
Open University

Master Thesis

Densest Subgraphs

THE DENSE K SUBGRAPH PROBLEM

Author: Goldstein Doron

ID: 028672129

Supervisor: Dr. Michael Langberg

Jan, 2010

Israel

1

THE DENSE K SUBGRAPH PROBLEM

Abstract. Given a graph G = (V, E) and a parameter k, we consider the problem of

finding a subset U ⊆ V of size k that maximizes the number of induced edges (DkS). We

improve upon the previously best known approximation ratio for DkS, a ratio that has not

seen any progress during the last decade. Specifically, we improve the approximation ratio

from n0.32258 to n0.3159. The improved ratio is obtained by studying a variant to the DkS

problem in which one considers the problem of finding a subset U ⊆ V of size at most k

that maximizes the number of induced edges. Finally, we study the DkS variant in which

one considers the problem of finding a subset U ⊆ V of size at least k that maximizes the

number of induced edges.

2

3

Contents

4

1. Introduction

In this thesis, we consider the Densest k Subgraph problem (DkS). For a given undirected

graph instance G(E, V), in the DkS problem one is to find a subgraph with exactly k vertices

with a maximum number of induced edges. In addition, we also consider two variants of DkS.

The Densest-at-least-k-Subgraph problem and the Densest-at-most-k-Subgraph problem

(both defined below). We present a number of results for the problems at hand. Most

notably, we improve upon the previously best known approximation ratio for DkS, a ratio

that has not seen any progress during the last decade.

1.1. Definitions.

Definition 1.1 (Densest-k-Subgraph). Given an undirected graph G(V,E) the Densest-

k-Subgraph (DkS) problem on G is the problem of finding a subset U ⊆ V of vertices

of size k with the maximum induced average degree. The average degree of the optimal

subgraph will be denoted as d∗ = 2|E(U)|/k. Here |E(U)| denotes the number of edges in

the subgraph induced by U .

Definition 1.2 (Densest-at-least-k-Subgraph). Given an undirected graph G(V,E) the

Densest-at-least-k-Subgraph (DalkS) problem on G is the problem of finding a subset U ⊆ V

of vertices of size at least k with the maximum induced average degree as defined in the

DkS problem.

Definition 1.3 (Densest-at-most-k-Subgraph). Given an undirected graph G(V,E) the

Densest-at-most-k-Subgraph (DamkS) problem on G is the problem of finding a subset

U ⊆ V of vertices of size at most k with the maximum induced average degree (as defined

in the DkS problem).

An α ≥ 1 approximation algorithm for these problems is an algorithm that given G

returns a subset of vertices U of size k∗ such that 2|E(U)|/k∗ ≥ d∗/α where k∗ = k for

DkS, k∗ ≥ k for DalkS and k∗ ≤ k for DamkS. Here, d∗ is the average degree of the optimal

subgraph on each of the problems respectively.

1.2. Previous work. The DkS problem is NP-hard to solve exactly (a fact easily seen by

a reduction from the Max-Clique problem). The current best approximation ratio known

for the DkS problem is nδ for some δ < 1
3 [?], where n is the number of vertices in the input

graph. This result was obtained using a combinatorial algorithm. To be more precise, the

algorithm of [?] is actually combined from five different combinatorial algorithms, each of

5

the algorithms gives good results on different instances of the problem. The first algorithm

is a trivial one which always returns a subgraph with average degree of value at least 1.

The second algorithm is greedy and performs well when the input graph has several vertices

with high average degree relative to n. The third algorithm is also greedy, and gives good

results when d∗, the optimum value of the DkS instance, is high with respect to its size k.

The final two algorithms are tailor made to fit specific relations between d∗ and k.

In [?] it is shown that it suffices to consider the first three algorithms to obtain a ratio of

n
1
3 . Improving the ratio to n1/3−ε, for some constant ε > 0, is obtained by combining the

two additional algorithms that are designed to take care of the special instances for which

the first three algorithms indeed achieve a ratio no better than n1/3. The exact value of

ε achieved in [?] it not stated explicitly, rather it is only shown to be constant and thus

independent of n. Nevertheless, since the work of [?] (over a decade ago), there has been

no improvement in the approximation ratio of the DkS problem. In this thesis, we present

a detailed analysis of the ratio obtained by [?] (Section ??), and improve on this ratio by

replacing the fifth algorithm of [?] with a new one (Section ??).

The DkS problem was also studied by Feige and Seltser [?] where it is shown to be NP-

complete even when restricted to bipartite graphs of maximum degree 3 (use a reduction

from the Max-Clique problem). In a similar way Asahiro, Hassin, and Iwama [?] have

showed that the problem remains NP-complete in very sparse graphs where d = kε.

Khot [?] has shown there can be no PTAS solution for the densest k-subgraph problem,

under the assumption that the family NP does not have randomized algorithms that run in

time 2nε
for some constant ε > 0.

Two additional problems studied in this thesis, that are closely related to DkS and first

appear in the work of Anderson [?], are the DalkS and DamkS problems (Definitions ?? and

?? respectively). For the DalkS problem, Anderson presents an approximation algorithm

with a ratio of 2. The question whether DalkS is NP-hard or not was not resolved in [?].

This is not the case for DamkS, as in [?], Anderson proves that DamkS is NP hard (by a

simple reduction to the Max-Clique problem). Moreover, he presents a connection between

approximating DamkS and DkS. Namely, if there exists a polynomial time algorithm that

approximates DamkS in a weak sense, returning a set of at most βk vertices with average

degree at least 1/γ times the average degree of the densest subgraph on at most k vertices,

then there exists a polynomial time approximation algorithm for DkS with ratio 4(γ2 +γβ).

Another problem closely related to the DkS problem is the Densest Subgraph (DS) prob-

lem. The DS Problem concerns choosing a subset U (regardless of its size) as to maximize

6

the average degree of the subgraph induced bu U . The DS problem can be solved in poly-

nomial time using either LP based techniques [?] or by flow techniques [?].

We note that a recent and independent work [?] presents results similar to ours regarding

the DalkS and the DamkS problems. Moreover, in the recent and independent work [?] a

better overall approximation guarantee of n1/4+ε is given for the DkS problem. The running

time in [?] depends on ε, and to obtain a ratio of n1/4 a total running time of nO(logn) is

needed.

1.3. Our results. In this thesis, we present several results regarding the DkS and the

closely related problems of DamkS and DalkS.

Our main result is the design and analysis of a new algorithm to be used in combination

with the first four algorithms of [?] (replacing the fifth algorithm of [?]). We show that

adding our algorithm one is able to obtain an approximation ratio of n0.3159 for DkS. To

compare this with the ratio of [?], we first study the original algorithms of [?] and show that

their combination results in an approximation ratio of n0.32258 = n1/3−ε (thus computing

the value of ε unspecified in [?]). Our new algorithm is based on linear programming (LP),

and is designed to improve on the quality of the algorithms of [?] on certain DkS instances.

The exact ratio (or to be more precise an upper bound on the ratio) of the combined five

algorithms is obtained using a simple C-program.

The principle of our new algorithm is to guess d∗ (the optimum average degree), guess a

vertex v inside an optimal solution (an optimal subset U), and then run an LP that takes

d∗ and v into account. In our LP, a suitable DkS solution corresponds to a feasible LP

solution, but the other direction does not necessarily hold. Thus, the fractional LP solution

is rounded to get a feasible solution U to DkS. The resulting approximation ratio obtained

depends on several parameters of the instance at hand. Specifically, the ratio depends on

k, d∗, and dH the maximum degree in G and is equal to r6 =
(

d4
Hk

(d∗)4

) 1
3 . As mentioned,

integrating our new algorithm with the four of [?] (replacing the fifth one with ours) we

obtain the improved ratio.

Our other results were motivated by the work of Anderson [?]. In [?] the DalkS problem

was presented (see Definition ??), but the NP-hardness of this problem was left open. We

have managed to show, using a reduction from the DkS problem, that DalkS is also NP-

hard. Our proof is based on taking a DkS instance and adding to it a big clique, making it an

instance for the DalkS problem. Also in [?], a 2-approximation was given to solve the DalkS

problem. We have used [?] to show a more general approach for solving this problem based

7

on optimizing supermodular functions. In [?] it was shown that if DamkS (see Definition

??) has a γ-approximation agorithm, then the algorithm can be used to approximate DkS

within a ratio of 4γ2. We reduce the latter to 4γ. Our improved reduction is iterative and

is strongly based on the fact that in each iteration we only remove edges from the original

graph G if they are included in the final DkS solution.

1.4. Thesis structure. Our work includes the following sections. First we prove that

DalkS is NP-complete (Section ??). This resolves the question left open in [?]. We proceed

to present a general paradigm that enables to obtain a 2 approximation algorithm for

DalkS in polynomial time (Section ??). This complements the 2-approximation algorithm

presented in [?]. Turning to the DamkS problem, in Section ?? we show a strong connection

between the ability to approximate DamkS and DkS. Namely, improving on the connections

discribed in [?] we show that any ratio achievable on DamkS is also (up to constant factors)

achievable on DkS. In Section ??, we study the DkS problem, and present a full analysis

of the approximation ratio of [?]. Namely, we compute the value of ε left unresolved in [?].

In Section ?? we present our new algorithm for DkS. This section strongly builds on the

previous ones. Finally, in Section ?? we present the numerical techniques (a C-program)

used to determine the ratios stated throughout our work. We also rigorously bound any

slackness that may arise from these techniques.

2. The DalkS problem is NP hard

In his work [?], Anderson gave a 2-approximation algorithms for the DalkS problem and

mentioned that he doesn’t know if this problem is NP hard or not. We have found that this

problem is NP hard.

Theorem 2.1. Finding the densest subgraph with at least k vertices is NP hard.

Proof. In this proof, for a graph H, the term density will refer to the average degree of

H. Let G(V,E) be an instance to the DkS problem. Let |V | = n. Let G′ be the graph

consisting of G and a clique of size 3n: K3n. Namely, the vertex set of G′ consists of the

vertices of G and an additional 3n new vertices; and the edge set of G′ consists of the edges

of the original graph G and the edges of a complete graph on the new 3n vertices. Let

k′ = k + 3n. Let H be the optimal subset in G′ with respect to the DalkS problem with

parameter k′. We claim that H will consist of exactly the densest subgraph in G of size k

and the clique K3n. This will suffice to prove our claim (as the DkS problem is NP-hard).

8

First we show that K3n ⊆ H. Suppose that the size of H is b1 + b2 where b1 denotes the

number of vertices in H taken from the clique K3n and b2 denotes the number of vertices

in H taken from the original graph G. For the sake of contradiction assume b1 < 3n. We

will show that we can take 3n − b1 vertices out of the b2 vertices in G and select instead

3n−b1 vertices in K3n making the clique complete. By doing so we will increase the number

of edges in H without increasing the number of vertices, hence increasing the density and

contradicting the optimality of the solution.

So lets show that the number of edges increases. First we give names to the different

groups of vertices. Group B1 will be the b1 vertices of K3n defined above, B2 will be the b2

vertices of G defined above, T1 will be the group of new selected vertices in K3n (namely

T1 = K3n \B1) , T2 will be the 3n− b1 vertices we removed from B2, and R2 = B2 \ T2.

We need to show that |E(T1)| + |δ(T1, B1)| > |E(T2)| + |δ(T2, R2)|. Here δ(A,B) refers

to the edges crossing between vertex sets A and B. Notice that b1 + b2 > 3n.

Since T1 is a subset of the clique K3n and |T1| = |T2| it holds that |E(T1)| ≥ |E(T2)|.

Next we want to show that |δ(T1, B1)| > |δ(T2, R2)|. T1 and B1 are subsets of the clique

K3n, thus there are edges between all the vertices in T1 and all the vertices in B1. Since T1

has the same size as T2, the only way |δ(T2, R2)| will be greater or equal to |δ(T1, B1)| is if

|R2| is greater or equal to |B1|. We now show that this cannot happen, namely |B1| > |R2|.

|B1| = 3n − |T1| > n − |T2| ≥ |B2| − |T2| = |R2|. Thus, we deduce that every optimal

solution H must include the clique K3n.

Next we will show that exactly k vertices will be selected from G. Recall that the number

of vertices chosen from G is denoted b2. b2 must be at least k = k′ − 3n. This follows from

the fact that the algorithm returns a subgraph H of G′ of size at least k′ which includes

the clique K3n and additional vertices from G. Now we show that selecting more then k′

vertices from G will contradict the optimality of the solution.

Suppose for the sake of contradiction that the solution H has b2 vertices from G where

b2 > k. Let d be the average degree of the subgraph of G induced by these b2 vertices. The

average degree of the resulting graph d̄ will be d̄ = 3n(3n−1)+db2
3n+b2

. If we remove the vertex of

minimal degree in H∩G we will loose at most d edges (or, at most 2d in the sum of degrees),

hence getting a new average degree d̂ ≥ 3n(3n−1)+d(b2−2)
3n+b2−1 . This new density is bigger than

d̄ as can be seen from the following calculation. d̂ − d̄ = 3n(3n−1)+d(b2−2)
3n+b2−1 − 3n(3n−1)+db2

3n+b2
=

9n2−3n−6nd−b2d
(3n+b2)(3n−1+b2) > 0. As, d ≤ n and b2 ≤ n, it holds that d̂− d̄ ≥ 2n2−3n

(3n+b2)(3n−1+b2) > 0. The

last inequality stands for n > 1. So we found a way to improve the density by removing

9

vertices from H. This implies that b2 must be as small as possible. Nevertheless the demand

is that it will be at least k′, so we deduce b2 = k.

Finally, the k vertices from G that will be selected for H will contribute the most when

they consist of the densest subgraph of G with size k. Let d be the average degree of the k

vertices selected from G. Let d∗ > d be the average degree of the densest subgraph of size

k in G. As d̄ = 3n(3n−1)+kd
k′ < 3n(3n−1)+kd∗

k′ . We gain from taking the densest subgraph of

size k in G.

We conclude that the k vertices selected from G must be the DkS solution. Since DkS is

NP hard we conclude our assertion. �

3. A 2 approximation algorithm for the DalkS problem

In his work [?], Anderson presented a 2 approximation for the DalkS problem. We present

an alternative proof that holds for a family of problems which includes DalkS. Our algorithm

is based on the algorithm for the Dense-Subgraph problem presented in [?].

Let G(V,E) be an undirected graph and let S be any subset of V . Denote by E(S) the

edges induced by the subset S.

Lemma 3.1. Let q > 0, we can solve the problem of maximizing |E(S)| − q|S| exactly in

polynomial time.

Proof. Let U be a ground set, and let X and Y be subsets of U . A set function f is

supermodular if

f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) ∀X, Y ⊆ U

A set function p is submodular if

p(X) + p(Y) ≥ p(X ∩ Y) + p(X ∪ Y) ∀X, Y ⊆ U

If f(X) is supermodular and p(X) is submodular, then for q > 0 the function f(X) −

qp(X) is supermodular. The problem of maximizing a supermodular function can be solved

(under certain rationality restrictions) in polynomial time (e.g., see [?]).

For G(V,E), let X and Y be subsets of V . We now show that the function of γ(X) =

|E(X)| is supermodular, and the function δ(X) = |X| is submodular. This follows by

counting the contribution of edges to the sides in the definition of f above. Edges in

E(X − Y) and E(Y − X) are counted once in both sides, while edges in E(X ∩ Y) are

counted twice. Edges between X − Y and Y −X are counted only on the right hand side.

This proves our claim for γ(X). The proof for δ(X) is straightforward. �

10

Maximizing |E(S)|−q|S| for any q > 0 can aid us in finding a 2 approximation for DalkS.

Let us define G∗(S∗, E∗) as the densest subgraph with at least k vertices, and its average

degree is d∗.

Namely, |E∗| = d∗|S∗|/2. For q = d∗/4, let S be the subset maximizing |E(S)|−q|S| and

let |E(S)| = d|S|/2. We show that S will imply our approximate solution. It holds that:

|E(S)| − d∗

4
|S| ≥ |E(S∗)| − d∗

4
|S∗| = |E∗| − d∗

4
|S∗| = |E∗|/2

If |S| ≥ |S∗| from the fact that |E(S)| − d∗

4 |S| ≥ 0 we get d|S|/2 = |E(S)| ≥ d∗

4 |S| which

implies that d ≥ d∗/2.

If |S| < |S∗| we add arbitrary vertices to S until it is of size k. Let E′ be the edge set

induced by the enlarged set S and let d′ = 2|E′|/k be its average degree.

We have:

d′ = 2|E′|/k ≥ 2|E(S)|/k ≥ |E∗|/k ≥ |E∗|/|S∗| ≥ d∗/2

The third inequality follows from the fact that |E(S)| − d∗

4 |S| ≥ |E∗|/2. We thus achieve a

2 approximation no matter what the size of S is.

Remark 3.2. Since we don’t know d∗, we can’t compute q in advance. We can try to guess

it in different ways. The naive approach will be to exhaust all the possibilities. Since

d∗ = 2|E∗|/|S∗| and |E∗| ∈ {0, 1, ..., |E|} and |S∗| ∈ {0, 1, ..., |S|} then we can bound the

number of possibilities for d∗ by with |E||S|.

4. The DamkS and DkS problems

Definition 4.1. An algorithm A(G, k) is a (β, γ)-approximation algorithm for the DamkS

problem if for input graph G and size k it returns a solution with at most βk vertices and

an average degree of at least dam(G, k)/γ, where dam(G, k) is the optimal average degree

of the DamkS problem on G.

Anderson, in his work [?], has shown the following: If there is a (β, γ)-approximation

algorithm for DamkS (with β and γ greater or equal than 1), then there is a 4(γ2 + γβ)-

approximation algorithm for DkS. For the specific case where β = 1 this gives a 4γ2-

approximation ratio. We significantly improve upon this result of [?]:

Theorem 4.2. If there is a γ-approximation algorithm for DamkS (with γ greater or equal

than 1) then there is a 4γ-approximation algorithm for DkS.

11

Proof. We specify our algorithm for DkS. As done in several places before in this thesis, we

assume that the value d∗ is known.

Algorithm 4.3. [Solve DkS using DamkS]

Let G(V,E) and k be an input instance to the DkS problem. Let S be an empty group of

vertices.

a) Using the approximation algorithm for DamkS on G, find an approximate solution S′

with at most k vertices.

b) Add the vertices of S′ and its induced edges to S. Remove the edges induced by S′ from

G.

c) If the number of edges in S is E(S) < 1
4kd∗ and |S| < k we go back to (a) and continue.

d) If |S| < k we add to it an arbitrary set of k − |S| additional vertices out of G.

e) Otherwise for |S| > k. We greedily remove the lowest degree vertices from S until it is

of size k.

f) Return S.

We now analyze the suggested algorithm:

Denote an optimal subset to the DkS problem of size k by S∗, and its edge set by E∗.

It holds that d∗k = 2|E∗| for the optimal average degree d∗. If at the end of our algorithm

S includes at least 1
4γ |E

∗| edges of E then it holds that |E(S)| ≥ 1
8γ kd∗. As |S| = k this

implies an approximation ratio of 4γ.

We will prove that each iteration of (a) picks vertices with average degree of value at

least 1
2γ d∗. In the first time we are at (a) the graph G is still the original graph and so is

the optimal subset S∗, so the DamkS algorithm can pick a subgraph smaller or equal to k

with average degree equal or higher then d∗/γ.

Lemma 4.4. At any other iteration, one of the two must exist: either the vertices of S∗ in

G still have average degree higher than 1
2d∗ or the set S satisfies |E(S)| ≥ 1

4kd∗.

Proof. Suppose the second condition does not hold, then |E(S)| < 1
4kd∗. This means that

S includes less then half of the edges that were originally induced by S∗. It follows that

there are yet more then 1
4kd∗ edges between the vertices of S∗. So the set S∗ in G has at

most k vertices while having at least 1
4kd∗ edges, namely its average degree is higher then

1
2d∗. �

Notice that Lemma ?? implies that each time we do not pass from step (c) of the algorithm

to step (d) (and rater return to (a)), the set S′ will have average degree at least 1
2γ d∗. This

12

follows from the fact that there is still a subset (the subset S∗) in G that has size at most

k and average degree at least 1
2d∗. This implies that at each visit in step (c) the set S has

average degree at least 1
2γ d∗.

By the time we pass step (c) one of the two following cases must hold. Either, |S| < k

and thus it must hold that their are at least 1
4kd∗ edges in S. In this case phase (d) of

the algorithm suffices to obtain the desired set S. Or we are in the case in which |S| ≥ k.

In this case, it holds that |S| ≤ 2k − 1 (as in the previous iteration S was smaller than k,

and in each iteration at most k vertices are added to S). Moreover, as in each iteration the

average degree of S′ added to S is at least 1
2γ d∗, the average degree in S is also at least

1
2γ d∗. Thus by Lemma ?? (appearing below), after we remove vertices from S in step (e)

we remain with a set S of average degree at least 1
4γ d∗.

The following lemma that is needed for the completeness of this proof is taken from [?]

(Lemma C.1). We have added it here without its proof.

Lemma 4.5. (Fixing Lemma) Given a set U of size |U | > k and weight W we can efficiently

find a subset Uk ⊆ U of size k and weight at least W k(k−1)
|U |(|U |−1) .

In the above, the term weight refers to the weight given to each edge in the graph and

W refers to the sum of these weights. In an unweighted graph, every edge has a weight of

1 and W translates to the number of edges.

Remark 4.6. Theorem ?? states a connection between the DamkS and DkS problems.

Namely, a γ approximation algorithm for the former yields a 4γ approximation for the

latter. In the remainder of this thesis we will use Theorem ?? a few times when γ = γ(d∗am)

is a monotone decreasing function of d∗am - the average degree of the optimal solution to the

DamkS problem. For an optimal value d∗ to the DkS problem, Lemma ?? above implies

that during any execution of step (a) in Algorithm ??, any subgraph G considered will

have a subgraph of size at most k with average degree at least d∗/2. Note that this implies

that the optimal solution to DamkS on G will also have average degree at least d∗/2. This

implies, following the analysis above, that we can promise an approximation ratio for DkS

of at most 4γ(d∗/2). The dependence of γ on d∗ that we will use in the upcoming sections

is polynomial, thus in these cases we obtain a slightly weaker reduction between DamkS

and DkS, however we stress that the ratio between the approximation of the former and

latter remains constant in these cases.

13

5. The previously best known ratio for DkS

As mentioned previously the currently known best approximation ratio for the Dense-k-

Subgraph problem stands on nδ for a constant δ slightly less than 1/3, [?]. The algorithm

presented in [?] is composed of 5 algorithms A1, . . . , A5. Computing the approximation

ratio for each of these algorithms, [?] are able to prove that δ ≤ 1/3 − ε for some ε > 0.

However, the analysis in [?] does not make an attempt to find the precise value of δ. In

what follows we calculate δ. The bound, is based on the analysis of [?] and is done in two

steps. First, we revisit the 5 algorithms appearing in [?] and (by refining the analysis of

[?]) we present their approximation ratio as a function of k, d∗, and dH . Here, as in [?], d∗

is the average degree of the optimal solution to the problem at hand, and dH is the average

degree of the highest k/2 degrees in the graph. A full analysis as described above appears

in [?] for the first three algorithms, so here we just state their results. For algorithms A4

and A5 our analysis is new. Secondly, after we have determined the approximation ratio for

all five algorithms, denoted ri(k, d∗, dH) for algorithm Ai, we run a simple C-program that

computes (a lower bound) to

max
k,d∗,dH

min
i=1,...,5

ri(k, d∗, dH).

Specifically, our C-program (given in Section ??) computes mini=1,...,5 ri(k, d∗, dH) on a

large set of triplets (k, d∗, dH). Taking the maximum value of mini=1,...,5 ri(k, d∗, dH) over

the triplets considered yields the desired lower bound on δ.

Before we state and prove the main theorem and lemmas of this section, a few remarks

are in place. In [?], five algorithms were considered, and for each such algorithm Ai an

approximation ratio ri was determined. As stated above, we follow the proof of [?] and

present an enhanced analysis for ri. Using this analysis, we compute the approximation

ratio obtained via combining these five algorithms. Given that our understanding of [?] is

precise (we have made every effort to justify this assumption), our analysis highlights the

limitation of the proof in [?] and yields Theorem ?? stated below. Namely, in our analysis,

we present triplets (k, d∗, dH) for which the enhanced analysis of [?] does not promise an

approximation ratio better than n0.32258. We stress that our claim is on the analysis of [?]

alone and not on the actual performance of their combined algorithm - which potentially

could do better than the analysis shows. Throughout this section, when we state that an

approximation ratio ri is equal to some expression, we mean that based on our enhanced

analysis a ratio of ri can be obtained, and our analysis does not promise any ratio better

than ri.

14

Theorem 5.1. Our enhanced analysis to the algorithms presented in [?] promise an ap-

proximation ratio no lower than n0.32258.

5.1. Algorithms A1, A2, and A3.

Lemma 5.2 ([?]). The approximation ratio of Algorithm A1 from [?] is r1(k, d∗, dH) = d∗.

Lemma 5.3 ([?]). The approximation ratio of Algorithm A2 from [?] is r2(k, d∗, dH) = 2nd∗

kdH
.

In [?], algorithm A2 was used in more then one way. The following lemma (essentially

proven in [?]) makes use of A2 and is needed later.

Lemma 5.4. Let G(V,E) be a given graph. Let dH be the average degree of the k/2 highest

degree vertices in G. One can efficiently find a subgraph G′ of G of maximum degree dH

such that either (a) Running algorithm A2 on G yields an approximation ratio of 3, or (b)

The optimal value of the DkS problem on G′ is at least a third of the optimal value on G.

Proof. Based on Lemma 3.3 in [?], removing the k/2 vertices with highest degree from G

reduces the optimum solution d∗ to d′ ≥ d∗ − 2d∗/r2 where d∗/r2 is the average degree

yielded by the second algorithm of [?]. So either d∗/r2 ≥ d∗/3 or d′ ≥ d∗/3 and the lemma

follows. �

Since a constant lost of proximity is not of our concern in this thesis, we will refer from

this point on to dH as the highest degree in the graph.

Lemma 5.5 ([?]). The approximation ratio of Algorithm A3 from [?] is r3(k, d∗, dH) =
2max(k,dH)

d∗ .

5.2. Algorithm A4.

Lemma 5.6 ([?]). The approximation ratio of Algorithm A4 from [?] is r4(k, d∗, dH) =
2k2(2dH)1/3

(d∗)2 .

Algorithm A4 in [?] activates algorithms A1, A2, and A3 on a subgraph G′ of G of size

n′ ≤ 2dH . By the analysis in [?] (Lemma 4.4 of [?]), G′ is promised to have a subgraph of size

k and average degree at least d′ ≥ (d∗)3/k2. As it is shown in [?] that min(r1, r2, r3) ≤ 2n1/3,

we conclude that r4(k, d∗, dH) ≤ d∗2(n′)1/3/d′ ≤ 2k2(2dH)1/3

(d∗)2 .

15

5.3. Algorithm A5.

Lemma 5.7 ([?]). The approximation ratio of Algorithm A5 from [?] is r5(k, d∗, dH) =

Θ(max(k0.6d1.6
H

d∗2 , k1/3dH
2/3

d∗2/3)) for the case where d2
H < k and r5(k, d∗, dH) = Θ(max(k0.4d2

H

d∗2 ,
d
4/3
H

d∗2/3))

where d2
H > k > dH

In [?], algorithm A5 was analyzed for a very specific set of parameters k, d∗, and dH . We

now extend the analysis of [?] to obtain the ratio r5 which is a parametric version of the

ratio obtained in [?]. In what follows we revisit Procedure 5 (walks of length 5) from [?].

First let us recall a lemma presented and proved in [?]. An l-walk between u and v is a

path of length l edges between u and v.

Lemma 5.8 ([?]). For a graph with size k, average degree d and a number l, there must exist

at least two vertices u and v for which the number of l-walks from u to v is Wl[u, v] ≥ dl/k.

We use the above lemma with l = 5. Namely, from the existence of an optimal subgraph

G∗ of size k and average degree d∗ we infer that there must exist at least two vertices u and

v in the graph for which W5[u, v] ≥ (d∗)5/k.

We will use this observation in order to calculate the ratio in this case. Let us define

N1, N2, N3, N4 to describe the subsets of vertices that are first, second, third, and fourth on

the paths of length 5 between u and v. As stated in [?], it may be the case that a vertex

appears in more than a single set. This may cause some edges in the analysis below to

be counted several times - but the multiplicity remains constant, and does not effect the

analysis beyond a constant factor. Thus we assume in our analysis that the subsets are

disjoint. For completeness, we rewrite the second part of Section 4.2 in [?] with intention

to extract the function r5.

Proof of Lemma ??. Let ε(d∗, dH , k) be a function to be determined later in the proof. In

what follows we will show how to find in G a subgraph G′ of size O(k) with average degree

Ω(ε). Using Lemma ?? and Theorem ?? this implies an approximation ratio for the DkS

problem of O(d∗/ε). We refer the reader to Remark ??, and note that dH and k do not

change during Algorithm ??. Our proof is done by a detailed case analysis based on that

presented in [?]: Our calculation is seperated into two main cases: d2
H ≤ k and d2

H ≥ k ≥ dH .

Case 1: d2
H ≤ k. Assume that cut(N2, N3) ≥ εdH

2. Here cut(A,B) is the number of edges

with one end point in A and another in B. In this case, as the size of N2 and N3 is bounded

by dH
2 ≤ k, we take G′ to be the graph induced by N2

⋃
N3. It holds that G′ has average

degree ε/2. We thus continue under the assumption that cut(N2, N3) < εdH
2.

16

Now assume that there exists a w ∈ N2 such that W3(w, v) > dHε. Observe that all the

length 3 walks between w and v must pass through N3 and N4. Consider the graph induced

by the neighbors of w in N3, and the set N4. Since w has at most dH neighbors in N3,

this graph contains at most 2dH vertices, and Ω(dHε) edges. Implying an average degree of

Ω(ε). We thus continue under the assumption that for every w ∈ N2,W3(w, v) ≤ dHε and

for every w ∈ N3,W3(u, w) ≤ dHε (here we use the symmetry of these two assumptions).

We now show, in the setting at hand, that we may also assume that every edge between

N2 and N3 lies in at least d∗5

2d2
Hεk

walks from u to v (without loosing much). Indeed, remove

any edge between N2 and N3 that lies in less then d∗5

2d2
Hεk

length 5 walks from u to v. Since

the number of edges between N2 and N3 is less then d2
Hε, (by our first assumption) we will

disconnect at most (d∗5

2d2
Hεk

)d2
Hε = d∗5

2k walks. So we remain with Ω(d∗5

k) walks in W5(u, v).

Let e = (w, z) be an arbitrary edge between w ∈ N2 and z ∈ N3. By our asumptions,

e lies in p ≥ d∗5

2d2
Hεk

walks from u to v. Clearly p ≤ deg(w,N1)deg(z,N4). Thus, either

deg(w,N1) ≥
√

d∗5

2d2
Hεk

or deg(z, N4) ≥
√

d∗5

2d2
Hεk

. If the first one is true, we say w is a ’good’

vertex, otherwise z is the ’good’ one. Now we activate the following procedure:

1) we choose for every edge e, its good vertex (denoted by w).

2) we put that vertex in S2 or S3 respectively if it comes from N2 or N3.

3) we remove all the edges that touch w from the graph.

Let w be a good vertex in N2 (a similar analysis holds for good vertices in N3). By our

second assumption, W3(w, v) ≤ dHε. Observe that in step 3 above, we only discard the

length 5 walks from u to v that go through w. The number of walks between u and w

(which equals degree(w,N1)) is bounded above by dH . The number of walks between u

and v passing through w is thus bounded by dHεdH = d2
Hε.

Since we have Ω(d∗5

k) walks between u and v, and each iteration removes at the most

d2
Hε of them, we can fix the number of iterations to be d∗5

cd2
Hεk

for a constant c ≥ 1. Thus the

total number of ‘good’ vertices, found by the algorithm is d∗5

cd2
Hεk

.

W.l.o.g assume that |S2| ≥ |S3|. Now consider the subgraph induced by S2
⋃

N1. This

subgraph contains O(dH + d∗5

cd2
Hεk

) vertices out of which d∗5

cd2
Hεk

vertices have degree at least√
d∗5

2d2
Hεk

. Thus the average degree of this subgraph is at least

Ω

 d∗5

cd2
Hεk

√
d∗5

2kd2
Hε

dH + d∗5

cd2
Hεk

17

It follows from basic computations that for a constant c′, setting ε to be

c′ ·min(
d∗3

k0.6d1.6
H

,
d∗5/3

k1/3dH
2/3

))

the above average degree is at least ε. Notice also that since we assumed k ≥ dH
2 then

|S2| ≤ dH
2 ≤ k namely, the size of the group we selected is at most k.

All in all, in all the sub-cases specified above we obtain a subgraph G′ of size at most k

with average degree Ω(ε).

Case 2: d2
H ≥ k ≥ dH . Assume that cut(N2, N3) ≥ dH

4ε
k . We can construct a subset

of (expected) size at most k by picking each vertex in N2
⋃

N3 with probability k/2dH
2.

Thus, using Lemma ??, we may obtain a subgraph with at most k vertices and kε/4 edges.

We thus continue under the assumption that cut(N2, N3) < dH
2ε

k .

Now assume that there exists w ∈ N2 with W3(w, v) > dHε. Observe that all the length

3 walks between w and v must pass through N3 and N4. Consider the graph induced by the

neighbors of w in N3, and the set N4. Since w has at most dH neighbors in N3, this graph

contains at most 2dH +1 vertices, and Ω(dHε) edges. Implying a subgraph of size less than

or equal to k with an average degree of Ω(ε). We thus continue under the assumption that

for every w ∈ N2,W3(w, v) ≤ dHε and for every w ∈ N3,W3(u, w) ≤ dHε (here we use the

symmetry of these two assumptions).

We now show, in the setting at hand, that we may also assume that every edge between

N2 and N3 lies in at least Ω(d∗5

d4
Hε

) walks from v to u.

Indeed, remove any edge between N2 and N3 that lies in less then d∗5

2d4
Hε

length 5 walks

from v to u. Since the number of edges between N2 and N3 is less then d4
Hε
k , (by our first

assumption) we will disconnect at most (d∗5

2d4
Hε

)d4
Hε
k = d∗5

2k walks in W5(u, v), so we remain

with Ω(d∗5

k) walks (recall that W5(u, v) ≥ d∗5

k).

Let e = (w, z) be an arbitrary edge between w ∈ N2 and z ∈ N3. By our assumptions,

e lies in p ≥ d∗5

2d4
Hε

walks from u to v. Clearly p ≤ deg(w,N1)deg(z,N4). Thus, either

deg(w,N1) ≥
√

d∗5

2d4
Hε

or deg(z,N4) ≥
√

d∗5

2d4
Hε

. If the first one is true, we say w is a ’good’

vertex, otherwise z is the ’good’ one. Now we use the same analysis and procedure as in

the corresponding case 1. Namely, we construct the sets S2 and S3. As before, for every

w ∈ N2, by our assumption above, W3(w, v) ≤ dHε. Moreover, in our procedure we only

discard the length 5 walks from v to u that go through w. Since W3(w, v) ≤ dHε and since

the number of walks between u and w (which equals deg(w,N1)) is bounded above by dH ,

18

it implies that the number of walks between u and v passing through w, is bounded by

dHεdH = d2
Hε.

Since we have Ω(d∗5/k) walks between v and u, and each iteration removes only d2
Hε

of them, the number of iterations can be at least Θ(d∗5

d2
Hεk

). However, if this number is

greater than k, we will stop after k iterations only. We proceed under the assumption that

Θ(d∗5

d2
Hεk

) ≤ k, i.e. the total number of ’good’ vertices, found by the procedure is Θ(d∗5

d2
Hεk

).

We deal with the case that Θ(d∗5

d2
Hεk

) ≥ k at the end of the proof.

W.l.o.g assume that |S2| ≥ |S3|. Now consider the subgraph induces by S2
⋃

N1. It

contains O(dH + d∗5

εd2
Hk

) vertices out of which Θ(d∗5

εd2
Hk

) vertices have degree at least
√

d∗5

2εd4
H

.

Thus the average degree of this subgraph is at least

Ω

d∗5

kd2
Hε

∗
√

(d∗)5

d4
Hε

dH + d∗5

εd2
Hk

It follows from basic computations that for a constant c′, setting ε to be

ε = Ω(min(
d∗3

k0.4d2
H

,
d∗5/3

d
4/3
H

))

the above average degree is at least ε.

In case Θ(d∗5

d2
Hεk

) ≥ k we have that S2 is of size O(k) (as we stopped the iterative process

early). Thus, as k ≥ dH , in this case we obtain an average degree ε′ of

ε′ = Ω

k

√
(d∗)5

d4
Hε

dH + k

 ≥ Ω

k

√
(d∗)5

d4
Hε′

2k

 = Ω

(
(d∗)5/3

d
4/3
H

)
≥ ε

So limiting our subgraph to k does not change the overall ratio.

So, all in all (in case 1 and 2 analyzed above), we have found a subgraph with size smaller

or equal to k with average degree Ω(min(d∗3

k0.6d1.6
H

, d∗5/3

k1/3dH
2/3)) for the case where d2

H ≤ k and

Ω(min(d∗3

k0.4d2
H

, d∗5/3

d
4/3
H

)) when d2
H > k > dH . The size being smaller or equal to k implies a

solution for the DamkS problem. But as we have shown in Section ??, there is a reduction

between the the DamkS and the DkS problem, with only a constant lost of approximation.

Thus we use this calculated average degree to get the ratio r5 stated in Lemma ??. �

5.4. Proof of Theorem ??: Combining algorithms A1, . . . , A5. Using Lemmas ??-??

we may now compute a lower bound to the approximation ratio of the combined algorithm

of [?]: maxk,d∗,dH
mini=1,...,5 ri(k, d∗, dH). We do this numerically going over many triplets

(k, d∗, dH) and computing mini=1,...,5 ri(k, d∗, dH) for each such triplet. This suffices to yield

19

the lower bound in Theorem ?? for the ratio of [?]. Our C-program which preforms the

computation above is given in Section ?? and runs in precision 0.00001. In Section ?? we

show that we can improve upon this ratio.

6. Improving on the approximating of the DkS

As we have shown in the previous section, prior to our work, the best approximation ratio

for the Dense-k-Subgraph problem stands on nδ for a constant δ ≥ 0.32258. Improving upon

this approximation ratio is a long standing open problem.

In [?] a total of 5 algorithms are presented. The first three algorithms of [?] tend to work

’well’ in several cases. For example, when we work on very dense graphs, where dH - the

average degree of the k/2 vertices with the highest degree in G, is high relatively to n. Other

cases include the case in which k itself is very large relatively to n or when d∗ the average

degree of the optimal subgraph is high relatively to max(k, dH) and/or n. When each of

these parameters are very small - less then n1/3, the algorithm gets good approximation

for trivial reasons. Two worst cases for these algorithms where isolated in [?], in which the

analysis gave exactly an O(n1/3) approximation:

(6.1) d∗(G, k) = θ(n1/3), k = θ(n1/3), dH = θ(n2/3).

(6.2) d∗(G, k) = θ(n1/3), k = θ(n2/3), dH = θ(n1/3).

where dH is the average degree of the k/2 vertices with the highest degree in G. To improve

upon this ratio, [?] suggest two additional algorithms, A4 and A5, one for each isolated

region presented above. The result is the approximation ratio stated in Theorem ??. In

what follows we present yet an additional algorithm A6 tailored to improve the ratio on the

configurations of (k, d∗, dH) in which the algorithms of [?] work poorly. More specifically,

our algorithm is designed to address the region in Equation ?? above.

Analyzing the ratio of our additional algorithm A6, we are able to prove the following

theorem:

Theorem 6.1. The DkS problem admits an approximation ratio of at most n0.3159.

The proof of Theorem ?? includes four steps. First, recall by Lemma ?? that one may

assume w.l.o.g. that the input graph has maximum degree dH . Then we turn to present our

algorithm A6. We start by presenting in Section ?? an algorithm for the DamkS problem,

that does not return a dense subgraph of size k but rather of size at most k. Our algorithm

20

is based on a linear programming relaxation and assumes that the given input graph has

bounded degree (which as discussed is w.l.o.g.). To obtain our algorithm A6 for DkS, we use

our analysis presented in Section ?? in which we show that any algorithm for DamkS implies

an algorithm for DkS with roughly the same approximation ratio. Finally, in Section ?? we

analyze the approximation ratio of algorithms A1, A2, A3, A4 combined with our A6.

max
k,d∗,dH

min
i=1,...,4,6

ri(k, d∗, dH).

Here, as our calculations are numerical, we need to bound any error term that may arise

due to the fact that we are not going over all possible triplets (k, d∗, dH) but rather only

checking a grid of triplets at limited precision. We bound the error term by 0.0000433 in

Section ??. The results of Theorem ?? takes this error term into account. Our numerical

calculations (i.e. our C program) appear in the Section ??.

6.1. Our algorithm for DamkS. Our algorithm is based on a linear program (LP). We

use the fractional LP solution in order to find a DamkS solution with an average degree of

Ω((d∗7

d4
Hk

)
1
3).

6.1.1. The DamkS LP. Let G(V,E) be a given graph and let V = 1, . . . , n. Let i0 be some

vertex in V , and let γ be a parameter. Our linear problem for DamkS follows:

(6.3) min
∑

yi

(6.4) st : yi0 = 1

(6.5) ∀i ∈ V yi ≤
∑

j:(i,j)∈E

xij/γ

(6.6) xij ≤ yi

(6.7) xij ≤ yj

(6.8) ∀i yi ∈ [0, 1]

In what follows, let d∗ be the average degree of the optimal solution to the DamkS

problem.

Lemma 6.2. There exists a vertex i0 such that solving the DamkS LP with γ = d∗/2 yields

an optimal solution of value at most k.

21

Proof. Consider the optimal solution U ⊂ V to the DamkS problem on G. Let d∗ be the

average degree of U . In Lemma 2 of [?] it is shown that U must include a subgraph U ′ of

minimal induced degree at least d∗/2. Let i0 be a vertex in U ′. Setting yi = 1 for each

vertex in U ′ and 0 otherwise, and setting xij = 1 for each edge (i, j) in U and 0 otherwise,

yields a valid solution to our LP of value |U ′| ≤ k. This implies our assertion. �

In what follows we assume that we have guessed the correct value for i0 and γ as stated in

the Lemma above. To assure this in practice we will run our algorithm (yet to be defined)

for all possible values of i0 (there are n such values) and for all values of γ in the set

{1, 2, 4, 8, . . . , n}, taking our algorithm to be the best out of these n log n executions. As we

are approximating γ within a factor of 2, we obtain a slight loss in our approximation ratio

which (as we will see) can be bounded by a constant value of 4 (and is thus insignificant

to our results). We also assume that γ is at least n0.01, otherwise A1 yields an excellent

approximation ratio. Finally, in what follows we refer to the variable yi0 as y0.

The DamkS LP gives weights yi’s to the vertices. Next we present an algorithm that uses

these weights in order to extract a subgraph with at most k vertices.

6.1.2. The algorithm. We start with some definitions. Let N0 be the set consisting of a

single vertex corresponding to y0 in our LP. Refer to this vertex as v0. Let N1, N2 and

N3 be the groups of vertices that are of distance one, two, and three from v0 respectively.

Here the distance between two vertices is the length of the shortest path connecting them.

Notice that for every i 6= j: Ni ∩Nj = φ.

Let dH be the maximum degree in the input graph. In our algorithm we consider two

candidate subgraphs.

The subgraph S1 is constructed by randomly picking vertices i from N0 ∪N1 ∪N2. Each

vertex vi is picked independently with its corresponding probability yi. The subgraph S2

is constructed by randomly picking vertices vi from N1 ∪ N2 ∪ N3, again each vertex is

picked with its corresponding probability yi. For our analysis, we assume that the random

choices for S1 and S2 are fresh (i.e. independent). We choose the densest between the two

subgraphs.

First we prove a technical lemma to be used later in our proof.

Lemma 6.3.
∑

1,...,n y2
i ≥

(
P

1,...,n yi)
2

n

22

Proof. By the Cauchy Schwartz inequality we get∑
1,...,n

yi =
∑
1,...,n

1yi ≤
√∑

1,...,n

12

√∑
1,...,n

yi
2 =

√
n
∑
1,...,n

yi
2

. If we square both sides and revise the equation, we get the lemma result. �

Lemma 6.4. Algorithm A6 yields an approximation ratio of r6 = Θ
(

d4k
γ4

)1/3
= Θ

(
d4k
d∗4

)1/3
.

Proof. Let us call Q0,Q1,Q2 and Q3 the sums of the yi values in N0,N1,N2 and N3 re-

spectively. By the LP feasibility of the yi’s and due to constraints ??, ??, ??, and ?? we

conclude Q1 ≥ γ. We calculate the average degree of S1.

We start by bounding the expected number of edges in S1 from below. To this end, we

calculate the expected sum of degrees of vertices in S1 ∩ N1. Notice that each edge (i, j)

adjacent to N1 will appear in the subgraph induced by S1 with probability yiyj . Thus:

(6.9)
∑
i∈N1

(yi

∑
ij∈E

yj) ≥
∑
i∈N1

yi
2γ ≥ Q1

2

dH
γ

Here we used Lemma ?? in the last inequality (and the fact that |N1| ≤ dH). Thus we have

that the expected number of edges in S1 is at least Q1
2

2dH
γ

We now turn to study the expected size of S1. This expectation is exactly Q0 + Q1 + Q2

(which is at most k). Thus if both the number of edges in S1 and its size behave as

expected, we will obtain a subgraph S1 of size ≤ k with average degree d1 = Q1
2γ/dH

Q0+Q1+Q2
.

Now if Q2 ≤ 2Q1 then we obtain d1 = Θ
(

Q1γ
dH

)
≥ Θ

(
γ2

dH

)
which is an excellent ratio.

Otherwise, Q2 > 2Q1, and hence:

(6.10) d1 =
Q1

2γ/dH

Q0 + Q1 + Q2
= Θ

(
Q1

2γ

dHQ2

)
≥ Θ

(
γ3

dHQ2

)
It is left to show that with some polynomial probability it is indeed the case that both

the size and the number of edges in S1 behave as expected. The number of edges in S1,

is bounded by n2 and thus using Markov’s inequality it holds that this number will be at

least half its expectation with probability at least 1
2n2 . Regarding the number of vertices in

S1, as these are chosen independently, using the Chernoff bound it holds that

Pr[|S1| ≤ 2(Q0 + Q1 + Q2)] ≥ 1− e−
Q0+Q1+Q2

3

As Q0 +Q1 +Q2 ≥ Q1 ≥ γ ≥ n0.01 (the latter by our assumption discussed at the beginning

of this section), it holds that (for sufficiently large n) both the size of S1 and the number

23

of edges it induces are within a factor of 4 from their expectation with probability at least
1

2n2 − e
−n0.01

3 ≥ 1
4n2 .

We now address S2. As before the expected sum of degrees in the subgraph induced by

S2 is at least
∑

i∈N2
(yi
∑

ij∈E yj) ≥
∑

i∈N2
(yi

2γ) ≥ Q2
2

dH
2 γ. Again we used Lemma ?? for the

last inequality (here, |N2| ≤ d2
H). We divide the expected sum of degrees with the expected

size of S2 to get

d2 =
γQ2

2/dH
2

Q1 + Q2 + Q3
>

γQ2
2

d2
Hk

.

In the last inequality we used the fact that k ≥ LP ≥ Q0 + Q1 + Q2 + Q3 > Q1 + Q2 + Q3

(which also implies that in expectation |S2| ≤ k).

Again we show that the size and the number of edges in S2 behave as expected with

some non-negligible probability. The number of edges in S2, is bounded by n2 and thus

using Markov’s inequality it holds that this number will be at least half its expectation with

probability 1
2n2 . Regarding the number of vertices in S2, as these are chosen independently,

using the Chernoff bound it holds that

Pr[|S2| ≤ 2(Q1 + Q2 + Q3)] ≥ 1− e−
Q1+Q2+Q3

3

As Q1 + Q2 + Q3 ≥ Q1 ≥ γ ≥ n0.01 , it holds that (for sufficiently large n) both the size of

S2 and the number of edges it induces are within a factor of 2 from their expectation with

probability 1
2n2 − e

−n0.01

3 ≥ 1
4n2 .

Thus, all is all, with probability at least 1
16n4 both the average degree of S1 and S2 are

at least Ω(d1) and Ω(d2) respectively, and both S1 and S2 are at most of size 2k. Reducing

the size of S1 and S2 (if needed) by Lemma ?? will not change the value of d1 or d2

significantly. Notice that when Q2 increases then so does d2, while when Q2 decreases then

d1 is increased. It now follows (by picking the worst value of (dHkγ2)
1
3 for Q2) that we

are guaranteed an average degree of Θ(γ7

d4
Hk

)
1
3 with the above probability. Repeating the

above rounding procedure a polynomial number of times (say n5) and taking the densest

obtained subgraph we conclude that the above average degree is obtained with arbitrarily

high (constant) probability. This suffices to prove our lemma. �

We have integrated the results of this section in our C program that calculates the final

ratio of combining algorithms A1, A2, A3, A4 and our A6. The resulting ratio is, r = 0.3159.

Our detailed calculations appears at Section ??.

24

7. Computing the final ratio using a C program

Our C program runs on a grid of values for d∗,dH and k and computes the resulting

approximation ratio (as a function of n) for every point in this three dimensional grid. To

be more specific, the set of values for d∗ (and also dH and k) has an exponentially growing

nature and consists of the set {ni | i = 0,∆, 2∆, . . . , 1} of size 1/∆ for a precision parameter

∆. The worst case setting of values for d∗,dH and k can (and probably is) located between

the grid points and not necessarily on one of them. To compensate for this fact, we analyze

the maximum loss in our ratio that may occur. Technically, as our C program computes

the exponent of n in the resulting ratio, our loss can be computed using the linear nature

of our equations defining the (logarithm of the) ratio ri of each of the algorithms Ai. For

example, consider r2 = 2nd∗

kdH
. Neglecting the factor of 2 and setting d∗ = ng, dH = nd,

and k = nK , we have that r2 = ng−K−d+1. Thus, the total loss in considering our grid of

precision ∆ in this case will be n3∆ (a single factor of ∆ for each one of g, k, and d). Let

us compute our total error δerr corresponding to the value of ∆ we are using.

The approximation ratio of Algorithm A1 is r1(k, d∗, dH) = d∗. In the C-program

this translates into ng, so δ1 = 1 · ∆. The approximation ratio of Algorithm A2 is

r2(k, d∗, dH) = 2nd∗

kdH
. In the C-program this translates into ng−K−d+1, so δ2 ≤ 3∆. The

approximation ratio of Algorithm A3 is r3(k, d∗, dH) = 2max(k, dH)/d∗. In the C-program

this translates into nmax(K,d)−g, so δ3 ≤ 2∆. The approximation ratio of Algorithm A4 is

r4(k, d∗, dH) = 2k2dH
1/3

(d∗)2 . In the C-program this translates into n2K+ 1
3
d−2g, so δ4 ≤ 41

3∆.

When using Algorithm A6 in our program, algorithm A5 is not needed (as it does not

contribute to improving the approximation ratio), hence we don’t have to consider δ5.

The approximation ratio of Algorithm A6 is r6(k, d∗, dH) = (d4
Hk

(d∗)4)
1
3 . In the C program

it translates into n
4
3
d+ 1

3
K− 4

3
g so δ6 ≤ 3∆. Our total error δerror is thus bounded by

max(δ1, δ2, δ3, δ4, δ6) = 41
3∆

Running our C program while considering only the algorithms A1, . . . , A5 of [?] with

∆ = 0.00001, we receive the ratio rprevious = 0.32258. This suffices to prove Theorem ?? as

all we seek is a lower bound on the ratio derived from the stated values of r1, . . . , r5.

Running our C program with the algorithms of [?] and our additional algorithm A6 with

∆ = 0.00001, we receive the ratio 0.315787. Adding the error δerr = 0.0000433 results in

the ratio of rnew ≤ 0.3159 stated in Theorem ??.

7.1. Our C program for computing the approximation ratio. Our program appears

in Figure ??.

25

References

[1] R. Anderson and K. Chellapilla. Finding Dense Subgraphs with Size Bounds. In proceedings of the 6th

Workshop on Algorithms and Models for the Web Graph (WAW2009), pages 25-37.

[2] Y. Asahiro, R. Hassin and K. Iwama. Complexity of finding dense subgraphs, Discrete Appl. Math.

121(1-3), pp. 1526, 2002.

[3] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige and A. Vijayaraghavan. Detecting High Log-Densities

an O(n1/4) Approximation for Densest k-Subgraph. CoRR, abs/1001.2891: 2010.

[4] M. Charikar. Greedy approximation for finding dense components in a graph. In proceedings of APPROX,

pages 139–152, 2000.

[5] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3):410–421.

[6] U. Feige and M. Langberg. Approximation algorithms for maximazation problems arising in graph par-

titioning. Journal of Algorithms 41, pp. 174–211, 2001.

[7] U. Feige and M. Seltser. On the densest k-subgraph problem. Technical report, Department of Applied

Mathematics and Computer Science, The Weizmann Institute, Rehobot, 1997.

[8] A. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSB 84/171, Department

of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 1984.

[9] S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM Journal

on Computing, 36(4), pp. 1025-1071, 2006.

[10] S. Khuller and B. Saha: On Finding Dense Subgraphs. In proceedings of ICALP, 597-608: 2009.

[11] A. Schrijver. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial

Time. J. Combinatorial Theory, vol. B 80, pp. 346-355, 2000.

26

main()

{

double g = 0; // d∗ = ng

double k = 0; // k = nK

double d = 0; // dH = nd

double r = 0; // temp ratio

double rr= 0; // final ratio

double p = 0.00001; // step

for (g = 0.0 ; g <= 1 ; g += p) {

for (d = g ; d <= 1 ; d += p) {

for (K = g ; K <= 1 ; K +=p) {

// due to algorithm A1

r = g - 0;

// due to A2

r = min(r , g-K-d+1);

// due to A3

r = min(r , g-2*g+max(K,d));

// due to A4

r = min(r , g-3*g+2*K+d/3.0);

// due to A5

if (2*d <= K)

r = min(r,g - min((3*g-1.6*d-0.6*K),(5.0*g-K-2.0*d)/3.0));

else if ((K < 2*d) && (K > d))

r = min(r,g - min(3*g-2*d-0.4*K,(5.0*g-4.0*d)/3.0));

// due to A6 our LP algorithm

r = min(r,g-(7.0*g - 4.0*d - K)/3.0);

if (rr < r) {

rr=r;

printf(”d=%f K=%f g=%f rr=%f n”,d,K,g,rr);

}

}

}

}

Figure 1. Our C-program that computes the total ratio of all the sub

algorithms combined.

