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Abstract 

Publish/subscribe is a common messaging paradigm used for asynchronous 

communication between applications, in which a publisher is a message provider and a 

subscriber is a message consumer. Publish/subscribe is scalable and is tolerable of 

frequently changing subscriber lists, mainly due to decoupling of the publishers from 

the subscribers. When one publishes a message, he is unaware of who will receive the 

message, where they are located and when they will receive the message. All these 

issues are managed by the middleware. The publish/subscribe paradigm is applicable to 

a wide range of applications. Recent studies have shown that publish/subscribe is 

suitable even for applications with extreme conditions, such as real-time applications 

requiring nothing less than top performance and cellular applications with most difficult 

connectivity and bandwidth conditions.   

         

In synchronous publish/subscribe a distributed transaction is used to have all 

subscribers participating in the transaction receive and act upon the published messages 

in an atomic manner. Synchronous publish/subscribe middleware exist but are less 

common than their asynchronous counterparts for two main reasons. The first is that 

message dissemination involves larger delays. These delays exist because all 

participants must wait to commit a message till all other subscribers in the transaction 

are prepared to commit. In effect, the slowest subscriber is the one pacing the 

transaction. The second reason is that resources remain locked for a much longer period 

of time. All subscribers in the transaction will lock resources before issuing an update 

of data. Since all subscribers commit together, resources remain locked while waiting 

for remote subscribers to complete their work. During this period of time, all 

transactions attempting to access the locked resources will be forced to wait.  

 

Hermes Transaction Service (HTS) is such a middleware, which is capable of treating a 

group of publications as a transaction. In this paper, we propose a design for a new 

transactional publish/subscribe middleware, based on HTS. Accordingly, we name the 

middleware TOPS – Transaction Oriented Publish/Subscribe. In order to justify using 

HTS as a starting point for TOPS, an application simulator was built over HTS. This 

simulator enables using HTS from an application’s point of view. By using this 

simulator we were capable of studying HTS in depth, learning its exact behavior and 

thereby extracting valuable conclusions which were used towards designing TOPS. 

These conclusions provided a significant contribution to TOPS’s design and 

capabilities.  

 

To further demonstrate the advantages of the TOPS middleware, we present how 

different strategies of replication may be implemented all using the TOPS middleware 
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proposed. Replication is the process of managing more than one copy of the same data 

on different servers in order to gain redundancy and performance. As in 

publish/subscribe, replication may be synchronous (i.e. all replicas update atomically) 

offering high data integrity and low performance, or asynchronous (i.e. one replica 

updates immediately and all other replicas update eventually) offering low data 

integrity and high performance. Implementation of asynchronous replication using 

publish/subscribe is straightforward and currently exists in several database solutions. 

However, using our design of a transactional middleware, the implementation of 

synchronous replication becomes quite simple as well. We detail how several basic 

methods of replication can be implemented using the TOPS middleware.  

 

Beyond the scope of TOPS we give a theoretical discussion about how more advanced 

methods of replication may be implemented with the help of a transactional 

publish/subscribe middleware. Advanced replication algorithms attempt to maximize 

both performance and data integrity usually by restricting the sequence of update 

propagation or by limiting the use of distributed transactions to a small set of situations. 

We argue that the applicability of implementing algorithms at this level using 

publish/subscribe, is algorithm specific. To back this claim, two sample replication 

algorithms are presented, one applicable to publish subscribe and one not.  
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1 Introduction 

1.1 General 

Computer systems have come a long way since the day of using a point-to-point cable 

for facilitating communication between multiple entities. Once computer networks came 

in to play, the physical connection became much more flexible, however, data sharing at 

the application level largely remained point-to-point and was implemented directly over 

TCP. Even though multicast was available, management of the multicast groups was not 

automatic. As networks became commonplace, large scale applications became highly 

distributed and required not only a generic network structure but also a generic means 

of sharing application data, at a higher level than what the operating system provides. 

Consider an application coordinating the activity of the New York Police Department. 

At one end, the application is run at the police head quarters which contains powerful 

servers, and at the other end are patrolling officers or vehicles carrying computing 

platforms with limited resources. Information is exchanged between many entities, 

officers, citizens calling the emergency lines, other emergency services such as the fire 

department and fellow police departments. Information is required to flow in a timely 

manner only to entities to which the data is of interest. Such an information system 

requires much more than the standard set of TCP/IP protocols.      

1.1.1 Middleware 

As mentioned above, large-scale distributed enterprise applications must deal with a 

variety of challenges regarding connectivity of their components. Such applications 

often span several operating systems and have different means of communication, each 

with its own throughput, latency and offline time. In the past few years it has become 

common for applications to support cellular phone clients. All sites must adapt to 

changes in availability of sites, for instance when a backup server has kicked in to 

replace a primary server which is down. Additionally, different components may require 

different communication schemes (i.e. push, pull or notification, discussed in the 

following section). To free the application of the burden of dealing with all these issues, 

a software layer named middleware is placed “in the middle” between the application 

and the operating system. The middleware provides connectivity and services to 

applications in a heterogeneous environments. Using a middleware, applications 

developers can focus more on the business logic and less on technical implementation 

details. 
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Different types of middleware vary in the way they share data:  

• Message Oriented Middleware (MOM) shares data by means of sending 

messages. Messages are sent to the recipient and are stored there until he is 

available to read them. 

• Remote Procedure Calls (RPC) allows the invocation of a procedure on a remote 

site. Parameters passed to the procedure are transferred to the remote site. 

• Objects sharing, suitable for object oriented environments. 

• Transaction processing, allowing applications to make use of distributed 

transactions. 

 

Since a more generic middleware will support more types of application, the ambition is 

to include as many features as possible in the middleware- synchronous (blocking) and 

asynchronous (non-blocking) remote invocation, messaging, and transactions.    

1.1.2 Event-Based Systems 

In an event-based system, there are sensors that produce events, and event consumers 

that perform an action when events occur. An event is any occurrence of interest. This 

occurrence produces an event that includes information about the specific occurrence. 

The event is sent asynchronously into the event-based system which is responsible for 

having the event reach all relevant consumers. The producer and consumer are unaware 

of one another; the connection between them is managed entirely by the event-based 

system. Middleware implementing an event-based system associate event producers and 

consumers using a publish/subscribe paradigm. Consumers, now called subscribers, 

tell the middleware what kind of information they are interested in (not who produces 

it). Producers, now called publishers, tell the middleware what kind of information the 

event being published contains. The middleware assumes the difficult task of sending 

the event only to the relevant subscribers based on the data of interest they specified 

during subscription. 

 

The publish/subscribe paradigm came to replace the request/reply paradigm for certain 

system architectures. In the request/reply paradigm there is a server capable of 

providing services and any client interested in these services must be aware of this 

server and contact it. For example, the request/reply model is not suitable when many 

servers exist or when the server may change over time. In publish/subscribe the event is 

delivered till the consumer, without the consumer needing to contact, or even be aware 

of, the producer.  

 

Interestingly, a good example of the usefulness of notification can be brought from the 

database world. The traditional use of a database is by a client requesting data from the 
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database using queries, as in the request/reply paradigm. However, for quite a while 

already, active databases exist that are capable of notifying at the occurrence of an 

event, and taking action, instead of waiting for the application to run another query.   

 

CORBA (Common Object Request Broker Architecture) and JMS (Java Messaging 

Service) are two standards addressing notification systems. Both support point-to-point 

and publish/subscribe communication. A few examples of implemented 

publish/subscribe systems are: TIBCO rendezvous (commercial), IBM’s WebSphere 

Business Integration Event Broker (commercial), Hermes  [19] and Siena  [3]. 

1.1.3 Distributed Transactions 

Transactions are a fundamental building block of applications. As applications became 

distributed, the underlying transaction subsystem has become distributed as well. 

Distributed transactions are required to lock resources and apply changes to more than 

one site. Each site executes a sub-transaction and a centralized transaction manager 

coordinates between all sub-transactions. Transaction management requires 

communication between sites. For instance, the transaction manager must instruct each 

sub-transaction what it should do, for instance when it should commit. Since 

transactions are an elementary feature and since communication is necessary, it makes 

sense to have a middleware provide such transactional services.  

 

The X/Open Company has published a model for support of distributed transactions that 

has been adopted by many transactional middleware. Their publications include an 

architecture and specification that cover the necessary interfaces and behavior required 

from the implementation.  

 

The .NET and Java development frameworks both provide support for application 

development with distributed transactions.   

1.2 Main Contributions 

Our first main contribution is the detailed analysis of HTS  [26]. HTS is a recently 

developed (2005) advanced middleware supporting content-based transactional 

publish/subscribe with a respectable set of features such as public and private 

transaction, compensatable clients and more. HTS is build on top of Hermes  [19], a 

publish/subscribe middleware, and augments it with transactional capabilities. We 

analyzed HTS at the theoretical level and at the implementation level. To aid this 

analysis, an application simulator was developed solely for this purpose. This detailed 

work yielded several interesting and most significant results which are detailed in 
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section  4.1. The simulator and the conclusions reached with its assistance are the first 

contribution of this work. 

 

The second main contribution is the design of an improved transactional pub/sub 

middleware (TOPS). TOPS benefits from more natural integration of transactions into 

the pub/sub paradigm. This integration allows TOPS to overcome several weaknesses of 

HTS. For example, subscribers are no longer required to know in advance what event 

types a transaction will contain. TOPS’ design also provides several new features such 

as local transactions (see section  4.2.1). In our opinion, the work in this paper brings 

the research on the subject of transactional pub/sub a step forward. 

 

The third main contribution is the integration of TOPS and data replication. Replication 

solutions commonly use pub/sub to implement asynchronous replication. Using TOPS, 

synchronous replication can be implemented as well, all using the same middleware. 

This paper shows how, by using TOPS, several methods of synchronous and 

asynchronous replication can all be implemented over a single transactional pub/sub 

middleware. A paper describing TOPS was published recently in DEBS ‘08, the leading 

conference on the subject of event based systems. 

1.3 Thesis Structure 

The structure of the rest of this thesis is as follows: 

 

Chapter  2- Background and Related Work 

This chapter contains background information and related work on the subjects of 

publish/subscribe, the transactional aspect of publish/subscribe, and database 

replication. The transactional aspect of publish/subscribe is conferred by reviewing 

concepts, architecture and features of HTS, an existing transactional pub/sub 

middleware. In addition to background information, this chapter emphasizes specific 

points that are relevant to the design of TOPS, either because TOPSs utilizes them or 

because TOPSs improves upon them.  

   

Chapter  3- Analysis of HTS – The Application Simulator 

As part of our research on the subject of pub/sub, in order to evaluate the strengths and 

weaknesses of the design of HTS, an application simulator was developed over HTS. 

This chapter presents the requirements analysis and design of this simulator. A more 

detailed description of the simulator is given in Appendix A.  The findings of this 

analysis fuel the motivation for the design of TOPS as given in the next chapter. It is 

not necessary to read this chapter in order to understand the rest of the thesis.      
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Chapter  4- TOPS – Transaction Oriented Publish/Subscribe  

In this chapter TOPS, the design of a new pub/sub middleware architecture, is 

presented. At first, the motivation for a new architecture is discussed. The chapter 

continues with defining the behavior of transactions, components and architecture of 

TOPS.  For conclusion, an API is defined and demonstrated.   

 

Chapter  5- Applying TOPS to Replication  

The capabilities of TOPS are demonstrated in this chapter by showing how TOPS can 

be used as a platform for database replication. This chapter begins by presenting 

common methods of replication. Next, it is shown how the methods of replication can 

be implemented using the TOPS middleware. 

 

Chapter  6- Conclusion  

This chapter contains a few concluding remarks regarding this work.  

 

Chapter  7- References  

List of papers/sources quoted throughout this document. 

 

Chapter  8- Appendix A – HTS Application Simulator 

This appendix describes the implementation of application simulator including GUI 

screenshots. 
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2 Background and Related Work 

In this chapter we discuss background information and related work in three areas: 

• Publish/Subscribe 

• Transactional publish/subscribe.  

• Replication 

We give an especially detailed description of Hermes and HTS. 

2.1 Introduction to Publish/Subscribe 

In complex applications, a message oriented middleware (MOM) is commonly used to 

satisfy the communications requirements of the application. A publish/subscribe 

(pub/sub)  [6] middleware is a type of MOM suitable for environments with changing 

message traffic and connectivity. Pub/sub does not directly connect the message sender 

and receiver; rather it connects them to the middleware which dynamically decides 

which subscribers will receive each message.  

 

Publish/subscribe is a message (event) driven scheme for distributing events between 

event providers (publishers) and event consumers (subscribers). Publishers provide 

events of a certain type or with certain content to the middleware, and subscribers 

independently request to receive events of certain type or content. The pub/sub system 

is responsible for notifying subscribers of published events matching the criteria they 

specified in their subscriptions. 

 

The key strength of pub/sub is the decoupling of publishers and subscribers.  

• Space decoupling – A publisher can publish an event without needing to worry 

about who must receive the event and where they are located within the 

network. Additionally, when many publishers publish events of similar type and 

content, subscribers will receive the events without knowing who the providers 

are and without being aware of the fact that multiple providers exist.  

• Time decoupling – The subscribers are not limited to receiving events at the 

time they are published, or at the same time as other subscribers. Subscribers 

may be offline when the publisher publishes the event, and this fact is of no 

concern to the publisher.  The pub/sub middleware is responsible for eventual 

delivery of events to the appropriate subscribers. 

• Synchronization decoupling – Production of an event and its consumption are 

asynchronous operations. The significance of this is that the publisher sends an 

event, the request is accepted and control is returned to the calling function. The 
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event is sent asynchronously and therefore the publisher is not blocked while the 

event is being sent. Asynchrony applies to the subscriber in a similar manner. 

 

Due to the reasons above, pub/sub scales easily and adapts transparently to changes in 

subscriptions and network topology.  

 

A pub/sub system may be topic-based, in which case events posted to a topic will be 

received by all subscribers to the topic, or content-based in which case subscribers will 

receive any event containing information of interest according to the subscriber’s 

subscription. 

  

Unlike point-to-point or multicast communication, in which the sender must determine 

who the recipients are, in pub/sub the recipients themselves enlist (conditional to proper 

security privileges) to specific types of content/event types, and will be notified of new 

messages directly by the middleware without the publisher being involved. This is 

obtained by having event brokers disseminate events based on the existing 

subscriptions. Pub/sub also provides anonymity between publishers and subscribers. 

 

Publishers and subscribers are not necessarily two separate entities. A single entity may 

publish one type of event and subscribe to another, or even subscribe to an event type it 

itself may publish, which is likely to be when more than one publisher exists for the 

same event type.  

 

Conceptually, a pub/sub middleware exposes two interfaces, one for the publisher and 

one for the subscriber (Figure  2-A). The publisher’s interface consists of the operations: 

• advertise() – which notifies the middleware of the publisher’s intension in 

publishing events of a certain type.  

• publish() – publish an event ‘event’ of type ‘event type’ to all enlisted 

subscribers.  

The subscriber’s interface consists of: 

• subscribe() – for subscribing to event type ‘event type’. The middleware will 

notify the subscriber when an event of this type arrives using a callback 

function/object.  

• unsubscribe() – to stop being notified of events of type ‘event type’. 

When using topic-based pub/sub the event type is simply the topic. When using content-

based pub/sub the message type may enclose complex rules for filtering the content.  
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Figure  2-A: Pub/Sub Scheme 

 

In  [11], a survey of event notification services is given. From this survey, a few systems 

supporting pub/sub are mentioned here. TIBCO rendezvous, by TIBCO software, is a 

commercial product providing topic-based pub/sub. It is capable of running on several 

platforms (including Windows and different flavors of Unix/Linux) and can be used 

from within many programming languages (Java, C++ and others). The NASDAQ 

trading floor software is implemented using TIBCO rendezvous. IBM WebSphere MQ 

is a messaging platform by IBM. It too supports many platforms. WebSphere MQ 

supports only topic-based pub/sub, but it can be complemented with an add-on 

component that supports content-based pub/sub. Siena  [3] and Hermes  [19] are two 

research prototypes aimed at Internet scale applications. Both support content-based 

pub/sub. Hermes provides event-type checking and event-type hierarchies. Hermes is 

further detailed in Section  2.2 as it is of relevance to our work.       

 

Pub/sub systems may be extended to support distributed transactions  [13]. In the 

context of pub/sub, a transaction is a set of operations defined by a publisher which will 

either be applied by all subscribers or not applied by any subscribers. Distributed 

transactions are a powerful tool for applications, but this comes at the cost of locking 

resources at the participants of the transaction for longer periods of time and it also 

introduces latency due to the two-phase commit required by the transaction  [12]. 

Security and permissions become a critical issue when working with transactions since 

a single misbehaving subscriber may continuously cause transactions to abort. 

 

advertise (event type) 

publish (event type, event) 

subscribe (event type, callback) 

unsubscribe (event type) 

Publisher Subscriber 

Pub/sub 

middleware 
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2.2 Hermes 

Hermes  [19] is a content-based pub/sub middleware consisting of event clients and 

event brokers.  Event clients are the publishers and subscribers, event brokers represent 

the middleware itself and are connected to each other in an unrestricted topology. The 

brokers provide the clients with the ability to define an event-type, advertise an event-

type, publish an event, and subscribe to an event-type. The brokers are responsible for 

the distribution of publications to all the appropriate subscribers.  

Hermes is actually a hybrid of topic-based and content-based pub/sub. Topics are used 

as in standard topic-based pub/sub. In addition to a topic, publications may contain 

attributes describing the content of the event, and subscriptions may contain attributes 

describing the content of interest. The attributes are used to filter out events only within 

the topic.  

Routing of events is accomplished by defining a rendezvous node for each event-type. 

The rendezvous node for each event type is an event broker whose id is closest to the 

hash value of the event-type’s id. All advertisements, subscriptions and publications for 

a specific event-type will reach the same rendezvous node, thereby providing a central 

connection point between publishers and subscribers. 

2.3 Transactional Publish/Subscribe and HTS  

A pub/sub middleware may be augmented with transactional capabilities. Transactions 

are commonly a necessity for distributed applications, particularly for large scale 

applications. Messaging and distributed transactions were, at first, separate capabilities. 

As applications became more demanding, it became necessary to provide message 

delivery and message handling together within a transaction  [16],  [24],  [9]. 

Transactional content-based pub/sub was introduced in  [13]. Note that pub/sub 

distributed transactions do not come to replace classic distributed transactions. Pub/sub 

distributed transactions are very suitable when all participants require the same data 

and/or perform the same work, since communication is very efficient even for a large 

number of participants. On the other hand, if the distributed transaction consists of only 

few participants, each requiring different data, pub/sub will not be beneficial. 

 

We based our work on the architecture of an existing transactional pub/sub middleware, 

which allows us to focus on issues relevant to transactions and avoid less-related issues 

such as security, transaction logs, error handling, event matching, etc. The middleware 

chosen was Hermes Transaction Service HTS (HTS)  [26]. HTS was chosen for the 

following reasons: 1) It supports content based pub/sub, 2) It supports compensatable 

and non-compensatable clients, 3) It contains a conditional census phase, 4) It provides 

type-based pub/sub, and 5) It supports public and private transactions. Issues not 
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addressed in TOPS are as defined in HTS. This section describes the features and 

architecture of HTS as a prerequisite to fully understanding TOPS.  

2.3.1 HTS Concepts 

HTS is a transaction service built upon Hermes (Figure  2-B). Unlike database 

transactions which fulfill all four ACID (Atomicity, Consistency, Isolation, and 

Durability) properties, HTS supports pub/sub transactions that provide atomic 

execution over all clients participating in the transaction. Within a transaction, if any 

client fails to lock resources or encounters some other error, the middleware will initiate 

a rollback at all the other clients participating in the transaction.  

 

Figure  2-B: HTS/Hermes Middleware 

 

In HTS, pub/sub transactions consist of the following three phases: 

2.3.1.1 Census Phase  

The census phase determines which subscribers will participate in the transaction. 

Standard pub/sub provides time decoupling between publishers and subscribers; 

therefore, events are sent to all subscribers- including ones that may be offline. Since a 

transaction requires subscribers to be currently active, an event is sent to all subscribers 

asking who is interested in participating in the transaction. Interested subscribers enlist 

to the transaction by replying to the census event and including their id hashed using a 

one-way hash function.  At the publisher side, HTS maintains a list of hashed subscriber 

ids who answered positively. This list will be published in the next phase and each 

subscriber will look for his own hashed id to determine if it was enlisted in the 

transaction. When initiating the census phase the publisher may define an entry 

condition – begin the transaction only if the amount of subscribers enlisted exceeds a 
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given minimum. The census phase will fail if the conditions are not satisfied within a 

given timeout period. Conceptually, HTS supports any condition as long as the 

condition is based on data available to the publisher.  

2.3.1.2 Transaction Phase 

After successfully completing the census phase, a transaction is established, its 

participants are notified and the transaction phase begins. In the transaction phase, the 

publisher may publish many events within the transaction’s context that will be handled 

by the middleware as an atomic unit. At any point, the publisher or enlisted subscribers 

may request that the entire transaction be aborted. The transaction phase ends when the 

publisher requests the middleware to commit the transaction. 

2.3.1.3 Commitment Phase 

The goal of the commit phase is to atomically apply all events within the transaction at 

the publisher and at all enlisted subscribers. To achieve this goal the 2PC (two-phase 

commit) protocol is used. The first phase of 2PC is a voting mechanism in which HTS 

sends a ‘prepare’ message to all enlisted subscribers and they vote to either abort or 

commit the transaction. If any subscriber votes to abort, the transaction fails and is 

aborted. If all subscribers vote to commit, HTS moves on to the second phase of 2PC in 

which a ‘commit’ message is sent. At this point all subscribers are responsible for 

committing the transaction and freeing their locked resources. 

2.3.2 HTS Architecture 

HTS supports two architectures:  

1. Client side – HTS relies exclusively on a pub/sub middleware, and  

2. Service side – HTS itself is a middleware. In this paper we refer to the service 

side architecture that has been implemented by the HTS team and is closer to 

the architecture we propose for TOPS.  

HTS implements a transaction context by giving each transaction a transaction ID 

(txID) when the transaction is created. This ID is used for all messages within the 

transaction including publications and transaction messages use internally by HTS such 

as ‘abort’ and ‘commit’. All clients participating in the transaction receive the txID 

during the census phase. HTS’s txIDs are allocated using a Universally Unique 

Identifier (UUIDs) algorithm. A UUID is a 128 bit number that can be easily created 

and is guaranteed to be globally unique and a very high probability. A UUID is 

generated using the information such as: a host ID (e.g. MAC address or domain name), 

a time tag a random number. Several types of UUIDs exist, HTS utilizes Java’s API for 

UUID creation which is implemented using the Leach-Salz algorithm documented in 

RFC 4122.         
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The middleware’s transaction service is implemented by placing a transaction manager 

(tx manager) at each client (Figure  2-C) The tx manager provides the interface between 

the transaction and the application, and it coordinates distributed transactions with other 

tx managers.  

Figure  2-C: HTS Transaction Management 

 

The tx managers utilize the txID to filter out messages belonging to transactions the 

client is not participating in. The tx managers manage the current transaction phase, of 

the three transaction phases listed above. In the census phase, the master tx manager is 

responsible for defining the txID, collecting responses from subscribers, and sending a 

message to participating subscribers containing a list of hashed subscriber IDs thereby 

ending the census phase. In the transaction phase the tx manager forwards the 

transaction’s publications to the subscribers. In the commitment phase the tx manager 

initiates and manages the 2PC. Transactions are managed by the publisher’s tx manager 

that is defined to be the master tx manager. This tx manager has the additional 

responsibility of coordinating among all participating tx managers. For instance, if one 

tx manager aborts the transaction, the master tx manager is responsible for instructing 

all other tx managers to abort. 

2.3.3 Transaction Context 

When publishing events of various types within the same transaction, all the events 

must be received by the participating subscribers and must be associated to the same 

transaction. HTS publishes events to a transaction in the same manner the events would 

have been published if they had not been part of a transaction. In other words, each 

event is published with its own event-type. In effect, this means that each event may be 

routed though a different rendezvous node. In order for the subscriber to receive all 

events belonging to the transaction, he must subscribe to all event-types that the 

transaction uses. If any participant failed to subscribe to a single event-type, he will be 

missing events belonging to the transaction and, therefore, the transaction will 

constantly be aborted. 
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Figure  2-D: HTS Transaction Context 

 

In Figure  2-D the publisher initiates a transaction using the census event ‘Census event’ 

of type ‘Census event type’ and publishes two other events within the transaction 

‘Regular event 1’ and ‘Regular event 2’ of types ‘Regular event type 1’ and ‘Regular 

event type 2’ respectively. In such a case, the subscriber is required to subscribe to 

three event-types in order for the transaction to succeed: ‘Census event type’, ‘Regular 

event type 1’, and ‘Regular event type 2’.  

 

When publishing events to a transaction, HTS at the publisher’s end appends a 

transaction ID to the event. Using this transaction ID the subscriber are capable of 

reconstructing the transactions context by grouping events with the same ID. This ID is 

also used by the subscriber when replying to the publisher, for instance during census or 

during commit. 

 

2.3.4 Additional HTS Features 

This section briefly describes particular HTS features relevant to this work. 

• Public / private transactions: During the census phase of a transaction, the 

group of participating subscribers is determined. Only these subscribers are part 

of the transaction. Still, subscribers not participating in the transaction are 

capable of receiving the published events. If the transaction is private, only 

participating subscribers will receive the transaction’s events. The events are 

filtered out by the subscribers’ tx manager. If the transaction is public, all 

subscribers receive the events, including subscribers not enlisted in the 

transaction. Subscribers not enlisted in the transaction may fail to receive an 

event or fail to handle the event even though the transaction committed 
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successfully. On the other hand they may receive and handle an event belonging 

to a transaction that has been aborted.  

• Compensatable / non-compesatable clients: A compensatable client is capable 

of retroactively rolling back a transaction even after it has already been 

committed. Compensation is difficult and not always possible; however, when 

the capability exists it can be utilized to shorten the commitment phase. The 

purpose of the commitment phase is to provide atomic commitment of all events 

within the transaction. The 2PC protocol is used to ensure atomic commitment 

for non-compensatable clients, for which there is no turning back after 

commitment. Compensatable clients, however, may commit immediately 

without waiting for the 2PC, knowing that in case of a rollback the committed 

changes can be undone. Avoiding 2PC improves performance by shortening 

delays and freeing locked resources sooner.  

2.4 Introduction to Database Replication 

Distributed databases are comprised of many database servers. Clients of the database 

may query different servers for the same data. It is the responsibility of the database 

management system to propagate changes between the servers in order to provide users 

at any server with the impression that the server he is accessing contains a complete and 

up-to-date database. Replication is commonly used to achieve this goal. Replication 

 [23] is the process of propagating changes between servers efficiently while 

maintaining data integrity.  

 

Replication may also be used as a backup mechanism. All changes to a primary server 

are replicated to a backup server. The backup server becomes active only in case of 

failure at the primary server. With replication in place, the backup server is 

continuously updated and it is, therefore, capable of replacing the primary server. 

  

The two most basic types of replication are synchronous (eager) replication and 

asynchronous (lazy) replication. In synchronous replication changes to all replicas are 

performed atomically within a transaction. All replicas must be updated before the 

transaction can commit. Synchronous replication suffers from long locks on many 

servers and long delays caused by the two-phase commit (2PC) protocol used to commit 

transactions atomically. In asynchronous replication updates are committed locally and 

then replicated to other replicas without any dependencies between them. In this 

manner, commitment is performed quickly and locks are held for only a short period of 

time. A problematic situation occurs when the changes fail on any of the replicas 

causing the database to remain in an unstable state. 
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One possible application of pub/sub is for implementing database replication. In 

distributed databases, replication
1
 must be used in order for changes at one copy to be 

propagated to other copies. Using synchronous replication all clients accessing the 

DBMS will always receive the same information, regardless of which copy they query. 

This method requires a mechanism providing distributed transactions, which inevitably 

causes long delays due to exclusive locking of the remote copies. Using asynchronous 

replication data is propagated between copies over time thereby allowing 

inconsistencies between sites.  In spite of this disadvantage, most commercial DBMSs 

implement asynchronous replication because the performances issues stated above make 

synchronous replication somewhat impractical  [2],  [15].  

 

Replication is further discussed in Chapter  5. 

2.5 Related Work 

2.5.1 Pub/sub Transactions 

The work most related to this paper is the work done on HTS  [26] which is extensively 

described throughout this thesis. The TOPS middleware supports transactions more 

inherently than HTS does. The resulting differences are pointed out in section  4.1. In 

addition to HTS, work relevant to this paper includes SPOONBILL  [13], MMT 

(Middleware Mediated Transactions)  [9] and two prototypes: Dependency-Sphere  [25] 

and X
2
TS  [10], that realize MMT. Dependency-Sphere is a transactional middleware 

which allows capabilities of MOM and OOM (Object Oriented Middleware) to be 

encompassed within a single transactional context. Messaging in Dependency-Sphere 

includes queue messaging but not pub/sub messaging.  X
2
TS support pub/sub; however, 

it is only topic-based and does not support content-based pub/sub.  In  [13], a framework 

named SPOONBILL, which complements X
2
TS is presented. SPOONBILL integrates 

transactions into content-base pub/sub. The SPOONBILL prototype uses Siena  [3] as the 

underlying pub/sub middleware.  

 

A primary difference between HTS/TOPS and the middleware presented above is 

content-based routing. The only other middleware that supports content-based routing is 

SPOONBILL, which is somewhat similar to HTS. One main difference between HTS and 

SPOONBILL is the census phase. In HTS the census phase is conducted at transaction 

initiation and determines the group of subscribers participating in the transaction. If 

                                                      

1
 Replication may also refer to mirroring- copying all data to a select set of backup sites for 

redundancy. Pub/sub may also be used in this case; however several of its strengths (such as 

scalability and anonymity) may not be utilized. 
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census conditions fail, no transaction is opened and no messages are sent. SPOONBILL 

performs its census at commit time allowing more flexibility in handling subscribers 

that drop out. Nonetheless, since census is at the end of the transaction, many more 

resources are wasted until it is discovered that census fails. Another key difference in 

the favor of HTS over SPOONBILL is that HTS is type-safe. This feature is derived from 

the underlying pub/sub middleware- HTS is base on Hermes that provides type-

checking, SPOONBILL is based on Siena which does not. The importance of type safety 

is presented in  [5] where a high level abstraction of type-based pub/sub (TPS) is 

introduced.  [5] also includes a survey of pub/sub history and an overview of many 

pub/sub systems. SPOONBILL supports three possible visibilities: immediate, differed 

and on-commit, however, it lacks support for the new features we present in this paper, 

such as local transactions, access and scope.  

2.5.2 Database Replication using Pub/Sub 

Current databases such as SQL-Server  [14], Oracle  [17] and DB2  [7] each provide their 

own replication solutions, some of which incorporate pub/sub concepts. Of the three, 

only Oracle supports synchronous replication. SQL-Server supports snapshot 

replication that creates a onetime copy of data, merge replication which is 

asynchronous peer-to-peer, and transactional replication which is asynchronous 

primary site (no global transaction context). DB2 supports asynchronous multi-master 

replication; however, not synchronous replication.  

 

Some suggest that replication be part of the middleware  [18]. Domaschka et al.  [4] 

argue that replication should be a layer above the middleware and not part of the 

middleware. They suggest an architecture to decouple replication and the middleware. 

TOPS qualifies as the latter since it includes no replication specific capabilities. From 

TOPS’ point of view, the replication layer is an application. 

 

In order to benefit from the performance of asynchronous replication and still achieve 

serialization, more advanced protocols (such as  [2]) combine elements of both 

synchronous and asynchronous dissemination methods. For such protocols, a 

middleware offering support for both synchronous and asynchronous replication is 

likely to be even more beneficial than it is for the fundamental protocols we discuss in 

Section  5.1.  [27] further addresses and emphasizes the benefits of a combined 

synchronous and asynchronous mechanism. They implemented the mechanism at the 

low level of the operating system/file system. This low level solution is irrelevant to our 

high level pub/sub solution; however, their argument for combining synchronous and 

asynchronous mechanism still remains.  
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3 Analysis of HTS – The Application 

Simulator 

As any middleware, HTS is intended to serve applications requiring the services 

provided. In order to evaluate the functionality and performance of HTS, an application 

simulator was developed within the scope of this thesis. This simulator serves as a tool 

towards designing a new middleware, TOPS, introduced in section  4, which is based on 

HTS. This simulator was required in order to investigate the behavior of HTS and 

thereby acquire a deep understanding of its capabilities and potential drawbacks. It is 

important to note that the experience of developing over HTS was no less important 

than using the application simulator once complete. The simulator was used to help 

understand how HTS does what it is capable of doing, whereas the development 

experience raised ideas of what could be done differently than HTS or what could be 

done beyond the capabilities of HTS. The outcome of this process is detailed is section 

 4.1.    

 

Being a middleware, HTS cannot be used standalone. It provides functionality to 

applications running above it. Applications have different needs and therefore will each 

use the middleware in a different manner. The challenge of the application simulator is 

to allow an operator to access and respond to the middleware in all possible legitimate 

manners. By exposing all the middleware functionality to the operator, the operator has 

the ability to simulate the behavior of any application. 

 

In section  3.1, the requirements from the application simulator are identified and 

analyzed. The requirements analysis is performed by the means of use cases in 

accordance with the UML standard.   

3.1 Requirements & Requirement Analysis 

The simulator is required to allow the user to perform several types of actions in order 

to fully simulate a pub/sub environment. These actions are divided into several phases 

of the execution. In the object definition phase the environment is set up. Publishers and 

subscribers are defined as well as event-types. Next is the pub/sub Setup phase in which 

publishers advertise event types (census & regular) and subscribers register (subscribe) 

to event types (census & regular). In the census phase the publisher initiates a 

transaction (by publishing a census event) and subscribers choose whether or not they 

enlist in the transaction. Finally, the transaction phase is reached if the census phase 

concludes successfully. In the transaction phase, regular (not census) events are 
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published and the transaction is committed. Clients may choose to abort the transaction 

as well. The following list summarizes the capabilities listed above per phase:  

 

Object definition phase: 

• Define Publisher clients. 

• Define Subscriber clients. 

• Define event-types. 

Pub/sub Setup phase: 

• Advertise (Publisher) 

• Register (Subscriber) 

Census phase:  

• Publish census event (Publisher) 

• Enlist in transactions (Subscriber) 

Transaction phase: 

• Publish events (Publisher) 

• Abort transaction (Enlisted Subscriber or Publisher) 

• Commit transaction (Publisher) 

 

3.1.1 Requirements Analysis: Use-Case Diagram 

From the perspective of the simulator, there is only one actor which is the user. 

However, since the user is actually playing several roles, each role is considered to be 

an actor. The following three roles are defined: 

• Manager – define objects (publishers, subscribers, event-types) needed to run a 

simulation. 

• Publisher – a transaction initiator and event generator. 

• Subscriber – a transaction participant.  

 

Actions internal to the pub/sub system, such as setting up encryption keys and creating 

event brokers, are not listed since they are performed transparently to the user.  

 

Actor: Manager 
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Figure  3-A: Use-Case Diagram (Manager) 

 

 Actors: Publisher, Subscriber 

 

 

Figure  3-B: Use-Case Diagram (Publisher and Subscriber) 

 

The following subsections contain several use-cases. More were defined but only a few 

main use-cases, which provide an understanding of pub/sub interaction, are included 

here. Note that the actions listed are actions taken by the user of the application 

simulator. Actions automatically performed by the middleware in response to user 

actions are not listed as actions; rather they appear as the outcome of the user’s action.  

 

For clarity of the use-cases, note that the interface between the application and HTS is 

based on API function calls. Notifications to the application initiated by HTS are 

implemented using callback functions (a function residing in the application is passed to 

HTS allowing HTS to call the application’s function).  

Create publisher

manager

Create subscriber

Create event type
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3.1.2 Use-Case 1: Successful Transaction 

Actors:  

Manager, Pub01, Sub01, Sub02. 

 

Use-Case Description: 

Publisher Pub01 initiates a transaction consisting of the census event type ETCensus01, 

and two other event types ET01 and ET02. Subscribers Sub01 and Sub02 enlist in the 

transaction. Pub01 sends two events, one event of type ET01 and one of type ET02. The 

subscribers accept them successfully. Pub01 requests commitment of the transaction, 

Sub01 and Sub02 accept and the transaction is committed successfully.  

 

Phase Actor Action Action effect 

O
b

je
c
t 

d
e
fi

n
it

io
n

 

Manager create Pub01 Client Pub01 is created and added to P/S system. 

Manager create Sub01 Client Sub01 is created and added to P/S system. 

Manager create Sub02 Client Sub02 is created and added to P/S system. 

Manager create ETCensus01 Create a census event type named ETCensus01. 

Manager create ET01 Create an event type named ET01. 

Manager create ET02 Create an event type named ET02. 

P
/S

 S
e
tu

p
 

Pub01 advertise ETCensus01 Event type is stored in rendezvous node. 

Pub01 advertise ET01 Event type is stored in rendezvous node. 

Pub01 advertise ET02 Event type is stored in rendezvous node. 

Sub01 register to ETCensus01 Subscriber registers to event type. 

Sub02 register to ETCensus01 Subscriber registers to event type. 

C
e
n

su
s 

Pub01 publish ETCensus01 Send a notification of ETCensus01 publication to 

subscribers. 

Sub01, 

Sub02 

enlist to transaction Census callback function will return ‘true’- a 

message will be sent to publisher, and subscriber 

will automatically be subscribed to all event types in 

transaction registration. 

T
r
a

n
sa

c
ti

o
n

 

Pub01 publish ET01 Send an event of type ET01 to subscribers. 

Sub01, 

Sub02 

nothing Event is accepted if no exception is thrown. 

Pub01 publish ET02 Send an event of type ET02 to subscribers. 

Sub01, 

Sub02 

nothing Event is accepted if no exception is thrown. 
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Pub01 initiate commit Sends an internal ‘prepare’ event to subscribers 

(2PC). 

Sub01, 

Sub02 

accept commit User confirms preparation for commit. After all 

clients confirm preparation, the publisher sends the 

internal ‘commit’ event upon which the subscribers 

commit.   

 

 

3.1.3 Use-Case 2: Census Not Fulfilled 

Actors:  

Manager, Pub01, Sub01, Sub02. 

 

Use-Case Description: 

Publisher Pub01 initiates a transaction consisting of the census event type ETCensus01, 

and the event type ET01. At publication of the census event, the publisher sets the 

minimum amount of participants to 2. Only subscriber Sub01 enlists to the transaction. 

Once the census phase at the publisher times-out, the census phase will fail due to lack 

of participants. No transaction is created.  

 

Phase Actor Action Action effect 

O
b

je
c
t 

d
e
fi

n
it

io
n

 Manager create Pub01 Client Pub01 is created and added to P/S system. 

Manager create Sub01 Client Sub01 is created and added to P/S system. 

Manager create Sub02 Client Sub02 is created and added to P/S system. 

Manager create ETCensus01 Create a census event type named ETCensus01. 

Manager create ET01 Create an event type named ET01. 

P
/S

 S
e
tu

p
 

Pub01 advertise ETCensus01 Event type is stored in rendezvous node. 

Pub01 advertise ET01 Event type is stored in rendezvous node. 

Sub01 register to ETCensus01 Subscriber registers to event type. 

Sub02 register to ETCensus01 Subscriber registers to event type. 

C
e
n

su
s 

Pub01 publish ETCensus01 

Require a minimum of 

2 subscribers 

Send a notification of ETCensus01 publication to 

subscribers. 

Sub01, 

 

enlist to transaction Census callback function will return ‘true’- a 

message will be sent to publisher, and subscriber 

will automatically be subscribed to all event types in 
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transaction registration. 

Sub02 nothing Since only one subscriber enlisted to the transaction, 

the census at the publisher will fail after a timeout. 

No transaction will be created. 

T
r
a

n
sa

c
ti

o
n

 

- - - 

 

 

3.1.4 Use-Case 3: Commit Fails 

Actors:  

Manager, Pub01, Sub01, Sub02. 

 

Use-Case Description: 

Publisher Pub01 initiates a transaction consisting of the census event type ETCensus01, 

and the event type ET01. Subscribers Sub01 and Sub02 enlist to the transaction. Pub01 

sends one event of type ET01. The subscribers accept the events successfully. Pub01 

requests commitment of the transaction, Sub01 responds positively but Sub02 fails to 

commit and sends an abort message to the publisher. The transaction in aborted.  

 

Phase Actor Action Action effect 

O
b

je
c
t 

d
e
fi

n
it

io
n

 Manager create Pub01 Client Pub01 is created and added to P/S system. 

Manager create Sub01 Client Sub01 is created and added to P/S system. 

Manager create Sub02 Client Sub02 is created and added to P/S system. 

Manager create ETCensus01 Create a census event type named ETCensus01. 

Manager create ET01 Create an event type named ET01. 

P
/S

 S
e
tu

p
 

Pub01 advertise ETCensus01 Event type is stored in rendezvous node. 

Pub01 advertise ET01 Event type is stored in rendezvous node. 

Sub01 register to ETCensus01 Subscriber registers to event type. 

Sub02 register to ETCensus01 Subscriber registers to event type. 

C
e
n

su
s 

Pub01 publish ETCensus01 Send a notification of ETCensus01 publication to 

subscribers. 

Sub01, 

Sub02 

enlist to transaction Census callback function will return ‘true’- a 

message will be sent to publisher, and subscriber 
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will automatically be subscribed to all event types in 

transaction registration. 

T
r
a

n
sa

c
ti

o
n

 
Pub01 publish ET01 Send an event of type ET01 to subscribers. 

Sub01, 

Sub02 

nothing Event is accepted if no exception is thrown. 

Pub01 initiate commit Sends an internal ‘prepare’ event to subscribers 

(2PC). 

Sub01 accept commit User confirms preparation for commitment.  

Sub02 abort Preparation for commit failed. Send ‘abort’ to 

publisher and roll back. Publisher will send an 

‘abort’ to Sub01 and will rollback. 

 

 

3.1.5 Use-Case 4: Multiple Successful Transactions 

Actors:  

Manager, Client01, Client02. 

 

Use-Case Description: 

Client Client01 initiates a transaction consisting of the census event type ETCensus01, 

and the event type ET01. Client Client02 who is registered to ETCensus01, enlists to 

the transaction. At the same time, Client02 initiates a transaction consisting of the 

census event type ETCensus02, and the event type ET02. Client Client01 who is 

registered to ETCensus02, enlists to the transaction.  

 

Client01 sends one event of type ET01 which is accepted by Client02. Client02 sends 

one event of type ET02 which is accepted by Client01. Each publisher requests 

commitment of its transaction and accepts commitment of the others transaction. Both 

transactions are committed successfully.  

 

 

Phase Actor Action Action effect 

O
b

je
c
t 

d
e
fi

n
it

io
n

 Manager create Client01 Client Client01is created and added to P/S system. 

Manager create Client02 Client Client02is created and added to P/S system. 

Manager create ETCensus01 Create a census event type named ETCensus01. 
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Manager create ETCensus02 Create a census event type named ETCensus02. 

Manager create ET01 Create an event type named ET01. 

Manager create ET02 Create an event type named ET02. 
P

/S
 S

e
tu

p
 

Client01 advertise ETCensus01 Event type is stored in rendezvous node. 

Client01 advertise ET01 Event type is stored in rendezvous node. 

Client02 register to ETCensus01 Subscriber registers to event type. 

Client02 advertise ETCensus02 Event type is stored in rendezvous node. 

Client02 advertise ET02 Event type is stored in rendezvous node. 

Client01 register to ETCensus02 Subscriber registers to event type. 

C
e
n

su
s 

Client01 publish ETCensus01 Send a notification of ETCensus01 publication to 

subscribers. 

Client02 enlist to transaction Census callback function will return ‘true’- a 

message will be sent to publisher, and subscriber 

will automatically be subscribed to all event types in 

transaction registration. 

Client02 publish ETCensus02 Send a notification of ETCensus02 publication to 

subscribers. 

Client01 enlist to transaction Census callback function will return ‘true’- a 

message will be sent to publisher, and subscriber 

will automatically be subscribed to all event types in 

transaction registration. 

T
r
a

n
sa

c
ti

o
n

 

Client01 publish ET01 Send an event of type ET01 to subscribers. 

Client02 publish ET02 Send an event of type ET02 to subscribers. 

Client01 initiate commit Sends an internal ‘prepare’ event to subscribers 

(2PC). 

Client02 accept commit User confirms preparation for commit. After all 

clients confirm preparation, the publisher sends the 

internal ‘commit’ event upon which the subscribers 

commit.   

Client02 initiate commit Sends an internal ‘prepare’ event to subscribers 

(2PC). 

Client01 accept commit User confirms preparation for commit. After all 

clients confirm preparation, the publisher sends the 

internal ‘commit’ event upon which the subscribers 

commit.   

 

3.1.6 Interaction with HTS and API Requirements 

It is an elementary requirement that the simulator know to interact with HTS. This 

interaction must be at the level of the API as well as the behavioral level which are both 
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analyzed in detail in the sequence diagram on page 29. In the diagram, the publisher is 

on the left side and the subscriber is on the right. Only one subscriber is shown, 

however, there may be many. In the center, the publisher and subscriber meet within the 

underlying pub/sub system. The internal behavior of the pub/sub system is not of 

interest and simply grayed out. Over the pub/sub layer, HTS runs on both the 

publisher’s side and the subscriber’s in order to provide transactional capabilities. Even 

though HTS is part of the middleware, its behavior is shown since it is vital for 

understanding how the simulator must behave. Above HTS is the simulation application 

that runs two separate entities, one to simulate the publisher and another to simulate the 

subscriber. The following sections detail the required interaction in each phase.   

Object Definition Phase 

This phase is not shown in the sequence diagram due to space limitations. The simulator 

begins by setting up the network over which the middleware will run. The default 

network consists of five event brokers. Next, the simulator allows the user to setup the 

environment of the simulation including clients and event types. Clients are logged on 

to the middleware by validating their credentials. Only clients with authorized keys are 

successfully logged on. The simulator automatically uses valid key for all clients. The 

event types the user defines are not passed to the middleware at this point. The 

middleware will become aware of the event types only once the event type is 

advertised. The simulator has the user enter the event types already at this point in order 

to provide the user with a convenient selection list of event types at all clients. Note 

that even though the object selection phase must come first, new objects may be defined 

at any time during the following phases.   

Pub/Sub Setup Phase 

In this phase, advertisements and registrations are performed. A publisher interested in 

publishing an event of a certain type must first advertise its intention of doing so. 

Event-types may be advertised as census events, events used to initiate transactions, or 

regular events, events which are sent within a transaction. A subscriber interested in 

being notified when a transactional event of a certain type is published, must first 

register to the appropriate event types. This registration includes the type of the census 

event of the transaction and the types of regular events that may be received within the 

transaction. HTS will subscribe the subscriber to the census event immediately, but will 

subscribe to the contained regular events only once a transaction is successfully joined. 

The subscriber must additionally provide HTS with a callback function that is used by 

HTS to notify the subscriber of an incoming transaction. This callback is further 

discussed in the census phase. 
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Census Phase 

The census phase begins when a publisher initiates a transaction. The publisher requests 

the HTS middleware to publish an event of a census event type. This request must 

include conditions under which the census phase is to be considered successful (e.g. at 

least 2 subscribers). The middleware now calls the census callbacks (given during 

registration) of all subscribers. These callbacks are the way the middleware notifies the 

application of initiation of a transaction. The choice of joining the transaction is left to 

the subscriber’s application. If the subscriber’s callback returns ‘false’, the middleware 

will not join the transaction. If the callback returns ‘true’ the middleware will join the 

transaction by subscribing to all necessary event types and by sending the publisher a 

reply to its publication. 

The census phase is limited to a period of time defined by the initiating publisher. Once 

this timeout elapses the transaction will either be in ‘census fulfilled’ state or ‘census 

unfulfilled’ state. It is the responsibility of the publisher to poll the middleware and to 

instruct it to begin the transaction if the census phase is fulfilled. In either case, the 

census phase ends here. 

Transaction Phase 

The transaction phase is the phase in which work of interest to the application is 

accomplished. The publisher publishes events within the transaction and the middleware 

makes sure all subscribers receive it. HTS calls the event callback at each participating 

subscriber in which the subscriber takes actions of interest according to the received 

event. If the event is handled successfully, the callback must return ‘true’. If the event 

is not handled successfully, the callback must return ‘false’ in which case the 

middleware marks the transaction as aborted.  

The publisher publishes as many events as it likes and eventually decides to commit the 

transaction. The HTS middleware initiates the two-phase-commit by sending a ‘prepare’ 

command to all participants of the transaction. If any participant replies with the ‘abort’ 

message the publisher aborts the entire transaction by sending ‘abort’ to all 

participating subscribers. If all participants reply to the ‘prepare’ command with the 

‘prepared’ message the publisher commits the transaction and sends the ‘commit’ 

command to all participants. At this point the transaction is successfully completed. The 

publisher will also abort the transaction if within a timeout period a participant failed to 

respond to the ‘prepare’ command.   

The simulator must poll HTS to find out the status of the transaction. 
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           Figure  3-C: Sequence Diagram- Simulator and HTS Interaction 
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3.2 Simulator Design 

3.2.1 Software layers 

Figure  3-D shows the different layers the application simulator and the middleware are 

comprised of. Layers above the horizontal line belong to the application and layers 

below the horizontal line belong to the middleware. The layers on top are high level 

software modules and the layers on the bottom are low level software modules.  

 

 

Figure  3-D: Software Layers  

Layers of the Simulator 

The simulator is composed of two layers: the GUI layer and the simulator’s logic layer.  

 

The GUI (Graphical User Interface) provides the user with necessary windows for 

setting up the pub/sub system and using it to publish events and subscribe to events. 

The GUI layer may be replaced with another GUI without influencing the logic and 

behavior of the simulator. The GUI contains two types of windows: a manager window 

and a client window.   

• Manager window– A window used by the Manager actor to setup the 

environments. Allows defining clients and event-types. 

• Client window– A window representing a client (publisher or subscriber). This 

window allows the client to advertise event-types (at the publisher side), register 

to event-types (at the subscriber side), publish events (at the publisher side) and 

subscribe to events (at the subscriber side).  

Only one manager window may exist, whereas many client windows may exist 

simultaneously. 
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The simulator logic layer contains all the simulator’s data and functionality. Only this 

layer accesses the middleware. It contains the existing event-types and clients and 

allows the GUI to query their status. The GUI layer, accesses the logic layer in which 

all the data it displays is stored. The logic layer also handles user events generated by 

the GUI and notifies the GUI of changes caused by the middleware. At startup, this 

layer initializes the pub/sub environment (e.g. network nodes and event brokers) and 

allocates encryption keys for all clients. In order for objects to be identifiable by a user, 

objects such as clients are given a textual name. The name is mapped to an object and 

translated when going out to, or coming in from the user. The GUI and middleware are 

both unaware of this translation. 

Layers of the Middleware 

The middleware is composed of several components: 

• HTS – Hermes Transaction Service provides transactional functionality to the 

Hermes pub/sub middleware. HTS is the primary layer that the simulator 

accesses. 

• Maia - The implementation of the Hermes pub/sub middleware, including the 

security and transaction services. 

• Pastry - The peer-to-peer routing substrate used by the Hermes routing system. 

• EAX & Jsdsi - Jsdsi (Java Secure Distributed Software Infrastructure) is used by 

Maia to enforce access control via SPKI. EAX offers cryptographic extensions 

used by Maia as well. 

 

Source code for all the middleware’s layers were provided to us by Cambridge 

University for the purpose of this research.  

Interaction between Layers 

Each layer accesses services provided by the layers directly beneath it, and may invoke 

callbacks belonging to the layer above it. 

 

The GUI layer, accesses the simulator logic layer via an interface, and provides the 

simulator logic layer with an interface to an object that handles events (incoming event 

etc.). Thanks to the interfaces, the GUI and logic are completely decoupled allowing 

one to be replaced with the other remaining unaffected. 

 

The simulator logic layer accesses HTS to provide it with transactions, Maia to setup 

and run the pub/sub system, and the EAX & Jsdsi layer to achieve encryption keys and 

services. These layers are created by the simulator logic layer and their objects are 
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accessed directly (they do not provide interfaces). The simulator logic defines and 

provides HTS with the callbacks necessary to handle transactions (refer to section 

 3.1.6).  

 

The interaction between HTS and Maia were detailed in section  3.1.6. The interactions 

between the remaining layers within the middleware are of no consequence to this 

project and are therefore ignored. 

3.2.2 Class Diagrams 

As described in section  3.2.1 the simulator is comprised of two layers: the GUI later 

and the simulator logic layer. Separation of the two layers is achieved by using 

interfaces. The GUI creates an instance of the simulator logic layer it is to run above 

and from this point on all communication is through interfaces.  

 

Figure  3-E is a UML class diagram which contains the main classes and their most 

important member function and variables. In this diagram, a solid line with a closed 

hollow head arrow depicts inheritance, a dashed line with an open head arrow depicts a 

dependency, and a solid line with a solid diamond on one end and an open head arrow 

on the other end depicts composition. 

  

The application begins by running the main window (MainWindow class). MainWindow 

creates a single instance of LinkToApp class.  LinkToApp contains an object of the 

HtsSimApp class which contains the simulators logic. LinkToApp provides the GUI with 

an interface (IHtsSimApp) to the functionality of the logic layer. 

 

Through the main window, the user has the capability of creating clients. For each 

client created, MainWindow creates a ClientWindow object and calls createNewClient() 

in IHtsSimApp  which creates a new object of ClientWrapper. Additionally, 

createNewClient() in IHtsSimApp  must be called to give ClientWrapper access to the 

callback functions of IGuiClientCallback. 

 

HTS and the other layers below the simulator are created and accessed by the 

HtsSimApp class. HtsSimApp contains a list of publishers, subscribers, and event-types. 

It is not sufficient to rely on lists managed by HTS since they are not identifiable by the 

user. These entries in HtsSimApp lists connect each entry in the HTS lists with 

additional data such as a user identifiable unique name or history log. The publisher and 

subscriber lists in HtsSimApp contain objects of the ClientWrapper class which 

provides additional required data as described above. The ClientWrapper class also 
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contains HTS callbacks that all clients require. These callbacks activate the GUI 

callbacks in IGuiClienCallback when necessary.  
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Figure  3-E: Application Simulator Class Diagram  
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3.2.3 Threads 

The main thread of the application is the main() function of the MainWindow class. For 

each client, a client window (ClientWindow) is created. Client windows are modeless 

and are each a thread. In addition to the main thread, MainWindow contains a timer 

thread that is responsible for refreshing the display of the main window and all client 

windows. Once instructed to, the windows refresh themselves by rereading data from 

the logic layers using the IHtsSimApp interface.  

 

Calls from the GUI to the logic layer are all run in the context of the GUI thread (main 

thread or client window thread). The middleware (HTS or layer below) contain threads 

that handle incoming events. These events activate callback in the logic layer, which, in 

turn, may activate callbacks of the GUI layer. All the callbacks are run in the context of 

the middleware. 

 

The logic layer contains one thread that is responsible to poll HTS after a census event 

is published in order to obtain the outcome of the census phase. This thread is necessary 

because HTS does not provide callback support for this event.  
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4 TOPS – Transaction Oriented 

Publish/Subscribe 

In this chapter we present the design of a transactional pub/sub middleware that 

improves upon HTS and provides additional capabilities as will be described throughout 

this chapter. The motivation for transactional messaging is traditionally illustrated using 

the ‘meeting scenario’  [9],  [26],  [13]. In this scenario, a meeting is scheduled by 

sending invitational messages to potential attendees. Participation of an attendee may be 

either optional or mandatory. Attendees reply to the meeting initiator to confirm their 

participation. In addition, a room must be reserved for the meeting. It is desirable that 

the room reservation and the updates to all attendees’ calendars take place only if the 

mandatory attendees confirmed attendance, the minimum quota of attendees it met and 

the room is available for use. This requirement for a single unit-of-work may be 

achieved using a messaging middleware supporting transactions, and specifically to our 

interest, a pub/sub messaging middleware. This scenario may be slightly artificial but it 

serves well as an example and therefore we use it to demonstrate the motivation for 

TOPS in Section  4.1.  

 

We introduce data replication as another application of transactional pub/sub. In the 

replication example, an update is performed to data residing on a particular site and the 

change is to be reflected, synchronously or asynchronously, at all other sites containing 

replicas of the modified data. This is discussed in chapter  5. 

4.1 Motivation for TOPS 

The main goal of TOPS is to provide a diversity of features for supporting transactions 

in a pub/sub environment. TOPS does not attempt to provide a single ultimate solution, 

rather it attempts to provide a variety of features, allowing applications to determine the 

most appropriate solution (or set of solutions) base on the application’s requirements. 

The benefits of TOPS listed below are demonstrated in chapter  5 by presenting how a 

variety of replication strategies may be implemented using TOPS. 

 

Even though HTS is a good starting point and we base many of our concepts on it, 

several design and architectural changes are necessary to achieve our goals. Following 

are several of the reasons an improved design is necessary. 
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4.1.1 Transactions with Multiple Publishers 

In HTS a transaction may only have one publisher. Using the meeting scenario, suppose 

one secretary notifies of the meeting’s existence and another determines and notifies of 

the meeting location. Each secretary is a separate publisher, but still each must publish 

an event within this transaction. TOPS allows any number of publishers to contribute 

events to a transaction. 

Sample scenario 

Publisher ‘A’ (Figure  4-A) initiates a transaction and publishes an event containing the 

date and time of a meeting. Publisher ‘B’ publishes another event within the transaction 

notifying all participants of the meeting’s location. Both events (time and location) are 

encompassed within the same transaction even though they originate from different 

publishers. 

 

Figure  4-A: Transactions with Multiple Publishers. 

 

4.1.2 Transaction Initiator is not Required to Participate 

In HTS the initiator must participate in the transaction. It is not possible for one to 

schedule a meeting of behalf of a colleague.  The scheduling of the meeting will fail if 

the scheduler’s schedule is not free at the time of the meeting, even though all invited 

attendees have accepted the meeting. In TOPS, the initiator is not required to be part of 

the transaction.  

A 

B
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Sample scenario 

Publisher ‘A’ initiates a transaction on behalf of ‘B’ and publishes an event containing 

the date and time of a meeting. Publisher ‘A’ himself is not part of the meeting 

transaction and is not required to attend (he may not even be a subscriber). The 

transaction scope is denoted in Figure  4-B by a broken line. ‘B’ may still join the 

meeting transaction as an ordinary subscriber 

 

 

Figure  4-B: Transactions with Initiator not Participating. 

 

4.1.3 No Need to Explicitly Subscribe to Transactions 

In HTS all participating subscribers must explicitly subscribe to transactions (census 

events). Suppose the pub/sub middleware contains the event type ‘staff meetings’. In 

HTS in order to support a transaction, a new census event type, say ‘staff meetings 

census’ must be defined, which all potential attendees must subscribe to as well. TOPS 

allows the publication of transactional and non-transactional events within the same 

event type. The single event type ‘staff meetings’ is sufficient and attendees must 

subscribe only to it. 

Sample scenario 

The subscribers (right hand of Figure  4-C) subscribe to a single event type ‘staff 

meeting’. ‘A’ publishes a standard event of this type (not in a transaction) and it is 

received by all subscribers. ‘B’, on the other hand, publishes an event of the same type 

but he does so within a transaction. His transactional pub/sub event is received by all 

subscribers as well, as part of a transaction. Distinguishing between transactional events 

and non-transactional events at the subscriber is handled by the TOPS middleware. 

 

 

A 

B
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Figure  4-C: No Need to Explicitly Subscribe to Transactions. 

 

4.1.4 Automatic Delivery of Any Event-Type 

In HTS all participating subscribers must subscribe to all event types used in the 

transaction. Assume a meeting transaction consists of an event of type ‘meeting 

schedule’ and an event of type ‘meeting location’. For attendees to meaningfully 

participate in the transaction they must receive both events. In HTS this is achieved by 

the subscriber listing, during subscription to the census event, all the event types that 

may be published within the transaction. This is a relatively inflexible solution since 

event types may not be easily added to a transaction. TOPS requires only a single 

subscription. If a transaction is created with event type ‘meeting schedule’, participants 

in the transaction will receive a ‘meeting location’ event published within the 

transaction context without having subscribed to ‘meeting location’. To see how this is 

achieved, see section  4.5.3. 

Sample scenario 

The subscribers have subscribed to the event type ‘meeting schedule’ only. Publisher 

‘A’ initiates a transaction of type ‘meeting schedule’ and the subscribers join the 

meeting transaction. ‘A’ now publishes an event of type ‘meeting location’ within the 

transaction. All the meeting’s participants will receive this event as well, even though 

they haven’t subscribed to this event type. 

A 

B



  

40 

 

Figure  4-D: Automatic Delivery of Any Event-Type. 

 

4.1.5 Test of Constraints at Commit 

In HTS constraints are tested only during transaction establishment (the census phase). 

Assume a meeting has been defined with the constraint that the meeting shall take place 

only if there are at least twenty attendees. Assume also that the census phase was 

successfully concluded with twenty five attendees, but during the transaction one 

attendee aborted and rolled back. Since a part of the transaction failed, HTS will abort 

the transaction even though the constraint requiring a minimum of twenty participants is 

still fulfilled. TOPS finalizes the list of participants before committing, allowing five 

attendees to abort before canceling the meeting.     

Sample scenario 

A meeting is scheduled using a transaction with a constraint requiring participation of at 

least two attendees. The three subscriberes shown in Figure  4-E joined the transaction, 

however the top subscriber failed to commit the transaction. Since contraints are tested 

at commit, the transaction will successfully commit with the two remaining 

subsacribers. 

 

Figure  4-E: Test of Constraints at Commit. 

 

A 

commit 
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4.1.6 Support for Local Transactions 

In HTS only distributed transactions are supported. Suppose a conference is scheduled 

in one of an organization’s two distant offices. One event schedules the conference and 

another designates a conference room in the desired office. We require a transaction to 

support the case in which it does not matter who accepts the invitation, yet we would 

like to ensure that either both the schedule and location are accepted or that neither 

events are accepted. On one hand, atomic execution at each subscriber is desirable, 

which calls for a transaction. On the other hand the outcome of one subscriber should 

not affect the outcome of any other subscriber, thereby preventing use of a distributed 

transaction. Local transactions solve this problem by having each participant run a 

transaction individually. The different types of transactions are further discussed in the 

following section ( 4.2).   

Sample scenario 

A meeting transaction composed of two events, a time event (E1) and a location event 

(E2) in scheduled. Three subscribers join the transaction and receive both events. One 

atendee (the top atendee in Figure  4-F) failed to commit the location event and 

therefore the time event will not be applied either. Since each atendee is running its 

own local transaction, only the failed atendee aborts while the rest of them 

succcessfully commit the meeting transaction.  

Figure  4-F: Support for Local Transactions. 

   

4.1.7 Motivation Conclusion 

The points listed above and their scenarios gave the motivation for a new design for a 

transactional pub/sub middleware. In the following sections, we describe the new 

design (TOPS) in detail. 

E1 

 

E2 
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4.2 Transactions Supported 

As with a non-transactional middleware, the application may take upon itself the 

responsibility of transaction management. In this case, transactions are managed above 

the TOPS middleware, and the middleware is responsible only for distributing events. 

Such transactions, of course, do not require a transactional middleware and do not 

utilize its capabilities. The main advantage of a transactional middleware is freeing the 

application of transaction management. 

 

We distinguish between two types of transactions that middleware can manage (Figure 

 4-G): local transactions and distributed transactions. 

 

Figure  4-G: Local transactions vs. distributed transactions. 

 

The type of a transaction is determined by the scope concept (see Section  4.4). Note 

that for the same events, it is possible that some subscribers receive the events as a 

distributed transaction, others as local transactions, and yet others as events not within a 

transaction at all. 

4.2.1 Local Transactions  

Local transactions are executed at a single site. Even though the transaction is limited to 

a single site, it may be necessary to duplicate the transaction to additional sites, each 

executing the transaction locally (no dependencies between sites exist). We refer to this 

type of transactions as local transactions because the transaction spans only a single 

site. For example, an initiating site executing events as a local transaction may be 

interested in asynchronously passing on the events to remote sites as a unit of 

execution. Even though he is indifferent to which remote sites will receive or apply the 

events, he is interested in forcing atomic execution of the events within a local 

transaction at each remote site in order to preserve data integrity. In chapter  5 it is 
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shown how certain types of database replication can be implemented using local 

transactions.  

 

For local transactions TOPS provides a transactional context at each site and provides 

the dissemination of the transaction’s events to each site. The initiating site publishes 

each step (event) of the transaction to the middleware in a transactional context. The 

middleware is fully responsible for distribution and execution of the transaction as a 

local transaction on each remote site. Each site’s local transaction commits or aborts 

individually with no dependencies between sites (including the initiating site). 

Furthermore, the publisher itself may prefer having the middleware manage its own 

transaction as well. 

An example scenario for the use of local transactions was given in Section  4.1.6. 

4.2.2 Distributed Transactions 

Distributed transactions involve transactions at many sites, each executing a sub-

transaction. Each sub-transaction is, in effect, a local transaction since it involves only a 

single site. In a distributed transaction, all sites participating in the transaction depend 

on the outcome of the others. If one site fails, all sites must abort ( 4.4.4 covers some 

situations in which this requirement is slightly relaxed). Unlike local transactions in 

which many transactions are executed, a distributed transaction is a single transaction 

that encompasses all participating sites. Each site individually executes a sub-

transaction. TOPS provides a local transactional context for sub-transactions at each 

site, and a distributed transaction context encompassing all sub-transactions in to a 

single distributed transaction. 

 

TOPS supports distributed transactions by providing a local transactional context for 

sub-transactions at each site, and a global transaction context that atomically combines 

all sub-transactions. TOPS also handles dissemination of the transaction’s events to 

participating sites. The publishing site(s) determine what events the transaction contains 

and when it will be committed. All other participating sites affect the outcome of the 

transaction only by failing, thereby causing the distributed transaction to abort. 

4.2.3 Mixing Distributed and Local Transactions 

Since the ability of determining the transaction type is given to the subscribers, it is 

possible for the same published transaction to have some clients that are executing the 

transaction as a distributed transaction while others are executing the transaction as a 

local transaction. This is calleda mixed transaction. Subscribers executing the 

transaction as a distributed transaction do not affect other subscribers executing the 
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transaction locally, and subscribers executing the transaction locally do not affect other 

local or distributed transaction subscribers. 

4.3 Event Dissemination 

The event dissemination scheme follows that of Hermes. Each event type is routed to a 

rendezvous node. Different event types may have different rendezvous nodes. Within an 

event type, any event published will reach the same rendezvous node. The rendezvous 

node is the root of a multicast tree, which is constructed during clients’ subscriptions 

and is used for event dissemination.  

 

In addition to the transaction’s events, distributed transactions involve communication 

between sites for management of the transactions, for example, the events belonging to 

the commitment protocol. Even though this traffic occurs within the TOPS middleware 

and is transparent to the application, it should be taken into account that due to this 

traffic, a bandwidth and latency overhead exists when using transactions.  

 

In a simple algorithm for event dissemination, the publisher sends its events directly to 

the rendezvous node and only then dissemination begins. Some algorithms use a slight 

optimization that allows dissemination to begin before the event reaches the rendezvous 

node. This situation occurs when a node residing on the path from the publisher to the 

rendezvous node is part of the multicast tree. In such a case, this node can immediately 

disseminate the events to its sub-tree concurrently to forwarding the events to the 

rendezvous node. 

 

Figure  4-H: Optimization of Rendezvous Node Multicast. 
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Figure  4-H illustrates this situation. The arrows directly between nodes denote a 

physical connection and the direction of communication within the multicast tree. 

Dotted lines denote a physical connection not part of the multicast tree. Arrows 

alongside the graph denote the path used for event dissemination by the labeled 

publisher. In this example, the rendezvous node’s left and right sub-trees receive the 

event from him but the entire sub-tree in the center did not receive the event from him. 

 

This is relevant to TOPS in order to support multiple publishers. Transactions with 

multiple publishers use the rendezvous node to order events from all publishers and 

therefore dissemination optimizations as described in this section must be disabled. For 

single publisher transactions the optimization may remain in place.   

4.4 Transaction Properties 

4.4.1 Participation of Initiator 

In order to allow for flexibility as to having the transaction initiator participate, TOPS 

does not automatically enlist the initiator in the transaction. If the initiator is interested 

in participating, he is required to join the transaction during the census phase, just as 

any other subscriber. In addition to not requiring the initiator to participate, we also 

gain the ability of having many publishers in a transaction. 

4.4.2 Access 

Access to a transaction defines who may publish events within the transaction. In a 

transaction of single publisher (private) access, only the initiating site may be a 

publisher, whereas transactions of multi-publisher (public) access may have several 

publishers. In transactions with many publishers the content of the transaction is 

distributed as well as the outcome of the transaction. The transaction initiator 

determines the transaction’s access. 

4.4.3 Scope 

At each subscriber, when a new transaction arrives, the subscriber determines the scope 

this transaction will have from his point of view. The scope of a transaction refers to the 

ability of subscribers to view events within a transaction. A subscriber may request the 

following levels of scope:  

1. Get none – This subscriber will not receive events belonging to this transaction.  

2. Get as non-transactional – This subscriber will receive events but they will not 

be processed as a transaction.  
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3. Get as local – This subscriber will receive events within a local transaction. 

4. Get as distributed – This subscriber will receive events within a distributed 

transaction.  

4.4.3.1 Scope Limitation 

The transaction initiator has the ability to limit the scope that subscribers may request. 

For example, if the initiator limits the scope to ‘distributed’, subscribers may only 

choose to join the distributed transaction, or to not join at all. The initiator may restrict 

the scope by limiting the transaction to:  

1. Limit none – No restriction. Subscribers may request any scope. 

2. Limit local – Events may be provided only within a local or a distributed 

transaction. Subscribers may request either ‘Get as local’ or ‘Get as distributed’. 

3. Limit distributed – Events may be provided only within a distributed 

transaction. Subscribers may request only ‘Get as distributed’. 

 

The ‘scope’ and ‘scope limitation’ may not be broader than the transaction type. For 

instance, if the transaction type is ‘local’, the scope and scope limitation may not be 

‘get as distributed’ or ‘limit distributed’ respectively. Furthermore the scope must be 

higher than the scope limitation. For instance, the limitation is ‘limit local’ the 

subscriber may not request a scope of ‘get as non-transactional’. 

 

 

Figure  4-I: Legal Scopes According to Transaction Type and Scope Limitation. 
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In Figure  4-I it is shown what scope limitations are possible for each transaction type, 

and what the scopes are possible given the transaction type (TX type) and limitation. 

First, the transaction type is defined. A blue circle is placed at the appropriate strip and 

a bar is drawn upwards. This bar determines the possible scope limitations. Next, the 

limitation is defined. An orange circle is placed at the appropriate strip and a bar is 

drawn downwards until the TX type’s circle. Legal scopes, which are denoted by a 

slightly smaller green circle, are between the TX type’s circle and the limitation’s 

circle. The scope ‘get none’ is exceptional and is always a legal scope. 

 

The scope concept is an extension to private/public transactions in HTS. ‘Limit none’ is 

similar to ‘public’ in HTS, and ‘limit distributed’ is similar to ‘private’ in HTS. 

Differences between TOPS and HTS still exist due to the fact that HTS does not support 

local transactions. A demonstration of how access and scope are useful is given in 

Section  5.2 where we discuss replication. Table  4-A summarizes what the subscriber 

will receive for all combinations of scope request and limitation. Of course, the 

limitation may not be higher that the transaction itself (e.g. limit distributed is illegal 

for a local transaction). 

 

Table  4-A: Transaction Scope 

 limit none limit local limit dist. 

get none none none none 

get as non-tx non-tx none none 

get as local local local none 

get as dist. dist. dist. dist. 

 

Rows – Scope requested by a subscriber. 

Columns – Scope limitation as defined by the initiator. 

 

4.4.4 Constraints 

Constraints may be applied to transaction in which case the transaction must fulfill all 

given constraints in order to commit. Examples of constraints are: require a minimum 

number of participants, require participation of specific subscribers, limit participation 

to specific subscribers, completion within a defined time, etc. These constraints are in 

addition to constraints external to the middleware, such as database constraints. The 

constraints are tested throughout the life of the transaction (census and commitment) 

and invalid transactions are aborted. Most importantly, constraints are tested prior to 

commitment to ensure validity of committed transactions. 
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In HTS  [26] census of participants and transaction constraints are conducted at 

transaction creation. This solution prevents non-interested clients from receiving the 

events belonging to the transaction. On the downside, constraint will not work as 

expected in the following case. Assume a distributed transaction contains a constraint 

requiring participation of 2 subscribers. Further assume that 3 subscribers joined the 

transaction. At commit, if one subscriber aborts, the entire transaction aborts, as 

expected from a distributed transaction. However, the constraint clearly allows 

transactions with 2 participants and therefore a legal transaction was completely 

aborted.  

 

In SPOONBILL  [13] census of participants and transaction constraints (failure 

conditions) are conducted at transaction commitment. This solution prevents the 

problematic situation described in the preceding paragraph. Unfortunately, all 

subscribers (including ones not interested in the transaction) will receive all the 

transaction’s events, and all the transaction’s events are sent even if it is clear from the 

beginning that the transaction will be aborted (e.g. not enough participants).  

 

TOPS attempts to benefit from both worlds by conducting the census phase up front, as 

in HTS, and retesting the constraints at commit as in SPOONBILL. In this manner, only 

interested subscribers receive events, transactions failing constrains up front are aborted 

without sending irrelevant events, and transactions will not fail at commit as long as the 

constraints are still met. 

 

When referring to constraints regarding transaction participants, the consequence of 

retesting constrains at commit is not trivial. In HTS, once census is complete, the list of 

participants is finalized, and all participants are part of the distributed transaction. This 

is the default behavior in TOPS as well, when no constrains are specified. However, 

once participation constraints are retested at commit, we didn’t really have a true 

distributed transaction until now, as we see some participants can abort and the 

transaction still commits with the remaining participants. In TOPS, a more accurate 

description of this situation might be “applying a global constraint to local 

transactions”. In effect, such a transaction remains a distributed transaction, perhaps 

just of a more generic type, since a constraint is placed when the transaction is created 

that defines when a transaction involving many sites is allowed to commit. Even though 

aborted site may be removed from the transaction, it remains impossible for a site will 

to commit when the transaction is abort.     
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4.5 TOPS Architecture 

TOPS is a single middleware that provides two interfaces: a standard pub/sub interface 

and a transactional pub/sub interface. The standard pub/sub interface is exposed by the 

P/S manager and the transactional pub/sub interface is exposed by the tx manager. The 

P/S manager’s interface is generic; however, its implementation is specific to TOPS.  

 

TOPS is run over a communication substrate, as in HTS. Transactions and applications 

may access the communication substrate directly, bypassing pub/sub, thereby enabling 

point-to-point communication. For example, the tx manager of a subscriber may send an 

‘abort’ message directly to the coordinating tx manager. This architecture is depicted in 

Figure  4-J. 

 

Figure  4-J: TOPS Architecture 
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component, it is important to note the rationale behind this division. If the tx manager 

was a single component, clearly the component will be performing different 

responsibilities (and therefore executing different code) at each type of the sites. One 

part will be active at the publisher whereas a completely different part will be active at 

the subscriber. Dividing into components allows each component to be completely 

active or completely inactive. For instance, a site will never use half the functionality of 

the event coordinator. This architecture provides a high level of flexibility as follows: 

All components are deployed at all sites. Depending on the transaction, different 

components at different sites cooperate in order to fulfill the requested transaction. 

 

The key responsibilities of the three components are as follows: 

1. Event coordinator – When an event is received requesting a new transaction, the 

event coordinator allocates a new transaction ID (txID). Events received may be 

sent from one or more publishers, the event coordinator determines which 

events published are to be part of the transaction and numbers them in sequence. 

The event coordinator sends the numbered events to the tx coordinator(s).  

2. Tx coordinator – The tx coordinator is responsible for distributed execution of a 

transaction. It coordinates transaction establishment, event publication, and 

transaction commitment by communicating with all (one or more) sub-tx 

executers. The tx coordinator coordinates between all sub-transactions to form a 

single distributed unit-of-execution. 

3. Sub-tx executor – Each subscriber participating in the transaction is managed by 

a local sub-transaction executor that provides a single local unit-of-execution. 

The sub-tx executor receives commands from the tx coordinator and executes 

them locally by interfacing with the application. For example, during transaction 

establishment a sub-tx executor will ask the application if it is interested in 

participating in the transaction, or it may send the tx coordinator an abort 

request when it fails to pass an event to the application. The sub-tx executor is 

also responsible for knowing if the application is compensatable or not, and 

instructing the application to roll back events belonging to aborted transactions 

accordingly. 

 

Configuration of components is discussed in detail in section  4.5.2, however in order to 

explain why three layers were chosen, we require an introduction to component 

configuration. From a communications point of view, the components are placed in 

layers, meaning the publisher’s application communicates with the event coordinator 

that communicates with the tx coordinator that communicates with the sub-tx executor 

that communicates with the subscriber’s application. Communication between 

components may be either point-to-point or pub/sub.    
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Knowing the responsibilities of each component and having an idea of how they 

interact, it remains to explain why three components are required. Starting from the end, 

the sub-tx executor is required in order to connect the middleware to the subscriber’s 

application (i.e. delivering events). Having only this layer is not sufficient since we 

require support for distributed transactions. For distributed transactions a single, 

centralized transaction manager is required. The tx coordinator fulfills this role. 

However, since local transactions are supported as well, and for local transaction the tx 

coordinator resides at the subscriber’s site (each site has its own tx coordinator), yet 

another (thin) layer is required above the tx coordinator. The tx coordinator is 

responsible for controlling the entry of events into the transaction (possibly from 

several publishers) and disseminating them to all tx coordinators. To demonstrate the 

necessity of the event coordinator, assume there is no event coordinator in a multi-

publisher local transaction configuration. Sites P1 and P2 publish events E1 and E2 

respectively, into the local transaction. Subscribers S1 and S2 are running the local 

transaction. It is very possible that S1 will execute the events in one order, say (E1, E2) 

and S2 in another order (E2, E1). Clearly this is not desirable and violates the principals 

of a transaction. To solve this, all publishers in a particular transaction send their events 

through the same event coordinator. The event coordinator determines the order in 

which the events are to be executed, and sends them to all subscribers numbered in 

sequence. In this manner it is guaranteed that all subscribers are running the same local 

transaction. 

4.5.2 Component Configurations 

The tx manager of each site contains all of the above components. For a specific 

transaction, different components are in use at different sites. For a specific transaction, 

all layers must be passed though, and in order; however, the layers are not all at the 

same site. The configuration of the components depends on the type of the transaction.  

 

A transaction must include exactly one event coordinator, regardless of the transaction 

type, since it is the entry point to the transaction. Publishers communicate with the 

event coordinator when creating a transaction or when publishing an event to the 

transaction. In order to support multi-publisher transactions (transaction with many 

publishers), the event coordinator is located at the rendezvous node. Since the 

rendezvous node is the root of the multicast tree, the event coordinator is sure to receive 

events from all publishers. The transaction initiator must subscribe to the event type the 

transaction is created under, if it wishes to participate in the transaction. If multi-

publisher transactions are not required the event coordinator may be located at the 

initiating publisher. 
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Tx coordination differs between transaction type. When using local transactions (see 

 4.2.1) each site coordinates its own transaction. This requires a tx coordinator at each 

subscriber, whose scope is the local site only. Communication between the event 

coordinator and the tx coordinators is by pub/sub. When using distributed transactions 

(see  4.2.2) there is a single centralized tx coordinator that is chosen to be at the same 

site as the event coordinator. In this case, communication between the two coordinators 

is direct.   

 

A sub-tx executor exists at each subscriber and is connected to a single tx coordinator. 

When using local transactions, the tx coordinator is local as well, resulting in direct 

communication between them. With distributed transactions, the tx coordinator is 

remote. Events from the tx coordinator to the sub-tx executor are sent using pub/sub 

(since communication is one-to-many), and events in the reverse direction are point-to-

point (since communication is one-to-one). The type of communication used between 

the different layers is illustrated in Figure  4-K. 

 

 

Figure  4-K: Communication in Tx Manager Configurations 
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The configurations described above are summarized in Figure  4-L. For the various 

types of transactions, it is shown where each component resides.   

 

 

Figure  4-L: Tx Manager Configurations 
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Sample Scenario 

In Figure  4-M an actual scenario is given. In this scenario, two transactions with the 

same event-type are active. 

 

 

Figure  4-M: Component Configuration Scenario 
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B) joined the transaction, C and E with local scope, and B and D with distributed scope. 

Since local sites have their own TX manager, transaction T2 uses the TX coordinator at 

sites C and E. For the distributed clients B and D the TX coordinator at R is used. As 

before, sub-TX executors are always local. When B publishes an event (see figure), the 

event start at the event coordinator located at R. Next, it is passed to R’s TX manager 

directly, and to C’s and E’s TX managers using pub/sub. Finally, C and E pass the event 

down to the sub-TX executor locally, and R uses pub/sub to pass the event down to B’s 

and D’s sub-TX executors. 

From the point of view of a specific site, it can be seen that a single component can 

server many transactions. This occurs in the sub-TX executor component at C and D, 

and in the TX coordinator component at C. Additionally, a single component can server 

transactions of different types, as the sub-TX executor at D is serving both a local and a 

distributed transaction. 

4.5.3 Event Sequencing 

In order to insure that all subscribers of a transaction are executing the same exact 

transaction, TOPS gives each event within a transaction a transaction specific sequence 

number. The number is given by the event coordinator component. This sequencing is 

required in order to determine a single order of execution of events in a transaction with 

multiple publishers. Note that if the publishers are also participating in the transaction, 

they too receive the order of events from the event coordinator at the rendezvous node 

and do not rely on the order of events they published. Additionally, the sequencing is 

used by the tx-coordinator and the sub-tx executor in order to verify the integrity of the 

events. If a participant fails to follow the event sequence, it aborts the transaction.     

4.5.4 Transaction Context 

In Section  2.3.3 the transaction context of HTS was discussed. HTS publishes each 

event within a transaction to its own event-type. Due to the disadvantages involved in 

this method as stated above, TOPS publishes all events to the same event-type. In this 

manner, it is guaranteed that all events are routed through the same rendezvous node. 

The first advantage is that a transaction may have more than one publisher. 

Additionally, participants are only required to subscribe to one event-type, and are 

guaranteed that they will not miss any events due to lack of proper subscription. Yet 

another advantage is removing the need for census event-types altogether. Instead, 

transactions can be created using any event-type. When a publisher initiates a 

transaction, it must specify the event-type the transaction will be created under. TOPS 

will return the application a transaction ID (txID). Using this txID, the publisher can 

publish events of any type to the transaction. TOPS automatically associates the txID to 

the transaction’s event-type and tunnels all events though the same event-type (and 
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rendezvous node).  This method also allows a site to be the initiator of several 

transactions concurrently, a capability not offered by HTS.  

 

 

Figure  4-N: TOPS Transaction Context 
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3. Access- which is either ‘single publisher’ (private) or ‘multi-publisher’ (public), 

4. Scope limitation – ‘none’, ’local’, or ’distributed’. 

5. Constraints – to which the transaction must adhere. 

 

According to the tx type, an event coordinator is determined, which then generates a 

txID and sends an establishment event to all tx coordinator(s). With local transactions, 

the establishment event is published and received by the tx coordinator of the 

subscribers to this event-type. Subscribers may join the transaction by enlisting at their 

local tx coordinator. No feedback is to be sent to the event coordinator, which is 

completely unaware of the tx coordinators. With distributed transactions, the event 

coordinator sends the establishment event directly to the single tx coordinator at the 

rendezvous node. The tx coordinator publishes the event to all subscribers. Subscribers 

interested in the transaction store the txID and the ‘get dist.’ scope (for use when 

receiving events belonging to this transaction), and respond to the tx coordinator with 

their (cryptographic) ID. The tx coordinator tests for fulfillment of the constraints and 

notifies the event coordinator if the establishment succeeded or failed. Specific 

subscribers may choose to receive the events with a different scope, either within a 

local transaction or simply as independent events. As before, these subscribers store the 

txID with the selected scope. In such cases, the subscriber silently listens to the 

publications of the tx coordinator and handles them as he pleases. Subscribers not at all 

interested in the events will not store the txID. 

 

Once the constraints (see section  4.4.4) are fulfilled, all subscribers are notified and the 

transaction begins execution. 
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Algorithm pseudo code 

Algorithm for the initiating publisher’s logic: 

 

BEGIN BeginTx(evType, txType, access, scopeLim, constraints[]) 

 

  // In a transaction with ‘private’ (single publisher) access the   

  // ‘event coordinator’ is located at the initiator. In a transaction 

  // with ‘public’ access the ‘event coordinator’ in located at the  

  // rendezvous node. 

  

  IF access = ‘private’ THEN 

    Activate ‘event coordinator’ component locally (at publisher). 

    Send internal ‘begin TX’ event to ‘event coordinator’. 

    Allocate txID. 

    Store tx properties (evType, txType, access, scopeLim, constraints). 

    Publish internal ‘begin TX’ event to ‘tx coord.’ including txID. 

  ELSE  

    Use ‘event coordinator’ component at rendezvous node. 

    Publish internal ‘begin TX’ event to ‘event coordinator’. 

  END 

 

  // If transaction is ‘local’ or no constrains are defined, transaction 

  // is always successful. A distributed transaction with constraints  

  // may fail and therefore must be tracked. 

   

  IF txType = ‘distributed’ AND constraints are defined THEN 

    Wait a timeout for ‘tx coordinator’ to acknowledge transaction. 

    Wait for response. 

    IF transaction successfully established THEN 

      RETURN txID from response. 

    ELSE 

      RETURN transaction not established. 

   END 

END  
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Algorithm for the rendezvous node’s logic: 

 

 

BEGIN HandleBeginTx (evType, txType, access, scopeLim, constraints[]) 

 

  // Handle case of ‘public’ transaction when ‘event coordinator’ is 

  // at rendezvous node.  

 

  IF event is targeted at ‘event coordinator’ THEN 

    Activate ‘event coordinator’ component. 

    Allocate txID. 

    Store tx properties (evType, txType, access, scopeLim, constraints). 

    Publish internal event to ‘tx coordinator’ including txID. 

 

    // Check if transaction is successful (same logic as at initiator). 

     

    IF txType = ‘distributed’ AND constraints are defined THEN 

      Wait a timeout for ‘tx coordinator to acknowledge transaction. 

      Wait for response. 

     IF transaction successfully established THEN 

       Send to initiator: txID from response. 

     ELSE 

       Send to initiator: transaction not established. 

    END 

  END 

 

  // For distributed transactions, the tx coordinator is at the 

  // rendezvous node. It is responsible for establishing the list 

  // of participants and testing constraints. 

 

  IF event is targeted at ‘tx coordinator’ THEN 

    IF txType = ‘local’ THEN 

      Publish event to ‘tx coordinators’. 

    ELSE // txType = ‘distributed’ 

      Activate ‘tx coordinator’ component. 

      Publish event to ‘sub-tx executor’. 

      Wait timeout for subscriber participation. 

      Test constraints. 

      tx status = fail. 

      IF constraints pass THEN 

        Store participants. 

        tx status = ok. 

      END 

      Publish tx status to participants’ ‘sub-tx executor’.  

      Send tx status to ‘event coordinator’.  

    END 

  END 

END 
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Algorithm for the subscriber’s logic: 

 

 

BEGIN HandleBeginTx(evType, txType, scopeLim) 

 

  // For local transactions the ‘tx coordinator’ resides at the 

  // subscriber and no feedback is required.  

 

  IF txType = ‘local’ THEN 

    Activate ‘tx coordinator’ component. 

    Activate ‘sub-tx executor’ component. 

    Acquire scope from application. 

    SWITCH scope 

      ‘get none’: Do not stode txID.       

      ‘get non-tx’: Store txID with scope.      

      ‘get local’:  

         Store txID with scope.  

         Create a transaction.      

    END 

 

  // For distributed transactions the ‘tx coordinator’ resides at the 

  // rendezvous node and must be notified when joining the transaction.  

 

  ELSE // txType = ‘distributed’ 

    Activate ‘sub-tx executor’ component. 

    Acquire scope from application. 

    SWITCH scope 

      ‘get none’: Do not stode txID.       

      ‘get non-tx’: Store txID with scope.      

      ‘get local’:  

         Store txID with scope.  

         Create a transaction.      

      ‘get distributed’:  

         Store txID with scope.  

         Send ‘tx coordinator’ at rendezvous node a request to join tx.      

         Wait for tx status from ‘tx coordinator’ at rendezvous node. 

         IF tx failed OR not joined THEN 

           Delete stored txID. 

         END 

    END 

  END 

END 

 

 



  

61 

4.6.2 Transaction Execution 

During transaction execution, events are published within the transaction’s context with 

the help of the txID and are distributed according to the event-type of the transaction. 

Events of any type may be published within the transaction; however TOPS will handle 

them as if they were events of the type for which the transaction was created. This 

guarantees that subscribers will receive all the transaction’s events without knowing 

about their event type in advance. Otherwise, a participant in the transaction will not 

receive an event in the transactions when it hasn’t subscribed to the event’s type or 

content.  

 

Published events are sent to the tx manager of all subscribers. Any tx manager that does 

not contain the txID will discard the event. A tx manager containing the txID also stores 

the scope of the transaction and thereby knows how to act accordingly. For instance, a 

subscriber with the txID marked as ‘independent events’ will not send any feedback to 

the event coordinator, and will not pass on ‘abort’ messages to the subscriber’s 

application. A tx manager with a txID marked as a ‘distributed transaction’ will act as a 

participant in a distributed transaction and will communicate with the coordinator.  

 

During execution of a transaction any participant may choose to abort the transaction. If 

the one aborting is a publisher, the abort is sent, as any other event is, to all tx 

coordinators. This will cause both distributed transaction subscribers and local 

transaction subscribers to abort. On the other hand, if a subscriber aborts, only its scope 

is aborted. In the case a local transaction subscriber aborts, only its own events are 

rolled back. In the case a distributed transaction subscriber aborts, events at all other 

distributed transaction subscriber are rolled back as well; however, local transaction 

subscribers are not rolled back. 
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Algorithm pseudo code 

Algorithm for the publisher’s logic: 

 

BEGIN PublishTx(txID, event) 

  Using the txID determine the location of the ‘event coordinator’. 

  IF the ‘event coordinator’ is here (publisher) THEN 

    Send internal event to ‘event coordinator’. 

    Give event a sequence number. 

    Using the txID determine the transaction’s event type (evType). 

    Publish event to all ‘tx coordinators’ including sequence number. 

  ELSE    // ‘event coordinator’ is at rendezvous node 

    Publish event to ‘event coordinator’ (at rendezvous node). 

  END 

END  

 

 

Algorithm for the rendezvous node’s logic: 

 

 

BEGIN HandlePublishTx (txID, event) 

  Using the txID determine the location of the ‘event coordinator’. 

 

  IF the ‘event coordinator’ is here (rendezvous node) THEN 

    Send internal event to ‘event coordinator’. 

    Give event a sequence number. 

    Using the txID determine the transaction’s event type (evType). 

  END  

   

  IF ‘tx coordinator’ here contains txID THEN 

    Send internal event to ‘tx coordinator’. 

    IF sequence number is wrong THEN abort transaction. 

    Publish event to all ‘sub-tx executors’ including sequence number. 

  END 

   

  Publish event to all ‘tx coordinators’ including sequence number. 

END 

 

 

BEGIN HandleAbortTx (txID) 

  Test constraints. 

  IF constraints pass THEN 

    Store participants. 

    tx status = ok. 

  END 

END 
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Algorithm for the subscriber’s logic: 

 

 

BEGIN HandlePublishTx(txID, event) 

  IF txID is unrecognized THEN RETURN 

  

  Using the txID determine the scope. 

  IF scope = ‘get distributed’ THEN 

    Send internal event to ‘sub-tx executor’. 

    IF sequence number is wrong THEN send ‘abort’ to ‘tx coord’. 

    Have application process event. 

    IF processing fails THEN send ‘abort’ to ‘tx coord’ 

  ELSE IF scope = ‘get local’ THEN 

    Send internal event to ‘tx manager’. 

    Send internal event to ‘sub-tx executor’. 

    IF sequence number is wrong THEN abort then transaction. 

    Have application process event. 

    IF processing fails THEN send abort then transaction. 

  ELSE IF scope = ‘get non-tx’ THEN 

    Send internal event to ‘tx manager’. 

    Send internal event to ‘sub-tx executor’. 

    Have application process event. 

  END 

END 

 

4.6.3 Transaction Commitment 

Commitment is initiated by instruction of a publisher. For local transactions, the 2PC 

protocol is not necessary. The tx coordinators of all participants receive a single commit 

event from the event coordinator and commit independently. For distributed 

transactions, the tx coordinator activates the 2PC protocol. At both phases of the 2PC 

protocol the constraints are tested and the transaction is aborted if they are not 

completely fulfilled. Testing of the constraints of the distributed transaction does not 

take non-participants into account, which may or may not commit the transaction 

locally. For a mixed transaction containing both local and distributed subscribers, the tx 

coordinator of the distributed transaction will initiate the 2PC protocol, and all local tx 

coordinators simply send a commit message.  The outcome of this situation may be that 

all distributed subscribers abort while local subscribers commit successfully.  

4.7 Application Programming Interface 

TOPS exposes two interfaces, one for the p/s manager and one for the tx manager. 

Table  4-B lists the fundamental methods in each interface and their parameters (minor 

methods such as methods to enlist callbacks are omitted). For clarity, methods in the tx 
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interface have the ‘Tx’ suffix, and the ‘On’ prefix is used for callbacks that are called 

by the middleware and are to be implemented by the application. 

  

Table  4-B: TOPS API 

 P/S interface TX interface 

Publisher Advertise(et) 

Publish(ev, et) 

txID = BeginTx(et, txt, access,  

                        scope limit, constraints) 

PublishTx(txID, ev) 

CommitTx(txID) 

Subscriber Subscribe(et,filters) 

Unsubscribe(et) 

OnNotify(ev, et)  

OnJoinTx(txID, et,  scope limit) 

OnNotifyTx(txID, ev) 

Common to 

publishers and 

subscribers 

 AbortTx (txID) 

OnAbortTx (txID) 

OnPrepareTx (txID) 

OnCommitTx (txID) 

OnCompensateTx (txID) 

Parameter abbreviations: 

et = event type                         ev = event 

txt = transaction type               txID = transaction ID 

4.7.1 The Influence of TOPS Concepts on the API 

The following bullets highlight the main points of interest regarding the API: 

• Recall that there is no distinction between a standard pub/sub event-type and a 

transactional pub/sub event-type. For this reason, Advertise() and Subscribe() 

do not have equivalents in the tx interface.   

• When creating a transaction using BeginTx(), the event-type is given (not an 

actual event). All events belonging to this transaction will be treated as of this 

type. A subscription to that event-type is automatically a subscription to 

transactions created with that event-type. 

• All methods in the tx interface (except BeginTx()) receive the txID as parameter 

in order to indicate what transaction the call is referring to. 

• PublishTx() doesn’t require an event-type. However, since the event-type may 

still be of interest to the subscribers’ applications, it may be included as data. 

4.7.2 Use Case #1 

The use of the API is demonstrated using the following simple scenario. Site S1 

advertises event-type ET1 that site S2 subscribes to. Site S1 creates a single-publisher 
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distributed transaction of type ET1 and publishes two events: EV1 and EV2. Site S2 

enlists in the transaction and receives the events. Site S1 requests to commit the 

transaction that is consequently committed successfully.  

 

This scenario is carried out using the API as follows, and is depicted in Figure  4-O. 

First, S1 calls: 

S1:  Advertise(ET1) 

to define the new event-type ET1. Site S2 now subscribes to the event-type ET1 by 

calling  

S2:  Subscribe(ET1, filters)  

giving the event-type ET1 and content filters as parameters. Note that no special 

subscription is required for transactions, as they are supported inherently in all 

subscriptions. Until this point, the API calls were prerequisites of pub/sub and were not 

directly part of a transaction. To begin the transaction, S1 calls: 

S1:  BeginTx(ET1, distributed, private, limit none, none)  

which returns a transaction id (TXID1). The parameters of BeginTx() were discussed in 

section  4.6. The middleware at S2 now calls: 

Middleware:  OnJoinTx(TXID1, ET1)  

which returns the requested scope. Assuming the transaction’s constraints given at 

BeginTx() are fulfilled, the middleware now internally creates the transaction. At this 

point S1 may publish events EV1 and EV2 by calling  

S1:  PublishTx(TXID1, EV1) and  

S1:  PublishTx(TXID1, EV2). 

The event-type of these events is irrelevant to the middleware since any event published 

to the transaction will be regarded as type ET1. Still, the event-type is passed as data 

since it may be relevant to the receiving application. After each event is published, the 

middleware at S2 calls  

Middleware:  OnNotifyTx(TXID1, EV1) and  

Middleware:  OnNotifyTx(TXID1, EV2)  

respectively. Site S1 has completed sending the transaction’s events and now requests 

the transaction be committed by calling 

S1:  CommitTx(TXID1).  

The middleware initiates a 2PC and invokes  

Middleware:  OnPrepareTx(TXID1)  

at all subscribers, which in this simple case includes only S2. If all the participants 

prepare successfully, the middleware will invoke  

Middleware:  OnCommitTx(TXID1)  
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which concludes the transaction. Figure  4-O illustrates this process using a sequence 

diagram.  

 

 

 

Figure  4-O: API Use Case #1 Sequence Diagram 

 

4.7.3 Use Case #2 

This use case is more complex and includes multiple publishers and subscribers and a 

subscriber (S3) with a non-transactional scope. Site S1 advertises event-type ET1 that 

sites S1, S2 and S3 subscribe to. Site S1 creates a multi-publisher distributed 

transaction of type ET1. The transaction is given a constraint requiring at least two 

participants. S1 (the transaction initiator) and S2 join the transaction whereas S3 does 

not join, yet it still requests to receive the events (which is allowed when the transaction 

is created with the scope limitation ‘limit none’). S1 now publishes event EV1 which S1 

and S2 receive within the scope of the transaction, and S3 receives as a regular event. 

Next, S2 publishes event EV2 to the transaction which is received by all sites as EV1. 

Site S1 requests to commit the transaction that is consequently committed successfully. 

Since S3 didn’t join the transaction it does not take part in the commit phase.  
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This scenario is carried out using the API as follows and is depicted in Figure  4-P. 

First, S1 calls: 

S1:  Advertise(ET1) 

to define the new event type ET1. Sites S1, S2 and S3 now subscribes to the event-type 

ET1 by calling  

S1:  Subscribe(ET1, filters)  

S2:  Subscribe(ET1, filters)  

S3:  Subscribe(ET1, filters)  

giving the event type ET1 and content filters as parameters. To begin the distributed 

transaction, S1 calls: 

S1:  BeginTx(ET1, distributed, public, limit none, ‘at least 2 participants’)  

which returns a transaction id TXID1. The ‘public’ scope parameter denotes a multi-

publisher transaction. A scope limitation of ‘limit none’ is required to allow subscribers 

to receive the events outside the scope of the transaction (such as S3 in this scenario). 

The middleware at S1, S2 and S3 now calls: 

S1 Middleware:  OnJoinTx(TXID1, ET1) , return: ‘as distributed’ scope 

S2 Middleware:  OnJoinTx(TXID1, ET1) , return: ‘as distributed’ scope 

S3 Middleware:  OnJoinTx(TXID1, ET1) , return: ‘as non-tx’ scope 

which returns the requested scope. S1 and S2 request the ‘as distributed’ scope and S3 

requests the ‘as non-transactional’ scope. Since two sites (S1 and S2) are participating 

in the transaction, the transaction’s constraints given at BeginTx() are fulfilled. The 

middleware now internally creates the transaction. At this point S1 publishes event EV1 

by calling  

S1:  PublishTx(TXID1, EV1)  

The middleware at S1 and S2 calls:  

S1 Middleware:  OnNotifyTx(TXID1, EV1)  

S2 Middleware:  OnNotifyTx(TXID1, EV1)  

which is the transactional version of notification. The middleware at S3 calls: 

S3 Middleware:  OnNotify (EV1, ET1)  

which is the standard version of notification. Now S2 publishes an event to the 

transaction. He is capable of doing so because he knows the transaction ID (TXID1). He 

uses it to publish event EV2 and calls: 

S2:  PublishTx(TXID1, EV2)  

Similarly to EV1, the middleware at S1 and S2 calls:  

S1 Middleware:  OnNotifyTx(TXID1, EV2)  

S2 Middleware:  OnNotifyTx(TXID1, EV2)  

and at S3: 

S3 Middleware:  OnNotify (EV2, ET1)  
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Note that the event-type is ET1! Even though EV2 is of type ET2, because EV2 was 

published to a transaction, it assumes the transaction event type which is ET1. Site S1 

now requests the transaction be committed by calling 

S1:  CommitTx(TXID1).  

The middleware initiates a 2PC and invokes  

S1 Middleware:  OnPrepareTx(TXID1)  

S2 Middleware:  OnPrepareTx(TXID1)  

at all participating subscribers, which in this case includes S1 and S2 but not S3. 

Assuming all the participants prepare successfully, the middleware invokes  

S1 Middleware:  OnCommitTx(TXID1)  

S2 Middleware:  OnCommitTx(TXID1)  

which concludes the transaction. Figure  4-P illustrates this process using a sequence 

diagram. 
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Figure  4-P: API Use Case #2 Sequence Diagram 
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5 Applying TOPS to Replication 

Large distributed databases contain data on many servers each of which is capable of 

executing queries. It becomes increasingly difficult to synchronize between copies of 

data on different servers. One solution is to avoid the problem by storing data only 

once. The data is divided between the servers so that no data is stored on more than one 

server. In this case, reads and writes must be sent to the specific server that manages the 

data at hand. This solution has several weaknesses:  

1. Not all servers are necessarily closely connected. Delays in communication will 

drastically degrade performance.  

2. If many requests are placed for the same data, the server containing that data 

will become overloaded.  

3. If a server fails, data stored on it is completely inaccessible since it is the only 

copy.  

These drawbacks weaken the availability and the performance of the database system. 

These drawbacks may be solved using replication. Using replication, the same data is 

kept on several servers (replicas) any of which may be contacted in order to access the 

data. Referring back to the drawbacks stated above:  

1. Since the data exists on several replicas, the closest one may be accessed 

thereby minimizing delays.  

2. Load balancing of the replicas can moderate peaks and prevent any specific 

replica from becoming overloaded.  

3. Data becomes inaccessible only if all replicas fail. 

5.1 Methods of Replication  

Several methods of replication exist  [23]. The different methods of replication can be 

divided into two primary categories: synchronous (eager) methods and asynchronous 

(lazy) methods of replication. In synchronous replication, changes to data are 

synchronized between all replicas before the change is committed.  This ensures that the 

change will either take effect at all replicas or will not take effect at all. Conversely, 

asynchronous replication applies the change at a single replica, and within a short 

period of time propagates the change to all other replicas. Of course, a set of changes 

applied to a single replica as a transaction, must be applied on all other replicas as a 

transaction as well.  



  

71 

5.1.1 Asynchronous Methods of Replication 

Asynchronous replication does not involve coordination with remote sites while 

applying changes. Updating data is relatively quick since only one replica is updated. 

No remote resources need to be locked and the local update need not wait for 

communication with remote sites in order to commit a local transaction. Deadlocks 

between replicas, due to separate transactions locking each other’s resources, are also 

avoided. On the down side, asynchronous replication does not provide atomicity or 

isolation. Due to the fact that updates are committed at the initiator and eventually 

propagated to all replicas, it is possible to find the same data on different replicas in a 

different state. Two methods of asynchronous replicas are peer-to-peer (multi-master) 

and primary site (primary master). 

Peer-to-Peer 

This method allows any replica to update its copy of a data object. After changes are 

committed, they will be sent to all other replicas in order to inform them of the changes. 

Using this method, performance of both reads and writes is high since any (presumably 

the closest) replica may execute a query containing writes. Isolation is weak because 

two sites are capable of updating and committing different changes to the same data 

object before receiving updates from the other. Firstly, peer-to-peer replication must 

cope with situations in which it is unknown which update should take precedence. In 

order to minimize such undesirable situations, updates are often given a time stamp in 

order to prevent overrunning current data with outdated data from delayed updates. 

TOPS provides global ordering for transactional events (in the event coordinator 

component). Since TOPS focuses on transactions, global ordering for standard pub/sub 

was not looked into and is beyond the scope of this work. Secondly, even once 

precedence is resolved, two simultaneous reads of the same data from different replicas 

will return unequal results when one replica has not yet applied the update and the other 

replica has.  

Primary Site 

Primary site replication designates a single replica for updating. If any other replica 

wishes to perform an update it must request the primary site to do so. The primary site 

will apply the change locally, and then asynchronously propagate it to all the secondary 

replicas. Reads may be executed at any of the replicas; however, only reads at the 

primary site are guaranteed to be current. The advantage of primary site replication over 

peer-to-peer replication is achieving global serialization of updates for any specific data 

object. Serialization solves the problematic situation demonstrated above; however, 

isolation is still not achieved. Since data objects may be managed by different sites, 

transactions involving data objects at several sites may conflict. Figure  5-A 
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demonstrates such a case. Transaction tx1 updates ‘a’ and ‘b’ at replicas 1 and 2. 

Replica 1 is the primary site of ‘a’ and therefore replicates it to replica 3. Replica 2 is 

the primary site of ‘b’ and replicates it to replica 3.  At the same time, tx2 involving ‘a’ 

and ‘b’ executes at replica 3 catching ‘a’ and ‘b’ in an intermediate state violating 

isolation. The algorithms discussed in section  5.2.6 avoid this problem.  

 

Figure  5-A: Primary Site Replication Isolation Violation 

 

5.1.2 Synchronous Methods of Replication 

Synchronous replication is achieved by performing updates within a distributed 

transaction. In order to ensure atomicity and isolation, the transaction must first lock 

relevant resources at all replicas performing the update, and then execute a commit 

protocol.  Two methods of synchronous replication are write-all read-any and 

quorums/voting.   

Write-All Read-Any 

When updating data, the update is written to all replicas. Since all replicas are up-to-

date, reads may be executed from any replica equivalently. Writes are costly since all 

replicas must be locked; however, reads are cheap since any replica may be queried. 

This method is suitable when the majority of queries only read data and a minority 
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require updating data, which is usually the case in ordinary applications. Upon failure 

of one of the replicas, updates will not be possible because not all replicas will have 

acknowledged the transaction.  [20] gives an interesting perspective on the performance 

advantages of this method in relation to Quorums and other methods, arguing that it 

outperforms other replication methods in most all applications excluding applications 

with extreme update ratios (80%-90% of the operations are updates).  

Quorums/Voting 

By compromising the performance of reads, it is possible to simplify writes by updating 

only a subset of all replicas. Given n replicas, we may update only m of them (1≤m<n) 

and attach a version number to the data written. Since the reader requires the most 

current data, he must conduct a vote among at least n—m+1 replicas in order to be 

certain that one of them is most up-to-date. The up-to-date replica is the one with the 

most advanced version number. Using voting, transactions performing updates will 

require locking of fewer resources and will most likely complete in less time. 

Nevertheless, the voting process causes reads to become significantly more expensive. 

5.1.3 Replication Methods Conclusion 

Several methods of replication exist each with its advantages and disadvantages. The 

basic tradeoff in all methods is between performance and data integrity. The most 

appropriate method for use is application specific, as well as handling the performance 

and correctness issues of the chosen replication method. Applications such as banking 

require absolute data integrity which is achieved by global serialization. A method of 

replication is considered to provide global serializability if the sequence of transactions 

executed at each replica yields the same outcome. Less demanding application 

compromise integrity, and use replication solutions that provide different levels of 

relaxed serializability. Such solutions commonly provide conflict resolution 

mechanisms.  

Current databases solutions such as SQL-Server  [14], Oracle  [17] and DB2  [7] each 

provide their own replication solutions, some of which incorporate pub/sub concepts. 

Of the three, only Oracle supports synchronous replication. SQL-Server supports 

snapshot replication that creates a one-time copy of data, merge replication which is 

asynchronous peer-to-peer, and transactional replication which is asynchronous 

primary site (no global transaction context). DB2 supports asynchronous multi-master 

replication; however, not synchronous replication. 

5.2 Implementing Replication Using TOPS 

After presenting TOPS and reviewing several methods of replication, we will 

demonstrate how the different methods of replication may be implemented using TOPS. 
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Pub/sub, or at least the concept of pub/sub, is already commonly used for asynchronous 

replication. We take the use of pub/sub a step further by utilizing a transaction-oriented 

pub/sub middleware thereby supporting synchronous replication as well.  

5.2.1 Asynchronous Peer-to-Peer 

In peer-to-peer replication more than one replica (but perhaps not all) may update its 

local copy of data. All replicas are updated eventually, optimistically within a short 

period of time. First, replicas that are capable of updating their copy are defined as 

publishers and all replicas, including publishers, are defined as subscribers. This is 

necessary because updatable replicas must still receive updates from other updatable 

replicas. The transaction must be of multi-publisher access in order to support multiple 

publishers. Peer-to-peer replication may be implemented using either TOPS’s local 

transactions or application managed transaction for which only pub/sub capabilities are 

utilized. The former is more robust and provides the application with the functionality 

of transactions at each replica. The latter may be used when the application prefers not 

to manage transaction within the middleware, in which case the standard pub/sub 

capabilities can be used to provide a means of data distribution. Both implementations 

support two variants: 

• The initiating replica updates its own copy before notifying all other replicas. 

To achieve this, the initiating replica updates its copy independently of the 

middleware and then publishes the change with the appropriate event type in 

order to update all other replicas. When transactions are managed by the 

application, the application must first commit the transaction and only then 

approach the middleware for publication. When the transaction is managed by 

TOPS, this variant is achieved by creating a transaction of type ‘local’ with 

single publisher access. The scope limitation should be set to ‘limit local’ to 

enforce execution at subscribers as a transaction. A slight difference exists 

between transaction managed by the application and TOPS. When using TOPS 

the transaction is managed locally but events are sent out to replicas 

immediately rather than accumulating the events and sending them all at once 

when the initiator commits.    

• The initiating replica publishes the update without first applying it locally; 

knowing that it will be updated once the publication reaches it as a subscriber. 

Updates at the initiating replica now require communicating with the 

rendezvous node which will slow the transaction execution at the initiator. Even 

though transaction management is centralized at the rendezvous node, the 

initiator remains independent of all other replicas. One advantage of this variant 

is that since all updates of the same data pass though the same rendezvous node,  

global serializations is achieved thereby moderating the problem of 

simultaneous updates initiated at separate replicas. A property of this variant 

worth noting is that the first replica to update may not be the initiating replica. 
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The initiator is regarded as any other subscriber and the order of reception is 

determined by the underlying pub/sub system.  

 

Values of Transaction Properties  

• Transaction type :  Local. 

• Access   : Public. 

• Scope limitation : Limit local. 

• Constraints  : None. 

 

5.2.2 Asynchronous Primary Site 

Asynchronous replication using a primary site is a sub-case of peer-to-peer replication 

except that data may be updated only by a single site. The difference in pub/sub terms is 

that there is only one publisher. Implementation using TOPS is the same as peer-to-peer 

with the slight adjustment of defining the transaction as single publisher. Internally, this 

will cause the tx manager to reside on the initiating replica instead of the rendezvous 

node, thereby preventing other publishers from contributing events to the transaction.    

Values of Transaction Properties  

• Transaction type :  Local. 

• Access   : Private. 

• Scope limitation : Limit local. 

• Constraints  : None. 

 

5.2.3 Synchronous Read-Any Write-All 

To obtain synchronous read-any write-all replication, all replicas must be updated 

together. To achieve this, distributed transactions are used. In order to assure that all 

replicas are updated, the transaction is created with a constraint requiring all replicas to 

participate. This may be obtained by predefining a list of all replicas’ (encrypted) ids, 

under the not unreasonable assumption that any replica initiating updates must be aware 

of the other replicas’ existence. This list is given to the transaction as a constraint and 

can be used to allow participation only of replicas on the list. Requiring participation of 

all replicas on the list is obtained by joining two constraints, the first being participants 

from the list and the second being a minimum amount of participants equal to the 
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number of ids in the list (defined as m in  5.1.2). Since constraints are checked at 

transaction commitment (as well as at creation), it is guaranteed that all replicas are 

updated synchronously. 

  

The transaction’s access may be single publisher or multi-publisher. Commonly, 

standard replication will require only single publisher access. 

 

It is not necessary that all replicas be synchronous. It is possible to define a list of m 

synchronous replicas that are required to participate in the transaction, and still allow 

additional asynchronous replicas to receive the transaction at local scope. To support 

asynchronous replicas, the scope limitation is to be lowered to ‘limit local’ or ‘limit 

none’. Note that the asynchronous replicas are not participant in the distributed 

transaction and, therefore, do not participate in constraint validation. For example, if a 

distributed transaction requires the participation of A, and A joins with ‘local’ scope, 

the transaction will fail creation because the constraints were not met. Furthermore, if a 

distributed transaction with a scope limitation of ‘limit local’ constrains participation to 

only A and B, C may join with ‘get as local’ scope and will not be rejected.    

Values of Transaction Properties  

• Transaction type :  Distributed. 

• Access   : Private or public. 

Private access is commonly sufficient (single 

publisher). 

• Scope limitation : Limit distributed. 

• Constraints  : All replicas must participate 

(validated at commitment). 

 

5.2.4 Synchronous Quorums/Voting 

Voting is quite similar to read-any write-all replication, the difference being that voting 

only requires n out of the m replica on the id list. The condition previously requiring m 

participants is simply changed to n.  All other parameters remain the same as read-any 

write-all replication. 

Values of Transaction Properties  

• Transaction type :  Distributed. 

• Access   : Private or public. 
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Private access is commonly sufficient (single 

publisher). 

• Scope limitation : Limit distributed. 

• Constraints  : All least n replicas must participate. 

(validated at commitment). 

 

5.2.5 Combined Synchronous and Asynchronous 

In the above replication methods, replicas are either all synchronous or all 

asynchronous.  Since TOPS allows each subscriber to determine its own scope, it is 

possible to combine both synchronous and asynchronous replications. Replicas joining 

the transaction with ‘get as distributed’ scope are synchronous replicas and replicas 

joining the transaction with ‘get as local’ scope are asynchronous replicas. Of course, 

the transaction initiator must specify a scope limitation of ‘limit local’ or ‘limit none’.   

This flexibility is the first step towards being able to implement advanced replication 

methods that attempt to utilize the advantages of both asynchronous and asynchronous 

replication. This is further discussed in Section  5.3. 

 

For instance, the transaction may require m particular replicas to participate 

synchronously; however other asynchronous replicas may exist which receive the data 

updates. In this scenario, an application interested in accessing a synchronous copy 

must approach one of the m synchronous sites and an application not requiring a 

synchronous copy may approach the closest replica which may be either synchronous or 

asynchronous.  

 

Values of Transaction Properties  

• Transaction type :  Distributed. 

• Access   : Private or public. 

Private access is commonly sufficient (single 

publisher). 

• Scope limitation : Limit local. 

• Constraints  : All least m replicas must participate. 
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5.2.6 Conclusion 

We have shown how several different methods of replication can be implemented using 

TOPS. Note that we were required to make use of TOPS’s unique features such as local 

transactions, access, and scope limitation. In the next section we give a theoretical 

analysis on implementation of some more advanced replication methods using pub/sub. 

 

5.3 Advanced Replication Methods 

The fundamental replication algorithms presented in section  5.2 are either synchronous, 

providing very strong data integrity with problematic performance, or asynchronous, 

providing very little data integrity with good performance. These fundamental 

algorithms were acceptable for applications up to approximately a decade ago. Since 

application scaling advanced rapidly, large-scale real life applications required a better 

compromise of integrity and performance. Much work has since been inverted in this 

subject and several new algorithms exist. 

 

Most algorithms improve integrity and performance by sacrificing a third feature: the 

flexibility of the logical network layout used for propagation of data updates. The 

algorithms in section  5.2 have no restriction regarding the manner in which updates 

must be disseminated.  By limiting update channels to ‘legal’ paths, it is possible to 

considerably improve data integrity (and even achieve global serialization) while the 

vast majority of updates are asynchronous.   

 

The goal of this chapter is to provide a discussion regarding the applicability of 

transactional publish/subscribe to sophisticated replication algorithms. Two such 

algorithms are described in sections  5.3.1 and  5.3.2. To give a fair balance of the 

applicability to transactional publish/subscribe, we give one example (section  5.3.1) 

that is not suitable to be implemented using pub/sub, and another that is quite suitable 

for implementation over pub/sub (section  5.3.2). This section is not intended to be a 

comprehensive survey of replication algorithms; there are many other algorithms that 

are not mentioned here and their pub/sub implementation is a topic for future research. 

5.3.1 The BackEdge Protocol 

In  [2] Y. Breitbart et.al. begin by presenting two primary site asynchronous replication 

protocols (DAG(WT) and DAG(T)) that guarantee serializability if replicated data 

flows between replicas in a directed acyclic graph (DAG). Next, they propose the 

BackEdge protocol which is an extension to the above two protocol. The BackEdge 
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protocol provides serializability even in graphs containing cycles. This is achieved by 

mixing in synchronous behavior in some particular cases, as will be further explained.    

 

To begin, it is explained how the DAG refers to the topology of replication sites and 

data. A copy-graph is a directed graph representing the flow of data between replication 

sites. Each replication site is a node in the graph. Since these algorithms refer to 

primary site, any data item has only one primary copy. The copy graph contains a 

directed edge from site Si to site Sj if Si is the primary site of any data item that is 

copied (replicated) to site Sj. It is not necessary for communication from Si to Sj to be 

direct. Figure  5-B shows an example copy graph. In this example, site S1 is the master 

of data item ‘a’ that is replicated to S3 and S4, S2 is the master of ‘c’ that is replicates to 

S3, and S3 is the master of data item ‘b’ that is replicated to S4. If the copy graph 

contains no cycles (it is a DAG), the DAG(WT) and DAG(T) protocols may be applied. 

 

Figure  5-B: Example Replication Copy Graph 

 

The DAG(WT) Protocol 

The first protocol DAG(WT) (Directed Acyclic Graph Without Timestamps) achieves 

serializability by limiting the paths of communication between sites to a tree. Any two 

nodes in the copy graph with a parent-child relationship will have a parent-descendent 

relationship in the propagation tree. The purpose of the tree is to eliminate the 

possibility of a site having two parents. Having only one source of updates allows a site 

to maintain a serial execution. The downside of this protocol is that replicated data must 

travel through extra intermediate sites before reaching its final destination. A tree for 

the copy graph in Figure  5-B may look something like this: 

S1 S4 Data item Primary site Replicas 

a S1 S3, S4 

b S3 S4 

c S2 S3 

 

write: a 

read : a 

write: - 

read : a,b 

write: b 

read : a,b,c 

write: c 

read : c 

S2 S3 
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Figure  5-C: DAG(WT) Copy Tree 

 

The DAG(T) Protocol 

The second protocol DAG(T) (Directed Acyclic Graph with Timestamps) allows 

communication over any edge of the copy graph and uses timestamps to serialize 

updates among all sites. A description of the timestamp mechanism is not given here. It 

suffices to say that the downside of this algorithm is that the root of the tree must 

constantly send heartbeat messages and idle sites must send dummy updates in order to 

keep the timestamp running in order to insure progress. 

 

The BackEdge Protocol 

The two protocols above are limited to copy graphs that are a DAG. Suppose that it is 

necessary to add to Figure  5-B a data item ‘d’ at S4 that is replicated to S1 (Figure  5-D). 

The new edge added is a backedge because points in the backwards direction of the 

DAG. After removing all backedges from the graph we remain with a DAG.   

 

 

Figure  5-D: Example Replication Copy Graph with Back-Edge 

 

Consider the situation in which transaction T1 at S1 reads ‘d’ and updates ‘a’. At the 

same time, transaction T2 at S4 reads ‘a’ and updates ‘d’. This execution is non-

S1 S4 
Data Item Primary site Replicas 

a S1 S3, S4 

b S3 S4 

c S2 S3 

d S4 S1 

 

write: a 

read : a, d 

write: d 

read : a,b 

write: b 

read : a,b,c 

write: c 

read : c 

S2 S3 

S2 S4 S1 S3 
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serializable because S1 executes the transaction in the order (T1, T2) and S4 executes the 

transactions in the order (T2, T1). 

 

The BackEdge protocol extends the DAG(WT) and DAG(T) protocols and offers a 

solution to such graphs that are not a DAG (they contain backedges). The principle of 

the protocol is as follows: 

1. Identify the minimal set of back edges in the graph. Ignoring the backedges we 

are left with a DAG. 

2. When replicating over non-backedge edges, use the DAG(WT) or DAG(T) 

asynchronous replication protocols as described above. 

3. When replicating over a backedge, use synchronous replication for all of the 

site’s parents. After the synchronous replication succeeds, use asynchronous 

replication for the site’s descendants. 

 

We now revisit the example above with transactions T1 and T2 this time using the 

BackEdge protocol. Since T2 involves replication over a backedge, it will do so 

synchronously. S1 updates ‘a’ asynchronously therefore it updates ‘a’ immediately 

(commits T1) and then replicates it. S4 updates ‘d’ synchronously therefore T2 holds on 

to locks without being committed and replicates ‘d’ to S1. The order of execution at S1 

is (T1, T2). S1 holds on to locks as well and replicates the transaction down the tree. All 

the sites on the branch to S4 hold locks and replicate. By the time T2 makes its way back 

to S4, T1 would have reached S4. In this example S4 will find that T2’s lock interfere 

with T1. T2 is therefore aborted. If T2 had made its way back to S4 without being 

aborted, a distributed commit protocol (such as 2PC) would be used to commit T2 at all 

involved sites. If the commit is successful, S4 replicates the transaction to all its 

descendants (in our example there are none). 

 

Applicability of the BackEdge Protocol to Pub/Sub 

Before going into using pub/sub for the BackEdge protocol, we briefly discuss using 

pub/sub for the DAG(WT) and DAG(T) protocols. In both protocols the copy graph is a 

DAG, each parent site publishes an event-type for each data type it replicates, and each 

child site subscribes to these event-type. A restriction exists on the pub/sub 

implementation because the DAG(WT) and DAG(T) protocols rely on queues that 

guarantee ordering. A common asynchronous pub/sub implementation may not 

guarantee ordering of events. A pub/sub architecture that uses hierarchal routing (such 

as Hermes) can easily provide global ordering by having the rendezvous broker number 

messages belonging to each event-type. This still isn’t equivalent to total order queues 

since total order queues guarantee ordering at the receiver. For pub/sub to provide this, 



  

82 

a component must be added at the subscriber that orders messages according to the 

rendezvous broker’s numbering.   

 

Now to the BackEdge protocol, a transaction traversing a backedge will be passed 

through all of the originating sites in a sequential order. Sequential/chain propagation of 

events is quite the opposite of the fundamental concept of pub/sub in which all 

subscribers essentially reside at the same level and are all reached in parallel via 

multicast trees. Maintaining the sequential order is mandatory in order to achieve 

serializability. If, for instance, a distributed transaction was used to update all parent 

sites, the transaction will arrive at each site’s queue at a different location within the 

total order thereby violating serializability. Communication down the DAG may be 

accomplished by means of pub/sub, however, since the backedges may not be pub/sub, 

pub/sub does not provide a full solution.   

Due to the reasons state above, we conclude that a pub/sub middleware is inappropriate 

for implementing the BackEdge protocol.        

5.3.2 Replication with Serializability 

In  [8] a set of three replication protocols is introduced. Alongside the significant 

advantages of synchronous replication, its high performance cost is recognized. The 

protocols combine eager replication and lazy replication aspects in order to achieve the 

following advantages: 

1. High level of consistency. Each of the three protocols provides a different level 

of consistency. The Replication with Serialization (SER) protocol is one copy 

serializable, which is the highest level of consistency and is equivalent to 

distributed transactions using two-phase-locking. 

2. Simplicity of implementation. Previously suggested one-copy-serializable 

protocols were never implemented in commercial products due to their 

complexity. 

3. High performance. The suggested protocols improve performance by 

minimizing the amount of messages needed to be sent, by minimizing the 

amount of time locks must be held, and by avoiding deadlocks. A most 

interesting aspect of the SER protocol from the perspective of transactional 

pub/sub is the fact that serialization is achieved without requiring an expensive 

2PC.  

The protocols utilize group communication primitives to obtain consistency. The group 

communication primitive used is a total order queuing service that provides: 

1. Multicast queues. 

2. Message delivery guarantee. 

3. Total order guarantee. 
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All three replication protocols introduced are essentially relatively minor variations of 

the same thing. Here we will be focusing on the SER protocol which is the variant with 

the highest level of consistency.  

The Replication with Serializability (SER) protocol 

Since ‘read’ operations are generally much more common than ‘write’ operations, the 

protocol applies the Read One Write All Available (ROWAA) replication method. 

Using this method, ‘read’ operations are very cheap since no communication is required 

with any other sites. When performing a write operation, the update must be sent to all 

other replicas. 

 

The first principle of the protocol is that each transaction is divided into two phases: the 

‘read’ phase and the ‘write’ phase. All the ‘read’ operations of the transaction are 

performed up front and lock the relevant data items. Once completed, the protocol 

moves on to handling the ‘write’ operations. The set of a transaction’s ‘write’ 

operations is named a write-set. This write-set is sent to a total-order queue (as 

discussed further on) in a single message to be applied atomically at all sites. This 

single message per transaction requires much less messages than some other protocols 

that require a message per ‘write’ operation.  

  

The primary concept of the protocol is to have the replication manager at each site act 

in such a way that when the updates received at all sites are the same, the updates 

applied at all sites are also the same. Using a total order queue mentioned above, it is 

assured the updates will be received at all sites and in the same order. In order to 

maintain a global total order, the protocol prohibits local updates. The initiating site 

must publish its updates (write-sets) into the total order queue and only when they are 

received back from the queue he may apply his updates locally. Before the updates 

make it back to the initiator, there are most likely other updates in the queue from other 

sites that must be handled first. These updates may require the initiator to abort his 

transaction. Updates earlier in the queue take precedence over updates later in the 

queue. Once the updates are received back at the initiator and it was not aborted, the 

initiator sends a single ‘commit’ message to all sites. Note that the abort and commit 

message are not sent in the total order queue. Since: 

1. All sites contain the same data, and  

2. perform the same updates (and in the same order), and 

3. Submit all updates to the total order queue, and 

4. Discard any initiated updates that conflict with updates submitted earlier to the 

total order queue, 
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we can say firstly that the protocol is one-copy-serializable, and secondly that it is 

suffice to send each site a single ‘commit’ or ‘abort’ message instead of a full 2PC.   

 

To simply summarize the protocol, consider a site not initiating any transactions. Such a 

site will perform the following simplified steps: 

1. Withdraw the next write-set from the queue.  

2. Lock phase- Lock the write-set’s resources atomically. 

3. Write phase- Apply changes without committing.  

4. Termination phase- Once an ‘abort’/‘commit’ message is received from the 

initiator, rollback/commit the changes and release all locks. 

5. Return to step 1. 

 

The logic at a site initiating transactions is slightly more complex. When a transaction 

is initiated, all ‘read’ locks are first obtained (Read phase). If the transaction contains 

only read operation then the transaction is committed. If the transaction also contains 

‘writes’ operations the write set is published to the total-order-queue (Send phase). 

Handling updates from the queue is now performed as follows: 

1. Withdraw the next write-set from the queue.  

2. Lock phase- Lock the write-set’s resources atomically. 

2.1. Grant locks: 

2.1.1. If data items are not locked, grant locks. 

2.1.2. If a lock exists and belongs to a transaction that is waiting for a 

‘abort’/‘commit’ message, then postpone the lock until the 

message arrives. 

2.1.3. If a lock exists and belongs to a locally initiated transaction for 

which the write set has not arrived, then abort the transaction. If 

the write-set of the aborted transaction has been transmitted then 

send an ‘abort’ message to all sites. 

2.2. If all locks are granted then send a ‘commit’ message to all sites. 

3. Write phase- Apply changes without committing.  

4. Termination phase- Once an ‘abort’/‘commit’ message is received from the 

initiator, rollback/commit the changes and release all locks. 

5. Return to step 1. 

    

The main disadvantage of the SER protocol is that transaction with mixed ‘read’ and 

‘write’ operations hold on to read lock for a long time – until the write-set arrives back 

from the total-order-queue. Additionally, since local transactions are always aborted 
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upon conflict, there may be situation in which a local transaction is continuously 

aborted. 

Applicability of the SER Protocol to Pub/Sub 

As discussed in the BackEdge protocol, the SER protocol requires total order delivery. 

Even though not naturally supported, a pub/sub architecture that uses hierarchal routing 

may be upgraded to provide total order delivery within an event-type. This is not an 

actual restriction, because SER uses a single total-order queue which is equivalent to 

using a single event-type. Ordering within a transaction is already supported (see 

section  4.5.3) ordering between transactions is not. Functionality must be added to the 

transaction manager to allow only one transaction at any given time for this event-type.  

 

In a pub/sub implementation, pub/sub will replace the total order queue and the 

communication required for sending ‘commits’ and ‘aborts’. Each site subscribes to its 

own transactions and will publish its write-sets into a pub/sub transaction. All other 

replication sites are subscribers as well. After the publisher receives the events back 

from the middleware and processes them, he will abort or commit the transaction. The 

advantage of pub/sub here is that it frees the replication site of the need to know to 

whom ‘commit’/’abort’ messages must be sent. 

 

In the SER protocol, the initiator receives and handles its own changes by receiving 

them from the queue, just as any other site does.  In order to be implemented using 

pub/sub, the pub/sub solution must allow the publisher to subscribe to its own events 

and must allow the publisher to publish events without applying them locally (see 

TOPS’s features of initiator participation and multiple publishers,  4.4.1).  

 

Due to the above discussing, we conclude that implementing the SER algorithm over 

pub/sub is manageable. It is important to note that the SER protocol achieves one-copy-

serializability without distributed transactions; therefore, it does not require a 

transactional pub/sub middleware. Essentially, this is the goal and the primary 

advantage of the SER algorithm. Transactional pub/sub is a generic infrastructure and 

must rely on distributed transactions and 2PL, SER’s problem domain is specific to 

replication that is a more specific case. The SER algorithm assumes that: 

1. At the point the protocol begins, all replicas are identical in the aspect of the 

data they contain. 

2. All replicas receive the same exact changes. 

These assumptions are correct for replication and therefore allow for a simplified 

algorithm in this specific case. 
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5.4 Summary 

In the above section we presented how TOPS, by supporting both local and distributed 

transaction, can be used to implement several methods of replication. Two synchronous 

methods and two asynchronous methods were discussed. In order to benefit from the 

performance of asynchronous replication and still achieve serializability, more 

advanced methods (such as  [2]) combine elements of both synchronous and 

asynchronous dissemination. For such methods, a middleware offering support for both 

synchronous and asynchronous replication is likely to be even more beneficial than it is 

for the fundamental replication methods we presented above. 

 

Additionally we provide an early work discussion of more advanced replication 

algorithms that reach out towards providing global serialization (mostly) without 

requiring distributed transactions and the costly 2PC. We show how some algorithms 

are foreign to pub/sub, whereas, other are definitely candidates for being implemented 

using a pub/sub middleware such as TOPS. We also discussed the option of using 

transactional features of pub/sub for implementing replication and noted that replication 

algorithms tied specifically to the replication problem domain are problematic to 

implement using generic pub/sub transactions. Further research on this subject is 

necessary before reaching final conclusions.    
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6 Conclusion 

Much work has been done on the subject of pub/sub middleware and distributed 

transactions, yet a joint middleware is relatively a new subject of study. 

 

In this thesis we introduced TOPS that in our opinion takes the integration of 

transactions and pub/sub a step further. Our main goal was to introduce a customizable 

middleware that provides a large variety of features for both pub/sub and transactions, 

separately and primarily jointly. These features include: content-base pub/sub, 

distributed, local and mixed transactions, multi-publisher transactions, compensatable 

clients and more. Additionally, we further integrated transactions into pub/sub while 

minimizing the level of awareness required from the publishers and subscribers. We 

discussed: the benefits of these new features, design considerations, and an architecture 

to support the proposed new features.  

 

Since our goal was to advance the support for transactions in pub/sub middleware, we 

found it appropriate to base our work on the design of an existing middleware. We 

found HTS to be the currently most suitable middleware for fulfilling our objectives, 

and therefore selected it to be the basis for our work. Even thought we refer to the 

Hermes pub/sub middleware used in HTS, TOPS (as well as HTS) are essentially 

capable of being integrated into any pub/sub middleware that used rendezvous or 

hierarchical routing (such as Siena). 

 

We concluded by demonstrating the strengths of TOPS by presenting how it may be 

used to implement different methods of replication. 

 

6.1 Future Work 

In this section we briefly list some possibilities for future work on the subject of 

distributed transactions: 

• Performance Analysis: TOPS as well as all of the transactional pub/sub designs 

presented in the related work do not give a performance analysis of pub/sub 

transactions. To take the work on the subject passed the stage of proof of 

concept, TOPS must be implemented, and the performance of its transactions 

must be compared to that of a non pub/sub distributed transaction system. 

• Security: In  [1] security issues in pub/sub are discussed for the first time. 

Pub/sub is introduced to Role Based Access Control (RBAC). This paper does 
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not discuss issues related to transactions in pub/sub which is currently open for 

research. 

• In Depth Study of Replication Protocols: In section  5.2.6 we gave an 

overview of advanced replication protocols, giving only few examples. To fully 

investigate the applicability of transactional pub/sub to replication, a 

comprehensive review is required  

• Nested pub/sub transactions: Nested transactions are transactions that are 

executed within the context of an existing transaction. Support for nested 

pub/sub transactions was not part of TOPS’s design. Such a situation can occur, 

for instance, when a participant of an encompassing transaction creates a nested 

transaction in response to an event published within the encompassing 

transaction. Further study is necessary in order to add support for nested 

pub/sub transactions  
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8 Appendix A – HTS Application 

Simulator 

This appendix contains more detailed information regarding the HTS application 

simulator developed, in addition to chapter  3. Chapter  3 discussed requirements and 

design, here the topic of implementation and interface capabilities are discussed.   

8.1 Implementation of Simulator 

8.1.1 Development Environment 

The simulator application uses the same development environment as HTS because it 

runs directly over it. HTS contains no GUI therefore the widget toolkit, as listed in 

Table  8-A, was a choice made specifically for the simulator. 

 

Table  8-A: Development Environment Specification 

Tool type Tool name Version 

Language Java JRE 6 

Development environment Eclipse 3.2.2 

Widget toolkit Swing  

 

8.2 User Interface Design 

This section describes the visual specification of the windows the GUI layer contains in 

order to fulfill its requirements. The specification includes windows, controls and 

required behavior. 

8.2.1 Main Window 

The main window is in charge of setting up the pub/sub environment, including creating 

clients (publishers and subscribers) and event-types. This window is managed by the 

MainWindow class. In the following example four clients were defined (client1, client2, 

client3 and client4) and three event-types were defined (et1, et2, et3). 
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Interface action/item Description 

“Add…” (Clients) Create a new client. 

“Add…” (Event types) Create a new event type. 

Double click client in list Open client window. 

 

8.2.2 Client Window- General 

The client window manages the commands a publisher or subscriber may give: 

advertising, registering, publishing, subscribing and more. The window is split in to two 

tabs: the “advertise and register” tab, and the “transaction status” tab. These tabs are 

described in sections  8.2.3 and  8.2.4 respectively. The client window is managed by the 

ClientWindow class. 
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Interface action/item Description 

Title bar text Shows the name of the client this window relates 

to (client1 in the above example). 

Close window (X) Hides the client window. The client remains 

active. The window can be reopened from the main 

window. 

“Clear log”  Erase contents of log. 

“Display log” Turn display of log window on/off 

 

As shown in the window, each client window contains a textual log. The log is viewable 

from both tabs. 

8.2.3 Client Window- Advertise and Register Tab 

The “advertise and register” tab (“Adv. & Register”) provides the necessary GUI for a 

publisher to advertise an event-type and for a subscriber to register to an event-type.  

Advertisement 

The advertisements group is located in the left half of the “Adv.&Register” tab. The 

table lists all event-types this client advertised. The “Census/Reg…” column shows if 

the event was advertised as a census event or as a regular event. An event advertised as 

a census event is an event that initiates a transaction. When publishing a census event, a 

new transaction is created and its census phase is started. A regular event is an event 

that can be sent either outside a transaction as a non-transactional event, or within an 

already established transaction as part of the transaction execution.  

 

Pressing the “Add…” button opens the “New advertisement” dialog box in which an 

event-type is chosen (from the ones defined by the manager) and the advertisement type 

in chosen (census/regular). In the following example “client1” advertised “et1” as a 

census event and “et2” as a regular event. Right clicking a row (advertisement) opens a 

menu of actions which may be taken. 
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Interface action/item Description 

“Add…” (Advertisements) Create a new census/regular advertisement. 

“Publish event…”  Publish the selected event. If the event is a census 

event a transaction is started. 

“Unadvertise” Cancels the advertisement of the selected event 

and removes the event from this list. 

 

Registration 

The registrations group is located in right half of the ”Adv.&register” tab. The table 

lists all events this client is registered to. Pressing the “Add…” button opens the new 

registration dialog box from which a registration can be created. A registration includes 

exactly one census event and any number of regular events. In the following example 

client “client2” creates a registration to events advertise by “client1”. A registration 

may contain many regular event-types, however, only the census event-type is shown. 

 

 

 

Interface action/item Description 

“Add…” (Advertisements) Create a new registration. 
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“Unregister” Cancels the selected registration and removes it 

from the list. 

 

8.2.4 Client Window- Transaction Status Tab 

The transaction status tab displays the status (census/active/committed etc.) of all 

transactions for the client, allows performing actions on a transaction (abort/commit), 

and provides the means to manipulate transaction behavior. The main part of this 

window is the transaction table. The transaction table lists transactions (one shown) in 

rows, and properties of the transactions in columns. The lower section of the window 

contains checkboxes which allow the user to change the way the client reacts to 

transactions. The window is common to all clients, however, some are relevant only to 

publishers and others are relevant only to subscribers. A more detailed description 

follows below. In the following example, “client1” published the census event “et1”. 

“client2” joined the transaction and the transaction was created. “client2” has one active 

transaction and a history of previously committed and aborted transactions. 

 

 

 

.  
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Interface action/item Description 

“TxID” (column) The unique ID of the transaction. For a specific 

transaction, this number is identical at the 

publisher and at all subscribers.   

“Event” (column) At the publisher, this field shows the event-type of 

the census event. At the subscribers “subscriber” 

will appear in the field. 

Relevant only at publisher. 

“Publisher” (column) Checkbox is check if this client if the publisher of 

the transaction. 

“Status” (column) Displays transaction status which may be: 

CENSUS, CENSUS_UNFULFILLED, ACTIVE, 

COMMITING, COMMITED, ABORTED 

“Timeout” (column) Displays a countdown in the following cases: 

- Time left until the census phase times out. 

- Time left for subscribers to answer a commit 

request. 

Relevant only at publisher. 

“Abort” (popup menu) Instruct to abort the selected transaction. 

“Commit” (popup menu) Instruct to commit the selected transaction. 

Join transactions (checkbox) Determine if client will join transactions it is 

subscriber to. 

Relevant only at subscriber. 

Accept tx events (checkbox) Determine if client successfully handles events 

within transactions. An event not handled 

successfully causes an abort. 

Relevant only at subscriber. 

Succeed commit (checkbox) Determine if client successfully commits 

transactions. An unsuccessfully commit causes an 

abort. 

Delay commit (checkbox) Determine how long to delay this clients response 

to a commit request. If delayed longer than the 

publisher’s timeout, the transaction will abort. 

Relevant only at subscriber. 

Joined subscribers (textbox) Indicates how many subscribers joined the 

transaction. 

Relevant only at publisher. 

 


