHRONIZATION COMPLEXITY METRIC

870 {

871 const unsigned char *in = (const unsigned char *)Data;
872 /* The decoded size will be at most 3/4 the size of the encoded */
873 unsigned ch = 0;

874 int 1 = 0;

875

876 while (*in) {

877 int t = *in++;

878

879 if (t >= '0' && t <= '9")

880 t =t - '0'" + 52;

881 else if (t >= 'A' && t <= 'Z'")

882 t =t - 'A';

883 else if (t >= 'a' && t <= 'z')

884 t =t - 'a' + 26;

885 else 1if (t == '+"'")

886 t = 62;

887 else if (t == '/")

888 t = 63;

889 else if (t == '=")

890 t = 0;

891 else

892 continue;

893

894 ch = (ch << 6) | t;

895 i++;

896 if (i == 4) {

897 *Data++ = (char) (ch >> 16);
898 *Data++ = (char) (ch >> 8);
899 *Data++ = (char) ch;

900 i = 0;

901 }

902 }

903 *Data = '\0';

904

Peter Yastrebenetsky Page 111

SYNCHRONIZATION COMPLEXITY METRIC

905 #endif

906

907 /~

908 * Create a listen server socket on the designated port.
909 */

910 static int openServer (void)

911 {

912 unsigned n = bb_strtou(bind_addr_or_port, NULL, 10);
913 if (!errno && n && n <= Oxffff)

914 n = create_and_bind_stream_or_die (NULL, n);
915 else

916 n = create_and_bind_stream_or_die(bind_addr_or_port, 80);
917 xlisten(n, 9);

918 return n;

919 }

920

921 /*

922 * Log the connection closure and exit.

923 */

924 static void log_and_exit (void) NORETURN;

925 static void log_and_exit (void)

926 ¢

927 /* Paranoia. IE said to be buggy. It may send some extra data
928 * or be confused by us just exiting without SHUT_WR. Oh well. */
929 shutdown (1, SHUT_WR) ;

930 /* Why??

931 (this also messes up stdin when user runs httpd -i from terminal)
932 ndelay_on(0);

933 while (read(STDIN_FILENO, iobuf, IOBUF_SIZE) > 0)

934 continue;

935 */

936

937 if (verbose > 2)

938 bb_error_msg("closed");

939 _exit (xfunc_error_retval);

Peter Yastrebenetsky Page 112

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

SYNCHRONIZATION COMPLEXITY METRIC

/*
* Create and send HTTP response headers.

* The arguments are combined and sent as one write operation. Note that
* IE will puke big-time if the headers are not sent in one packet and the
*

second packet is delayed for any reason.
* responseNum - the result code to send.
*/
static void send_headers (int responseNum)
{
static const char RFC1123FMT[] ALIGN1l = "%a, %d %b %Y %$H:%M:%S GMT";

const char *responseString = "";
const char *infoString = NULL;
const char *mime_type;
#if ENABLE_FEATURE_HTTPD_ERROR_PAGES
const char *error_page = NULL;
#endif
unsigned 1i;
time_t timer = time (NULL) ;
char tmp_str[80];
int len;

for (i = 0; 1 < ARRAY_SIZE (http_response_type); i++) {
if (http_response_typel[i] == responseNum) ({
responseString = http_response[i] .name;
infoString = http_responsel[i].info;
#if ENABLE FEATURE_HTTPD_ ERROR_PAGES
error_page = http_error_pagel[il];
#endif
break;
}
}

/* error message 1s HTML */

Peter Yastrebenetsky Page 113

SYNCHRONIZATION COMPLEXITY METRIC

975 mime_type = responseNum == HTTP_OK *?

976 found_mime_type : "text/html";

977

978 if (verbose)

979 bb_error_msg("response:%u", responseNum) ;

980

981 /* emit the current date */

982 strftime (tmp_str, sizeof (tmp_str), RFC1123FMT, gmtime(&timer));

983 len = sprintf (iobuf,

984 "HTTP/1.0 %d %$s\r\nContent-type: %s\r\n"

985 "Date: %s\r\nConnection: close\r\n",

826 responseNum, responseString, mime_type, tmp_str);
7

988 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

989 if (responseNum == HTTP_UNAUTHORIZED) {

990 len += sprintf (iobuf + len,

991 "WWW-Authenticate: Basic realm=\"%s\"\r\n",

992 g_realm);

993 }

994 #endif

995 if (responseNum == HTTP_MOVED_TEMPORARILY) {

996 len += sprintf (iobuf + len, "Location: %$s/%s%s\r\n",

997 found_moved_temporarily,

998 (g_query 2 "2" : ""),

999 (g_query ? g_query : ""));

1000 }

1001

1002 #if ENABLE_FEATURE_HTTPD_ERROR_PAGES

1003 if (error_page && access(error_page, R_OK) == 0) {

1004 strcat (1obuf, "\r\n");

1005 len += 2;

1006

1007 if (DEBUG)

1008 fprintf (stderr, "headers: '%s'\n", iobuf);

1009 full_write (STDOUT_FILENO, iobuf, len);

Peter Yastrebenetsky Page 114

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

SYNCHRONIZATION COMPLEXITY METRIC

if (DEBUG)
fprintf (stderr, "writing error page: '%s'\n", error_page);
return send_file_and_exit (error_page, SEND_BODY) ;

#endif

if (file_size !'= -1) { /* file */
strftime (tmp_str, sizeof (tmp_str), RFC1123FMT, gmtime(&last_mod));
#if ENABLE FEATURE_HTTPD_ RANGES
if (responseNum == HTTP_PARTIAL_CONTENT) {
len += sprintf (iobuf + len, "Content-Range: bytes $%"OFF_FMT"d-
$"OFF_FMT"d/$"OFF_FMT"d\r\n",
range_start,
range_end,
file_size);
file_size = range_end - range_start + 1;
}
#endif
len += sprintf (iobuf + len,
#if ENABLE_FEATURE_HTTPD_RANGES
"Accept-Ranges: bytes\r\n"
#endif
"Last-Modified: %s\r\n%s $"OFF_FMT"d\r\n",
tmp_str,
"Content-length:",
file_size
)i
}
iobuf[len++] = '\r';
iobuf[len++] = '\n';
if (infoString) {
len += sprintf (iobuf + len,
"<HTML><HEAD><TITLE>%d %$s</TITLE></HEAD>\n"
"<BODY><H1>%d %s</H1>\n%s\n</BODY></HTML>\n",
responseNum, responseString,

Peter Yastrebenetsky Page 115

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

SYNCHRONIZATION COMPLEXITY METRIC

responseNum, responseString, infoString);

}

if (DEBUG)
fprintf (stderr, "headers: '%s'\n", iobuf);
if (full_write (STDOUT_FILENO, iobuf, len) != len) {

if (verbose > 1)
bb_perror_msg("error");
log_and_exit () ;

}

static void send_headers_and_exit (int responseNum) NORETURN;
static void send_headers_and_exit (int responseNum)
{

send_headers (responseNum) ;

log_and_exit () ;

/*
* Read from the socket until '\n' or EOF. '\r' chars are removed.
* '\n' is replaced with NUL.

* Return number of characters read or 0 if nothing is read
*

("\r' and '\n' are not counted).
* Data is returned in iobuf.

*/

static int get_line(void)

{

int count = 0;

char c;

alarm (HEADER_READ_TIMEOUT) ;
while (1) {
if (hdr_cnt <= 0) {
hdr_cnt = safe_read(STDIN_FILENO, hdr_buf, sizeof (hdr_buf));
if (hdr_cnt <= 0)

Peter Yastrebenetsky Page 116

SYNCHRONIZATION COMPLEXITY METRIC

break;
hdr_ptr = hdr_buf;
}

iobuf[count] = ¢ = *hdr_ptr++;
hdr_cnt——;
if (¢ == '"\r'")
continue;
if (¢ == '"\n') {
iobuf [count] = '\0';
break;
}
if (count < (IOBUF_SIZE - 1)) /* check overflow */
count++;

}

return count;

}

#1if ENABLE_FEATURE_HTTPD_CGI || ENABLE_FEATURE_HTTPD_PROXY

/* gcc 4.2.1 fares better with NOINLINE */

static NOINLINE void cgi_io_loop_and_exit (int fromCgi_rd,
static NOINLINE void cgi_io_loop_and_exit (int fromCgi_rd,
{

int toCgi_wr, int post_len)
int toCgi_wr, int post_len)

enum { FROM_CGI = 1, TO_CGI = 2 }; /* indexes in pfd[] */

struct pollfd pfd[3];

int out_cnt; /* we buffer a bit of initial CGI output */

int count;

/* iobuf is used for CGI -> network data,

* hdr_buf is for network -> CGI data (POSTDATA) */

/* If CGI dies, we still want to correctly finish reading its output

* and send it to the peer. So please no SIGPIPEs!
signal (SIGPIPE, SIG_IGN);

Peter Yastrebenetsky

*/

Page 117

NORETURN;

SYNCHRONIZATION COMPLEXITY METRIC

// We inconsistently handle a case when more POSTDATA from network
// 1s coming than we expected. We may give *some part* of that
// extra data to CGI.

//if (hdr_cnt > post_len) {

// /* We got more POSTDATA from network than we expected */
// hdr_cnt = post_len;

//}

post_len —-= hdr_cnt;

/* post_len - number of POST bytes not yet read from network */

/* NB: breaking out of this loop jumps to log_and_exit () */
out_cnt = 0;
while (1) {

memset (pfd, 0, sizeof (pfd));

pfd[FROM_CGI].fd = fromCgi_rd;
pfd[FROM_CGI] .events = POLLIN;

if (toCgi_wr) {
pfd[TO_CGI].fd = toCgi_wr;
if (hdr_cnt > 0) {
pfd[TO_CGI] .events = POLLOUT;
} else if (post_len > 0) {
pfd[0] .events = POLLIN;
} else {
/* post_len <= 0 && hdr_cnt <= 0:
* no more POST data to CGI,
* Jlet CGI see EOF on CGI's stdin */
close (toCgi_wr);
toCgi_wr = 0;

Peter Yastrebenetsky Page 118

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

SYNCHRONIZATION COMPLEXITY METRIC

#if O

#endif

/* Now wait on the set of sockets */
count = safe_poll(pfd, 3, -1);
if (count <= 0) {

if (safe_waitpid(pid, &status, WNOHANG) <= 0) {
/* Weird. CGI didn't exit and no fd's
* are ready, yet poll returned?! */
continue;
}
if (DEBUG && WIFEXITED (status))
bb_error_msg("CGI exited, status=%d", WEXITSTATUS (status));
if (DEBUG && WIFSIGNALED (status))
bb_error_msg("CGI killed, signal=%d", WTERMSIG(status));

break;

}

if (pfd[TO_CGI].revents) {
/* hdr_cnt > 0 here due to the way pfd[TO_CGI].events set */
/* Have data from peer and can write to CGI */

count = safe_write(toCgi_wr, hdr_ptr, hdr_cnt);
/* Doesn't happen, we dont use nonblocking IO here
*if (count < 0 && errno == EAGAIN) {

* .« e .
*} else */
if (count > 0) {
hdr_ptr += count;
hdr_cnt —-= count;
} else {
/* EOF/broken pipe to CGI, stop piping POST data */
hdr_cnt = post_len = 0;

}

if (pfd[0].revents) {

Peter Yastrebenetsky Page 119

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

SYNCHRONIZATION COMPLEXITY METRIC

if

Peter Yastrebenetsky

(pfdl

/* post_len > 0 && hdr_cnt == 0 here */
/* We expect data, prev data portion is eaten by CGI
* and there *is* data to read from the peer
* (POSTDATA) */
//count = post_len > (int)sizeof (hdr_buf) ? (int)sizeof (hdr_buf)
//count = safe_read (STDIN_FILENO, hdr_buf, count);
count = safe_read(STDIN_FILENO, hdr_buf, sizeof (hdr_buf));
if (count > 0) {

hdr_cnt = count;
hdr_ptr = hdr_buf;
post_len —= count;

} else {
/* no more POST data can be read */
post_len = 0;

FROM_CGI] .revents) {
/* There is something to read from CGI */
char *rbuf = iobuf;

/* Are we still buffering CGI output? */
if (out_cnt >= 0) {

/* HTTP_200[] has single "\r\n" at the end.
According to http://hoohoo.ncsa.uiuc.edu/cgi/out.html,
CGI scripts MUST send their own header terminated by
empty line, then data. That's why we have only one
<cr><1lf> pair here. We will output "200 OK" line
if needed, but CGI still has to provide blank line
between header and body */

* ok ok X X X

/* Must use safe_read, not full_read, because

* CGI may output a few first bytes and then wait
* for POSTDATA without closing stdout.

* With full_read we may wait here forever. */

Page 120

post_len;

SYNCHRONIZATION COMPLEXITY METRIC

count = safe_read(fromCgi_rd, rbuf + out_cnt, PIPE_BRUF - 8);
if (count <= 0) {
/* eof (or error) and there was no "HTTP",
* so write it, then write received data */
if (out_cnt) {
full write(STDOUT_FILENO, HTTP_200, sizeof (HTTP_200)-1);
full _write (STDOUT_FILENO, rbuf, out_cnt);
}
break; /* CGI stdout is closed, exiting */
}

out_cnt += count;

count = 0;
/* "Status" header format is: "Status: 302 Redirected\r\n" */
if (out_cnt >= 8 && memcmp (rbuf, "Status: ", 8) == 0) {

/* send "HTTP/1.0 " */

if (full_write (STDOUT_FILENO, HTTP_200, 9) != 9)

break;

rbuf += 8; /* skip "Status: " */

count = out_cnt - 8§;

out_cnt = -1; /* buffering off */

} else if (out_cnt >= 4) {
/* Did CGI add "HTTP"? */
if (memcmp (rbuf, HTTP_200, 4) != 0) {
/* there is no "HTTP", do it ourself */
if (full_write (STDOUT_FILENO, HTTP_200, sizeof (HTTP_200)-1)
sizeof (HTTP_200)-1)
break;

/* Commented out:
if (!strstr(rbuf, "ontent-")) {
full write(s, "Content-type: text/plain\r\n\r\n", 28);

* Counter-example of valid CGI without Content-type:

* echo —-en "HTTP/1.0 302 Found\r\n"
* echo —-en "Location: http://www.busybox.net\r\n"

Peter Yastrebenetsky Page 121

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

SYNCHRONIZATION COMPLEXITY METRIC

}
#endif

* echo —en "\r\n"

*/
count = out_cnt;
out_cnt = -1; /* buffering off */
}
} else {
count = safe_read(fromCgi_rd, rbuf, PIPE_BUF);
if (count <= 0)
break; /* eof (or error) */
}
if (full_write(STDOUT_FILENO, rbuf, count) != count)
break;
if (DEBUG)
fprintf (stderr, "cgi read %d bytes: '$%.*s'\n", count,

} /* if (pfd[FROM_CGI].revents) */
} /* while (1) */
log_and_exit () ;

#if ENABLE_FEATURE_HTTPD_CGI

static void setenvl (const char *name, const char *value)

{

}
/

P S . I S

setenv (name, value ? value : "", 1);

Spawn CGI script, forward CGI's stdin/out <=> network

Environment variables are set up and the script is invoked with pipes

for stdin/stdout. If a POST is being done the script is fed the POST
data in addition to setting the QUERY_STRING variable (for GETs or POSTs).

Parameters:

Peter Yastrebenetsky Page 122

count,

rbuf) ;

1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

SYNCHRONIZATION COMPLEXITY METRIC

const char *url

int post_len

const char *cookie

* const char *content_type

X X

The requested URL (with leading /).

Length of the POST body.
For set HTTP_COOKIE.
For set CONTENT_TYPE.

*/
static void send_cgi_and_exit (
const char *url,
const char *request,
int post_len,
const char *cookie,

const char *content_type)

static void send_cgi_and_exit (
const char *url,
const char *request,
int post_len,
const char *cookie,

const char *content_type)

NORETURN;

struct fd_pair fromCgi; /* CGI -> httpd pipe */

struct fd_pair toCgi;
char *script;
int pid;

/* httpd -> CGI pipe */

/* Make a copy. NB: caller guarantees:

* url[0] == '/', url([l] !=
url = xstrdup(url);
/*

*/

* We are mucking with environment _first_ and then vfork/exec,
* this allows us to use vfork safely. Parent doesn't care about
* these environment changes anyway.

*/

/* Check for [dirs/]script.cgi/PATH_INFO */

script = (char*)url;

Peter Yastrebenetsky

Page 123

SYNCHRONIZATION COMPLEXITY METRIC

1325 while ((script = strchr(script + 1, '/')) != NULL) {

1326 struct stat sb;

1327

1328 *script = '\0';

1329 if (!is_directory(url + 1, 1, &sb)) {

1330 /* not directory, found script.cgi/PATH_INFO */
1331 *script = '/';

1332 break;

1333 }

1334 *script = '/'; /* is directory, find next '/' */

1335 }

1336 setenvl ("PATH_INFO", script); /* set to /PATH_INFO or "" */
1337 setenvl ("REQUEST_METHOD", request);

1338 if (g_query) {

1339 putenv (xasprintf ("$s=%s?%s", "REQUEST_URI", url, g_query));
1340 } else {

1341 setenvl ("REQUEST_URI", url);

1342 }

1343 if (script != NULL)

1344 *script = '\0'; /* cut off /PATH_INFO */

1345

1346 /* SCRIPT_FILENAME is required by PHP in CGI mode */

1347 if (home_httpd[0] == "/") {

1348 char *fullpath = concat_path_file(home_httpd, url);
1349 setenvl ("SCRIPT_FILENAME", fullpath);

1350 }

1351 /* set SCRIPT_NAME as full path: /cgi-bin/dirs/script.cgi */
1352 setenvl ("SCRIPT_NAME", url);

1353 /* http://hoohoo.ncsa.uiuc.edu/cgi/env.html:

1354 * QUERY_STRING: The information which follows the ? in the URL
1355 * which referenced this script. This is the query information.
1356 * It should not be decoded in any fashion. This variable

1357 * should always be set when there is query information,

1358 * regardless of command line decoding. */

1359 /* (Older versions of bbox seem to do some decoding) */

Peter Yastrebenetsky Page 124

SYNCHRONIZATION COMPLEXITY METRIC

1360 setenvl ("QUERY_STRING", g_gqguery);

1361 putenv ((char*) "SERVER_SOFTWARE=busybox httpd/"BB_VER) ;
1362 putenv ((char*)"SERVER_PROTOCOL=HTTP/1.0");

1363 putenv ((char*) "GATEWAY_ INTERFACE=CGI/1.1");

1364 /* Having _separate_ variables for IP and port defeats
1365 * the purpose of having socket abstraction. Which "port"
1366 * are you using on Unix domain socket?

1367 * IOW - REMOTE_PEER="1.2.3.4:56" makes much more sense.
1368 * Oh well... */

1369 {

1370 char *p = rmt_ip_str ? rmt_ip_str : (char*)"";
1371 char *cp = strrchr(p, ':');

1372 if (ENABLE_FEATURE_IPV6 && cp && strchr(cp, '1'))
1373 cp = NULL;

1374 if (cp) *cp = '\0'; /* delete :PORT */

1375 setenvl ("REMOTE_ADDR", p);

1376 if (cp) {

1377 *cp = ':';

1378 #if ENABLE_FEATURE_HTTPD_SET_REMOTE_PORT_TO_ENV

1379 setenvl ("REMOTE_PORT", cp + 1);

1380 #endif

1381 }

1382 }

1383 setenvl ("HTTP_USER_AGENT", user_agent);

1384 if (http_accept)

1385 setenvl ("HTTP_ACCEPT", http_accept);

1386 if (http_accept_language)

1387 setenvl ("HTTP_ACCEPT_LANGUAGE", http_accept_language);
1388 if (post_len)

1389 putenv (xasprintf ("CONTENT_LENGTH=%d", post_len));
1390 if (cookie)

1391 setenvl ("HTTP_COOKIE", cookie);

1392 if (content_type)

1393 setenvl ("CONTENT_TYPE", content_type);

1394 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

Peter Yastrebenetsky Page 125

1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

SYNCHRONIZATION COMPLEXITY METRIC

#endif

if (remoteuser) {
setenvl ("REMOTE_USER", remoteuser);
putenv ((char*)"AUTH_TYPE=Basic");

}

if (referer)
setenvl ("HTTP_REFERER", referer);

setenvl ("HTTP_HOST", host); /* set to "" if NULL */
/* setenvl ("SERVER_NAME", safe_gethostname()); - don't do this,
* just run "env SERVER_NAME=xyz httpd ..." instead */

xpiped_pair (fromCgi) ;
xpiped_pair (toCgi);

pid = vfork();

if (pid < 0) {
/* TODO: log perror? */
log_and_exit () ;

}

if (!'pid) |
/* Child process */
char *argv[3];

xfunc_error_retval = 242;

/* NB: close _first_, then move fds! */
close(toCgi.wr);
close(fromCgi.rd);
xmove_fd(toCgi.rd, 0); /* replace stdin with the pipe */
xmove_fd (fromCgi.wr, 1); /* replace stdout with the pipe */
/* User seeing stderr output can be a security problem.

* If CGI really wants that, it can always do dup itself. */
/* dup2(1, 2); */

Peter Yastrebenetsky Page 126

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464

SYNCHRONIZATION COMPLEXITY METRIC

/* Chdiring to script's dir */

script

}

= strrchr (url,
if (script

if

}

// not needed:

script++;

/* set argv[0]

argv[0]
argv[1l]

= url)

goto error_execing_cgi;

script;
NULL;

A

4

{ /* paranoia */

*script = '\0';

(chdir (url + 1)
bb_perror_msg("chdir %s", url + 1);

'=0)

*script = '/"';

to name without path */

#if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

{

}
#endif

char *suffix = strrchr(script,

if

(suffix)

{

Htaccess *cur;
script_i; cur; cur =
(strcmp (cur—>before_colon + 1, suffix)
/* found interpreter name */
cur—->after_colon;

for

(cur =
if

argv[0]
argv[1l]
argv([2]
break;

A}

')

script;
NULL;

cur—>next) {

/* restore default signal dispositions for CGI process */

Peter Yastrebenetsky

Page 127

== 0)

{

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

SYNCHRONIZATION COMPLEXITY METRIC

bb_signals (0
| (1 << SIGCHLD)
| (1 << SIGPIPE)
| (1 << SIGHUP)
, SIG_DFL);

/* _NOT_ execvp. We do not search PATH. argv[0] is a filename
* without any dir components and will only match a file
* in the current directory */

execv (argv[0], argv);
if (verbose)
bb_perror_msg("exec %$s", argv([0]);

error_execing_cgi:

}
#endif

/*

/* send to stdout
* (we are CGI here, our stdout is pumped to the net) */
send_headers_and_exit (HTTP_NOT_FOUND) ;

} /* end child */

/* Parent process */

/* Restore variables possibly changed by child */
xfunc_error_retval = 0;

/* Pump data */

close (fromCgi.wr) ;

close (toCgi.rd);

cgi_io_loop_and_exit (fromCgi.rd, toCgi.wr, post_len);

/* FEATURE_HTTPD_CGI */

* Send a file response to a HTTP request, and exit

*

* Parameters:

Peter Yastrebenetsky Page 128

SYNCHRONIZATION COMPLEXITY METRIC

1500 * const char *url The requested URL (with leading /).
1501 * what What to send (headers/body/both).
1502 */

1503 static NOINLINE void send_file_and_exit (const char *url, int what)
1504 {

1505 static const char *const suffixTable[] = {

1506 /* Warning: shorter equivalent suffix in one line must be first */
1507 " htm.html", "text/html",

1508 ".Jjpg.Jjpeg", "image/jpeg",

1509 ".gif", "image/gif",

1510 ".png", "image/png",

1511 ".txt.h.c.cc.cpp", "text/plain",

1512 ".css", "text/css",

1513 ".wav", "audio/wav",

1514 "oavi", "video/x-msvideo",

1515 ".gt.mov", "video/quicktime",

1516 " .mpe.mpeg", "video/mpeg",

1517 ".mid.midi", "audio/midi",

1518 ".mp3", "audio/mpeg",

1519 #if O /* unpopular */

1520 " au", "audio/basic",

1521 ".pac", "application/x-ns-proxy-autoconfig",
1522 ".vrml.wrl", "model/vrml",

1523 #endif

1524 NULL

1525 };

1526

1527 char *suffix;

1528 int fd;

1529 const char *const *table;

1530 const char *try_suffix;

1531 ssize_t count;

1532

1533 fd = open(url, O_RDONLY);

1534 if (fd < 0) {

Peter Yastrebenetsky Page 129

SYNCHRONIZATION COMPLEXITY METRIC

1535 if (DEBUG)

1536 bb_perror_msg("can't open '$s'", url);

1537 /* Error pages are sent by using send_file_and_exit (SEND_BODY) .
1538 * IOW: it is unsafe to call send_headers_and_exit
1539 * 1if what is SEND_BODY! Can recurse! */

1540 if (what !'= SEND_BODY)

1541 send_headers_and_exit (HTTP_NOT_FOUND) ;

1542 log_and_exit () ;

1543 }

1544 /* If you want to know about EPIPE below

1545 * (happens if you abort downloads from local httpd): */
1546 signal (SIGPIPE, SIG_IGN);

1547

1548 suffix = strrchr (url, '."');

1549

1550 /* If not found, set default as "application/octet-stream"; */
1551 found_mime_type = "application/octet-stream";

1552 if (suffix) {

1553 Htaccess *cur;

1554 for (table = suffixTable; *table; table += 2) {

1555 try_suffix = strstr(table[0], suffix);

1556 if (try_suffix) {

1557 try_suffix += strlen(suffix);

1558 if (*try_suffix == '\0' || *try_suffix == '.') {
1559 found_mime_type = table[l];
1560 break;

1561 }

1562 }

1563 }

1564 for (cur = mime_a; cur; cur = cur—->next) {

1565 if (strcmp(cur->before_colon, suffix) == 0) {
1566 found_mime_type = cur->after_colon;
1567 break;

1568 }

1569 }

Peter Yastrebenetsky Page 130

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604

SYNCHRONIZATION COMPLEXITY METRIC

}

if (DEBUG)
bb_error_msg("sending file '%s' content-type: %s",
url, found_mime_type);

#if ENABLE_FEATURE_HTTPD_RANGES
if (what == SEND_BODY)
range_start = 0; /* err pages and ranges don't mix */
range_len = MAXINT (off_t);
if (range_start) {
if (!'range_end) {
range_end = file_size - 1;

}
if (range_end < range_start
|| lseek(fd, range_start, SEEK_SET) != range_start
) A
lseek (fd, 0, SEEK_SET);
range_start = 0;
} else {
range_len = range_end - range_start + 1;
send_headers (HTTP_PARTIAL_CONTENT) ;
what = SEND_BODY;

}
#endif
if (what & SEND_HEADERS)
send_headers (HTTP_OK) ;
#if ENABLE FEATURE_HTTPD USE_SENDFILE
{
off_t offset = range_start;
while (1) {
/* sz is rounded down to 64k */
ssize_t sz = MAXINT (ssize_t) - Oxffff;
IF_FEATURE_HTTPD_RANGES (if (sz > range_len) sz

range_Jlen;)

Peter Yastrebenetsky Page 131

SYNCHRONIZATION COMPLEXITY METRIC

1605 count = sendfile(STDOUT_FILENO, fd, &offset, sz);
1606 if (count < 0) {

1607 if (offset == range_start)

1608 break; /* fall back to read/write loop */
1609 goto fin;

1610 }

1611 IF_FEATURE_HTTPD_RANGES (range_len —-= sz;)
1612 if (count == || range_len == 0)

1613 log_and_exit () ;

1614 }

1615 }

1616 #endif

1617 while ((count = safe read(fd, iobuf, IOBUF_SIZE)) > 0) {
1618 ssize_t nj;

1619 IF_FEATURE_HTTPD_RANGES (if (count > range_len) count = range_len;)
1620 n = full_write (STDOUT_FILENO, iobuf, count);
1621 if (count != n)

1622 break;

1623 IF_FEATURE_HTTPD_RANGES (range_len —-= count;)
1624 if (range_len == 0)

1625 break;

1626 }

1627 if (count < 0) {

1628 IF_FEATURE_HTTPD_USE_SENDFILE (fin:)

1629 if (verbose > 1)

1630 bb_perror_msg("error");

1631 }

1632 log_and_exit();

1633 }

1634

1635 static int checkPermIP (void)

1636 {

1637 Htaccess_IP *cur;

1638

1639 for (cur = ip_a_d; cur; cur = cur—->next) {

Peter Yastrebenetsky Page 132

SYNCHRONIZATION COMPLEXITY METRIC

1640 #if DEBUG

1641 fprintf (stderr,
1642 "checkPermIP: '$s' ? 'Su.%u.%u.%$u/%u.%u.%u.su'\n",
1643 rmt_ip_str,
1644 (unsigned char) (cur->ip >> 24),
1645 unsigned char) (cur->ip >> 16),
8),

1646
1647 unsigned char

(

(unsigned char

(
1648 (unsigned char

(

(

(

cur->ip >>
cur->ip),

cur—->mask >> 24

—_— — = — — — — —

(
(
(
(
(
(
(
(

)
1649 unsigned char) (cur->mask >> 16),
1650 unsigned char) (cur->mask >> 8),
1651 unsigned char) (cur->mask)
1652)
1653 #endif
1654 if ((rmt_ip & cur->mask) == cur->ip)
1655 return (cur—->allow_deny == 'A'); /* A —> 1 */
1656 }
1657
1658 return !flg deny_all; /* depends on whether we saw "D:*" */
1659
1660
1661 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH
1662 /~
1663 * Config file entries are of the form "/<path>:<user>:<passwd>".
1664 * If config file has no prefix match for path, access is allowed.
1665 *
1666 * path The file path
1667 * user_and_passwd "user:passwd" to validate
1668 *
1669 * Returns 1 if user_and_passwd is OK.
1670 */
1671 static int check_user_passwd(const char *path, const char *user_and_passwd)
1672 ¢
1673 Htaccess *cur;
1674 const char *prev = NULL;

Peter Yastrebenetsky Page 133

SYNCHRONIZATION COMPLEXITY METRIC

1675

1676 for (cur = g_auth; cur; cur = cur—->next) {

1677 const char *dir_prefix;

1678 size_t len;

1679

1680 dir_prefix = cur->before_colon;

1681

1682 /* WHY? */

1683 /* If already saw a match, don't accept other different matches */
1684 if (prev && strcmp(prev, dir_prefix) != 0)

1685 continue;

1686

1687 if (DEBUG)

1688 fprintf (stderr, "checkPerm: '$s' ? '%$s'\n", dir_prefix, user_and_passwd);
1689

1690 /* If it's not a prefix match, continue searching */

1691 len = strlen(dir_prefix);

1692 if (len !'= 1 /* dir_prefix "/" matches all, don't need to check */
1693 && (strncmp(dir_prefix, path, len) != 0

1694 || (path[len] !'= '/' && path[len] != '"\0"))

1695) |

1696 continue;

1697 }

1698

1699 /* Path match found */

1700 prev = dir_prefix;

1701

1702 if (ENABLE_FEATURE_HTTPD_AUTH_MD5) {

1703 char *md5_passwd;

1704

1705 md5_passwd = strchr (cur->after_colon, ':');

1706 if (md5_passwd && mdS5_passwd[1l] == '$' && md5_passwd[2] == '1'
1707 && md5_passwd[3] == '$' && md5_passwd[4]

1708) |

1709 char *encrypted;

Peter Yastrebenetsky Page 134

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744

SYNCHRONIZATION COMPLEXITY METRIC

int r, user_len_pl;

md5_passwd++;
user_len pl = md5_passwd - cur->after_colon;

/* comparing "user:" */
if (strncmp(cur->after_colon, user_and_passwd, user_len_pl) != 0) {
continue;

}

encrypted = pw_encrypt (
user_and_passwd + user_len_pl /* cleartext pwd from user */,
md5_passwd /*salt */, 1 /* cleanup */);

r = strcmp(encrypted, md5_passwd) ;
free(encrypted) ;
if (r == 0)

goto set_remoteuser_var; /* Ok */
continue;

}

/* Comparing plaintext "user:pass" in one go */
if (strcmp(cur->after_colon, user_and_passwd) == 0) {
set_remoteuser_var:
remoteuser = xstrndup (user_and_passwd,
strchrnul (user_and_passwd, ':') - user_and_passwd);

return 1; /* Ok */

}

} /* for */

/* 0(bad) if prev is set: matches were found but passwd was wrong */
return (prev == NULL);

}
#endif /* FEATURE_HTTPD_BASIC_AUTH */

#if ENABLE_FEATURE_HTTPD_PROXY

Peter Yastrebenetsky Page 135

SYNCHRONIZATION COMPLEXITY METRIC

1745 static Htaccess_Proxy *find_proxy_entry(const char *url)

1746 {

1747 Htaccess_Proxy *p;

1748 for (p = proxy; p; p = p->next) {

1749 if (strncmp(url, p->url_from, strlen(p->url_from)) == 0)
1750 return p;

1751 }

1752 return NULL;

1753

1754 #endif

1755

1756 /~

1757 * Handle timeouts

1758 */

1759 static void send_REQUEST_TIMEOUT_and_exit (int sig) NORETURN;
1760 static void send_REQUEST_TIMEOUT and_exit (int sig UNUSED_PARAM)
1761 {

1762 send_headers_and_exit (HTTP_REQUEST_TIMEOUT) ;

1763 }

1764

1765 /~

1766 * Handle an incoming http request and exit.

1767 */

1768 static void handle_incoming_and_exit (const len_and_sockaddr *fromAddr) NORETURN;
1769 static void handle_incoming_and_exit (const len_and_sockaddr *fromAddr)
1770 {

1771 static const char request_GET[] ALIGNl = "GET";

1772 struct stat sb;

1773 char *urlcopy;

1774 char *urlp;

1775 char *tptr;

1776 #if ENABLE_FEATURE_HTTPD_CGI

1777 static const char request_HEAD[] ALIGN1 = "HEAD";

1778 const char *prequest;

1779 char *cookie = NULL;

Peter Yastrebenetsky Page 136

1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

SYNCHRONIZATION COMPLEXITY METRIC

char *content_type = NULL;

unsigned long length = 0;
#elif ENABLE_FEATURE_HTTPD_PROXY
#define prequest request_GET

unsigned long length = 0;

#endif

#if ENABLE_FEATURE_HTTPD_ BASIC_AUTH
smallint authorized = -1;

#endif

smallint ip_allowed;
char http_major_version;

#1f ENABLE_FEATURE_HTTPD_PROXY
char http_minor_version;
char *header_buf = header_buf; /* for gcc */
char *header_ptr = header_ptr;
Htaccess_Proxy *proxy_entry;

#endif

/* Allocation of iobuf is postponed until now
* (IOW, server process doesn't need to waste 8k) */
iobuf = xmalloc (IOBUF_SIZE) ;

rmt_ip = 0;

if (fromAddr->u.sa.sa_family == AF_INET) {
= ntohl (fromAddr->u.sin.sin_addr.s_addr) ;

rmt_1ip

}

#if ENABLE FEATURE_IPV6
if (fromAddr->u.sa.sa_family == AF_INETG6

&& fromAddr->u.sin6.sin6_addr.s6_addr32[0] ==

&& fromAddr->u.sin6.sin6_addr.s6_addr32[1] ==

&& ntohl (fromAddr—->u.sin6.sin6_addr.s6_addr32([2]) == Oxffff)

rmt_ip = ntohl (fromAddr->u.siné6.sin6_addr.s6_addr32[3]);
#endif
if (ENABLE_FEATURE_HTTPD_CGI || DEBUG || verbose) {
/* NB: can be NULL (user runs httpd -i by hand?) */
Peter Yastrebenetsky Page 137

SYNCHRONIZATION COMPLEXITY METRIC

1815 rmt_ip_str = xmalloc_sockaddr2dotted(&fromAddr->u.sa);
1816 }

1817 if (verbose) {

1818 /* this trick makes -v logging much simpler */
1819 if (rmt_ip_str)

1820 applet_name = rmt_ip_str;

1821 if (verbose > 2)

1822 bb_error_msg("connected") ;

1823 }

1824

1825 /* Install timeout handler. get_line() needs it. */
1826 signal (SIGALRM, send_REQUEST_TIMEOUT_and_exit);

1827

1828 if (!get_line()) /* EOF or error or empty line */
1829 send_headers_and_exit (HTTP_BAD_REQUEST) ;
1830

1831 /* Determine type of request (GET/POST) */

1832 urlp = strpbrk(iobuf, "™ \t");

1833 if (urlp == NULL)

1834 send_headers_and_exit (HTTP_BAD_REQUEST) ;
1835 *urlp++ = '\0"';

1836 #if ENABLE_FEATURE_HTTPD_CGI

1837 prequest = request_GET;

1838 if (strcasecmp(iobuf, prequest) != 0) {

1839 prequest = request_HEAD;

1840 if (strcasecmp (iobuf, prequest) != 0) {

1841 prequest = "POST";

1842 if (strcasecmp (iobuf, prequest) != 0)
1843 send_headers_and_exit (HTTP_NOT_IMPLEMENTED) ;
1844 }

1845 }

1846 #else

1847 if (strcasecmp (iobuf, request_GET) != 0)

1848 send_headers_and_exit (HTTP_NOT_IMPLEMENTED) ;

1849 #endif

Peter Yastrebenetsky Page 138

SYNCHRONIZATION COMPLEXITY METRIC

1850 urlp = skip_whitespace (urlp);

1851 if (urlp[0] !'= '/")

1852 send_headers_and_exit (HTTP_BAD_REQUEST) ;

1853

1854 /* Find end of URL and parse HTTP version, if any */

1855 http_major_version = '0';

1856 IF_FEATURE_HTTPD_PROXY (http_minor_version = '0';)

1857 tptr = strchrnul (urlp, ' ');

1858 /* Is it "™ HTTP/"?2 */

1859 if (tptr[0] && strncmp (tptr + 1, HTTP_200, 5) == 0) {
1860 http_major_version = tptr[6];

1861 IF_FEATURE_HTTPD_PROXY (http_minor_version = tptr[8];)
1862 }

1863 *tptr = '"\0"';

1864

1865 /* Copy URL from after "GET "/"POST " to stack-allocated char[] */
1866 urlcopy = alloca((tptr - urlp) + 2 + strlen(index_page));
1867 /*1f (urlcopy == NULL)

1868 * send_headers_and_exit (HTTP_INTERNAL_SERVER_ERROR) ; */
1869 strcpy (urlcopy, urlp);

1870 /* NB: urlcopy ptr is never changed after this */

1871

1872 /* Extract url args if present */

1873 g_query = NULL;

1874 tptr = strchr (urlcopy, '?');

1875 if (tptr) {

1876 *tptr++ = '"\0';

1877 g_query = tptr;

1878 }

1879

1880 /* Decode URL escape sequences */

1881 tptr = decodeString(urlcopy, 0);

1882 if (tptr == NULL)

1883 send_headers_and_exit (HTTP_BAD_REQUEST) ;

1884 if (tptr == urlcopy + 1) {

Peter Yastrebenetsky Page 139

1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919

SYNCHRONIZATION COMPLEXITY METRIC

/* '/' or NUL is encoded */
send_headers_and_exit (HTTP_NOT_FOUND) ;
}

/* Canonicalize path */

/* Algorithm stolen from libbb bb_simplify_path(),

* but don't strdup, retain trailing slash, protect root */
urlp = tptr = urlcopy;

Il ttptr(2])) |

/* protect root */

send_headers_and_exit (HTTP_BAD_REQUEST) ;

do {
if (*urlp == '/") {
/* skip duplicate (or initial) slash */
if (*tptr == '/"') {
continue;
}
if (*tptr == '.') {
/* skip extra "/./" */
if (tptr[l] == '/' || !tptr[l]) {
continue;
}
/* "..": be careful */
if (tptr[l] == '.' && (tptr[2] == "'/
++tptr;
if (urlp == urlcopy)
while (*——urlp != "'/")
continue;
}
}
}
*++urlp = *tptr;
} while (*++tptr);
++urlp = '\0'; / terminate after last character */

/* If URL is a directory, add '/' */
if (urlpl[-1] !'= '"/") {

Peter Yastrebenetsky

/* omit previous dir */;

Page 140

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

SYNCHRONIZATION COMPLEXITY METRIC

if (is_directory(urlcopy + 1, 1, &sb)) {
found_moved_temporarily = urlcopy;

}
}

/* Log it */

if (verbose > 1)
bb_error_msg("url:%$s", urlcopy);

tptr = urlcopy;
checkPermIP () ;
while (ip_allowed && (tptr =
/* have pathl/path2 */
= '"\0";
if (is_directory(urlcopy + 1, 1, &sb)) {
/* may have subdir config */
parse_conf (urlcopy + 1, SUBDIR_PARSE);
ip_allowed = checkPermIP();

ip_allowed =

*tptr

}

*tptr
}

— v/v’.

#1f ENABLE_FEATURE_HTTPD_PROXY
proxy_entry = find_proxy_entry(urlcopy);
if (proxy_entry)

header_buf

#endif

strchr (tptr + 1, '/')) != NULL) {

= header_ptr = xmalloc (IOBUF_SIZE) ;

if (http_major_version >= '0') {

/* Request was with "...

HTTP/nXXX", and n >= 0 */

/* Read until blank line for HTTP version specified, else parse immediate */

while

Peter Yastrebenetsky

(1)
if

{

(!'get_line())

break;

/* EOF or error or empty line */

Page 141

SYNCHRONIZATION COMPLEXITY METRIC

1955 if (DEBUG)

1956 bb_error_msg("header: '$s'", iobuf);

1957

1958 #if ENABLE_FEATURE_HTTPD_PROXY

1959 /* We need 2 more bytes for yet another "\r\n" -

1960 * see near fdprintf (proxy_fd...) further below */

1961 if (proxy_entry && (header_ptr - header_buf) < IOBUF_SIZE - 2) {
1962 int len = strlen(iobuf);

1963 if (len > IOBUF_SIZE - (header_ptr - header_buf) - 4)
1964 len = IOBUF_SIZE - (header_ptr - header_buf) - 4;
1965 memcpy (header_ptr, iobuf, len);

1966 header_ptr += len;

1967 header_ptr[0] = '"\r';

1968 header_ptr[l] = '\n';

1969 header_ptr += 2;

1970 }

1971 #endif

1972

1973 #if ENABLE_FEATURE_HTTPD_CGI || ENABLE_FEATURE_HTTPD_PROXY

1974 /* Try and do our best to parse more lines */

1975 if ((STRNCASECMP (iobuf, "Content-length:") == 0)) {

1976 /* extra read only for POST */

1977 if (prequest !'= request_GET

1978 #if ENABLE_FEATURE_HTTPD_CGI

1979 && prequest != request_HEAD

1980 #endif

1981) A

1982 tptr = skip_whitespace(iobuf + sizeof ("Content-length:") - 1);
1983 if ('tptr[0])

1984 send_headers_and_exit (HTTP_BAD_REQUEST) ;
1985 /* not using strtoul: it ignores leading minus! */
1986 length = bb_strtou(tptr, NULL, 10);

1987 /* length is "ulong", but we need to pass it to int later */
1988 if (errno || length > INT_MAX)

1989 send_headers_and_exit (HTTP_BAD_REQUEST) ;

Peter Yastrebenetsky Page 142

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

SYNCHRONIZATION COMPLEXITY METRIC

}

#endif

#if ENABLE FEATURE_HTTPD_ CGI
else if
} else
} else
} else
} else
} else
} else

1))
}

#endif

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH

if

Peter Yastrebenetsky

(STRNCASECMP (iobuf, "Cookie:") == 0) {
cookie = xstrdup(skip_whitespace (iobuf + sizeof ("Cookie:")-1));
if (STRNCASECMP (iobuf, "Content-Type:") == 0) {
content_type = xstrdup(skip_whitespace (iobuf + sizeof ("Content-Type:")-1));
if (STRNCASECMP (iobuf, "Referer:") == 0) {
referer = xstrdup(skip_whitespace (iobuf + sizeof ("Referer:")-1));
if (STRNCASECMP (iobuf, "User-Agent:") == 0) {
user_agent = xstrdup(skip_whitespace (iobuf + sizeof ("User-Agent:")-1));
if (STRNCASECMP (iobuf, "Host:") == 0) {
host = xstrdup(skip_whitespace (iobuf + sizeof ("Host:")-1));
if (STRNCASECMP (iobuf, "Accept:") == 0) {
http_accept = xstrdup(skip_whitespace (iobuf + sizeof ("Accept:")-1));
if (STRNCASECMP (iobuf, "Accept-Language:") == 0) {

http_accept_language = xstrdup(skip_whitespace (iobuf + sizeof ("Accept-Language:") -

(STRNCASECMP (iobuf, "Authorization:") == 0) {

/* We only allow Basic credentials.

* It shows up as "Authorization: Basic <user>:<passwd>" where
* "<user>:<passwd>" is base64 encoded.

*/
tptr = skip_whitespace (iobuf + sizeof ("Authorization:")-1);
if (STRNCASECMP (tptr, "Basic") != 0)
continue;
tptr += sizeof ("Basic")-1;

/* decodeBase64 () skips whitespace itself */
decodeBase64 (tptr) ;
authorized = check_user_passwd(urlcopy, tptr);

Page 143

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059

SYNCHRONIZATION COMPLEXITY METRIC

#endif
#if ENABLE FEATURE_HTTPD_RANGES
if (STRNCASECMP (iobuf, "Range:") == 0) {
/* We know only bytes=NNN-[MMM] */
char *s = skip_whitespace(iobuf + sizeof ("Range:")-1);
if (strncmp(s, "bytes=", 6) == 0) {
S += sizeof ("bytes=")-1;
range_start = BB_STRTOOFF (s, &s, 10);
if (s[0] !'= '-'" || range_start < 0) {
range_start = 0;
} else if (s[1l]) {
range_end = BB_STRTOOFF (s+1, NULL, 10);
if (errno || range_end < range_start)
range_start = 0;
}
}
}
#endif

} /* while extra header reading */

}

/* We are done reading headers, disable peer timeout */
alarm(0) ;

if (strcmp (bb_basename (urlcopy), HTTPD_CONF) == || !'ip_allowed) {
/* protect listing [/path]/httpd.conf or IP deny */
send_headers_and_exit (HTTP_FORBIDDEN) ;

}

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH
/* Case: no "Authorization:" was seen, but page does require passwd.
* Check that with dummy user:pass */
if (authorized < 0)
authorized = check_user_passwd(urlcopy, ":");
if (lauthorized)

Peter Yastrebenetsky Page 144

SYNCHRONIZATION COMPLEXITY METRIC

2060 send_headers_and_exit (HTTP_UNAUTHORIZED) ;

2061 #endif

2062

2063 if (found_moved_temporarily) {

2064 send_headers_and_exit (HTTP_MOVED_TEMPORARILY) ;

2065 }

2066

2067 #if ENABLE_FEATURE_HTTPD_PROXY

2068 if (proxy_entry != NULL) {

2069 int proxy_fd;

2070 len_and_sockaddr *lsa;

2071

2072 proxy_fd = socket (AF_INET, SOCK_STREAM, O0);

2073 if (proxy_fd < 0)

2074 send_headers_and_exit (HTTP_INTERNAL_SERVER_ERROR) ;
2075 lsa = host2sockaddr (proxy_entry->host_port, 80);

2076 if (lsa == NULL)

2077 send_headers_and_exit (HTTP_INTERNAL_SERVER_ERROR) ;
2078 if (connect (proxy_fd, &lsa->u.sa, lsa->len) < 0)

2079 send_headers_and_exit (HTTP_INTERNAL_SERVER_ERROR) ;
2080 fdprintf (proxy_fd, "%s %$s%s%s%s HTTP/%c.%c\r\n",

2081 prequest, /* GET or POST */

2082 proxy_entry->url_to, /* url part 1 */

2083 urlcopy + strlen(proxy_entry->url_from), /* url part 2 */
2084 (g_query 2 "2" . "wmy /* "?" (maybe) */
2085 (g_query ? g_query : ""), /* query string (maybe) */
2086 http_major_version, http_minor_version);
2087 header_ptr[0] = '\r';

2088 header_ptr[l] = '\n';

2089 header_ptr += 2;

2090 write (proxy_fd, header_buf, header_ptr - header_buf);
2091 free (header_buf); /* on the order of 8k, free it */

2092 /* cgi_io_loop_and_exit needs to have two distinct fds */
2093 cgi_io_loop_and_exit (proxy_fd, dup(proxy_£fd), length);
2094 }

Peter Yastrebenetsky Page 145

SYNCHRONIZATION COMPLEXITY METRIC

2095 #endif

2096

2097 tptr = urlcopy + 1; /* skip first '/' */

2098

2099 #if ENABLE_FEATURE_HTTPD_CGI

2100 if (strncmp(tptr, "cgi-bin/", 8) == 0) {

2101 if (tptr([8] == '"\0') {

2102 /* protect listing "cgi-bin/" */

2103 send_headers_and_exit (HTTP_FORBIDDEN) ;

2104 }

2105 send_cgi_and_exit (urlcopy, prequest, length, cookie, content_type);
2106 }

2107 #if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

2108 {

2109 char *suffix = strrchr (tptr, '.');

2110 if (suffix) {

2111 Htaccess *cur;

2112 for (cur = script_i; cur; cur = cur->next) {
2113 if (strcmp(cur->before_colon + 1, suffix) == 0) {
2114 send_cgi_and_exit (urlcopy, prequest, length, cookie, content_type);
2115 }

2116 }

2117 }

2118 }

2119 #endif

2120 if (prequest != request_GET && prequest != request_HEAD) {
2121 send_headers_and_exit (HTTP_NOT_IMPLEMENTED) ;

2122 }

2123 #endif /* FEATURE_HTTPD_CGI */

2124

2125 if (urlp[-1] == '/")

2126 strcpy (urlp, index_page) ;

2127 if (stat(tptr, &sb) == 0) {

2128 file_size = sb.st_size;

2129 last_mod = sb.st_mtime;

Peter Yastrebenetsky Page 146

SYNCHRONIZATION COMPLEXITY METRIC

2130 }

2131 #if ENABLE_FEATURE_HTTPD_CGI

2132 else if (urlp[-1] == '/') {

2133 /* It's a dir URL and there is no index.html
2134 * Try cgi-bin/index.cgi */

2135 if (access("/cgi-bin/index.cgi"+1, X_OK) == 0) {
2136 urlp[0] = "\0';

2137 g_query = urlcopy;

2138 send_cgi_and_exit ("/cgi-bin/index.cgi", prequest, length, cookie, content_type);
2139 }

2140 }

2141 #endif

2142 /* else {

2143 * fall through to send_file, it errors out if open fails
2144 *)

2145 */

2146

2147 send_file_and_exit (tptr,

2148 #if ENABLE_FEATURE_HTTPD_CGI

2149 (prequest != request_HEAD ? SEND_HEADERS_AND_BODY : SEND_HEADERS)
2150 #else

2151 SEND_HEADERS_AND_BODY

2152 #endif

2153);

2154 }

2155

2156/~

2157 * The main http server function.

2158 * Given a socket, listen for new connections and farm out

2159 * the processing as a [v]forked process.

2160 * Never returns.

2161 */

2162 #if BB_MMU

2163 static void mini_httpd(int server_socket) NORETURN;

2164 static void mini_httpd(int server_socket)

Peter Yastrebenetsky Page 147

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

SYNCHRONIZATION COMPLEXITY METRIC

/* NB: it's best to not use xfuncs in this loop before fork().

* Otherwise server may die on transient errors

* out-of-memory condition, etc), which is Bad(tm).
* Try to do any dangerous calls after fork.

(temporary

*/
while (1) {
int nj;
len_and_sockaddr fromAddr;
/* Wait for connections... */
fromAddr.len = LSA_SIZEOF_SA;
n = accept(server_socket, &fromAddr.u.sa, &fromAddr.len);
if (n < 0)
continue;
/* set the KEEPALIVE option to cull dead connections */
setsockopt (n, SOL_SOCKET, SO_KEEPALIVE, &const_int_1, sizeof(const_int_1));
if (fork() == 0) {
/* child */
/* Do not reload config on HUP */
signal (SIGHUP, SIG_IGN);
close(server_socket) ;
xmove_fd(n, 0);
xdup2 (0, 1);
handle_incoming_and_exit (&fromAddr) ;
}
/* parent, or fork failed */
close(n);
} /* while (1) */

/* never reached */

}

#else

Peter Yastrebenetsky

Page 148

2200
2201
2202

SYNCHRONIZATION COMPLEXITY METRIC

static void mini_httpd_nommu (int server_socket, int argc,
static void mini_httpd_nommu(int server_socket, int argc,

{

char *argv_

copylargc + 2];

char **argv) NORETURN;
char **argv)

argv_copy[0] = argv[0];
argv_copy[l] = (char*)"-i";
memcpy (&argv_copy[2], &argv[l], argc * sizeof(argv[0]));

/* NB: it's best to not use xfuncs in this loop before vfork().

* Otherwise server may die on transient errors

(temporary

* out-of-memory condition, etc), which is Bad(tm).
* Try to do any dangerous calls after fork.

*/
while (1) {
int

ny

len_and_sockaddr fromAddr;

/* Wait for connections... */
fromAddr.len = LSA_SIZEOF_SA;

n =

if

accept (server_socket, &fromAddr.u.sa,

(n < 0)
continue;

&fromAddr.len) ;

/* set the KEEPALIVE option to cull dead connections */
setsockopt (n, SOL_SOCKET, SO_KEEPALIVE, &c

if

Peter Yastrebenetsky

(viork () == 0) {
/* child */
/* Do not reload config on HUP */
signal (SIGHUP, SIG_IGN);
close(server_socket) ;
xmove_fd(n, 0);
xdup2 (0, 1);

onst_int_1, sizeof(const_int_1));

Page 149

SYNCHRONIZATION COMPLEXITY METRIC

/* Run a copy of ourself in inetd mode */
re_exec(argv_copy) ;
}
/* parent, or vfork failed */
close(n);
} /* while (1) */
/* never reached */
}
#endif

/*
* Process a HTTP connection on stdin/out.

* Never returns.

*/

static void mini_httpd_inetd(void) NORETURN;
static void mini_httpd_inetd (void)

{

len_and_sockaddr fromAddr;

memset (&fromAddr, 0, sizeof (fromAddr));

fromAddr.len = LSA_SIZEOF_SA;

/* NB: can fail if user runs it by hand and types in http cmds */
getpeername (0, &fromAddr.u.sa, &fromAddr.len);
handle_incoming_and_exit (&fromAddr) ;

}

static void sighup_handler (int sig UNUSED_PARAM)
{
parse_conf (DEFAULT_PATH_HTTPD_CONF, SIGNALED_PARSE) ;

}

enum {
c_opt_config_file = O,
d_opt_decode_url,
h_opt_home_httpd,

Peter Yastrebenetsky Page 150

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304

SYNCHRONIZATION COMPLEXITY METRIC

IF_FEATURE_HTTPD_ENCODE_URL_STR (e_opt_encode_url,
IF_FEATURE_HTTPD_BASIC_AUTH(r_opt_realm p
IF_FEATURE_HTTPD_AUTH_ MDD5 (m_opt_md> ’
IF_FEATURE_HTTPD_SETUID (

p_opt_port
p_opt_inetd

14

14

p_opt_foreground,

p_opt_verbose
OPT_CONFIG_FILE
OPT_DECODE_URL
OPT_HOME_HTTPD
OPT_ENCODE_URL
OPT_REALM
OPT_MD5
OPT_SETUID
OPT_PORT
OPT_INETD
OPT_FOREGROUND
OPT_VERBOSE

bi

int httpd _main(int argc,

14

char **argv)

)
)
)
)

u_opt_setuid ,

1 << c_opt_config_file,

1 << d_opt_decode_url,

1 << h_opt_home_httpd,
IF_FEATURE_HTTPD_ENCODE_URL_STR((
IF_FEATURE_HTTPD_BASIC_AUTH ((
IF_FEATURE_HTTPD_AUTH_MD5 ((
IF_FEATURE_HTTPD_SETUID ((
1 << p_opt_port,

1 << p_opt_inetd,

1 << p_opt_foreground,

1 << p_opt_verbose,

int httpd_main(int argc UNUSED_PARAM, char **argv)

{

int server_socket

unsigned opt;

= server_socket; /* for gcc */

char *url_for_decode;
IF_FEATURE_HTTPD_ENCODE_URL_STR(const char *url_for_encode;)
IF_FEATURE_HTTPD_SETUID (const char *s_ugid = NULL;)
IF_FEATURE_HTTPD_SETUID (struct bb_uidgid_t ugid;)
IF_FEATURE_HTTPD_AUTH_MD5 (const char *pass;)

INIT_G();

Peter Yastrebenetsky

<<
<<
<<
<<

MAIN_EXTERNALLY_VISIBLE;

e_opt_encode_url
r_opt_realm
m_opt_md5
u_opt_setuid

))
))
))
))

Page 151

+ + + +

~ ~

O O O o
~

~

2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339

SYNCHRONIZATION COMPLEXITY METRIC

#1if ENABLE_LOCALE_SUPPORT
/* Undo busybox.c: we want to speak English in http (dates etc) */
setlocale (LC_TIME, "C");

#endif

home_httpd = xrealloc_getcwd_or_warn (NULL) ;
/* —-v counts, —-i implies —-f */
opt_complementary = "vv:if";
/* We do not "absolutize" path given by -h (home) opt.
* If user gives relative path in -h,
* SSCRIPT_FILENAME will not be set. */
opt = getopt32(argv, "c:d:h:"
IF_FEATURE_HTTPD_ENCODE_URL_STR("e:")
IF_FEATURE_HTTPD_BASIC_AUTH("r:")
IF_FEATURE_HTTPD_AUTH_MDS5 ("m:")
IF_FEATURE_HTTPD_SETUID("u:")
"p:ifV",
&opt_c_configFile, &url_for_decode, &home_httpd
IF_FEATURE_HTTPD_ENCODE_URL_STR(, &url_for_encode)
IF_FEATURE_HTTPD_BASIC_AUTH(, &g_realm)
IF_FEATURE_HTTPD_AUTH_MDS5(, &pass)
IF_FEATURE_HTTPD_SETUID(, &s_ugid)
, &bind_addr_or_port
, &verbose
)
if (opt & OPT_DECODE_URL) {
fputs(decodeString(url_for_decode, 1), stdout);
return 0;
}
#if ENABLE_FEATURE_HTTPD_ENCODE_URL_STR
if (opt & OPT_ENCODE_URL) {
fputs (encodeString(url_for_encode), stdout);
return 0;

#endif

Peter Yastrebenetsky Page 152

SYNCHRONIZATION COMPLEXITY METRIC

2340 #if ENABLE_FEATURE_HTTPD_AUTH_MD5

2341 if (opt & OPT_MD5) {

2342 puts (pw_encrypt (pass, "1", 1));
2343 return 0;

2344 }

2345 #endif

2346 #if ENABLE_FEATURE_HTTPD_SETUID

2347 if (opt & OPT_SETUID) {

2348 xget_uidgid(&ugid, s_ugid);

2349 }

2350 #endif

2351

2352 #if !BB_MMU

2353 if (! (opt & OPT_FOREGROUND)) {

2354 bb_daemonize_or_rexec (0, argv); /* don't change current directory */
2355 }

2356 #endif

2357

2358 xchdir (home_httpd) ;

2359 if (!(opt & OPT_INETD)) {

2360 signal (SIGCHLD, SIG_IGN) ;

2361 server_socket = openServer|();

2362 #if ENABLE_FEATURE_HTTPD_SETUID

2363 /* drop privileges */

2364 if (opt & OPT_SETUID) {

2365 if (ugid.gid !'= (gid_t)-1) {

2366 if (setgroups(l, &ugid.gid) == -1)
2367 bb_perror_msg_and_die ("setgroups") ;
2368 xsetgid(ugid.gid) ;

2369 }

2370 xsetuid (ugid.uid) ;

2371 }

2372 #endif

2373 }

2374

Peter Yastrebenetsky Page 153

2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

SYNCHRONIZATION COMPLEXITY METRIC

no need to xstrdup(p):

/* never returns */

#if O
/* User can do it himself: 'env - PATH="S$PATH" httpd'
* We don't do it because we don't want to screw users
* which want to do
* 'env - VARl=vall VAR2=val2 httpd'
* and have VARl and VAR2 values visible in their CGIs.
* Besides, it is also smaller. */
{
char *p = getenv ("PATH");
/* env strings themself are not freed,
clearenv () ;
if (p)
putenv(p - 5);
// if (!(opt & OPT_INETD))
// setenv_long ("SERVER_PORT", ?227?);
}
#endif
parse_conf (DEFAULT_PATH_HTTPD_CONF, FIRST_PARSE);
if (! (opt & OPT_INETD))
signal (SIGHUP, sighup_handler);
xfunc_error_retval = 0;
if (opt & OPT_INETD)
mini_httpd_inetd();
#if BB_MMU
if (! (opt & OPT_FOREGROUND))
bb_daemonize (0); /* don't change current directory */
mini_httpd (server_socket); /* never returns */
#else
mini_httpd_nommu (server_socket, argc, argv);
#endif

/* return 0;

Peter Yastrebenetsky

*/

Page 154

*/

ORI N AW

SYNCHRONIZATION COMPLEXITY METRIC

httpd.c — Older Version (Ver. 1.35, Oct. 6, 2004)

/*
/*

ol S S S S . S S N S S S S S I S T S . S S S N

vi: set sw=4 ts=4: */
httpd implementation for busybox

Copyright (C) 2002,2003 Glenn Engel <glenne@engel.org>
Copyright (C) 2003-2006 Vladimir Oleynik <dzo@simtreas.ru>

simplify patch stolen from libbb without using strdup

Licensed under GPLv2 or later, see file LICENSE in this tarball for details.

KK AR A A A A A A A A A A A A A AR A A A A A A A A A A A A A I A A I A A I A I A A I A A I A A I A A A AR A AR A AR A AR A AT A AR A A XA K

Typical usage:
for non root user
httpd -p 8080 —-h $HOME/public_html
or for daemon start from rc script with uid=0:
httpd -u www
This is equivalent if www user have uid=80 to
httpd -p 80 —-u 80 -h /www -c /etc/httpd.conf -r "Web Server Authentication"

When a url contains "cgi-bin" it is assumed to be a cgi script. The
server changes directory to the location of the script and executes it
after setting QUERY_STRING and other environment variables.

Doc:
"CGI Environment Variables": http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Peter Yastrebenetsky Page 155

SYNCHRONIZATION COMPLEXITY METRIC

L S R e . S S N S S i A . S S S S S S S S S S S S S S S

The server can also be invoked as a url arg decoder and html text encoder
as follows:
foo="httpd -d $foo’ # decode "Hello%20World" as "Hello World"
bar="httpd -e "<Hello World>"" # encode as "<Hello World>"
Note that url encoding for arguments is not the same as html encoding for
presentation. -d decodes a url-encoded argument while —-e encodes in html
for page display.

httpd.conf has the following format:

A:172.20. # Allow address from 172.20.0.0/16

A:10.0.0.0/25 # Allow any address from 10.0.0.0-10.0.0.127
A:10.0.0.0/255.255.255.128 # Allow any address that previous set

A:127.0.0.1 Allow local loopback connections

D:* Deny from other IP connections

/cgi-bin:foo:bar Require user foo, pwd bar on urls starting with /cgi-bin/
/adm:admin:setup Require user admin, pwd setup on urls starting with /adm/
/adm:toor :PaSsWd or user toor, pwd PaSsWd on urls starting with /adm/
.au:audio/basic additional mime type for audio.au files

* . php:/path/php running cgi.php scripts through an interpreter

HE oS o o 9

A/D may be as a/d or allow/deny - first char case insensitive
Deny IP rules take precedence over allow rules.

The Deny/Allow IP logic:

— Default is to allow all. ©No addresses are denied unless
denied with a D: rule.
— Order of Deny/Allow rules is significant
— Deny rules take precedence over allow rules.
- If a deny all rule (D:*) is used it acts as a catch-all for unmatched
addresses.
— Specification of Allow all (A:*) is a no-op

Peter Yastrebenetsky Page 156

SYNCHRONIZATION COMPLEXITY METRIC

Example:

1. Allow only specified addresses
A:172.20 # Allow any address that begins with 172.20.
A:10.10. # Allow any address that begins with 10.10.
A:127.0.0.1 # Allow local loopback connections
D:* # Deny from other IP connections

2. Only deny specified addresses
D:1.2.3. # deny from 1.2.3.0 - 1.2.3.255
D:2.3.4. # deny from 2.3.4.0 - 2.3.4.255
A:x* # (optional line added for clarity)

If a sub directory contains a config file it is parsed and merged with
any existing settings as if it was appended to the original configuration.

subdir paths are relative to the containing subdir and thus cannot
affect the parent rules.

Note that since the sub dir is parsed in the forked thread servicing the
subdir http request, any merge is discarded when the process exits. As a
result, the subdir settings only have a lifetime of a single request.

If -c is not set, an attempt will be made to open the default
root configuration file. 1If -c is set and the file is not found, the
server exits with an error.

#include "libbb.h"

/*

amount of buffering in a pipe */

#ifndef PIPE_BUF
define PIPE_BUF 4096
#endif

Peter Yastrebenetsky Page 157

SYNCHRONIZATION COMPLEXITY METRIC

100

101 static const char httpdVersion[] = "busybox httpd/1.35 6-0Oct-2004";
102 static const char default_path_httpd_conf[] = "/etc";

103 static const char httpd _conf[] = "httpd.conf";

104 static const char home[] = "./";

105

106 #define TIMEOUT 60

107

108 // Note: busybox xfuncs are not used because we want the server to keep running
109 // if something bad happens due to a malformed user request.
110 // As a result, all memory allocation after daemonize

111 // is checked rigorously

112

113 //#define DEBUG 1
114 #define DEBUG 0

115

116 #define MAX_MEMORY_BUFF 8192 /* 10 buffer */

117

118 typedef struct HT_ACCESS {

119 char *after_colon;

120 struct HT_ACCESS *next;

121 char before_colon[1]; /* really bigger, must last */
122 } Htaccess;

123

124 typedef struct HT_ACCESS_IP {

125 unsigned int ip;

126 unsigned int mask;

127 int allow_deny;

128 struct HT_ACCESS_IP *next;

129 } Htaccess_1IP;

130

131 typedef struct {

132 char buf [MAX_MEMORY_BUFF];

133

134 USE_FEATURE_HTTPD_BASIC_AUTH (const char *realm;)

Peter Yastrebenetsky Page 158

135
136
137
138
139
140
141

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

SYNCHRONIZATION COMPLEXITY METRIC

USE_FEATURE_HTTPD_BASIC_AUTH (char *remoteuser;)

const char *query;

USE_FEATURE_HTTPD_CGI (char *referer;)

const char *configFile;

unsigned int rmt_ip;

#if ENABLE_FEATURE_HTTPD_CGI || DEBUG

char *rmt_ip_str; /* for set env REMOTE_ADDR */
#endif

unsigned port; /* server initial port and for

const char *found_mime_type;

set env REMOTE_PORT */

const char *found_moved_temporarily;

off_t Contentlength;
time_t last_mod;

Htaccess_IP *ip_a_d;
int flg_deny_all;

#if ENABLE FEATURE_HTTPD BASIC_AUTH
Htaccess *auth;

#endif

/* -1 — unknown */

/* config allow/deny lines */

/* config user:password lines */

#if ENABLE_FEATURE_HTTPD_CONFIG_WITH_MIME_TYPES

Htaccess *mime_a;
#endif

int server_socket;
int accepted_socket;
volatile int alarm_signaled;

/* config mime types */

#if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

Htaccess *script_i;

Peter Yastrebenetsky

/* config script interpreters */

Page 159

SYNCHRONIZATION COMPLEXITY METRIC

170 #endif
171 } HttpdConfig;

172

173 static HttpdConfig *config;

174

175 static const char request_GET[] = "GET"; /* size algorithmic optimize */
176

177 static const char* const suffixTable [] = {

178 /* Warning: shorted equivalent suffix in one line must be first */
179 " . htm.html", "text/html",

180 ".jpg.jpeg", "image/jpeg",

181 ".gif", "image/gif",

182 ".png", "image/png",

183 ".txt.h.c.cc.cpp", "text/plain",

184 ". css", "text/css",

185 " . wav", "audio/wav",

186 ".,avi", "video/x-msvideo",

187 ".gt.mov", "video/quicktime",

188 " .mpe.mpeg", "video/mpeg",

189 " mid.midi", "audio/midi",

190 ".mp3", "audio/mpeg",

191 #if 0 /* unpopular */

192 ".au", "audio/basic",

193 ".pac", "application/x-ns-proxy-autoconfig",

194 ".vrml.wrl", "model/vrml",

195 #endif

196 0, "application/octet-stream" /* default */

197 }i

198

199 typedef enum {

200 HTTP_OK = 200,

201 HTTP_MOVED_TEMPORARILY = 302,

202 HTTP_BAD_REQUEST = 400, /* malformed syntax */
203 HTTP_UNAUTHORIZED = 401, /* authentication needed, respond with auth hdr */
204 HTTP_NOT_FOUND = 404,

Peter Yastrebenetsky Page 160

SYNCHRONIZATION COMPLEXITY METRIC

205 HTTP_FORBIDDEN = 403,

206 HTTP_REQUEST_TIMEOUT = 408,

207 HTTP_NOT_IMPLEMENTED = 501, /* used for unrecognized requests */
208 HTTP_INTERNAL SERVER_ERROR = 500,

209 #if 0 /* future use */

210 HTTP_CONTINUE = 100,

211 HTTP_SWITCHING_PROTOCOLS = 101,

212 HTTP_CREATED = 201,

213 HTTP_ACCEPTED = 202,

214 HTTP_NON_AUTHORITATIVE_INFO = 203,

215 HTTP_NO_CONTENT = 204,

216 HTTP_MULTIPLE_CHOICES = 300,

217 HTTP_MOVED_PERMANENTLY = 301,

218 HTTP_NOT MODIFIED = 304,

219 HTTP_PAYMENT_REQUIRED = 402,

220 HTTP_BAD GATEWAY = 502,

221 HTTP_SERVICE_UNAVAILABLE = 503, /* overload, maintenance */

222 HTTP_RESPONSE SETSIZE = Oxffffffff

223 #endif

224 } HttpResponseNum;

225

226 typedef struct {

227 HttpResponseNum type;

228 const char *name;

229 const char *info;

230 } HttpEnumString;

231

232 static const HttpEnumString httpResponseNames[] = {

233 { HTTP_OK, "OK", NULL },

234 { HTTP_MOVED_TEMPORARILY, "Found", "Directories must end with a slash." },
235 { HTTP_REQUEST_TIMEOUT, "Request Timeout",

236 "No request appeared within a reasonable time period." 1},
237 { HTTP_NOT_IMPLEMENTED, "Not Implemented",

238 "The requested method is not recognized by this server." },

239 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

Peter Yastrebenetsky Page 161

SYNCHRONIZATION COMPLEXITY METRIC

240 { HTTP_UNAUTHORIZED, "Unauthorized", "" },

241 #endif

242 { HTTP_NOT_FOUND, "Not Found",

243 "The requested URL was not found on this server." },
244 { HTTP_BAD_REQUEST, "Bad Request", "Unsupported method." },
245 { HTTP_FORBIDDEN, "Forbidden", "" },

246 { HTTP_INTERNAL_SERVER_ERROR, "Internal Server Error",

247 "Internal Server Error" 1},

248 #if 0 /* not implemented */

249 { HTTP_CREATED, "Created" },

250 { HTTP_ACCEPTED, "Accepted" },

251 { HTTP_NO_CONTENT, "No Content" },

252 { HTTP_MULTIPLE_CHOICES, "Multiple Choices™ },

253 { HTTP_MOVED_PERMANENTLY, "Moved Permanently" },

254 { HTTP_NOT_MODIFIED, "Not Modified" },

255 { HTTP_BAD_GATEWAY, "Bad Gateway", "" },

256 { HTTP_SERVICE_UNAVAILABLE, "Service Unavailable", "" },
257 #endif

258 }i

259

260

261 static const char RFC1123FMT[] = "%a, %d %b %Y $H:%M:%S GMT";

262

263

264 #define STRNCASECMP (a, str) strncasecmp((a), (str), sizeof(str)-1)
265

266

267 static int scan_ip(const char **ep, unsigned int *ip, unsigned char endc)
268 {

269 const char *p = *ep;

270 int auto_mask = 8;

271 int J;

272

273 *ip = 0;

274 for (j = 0; j < 4; J++) {

Peter Yastrebenetsky Page 162

SYNCHRONIZATION COMPLEXITY METRIC

275 unsigned int octet;

276

277 if ((Fp < '0" || *p > '9') && (*p != '"/' || J == 0) && *p != 0)
278 return -auto_mask;

279 octet = 0;

280 while (*p >= '0' && *p <= '9') {
281 octet *= 10;

282 octet += *p - '0';

283 if (octet > 255)

284 return -—-auto_mask;
285 p++;

286 }

287 if (*p — l.l)

288 pt+;

289 if (*p !'= '/' && *p != 0)

290 auto_mask += 8;

291 *ip = ((*ip) << 8) | octet;

292 }

293 if (*p != 0) {

294 if (*p !'= endc)

295 return —-auto_mask;

296 p++;

297 if (*p == 0)

298 return —-auto_mask;

299 }

300 *ep = p;

301 return auto_mask;

302

303

304 static int scan_ip_mask (const char *ipm, unsigned int *ip, unsigned int *mask)
305 {

306 int 1i;

307 unsigned int msk;

308

309 i = scan_ip(&ipm, ip, '/');

Peter Yastrebenetsky Page 163

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

SYNCHRONIZATION COMPLEXITY METRIC

if (1 < 0)
return i;
if (*ipm) {

const char *p = ipm;
i = 0;
while (*p) {
if (*p < '0" || *p > '9") {
if (*p == '.") {
i = scan_ip(&ipm,
return 1 != 32;

}

return -1;

}

if (i > 32 || i < 0)
return -1;

msk = 0x80000000;

*mask = 0;

while (i > 0) {
*mask |= msk;
msk >>= 1;
i——;

}

return O;

}

#if ENABLE FEATURE_HTTPD BASIC AUTH \

| | ENABLE FEATURE_HTTPD_ CONFIG _WITH MIME TYPES \

| | ENABLE_FEATURE_HTTPD_CONFIG_WITH_ SCRIPT_INTERPR
static void free_config_lines (Htaccess **pprev)

Peter Yastrebenetsky

mask,

0);

Page 164

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

SYNCHRONIZATION COMPLEXITY METRIC

Htaccess *prev = *pprev;

while (prev) {
Htaccess *cur = prev;

prev = cur->next;
free(cur);
}
*pprev = NULL;
}

#endif

/* flag */

#define FIRST_PARSE 0
#define SUBDIR_PARSE 1
#define SIGNALED_PARSE 2

#define FIND_FROM_HTTPD_ROOT 3
[K kK Kk ok ok kK K ok ok ok kK ok ok ok Kk ok ok ok ok K K ok ok ok ok ok ok ok ok K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok K ok ok ok ok K ok ok ok kK K

S$Function: parse_conf ()
$Description: parse configuration file into in-memory linked list.

The first non-white character is examined to determine if the config line
is one of the following:
.ext:mime/type # new mime type not compiled into httpd
[adAD] : from # ip address allow/deny, * for wildcard
/path:user:pass # username/password

Any previous IP rules are discarded.

If the flag argument is not SUBDIR_PARSE then all /path and mime rules
are also discarded. That is, previous settings are retained if flag is
SUBDIR_PARSE.

b S . S N T Y

Peter Yastrebenetsky Page 165

SYNCHRONIZATION COMPLEXITY METRIC

380 * SParameters:

381 * (const char *) path . . null for ip address checks, path for password
382 * checks.

383 * (int) flag the source of the parse request.
384 *

385 * SReturn: (None)

386 *

387 'k*****'k'k'k'k'k************************/
388 static void parse_conf (const char *path, int flag)
389 {

390 FILE *f;

391 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

392 Htaccess *prev;

393 #endif

394 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH \

395 | | ENABLE _FEATURE_HTTPD_CONFIG_WITH _MIME_TYPES \
396 | | ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR
397 Htaccess *cur;

398 #endif

399

400 const char *cf = config->configFile;

401 char buf[160];

402 char *p0 = NULL;

403 char *c, *p;

404

405 /* free previous ip setup if present */

406 Htaccess_IP *pip = config->ip_a_d;

407

408 while (pip) {

409 Htaccess_IP *cur_ipl = pip;

410

411 pip = cur_ipl->next;

412 free(cur_ipl);

413 }

414 config->ip_a_d = NULL;

Peter Yastrebenetsky Page 166

SYNCHRONIZATION COMPLEXITY METRIC

415

416 config->flg_deny_all = 0;

417

418 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH \

419 | | ENABLE_FEATURE_HTTPD_CONFIG_WITH_MIME_TYPES \

420 | | ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

421 /* retain previous auth and mime config only for subdir parse */
422 if (flag != SUBDIR_PARSE) {

423 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

424 free_config lines(&config->auth);

425 #endif

426 #if ENABLE FEATURE_HTTPD_CONFIG WITH MIME TYPES

427 free_config_lines(&config->mime_a);

428 #endif

429 #if ENABLE_FEATURE_HTTPD_CONFIG _WITH_SCRIPT_INTERPR

430 free_config lines(&config->script_1i);

431 #endif

432 }

433 #endif

434

435 if (flag == SUBDIR_PARSE || cf == NULL) {

436 cf = alloca(strlen(path) + sizeof (httpd_conf) + 2);
437 if (cf == NULL) {

438 if (flag == FIRST_PARSE)

439 bb_error_msg_and_die (bb_msg_memory_exhausted) ;
440 return;

441 }

442 sprintf ((char *)cf, "$s/%$s", path, httpd_conf);

443 }

444

445 while ((f = fopen(cf, "r")) == NULL) {

446 if (flag == SUBDIR_PARSE || flag == FIND_FROM_HTTPD_ROOT)
447 /* config file not found, no changes to config */
448 return;

449)

Peter Yastrebenetsky Page 167

SYNCHRONIZATION COMPLEXITY METRIC

450 if (config->configFile && flag == FIRST_PARSE) /* if -c option given */
451 bb_perror_msg_and_die("%$s", cf);
452 flag = FIND_FROM_HTTPD_ROOT;

453 ct = httpd_conft;

454 }

455

456 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

457 prev = config->auth;

458 #endif

459 /* This could stand some work */

460 while ((p0O = fgets(buf, sizeof(buf), f)) != NULL) {
461 ¢ = NULL;

462 for (p = p0; *p0 != 0 && *p0 != "#'; pO++) {
463 if (!isspace(*p0)) {

464 *p++ = *p0;

465 if (*p0 == ':' && ¢ == NULL)
466 c =p;

467 }

468 }

469 *p = 0;

470

471 /* test for empty or strange line */

472 if (¢ == NULL || *c == 0)

473 continue;

474 p0 = buf;

475 if (*p0 == 'd")

476 *p0 = 'D';

477 if (*c == '*') |

478 if (*p0 == 'D') {

479 /* memorize deny all */

480 config->flg deny_all++;

481 }

482 /* skip default other "word:*" config lines */
483 continue;

484)

Peter Yastrebenetsky Page 168

SYNCHRONIZATION COMPLEXITY METRIC

485

486 if (*p0 == 'a')

487 *p0 = 'A';

488 else if (*p0 !'= 'D' && *p0O !'= 'A!

489 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

490 && *p0O 1= '/0

491 #endif

492 #if ENABLE_FEATURE_HTTPD_CONFIG_WITH_MIME_TYPES

493 && *p0 != ',

494 #endif

495 #if ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR

496 && *p0 != 'x!

497 #endif

498)

499 continue;

500 if (*p0 == 'A' || *p0 == 'D') {

501 /* storing current config IP line */

502 pip = xzalloc(sizeof (Htaccess_IP));

503 if (pip) A

504 if (scan_ip_mask(c, & (pip->ip), & (pip->mask))) {
505 /* syntax IP{/mask} error detected, protect all */
506 *p0 = 'D';

507 pip->mask = 0;

508 }

509 pip->allow_deny = *p0;

510 if (*p0 == 'D') {

511 /* Deny:form_IP move top */

512 pip->next = config->ip_a_d;

513 config->ip_a_d = pip;

514 } else {

515 /* add to bottom A:form_IP config line */
516 Htaccess_IP *prev_IP = config->ip_a_d;
517

518 if (prev_IP == NULL) {

519 config->ip_a_d = pip;

Peter Yastrebenetsky Page 169

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

SYNCHRONIZATION COMPLEXITY METRIC

} else {
while (prev_IP->next)
prev_IP = prev_IP->next;
prev_IP->next = pip;

}
}
continue;

}
#if ENABLE_FEATURE_HTTPD_BASIC_AUTH

if (*p0 == '/") |
/* make full path from httpd root / curent_path / config_line_path */
ct = flag == SUBDIR PARSE ? path : "";
p0 = malloc(strlen(cf) + (c - buf) + 2 + strlen(c));
if (p0 == NULL)
continue;
c[-1] = 0;

sprintf (p0, "/%s%s", cf, buf);

/* another call bb_simplify_path */
ct = p = p0;

do |
if (*p == "/") {
if (*cf == '/") { /* skip duplicate (or initial) slash */
continue;
} else if (*cf == '.'") {
if (cf[l] == '/'" || cf[1l] == 0) { /* remove extra '.' */
continue;
} else if ((cf[1l] == '.') && (cf[2] == '/' || cf[2] == 0)) {
++cf;
if (p > p0) {
while (*--p != '/') /* omit previous dir */;
}
continue;

Peter Yastrebenetsky Page 170

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

SYNCHRONIZATION COMPLEXITY METRIC

}
}
*++p = *cf;
} while (*++cf);

if ((p == p0) || (*p !'= "/")) { /* not a trailing slash */
++p; /* so keep last character */
}
po= 05
sprintf (p0, "%s:%s", pO0, c);

#endif

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH \
| | ENABLE_FEATURE_HTTPD_CONFIG_WITH_MIME_TYPES \
| | ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR
/* storing current config line */
cur = xzalloc(sizeof (Htaccess) + strlen(p0));
if (cur) {
cf = strcpy(cur->before_colon, p0);
c = strchr(cf, ':');
*c++ = 0;
cur—->after_colon = c¢;
#1f ENABLE_FEATURE_HTTPD_CONFIG_WITH_MIME_TYPES
if (*cf == "'.") {
/* config .mime line move top for overwrite previous */
cur->next = config->mime_a;
config->mime_a = cur;
continue;
}
#endif
#1f ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR
if (*cf == "*' && cf[1l] == "'.") {
/* config script interpreter line move top for overwrite previous */

Peter Yastrebenetsky Page 171

SYNCHRONIZATION COMPLEXITY METRIC

590 cur->next = config->script_i;

591 config->script_i = cur;

592 continue;

593 }

594 #endif

595 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

596 free(p0);

597 if (prev == NULL) {

598 /* first line */

599 config->auth = prev = cur;

600 } else {

601 /* sort path, if current lenght eq or bigger then move up */
602 Htaccess *prev_hti = config->auth;

603 size_t 1 = strlen(cf);

604 Htaccess *hti;

605

606 for (hti = prev_hti; hti; hti = hti->next) {
607 if (1 »>= strlen(hti->before_colon)) {
608 /* insert before hti */

609 cur—->next = hti;

610 if (prev_hti != hti) {

611 prev_hti->next = cur;
612 } else {

613 /* insert as top */
614 config->auth = cur;
615 }

616 break;

617 }

618 if (prev_hti != hti)

619 prev_hti = prev_hti->next;
620 }

621 if ('hti) { /* not inserted, add to bottom */
622 prev->next = cur;

623 prev = cur;

624 }

Peter Yastrebenetsky Page 172

SYNCHRONIZATION COMPLEXITY METRIC

625 }

626 #endif

627 }

628 #endif

629 }

630 fclose(f);

631

632

633 #if ENABLE_FEATURE_HTTPD_ENCODE_URL_STR

634 /***~k~k~k~k~k~k~k****************************
635 *

636 > $Function: encodeString()

637 *

638 * SDescription: Given a string, html encode special characters.

639 * This is used for the —-e command line option to provide an easy way
640 * for scripts to encode result data without confusing browsers. The
641 * returned string pointer is memory allocated by malloc().

642 *

643 * SParameters:

644 * (const char *) string . . The first string to encode.

645 *

646 * $Return: (char *) A pointer to the encoded string.

647 *

648 * $Errors: Returns a null string ("") if memory is not available.

649 *

650 **~k~k~k~k~k~k~k***************************/
651 static char *encodeString(const char *string)

652 ¢

653 /* take the simple route and encode everything */

654 /* could possibly scan once to get length. */

655 int len = strlen(string);

656 char *out = xmalloc(len * 6 + 1);

657 char *p = out;

658 char ch;

659

Peter Yastrebenetsky Page 173

SYNCHRONIZATION COMPLEXITY METRIC

660 while ((ch = *string++)) {

661 // very simple check for what to encode

662 if (isalnum(ch)) *p++ = ch;

663 else p += sprintf(p, "&#%d;", (unsigned char) ch);

664 }

665 *p = '\0"';

666 return out;

667

668 #endif /* FEATURE_HTTPD_ENCODE_URL_STR */

669

670 /~k**~k~k~k~k~k***~k~k~k~k~k~k*~k~k~k~k~k~k*~k~k~k~k~k**~k~k~k~k~k~k~k*~k~k~k~k~k~k*~k~k~k~k~k************************
671 *

672 > S$Function: decodeString()

673 *

674 * SDescription: Given a URL encoded string, convert it to plain ascii.

675 * Since decoding always makes strings smaller, the decode is done in-place.
676 * Thus, callers should strdup() the argument if they do not want the

677 * argument modified. The return is the original pointer, allowing this
678 * function to be easily used as arguments to other functions.

679 *

680 * SParameters:

681 * (char *) string . . . The first string to decode.

682 * (int) option_d . . 1 if called for httpd -d

683 *

684 * SReturn: (char *) A pointer to the decoded string (same as input).
685 +

686 * S$Errors: None

687

688 'k***********************/
689 static char *decodeString(char *orig, int option_d)

690 ¢

691 /* note that decoded string is always shorter than original */

692 char *string = orig;

693 char *ptr = string;

694 char c;

Peter Yastrebenetsky Page 174

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

714
715
716
717
718
719
720
721
722
723
724
725
726
727

729

SYNCHRONIZATION COMPLEXITY METRIC

while ((c = *ptr++) != '"\0'") {
unsigned valuel, value2;

if (option_d && c == "+"') {
*string++ = ' ';

continue;

if (¢ !'= '%") {
*string++ = c;

continue;

}
if (sscanf (ptr, "$1X", &valuel) != 1
| | sscanf (ptr+l, "%$1X", &value2) != 1

) A

if (loption_d)

return NULL;

*string++ = '$';

continue;
}
valuel = valuel * 16 + value2;
if (loption_d && (valuel == '/' || valuel == '\0"'")) {

/* caller takes it as indication of invalid

* (dangerous wrt exploits)
return orig + 1;

}

*string++ = valuel;

ptr += 2;
}
*string = '\0"';
return orig;

#if ENABLE_FEATURE_HTTPD_CGI

Peter Yastrebenetsky

chars */

Page 175

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

SYNCHRONIZATION COMPLEXITY METRIC

/~k************************

* setenv helpers

****‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k'k'k************************/

static void setenvl (const char *name, const char *value)

{
if (!value)
value =
setenv (name, value, 1);

mww.
4

}

static void setenv_long(const char *name,

{
char buf[sizeof (value)*3 + 1];
sprintf (buf, "%1d", wvalue);
setenv (name, buf, 1);

}

#endif

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH

long value)

/***‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k'k'k*************************

*

> SFunction: decodeBase64 ()
*

> $Description: Decode a base 64 data stream as per rfcl521.

SParameter:

SReturn: void

SErrors: None

b S S S R . S S N S

Peter Yastrebenetsky

Note that the rfc states that none baset4 chars are to be ignored.
Since the decode always results in a shorter size than the input, it is
OK to pass the input arg as an output arg.

(char *) Data A pointer to a base64 encoded string.
Where to place the decoded data.

Page 176

SYNCHRONIZATION COMPLEXITY METRIC

765 ~k***************~k~k~k~k~k~k***************~k~k~k~k~k~k~k~k*******************************/
766 static void decodeBase64 (char *Data)

767 {

768 const unsigned char *in = (const unsigned char *)Data;
769 // The decoded size will be at most 3/4 the size of the encoded
770 unsigned ch = 0;

771 int 1 = 0;

772

773 while (*in) {

774 int t = *in++;

775

776 if (£t >= '0' && t <= '9")

777 t =t - '0"'" + 52;

778 else if (t >= 'A' && t <= 'Z2')

779 t =t - 'A';

780 else 1if (t >= 'a' && t <= 'z"'")

781 t =t - 'a' + 26;

782 else if (t == '+")

783 t = 62;

784 else if (t == '/")

785 t = 63;

786 else if (t == '=")

787 t = 0;

788 else

789 continue;

790

791 ch = (ch << 6) | t;

792 it+;

793 if (1 == 4) {

794 *Data++ = (char) (ch >> 16);
795 *Data++ = (char) (ch >> 8);
796 *Data++ = (char) ch;

797 i=0;

798 }

799 }

Peter Yastrebenetsky Page 177

SYNCHRONIZATION COMPLEXITY METRIC

800 *Data = '"\0';

801

802 #endif

803

804

805 /~k************************
806 *

807 > S$Function: openServer ()

808 *

809 * S$Description: create a listen server socket on the designated port.

810 *

811 * SReturn: (int) . . . A connection socket. -1 for errors.

812 *

813 * $Errors: None

814 +

815 ~k***********************/
816 static int openServer (void)

817 ¢

818 int f£d;

819

820 /* create the socket right now */

821 fd = create_and_bind_stream or_die(NULL, config->port);

822 xlisten(fd, 9);

823 return fd;

824

825

826 /*‘k*************************************'k'k'k'k*'k'k'k'k*'k'k'k************************
827 *

828 > S$Function: sendHeaders/()

829 *

830 * SDescription: Create and send HTTP response headers.

831 * The arguments are combined and sent as one write operation. Note that
832 * IE will puke big-time if the headers are not sent in one packet and the
833 * second packet is delayed for any reason.

834 *

Peter Yastrebenetsky Page 178

835
836
837
838
839
840
841
842
843
844
845
846
8477
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

SYNCHRONIZATION COMPLEXITY METRIC

* SParameter:

* (HttpResponseNum) responseNum . . . The result code to send.
*

* SReturn: (int) writing errors

~k***/

static int sendHeaders (HttpResponseNum responseNum)
{
char *buf = config->buf;
const char *responseString =
const char *infoString = 0;
const char *mime_type;
unsigned 1i;

mww,
14

time_t timer = time(0);
char timeStr[80];
int len;
enum {
numNames = sizeof (httpResponseNames) / sizeof (httpResponseNames[0])
bi
for (i = 0; 1 < numNames; i++) {
if (httpResponseNames[i].type == responseNum) {

responseString = httpResponseNames[i].name;

infoString = httpResponseNames[i].info;

break;

}
}
/* error message is HTML */
mime_type = responseNum == HTTP_OK ?
config->found_mime_type : "text/html";

/* emit the current date */
strftime (timeStr, sizeof (timeStr), RFC1123FMT, gmtime(&timer));
len = sprintf (buf,

"HTTP/1.0 %d %$s\r\nContent-type: %$s\r\n"

Peter Yastrebenetsky Page 179

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

SYNCHRONIZATION COMPLEXITY METRIC

"Date: %s\r\nConnection: close\r\n",
responseNum, responseString, mime_type, timeStr);

#1f ENABLE_FEATURE_HTTPD_BASIC_AUTH
if (responseNum

}
#endif

== HTTP_UNAUTHORIZED) {
len += sprintf (buf+len,
"WWW-Authenticate: Basic realm=\"%s\"\r\n",

config->realm);

if (responseNum == HTTP_MOVED_TEMPORARILY) {
len += sprintf (buf+len, "Location: %s/%s%s\r\n",
config->found_moved_temporarily,

(config->query ? "?2" : ""),
(config->query ? config->query : ""));
}
if (config->ContentLength != -1) { /% file */

strftime (timeStr, sizeof (timeStr), RFC1123FMT, gmtime (&config->last_mod));
len += sprintf (buf+len, "Last-Modified: %s\r\n%s $%"OFF_FMT"d\r\n",
timeStr, "Content-length:", config->ContentLength);

}
strcat (buf
len += 2;

14

n\r\nn) ;

if (infoString)

len += sprintf (buf+len,
"<HEAD><TITLE>%d %$s</TITLE></HEAD>\n"
"<BODY><H1>%d %$s</H1>\n%s\n</BODY>\n",

}

{

responseNum, responseString,
responseNum, responseString,

if (DEBUG)
fprintf (stderr, "headers: '%s'\n", buf);
i = config->accepted_socket;
if (1 == 0) 1i++; /* write to fd# 1 in inetd mode */

Peter Yastrebenetsky

infoString);

Page 180

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

SYNCHRONIZATION COMPLEXITY METRIC

return full _write(i, buf, len);

}

/***‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k*'k'k************************
*

> SFunction: getLine ()
*

* S$Description: Read from the socket until an end of line char found.
*

* Characters are read one at a time until an eol sequence is found.
*

* $Return: (int) number of characters read. -1 if error.

*

****‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k'k'k************************/

static int getLine(void)

{

int count = 0;
char *buf = config->buf;
while (read(config->accepted_socket, buf + count, 1) == 1) {
if (buf[count] == '\r') continue;
if (bufl[count] == '\n') {
buf [count] = 0;

return count;
}
if (count < (MAX_MEMORY_BUFF-1)) /* check overflow */
count++;
}
if (count) return count;
else return -1;

}

#1f ENABLE_FEATURE_HTTPD_CGI
[K kK Kk ok ok kK K ok ok ok kK ok ok ok Kk ok ok ok ok K K ok ok ok ok ok ok ok ok K K ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok kK K ok ok ok K ok ok ok ok K K ok ok ok Kk

*

Peter Yastrebenetsky Page 181

SYNCHRONIZATION COMPLEXITY METRIC

940 > SFunction: sendCgi ()

941 *

942 * $Description: Execute a CGI script and send it's stdout back

943 *

944 * Environment variables are set up and the script is invoked with pipes
945 * for stdin/stdout. If a post is being done the script is fed the POST
946 * data in addition to setting the QUERY_STRING variable (for GETs or POSTs).
947 *

948 * SParameters:

949 * (const char *) url The requested URL (with leading /).
950 * (int bodyLen) .« « . . .+ . . Length of the post body.

951 * (const char *cookie) For set HTTP_COOKIE.

952 * (const char *content_type) . . For set CONTENT_TYPE.

953 *

954 * S$Return: (char *) A pointer to the decoded string (same as input).
955 *

956 * SErrors: None

957 *

958 "k"k"k"k"k"k"k"k"k***"k"k"k"k"k******"k"k******"k"k"k"k"k"k"k"k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k*********************/
959 static int sendCgi(const char *url,

960 const char *request, int bodyLen, const char *cookie,

961 const char *content_type)

962 ¢

963 int fromCgi[2]; /* pipe for reading data from CGI */

964 int toCgi[2]; /* pipe for sending data to CGI */

965

966 static char * argpl[] = { 0, 0 };

967 int pid = 0;

968 int inFd;

969 int outFd;

970 int buf_count;

971 int status;

972 size_t post_read_size, post_read_idx;

973

974 if (pipe(fromCgi) != 0)

Peter Yastrebenetsky Page 182

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

SYNCHRONIZATION COMPLEXITY METRIC

return 0;
if (pipe(toCgi) !'= 0)
return 0;

/*
* Note: We can use vfork() here in the no-mmu case, although

* the child modifies the parent's variables, due to:

* 1) The parent does not use the child-modified variables.

* 2) The allocated memory (in the child) is freed when the process
* exits. This happens instantly after the child finishes,

* since httpd is run from inetd (and it can't run standalone

* in uClinux) .

*

/
#if !BB_MMU
pid = vfork();
#else
pid = fork();
#endif
if (pid < 0)
return 0;

if (!'pid) |
/* child process */
char *script;
char *purl;
char realpath_buff [MAXPATHLEN];

if (config->accepted_socket > 1)
close(config->accepted_socket);

if (config->server_socket > 1)
close(config->server_socket) ;

dup2 (toCgi[0]1, 0); // replace stdin with the pipe
dup2 (fromCgi[l], 1); // replace stdout with the pipe
/* Huh? User seeing stderr can be a security problem...

Peter Yastrebenetsky Page 183

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

SYNCHRONIZATION COMPLEXITY METRIC

* and if CGI really wants that, it can always dup2(1,2)...
if (!DEBUG)
dup2 (fromCgi[l], 2); // replace stderr with the pipe
*/
/* I think we cannot inadvertently close 0, 1 here... */
close (toCgi[0]);
close(toCgil[l]);
close (fromCgi[0]);
close(fromCgi[l]);
/*
* Find PATH_INFO.
*/
xfunc_error_retval = 242;
purl = xstrdup(url);
script = purl;
while ((script = strchr(script + 1, '/')) != NULL) {
/* have script.cgi/PATH_INFO or dirs/script.cgi[/PATH_INFO] */
struct stat sb;

*script = '\0';
if (is_directory(purl + 1, 1, &sb) == 0) {
/* not directory, found script.cgi/PATH_INFO */
*script = '/"';
break;
}
script = '/"'; / is directory, find next '/' */
}
setenvl ("PATH_INFO", script); /* set /PATH_INFO or "" *x/

/* setenvl ("PATH", getenv ("PATH")); redundant */
setenvl ("REQUEST_METHOD", request);
if (config->query) {
char *uri = allocal(strlen(purl) + 2 + strlen(config->query));
if (uri)
sprintf (uri,

no

%$s?%s", purl, config->query);

Peter Yastrebenetsky Page 184

SYNCHRONIZATION COMPLEXITY METRIC

1045 setenvl ("REQUEST_URI", uri);

1046 } else {

1047 setenvl ("REQUEST_URI", purl);

1048 }

1049 if (script != NULL)

1050 *script = '\0'; /* cut off /PATH_INFO */
1051 /* SCRIPT_FILENAME required by PHP in CGI mode */

1052 if (!realpath(purl + 1, realpath_buff))

1053 goto error_execing_cgi;

1054 setenvl ("SCRIPT_FILENAME", realpath_buff);

1055 /* set SCRIPT_NAME as full path: /cgi-bin/dirs/script.cgi */
1056 setenvl ("SCRIPT_NAME", purl);

1057 /* http://hoohoo.ncsa.uiuc.edu/cgi/env.html:

1058 * QUERY_STRING: The information which follows the ? in the URL
1059 * which referenced this script. This is the query information.
1060 * It should not be decoded in any fashion. This variable
1061 * should always be set when there is query information,
1062 * regardless of command line decoding. */

1063 /* (Older versions of bbox seem to do some decoding) */
1064 setenvl ("QUERY_STRING", config->query);

1065 setenvl ("SERVER_SOFTWARE", httpdVersion);

1066 putenv ((char*) "SERVER_PROTOCOL=HTTP/1.0");

1067 putenv ((char*) "GATEWAY_INTERFACE=CGI/1.1");

1068 /* Having _separate_ variables for IP and port defeats
1069 * the purpose of having socket abstraction. Which "port"
1070 * are you using on Unix domain socket?

1071 * IOW - REMOTE_PEER="1.2.3.4:56" makes much more sense.
1072 * Oh well... */

1073 {

1074 char *p = config->rmt_ip_str ? : (char*)"";

1075 char *cp = strrchr(p, ':');

1076 if (ENABLE_FEATURE_IPV6 && cp && strchr(cp, '1'))
1077 cp = NULL;

1078 if (cp) *cp = '\0'; /* delete :PORT */

1079 setenvl ("REMOTE_ADDR", p);

Peter Yastrebenetsky Page 185

SYNCHRONIZATION COMPLEXITY METRIC

}
#if ENABLE FEATURE_HTTPD_ SET REMOTE_PORT_TO_ ENV
setenv_long ("REMOTE_PORT", config->port);
#endif
if (bodyLen)
setenv_long ("CONTENT_LENGTH", bodyLen);
if (cookie)
setenvl ("HTTP_COOKIE", cookie);
if (content_type)
setenvl ("CONTENT_TYPE", content_type);
#if ENABLE_FEATURE_HTTPD_BASIC_AUTH
if (config->remoteuser) ({
setenvl ("REMOTE_USER", config->remoteuser);
putenv ((char*) "AUTH_TYPE=Basic");
}
#endif
if (config->referer)
setenvl ("HTTP_REFERER", config->referer);

/* set execve argp[0] without path */
argp[0] = strrchr(purl, '/') + 1;
/* but script argp[0] must have absolute path and chdiring to this */
script = strrchr (realpath_buff, '/');
if (!script)
goto error_execing_cgi;
*script = '\0';
if (chdir(realpath_buff) == 0) {
// Now run the program. If it fails,
// use _exit() so no destructors
// get called and make a mess.
#1f ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR
char *interpr = NULL;
char *suffix = strrchr(purl, '.');

if (suffix) {

Peter Yastrebenetsky Page 186

SYNCHRONIZATION COMPLEXITY METRIC

Htaccess *cur;

for (cur = config->script_i; cur; cur = cur->next) {
if (strcmp(cur->before_colon + 1, suffix) == 0) {
interpr = cur->after_colon;
break;
}
}
}
#endif
*script = '/"';

#1f ENABLE_FEATURE_HTTPD_CONFIG_WITH_SCRIPT_INTERPR
if (interpr)
execv (interpr, argp);
else

execv (realpath_buff, argp);
}
error_execing_cgi:
/* send to stdout (even if we are not from inetd) */

config->accepted_socket = 1;
sendHeaders (HTTP_NOT_FOUND) ;
_exit (242);

} /* end child */
/* parent process */

buf_count = 0;
post_read_size = 0;
post_read_idx = 0; /* for gcc */
inFd = fromCgi[O0];

outFd = toCgil[l];

close (fromCgi[l]);
close(toCgi[0]);
signal (SIGPIPE, SIG_IGN);

14

Peter Yastrebenetsky Page 187

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

SYNCHRONIZATION COMPLEXITY METRIC

while (1)

{

fd_set readSet;
fd_set writeSet;
char wbuf[128];
int nfound;
int count;

FD_ZERO (&readSet) ;

FD_ZERO (&writeSet) ;

FD_SET (inFd, &readSet);

(bodyLen > 0 || post_read_size > 0) {
FD_SET (outFd, &writeSet);

if

nfound = outFd > inFd
if (post_read_size ==

FD_SET (config-

? outFd : inFd;

0) {
>accepted_socket, &readSet);

if (nfound < config->accepted_socket)

nfound

}

= config->accepted_socket;

/* Now wait on the set of sockets! */
nfound = select (nfound + 1, &readSet, &writeSet, NULL,

} else {

}

if

Peter Yastrebenetsky

if (!bodyLen) {
close (outFd);
bodyLen = -1;
}

/* no more POST data to CGI */

nfound = select (inFd + 1, &readSet, NULL, NULL, NULL);

(nfound <= 0) {

if (waitpid(pid, &status, WNOHANG) <= 0) {
/* Weird. CGI didn't exit and no fd's

* are ready,
continue;
}

close (inFd) ;

yet select returned?! */

Page 188

NULL) ;

SYNCHRONIZATION COMPLEXITY METRIC

1185 if (DEBUG && WIFEXITED (status))

1186 bb_error_msg("piped has exited with status=%d", WEXITSTATUS (status));
1187 if (DEBUG && WIFSIGNALED (status))

1188 bb_error_msg("piped has exited with signal=%d", WTERMSIG (status));
1189 break;

1190 }

1191

1192 if (post_read_size > 0 && FD_ISSET (outFd, &writeSet)) {

1193 /* Have data from peer and can write to CGI */

1194 // huh? why full_write? what if we will block?

1195 // (imagine that CGI does not read its stdin...)

1196 count = full write(outFd, wbuf + post_read_idx, post_read_size);
1197 if (count > 0) {

1198 post_read_idx += count;

1199 post_read_size —-= count;

1200 } else {

1201 post_read_size = bodyLen = 0; /* broken pipe to CGI */
1202 }

1203 } else if (bodyLen > 0 && post_read_size ==

1204 && FD_ISSET (config->accepted_socket, &readSet)

1205) A

1206 /* We expect data, prev data portion is eaten by CGI

1207 * and there *is* data to read from the peer

1208 * (POSTDATA?) */

1209 count = bodyLen > (int)sizeof (wbuf) ? (int)sizeof (wbuf) : bodyLen;
1210 count = safe_read(config->accepted_socket, wbuf, count);

1211 if (count > 0) {

1212 post_read_size = count;

1213 post_read_idx = 0;

1214 bodyLen —-= count;

1215 } else {

1216 bodyLen = 0; /* closed */

1217 }

1218 }

1219

Peter Yastrebenetsky Page 189

SYNCHRONIZATION COMPLEXITY METRIC

#define PIPESIZE PIPE_RUF
#if PIPESIZE >= MAX_MEMORY_BUFF
error "PIPESIZE >= MAX_ MEMORY_BUFFE"
#endif
if (FD_ISSET (inFd, &readSet)) {
/* There is something to read from CGI */
int s = config->accepted_socket;
char *rbuf = config->buf;

/* Are we still buffering CGI output? */
if (buf_count >= 0) {
static const char HTTP_200[] = "HTTP/1.0 200 OK\r\n";
/* Must use safe_read, not full_read, because
* CGI may output a few first bytes and then wait
* for POSTDATA without closing stdout.
* With full_read we may wait here forever. */
count = safe_read(inFd, rbuf + buf_count, PIPESIZE - 4);
if (count <= 0) {
/* eof (or error) and there was no "HTTP",
* so add one and write out the received data */
if (buf_count) {
full_write(s, HTTP_200, sizeof (HTTP_200)-1);
full_write(s, rbuf, buf_count);
}
break; /* closed */
}
buf_count += count;
count = 0;
if (buf_count >= 4) {
/* check to see if CGI added "HTTP" */
if (memcmp (rbuf, HTTP_200, 4) != 0) {
/* there is no "HTTP", do it ourself */
if (full_write(s, HTTP_200, sizeof (HTTP_200)-1) !=
sizeof (HTTP_200)-1)
break;

Peter Yastrebenetsky Page 190

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

SYNCHRONIZATION COMPLEXITY METRIC

/* example of valid CGI without "Content-type:"
* echo -en "HTTP/1.0 302 Found\r\n"
* echo —-en "Location: http://www.busybox.net\r\n"
* echo —en "\r\n"
if (!strstr(rbuf, "ontent-")) {
full _write(s, "Content-type: text/plain\r\n\r\n", 28);
}

*/
count = buf_count;
buf_count = -1; /* buffering off */

}
} else {
count = safe_read(inFd, rbuf, PIPESIZE);
if (count <= 0)
break; /* eof (or error) */

}

if (full_write(s, rbuf, count) != count)
break;
if (DEBUG)
fprintf (stderr, "cgi read %d bytes: '%.*s'\n", count, count, rbuf);

} /* if (FD_ISSET (inFd)) */
} /* while (1) */
return O;

}
#endif /* FEATURE_HTTPD_CGI */

/***‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k*'k'k************************
*

> SFunction: sendFile ()
*

* SDescription: Send a file response to a HTTP request
*

* SParameter:

* (const char *) url . . The URL requested.

Peter Yastrebenetsky Page 191

SYNCHRONIZATION COMPLEXITY METRIC

1290 *

1291 * S$Return: (int) Always 0.

1292 *

1293 'k***********************/
1294 static int sendFile(const char *url)

1295 {

1296 char * suffix;

1297 int f;

1298 const char * const * table;

1299 const char * try_suffix;

1300

1301 suffix = strrchr (url, '.");

1302

1303 for (table = suffixTable; *table; table += 2)

1304 if (suffix != NULL && (try_suffix = strstr(*table, suffix)) != 0) {
1305 try_suffix += strlen(suffix);

1306 if (*try_suffix == || *try_suffix == '."')

1307 break;

1308 }

1309 /* also, if not found, set default as "application/octet-stream"; */
1310 config->found_mime_type = table[l];

1311 #if ENABLE_FEATURE_HTTPD_CONFIG_WITH_MIME_TYPES

1312 if (suffix) {

1313 Htaccess * cur;

1314

1315 for (cur = config->mime_a; cur; cur = cur->next) {

1316 if (strcmp(cur->before_colon, suffix) == 0) {

1317 config->found_mime_type = cur->after_colon;
1318 break;

1319 }

1320 }

1321 }

1322 #endif /* FEATURE_HTTPD_CONFIG_WITH_ MIME_TYPES */

1323

1324 if (DEBUG)

Peter Yastrebenetsky Page 192

SYNCHRONIZATION COMPLEXITY METRIC

1325 fprintf (stderr, "sending file '%s' content-type: %s\n",
1326 url, config->found_mime_type);

1327

1328 f = open(url, O_RDONLY) ;

1329 if (f >= 0) {

1330 int count;

1331 char *buf = config->buf;

1332

1333 sendHeaders (HTTP_OK) ;

1334 /* TODO: sendfile() */

1335 while ((count = full_read(f, buf, MAX MEMORY_BUFF)) > 0) {
1336 int fd = config->accepted_socket;

1337 if (fd == 0) fd++; /* write to fd# 1 in inetd mode */
1338 if (full_write(fd, buf, count) != count)

1339 break;

1340 }

1341 close(f);

1342 } else {

1343 if (DEBUG)

1344 bb_perror_msg("cannot open '%$s'", url);

1345 sendHeaders (HTTP_NOT_FOUND) ;

1346 }

1347

1348 return 0;

1349 }

1350

1351 static int checkPermIP (void)

1352 ¢

1353 Htaccess_IP * cur;

1354

1355 /* This could stand some work */

1356 for (cur = config->ip_a_d; cur; cur = cur->next) {

1357 #if ENABLE_FEATURE_HTTPD_CGI && DEBUG

1358 fprintf (stderr, "checkPermIP: '$s' ? ", config->rmt_ip_str);

1359 #endif

Peter Yastrebenetsky Page 193

SYNCHRONIZATION COMPLEXITY METRIC

1360 #if DEBUG

1361 fprintf (stderr, "'%u.%u.%u.%u/%u.%u.%u.%u'\n",

1362 (unsigned char) (cur->ip >> 24),

1363 (unsigned char) (cur->ip >> 16),

1364 (unsigned char) (cur->ip >> 8),

1365 (unsigned char) (cur->ip),

1366 (unsigned char) (cur->mask >> 24),

1367 (unsigned char) (cur->mask >> 16),

1368 (unsigned char) (cur->mask >> 8),

1369 (unsigned char) (cur->mask)

1370);

1371 #endif

1372 if ((config->rmt_ip & cur->mask) == cur->ip)

1373 return cur->allow_deny == 'A'; /* Allow/Deny */
1374 }

1375

1376 /* if unconfigured, return 1 - access from all */

1377 return !config->flg_deny_all;

1378 }

1379

1380 /***************‘k‘k***
1381 *

1382 > $Function: checkPerm()

1383 *

1384 * S$Description: Check the permission file for access password protected.
1385 *

1386 * If config file isn't present, everything is allowed.

1387 * Entries are of the form you can see example from header source
1388 *

1389 * SParameters:

1390 * (const char *) path The file path.

1391 * (const char *) request User information to validate.
1392 *

1393 * SReturn: (int) 1 if request OK, 0 otherwise.
1394 *

Peter Yastrebenetsky Page 194

SYNCHRONIZATION COMPLEXITY METRIC

1395 ‘k*‘k‘k‘k‘k‘k‘k‘k**‘k‘k‘k*‘k/
1396

1397 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

1398 static int checkPerm(const char *path, const char *request)

1399 {

1400 Htaccess * cur;

1401 const char *p;

1402 const char *p0;

1403

1404 const char *prev = NULL;

1405

1406 /* This could stand some work */

1407 for (cur = config->auth; cur; cur = cur->next) ({

1408 size t 1;

1409

1410 p0 = cur->before_colon;

1411 if (prev != NULL && strcmp(prev, p0) != 0)

1412 continue; /* find next identical */
1413 p = cur->after_colon;

1414 if (DEBUG)

1415 fprintf (stderr, "checkPerm: '%$s' ? '%$s'\n", p0O, request);
1416

1417 1 = strlen(p0);

1418 if (strncmp (p0, path, 1) == 0

1419 && (1 == || path[l] == '/' || path[l] == '\0")
1420) |

1421 char *u;

1422 /* path match found. Check request */
1423 /* for check next /path:user:password */
1424 prev = p0;

1425 u = strchr (request, ':');

1426 if (u == NULL) {

1427 /* bad request, ':' required */
1428 break;

1429 }

Peter Yastrebenetsky Page 195

SYNCHRONIZATION COMPLEXITY METRIC

1430

1431 if (ENABLE_FEATURE_HTTPD_AUTH_MD5) {

1432 char *cipher;

1433 char *pp;

1434

1435 if (strncmp(p, request, u-request) != 0) {
1436 /* user uncompared */

1437 continue;

1438 }

1439 pp = strchr(p, ':');

1440 if (pp && ppll] == '$' && ppl2] == '1' &&
1441 pp[3] == '$' && ppl4]) {
1442 Pp++;

1443 cipher = pw_encrypt (u+l, pp);
1444 if (strcmp(cipher, pp) == 0)

1445 goto set_remoteuser_var; /* Ok */
1446 /* unauthorized */

1447 continue;

1448 }

1449 }

1450

1451 if (strcmp(p, request) == 0) {

1452 set_remoteuser_var:

1453 config->remoteuser = strdup (request);
1454 if (config->remoteuser)

1455 config->remoteuser|[(u - request)] = 0;
1456 return 1; /* Ok */

1457 }

1458 /* unauthorized */

1459 }

1460 } /* for */

1461

1462 return prev == NULL;

1463 }

1464

Peter Yastrebenetsky Page 196

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

SYNCHRONIZATION COMPLEXITY METRIC

#endif /* FEATURE_HTTPD_BASIC_AUTH */

/***‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k*'k'k************************
*

SFunction: handle_sigalrm()

>
*
* S$Description: Handle timeouts
*
*

****‘k*‘k********‘k*‘k********‘k*‘k********‘k'k'k'k*'k'k'k'k'k'k'k'k'k'k***********************/

static void handle_sigalrm(int sig)

{
sendHeaders (HTTP_REQUEST_TIMEOUT) ;
config->alarm_signaled = sig;

}

/***‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k*'k'k************************
*

> $Function: handleIncoming()
*

* SDescription: Handle an incoming http request.
*

****‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k'k'k************************/

static void handleIncoming(void)
{
char *buf = config->buf;
char *url;
char *purl;
int blank = -1;
char *test;
struct stat sb;
int ip_allowed;
#1f ENABLE_FEATURE_HTTPD_CGI
const char *prequest = request_GET;
unsigned long length = 0;

Peter Yastrebenetsky Page 197

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534

SYNCHRONIZATION COMPLEXITY METRIC

char *cooki

e = 0;

char *content_type = 0;

#endif

fd_set s_fd;
struct timeval tv;

int retval;

struct sigaction sa;

#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH

int credent
#endif

sa.sa_handl

sa.sa_flags

ials =

-1; /* if not required this is Ok */

er = handle_sigalrm;
sigemptyset (&sa.sa_mask);

:O;

/* no SA_RESTART */

sigaction (SIGALRM, &sa, NULL);

do {

int count;

(void) alarm(TIMEOUT) ;
if (getline() <= 0)
break; /* closed */
purl = strpbrk(buf, " \t");
if (purl == NULL) {
BAD_REQUEST:
sendHeaders (HTTP_BAD_REQUEST) ;
break;
}
*purl = '"\0';
#if ENABLE FEATURE_HTTPD_ CGI
if (strcasecmp (buf, prequest) != 0) {
prequest = "POST";
if (strcasecmp (buf, prequest)

Peter Yastrebenetsky

= 0)

{

Page 198

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569

SYNCHRONIZATION COMPLEXITY METRIC

#else

#endif

sendHeaders (HTTP_NOT_IMPLEMENTED) ;

break;

}

if (strcasecmp (buf, request_GET)

sendHeaders (HTTP_NOT_IMPLEMENTED) ;

break;
}
*purl = ' ';
count = sscanf (purl, " %[~] HTTP/%d.%*d", buf, &blank);
if (count < 1 || buf[0] !'= '"/") {
/* Garbled request/URL */
goto BAD_REQUEST;
}
url = alloca(strlen(buf) + sizeof("/index.html"));
if (url == NULL) {

sendHeaders (HTTP_INTERNAL_SERVER_ERROR) ;

break;
}
strcpy (url, buf);
/* extract url args if present */
test = strchr(url, '?');
config->query = NULL;
if (test) {
*test++ = '\0';
config->query = test;

}

test = decodeString(url, 0);

if (test == NULL)
goto BAD_REQUEST;
if (test == url+l) {

Peter Yastrebenetsky

Page 199

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604

SYNCHRONIZATION COMPLEXITY METRIC

/* '/' or NUL is encoded */
sendHeaders (HTTP_NOT_FOUND) ;
break;

}

/* algorithm stolen from libbb bb_simplify_path(),
* but don't strdup and reducing trailing slash and protect out root */
purl = test = url;

do |
if (*purl == '/") {
/* skip duplicate (or initial) slash */
if (*test == '/') {
continue;
}
if (*test == '.") {
/* skip extra '.' */
if (test[1l] == "/" || !test[1l]) {
continue;
}
/* '"..': be careful */
if (test[l] == '.' && (test[2] == "/" || !test[2])) {
++test;
if (purl == url) {
/* protect out root */
goto BAD_REQUEST;
}
while (*--purl != '/') /* omit previous dir */;
continue;
}
}
}
*++purl = *test;
} while (*++test);
++purl = '\0'; / so keep last character */
test = purl; /* end ptr */

Peter Yastrebenetsky Page 200

1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

SYNCHRONIZATION COMPLEXITY METRIC

/* If URL is directory, adding '/' */

if (test[-1] != '/") {
if (is_directory(url + 1, 1, &sb)) {
config->found_moved_temporarily = url;
}
}
if (DEBUG)

fprintf (stderr, "url='%s', args=%s\n", url, config->query);

test = url;
ip_allowed = checkPermIP();
while (ip_allowed && (test = strchr(test + 1, '/')) != NULL) {
/* have pathl/path2 */
*test = '"\0';
if (is_directory(url + 1, 1, &sb)) {
/* may be having subdir config */
parse_conf (url + 1, SUBDIR_PARSE);
ip_allowed = checkPermIP();
}
*test = '/';

if (blank >= 0) {
/* read until blank line for HTTP version specified, else parse immediate */
while (1) {
alarm (TIMEOUT) ;

count = getLine();

if (count <= 0)
break;

if (DEBUG)

fprintf (stderr, "header: '%s'\n", buf);

#1f ENABLE_FEATURE_HTTPD_CGI

/* try and do our best to parse more lines */

Peter Yastrebenetsky Page 201

SYNCHRONIZATION COMPLEXITY METRIC

1640 if ((STRNCASECMP (buf, "Content-length:") == 0)) {

1641 /* extra read only for POST */

1642 if (prequest != request_GET) {

1643 test = buf + sizeof ("Content-length:")-1;

1644 if (!test[0])

1645 goto bail_out;

1646 errno = 0;

1647 /* not using strtoul: it ignores leading munis! */

1648 length = strtol(test, &test, 10);

1649 /* length is "ulong", but we need to pass it to int later */
1650 /* so we check for negative or too large values in one go: */
1651 /* (long —> ulong conv caused negatives to be seen as > INT_MAX) */
1652 if (test[0] || errno || length > INT_MAX)

1653 goto bail_out;

1654 }

1655 } else if ((STRNCASECMP (buf, "Cookie:") == 0)) {

1656 cookie = strdup(skip_whitespace(buf + sizeof ("Cookie:")-1));

1657 } else if ((STRNCASECMP (buf, "Content-Type:") == 0)) {

1658 content_type = strdup(skip_whitespace (buf + sizeof ("Content-Type:")-1));
1659 } else if ((STRNCASECMP (buf, "Referer:") == 0)) {

1660 config->referer = strdup(skip_whitespace (buf + sizeof ("Referer:")-1));
1661 }

1662 #endif

1663

1664 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

1665 if (STRNCASECMP (buf, "Authorization:") == 0) {

1666 /* We only allow Basic credentials.

1667 * It shows up as "Authorization: Basic <userid:password>" where
1668 * the userid:password is base64 encoded.

1669 */

1670 test = skip_whitespace (buf + sizeof ("Authorization:")-1);

1671 if (STRNCASECMP (test, "Basic") != 0)

1672 continue;

1673 test += sizeof ("Basic")-1;

1674 /* decodeBase64 () skips whitespace itself */

Peter Yastrebenetsky Page 202

SYNCHRONIZATION COMPLEXITY METRIC

1675 decodeBaseb64 (test) ;

1676 credentials = checkPerm(url, test);
1677 }

1678 #endif /* FEATURE_HTTPD_BASIC_AUTH */

1679

1680 } /* while extra header reading */

1681 }

1682 alarm(0);

1683 if (config->alarm_signaled)

1684 break;

1685

1686 if (strcmp(strrchr(url, '/') + 1, httpd_conf) == || ip_allowed == 0)
1687 /* protect listing [/path]/httpd_conf or IP deny */
1688 #if ENABLE_FEATURE_HTTPD_CGI

1689 FORBIDDEN: /* protect listing /cgi-bin */

1690 #endif

1691 sendHeaders (HTTP_FORBIDDEN) ;

1692 break;

1693 }

1694

1695 #if ENABLE_FEATURE_HTTPD_BASIC_AUTH

1696 if (credentials <= 0 && checkPerm(url, ":") == 0) {
1697 sendHeaders (HTTP_UNAUTHORIZED) ;

1698 break;

1699 }

1700 #endif

1701

1702 if (config->found_moved_temporarily) {

1703 sendHeaders (HTTP_MOVED_TEMPORARILY) ;

1704 /* clear unforked memory flag */

1705 config->found_moved_temporarily = NULL;
1706 break;

1707 }

1708

1709 test = url + 1; /* skip first '/' */

Peter Yastrebenetsky Page 203

SYNCHRONIZATION COMPLEXITY METRIC

1710

1711 #if ENABLE_FEATURE_HTTPD_CGI

1712 if (strncmp(test, "cgi-bin", 7) == 0) {

1713 if (test[5] == '/' && test[8] == 0)

1714 goto FORBIDDEN; /* protect listing cgi-bin/ */
1715 sendCgi (url, prequest, length, cookie, content_type);

1716 break;

1717 }

1718 #if ENABLE FEATURE_HTTPD CONFIG WITH_ SCRIPT_INTERPR

1719 {

1720 char *suffix = strrchr(test, '.');

1721 if (suffix) {

1722 Htaccess *cur;

1723 for (cur = config->script_i; cur; cur = cur->next) {
1724 if (strcmp(cur->before_colon + 1, suffix) == 0) {
1725 sendCgi (url, prequest, length, cookie, content_type);
1726 goto bail_out;

1727 }

1728 }

1729 }

1730 }

1731 #endif

1732 if (prequest != request_GET) {

1733 sendHeaders (HTTP_NOT_IMPLEMENTED) ;

1734 break;

1735 }

1736 #endif /* FEATURE_HTTPD_CGI */

1737 if (purl([-1] == '/")

1738 strcpy (purl, "index.html");

1739 if (stat(test, &sb) == 0) {

1740 /* It's a dir URL and there is index.html */

1741 config->ContentLength = sb.st_size;

1742 config->last_mod = sb.st_mtime;

1743 }

1744 #if ENABLE_FEATURE_HTTPD_CGI

Peter Yastrebenetsky Page 204

1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779

SYNCHRONIZATION COMPLEXITY METRIC

else if (purl[-1] == "/") {

/* It's a dir URL and there is no index.html

* Try cgi-bin/index.cgi */

if (access("/cgi-bin/index.cgi"+1,
purl[0] = '\O0';
config->query = url;

X_OK)

== 0) |

sendCgi ("/cgi-bin/index.cgi", prequest, length,

break;
}
}

#endif /* FEATURE_HTTPD_CGI */
sendFile(test);
config->ContentLength = -1;

} while (0);

#if ENABLE_FEATURE_HTTPD_CGI
bail_out:
#endif

if (DEBUG)
fprintf (stderr, "closing socket\n\n");

#if ENABLE FEATURE_HTTPD_ CGI
free (cookie);
free(content_type);
free(config->referer);
config->referer = NULL;

1f ENABLE FEATURE_HTTPD BASIC_AUTH
free(config->remoteuser) ;
config->remoteuser = NULL;

endif

#endif
shutdown (config->accepted_socket, SHUT_WR);

/* Properly wait for remote to closed */
FD_ZERO (&s_fd) ;

Peter Yastrebenetsky

Page 205

cookie,

content_type);

1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

SYNCHRONIZATION COMPLEXITY METRIC

FD_SET (config->accepted_socket, &s_fd);

do {
tv.tv_sec = 2;
tv.tv_usec = 0;
retval = select (config->accepted_socket + 1,

} while (retval > 0 && read(config->accepted_socket,

shutdown (config->accepted_socket, SHUT_RD);
/* In inetd case, we close fd 1 (stdout) here. We will exit soon anyway */
close (config—->accepted_socket);

}

&s_fd, NULL, NULL, &tv);

buf,

sizeof (config->buf)

/***‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k'k'k*************************

*

> SFunction: miniHttpd()

*

*
*
*
*
*
* SParameters:

* (int) server.
*
*

SReturn: (int)
*

Given an open socket fildes,
the processing as a forked process.

$Description: The main http server function.

The server socket fildes.

Always 0.

listen for new connections and farm out

****‘k*‘k********‘k*‘k********‘k*‘k********‘k**'k*'k'k'k'k'k'k'k'k'k'k************************/

static int miniHttpd(int server)

{
fd_set readfd,

portfd;

FD_ZERO (&portfd) ;

FD_SET (server,

Peter Yastrebenetsky

&portfd);

Page 206

> 0));

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

SYNCHRONIZATION COMPLEXITY METRIC

/* copy the ports we are watching to the readfd set */
while (1) {
int s;
union {
struct sockaddr sa;
struct sockaddr_in sin;
USE_FEATURE_IPV6 (struct sockaddr_in6 siné6;)
} fromAddr;
socklen_t fromAddrLen = sizeof (fromAddr) ;

/* Now wait INDEFINITELY on the set of sockets! */

readfd = portfd;

if (select(server + 1, &readfd, 0, 0, 0) <= 0)
continue;

if (!FD_ISSET (server, &readfd))
continue;

s = accept (server, &fromAddr.sa, &fromAddrlLen);

if (s < 0)
continue;

config->accepted_socket = s;

config->rmt_ip = 0;

config->port = 0;

#if ENABLE _FEATURE_HTTPD _CGI || DEBUG
free(config->rmt_ip_str);
config->rmt_ip_str = xmalloc_sockaddr2dotted(&fromAddr.sa, fromAddrLen);

#if DEBUG
bb_error_msg("connection from '%s'", config->rmt_ip_str);
#endif
#endif /* FEATURE_HTTPD_CGI */
if (fromAddr.sa.sa_family == AF_INET) {
config->rmt_ip = ntohl (fromAddr.sin.sin_addr.s_addr);
config->port = ntohs(fromAddr.sin.sin_port);

}
#if ENABLE FEATURE_IPV6
if (fromAddr.sa.sa_family == AF_INET6) {

Peter Yastrebenetsky Page 207

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884

SYNCHRONIZATION COMPLEXITY METRIC

//config->rmt_

config->port =

#endif

ip = ntohl (fromAddr.sin.sin_addr.s_addr);

ntohs (fromAddr.sin6.sin6_port);

/* set the KEEPALIVE option to cull dead connections */
setsockopt (s, SOL_SOCKET, SO_KEEPALIVE,

if (DEBUG || fork() == 0) {

/* child */
#if ENABLE_FEATURE_HTTPD_RELOAD_CONFI

G_SIGHUP

&const_int_1, sizeof(const_int_1));

/* protect reload config, may be confuse checking */

signal (SIGHUP,
#endif

SIG_IGN);

handleIncoming() ;

if (!DEBUG)

exit (0);

}

close(s);
} /* while (1) */
return 0;

}

/* from inetd */
static int miniHttpd_inetd(void)
{
union {
struct sockaddr sa;

struct sockaddr_in sinj;
USE_FEATURE_IPV6 (struct sockaddr_in6 sin6;)

} fromAddr;
socklen_t fromAddrLen = sizeo

getpeername (0, &fromAddr.sa,
config->rmt_ip = 0;

Peter Yastrebenetsky

f (fromAddr) ;

&fromAddrLen) ;

Page 208

SYNCHRONIZATION COMPLEXITY METRIC

1885 config->port = 0;

1886 #if ENABLE_FEATURE_HTTPD_CGI || DEBUG

1887 free (config->rmt_ip_str);

1888 config->rmt_ip_str = xmalloc_sockaddr2dotted(&fromAddr.sa, fromAddrLen);
1889 #endif

1890 if (fromAddr.sa.sa_family == AF_INET) {

1891 config->rmt_ip = ntohl (fromAddr.sin.sin_addr.s_addr);
1892 config->port = ntohs (fromAddr.sin.sin_port);

1893 }

1894 #if ENABLE_FEATURE_IPV6

1895 if (fromAddr.sa.sa_family == AF_INET6) {

1896 //config->rmt_ip = ntohl (fromAddr.sin.sin_addr.s_addr);
1897 config->port = ntohs(fromAddr.sin6.sin6_port);

1898 }

1899 #endif

1900 handleIncoming() ;

1901 return 0;

1902 }

1903

1904 #if ENABLE_FEATURE_HTTPD_RELOAD_ CONFIG_SIGHUP
1905 static void sighup_handler (int sig)

1906 ¢

1907 /* set and reset */

1908 struct sigaction sa;

1909

1910 parse_conf (default_path_httpd_conf, sig == SIGHUP ? SIGNALED_PARSE : FIRST_PARSE);
1911 sa.sa_handler = sighup_handler;
1912 sigemptyset (&sa.sa_mask) ;

1913 sa.sa_flags = SA_RESTART;

1914 sigaction (SIGHUP, &sa, NULL);
1915 }

1916 #endif

1917

1918 enum {

1919 c_opt_config_file = O,

Peter Yastrebenetsky Page 209

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

SYNCHRONIZATION COMPLEXITY METRIC

d_opt_decode_url,
h_opt_home_httpd,

USE_FEATURE_HTTPD_ENCODE_URL_STR (e_opt_encode_url,

)
USE_FEATURE_HTTPD_BASIC_AUTH (r_opt_realm ;)
USE_FEATURE_HTTPD_AUTH_MD5 (m_opt_md> ;)
USE_FEATURE_HTTPD_SETUID (u_opt_setuid ;)
p_opt_port ,

p_opt_inetd ,
p_opt_foreground,
OPT_CONFIG_FILE =
OPT_DECODE_URL
OPT_HOME_HTTPD =
OPT_ENCODE_URL =
OPT_REALM =
OPT_MD5 =
OPT_SETUID =
OPT_PORT =
OPT_INETD =
OPT_FOREGROUND

}i

int httpd _main(int argc,
int httpd _main(int argc,
{

unsigned opt;

1 << c_opt_config_file,

1 << d_opt_decode_url,

1 << h_opt_home_httpd,
USE_FEATURE_HTTPD_ENCODE_URL_STR ((
USE_FEATURE_HTTPD_BASIC_AUTH ((
USE_FEATURE_HTTPD_AUTH_MD5 ((
USE_FEATURE_HTTPD_SETUID ((
1 << p_opt_port,

1 << p_opt_inetd,

= 1 << p_opt_foreground,

char **argv);
char **argv)

const char *home_httpd = home;
char *url_for_decode;
USE_FEATURE_HTTPD_ENCODE_URL_STR(const char *url_for_encode;)
const char *s_port;

USE_FEATURE_HTTPD_SETUID (const char *s_ugid = NULL;)
USE_FEATURE_HTTPD_SETUID (struct bb_uidgid_t ugid;)
USE_FEATURE_HTTPD_AUTH_MD5 (const char *pass;)

#if ENABLE_LOCALE_SUPPORT

Peter Yastrebenetsky

<<
<<
<<
<<

e_opt_encode_url
r_opt_realm
m_opt_md5
u_opt_setuid

))
))
))
))

Page 210

+ 4+ o+ o+

~ ~

O O O O
~

~

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

SYNCHRONIZATION COMPLEXITY METRIC

/* Undo busybox.c: we want to speak English in http (dates etc) */
setlocale(LC_TIME, "C");
#endif

config = xzalloc(sizeof (*confiqg));
#1if ENABLE_FEATURE_HTTPD_BASIC_AUTH

config->realm = "Web Server Authentication";
#endif

config->port = 80;

config->ContentLength = -1;

opt = getopt32(argc, argv, "c:d:h:"
USE_FEATURE_HTTPD_ENCODE_URL_STR("e:")
USE_FEATURE_HTTPD_BASIC_AUTH("r:")
USE_FEATURE_HTTPD_AUTH_MD5 ("m:")
USE_FEATURE_HTTPD_SETUID("u:")

"p:if",
& (config->configFile), &url_for_decode, &home_httpd
USE_FEATURE_HTTPD_ENCODE_URL_STR(, &url_for_encode)
USE_FEATURE_HTTPD_BASIC_AUTH(, & (config->realm))
USE_FEATURE_HTTPD_AUTH_MDS5 (, &pass)
USE_FEATURE_HTTPD_SETUID(, &s_ugid)
, &S_port
)i
if (opt & OPT_DECODE_URL) {
printf ("%$s", decodeString(url_for_decode, 1));
return 0;
}
#if ENABLE_ FEATURE_HTTPD_ ENCODE_URL_STR
if (opt & OPT_ENCODE_URL) {
printf ("%s", encodeString(url_for_encode));
return 0;
}
#endif
#if ENABLE_FEATURE_HTTPD_AUTH_MD5

Peter Yastrebenetsky Page 211

SYNCHRONIZATION COMPLEXITY METRIC

1990 if (opt & OPT_MD5) {

1991 puts (pw_encrypt (pass, "1"));

1992 return 0;

1993 }

1994 #endif

1995 if (opt & OPT_PORT)

1996 config->port = xatoul6 (s_port);

1997

1998 #if ENABLE_FEATURE_HTTPD_SETUID

1999 if (opt & OPT_SETUID) {

2000 if (!get_uidgid(&ugid, s_ugid, 1))

2001 bb_error_msg_and_die ("unrecognized user[:group] "
2002 "name '$s'", s_ugid);
2003 }

2004 #endif

2005

2006 xchdir (home_httpd) ;

2007 if (! (opt & OPT_INETD)) {

2008 signal (SIGCHLD, SIG_IGN);

2009 config->server_socket = openServer();

2010 #if ENABLE_FEATURE_HTTPD_SETUID

2011 /* drop privileges */

2012 if (opt & OPT_SETUID) {

2013 if (ugid.gid !'= (gid_t)-1) {

2014 if (setgroups(l, &ugid.gid) == -1)
2015 bb_perror_msg_and_die("setgroups");
2016 xsetgid(ugid.gid);

2017 }

2018 xsetuid(ugid.uid);

2019 }

2020 #endif

2021 }

2022

2023 #if ENABLE_FEATURE_HTTPD_CGI

2024 {

Peter Yastrebenetsky Page 212

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047

SYNCHRONIZATION COMPLEXITY METRIC

#endif

char *p = getenv ("PATH");
p = xstrdup(p); /* if gets NULL, returns NULL */
clearenv () ;
if (p)
setenvl ("PATH", p);
if (! (opt & OPT_INETD))
setenv_long ("SERVER_PORT", config->port);

#if ENABLE_FEATURE_HTTPD_RELOAD_CONFIG_SIGHUP
sighup_handler (0);

felse

parse_conf (default_path_httpd_conf, FIRST_PARSE);

#endif

if

if

(opt & OPT_INETD)

return miniHttpd_inetd();

(! (opt & OPT_FOREGROUND))

bb_daemonize (0) ; /* don't change current directory */
return miniHttpd (config->server_socket);

Peter Yastrebenetsky

Page 213

OO NP W —

SYNCHRONIZATION COMPLEXITY METRIC

IKI HTTP server implementation
HTTPD module was published as is , with permission to use freely, at http://www.iki.fi/iki/src/httpd.c.

httpd.c — Current Version as of May 25, 2009.

/*

*

L T A R T S S S S S T S ST SN S S S N

httpd -- Simple httpd-server
Copyright (c) 1995 Tero Kivinen
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its
documentation is hereby granted, provided that both the copyright
notice and this permission notice appear in all copies of the
software, derivative works or modified versions, and any portions
thereof, and that both notices appear in supporting documentation.

TERO KIVINEN ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. TERO KIVINEN DISCLAIMS ANY LIABILITY OF ANY KIND FOR
ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

Program: simple httpd-server
$Source: /iki/src/simple-httpd/RCS/httpd.c,v $
SAuthor: kivinen $

(C) Tero Kivinen 1995 <Tero.Kivinen@hut.fi>

Creation : 23:47 Mar 23 1995 kivinen
Last Modification : 14:40 Nov 24 2006 kivinen
Last check in : S$Date: 2006/11/24 12:45:36 $

Peter Yastrebenetsky Page 214

SYNCHRONIZATION COMPLEXITY METRIC

L S R e . S S N S S i A . S S S S S S S S S S S S S S S

Revision number : SRevision: 1.25 $
State : $State: Exp $
Version : 1.915

Edit time : 549 min
Description : Simple http-server

$Log: httpd.c,v $

Revision 1.25 2006/11/24 12:45:36 kivinen
Fixed opendir + telldir + closedir + opendir + seekdir to so
it willnot reopen the directory, and do not do extra seeks
etc. The seekdir cannot be used after directory has been
closed. Changed most of strings to unsigned char's to remove
warnings.

Revision 1.24 2006/11/02 18:57:04 kivinen
Added css to known mime types.

Revision 1.23 2006/10/05 13:32:27 kivinen
Added charset parameter to text/plain and text/html.

Revision 1.22 2002/11/12 18:16:57 kivinen
Added code that will exit if connections do not finish in 30
seconds after quit.

Revision 1.21 2002/10/06 13:32:04 kivinen
Added code that will raise the rlimit_nofile to max.

Revision 1.20 2002/10/06 13:06:47 kivinen

Added some memory allocation checks. Changed version number to

1.2. Optimized the code to use only one write instead of two
when sending reply.

Revision 1.19 1998/12/03 20:13:55 kivinen

Peter Yastrebenetsky Page 215

SYNCHRONIZATION COMPLEXITY METRIC

L S R e . S S N S S i A . S S S S S S S S S S S S S S S

Added ignoring of sigpipe.

Revision 1.18 1997/12/06 12:06:22 kivinen
Fixed 2 bugs.

Revision 1.17 1997/10/09 03:14:19 kivinen
Fixed bug reported by Jon Wickstrom about weekday being off by
one.

Revision 1.16 1997/05/13 16:08:57 kivinen
Added changes from liw for solaris.

Revision 1.15 1996/11/19 21:05:13 kivinen
Added post command to be processed just like get.

Revision 1.14 1996/09/13 20:18:08 kivinen
Added status command.

Revision 1.13 1996/08/21 14:09:46 kivinen
getservbyname returns port number in network byte order,
removed htons from using servent->s_port.

Revision 1.12 1996/07/15 16:14:51 kivinen
Added printing of errno in case of errors.
If read fails set write_state to STATE_ERROR too, so it don't
try to write to socket.

Revision 1.11 1996/07/15 15:59:45 kivinen
Changed to use LOG_LOCALO instead of LOG_DAEMON.

Revision 1.10 1996/07/11 03:06:08 kivinen
Fixed bug in last_info_hour.

Revision 1.9 1996/07/11 02:08:52 kivinen
Modified all times to use MINUTES and HOUR defines.

Peter Yastrebenetsky Page 216

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120
121
122
123
124
125
126

128
129
130
131

SYNCHRONIZATION COMPLEXITY METRIC

L S R e . S S N S S i A . S S S S S S S S S S S S S S S

Added statistic output. Changed LOG_NOTICE to LOG_INFO and
added all statistics to be on level LOG_NOTICE.

Revision 1.8 1996/03/01 14:36:08 kivinen

Added png.

Revision 1.7 1995/12/14 19:28:32 kivinen

Fixed %-n.ns to %.ns.

Revision 1.6 1995/11/29 06:48:32 kivinen

Increased command length to 2048, so now the headers can also
fit there.

Added READ_TIME_OUT that will tell when the request reads time
out when reading headers.

Added read_state, write_state and headers to connection_t.
Changed all %s to %$-n.ns in syslogs.

Changed main loop so it will close socket only after all of
the request have been read from the socket.

Revision 1.5 1995/11/16 18:00:43 kivinen

Added timeout code.

Revision 1.4 1995/07/26 12:14:49 kivinen

Fixed bug in temporary redirection page generation.

Revision 1.3 1995/07/20 04:14:51 kivinen

Raised BUF_LENGTH from 2048 to 3000, because it now must be
large enough for 2 URL's.

Moved setsockopt to correct place before bind.

Changed rfc850date to rfcll23date.

Added URI-field, renamed Date: to X-Date (Date must be current
date, and our date-field was the date when the page was
created in the memory).

Added url-decoding.

Changed protocol version check to check only HTTP/1.

Peter Yastrebenetsky Page 217

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

SYNCHRONIZATION COMPLEXITY METRIC

*

* Revision 1.2
*

*

* Revision 1.1
* Created.
*

*

*

*

*

*

*/

/*

1995/07/16 16:30:32

Fixed quit code.

1995/07/16 11:45:07

* If you have any useful modifications or

* Tero.Kivinen@hut.fi

*/

/* Make sure this is big enough.

#define FD_SETSIZE 1024

<stdlib.h>
<sys/types.h>
<sys/stat.h>
<sys/socket.h>
<netinet/in.h>
<arpa/inet.h>
<netdb.h>
<fcntl.h>
<dirent.h>
<syslog.h>
<stdio.h>
<ctype.h>
<errno.h>
<memory.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Peter Yastrebenetsky

*/

kivinen

kivinen

extensions please send them to

Page 218

167
168
169
170

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

SYNCHRONIZATION COMPLEXITY METRIC

#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <sys/time.h>
#include <locale.h>
#include <stdarg.h>
#include <pwd.h>
#ifdef _ sgi_
#include <bstring.h>
#endif

#include <signal.h>
#include <sys/resource.h>

#ifdef _ sun_

#include <sys/file.h>
#define getdtablesize () 1024
#endif

#undef DEBUG

#undef NIKSULAROOT
#undef SHADOWSROOT
#define HTTPD_GID 80
#define HTTPD_UID 80

#define VERSION "SimpleHTTP/1.2"

/* Local http-root */

#ifdef NIKSULAROOT

#define LOCAL_ROOT_URL "http://nukkekoti.cs.hut.fi"
#else

#ifdef SHADOWSROOT

#define LOCAL_ROOT_URL "http://shadows.cs.hut.fi"
#else

#define LOCAL_ROOT_URL "http://www.iki.fi"

#endif

Peter Yastrebenetsky

Page 219

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

218
219
220

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

SYNCHRONIZATION COMPLEXITY METRIC

#endif
#define MINUTE (60)
#define HOUR (MINUTE * 60)

/* How long wait for the http connections to finish before exiting. */
#define QUIT_TIME 30

/* How long to keep the temporal pages in memory */
#define KEEP_TIME (10 * MINUTE)

/* How often to check if we have temporal pages in memory we can throw away */
#define CHECK_TIME (MINUTE)

/* This tells how often we try to stat files, to see if they have changed */
#define STAT_TIME (5 * MINUTE)

/* This tells long we wait for command */
#define KICK_TIME (2 * MINUTE)

/* This tells long we wait for headers */
#define READ_TIME_OUT (2 * MINUTE)

/* Max line length. Used to read data from redirections file. */
#define LINE_LENGTH 1024

/* Max command length. Maximum of this much is read from socket to find url */
#define COMMAND_LENGTH 2048

/* Maximum length of url. Must be larger or same as COMMAND_LENGTH,
* LINE_LENGTH, and PATH_MAX. */
#define URL_LENGTH 2048

/* Misc buffer length. Must be at least URL_LENGTH * 2 + TIME_LENGTH +
* 300 (misc headers) */

Peter Yastrebenetsky Page 220

SYNCHRONIZATION COMPLEXITY METRIC

237 #define BUF_LENGTH 5000

238

239 /* Length of time buffers "Weekday, dd-Mon-95 hh:mm:ss GMT" = 34 chars */
240 #define TIME_LENGTH 64

241

242

243 /* Listen backlog value */
244 #define LISTEN_BACKLOG 10
245

246 /* Debug output */

247 #ifdef DEBUG

248 #define DPRINT (x) dprint x
249 #else

250 #define DPRINT (x)

251 #endif

252

253 char *program;

254 int f_inetd = 0;

255 int f_daemon = 0;

256 gid_t f_gid = -1;

257 pid_t f_uid = -1;

258 char *f_port = "http";

259 int port = -1;

260

261 typedef enum {

262 STATE_NONE,

263 STATE_DOING,

264 STATE_COMMAND_READ, /* Only for read */
265 STATE_ERROR,

266 STATE_TIMED_OUT, /* Only for read */
267 STATE_DONE,

268 } state_t;

269

270 typedef enum {

271 COMMAND_HEAD,

Peter Yastrebenetsky Page 221

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

SYNCHRONIZATION COMPLEXITY METRIC

COMMAND_BODY,
COMMAND_BOTH
} command_t;

typedef struct page_s

{
unsigned char *url;
unsigned char *reply_head;
long reply_head_len;
unsigned char *reply_body;

long reply_body_len;
unsigned char *filename;
time_t last_modification;
time_t last_stat;

time_t ref_ count;

time_t last_ref;
int permanent;
} *page_t;

typedef struct redirection_s
{
unsigned char *from;
unsigned char *to;
} *redirection_t;

typedef struct connection_s

{
int socket;
struct in_addr addr;
time_t last_time;

Peter Yastrebenetsky

/*
/*
/*
/*

/*
/*

Url of the page */

Headers of the reply */

Length of headers */

Body of the reply, this follows directly
the headers, i1.e it 1is in same buffer. */
Length of the body */

Filename of page or NULL if none */

Last modification time of the page */
Last stat for the file */

Reference count. Initially set to 1 for all
permanent pages (files, permanent

redirections). When it gets to 0 the
page is freed (permanent pages are never
freed) */

Last time the page was referenced */
Permanent page */

The path component of url to redirect */
The initial url where to redirect */

Page 222

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

SYNCHRONIZATION COMPLEXITY METRIC

}

state_t read_state, write_state;

long total_bytes;

unsigned char *out_data;
long out_data_len;
unsigned char *out_data_ptr;

unsigned char *in_data;
long in_data_len;

unsigned

unsigned
unsigned
unsigned
unsigned

char

char
char
char
char

page_t page;
*connection_t;

page_t *pages,
redirection_t *redirections;
connection_t *connections;
int max_pages,
int max_temp_pages;

int master_server = -1;

time_t now,

las

*in_data_ptr;

*url;

*status;
*command ;
*headers;

*temp_pages;

num_pages, max_redirections, num_redirections;

t_info_hour, quit_time = 0;

unsigned char local_root_url [URL_LENGTH];
int total_bytes_in_cache = 0;

fd_set fdrdset,
int max_connections, number_of_sockets;

fdwrset;

int total_connections, total_max_connections,
total_pages,
total_temp_cache_hit, total_temp_make, total_perm_page,

total_errors, total_errors_no_page,

Peter Yastrebenetsky

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

SYNCHRONIZATION COMPLEXITY METRIC

total_user_home, total_stat, total_read,

total_bytes_sent, total_bytes;

/*
* Debug printf
*/
void dprint (const unsigned char
{
va_list args;
char buffer [BUF_LENGTH];

va_start (args, fmt);
vsprintf (buffer, (char *) fmt,
va_end (args) ;

*fmt,

args) ;

fprintf (stderr, "%$s\n", buffer);

}
/%

* Open server socket

*/

int open_service(const char *serv)

{
struct sockaddr_in sin;
int err, socks;
struct servent *servent;
int one;

DPRINT (("opening service %s",

memset (&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;

servent = getservbyname (serv,

if (servent == NULL)
{

Peter Yastrebenetsky

serv));

"tcp") ,.

.)

Page 224

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

SYNCHRONIZATION COMPLEXITY METRIC

errno = 0;

port = atoi(serv);

if (port == 0)
{

syslog (LOG_CRIT, "Error unknown service %.200s, exiting", serv);

exit (1) ;
}
sin.sin_port =
}

else

{

sin.sin_port =

htons ((unsigned short)

servent->s_port;

port = servent->s_port;

}

port);

DPRINT (("found port %d", ntohs(sin.sin_port)));

socks = socket (AF_INET,

if (socks < 0)

{

syslog (LOG_CRIT,

serv) ;
exit (1);
}

one = 1;

SOCK_STREAM, 0) ;

if (setsockopt (socks, SOL_SOCKET, SO_REUSEADDR, (char ¥*)
sizeof (int)) == -1)

{
syslog (LOG_ERR
}

err = bind(socks,

Peter Yastrebenetsky

14

(struct sockaddr *)

&sin,

"Error in setsockopt REUSEADDR");

sizeof (sin));

"Error in socket at open_service opening service %

&one,

[)

Page 225

.200s,

exiting",

SYNCHRONIZATION COMPLEXITY METRIC

412 if (err)

413 {

414 close (socks) ;

415 syslog(LOG_CRIT, "Error in bind at open_service opening service %.200s, exiting",
416 serv) ;

417 exit (1) ;

418 }

419

420 err = listen(socks, LISTEN_BACKLOG) ;

421 if (err)

422 {

423 close (socks) ;

424 syslog (LOG_CRIT, "Error in listen at open_service opening service %.200s, exiting",
425 serv) ;

426 exit (1) ;

427 }

428 DPRINT (("service opened"));

429 return socks;

430

431

432 char *wkday[5] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
433 char *month([12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",

434 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };

435

436 /*

437 * Convert unix date integer to rfcll23 date

438 */

439 unsigned char *rfcll23date(unsigned char *strbuf, time_t t)

440 ¢

441 struct tm *tm;

442 tm = localtime (&t);

443 sprintf ((char *) strbuf, "$s, %02d %s %04d %02d:%02d:%02d GMT",
444 wkday [tm->tm_wday], tm->tm_mday, month[tm->tm_mon],

445 tm->tm_year+1900, tm->tm_hour, tm->tm_min, tm->tm_sec);
446 DPRINT(("rfcll23date: %s", strbuf));

Peter Yastrebenetsky Page 226

SYNCHRONIZATION COMPLEXITY METRIC

447 return strbuf;

448

449

450 /=

451 * Skip all whitespace characters. Returns the pointer to first non-whitespace
452 * character.

453 */

454 unsigned char *skip_white (unsigned char *p)
455 ¢

456 if (p == NULL)

457 return NULL;

458

459 while (isspace (*p))

460 p++;

461 return p;

462

463

464 /=

465 * Skip all non whitespace characters. Returns the pointer to first whitespace
466 * character.

467 */

468 unsigned char *skip_non_white (unsigned char *p)
469 {

470 if (p == NULL)

471 return NULL;

472

473 while (*p && !isspace(*p))

474 p++;

475 return p;

476

477

478 /=

479 * Compare page entries using url field.
480 */

481 int compr_url (const void *a, const void *b)

Peter Yastrebenetsky Page 227

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

SYNCHRONIZATION COMPLEXITY METRIC

}

const page_t ap = *(page_t *) a;
const page_t bp = *(page_t *) b;
return strcasecmp((char *) ap->url, (char *) bp->url);

/*

* Compare page entries using url field.

*/

int compr_redirection(const void *a, const void *b)

{

}

const redirection_t ar = *(redirection_t *) a;
const redirection_t br = *(redirection_t *) b;
return strcasecmp((char *)

/%
* Set head and body data. If the buffer is NULL then it is not copied,

* if the size is 0 then strlen is used.

*/

void set_head_and_body(page_t page, unsigned char *header,

{

unsigned char *body, long body_len)

long length;
unsigned char *data;

if (header_len == 0 && header != NULL)
header_len = strlen((char *) header);
if (body_len == 0 && body != NULL)

body_len = strlen((char *) body);

length = header_len + body_len;
data = malloc(length);

if (data == NULL)

Peter Yastrebenetsky

ar—->from, (char *) br->from);

long header_len,

Page 228

SYNCHRONIZATION COMPLEXITY METRIC

517 {

518 syslog (LOG_CRIT, "Out of memory, exiting");

519 exit (1) ;

520 }

521

522 page->reply_head = data;

523 page->reply_head_len = header_len;

524 page->reply_body = data + header_len;

525 page->reply_body_len = body_len;

526

527 if (header != NULL)

528 memcpy (page->reply_head, header, header_len);

529 if (body != NULL)

530 memcpy (page->reply_body, body, body_len);

531

532

533 /x

534 * Add redirection page

535 */

536 void add_redir_page (unsigned char *url, unsigned char *to_url)
537 ¢

538 long length;

539 unsigned char buffer [BUF_LENGTH], hbuffer [BUF_LENGTH], timebuf [TIME_LENGTH];
540

541 DPRINT (("Adding redir page: %s -> %s", url, to_url));
542 pages [num_pages] = calloc(l, sizeof(struct page_s));
543 if (pages[num_pages] == NULL)

544 {

545 syslog (LOG_CRIT, "Out of memory, exiting");

546 exit (1) ;

547 }

548 pages [num_pages]->url = (unsigned char *) strdup((char *) url);
549 if (pages[num_pages]->url == NULL)

550 {

551 syslog (LOG_CRIT, "Out of memory, exiting");

Peter Yastrebenetsky Page 229

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

SYNCHRONIZATION COMPLEXITY METRIC

exit (1) ;
}

sprintf ((char *) buffer, "<HEAD><TITLE>Redirection</TITLE></HEAD>\n<BODY><H1>Query redirected to another
address</H1>\nThis is only a redirection service, the document can be found here.<P></BODY>",
to_url);

length = strlen((char *) buffer);

sprintf ((char *) hbuffer, "HTTP/1.0 302 Found\r\nX-Date: %$s\r\nServer: %$s\r\nMIME-version: 1.0\r\nLocation:
%$s\r\nURI: <%$s>\r\nContent-type: text/html\r\nContent-Length: %$1d\r\n\r\n", rfcll23date(timebuf, now), VERSION,
to_url, to_url, length);

set_head_and_body (pages[num_pages], hbuffer, 0L, buffer, O0OL);
pages [num_pages]->filename = NULL;

pages [num_pages]—->last_modification = 0;
pages [num_pages]->last_stat = 0;
pages [num_pages]->ref_count = 0;
pages [num_pages]->permanent = 1;
num_pages++;
if (num_pages >= max_pages)

{

pages = realloc(pages, sizeof(page_t) * 2 * max_pages);

if (pages == NULL)
{
syslog (LOG_CRIT, "Out of memory, exiting");
exit(1l);
}
memset (pages + max_pages, 0, sizeof (page_t) * max_pages);
max_pages *= 2;

}

void add_forwarding_ page (unsigned char *url, unsigned char *to_url)

{

Peter Yastrebenetsky Page 230

SYNCHRONIZATION COMPLEXITY METRIC

587

588 DPRINT (("Adding forwarding page: $s -> %s", url, to_url));
589

590 redirections[num_redirections] = calloc(l, sizeof(struct redirection_s));
591 if (redirections[num_redirections] == NULL)

592 {

593 syslog (LOG_CRIT, "Out of memory, exiting");

594 exit (1);

595 }

596

597 redirections [num_redirections]—->from =

598 (unsigned char *) strdup((char *) url);

599 redirections[num_redirections]->to =

600 (unsigned char *) strdup((char *) to_url);

601 if (redirections[num_redirections]->from == NULL ||
602 redirections [num_redirections]—->to == NULL)

603 {

604 syslog (LOG_CRIT, "Out of memory, exiting");

605 exit (1);

606 }

607 num_redirections++;

608 if (num_redirections >= max_redirections)

609 {

610 redirections = realloc(redirections,

611 sizeof (redirection_t) * 2 * max_redirections);
612 if (redirections == NULL)

613 {

614 syslog (LOG_CRIT, "Out of memory, exiting");
615 exit (1) ;

616 }

617 memset (redirections + max_redirections, O,

618 sizeof (redirection_t) * max_redirections);
619 max_redirections *= 2;

620 }

621 }

Peter Yastrebenetsky Page 231

SYNCHRONIZATION COMPLEXITY METRIC

622

623 /~

624 * Read redirections.

625 */

626 void read_redirections(unsigned char *file_name)

627 {

628 FILE *file;

629 unsigned char line[LINE_LENGTH];

630 long length;

631 unsigned char *from, *to;

632

633 file = fopen((char *) file_name, "r");

634 if (file == NULL)

635 {

636 syslog (LOG_CRIT, "Cannot open redirections file, exiting");
637 exit (1) ;

638 }

639 while (fgets((char *) line, LINE_LENGTH, file) != NULL)
640 {

641 length = strlen((char *) line);

642 if (length == 0)

643 continue;

644 while (length > 0 && isspace(line[length - 1]))
645 {

646 length——;

647 }

648 line[length] = '"\0"';

649

650 from = skip_white(line);

651 to = skip_non_white (from) ;

652 *tot++ = '\0';

653 to = skip_white(to);

654 if (strlen((char *) from) == || strlen((char *) to) == 0)
655 continue;

656

Peter Yastrebenetsky Page 232

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

SYNCHRONIZATION COMPLEXITY METRIC

}

add_redir_page (from, to);
if (from[strlen((char *) from) - 1] ==
{
add_forwarding_page (from, to);
}
}

fclose(file);

/*

* Convert filename to type

*/

char *match_type(char *name)

{

char *dot;

dot = strrchr (name, '.');

if (dot == NULL)
return "text/plain; charset=IS0-8859-1";

else if (strcasecmp(dot, ".html") == 0)
return "text/html; charset=IS0-8859-1";

else if (strcasecmp(dot, ".css") == 0)
return "text/css";

else if (strcasecmp(dot, ".htm") == 0)
return "text/html; charset=IS0-8859-1";

else if (strcasecmp(dot, ".txt") == 0)
return "text/plain; charset=IS0-8859-1";

else if (strcasecmp(dot, ".aiff") == 0)
return "audio/x-aiff";

else if (strcasecmp(dot, ".au") == 0)
return "audio/x-au";

else if (strcasecmp(dot, ".gif") == 0)
return "image/gif";

else 1if (strcasecmp(dot, ".png") == 0)

return "image/png";

else if (strcasecmp(dot, "

.omp") == 0)

Peter Yastrebenetsky

'/')

Page 233

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

723
724
725
726

SYNCHRONIZATION COMPLEXITY METRIC

return "image/bmp";

else if (strcasecmp(dot, ".jpeg") == 0)
return "image/jpeg";

else if (strcasecmp(dot, ".jpg") == 0)
return "image/jpeg";

else if (strcasecmp(dot, ".tiff") == 0)
return "image/tiff";

else if (strcasecmp(dot, ".tif") == 0)
return "image/tiff";

else if (strcasecmp(dot, ".pnm") == 0)
return "image/x-portable-anymap";

else if (strcasecmp(dot, ".pbm") == 0)
return "image/x-portable-bitmap";

else if (strcasecmp(dot, ".pgm") == 0)
return "image/x-portable-graymap";

else if (strcasecmp(dot, ".ppm") == 0)
return "image/x-portable-pixmap";

else if (strcasecmp(dot, ".rgb") == 0)
return "image/rgb";

else if (strcasecmp(dot, ".xbm") == 0)
return "image/x-bitmap";

else if (strcasecmp(dot, ".xpm") == 0)
return "image/x-pixmap";

else if (strcasecmp(dot, ".mpeg") == 0)
return "video/mpeg";

else if (strcasecmp(dot, ".mpg") == 0)
return "video/mpeg";

else if (strcasecmp(dot, ".ps") == 0)
return "application/ps";

else if (strcasecmp(dot, ".eps") == 0)
return "application/ps";

else if (strcasecmp(dot, ".dvi") == 0)

return "application/x-dvi";

return "text/plain";

Peter Yastrebenetsky

Page 234

727
728
729
730

732
733
734
735
736
737
738
739
740
741

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

SYNCHRONIZATION COMPLEXITY METRIC

/*

* Read one www-page,

*/

int read_page (page_t *page,

unsigned

{
int fd;

unsigned char buffer [BUF_LENGTH],

fill in the data to page-struct given.
* success, 0 otherwise.

char *url)

timebuf2 [TIME_LENGTH];

unsigned char *file,

struct stat

timebufl [TIME_LENGTH],

DPRINT (("Reading file = %s, url = %s", file, url));
fd = open((char *) file, O_RDONLY, 0666);

if (fd < 0)
{
syslog (LOG_ERR,
return 0;

}

"Error cannot open file %.200s", file);

if (*page == NULL)
{
*page = calloc(l, sizeof (struct page_s));
if (*page == NULL)

{

syslog (LOG_CRIT,

exit(1l);
}
}
(*page) —>url = (unsigned char *)
if ((*page)->url == NULL)

{
syslog (LOG_CRIT,
exit (1) ;

Peter Yastrebenetsky

"Out of memory,

"Out of memory,

exiting");

exiting");

strdup((char *) url);

Return 1 if

*st,

Page 235

SYNCHRONIZATION COMPLEXITY METRIC

762 }
763
764 sprintf ((char *) buffer, "HTTP/1.0 200 OK\r\nX-Date: %s\r\nServer: %s\r\nMIME-version: 1.0\r\nLast-Modified:

765 $s\r\nContent-type: %$s\r\nContent-Length: %1d\r\n\r\n", rfcll23date(timebufl, now), VERSION,

766 rfcll23date (timebuf2, st->st_mtime), match_type((char *) file), (unsigned long) st->st_size);
767

768 set_head_and_body (*page, buffer, 0L, NULL, (long) st->st_size);
769 (*page) —>filename = (unsigned char *) strdup((char *) file);
770 if ((*page)->filename == NULL)

771 {

772 syslog (LOG_CRIT, "Out of memory, exiting");

773 exit (1);

774 }

775 (*page)->last_modification = st->st_mtime;

776 (*page)->last_stat = now;

777 (*page) —>ref_count = 0;

778

779 if (read(fd, (*page)->reply_body, st->st_size) != st->st_size)
780 {

781 close (fd);

782 syslog (LOG_ERR, "Error reading file %.200s", file);

783 free ((*page) ->reply_head) ;

784 free ((*page)->url);

785 free((*page));

786 (*prage) = NULL;

787 return 0;

788 }

789 close (fd);

790 return 1;

791 }

792

793/~

794 * Read htdocs.

795 */

796

Peter Yastrebenetsky Page 236

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

SYNCHRONIZATION COMPLEXITY METRIC

void read_htdocs (unsigned char *htdocs)

{
DIR *dir;
struct dirent *de;
struct stat st;

unsigned char url[URL_LENGTH],

to_url [URL_LENGTH], file[PATH_MAX];

DPRINT (("Reading htdocs = %s", htdocs));
if (htdocs[0] == '.' && htdocs[1l] == '\0"'")

{

sprintf ((char *) to_url,

"$s/index.html",

local_root_url);

add_redir_page ((unsigned char *) "/", to_url);

}

else

{
if (htdocs[0] == "'.
{

' && htdocs[1l] == '/")

sprintf ((char *) url,

}

else

{

sprintf ((char *) url,

}

sprintf ((char *) to_url,

"/%s", htdocs + 2);

"/%s", htdocs);

"%$s%$s/index.html", local_root_url, url);

add_redir_page(url, to_url);
strcat ((char *) url, "/");
add_redir_page(url, to_url);
}
sprintf ((char *) file, "%s/.", htdocs);
dir = opendir ((char *) file);
if (dir == NULL)
Peter Yastrebenetsky Page 237

SYNCHRONIZATION COMPLEXITY METRIC

832 {

833 syslog (LOG_ERR, "Error opendir (%.200s) failed", htdocs);
834 return;

835 }

836 while((de = readdir(dir)) != NULL)

837 {

838 sprintf ((char *) file, "%s/%s", htdocs, de->d_name);
839 if (htdocs[0] == '.' && htdocs[1] == '\0"')

840 {

841 sprintf ((char *) url, "/%s", de->d_name);

842 }

843 else if (htdocs[0] == '.' && htdocs[1l] == '/")

844 {

845 sprintf ((char *) url, "/%s/%s", htdocs + 2, de->d_name);
846 }

847 else

848 {

849 sprintf ((char *) url, "/%s/%s", htdocs, de->d_name);
850 }

851

852 if (stat((char *) file, &st) < 0)

853 {

854 syslog (LOG_ERR, "Error stat to %.200s failed", de->d_name);
855 continue;

856 }

857 if (st.st_mode & S_IFDIR)

858 {

859 if (strcmp((char *) de->d_name, ".") != 0 &&

860 strcmp ((char *) de->d_name, "..") != 0)

861 {

862 long pos;

863

864 pos = telldir (dir);

865 // closedir (dir) ;

866

Peter Yastrebenetsky Page 238

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

SYNCHRONIZATION COMPLEXITY METRIC

read_htdocs (file);

// dir = opendir ((char *) htdocs);
// 1if (dir == NULL)
/7 A

// syslog(LOG_ERR, "Error re-opendir (%.200s) failed", htdocs);
// return;

// 0}

// seekdir (dir, pos);

}
else
{
if (read_page (& (pages[num_pages]), file, &st, url)) {
pages [num_pages]->permanent = 1;
num_pages++;
}
if (num_pages >= max_pages)
{
pages = realloc(pages, sizeof(page_t) * 2 * max_pages);
if (pages == NULL)
{
syslog (LOG_CRIT, "Out of memory, exiting");
exit (1l);
}
memset (pages + max_pages, 0, sizeof (page_t) * max_pages);
max_pages *= 2;
}
}
}
closedir (dir) ;

}
/%

* Read www-pages. First read redirections file, which contain from-http,
* to-http pairs one at a line separated by spaces.

Peter Yastrebenetsky Page 239

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

SYNCHRONIZATION COMPLEXITY METRIC

*

* Then read all files from htdocs directory.

*/
void read_pages (unsigned char *file, unsigned char *htdocs)
{
max_pages = 64;
num_pages = 0;
pages = calloc(max_pages, sizeof (page_t));
max_redirections = 64;
num_redirections = 0;
redirections = calloc(max_redirections, sizeof (redirection_t));
max_temp_pages = 64;
temp_pages = calloc(max_temp_pages, sizeof (page_t));
if (pages == NULL || redirections == NULL || temp_pages == NULL)
{
syslog (LOG_CRIT, "Out of memory, exiting");
exit (1) ;
}
read_redirections (file);
chdir ((char *) htdocs);
read_htdocs ((unsigned char *) ".");
gsort (pages, num_pages, sizeof (page_t), compr_url);

gsort (redirections, num_redirections,
compr_redirection);

}

/*
* Do writing of data.
*/

void do_write(int 1)

{

int ret;

Peter Yastrebenetsky

sizeof (redirection_t),

Page 240

SYNCHRONIZATION COMPLEXITY METRIC

937

938 DPRINT (("Writing data to connection %d", 1i));

939 if (connections[i]->write_state == STATE_ERROR ||
940 connections[i]->write_state == STATE_DONE)
941 return;

94?2 connections[i]->write_state = STATE_DOING;

943

944 while (1)

945 {

946 if (connections[i]->out_data_len > 0)

947 {

948 ret = write(connections[i]->socket,

949 connections[i]->out_data_ptr,
950 connections[i]->out_data_len);
951 if (ret < 0)

952 {

953 if (errno == EWOULDBLOCK)

954 return;

955 syslog (LOG_ERR, "Write failed for %.200s : %d",
956 inet_ntoa(connections[i]->addr), errno);
957 connections[i]->write_state = STATE_ERROR;
958 return;

959 }

960 connections[i]->out_data_ptr += ret;

961 connections[i]->out_data_len —-= ret;

962 }

963 else

964 {

965 connections([i]->write_state = STATE_DONE;
966 FD_CLR(connections[i]->socket, &fdwrset);
967 return;

968 }

969 }

970

971

Peter Yastrebenetsky Page 241

SYNCHRONIZATION COMPLEXITY METRIC

972 /*

973 * Close connection

974 */

975 void close_connection(int 1)

976 ¢

977 DPRINT (("Closing connection %d", 1i));

978 syslog (LOG_INFO, "$.40s %.200s (%1d/%1d bytes) from %$.30s %$.100s.",
979 connections[i]—->command,

980 connections([i]—->url,

981 connections[i]->total_bytes -

982 connections[i]->out_data_len,

983 connections[i]->total_bytes,

984 inet_ntoa(connections[i]->addr),

985 connections[i]—->status);

986

987 total_pages++;

988 total_bytes += connections[i]->total_bytes;

989 total_bytes_sent += connections[i]->total_bytes -
990 connections([i]->out_data_len;

991

992 FD_CLR(connections|[i]->socket, &fdwrset);

993 FD_CLR(connections[i]->socket, &fdrdset);

994 number_of_sockets—-—;

995 close(connections[i]—->socket);

996 if (connections[i]->page != NULL)

997 {

998 connections|[i]->page->ref_count--;

999 if (connections[i]->page->ref_count == 0)
1000 {

1001 DPRINT (("Marking page %s last reference time to %d",
1002 connections[i]->page->url, now));
1003 connections|[i]->page->last_ref = now;
1004 }

1005 }

1006 connections[i]->socket = -1;

Peter Yastrebenetsky Page 242

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

SYNCHRONIZATION COMPLEXITY METRIC

connections[i]->total_bytes = 0;
connections[i]->last_time = now;
connections[i]->out_data = NULL;
connections[i]->out_data_len = 0L;
connections[i]->out_data_ptr = NULL;
connections[i]->in_data_len = 0L;
}
unsigned char bad_request[] = "<HEAD><TITLE>400 Bad Request</TITLE></HEAD>\n<BODY><H1>400 Bad Request</Hl>\nYour

client sent a query that this server could not understand.<P>\n</BODY>\n";

unsigned char not_found[] = "HTTP/1.0 404 Not found\r\nServer: " VERSION "\r\nMIME-version: 1.0\r\nContent-type:
text/html\r\n\r\n<HEAD><TITLE>404 Not Found</TITLE></HEAD>\n<BODY><H1>404 Not Found</H1>\nThe requested URL was
not found on this server.<P>\n</BODY>\n";

unsigned char done[] = "HTTP/1.0 200 OK\r\n\r\n<HEAD><TITLE>Done</TITLE></HEAD>\n<BODY><H1>Done</H1>\n</BODY>\n";
/* Do not change header unless you change the status_head_len also. */

unsigned char status([1024] = "HTTP/1.0 200 OK\r\n\r\n";
long status_head_len = 19L;

/*
* Return error message for connection i. Start writing of error
*/

void return_error (int i)

{

DPRINT (("Returning bad request error to connection %d", 1i));
connections[i]->out_data = bad_request;
connections[i]->out_data_len = sizeof (bad_request) - 1;
connections[i]->out_data_ptr = bad_request;
connections[i]->total_bytes = sizeof (bad_request) - 1;
connections[i]->status = (unsigned char *) "bad request error";
connections[i]->page NULL;

total_errors++;

do_write (1) ;

Peter Yastrebenetsky Page 243

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

SYNCHRONIZATION COMPLEXITY METRIC

}

/*
* Set out data from the from the string and total length and optional
* header length. If the header length is not given then the first \r\n\r\n
* is searched and that is used as end of header.
*/
void set_out_data(connection_t connection, unsigned char *str, size_t tlen,
size_t hlen, command_t cmd)

{

if (cmd == COMMAND_BOTH)
{
connection->out_data = str;
connection->out_data_len = tlen;
connection->out_data_ptr = str;
}
else
{
if (hlen == 0)

{

unsigned char *p;

p = str;
while (memcmp (p, "\r\n\r\n", 4) != 0)
{
p = memchr(p + 1, '\r', tlen - (p - str - 1));
if (p == NULL)

{
syslog (LOG_CRIT, "Internal error, no end of header found");

exit (1) ;
}
}
hlen = (p - str) + 4;
}
if (cmd == COMMAND_BODY)

Peter Yastrebenetsky Page 244

SYNCHRONIZATION COMPLEXITY METRIC

1077 {

1078 connection->out_data = str + hlen;
1079 connection->out_data_len = tlen - hlen;
1080 connection->out_data_ptr = str + hlen;
1081 }

1082 else

1083 {

1084 connection->out_data = str;

1085 connection->out_data_len = hlen;

1086 connection->out_data_ptr = str;

1087 }

1088 }

1089

1090

1091 /*

1092 * Find free temporary page

1093 */

1094 page_t *find_free_temp_page ()

1095 ¢

1096 int 1i;

1097

1098 for(i = 0; 1 < max_temp_pages; 1i++)

1099 {

1100 if (temp_pages[i] == NULL ||

1101 temp_pages[i]->url == NULL)

1102 break;

1103 }

1104 if (i >= max_temp_pages)

1105 {

1106 temp_pages = realloc(temp_pages, sizeof (page_t) * 2 * max_temp_pages);
1107 if (temp_pages == NULL)

1108 {

1109 syslog (LOG_CRIT, "Out of memory, exiting");
1110 exit (1);

1111 }

Peter Yastrebenetsky Page 245

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

SYNCHRONIZATION COMPLEXITY METRIC

memset (temp_pages + max_temp_pages, 0, sizeof (page_t) * max_temp_pages);
max_temp_pages *= 2;
}
return & (temp_pages[il]);

}
/%

* Make redirection page
*/
page_t *make_redirection_page (redirection_t redirection,
unsigned char *rest_of_url)
{
long length;
unsigned char buffer [BUF_LENGTH], hbuffer [BUF_LENGTH], timebuf[TIME_LENGTH],
url [URL_LENGTH] ;
page_t *page;

page = find_free_temp_page();

if (*page == NULL)
{
*page = calloc(l, sizeof (struct page_s));
if (*page == NULL)

{
syslog (LOG_CRIT, "Out of memory, exiting");
exit (1) ;
}
}
sprintf ((char *) url, "%s%s", redirection->from, rest_of_url);
(*page) —>url = (unsigned char *) strdup((char *) url);
if ((*page)->url == NULL)
{
syslog (LOG_CRIT, "Out of memory, exiting");
exit (1);
}

Peter Yastrebenetsky Page 246

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

SYNCHRONIZATION COMPLEXITY METRIC

sprintf ((char *) url, "%s%s", redirection->to, rest_of_url);

DPRINT (("Making redirection page from %s -> %s", (*page)->url, url));

sprintf ((char *) buffer, "<HEAD><TITLE>Redirection</TITLE></HEAD>\n<BODY><H1>Query redirected to another
address</H1>\nThis is only a redirection service, the document can be found here.<P></BODY>",
url);

length = strlen((char *) buffer);

total_bytes_in_cache += length;

sprintf ((char *) hbuffer, "HTTP/1.0 302 Found\r\nX-Date: %$s\r\nServer: %$s\r\nMIME-version: 1.0\r\nLocation:
$s\r\nURI: <%s>\r\nContent-type: text/html\r\nContent-Length: %$1d\r\n\r\n", rfcll23date(timebuf, now), VERSION,
url, url, length);

set_head_and_body (*page, hbuffer, 0L, buffer, O0L);

(*page)—>filename = NULL;

(*page) —>last_modification = now;
(*page) ->last_stat = now;

(*page) —>ref_count = 0;

(*page) —>permanent = 0;

return page;

}
/%

* Decode url
*/
void decode_url_in_place (unsigned char *url)

{

unsigned char *where, *to;

for (where = url, to = url; *where;)
{
if (*where == '%' &&
isxdigit (where[l]) &&
isxdigit (where[2]))
{
*to++ = (isdigit(where[l]) ? (where[l] - '0")

Peter Yastrebenetsky Page 247

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

SYNCHRONIZATION COMPLEXITY METRIC

(tolower (where[1l]) - 'a' + 10)) * 1lo6 +
(isdigit (where[2]) ? (where[2] - '0")
(tolower (where[2]) - 'a' + 10));
where += 3;
}
else
{
*to++ = *where++;
}
}
*to = '\0';

}

/*

* Set the www-page for transfer

*/

void do_get (int i, unsigned char *url, command_t cmd)

{
page_t *page, key_page_ptr;
struct page_s key_page;

unsigned char decoded_url[URL_LENGTH];

strcpy ((char *) decoded_url,

(char *) url);

decode_url_in_place(decoded_url);

key_page.url = decoded_url;
key_page_ptr = &key_page;

connections[i]->url = url;
DPRINT (("Finding url %s for connection %d", url, 1i));
page = bsearch(&key_page_ptr, pages, num_pages, sizeof (page_t), compr_url);
if (page == NULL)
{
int j;
Peter Yastrebenetsky Page 248

SYNCHRONIZATION COMPLEXITY METRIC

1217

1218 DPRINT (("No permanent page found, finding temp"));
1219 for(j = 0; j < max_temp_pages; j++)

1220 {

1221 if (temp_pages[j] != NULL &&

1222 temp_pages[j]->url != NULL &&

1223 strcmp ((char *) temp_pages[j]l->url, (char *) decoded_url) == 0) {
1224 DPRINT (("Temp page found, created at $%d",
1225 temp_pages[j]->last_stat));

1226 page = & (temp_pages[j]);

1227 total_temp_cache_hit++;

1228 break;

1229 }

1230 }

1231 } else {

1232 total_perm_page++;

1233 }

1234 if (page == NULL)

1235 {

1236 redirection_t *redirection, key_redirection_ptr;
1237 struct redirection_s key_redirection;

1238 unsigned char *first_slash, *rest_of_url, url_buffer [URL_LENGTH];
1239

1240 DPRINT (("No page found, checking for forwards"));
1241

1242 first_slash = (unsigned char *) strchr((char *) url + 1, '/");
1243 if (first_slash != 0)

1244 {

1245 rest of url = ++first_slash;

1246 }

1247 else

1248 {

1249 rest_of_url = (unsigned char *) "";

1250 }

1251 strcpy ((char *) url_buffer, (char *) decoded_url);

Peter Yastrebenetsky Page 249

SYNCHRONIZATION COMPLEXITY METRIC

1252 first_slash = (unsigned char *) strchr((char *) url_buffer + 1, '/'");
1253 if (first_slash != 0)

1254 {

1255 *++first_slash = '\0';

1256 }

1257

1258 key_redirection.from url_buffer;

1259 key_redirection_ptr = &key_redirection;

1260

1261 redirection = bsearch(&key_redirection_ptr, redirections,
1262 num_redirections, sizeof (redirection_t),
1263 compr_redirection);

1264 if (redirection == NULL)

1265 {

1266 page = NULL;

1267 }

1268 else

1269 {

1270 page = make_redirection_page (*redirection, rest_of_url);
1271 total_temp_make++;

1272 }

1273 }

1274 if (page == NULL)

1275 {

1276 if (decoded_url[0] == '/' && decoded_url[l] == '~')

1277 {

1278 unsigned char *username, *slash, filepart[URL_LENGTH],
1279 fullpath[PATH_MAX];

1280 struct stat st;

1281 struct passwd *pw;

1282

1283 DPRINT (("Users home directory request : $s", decoded_url));
1284 total user home++;

1285

1286 username = decoded_url + 2;

Peter Yastrebenetsky Page 250

SYNCHRONIZATION COMPLEXITY METRIC

1287 slash = (unsigned char *) strchr((char *) username, '/');

1288 if (slash == NULL)

1289 {

1290 strcpy ((char *) filepart, "/");

1291 }

1292 else

1293 {

1294 strcpy ((char *) filepart, (char *) slash);

1295 *slash = '\0';

1296 }

1297 DPRINT (("Finding user %s, filepart = %s", username, filepart));
1298 pw = getpwnam((char *) username);

1299 if (slash)

1300 *slash = '/"';

1301 if (pw != NULL)

1302 {

1303 if (strlen(pw->pw_dir) + 20 + strlen((char *) filepart) <
1304 PATH_MAX)

1305 {

1306 sprintf ((char *) fullpath, "%s/public_html%s", pw->pw_dir,
1307 filepart);

1308 DPRINT (("Statting path = $s", fullpath));

1309 if (stat((char *) fullpath, &st) >= 0)

1310 {

1311 if (st.st_mode & S_IFDIR)

1312 {

1313 if (strcmp((char *) filepart, ".") != 0 &&

1314 strcmp ((char *) filepart, "..") != 0)

1315 {

1316 struct redirection_s redirection;

1317

1318 redirection.from = decoded_url;

1319 if (decoded_url[strlen((char *) decoded_url)
1320 - 1] = "'/")

1321 sprintf ((char *) fullpath, "%s%sindex.html",

Peter Yastrebenetsky Page 251

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

SYNCHRONIZATION COMPLEXITY METRIC

local_root_url, decoded_url);
else
sprintf ((char *) fullpath, "%s%s/index.html",
local_root_url, decoded_url);

redirection.to = fullpath;
page =
make_redirection_page (&redirection,
(unsigned char *) "");

}
else
{
page_t *new_page;
new_page = find_free_temp_page();
if (read_page (new_page, fullpath, &st, decoded_url))
{
page = new_page;
(*page) -—>permanent = 0;
total_bytes_in_cache += (*page)->reply_body_len;
}

}
}
if (page == NULL)

{
DPRINT (("No page found, returning error"));
set_out_data (connections[i], not_found, sizeof (not_found) - 1, 0, cmd);
connections[i]->status = (unsigned char *) "page not found";
connections[i]->page = NULL;
total_errors_no_page++;

Peter Yastrebenetsky Page 252

SYNCHRONIZATION COMPLEXITY METRIC

1357 else

1358 {

1359 DPRINT (("Page found, checking age"));

1360 if ((*page)->filename != NULL &&

1361 (*page) —>ref_count == 0 &&

1362 (*prage)->last_stat + STAT_TIME < now)

1363 {

1364 struct stat st;

1365

1366 DPRINT (("Statting"));

1367 total_stat++;

1368 if (stat((char *) ((*page)->filename), &st) < 0)
1369 {

1370 syslog (LOG_ERR, "Error stat to %.200s failed",
1371 (*page)->filename) ;

1372 }

1373 else

1374 {

1375 (*page)->last_stat = now;

1376 DPRINT (("Last modification is %d (was %d)", st.st_mtime,
1377 (*page)->last_modification));

1378 if (st.st_mtime !'= (*page)->last_modification)
1379 {

1380 page_t new_page = NULL;

1381

1382 total read++;

1383 if (read_page (&new_page, (*page)->filename, &st,
1384 (*page) ->url))

1385 {

1386 if ((*page)->permanent)

1387 {

1388 new_page->permanent = 1;

1389 }

1390 else

1391 {

Peter Yastrebenetsky Page 253

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

SYNCHRONIZATION COMPLEXITY METRIC

total_bytes_in_cache -= (*page)->reply_body_len;
total_bytes_in_cache += new_page->reply_body_len;
}

DPRINT(("Freeing old page and using new"));

free((*page)->url);

free((*page)->filename) ;

free((*page)->reply_head);

free(*page);

*page = new_page;

}

set_out_data(connections[i], (*page)->reply_head,
(*page) —>reply_head_len + (*page)->reply_body_len,
(*page) —>reply_head_len, cmd);
connections[i]->status = (unsigned char *) "page found";
connections|[i]->page = *page;
(*page) —>ref_count++;

}
/*

* Remove expired pages
*/
void cleanup_temp_cache ()
{

int 1i;

for(i = 0; i1 < max_temp_pages; i++)
{
if (temp_pages[i] != NULL &&
temp_pages[i]->url != NULL &&
temp_pages[i]->ref_count == 0 &&

Peter Yastrebenetsky Page 254

SYNCHRONIZATION COMPLEXITY METRIC

1427 temp_pages[i]->last_ref + KEEP_TIME < now)

1428 {

1429 DPRINT (("Clening page %s, %d bytes (last ref = £d)"
1430 temp_pages[i]->url, temp_pages[i]->reply_body_len,
1431 temp_pages[i]->last_ref));

1432 total_bytes_in_cache —-= temp_pages[i]->reply_body_len;
1433 free (temp_pages[i]->url);

1434 free (temp_pages[i]->reply_head);

1435 if (temp_pages[i]->filename != NULL)

1436 free (temp_pages[i]—->filename) ;

1437 temp_pages[i]->url = NULL;

1438 temp_pages[i]->reply_head = NULL;

1439 temp_pages[i]->reply_body = NULL;

1440 temp_pages[i]->filename = NULL;

1441 temp_pages[i]->reply_head_len = 0L;

1442 temp_pages[i]->reply_body_len = 0L;

1443 temp_pages[i]->last_modification = 0;

1444 temp_pages[i]->last_stat = 0;

1445 temp_pages[i]->last_ref = 0;

1446 }

1447 }

1448 DPRINT (("Cleaned cache, total %d bytes remaining", total_bytes_in_cache));
1449

1450

1451 /*

1452 * New connection

1453 */

1454 void new_connection()

1455 ¢

1456 struct sockaddr_in rsin;

1457 socklen_t rsinlen;

1458 int 1i;

1459

1460 rsinlen = sizeof (rsin);

1461

Peter Yastrebenetsky Page 255

SYNCHRONIZATION COMPLEXITY METRIC

1462 total_connections++;

1463 for(i = 0; 1 < max_connections; i++)

1464 {

1465 if (connections[i] == NULL ||

1466 connections[i]->socket == -1)

1467 break;

1468 }

1469 if (i > total_max_connections)

1470 total_max_connections = 1ij;

1471 if (i == max_connections)

1472 {

1473 int client;

1474 client = accept (master_server, (struct sockaddr *) &rsin, &rsinlen);
1475 syslog (LOG_ERR, "Too many connections, dropping connection from %.200s",
1476 inet_ntoa(rsin.sin_addr));

1477 close(client);

1478 }

1479 else

1480 {

1481 if (connections[i] == NULL)

1482 {

1483 connections[i] = calloc(l, sizeof (struct connection_s));
1484 if (connections[i] == NULL)

1485 {

1486 syslog (LOG_CRIT, "Out of memory, exiting");
1487 exit (1) ;

1488 }

1489 connections[i]->socket = —-1;

1490 connections[i]->in_data = malloc (COMMAND LENGTH) ;
1491 if (connections[i]->in_data == NULL)

1492 {

1493 syslog (LOG_CRIT, "Out of memory, exiting");
1494 exit (1) ;

1495 }

1496 }

Peter Yastrebenetsky Page 256

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

SYNCHRONIZATION COMPLEXITY METRIC

connections[i]->last_time = now;

connections([i]->write_state = STATE_NONE;

connections[i]—->read_state = STATE_NONE;

connections[i]->in_data_ptr = connections[i]->in_data;
connections[i]->command = (unsigned char *) " (no command)";
connections[i]->headers = (unsigned char *) " (no headers)";
connections[i]->url = (unsigned char *) "(no url)";
connections[i]->in_data_len = 0L;

connections[i]->socket = accept(master_server, (struct sockaddr *) &rsin,

&rsinlen) ;
if (connections[i]->socket < 0)
{
syslog (LOG_ERR, "Accept failed from %.200s", inet_ntoa(rsin.sin_addr));
connections[i]->socket = -1;
}
else
{
if (fcntl(connections[i]->socket, F_SETFL,
fcntl (connections([i]—->socket, F_GETFL, 0) | FNDELAY) < 0)
{
syslog (LOG_ERR, "fcntl failed for %.200s", inet_ntoa(rsin.sin_addr));
close(connections[i]—->socket);
connections[i]->socket = -1;
}
else
{
int one;
one = 1;

if (setsockopt (connections[i]->socket, SOL_SOCKET,
SO_REUSEADDR, (char *) &one, sizeof (int)) == -1)
{
syslog (LOG_ERR, "Setsockopt REUSEADDR fails");
}

connections[i]->status = (unsigned char *) "connected";

Peter Yastrebenetsky Page 257

SYNCHRONIZATION COMPLEXITY METRIC

1532 FD_SET (connections[i]->socket, &fdrdset);

1533 connections[i]->addr = rsin.sin_addr;

1534 number of sockets++;

1535 DPRINT (("New connection %d from %s", i,

1536 inet_ntoa(rsin.sin_addr)));

1537 }

1538 }

1539 }

1540 }

1541

1542 /*

1543 * Data read from socket

1544 */

1545 void read_data(int i)

1546 {

1547 int data_read;

1548

1549 data_read = read(connections[i]->socket, connections[i]->in_data_ptr,
1550 COMMAND_LENGTH - connections[i]->in_data_len);
1551 if (connections[i]->read_state == STATE_ERROR | |

1552 connections[i]->read_state == STATE_TIMED_OUT |

1553 connections[i]->read_state == STATE_DONE)

1554 return;

1555 if (data_read <= 0)

1556 {

1557 if (data_read < 0)

1558 {

1559 if (errno == EWOULDBLOCK)

1560 return;

1561 syslog (LOG_WARNING, "Read error from host %.200s : %d4d",
1562 inet_ntoa(connections[i]->addr), errno);

1563 connections[i]->status = (unsigned char *) "read error";
1564 connections[i]->read_state = STATE_ERROR;

1565 connections[i]->write_state = STATE_ERROR;

1566 }

Peter Yastrebenetsky Page 258

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

SYNCHRONIZATION COMPLEXITY METRIC

connections[i]->status = (unsigned char *) "other end of socket closed";
connections[i]—->read_state = STATE_DONE;
FD_CLR(connections[i]->socket, &fdrdset);

}

else

{
DPRINT (("Read %d bytes", data_read));
connections[i]->in_data_ptr += data_read;
connections([i]->in_data_len += data_read;

}

}

/*
* parse command
*/
void parse_command (int 1)
{
unsigned char *eoll, *eo0l2;
unsigned char *command, *uri, *protocol, *tmp;

eoll = memchr (connections[i]->in_data, '\n', connections[i]->in_data_len);
eo0l2 = memchr (connections[i]->in_data, '\r', connections[i]->in_data_len);
if (eoll == NULL && eol2 == NULL)

{
if (connections[i]->in_data_len >= COMMAND_LENGTH)
{
syslog (LOG_WARNING, "No url in buffer range from %.200s",
inet_ntoa(connections[i]->addr)) ;
connections[i]->status = (unsigned char *) "read buffer overflow";
connections[i]->read_state = STATE_ERROR;
connections[i]->write_state = STATE_ERROR;
}
if (connections[i]->read_state == STATE_DONE)
{

return_error (i) ;

Peter Yastrebenetsky Page 259

SYNCHRONIZATION COMPLEXITY METRIC

1602 }

1603 return;

1604 }

1605

1606 connections[i]->read_state = STATE_COMMAND_READ;
1607 FD_SET (connections[i]->socket, &fdwrset);
1608

1609 if (eoll == NULL)

1610 eoll = eol2;

1611 if (eol2 == NULL)

1612 eol2 = eoll;

1613 if (eoll > eol2)

1614 eoll = eol2;

1615

1616 *eoll = "\0';

1617 connections[i]->headers = ++eo0ll;

1618

1619 command = connections[i]->in_data;
1620 command = skip_white (command) ;

1621 connections[i]->command = command;
1622 uri = skip_non_white (command) ;

1623 if (*uri !'= '\0")

1624 {

1625 *uri++ = '\0';

1626 uri = skip_white (uri);

1627 protocol = skip_non_white (uri);
1628 if (*protocol !'= '\0'")

1629 {

1630 *protocol++ = '\0';

1631 protocol = skip_white (protocol);
1632 tmp = skip_non_white (protocol);
1633 *tmp++ = '\0';

1634 }

1635 }

1636 else

Peter Yastrebenetsky Page 260

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

SYNCHRONIZATION COMPLEXITY METRIC

{

protocol = uri;
*connections[i]->headers = '\0';
}
connections[i]->url = uri;
DPRINT (("Parsed command = %s, uri = %s, protocol = %s", command, uri,
protocol));
if (strcasecmp((char *) command, "get") == 0 ||
strcasecmp ((char *) command, "head") == 0 ||
strcasecmp ((char *) command, "post") == 0)

command_t cmd;

cmd = COMMAND_BOTH;

if (!*protocol)
cmd = COMMAND_BODY;

else if (strcasecmp((char *) command, "head") == 0)
cmd = COMMAND_HEAD;

if (*uri == "\0")
{
return_error (i) ;
return;

}

do_get (i, uri, cmd);

if (cmd != COMMAND_BODY &&
strncasecmp ((char *) protocol, "http/1.", 6) != 0)
{
return_error (i) ;
return;
}
connections[i]->total_bytes = connections[i]->out_data_len;
Peter Yastrebenetsky

Page 261

SYNCHRONIZATION COMPLEXITY METRIC

1672 do_write (1) ;

1673 return;

1674 }

1675 else if (strcasecmp((char *) command, "quit") == 0)

1676 {

1677 quit_time = now + QUIT_TIME;

1678 close (master_server) ;

1679 FD_CLR(master_ server, &fdrdset);

1680 number_of_sockets——;

1681 set_out_data (connections[i], done, sizeof(done) - 1, 0, COMMAND_BOTH) ;

1682 connections[i]->total_bytes = connections[i]->out_data_len;

1683 connections[i]->status = (unsigned char *) "quit done";

1684 do_write (i) ;

1685 return;

1686 }

1687 else if (strcasecmp((char *) command, "status") == 0)

1688 {

1689 sprintf ((char *) status + status_head_len,

1690 "<HEAD><TITLE>Status</TITLE></HEAD>\n<BODY><H1>Status</Hl1>\nStatistics time = $1d
\n%d
1691 connections (%d max)
\n%d pages (%d no page errors/%d errors)
\n%d perm, %d temp cache, %d temp make, %d

1692 user home
\n%d stated, %d reread
\n%d/%d bytes sent
\nCache: %d pages, %d redirections, %d bytes in temp
1693 cache
\n</BODY>\n",

1694 now — last_info_hour,

1695 total_connections, total_max_connections,

1696 total_pages, total_errors_no_page, total_errors,

1697 total_perm_page, total_temp_cache_hit, total_temp_make,
1698 total_user_home,

1699 total_stat, total_read,

1700 total_bytes_sent, total_bytes,

1701 num_pages, num_redirections, total_bytes_in_cache);
1702 set_out_data (connections[i], status, strlen((char *) status),
1703 status_head_len,

1704 COMMAND_BOTH) ;

1705 connections[i]->total_bytes = connections[i]->out_data_len;
1706 connections[i]->status = (unsigned char *) "status info done";

Peter Yastrebenetsky Page 262

SYNCHRONIZATION COMPLEXITY METRIC

1707 do_write (1) ;

1708 return;

1709 }

1710 return_error (i) ;

1711 }

1712

1713 /*

1714 * parse command

1715 */

1716 void parse_headers (int 1)

1717 {

1718 unsigned char *p;

1719 long len;

1720

1721 len = connections[i]->in_data_len -

1722 (connections[i]->headers - connections[i]->in_data);
1723

1724 for (p = connections[i]->headers; len > 0 ; len-—, p++)
1725 {

1726 if ((p[0] == "\n' &&

1727 ((len >= 4 && p[l] == '"\r' && p[2] == '"\n' && p[3] == "\r') |
1728 (len >= 2 && p[l] == "\n"))) ||

1729 (p[0] == "\r' &&

1730 ((len >= 4 && p[l] == '"\n' && p[2] == '\r' && p[3] == "\n') ||
1731 (len >= 2 && p[l] == "\r'))))

1732 {

1733 pll] = '\0"';

1734 connections[i]->read_state = STATE DONE;

1735 return;

1736 }

1737 }

1738 }

1739

1740

1741 /*

Peter Yastrebenetsky Page 263

1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776

SYNCHRONIZATION COMPLEXITY METRIC

* master server

*/

void http_server ()

{

fd_set tmprdset, tmpwrset;
int nfound, 1i;

time_t last_cleanup_time;
struct timeval tm;

struct tm *t;

max_connections = getdtablesize();
connections = calloc(max_connections, sizeof (connection_t));
if (connections == NULL)

{
syslog (LOG_CRIT, "Out of memory, exiting");
exit (1);

}

FD_ZERO (&fdrdset) ;

FD_ZERO (&fdwrset) ;

FD_SET (master_server, &fdrdset);
number_of_sockets = 1;

now = time (NULL) ;

last_cleanup_time = now;

last_info_hour = now;

/* Round to exact hour */

t = localtime(&last_info_hour);
last_info_hour -= t->tm_sec + t->tm_min * 60;

while (number_of_sockets > 0)

{
now = time (NULL) ;
if (quit_time != 0 && now > quit_time)

Peter Yastrebenetsky

Page 264

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

SYNCHRONIZATION COMPLEXITY METRIC

syslog (LOG_NOTICE, "Server didn't die after

QUIT_TIME) ;
break;

}

if (last_cleanup_time + CHECK_TIME <= now)

{

cleanup_temp_cache();

last_cleanup_time = now;

}

if (last_info_hour + HOUR <= now)

{

syslog (LOG_NOTICE, "%d connections (%d max),
cache, %d temp make, %d user home, %d stated, %d reread, %d/%d bytes sent.

bytes in temp cache",

total_connections,
total_pages, total_errors_no_page,
total_perm_page,
total_user_home,

total_temp_cache_hit,

total_stat, total_read,

total_bytes_sent,
num_pages, num_redirections,

total_connections = 0
total_max_connections
total_pages = 0;
total_errors_no_page
total_errors = 0;
total_perm_page = 0;
total_temp_cache_hit
total_temp_make = 0;
total_user_home = 0;
total_stat = 0;
total_read = 0;
total_bytes_sent = 0;
total_bytes = 0;

Peter Yastrebenetsky

14

total_bytes,

0;

0;

%$d seconds, exiting",

%$d pages (%d no page errors/%d errors), %d perm, %d temp

total_max_connections,
total_errors,

total_temp_make,

total_bytes_in_cache);

Page 265

Cache:

%d pages,

%d redirections,

%d

SYNCHRONIZATION COMPLEXITY METRIC

1812 last_info_hour += HOUR;

1813 }

1814 tmprdset = fdrdset;

1815 tmpwrset = fdwrset;

1816 tm.tv_sec = last_cleanup_time + CHECK_TIME - now;
1817 tm.tv_usec = 0;

1818 nfound = select (FD_SETSIZE, &tmprdset, &tmpwrset, NULL, &tm);
1819 if (nfound < 0 && errno != EINTR)

1820 {

1821 syslog (LOG_CRIT, "Select failed in main_loop, exiting");
1822 exit (1) ;

1823 }

1824 if (nfound < 0 && errno == EINTR)

1825 continue;

1826

1827 if (FD_ISSET (master_server, &tmprdset))

1828 new_connection () ;

1829 for(i = 0; 1 < max_connections; i++)

1830 {

1831 if (connections[i] == NULL)

1832 break;

1833 if (connections[i]->socket == -1)

1834 continue;

1835 if (FD_ISSET (connections[i]->socket, &tmprdset))
1836 {

1837 connections[i]->last_time = now;

1838 if (connections[i]->read_state == STATE_NONE)
1839 {

1840 connections[i]->read_state = STATE_DOING;
1841 }

1842

1843 read_data (i) ;

1844

1845 if (connections[i]->read_state == STATE_DOING)
1846 {

Peter Yastrebenetsky Page 266

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

SYNCHRONIZATION COMPLEXITY METRIC

parse_command (1) ;

}

if (connections|[i]->read_state == STATE_COMMAND_READ)

{

parse_headers (i) ;

}

if (connections[i]->read_state == STATE_COMMAND_READ &&

now — connections[i]—->last_time > READ TIME_ OUT)

{
connections([i]->read_state = STATE_TIMED_OUT;

}

if (FD_ISSET (connections[i]->socket, &tmpwrset))
{
connections[i]->last_time = now;
do_write (i) ;

}

if ((connections[i]->read_state == STATE_ERROR ||
connections[i]—->read_state == STATE_TIMED_OUT
connections[i]->read_state == STATE_DONE) &&
(connections[i]->write_state == STATE_ERROR | |
connections[i]->write_state == STATE_DONE))
close_connection(i);

if (now - connections[i]->last_time > KICK_TIME)

{

close_connection (i) ;

}

Peter Yastrebenetsky

Page 267

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

SYNCHRONIZATION COMPLEXITY METRIC

syslog (LOG_NOTICE,
temp make,
temp cache",

total_connections,

total_pages,

total_perm_page,

%d user home,

"%d connections
%d stated,

(%d max),
%d reread,

total_errors_no_page,
total_temp_cache_hit,

total_user_home,

total_stat,

total_bytes_sent,
num_redirections,

num_pages,

}

int main(int argc,

{

total_read,
total_bytes,

char **argv)

extern char *optarg;

extern int optind;
int ¢, errflg = 0;

signal (SIGPIPE,

now = time (NULL) ;

SIG_IGN);

total_connections = 0;
total_max_connections = 0;

total_pages = 0;

total_errors_no_page

total_errors = 0;
total_perm page =

0;

0;

total_temp_cache_hit = 0;

total_temp_make =
total_user_home =
total_stat = 0;
total_read = 0;
total_bytes_sent =
total_bytes = 0;

Peter Yastrebenetsky

0;
0;

0;

%d pages
$d/%d bytes sent.

total_max_connections,
total_errors,

total_temp_make,

total_bytes_in_cache);

($d no page errors/%d errors),

Cache: %d pages,

Page 268

%d perm,
%d redirections,

%d temp cache,

%$d bytes in

sd

SYNCHRONIZATION COMPLEXITY METRIC

1915 program = strrchr (argv[0], '/');

1916 if (program == NULL)

1917 program = argv|[0];

1918 else

1919 program++;

1920

1921 #ifdef RLIMIT_NOFILE

1922 {

1923 struct rlimit rl;

1924

1925 if (getrlimit (RLIMIT_NOFILE, &rl) >= 0)
1926 {

1927 rl.rlim _cur = rl.rlim max;

1928 setrlimit (RLIMIT_NOFILE, &rl);

1929 }

1930 }

1931 #endif /* RLIMIT_NOFILE */

1932

1933 openlog(program, LOG_PID, LOG_LOCALO);

1934

1935 while ((c = getopt(argc, argv, "dig:u:p:")) != EOF)
1936 {

1937 switch (c)

1938 {

1939 case 'd': f_daemon++; break;

1940 case 'i': f_inetd++; break;

1941 case 'g': f_gid = atoi(optarg); break;
1942 case 'u': f_uid = atoi(optarg); break;
1943 case 'p': f_port = optarg; break;

1944 case '?': errflg++; break;

1945 }

1946 }

1947 if (errflg || argc - optind < 2)

1948 {

1949 fprintf (stderr, "Usage: %s [-di] [-g gid] [-u uid] [-p service] redir-file htdocs-dir\n",

Peter Yastrebenetsky Page 269

SYNCHRONIZATION COMPLEXITY METRIC

1950 program) ;

1951 exit (1) ;

1952 }

1953

1954 if (f_daemon)

1955 {

1956 int pid, i;

1957

1958 pid = fork();

1959

1960 if (pid)

1961 {

1962 if (pid == -1)

1963 {

1964 syslog (LOG_CRIT, "Can't fork a child, exiting!");
1965 exit (1);

1966 }

1967

1968 printf ("%d\n", pid);
1969 fflush(stdout) ;

1970 exit (0);

1971 }

1972 closelog();

1973 for (i = getdtablesize() - 1; i >= 0; i--)
1974 if ('f_inetd || i '= 0)
1975 close(i);

1976 setsid();

1977 openlog(program, LOG_PID, LOG_DAEMON) ;
1978 }

1979

1980 if (f_inetd)

1981 master_server = 0;

1982 else

1983 master_server = open_service (f_port);

1984

Peter Yastrebenetsky Page 270

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005

SYNCHRONIZATION COMPLEXITY METRIC

if (getuid() == 0)
{
if (f_gid != -1)
setgid(f_gid);
if (f_uid !'= -1)

setuid (f_uid);

if (port == 80 || port ==
{

sprintf ((char *) local_root_url,

}

else

{

sprintf ((char *) local_root_url,

}

read_pages ((unsigned char

-1)

*)

(unsigned char *)

http_server () ;
return 0;

Peter Yastrebenetsky

LOCAL_ROOT_URL) ;

LOCAL_ROOT_URL,

argv/[optind],
argv[optind + 17);

port) ;

Page 271

OO NP W —

SYNCHRONIZATION COMPLEXITY METRIC

Appendix B

In this appendix there are listings of the CCCC SCM implementation.

The SCM Manager Class

cccc_scm.h

// cccc_scm.h: interface for the CCCC_ScmManager class.
//

[I77

#if !defined (AFX_CCCC_SCM_H__74D8CAD6_8692_4DC1_A570_45DD319FB424__ INCLUDED_)
#define AFX_CCCC_SCM_H__74D8CAD6_8692_4DC1_A570_45DD319FB424__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <map>
#include <string>
#include <vector>
using namespace std;

typedef enum
{
SCM_NORMAL = O,
SCM_TRY_LOCK,
SCM_LOCK,
SCM_UNLOCK,
SCM_WAIT,
SCM_NOTIFY,
SCM_YIELD, // PASS CONTROL

Peter Yastrebenetsky Page 272

SYNCHRONIZATION COMPLEXITY METRIC

SCM_VOLATILE,
SCM_TASK_START,
SCM_THREAD_START,
SCM_TASK_STOP,
SCM_THREAD_STOP,
SCM_LAST,

} TSCMTypes;
class SyncPoint

public:

SyncPoint ()
{

Init (SCM_NORMAL, -1, -1);
i

SyncPoint (TSCMTypes type, int IP,
{

Init (type, IP, CP);
i

SyncPoint (TSCMTypes type)
{

Init(type, -1, -1);
bi

SyncPoint (TSCMTypes type, int CP)
{

Init (type, -1, CP);
bi

SyncPoint (const SyncPoint &oriqg)
{
Init(orig.m_type, orig.m_IP,

int CP)

orig.m_CP);

Peter Yastrebenetsky

Page 273

SYNCHRONIZATION COMPLEXITY METRIC

}i

void Init (TSCMTypes type)
{

Init (type, -1, -1);
}i

void Init (TSCMTypes type, int CP)
{

Init (type, -1,CP);
}i

void Init (TSCMTypes type, int IP, int CP)
{
m_type = type;
m_IP = IP;
m_CP = CP;
}i
int GetCP () {return m_CP;};
int GetIP() {return m_IP;};
TSCMTypes GetType () {return m_type;};

~SyncPoint () {};

private:

}

14

TSCMTypes m_type;
int m_IP;
int m_CP;

typedef struct

{

int IP;
int CP;

Peter Yastrebenetsky

Page 274

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

112
113
114
115
116
117
118
119
120
121
122

SYNCHRONIZATION COMPLEXITY METRIC

unsigned MVG_sp;
} tsSpDhata;

class CCCC_ScmManager
{
public:
CCCC_ScmManager () ;
static void PrepareScmForVolatile();
static void Initialize(string IdsFile = "scmids.dat",
static void FillDefaultPotentials();
static void FillDefaultIds/();
static TSCMTypes ConsumeToken (ANTLRToken *pToken);
static void CalculateScm() ;
virtual ~CCCC_ScmManager () ;
protected:
static string m_PreviousToken;
static map<string, SyncPoint> m_ScmIdentifiers;
static int m_Potentials[(int)SCM_LAST];
static int m_Competition;
static bool m_NextIsVolatile;
static bool m_Initialized;
static void InitIds(string fileName) ;
static void InitPotentials(string fileName) ;
static vector<tsSpData > m_SpValues;

}i

#endif // !'defined (AFX_CCCC_SCM_H_74D8CAD6_8692_4DC1_A570

Peter Yastrebenetsky

string PotentialFiles = "scmpotentials.dat");

_45DD319FB424__ INCLUDED_)

Page 275

DO = = e e e e e e e
SOOI N WNO=OOOIAN N KW —

[\S NN}
W N =

[\O NS} \S]
(@) RV, N

SYNCHRONIZATION COMPLEXITY METRIC

cccc_scm.cc

// cccc_scm.cc: implementation of the CCCC_ScmManager class.
//
L1177 770 0007007777777 7777777777777 7777777777777777777777777777777777777

#include "cccc_tok.h"
#include "cccc_scm.h"
#include "cccc_utl.h"

map<string, SyncPoint> CCCC_ScmManager::m_ScmlIdentifiers;
bool CCCC_ScmManager::m_NextIsVolatile = FALSE;

string CCCC_ScmManager::m_PreviousToken = "";

int CCCC_ScmManager::m_Potentials[(int)SCM_LAST] = {0};
int CCCC_ScmManager::m_Competition = 0;

bool CCCC_ScmManager::m_Initialized = false;
vector<tsSpData> CCCC_ScmManager: :m_SpValues;

[1177707 7777777777777 777
// Construction/Destruction

[I77

#include <string>
#include <fstream>
using namespace std;

CCCC_ScmManager: : CCCC_ScmManager ()
{
}

voilid CCCC_ScmManager::FillDefaultIds()

{
SyncPoint sp;

// HTTPD - synchronization points for use with UN*X HTTP server implementations.

sp.Init (SCM_LOCK) ;

Peter Yastrebenetsky Page 276

60
61
62
63
64
65
66
67
68

SYNCHRONIZATION COMPLEXITY METRIC

}

void CCCC_ScmManager::FillDefaultPotentials()

{

m_ScmIdentifiers["create_and_bind_stream_or_die"]

m_ScmIdentifiers["safe_read"] = sp;

sp.Init (SCM_NOTIFY) ;
m_ScmIdentifiers["shutdown"] = sp;

m_ScmIdentifiers(["signal"] sp;
m_ScmIdentifiers["sigaction"] = sp;
m_ScmIdentifiers["send"] = sp;
m_ScmIdentifiers["write"] = sp;
sp.Init (SCM_WAIT) ;
m_ScmIdentifiers["select"] = sp;
m_ScmIdentifiers["full _write"] = sp;
m_ScmIdentifiers["full_read"] = sp;
m_ScmIdentifiers["read"] = sp;
m_ScmIdentifiers["accept"] = sp;
m_ScmIdentifiers["xlisten"] = sp;
m_ScmIdentifiers["listen"] = sp;
sp.Init (SCM_TASK_START) ;
m_ScmIdentifiers["fork"] = sp;
m_ScmIdentifiers["execv"] = sp;

// CP and IP for the HTTPD comparison

m_Competition = 2;
m_Potentials[SCM_NORMAL]
m_Potentials[SCM_TRY_LOCK
m_Potentials[SCM_LOCK] =
m_Potentials [SCM_UNLOCK]
m_Potentials[SCM_WAIT] =

Peter Yastrebenetsky

= Sps

Page 277

SYNCHRONIZATION COMPLEXITY METRIC

SCM_NOTIFY] = 2;
SCM_YIELD] = 0

m_Potentials
m_Potentials

[

[;
m_Potentials[SCM_VOLATILE] = 2;
m_Potentials[SCM_TASK_START] = 1;
m_Potentials[SCM_THREAD START] = 2;
m_Potentials[SCM_TASK_STOP] = 0;
m_Potentials[SCM_THREAD STOP] = O0;

void CCCC_ScmManager::InitPotentials(string fileName)
{

TSCMTypes t=SCM_NORMAL;

fstream inFile;

inFile.open(fileName.c_str (), ios::in);

int 1i;
bool success = (! inFile.fail());
while ((! inFile.fail()) && (t != SCM_LAST))

{
if (SCM_NORMAL ==)
{
inFile >> m_Competition;

}

t = (TSCMTypes) (((int)t)+1);
inFile >> 1i;
m_Potentials[(int)t] = 1i;

}

inFile.close();

if (! success)
{
FillDefaultPotentials () ;

}

Peter Yastrebenetsky

Page 278

SYNCHRONIZATION COMPLEXITY METRIC

void CCCC_ScmManager::InitIds(string fileName)
{

string TypeStrings[SCM_LAST] =

{
"SCM_NORMAL",
"SCM_TRY_LOCK",
"SCM_LOCK",
"SCM_UNLOCK",
"SCM_WAIT",
"SCM_NOTIFY",
"SCM_YIELD",
"SCM_VOLATILE",
"SCM_TASK_START",
"SCM_THREAD_START",
"SCM_TASK_STOP",
"SCM_THREAD_STOP"

bi

bool success;

string identifier, type;

int IP, CP;

fstream inFile;

inFile.open(fileName.c_str (), ios::in);

success = (! inFile.fail());
while (! inFile.fail())

{

inFile >> identifier >> type >> IP >> CP;

for (int t = (int)SCM_NORMAL; t < (int)SCM_LAST;

{
if (TypeStrings[t] == type)
{

Peter Yastrebenetsky

t++)

Page 279

SYNCHRONIZATION COMPLEXITY METRIC

139 SyncPoint sp((TSCMTypes)t, IP, CP);

140 m_ScmIdentifiers[identifier] = sp;
141 }

143 }
145 inFile.close();

147 if (!success)

148 {

149 FillDefaultIds();
150 }

151 }

153 void CCCC_ScmManager: :PrepareScmForVolatile ()
154 ¢
155 m_NextIsVolatile = true;

156

158 void CCCC_ScmManager::Initialize(string IdsFile, string PotentialFiles)
159 {

160 InitIds (IdsFile);

161 InitPotentials (PotentialFiles);
162 m Initialized = true;

163 }

164

165 TSCMTypes CCCC_ScmManager: :ConsumeToken (ANTLRToken *pToken)
166 ¢{

167 TSCMTypes type = SCM_NORMAL;

168 string sToken = pToken->getText () ;
169

170 // 1f first token - initialize

171 if (! m_Initialized)

172 {

173 Initialize();

Peter Yastrebenetsky Page 280

174
175
176
177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

SYNCHRONIZATION COMPLEXITY METRIC

}

if (m_NextIsVolatile)
{

// if delimiter found - the previous token was identifier. If we're in a volatile
identifier as volatile
if ((sToken == ",") || (sToken == ";"))
{
m_ScmIdentifiers[m_PreviousToken] = SCM_VOLATILE;

m_NextIsVolatile = false;
}
}
else if (sToken == "volatile")
{
// if the token is "volatile" - raise the flag to wait for the identifier.
// although it's supposed to be raised through the parser, raise it here as well.
m_NextIsVolatile = true;
}
else
{
// get the type of the current identifier
if ((m_ScmIdentifiers.count (sToken)) || (sToken == "t_start"))
{
// calculate SCM for the current token
type = m_ScmIdentifiers[sToken].GetType();
fprintf (stderr, "\nSCM: For token %s found type %d.\n", sToken, type);
// insert the current token into the nesting map
sData.IP = m_Potentials[type];
sData.CP = m_Competition;
sData.MVG_sp = ParseStore::currentInstance()->GetCCNspValue();
m_SpValues.push_back (sData) ;
}
}

m_PreviousToken = sToken;

Peter Yastrebenetsky Page 281

definition - take the

209
210
211
212

214
215
216
217
218
219
220
221
222
223

225
226
227

229
230
231
232

SYNCHRONIZATION COMPLEXITY METRIC

return type;

}

void CCCC_ScmManager::CalculateScm()
{
tsSpData sDhataj;
vector<tsSpData>::iterator it;
// get the IP and pass to the ParseStore with the current CP,
// for each of the encountered synchronization points
// in this function

for (it = m_SpValues.begin(); it != m_SpValues.end(); it++)
{
sData = *it;
ParseStore::currentInstance()->IncrementSCM(sData.IP, sData.CP, sData.MVG_sp);

}

// delete the IP's of the synchronization points for the current nesting level.
m_SpValues.clear();

// clear the CCNsg counter

ParseStore::currentInstance () ->PerformReturn();

}

CCCC_ScmManager: : ~CCCC_ScmManager ()
{
}

The ParseStore Class

cccc_utils.h

The listing below of the whole cccc_utils.h file, which includes utility classes and functions for the CCCC. The changes relevant to this work
are between lines 227 and 250, and are marked with the yellow background. A new member m_CCNSpHelper that was added to the class
on line 344 is initialized in its constructor. This trivial (and only) change in cccc_utils. cc is not shown here.

Peter Yastrebenetsky Page 282

OO NP W —

SYNCHRONIZATION COMPLEXITY METRIC

/*
CCCC - C and C++ Code Counter
Copyright (C) 1994-2005 Tim Littlefair (tim_littlefair@hotmail.com)

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
// cccc_utl.h

#ifndef _ CCCC_UTL_H
#define _ CCCC_UTL_H

#include "cccc.h"
#include <map>
#include <vector>
#include "cccc_tok.h"
#include "AParser.h"

class ANTLRAbstractToken;
class ANTLRTokenPtr;
class CCCC_Item;

// this file declares all enumeration datatypes used in the project, and

Peter Yastrebenetsky Page 283

SYNCHRONIZATION COMPLEXITY METRIC

// also the parse state class, which is used to capture information in the
// parse and transfer it to the code database for later report generation

// for each enumeration, a single character code is defined for each member
// these codes are shown in the inline comments

// the enumerations are designed to support resolution of incomplete
// knowledge about several sections of code which relate to the same
// object to give the most complete picture available

class AST;

// the languages which can be parsed

// only C and C++ are implemented as yet

enum Language { 1AUTO, 1CPLUSPLUS, 1ANSIC, 1JAVA, 1ADA };
extern Language global_language, file_language;

enum Visibility {
vPUBLIC='0',vPROTECTED="'1"', vPRIVATE="'2", vIMPLEMENTATION="3",
vDONTKNOW="?"', vDONTCARE="X", VvINVALID="*"

}i

ostream& operator << (ostream&, Visibility);

istream& operator >> (istream&, Visibilityé&);

enum AugmentedBool {
abFALSE='"'F"', abTRUE='T', abDONTKNOW='?', abDONTCARE='X', abINVALID='*"
}i
ostreamé& operator << (ostreamé& os, AugmentedBool ab);
istream& operator >> (istream& is, AugmentedBoolé& ab);

enum UseType {

UtDECLARATION='D', utDEFINITION='d', // of methods and classes

Ut INHERITS='I", // inheritance, including Java
// extends and implements relations

UtHASBYVAL='H', utHASBYREF='h', // class data member

Peter Yastrebenetsky Page 284

SYNCHRONIZATION COMPLEXITY METRIC

UtPARBYVAL='P', utPARBYREF='p', // method parameter or return value
UtVARBYVAL='V', utVARBYREF='v', // local variable within a method
utTEMPLATE_NAME='T', // typedef alias for a template
UtTEMPLATE_TYPE='t"', // type over which a template is

// instantiated

utINVOKES='1", // C function invocation
utREJECTED="'r", // for extents rejected by the parser
UtWITH="w"', // Ada 'with' keyword context

UtDONTKNOW="'?"', utDONTCARE='X', utINVALID='*"'
}i

// the parse state object consists of a number of strings representing

// knowledge about the identification of the source code object currently
// being processed, a number of flags of type AugmentedBool, and

// items representing knowledge about the

// concerning the object's nature, and also its visibility

enum PSString {
pssFILE, pssRULE, pssFLAGS, // the context of the parse

pPssMODTYPE, pssMODULE, // the syntactic class and name of the module
pPssUTYPE, // unqualified type of the current member
pssINDIR, // indirection associated with the type above
pssITYPE, // type qualified with indirection

PSssMEMBER, pssPARAMS, // name, parameter list of a member
pssDESCRIPTION, // textual description of the relationship type
PSSLAST // used to dimension the array

}i

enum PSFlag {
psfCONST, psfSTATIC, psfEXTERN, psfVIRTUAL, // AugmentedBool
psfVISIBILITY, // Visibility
psfLAST // used to dimension the array
bi
enum PSVerbosity { psvSILENT, psvQUIET, psvLOUD };

Peter Yastrebenetsky Page 285

105
106
107
108
109
110
111

113
114
115

117
118
119
120
121
122

124
125
126

128
129
130
131
132
133
134
135
136
137
138
139

SYNCHRONIZATION COMPLEXITY METRIC

#define MAX_STACK_DEPTH 1000

// I have moved some actions originally embedded within the C++ grammar
// out of the grammar into the class ParseUtility defined below, so that
// other grammars can use them as well for consistency and efficiency.
// The ParseUtility::resynchronize() method provides a standardised way
// of 1) resynchronising the parser, and 2) reporting the parse error
// which caused the problem. Unfortunately, to do the resynchronisation
// it requires access to protected functions of ANTLRParser.
// The class ANTLR_Assisted_Parser below is a hack to enable ParseUtility
// to violate the protection of the functions required: ParseUtility is
// passed a pointer to a real parser which is of a subclass of ANTLRParser,
// and casts it to this artificial subclass, so as to give ParseUtility
// friend rights and to access the protected functions.
// This hack is necessary because the class definition we need to affect
// is generated by PCCTS: I am not proud of it and if anyone can suggest
// a way of doing without modifying PCCTS or its support code, I will be
// very happy to hear about it.
class ANTLR_Assisted_Parser : public ANTLRParser
{

ANTLR_Assisted_Parser (ANTLRParser& parser) : ANTLRParser (parser) {}

friend class ParseUtility;
bi

// The parse utility class 1is intended to assist the parser in a number

// of ways. 1In earlier versions, this class had at least two distinct
// roles:

// 1) as a place for common functions which each parser might call

// for diagnostics, resynchronisation etc; and

// 2) as a general storage area for state which needs to be remembered
// for any length of time during the parsing process.

// The class ParseStore has been added to support the second role,
// and it is hoped that the amount of stored state can be reduced
// in the near future.

class ParseUtility {

Peter Yastrebenetsky Page 286

SYNCHRONIZATION COMPLEXITY METRIC

140

141 public:

142 ParseUtility (ANTLRParser *parser);

143 ~ParseUtility();

144

145 // the following methods are used to service the standard tracein/traceout
146 // and syntax error reporting calls generated by PCCTS

147 void tracein(const char *rulename, int guessing, ANTLRAbstractToken *tok);
148 void traceout (const char *rulename, int guessing, ANTLRAbstractToken *tok);
149 void syn(_ANTLRTokenPtr tok, ANTLRChar *egroup, SetWordType *eset,

150 ANTLRTokenType etok, int k);

151

152 // this method consolidates the text of the next n tokens of lookahead
153 string lookahead_text (int n);

154

155 // this method searches for a string of tokens at the specified nesting
156 // depth from the specified token class, and uses them as a marker to
157 // resynchronise the parser

158 void resynchronize (

159 int initial_nesting, SetWordType *resync_token_class,
160 ANTLRTokenPtr& resync_token);

161

162 // This utility function is used to create

163 // a composite scope name from a qualifier scope

164 // and a relative name.

165 string scopeCombine (const string& baseScope, const string& name);

166

167 // Only one instance of this class should exist at any time.

168 // This method allows the parsers and lexers to access the instance.
169 static ParseUtility *currentInstance() { return theCurrentInstance; }
170

171 private:

172 static ParseUtility *theCurrentInstance;

173

174 ANTLR_Assisted_Parser *parser;

Peter Yastrebenetsky Page 287

SYNCHRONIZATION COMPLEXITY METRIC

175 int trace_depth;

176 static int stack_depth;

177 static string stack_tokentext [MAX_STACK_DEPTH] ;

178 static int stack_tokenline [MAX_STACK_DEPTH] ;

179 static string stack_rules[MAX_STACK_DEPTH];

180

181 // copy constructor and assignment operator are private to

182 // prevent unexpected copying

183 ParseUtility(const ParseUtilityé&);

184 const ParseUtilityé& operator=(const ParseUtilityé&);

185 };

186

187 // LOC, COM and MVG are all counted by the lexical analyzer,

188 // but the counts must be apportioned after the parser has

189 // identified the extents of the various declarations and definitions
190 // they belong to.

191 // This is achieved by the lexer maintaining counts of each

192 // which are reported to the ParseUtility class on a line by line
193 // basis. ParseUtility uses this data to create a store which is
194 // used to apportion counts as the parser reports extents.

195 enum LexicalCount { tcCOMLINES, tcCODELINES, tcMCCABES_VG, tcSCM, tcLAST };
196

197

198 // The ParseStore class encapsulates all information storage

199 // requirements related to the parser, and also manages

200 // the process of feeding that information to the database

201 // when it is complete.

202 // In particular, the class is responsible for receiving and
203 // retaining counts of the lexical metrics (LOC, COM,

204 // MVG) on a line-by-line basis. These are counted in the

205 // lexical analyzer, and the line-by-line counts must be

206 // integrated to allocate the counts to the extents identified
207 // by the parser as belonging to significant declarations and
208 // definitions.

209 class ParseStore

Peter Yastrebenetsky Page 288

210
211
212

214
215
216

218
219
220

222
223
224
225
226
227

229
230
231
232
233
234
235
236
237
238
239
240
241
242

244

SYNCHRONIZATION COMPLEXITY METRIC

{
public:

ParseStore(const string& filename);

~ParseStore () ;

void IncrementCount (LexicalCount 1lc)

{
pendinglLexicalCounts[lc]++;
if (tcMCCABES_VG == 1lc)
{

fprintf (stderr, "\nSCM: McCabe is incremented - incrementing SCM too.\n");
pendinglLexicalCounts [tcSCM] ++;
// remember the current MVG value

m_CCNSpHelper++;
}
}

int GetCCNspValue() { return m_CCNSpHelper;};

void PerformReturn ()
{

m_CCNSpHelper = 0;
i

void IncrementSCM(int IP, int CP, int CCN_sp)

{

long p = pow(IP, (CP)?2CP-1:0);

int useMcCabe = m_CCNSpHelper - CCN_sp + 1;
// SCM follows McCabe (see IncrementCount in cccc.qg),

and here we multiple the branching

// calculated so far by the Interleaving/Competition potentials' coefficent

if (p>0)
{
pendinglLexicalCounts [tcSCM]

}

Peter Yastrebenetsky

+= useMcCabe *

(long)p;

Page 289

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
271

279

SYNCHRONIZATION COMPLEXITY METRIC

void endOfLine (int line);

// each of the functions below writes one or more records

// the database of code
void record_module_extent (int startLine,

int endLine,

const string& moduleName,
const string& moduleType,
const string& description,

UseType ut);

void record_function_extent (int startLine, int endLine,

const stringé&
const stringé&
const stringé&
const stringé&
const stringé&

returnType,
moduleName,
memberName,
paramList,
description,

Visibility visibility,

UseType ut);
void record_userel_extent (int startLine,

int endLine,

const string& clientName,
const string& memberName,
const string& serverName,
const string& description,
Visibility visibility,

UseType ut);
void record_other_extent (int startLine,
const stringé&
void record_file_balance_extent (string);

int endLine,

description);

into

// Each of the record_ XXX methods above uses this function to

// add an extent record.
void insert_extent (CCCC_Item&, int, int,

const stringé&, const strings,
UseType, bool allocate_lexcounts);

Peter Yastrebenetsky

Page 290

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

SYNCHRONIZATION COMPLEXITY METRIC

// the class maintains a number of strings and flags which reflect

// the most recently recognized module, member, type (with and without
// indirection) etc, and the visibility of items occuring at the current
// context

int get_flag(PSFlag) const;

void set_flag(PSFlag, int);

void set_flag(Visibility);

Visibility get_visibility();

string filename();

char *flags() { return &(*flag.begin()); }

// We also need the automatically generated copy constructor
// and assignment operator to allow us to save state in the
// parser.

// Only one instance of this class should exist at any time.

// This method allows the parsers and lexers to access the instance.

static ParseStore *currentInstance() { return theCurrentInstance; }
private:

static ParseStore *theCurrentInstance;

int m_CCNSpHelper;
string theFilename;

typedef std::vector<int> LexicalCountArray;
LexicalCountArray pendinglLexicalCounts;

typedef std::map<int,LexicalCountArray> LinelLexicalCountMatrix;
LinelLexicalCountMatrix linelLexicalCounts;

typedef std::vector<char> CharArray;
CharArray flag;

Peter Yastrebenetsky Page 291

SYNCHRONIZATION COMPLEXITY METRIC

315
316 // copy constructor and assignment operator are private to
317 // prevent unexpected copying
318 ParseStore (const ParseStoreé&);
319 const ParseStore& operator=(const ParseStoreé&);
320 };
321
322 #endif
The ANTLRToken Class
cccc_tok.cc
The listing below of the whole cccc_tok.cc file, which includes the ANTLRToken class implementation. The changes relevant to this work
are between lines 161 and 167, and are marked with the yellow background.
I />
2 CCCC - C and C++ Code Counter
3 Copyright (C) 1994-2005 Tim Littlefair (tim_littlefair@hotmail.com)
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */

Peter Yastrebenetsky Page 292

SYNCHRONIZATION COMPLEXITY METRIC

/*
* cccc_tok.C

* implementation of a token class for the cccc project
*

*/

#include "cccc.h"

#include "cccc_tok.h"
#include "cccc_utl.h"
#include "cccc_scm.h"

/* static variables */

int ANTLRToken: :RunningNesting=0;

int ANTLRToken: :bCodeLine=0;

int ANTLRToken: :numAllocated=0;

int toks_allocl=0, toks_alloc2=0, toks_alloc3=0, toks_freed=0;

ANTLRToken currentLexerToken;

/*

** Token objects are used to count the occurences of states which
** our analyser is interested in within the text. Any metric which
** can be reduced to lexical counting on the text can be recorded
** this way.

* %

** This implementation counts the following features:

* % tokens

* % comment lines
* % lines containing at least one token of code
* %

** It also makes a lexical count for the following tokens, each of which
** is expected to increase McCabe's cyclomatic complexity (Vg) for the
** section of code by one unit:

** TF FOR WHILE SWITCH BREAK RETURN ? && ||
**

Peter Yastrebenetsky Page 293

SYNCHRONIZATION COMPLEXITY METRIC

** Note that && and || create additional paths through the code due to C/C++

** short circuit evaluation of logical expressions.
* %

** Also note the way SWITCH constructs are counted: the desired increment
** in Vg is equal to the number of cases provided for, including the

** default case, whether or not an action is defined for it. This is acheived

** by counting the SWITCH at the head of the construct as a surrogate for
** the default case, and counting BREAKs as surrogates for the individual
** cases. This approach yields the correct results provided that the

** coding style in use ensures the use of BREAK after all non-default

** cases, and forbids 'drop through' from one case to another other than
** in the case where two or more values of the switch variable require

** jdentical actions, and no executable code is defined between the

** case gates (as in the switch statement in ANTLRToken: :CountToken() below).

*/

/* default constructor */

ANTLRToken: :ANTLRToken () : ANTLRCommonToken () {
toks_allocl++;
CurrentNesting=-99;

}
/*

** constructor used by makeToken below
*/
ANTLRToken: : ANTLRToken (ANTLRTokenType t, ANTLRChar *s)
ANTLRCommonToken (t,s) {
setType (t);
setText (s);
CountToken () ;

toks_alloc2++;
}

/* copy constructor */

Peter Yastrebenetsky Page 294

SYNCHRONIZATION COMPLEXITY METRIC

89 ANTLRToken: :ANTLRToken (ANTLRToken& copyTok) {

90 setType (copyTok.getType ()) ;

91 setText (copyTok.getText ()) ;

92 setLine (copyTok.getLine());

93 CurrentNesting=copyTok.CurrentNesting;
94 toks_alloc3++;

95

96

97 /*

98 ** the virtual pseudo-constructor

99 ** This is required because the PCCTS support code does not know the
100 ** exact nature of the token which will be created by the user's code,
101 ** and indeed does not forbid the user creating more than one kind of
102 ** token, so long as ANTLRToken is defined and all token classes are
103 ** subclassed from ANTLRAbstractToken

104 =%/

105 ANTLRAbstractToken *ANTLRToken: :makeToken (

106 ANTLRTokenType tt, ANTLRChar *txt, int line
107) {

108

109 ANTLRToken *new_t = new ANTLRToken (tt,txt);

110 if (new_t==0) {

111 cerr << "Memory overflow in "

112 "ANTLRToken: :makeToken (" << static_cast<int> (tt) << ","
113 << txt << "," << line << ")" << endl;

114 exit (2);

115 }

116 new_t->setLine (line);

117

118 DbgMsg (

119 LEXER, cerr,

120 "makeToken (tt=>" << static cast<int> (tt) <<

121 ",oExt=>" << txt <<

122 ", line=>" << line <<

123 ")" << endl

Peter Yastrebenetsky Page 295

124
125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

SYNCHRONIZATION COMPLEXITY METRIC

)

return new_t;

}

/* the destructor */
ANTLRToken: : ~NANTLRToken () {
toks_freed++;
DbgMsg (MEMORY, cerr, "freeing token " << getText ()
<< " on line " << getLine()
<< " ¢cl:" << toks_allocl << " ¢2:" << toks_alloc2
<< " ¢3:" << toks_alloc3 << " freed:" << toks_freed << endl);

}

/* the assignment operator */

ANTLRToken& ANTLRToken: :operator=(ANTLRToken& copyTok) {
setType (copyTok.getType());
setText (copyTok.getText ());
setLine (copyTok.getLine());
CurrentNesting=copyTok.CurrentNesting;
return *this;

** ANTLRToken: :CountToken performs counting of features which are traced

** back to individual tokens created up by the lexer, i.e. the token count
** and SCM values. Code lines and comment lines are both identified during
** the processing of text which the lexer will (usually) skip, so the code
** to increment these counts is in the relevant lexer rules in the file

** cccc.g, and so is the code relevant for the McCabe's VG.

void ANTLRToken: :CountToken ()

{
// we have seen a non-skippable pattern => this line counts toward LOC
bCodelLine=1;

Peter Yastrebenetsky Page 296

SYNCHRONIZATION COMPLEXITY METRIC

159 int type =1;

160 CurrentNesting=RunningNesting;

161 // see the exact token and decide wether to count it towards the SCM value counter
162 CCCC_ScmManager: : ConsumeToken (this) ;

163 if (! RunningNesting)

164 {

165 // we're out of the latest function scope

166 CCCC_ScmManager: :CalculateScm() ;

167 }

168 DbgMsg (COUNTER, cerr, *this) ;

169

170

171 char *ANTLRToken: :getTokenTypeName () { return ""; }
172

173 /=

174 ** structured output method for token objects

175 */

176 ostream& operator << (ostream& out, ANTLRToken& t) {
177 int i;

178

179 out << "TOK: " << t.getTokenTypeName ()

180 << " " << t.getText ()

181 << " " << t.getLine()

182 << " " << t.getNestingLevel();

183

184 out << endl;

185 return out;

186 1}

Peter Yastrebenetsky Page 297

SYNCHRONIZATION COMPLEXITY METRIC

Peter Yastrebenetsky Page 298

SYNCHRONIZATION COMPLEXITY METRIC

Appendix C

In this appendix there are the full results provided by the CCCC for the modules analyzed in chapter 5.

BusyBox — Old Version Analysis Results

Detailed report on module anonymous

‘ Tag ‘ Overall ‘ FurI:::ion
LLines of Code ILOC | 1135 o
|McCabe's Cyclomatic Number |MVG | 374 _
'The SCM Value 'scM | 1416 [
|Lines of Comment |COM | 406 _
'LOC/COM LC | 2.796 |
IMVG/COM M_C | 0.921 |
'SCM/COM SCM_C | 3.488 |
|Weighted Methods per Class (weighting = unity) |WMC1 | 22 ‘
|Weighted Methods per Class (weighting = visible) |WMCV | 22 ‘
|Depth of Inheritance Tree |DIT | 0 ‘
|Number of Children |NOC | 0 ‘
|C0upling between objects |CBO | 0 ‘
|Information Flow measure (inclusive) |IF4 | 0 ‘ Aeskskokekokok ok

Peter Yastrebenetsky

Page 299

SYNCHRONIZATION COMPLEXITY METRIC

|Informati0n Flow measure (visible)

[F4v

0

skokeosk skok skokosk

|Information Flow measure (concrete)

|IF4C

0

ssfoskoskoskoskeosk ok

Definitions and Declarations

|Description

LOC

MVG | SCM

. COM |

L_C

M_C SCM_C

|No module extents have been identified for this module

Functions

|Functi0n prototype LOC

MVG

SCM

COM

L_C

'M_C SCM_C

checkPerm(const char *, const char *)
definition busybox_httpd.c:1389

51

22

22

27

1.889

0.815

0.815

checkPermIP(void)
definition busybox_httpd.c:1342

20

6.667

decodeBase64(char *)
definition busybox_httpd.c: 758

32

11

11

19

1.684

0.579

0.579

decodeString(char *, int)
definition busybox_httpd.c:681

33

13

13

23

1.435

0.565

0.565

encodeString(const char *)
definition busybox_httpd.c:643

13

20

Peter Yastrebenetsky

Page 300

SYNCHRONIZATION COMPLEXITY METRIC

free_config_lines(Htaccess **)

definition busybox_httpd.c:342 10 1 1 O |] -
getLine(void)

definition busybox_httpd.c:911 16 8 24 12 - 0.667 2.000
handleIncoming(void)

definition busybox_httpd.c:1479 51 4.353| 1.529| 9.137
handle_sigalrm(int)

definition busybox_httpd.c:1466 5 0 2 8| | | -
httpd_main(int, char **)

dec'la'ra.ltlon busybox_httpd.c:1933 78 79 39 4 79500 4750 9750
definition busybox_httpd.c:1934

miniHttpd(int)

definition busybox_httpd.c:1799 45 10 53 23 1.957| 0.435 2.304
miniHttpd_inetd(void)

definition busybox_httpd.c:1865 23 3 3 2 11.500| -----|| -----
openServer(void)

definition busybox_httpd.c:808 7 1 9 12 —mee|| - 0.750
parse_conf(const char *, int) --| 64 53 3.226 ‘ 1.208 ‘ 1.208

Peter Yastrebenetsky

Page 301

SYNCHRONIZATION COMPLEXITY METRIC

definition busybox_httpd.c:386

scan_ip(const char **, int *, char)
definition busybox_httpd.c:267

34

20

20

scan_ip_mask(const char *, int *, int *)
definition busybox_httpd.c:304

sendCgi(const char *, const char *, int, const char *, const
char *)
definition busybox_httpd.c:951

sendFile(const char *)

definition busybox_httpd.c:1285 45 18 38 17 2.647| 1.059| 2.235
sendHeaders(HttpResponseNum)

definition busybox_httpd.c:833 58 13 15 19 3.053| 0.684 0.789
setenv1(const char *, const char *)

definition busybox_httpd.c:725 6 1 1 3 | | e
setenv_long(const char *, long)

definition busybox_httpd.c:731 6 0 0 0| | = -
sighup_handler(int)

definition busybox_httpd.c:1896 9 1 7 1 | - 7.000
Peter Yastrebenetsky Page 302

SYNCHRONIZATION COMPLEXITY METRIC

Relationships

| Clients ‘ Suppliers

Peter Yastrebenetsky Page 303

SYNCHRONIZATION COMPLEXITY METRIC

BusyBox — New Version Analysis Results

Detailed report on module anonymous

Metric ‘ ‘ Overall ‘ F Pe1:
unction
LLines of Code |LOC | 1118 ok
|McCabe's Cyclomatic Number |MVG | 326 _
'The SCM Value NeYi | o15 [
|Lines of Comment |COM | 374 _
'LOC/COM L C | 2.989 |
IMVG/COM M_C | 0.872
'SCM/COM SCM_C | 1.644 |
|Weighted Methods per Class (weighting = unity) |WMC1 | 28 ‘
|Weighted Methods per Class (weighting = visible) |WMCV | 28 ‘
|Depth of Inheritance Tree |DIT | 0 ‘
|Number of Children |NOC | 0 ‘
|C0upling between objects |CBO | 0 ‘
|Informati0n Flow measure (inclusive) |IF4 | 0 ‘ Aeskskokekokok ok
|Informati0n Flow measure (visible) |IF4V | 0‘ Rl
|Informati0n Flow measure (concrete) |IF4C | 0‘ R ok ok

Peter Yastrebenetsky Page 304

SYNCHRONIZATION COMPLEXITY METRIC

Definitions and Declarations

Description LOC MVG SCM & COM LC M_CSCM_C

|No module extents have been identified for this module

Functions

|Functi0n prototype

LOC

MVG = SCM

. COM

L_C

'M_C SCM_C

checkPermIP(void)
definition httpd.c:1627

21

4

10.500

check_user_passwd(const char *, const char *)
definition httpd.c:1663

52

19

19

23

2.261

0.826

0.826

decodeBase64(char *)
definition httpd.c:863

32

11

11

3.556

1.222

1.222

decodeString(char *, int)
definition httpd.c:813

35

13

13

4.375

1.625

1.625

encodeString(const char *)
definition httpd.c:761

15

11

find_proxy_entry(const char *)
definition httpd.c:1737

Peter Yastrebenetsky

Page 305

SYNCHRONIZATION COMPLEXITY METRIC

free_llist(has_next_ptr **)
definition httpd.c:340

10

get_line(void)
definition httpd.c:1063

handle_incoming_and_exit(const len_and_sockaddr *)

declaration httpd.c:1760
definition httpd.c:1761

25

25

3.125

1.125

3.125

288

69

3.870

1.362

4.174

hex_to_bin(char)
definition httpd.c:794

11

15

0.333

0.333

httpd_main(...)
definition httpd.c:2284

75

16

38

21

3.571

0.762

1.810

httpd_main(int, char **)
declaration httpd.c:2283

log_and_exit(void)
declaration httpd.c:918
definition httpd.c:919

11

0.455

mini_httpd(int)
declaration httpd.c:2154
definition httpd.c:2155

21

12

18

1.167

0.667

Peter Yastrebenetsky

Page 306

SYNCHRONIZATION COMPLEXITY METRIC

mini_httpd_inetd(void)

dec}ara}tlon httpd.c:2240 9 0 0 sl | |
definition httpd.c:2241

mini_httpd_nommu(int, int, char **)

dec'la'ra'ltlon httpd.c:2191 25 3 1 13 1.923 | e 0.846
definition httpd.c:2192

openServer(void)

definition httpd.c:904 10 4 16 3 | e 5.333
parse_conf(const char *, int)

definition httpd.c:464 54 64| 3.047) 0.844| 0.844
scan_ip(const char **, unsigned *, char)

definition httpd.c:363 37 21 21 2 18.500 10.500
scan_ip_mask(const char *, unsigned *, unsigned *)

definition httpd.c:405 27 12 12 10 2.700(1.200| 1.200
send_REQUEST_TIMEOUT _and_exit(...)

definition httpd.c:1752 4 0 0 O -] | -
send_REQUEST_TIMEOUT _and_exit(int)

declaration httpd.c:1751 1 0 0 3 || | -
|send_cgi_and_exit(const char *, const char *, int, const char *, -| 28 30 68 1.912 | 0.412 ‘ 0.441
Peter Yastrebenetsky Page 307

SYNCHRONIZATION COMPLEXITY METRIC

const char *)
declaration httpd.c:1287
definition httpd.c:1293

send_file_and_exit(const char *, int)
declaration httpd.c:338 1 0 0 0)1) |

send_headers(int)
definition httpd.c:943 83 20 42 10 8.300| 2.000| 4.200

send_headers_and_exit(int)
declaration httpd.c:1049 6 0 0 0
definition httpd.c:1050

setenv1(const char *, const char *)
definition httpd.c:1269 4 1 1 0)1 | | I

sighup_handler(...)
definition httpd.c:2252 4 0 0 0)1 S R B

Relationships

| Clients ‘ Suppliers

Peter Yastrebenetsky Page 308

SYNCHRONIZATION COMPLEXITY METRIC

IKI Analysis Results
Detailed report on module anonymous

Metric ‘ ‘ Overall ‘ F Pe1:

unction

LLines of Code |LOC | 1376 | A
|McCabe's Cyclomatic Number |MVG | 312 _
'The SCM Value scM | 437 [
|Lines of Comment |COM | 103 _
'LOC/COM L C | 13.359|
IMVG/COM M_C | 3.029 |
'SCM/COM SCM_C | 4.728|
|Weighted Methods per Class (weighting = unity) |WMC1 | 30 ‘
|Weighted Methods per Class (weighting = visible) |WMCV | 30 ‘
|Depth of Inheritance Tree |DIT | 0 ‘
|Number of Children |NOC | 0 ‘
|C0upling between objects |CBO | 0 ‘
|Informati0n Flow measure (inclusive) |IF4 | 0 ‘ Aeskskokekokok ok
|Informati0n Flow measure (visible) |IF4V | 0‘ Rl
|Informati0n Flow measure (concrete) |IF4C | 0‘ R ok ok

Peter Yastrebenetsky Page 309

SYNCHRONIZATION COMPLEXITY METRIC

Definitions and Declarations

|Description

LOC

MVG

SCM

COM L_C

M_C SCM_C

|No module extents have been identified for this module

Functions

|Functi0n prototype

LOC

MVG = SCM | COM

L_C

add_forwarding_page(char *, char *)
definition iki_httpd.c:581

34

5

5

'M_C SCM_C

esfeskoskoskook

skskoskoskookok

add_redir_page(char *, char *)
definition iki_httpd.c:536

39

3 13.000

cleanup_temp_cache()
definition iki_httpd.c:1405

31

3 10.333

2.000

2.000

close_connection(int)
definition iki_httpd.c:969

37

3 12.333

compr_redirection(const void *, const void *)
definition iki_httpd.c:491

compr_url(const void *, const void *)
definition iki_httpd.c:481

Peter Yastrebenetsky

Page 310

SYNCHRONIZATION COMPLEXITY METRIC

decode_url_in_place(char *)

definition iki_httpd.c:1159 22 6 6 3 7.333| 2.000| 2.000
do_get(int, char *, command_t) |
definition iki_httpd.c:1187 31 3 10.333
do_write(int)

definition iki_httpd.c:928 35 10 22 3 11.667| 3.333| 7.333
dprint(...)

definition iki_httpd.c:348 9 0 0 K] I e
find_free_temp_page()

definition iki_httpd.c:1085 22 7 7 3 7.333| 2.333| 2.333
http_server()

definition iki_httpd.c:1728 29 75 18.750
main(int, char **)

definition iki_httpd.c:1872 98 25 90 90.000
make_redirection_page(redirection_t, char *)

definition iki_httpd.c:1112 38 4 4 3 12.667| --—----| -
match_type(char *)

definition iki_httpd.c:665 58 53 3 19.333 17.667
Peter Yastrebenetsky Page 311

SYNCHRONIZATION COMPLEXITY METRIC

new_connection()

definition iki_httpd.c:1441 84 12 34 3 28.000| 4.000| 11.333
open_service(const char *)

definition iki_httpd.c:362 59 7 13 3 19.667| 2.333| 4.333
parse_command(int)

definition iki_httpd.c:1569 25 25 8.333| 8.333
parse_headers(int)

definition iki_httpd.c:1700 21 16 16 3 7.000| 5.333| 5.333
read_data(int)

definition iki_httpd.c:1532 32 8 26 3 10.667| 2.667| 8.667
read_htdocs(char *)

definition iki_httpd.c:791 85 18 18 11 7.727| 1.636| 1.636
read_page(page_t *, char *, stat*, char *)

definition iki_httpd.c:729 52 9 15 4 13.000| 2.250| 3.750
read_pages(char *, char *)

definition iki_httpd.c:899 22 3 3 6 3.667 | -
read_redirections(char *)

definition iki_httpd.c:622 36 8 8 3 12.000| 2.667| 2.667

Peter Yastrebenetsky

Page 312

SYNCHRONIZATION COMPLEXITY METRIC

return_error(int)
definition iki_httpd.c:1022 12 0 0 K| B | R

rfc1123date(char *, time_t)
definition iki_httpd.c:439 10 1 1)] I I | B

set_head_and_body(page_t, char *, long, char *, long)
definition iki_httpd.c:502 25 7 7 4 6.250| 1.750 1.750

set_out_data(connection_t, char *, size_t, size_t, command_t)
definition iki_httpd.c:1040 40 5 5 5 8.000| 1.000| 1.000

skip_non_white(char *)
definition iki_httpd.c:468 8 5 5 Y 1.250| 1.250

skip_white(char *)
definition iki_httpd.c:454 8 4 4 /1) R | I | I

Relationships

| Clients ‘ Suppliers

Peter Yastrebenetsky Page 313

NN

N1 1997 M2YAT PW NI12°Y5 MIDOKR ,NIXIDI N1 N1 DA 2°2°770 MR MI2IVAY NI2020W 99D
21 N Ny

TNY 7Y, NRTIPR aRkET 5w 707 NIwA TV INND WK N1P12°0 CTTN JIWC N1PNTTO MDY MaYY ama
DR TIARDY L2997 A1PHR X2 2°2°770 N1212 NN NP0 RN A7 Y¥AY 1T 000 R
190 NP1 MR 2¥ N°9°apn NaTYna YW AN nyown

DY 771910 NPI12°D UORY WK LW TN DOV AR L0792 DRI VAT NOND 2OYURA AR T ATava
7TR% T2 .DONWN 0°0P°pnn 200 12 DINCN QWY DWHRwn WR NN2107 SYINR NRdY A0 002
TVARY WHORD WM 1210 N0 772 ,NI1NITON NMIDIWAT AV 27ppn SV NOUMIZPET 111200
T2 AORNWA WORA TINT ,A0MA .N2°2PN NOWH DW MPPTA2 217 M0°37 MWITIN MU Tan 1501 DX

1721077 N1°212°0 MIN1 HY DDANTA NI YW DWW DWW

STINDIT TWIDN2NINGT
QWA SYTARY RIURNRY SRR

1210 NYII2IDD TN

RN N92PY MW7 PRND WA T TN NTAY
2wnna ovTna M.Sc. "ooyTna Jaon"
TMNT 7Y0N2°1R2
WA SYTAY 720000

-0y
PRI WD

V172037V PN "7 HW INIITA2 717 TN

2009 "anxT

