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Abstract 

Obtaining an objective assessment of pain is an important challenge for clinicians. 

The purpose of this study was to examine the connections between subjective reports of pain 

and measureable parameters of human voice at the time of the report, as a step towards coping 

with this challenge.  

Patients reporting pain were voice recorded on several occasions, to attain reports on 

different levels of pain. Recording was done in the patients' natural environment at the 

medical center. Voice samples were cut from the recordings and audio features were 

extracted, including features that were exclusively developed for this study.  A machine-

learning based classification process was performed in order to distinguish between samples 

with "no significant pain" reported and samples with "significant pain" reported. This 

classification process distinguished well between the two categories using a short list of 

features. Classification with a large number of features achieved higher rates of success. 

Moreover, features developed during this study improved classification results in comparison 

to classification based on known-features only. Differences between genders in reference to 

classification success rates were found.  

Results indicate that there is evidence of a connection between measureable 

parameters of human voice and the simultaneous self-reported pain level. This finding might 

be useful for developing future methods to assess pain in absence of verbal communication or 

when objective assessment is critical
1
. 

 The recorded raw material was used to establish The Open University of Israel corpus 

of speeCH in pain (OUCH-corpus) – an open-source voice samples corpus which may be 

used for further investigation of the relations between pain and human voice
2
. 

 

  

                                                           
1
 A paper based on this work was written and would be submitted to a journal soon. 

2 A paper presenting the OUCH-corpus was written and would be submitted to a journal soon. 



6    

 

 

1. Introduction 

Pain is an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage. Pain is a very significant 

phenomenon in medical treatment, and the assessment of patient's pain by a physician is a 

major challenge to the latter, especially when direct verbal communication is limited, e.g. as a 

result of the patient's medical situation. Another factor that complicates pain assessment is the 

relativity of pain between different persons [1]. 

Numerous researches have been conducted in order to find connections between pain 

and measureable physical parameters. The most prominent parameters to be investigated are 

heart rate, heart rate variability, skin conductance and systolic blood pressure. These studies 

yielded interesting finding regarding the sought connections, as we describe in section 1.1 

below. 

The human voice encapsulates a large amount of information about the speaker [2]. 

Many studies in recent years showed the ability to extract information about the physical and 

mental conditions of a speaker from his voice. Again, we elaborate on these studies in section 

1.1. 

Recognizing that pain affects physiological parameters of the human body, and that 

physiological characteristics of the body influence the human voice, it should be interesting to 

explore whether there is a connection between the subjective experience of pain and a 

person's voice. Since speech is the fastest and most natural means of human communication, 

this possible connection may have practical implications, for instance assistance in medical 

diagnosis, in verification of the patient's complaints or in acquisition of a pain report when 

verbal communication with the patient is impossible. Currently physicians base their pain 

assessment exclusively on the patient's subjective pain report. This approach might evolve in 

the future into a medical aide that will provide physicians with more objective pain 

assessments. 

1.1. Related work 

1.1.1. Pain and physiological parameters 

Researchers showed connections between pain and measureable physical parameters. 

Loggia, Juneau and Bushnell [3] studied heart rate and skin conductance in response to pain 

inflicted as heat stimuli, combined with levels of pain rated by the subjects. They found that 

skin conductance and heart rate significantly increase during pain. This result confirms a wide 
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range of previous studies that have observed this relationship with either heart rate, skin 

conductance, or both, using many types of pain.   

Treister et al. [4] studied multiple parameter response to pain inflicted as heat stimuli, 

combined with the level of pain rated by the subjects. It was found that all of the 5 tested 

parameters – including heart rate and heart rate variability - successfully differentiated 

between no pain and all other pain categories, but none of the parameters differentiated 

between all 3 pain categories that they used. However, the combination of autonomic 

parameters demonstrated stronger associations with stress responses or noxious stimuli than 

each parameter separately, thus indicating a clear superiority of the multi-parametric approach 

in this regard. 

Lindh, Wiklund and Harkansson [5] assessed pain by frequency domain analysis of 

heart rate variability during a routine heel lancing procedure that was performed in new-born 

infants as part of neonatal screening. It was shown that the squeezing of the heel is the most 

stressful event during the heel prick procedure. 

In addition to the above, several other studies showed relations between heart rate and 

systolic blood pressure, and pain [6], [7]. In all cases, stimuli or exercise caused an increase in 

the physiologic parameters measured. 

1.1.2. Voice and physiological parameters 

Studies showed that the human voice is affected by physiological factors, and 

specifically by some of the parameters that were discussed above. Orlikoff and Baker [8] 

found that the cardiovascular system has a consistent affect on vocal fundamental frequency 

(F0). Orlikoff [9] showed that vowel amplitude variation is affected by the cardiac (ECG) 

cycle.  

Human voice contains vast information, and many studies have shown that extensive 

knowledge about a speaker's physiology can be extracted from his voice [2]. In recent years 

numerous attempts have been made to extract similar information about a speaker's emotional 

state as well [10], [11], [12]. One of the most interesting aspects of mental condition, that 

attracts many researchers, is stress, due to the significant consequences that it has on human 

behavior. In many studies participants who were exposed to different types of stress were 

recorded, in order to show the effect stress has on human voice [13], [14]. 

Stress has been approached frequently in this kind of research. Often the way to 

arouse stress in participants in studies included physical manipulation, such as heat stimuli 
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[4], and cold stimuli [15]. Despite this, a review of literature shows no discussion on a direct 

connection between pain and voice.   

Among the studies that investigated a connection between voice and physiological 

parameters, several approaches can be found: There are studies that performed special 

interviews with the participants , recorded the voice only, extracted vocal features and used 

statistics to classify the samples [10], [11]. Other studies used voice recordings of patients 

from interviews that were recorded for other objectives, and performed an analysis on voice 

samples from these interviews [13]. There are studies that intended to investigate not only the 

voice, but other parameters as well. The voice recordings were part of a wider set of 

measurements that were taken. Thus participants were fitted with pneumotachograph 

facemasks that recorded not only the voice of the participant, but also his oral and nasal air 

flow, inter-oral pressure, blood pressure and heart rate [15]. This kind of recording requires 

major set-up procedures and cast limitations on the consent to take part in the study and on 

the repeatability of the collection (if more than one sample per participant is desired). 

1.2. The scope and goals of our study 

The current study was a preliminary investigation aimed at revealing connections 

between subjective self-report of pain and parameters of voice at the time of the report. We 

could not find previous works that investigated these possible connections. If found, such 

connections might be very instrumental for developing future methods to assess pain in 

absence of verbal communication, or when objective assessment is critical. 

To achieve this goal we considered a large variety of possibilities to establish such a 

connection, and then focused on the ones that showed potential. We employed known 

techniques and developed new ones as needed. 

The study is based on data collection of audio material from persons who suffer pains 

due to injuries. The collection was designed and performed especially for the current study, 

but eventually was found adequate for further investigations as well. From this reason we 

decided to organize it as a general database of audio samples of speech in pain, and to make it 

available to other researchers via the internet.  

In section 2 we describe the participants, the data collection and the sample 

processing. We portray the machine-learning analysis and the feature extraction, and 

elaborate on the special features that were developed during the study. In section 3 we present 

the results we achieved. In section 4 we discuss the results and their consequences. In section 

5 we point at several issues that should be taken into special consideration regarding our 
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results, and suggest ideas for further investigation. Section 6 presents The Open University of 

Israel corpus of speeCH in pain (OUCH-corpus) - the open source audio corpus which we 

built and made available for research usage, based on the data collected during our study.  
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2. Methods 

The study was conducted by orally interviewing patients in the Inpatient Department 

of Neurological Rehabilitation and the Outpatient Mobility Rehabilitation Clinic of the Chaim 

Sheba Medical Center at Tel-Hashomer, Israel. Permission was obtained from the Sheba 

Medical Center ethical committee and from the Open University of Israel ethical committee 

before recruiting participants. Informed consent was obtained from all the participants after 

receiving a full explanation of the goals and protocol of the study. 

2.1. Participants 

Participants included 27 adults (20 men, 7 women, age range: 23-65 years, mean age: 

44 years). All of the participants suffered spinal and/or brain injuries, and reported injury-

related pain. No pain, physical pressure or any intrusive action was inflicted upon participants 

as part of the study.  

Since the study included a short interview in Hebrew, only patients who speak 

Hebrew fluently participated in the study. Most of the participants' mother-tongue is Hebrew 

and the rest have been speaking Hebrew for many years with good command of the language. 

Exclusion criteria for all participants were: (1) communication or cognitive problems 

that may interfere with understanding the researchers’ explanations; and (2) psychiatric 

conditions that may cause inappropriate behavioral responses during the study. 

As mentioned, the population of participants included males and females. All 

procedures were maintained the same for both males and females. In the following text we 

use musculine grammer only for reasons of convenience. 

2.1.1. Natural environment principal 

Participants were approached in their natural environment at the medical center, and 

in their regular day-to-day course of behavior. Daily schedule, including sleep, meals, 

physical and psychological therapies and other elements of rehabilitation program, was 

maintained intact. Participants taking medicines (pain killers or other kind of drugs) continued 

to take them regularly during the study. The participant's posture was maintained in 

accordance with his regular habits, i.e., sitting on a chair, sitting in a wheelchair, sitting or 

lying in bed. 

2.2. Data Collection 
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The data collection took place between December 2013 and June 2014. Participants 

were approached in the morning and afternoon (between 09:30 and 15:00). Each session 

included a short interview that was voice-recorded. No video recording was taken. This is due 

to the fact that the setting and the medical condition of the patients might lower their 

motivation to be photographed and as a consequence video recording might have had an 

effect on their willingness to participate in the study.  

The interview took place in a closed location that enabled quiet and privacy in the 

participant's surrounding. Most of the recordings were done in the participant's own room, and 

when this option was not possible (because of lack of privacy or unsuitability for recording), a 

quiet room in proximity was used. The same person conducted all the interviews with all the 

participants. 

In the interview, each participant was asked to state, in his voice, his name and ID 

number. Then he was asked to evaluate his current level of pain on a numeric scale: Degree 1 

signified no pain at all; degree 10 denoted the most intensive pain the participant has ever 

suffered in his life. The 1-10 pain scale was chosen since it is the standard scale both in 

studies of this kind and in medical questioning on pain in the Sheba Medical Center. In some 

cases participants stated a two-level pain degree (e.g. 5-6), in which case the mid-level degree 

(i.e. 5.5) was recorded. 

The interviews were recorded using the ZOOM Handy Recorder Type H4n (Japan), in 

stereophonic recording, defining a sampling rate of 96 kHz. The recording device stood on a 

tripod no more than 1 meter from the participant's head. The height of the recording device 

was adjusted to the participant's head based on his posture. Audio files were stored in the 

WAVE file format. 

After the recording phase, interviews were listened to and checked to verify recording 

quality and lack of significant surrounding noises. The total number of interviews that were 

found to comply with the study requirements was 97. 

2.3. Sample processing 

Each interview was cut into short voice samples of either digits from the participant's 

ID number or words from the participant's name. A single digital-sample included one to four 

digits; a single word-sample included one to four words. The mean length of a sample was 

0.93 seconds (min. 0.23sec, max. 2.00sec). These characteristics were chosen in order to take 

similar samples from each participant in all his interviews, and in order to ensure the respone 

was a natural answer to a question and not a response given in a reciting mode: A person's ID 
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number and name do not change and the participant knows them very well by heart, without 

any external assistance. 

We decided to cut the interviews into multiple short samples since we believed that 

significant patterns, should they exist, would be found in every voice sample. Moreover, thin-

slicing may help neutralize arbitrary noises and disturbances that might have occurred during 

the recording, and are not inherent to the situation. Cutting each interview into several 

samples would reduce the significance of such random occurrences, but would keep the 

consistent phenomenon intact. The thin-slicing approach proved to be a better method in a 

previous study that aimed at diagnosing a person's mental condition from speech samples 

[11]. 

Cutting the recorded interviews into voice samples was done manually using Audacity 

2.0.5 software for editing sounds. All the interviews of a specific participant were cut the 

same way, into samples that included the same digits or words. From a single interview, 3 to 6 

samples were derived in this manner, depending on the participant's speed of speech, 

pronunciation and choice of words (for example, there were participants who stated their 

names twice in an interview: once their first name preceding their family name and once the 

opposite). After removing the bad samples (surrounding noises, speech mistakes, etc.) 400 

samples remained from 97 interviews of the 27 participants. Figure 1 shows the number of 

interviews that were maintained (light bar) for every participant (on the X-axis) and the 

number of voice samples that were produced from the interviews (dark bar). 

 

Figure 1 - Number of interviews and samples for each participant 
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Participants reported pain of all levels from 1 to 8, and of all mid-levels excluding 3.5. 

This resulted in a scale of 14 levels (1, 1.5, 2, 2.5, 3, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8). None of 

the participants reported pain at levels above 8. Common sense indicates that a person with 

pain at these levels would not be able to conduct his regular course of life, and thus would not 

cooperate with an activity such as participating in an interview for a study. Conversations 

with participants revealed that some of them indeed had high-level pains during the period of 

the data collection, but when such levels of pain occurred they were preoccupied with getting 

treatment and were not available for interviews. 

Figure 2 shows, for each level of pain (on the X-axis), the number of interviews in 

which the pain-level was reported by participants (light bar), and the number of voice samples 

that were produced from the interviews (dark bar). 

 

Figure 2 - number of interviews and samples for each pain level 
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Audio features from the recorded samples were extracted at this stage using 

openSMILE (the Munich open Speech and Music Interpretation by Large Space Extraction 

toolkit), version 1.0.1 [16]. The openSMILE 'emobase 2010' reference set of features, which 

is based on the INTERSPEECH 2010 Paralinguistic Challenge feature set, was used. This set 

is very comprehensive and contains 1582 features, based on 34 low-level descriptors (LLD), 

corresponding delta coefficients and functionals, and is recommended by the developers as a 

reference feature set [17].  

2.6. Machine learning analysis 

Analysis of the data was done using the WEKA (Waikato Environment for 

Knowledge Analysis), version 3.6.10 [18]. We used the attribute selection feature of WEKA 

to choose the most effective attributes from the long list of features presented by 'emobase 

2010' reference set, using the Correlation-based Feature Selection (CFS) [19], implemented in 

WEKA as CfsSubsetEval. This procedure reduced the number of attributes from the 1582 

features of 'emobase 2010' to less than 50 features (the "OS short-list"). Classification was 

done using the Support Vector Machine (SVM) which is considered state-of the art classifier 

[20], assisted by the Sequential Minimal Optimization (SMO) algorithm [21]. 

Our first attempt was to classify the samples into the 14 different pain levels 

mentioned above. This attempt was not successful, and no consistent results were shown in 

the confusion matrices that were produced: Some of the levels had moderate Correctly 

Classified Instances (CCI) ratios, while other levels had low-to-very-low CCI ratios. We were 

not able to provide reasonable account for the varying rates of success of the different levels, 

or explain why a specific level was classified much better than the adjacent level in our scale. 

This finding was consistent with other attempts to differentiate between several categories of 

pain using physiological parameters [4].  

We decided to try a different approach, and attempted to distinguish "significant pain" 

from "no significant pain". This task demanded that we define the line which separates levels 

of "totally no pain", "almost no pain", "no significant pain" and the similar, from levels of 

"significant-although-moderate pain" and higher. The task is a very delicate one, since pain is 

a relative-subjective experience, with different persons having different ways of defining the 

level of pain they experience [1]. 

Loyal to the nature of the study, we preferred to closely examine the preliminary 

results prior to setting this separation line. We ran the SMO algorithm on a target-class that 

included all 14 levels. From the confusion-matrix that was provided by the SMO algorithm, it 

was clear that the border between no-pain and pain lies in the neighborhood of levels 2 and 3 
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on our scale. The algorithm could distinguish quite well levels below this neighborhood from 

levels above it, but tended to confuse levels from the same side. In order to define the exact 

place to draw the line, we changed the target-class and tried three different two-level target-

classes. The best results were achieved using the target-class that divides the scale between 

level 2 and level 2.5, or specifically as follows: No significant pain = levels 1, 1.5, 2; 

Significant pain = levels 2.5, 3, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8.  

Using this separation-line, the data was divided into 271 samples with significant pain 

and 129 samples with no significant pain, i.e., a ratio of approximately 2:1. 

2.7. Extended feature extraction 

Until this stage we used only features from the openSMILE 'Emobase 2010' feature 

set. The results are presented in Table 1 in the results section of this article. In order to 

achieve better classification, we searched for more features that might comply with the kind 

of distinction we were seeking. Two types of features were developed: Sequence Indication 

and Heat Map Thresholding. 

2.7.1. Sequence Indication 

 Several studies, regarding different kinds of pain, showed that one of the symptoms 

of pain is making human responses less rapid [22], [23], [24]. This symptom might be 

expressed by alteration in the rate of change in voice parameters, which in turn may modify 

the length of sequences in the values of these parameters. 

Sequence, in this context, is a list of consecutive measurements that are close in value 

to each other, or residing in a close neighborhood. The term "close" is relative to ε-value; two 

values V1 and V2 will be considered close if and only if |V1-V2|<ε.   

We developed two kinds of sequence-length indications for lists of values that are 

typical of audio samples: In α-sequence indication, the sequence starts at the first 

measurement and ends when one measurement is not close to the previous one. The length of 

the sequence is the number of measurements in the sequence. In β-sequence indication, the 

sequence starts at the first measurement and ends when one measure is not close to the first 

measurement of the sequence. Here, again, the length of the sequence is the number of 

measurements in the sequence. The α-value of a list of measurements is defined as the mean 

length of all α-sequences in the list. Similarly, the β-value of a list of measurements is defined 

as the mean length of all β-sequences in the list. 
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Differences between α-sequence and β-sequence are most prominent in cases of 

moderately monotone sequences of measurements (either increasing or decreasing). In such 

cases, the α-sequence would have high values (i.e., long α-sequences and high α-value), since 

each measurement is close to the previous one, even though the values become very distant 

from the beginning of the sequence. The β-sequence would have lower values for the same 

input, since it compares the current value to the beginning of the sequence, no matter what the 

rate of each step. On the other hand, cases of alternate behavior sequences (for example, a 

sequence of the following pattern: 0, 5, (-5), 5, (-5), 5, (-5)…) would typically yield higher β 

values and lower α values.  

Figure 3 demonstrates the computation of α-value and β-value on a list of 

measurements, when the ε was set to 1/20 of the range of the measurements. The sequences 

are marked by gates ("┌─┐"), and the length of each sequence is printed in the gate. At the 

right-hand side of the list the mean length of a sequence, i.e. the α-value and β-value, is 

indicated.   

 Figure 3 – Demonstration of computation of α-value and β-value for a list of measurements 

 

We decided to deploy the sequence indications on the PLP (Perceptual Linear 

prediction) analysis that was performed on the voice samples [25]. PLP, like the LPC (Linear 

Predictive Coding) method on which it is based, is built on a model that approximates the 

human vocal tract and describes it as a set of filters [26]. Consequently, we presumed that 

vocal phenomena of the type that we were searching for might be found in the PLP analysis 

of speech. Moreover, since we were looking for alterations in the rate of change in voice 

parameters, we believed that the derivatives would be the right place to investigate.    
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The PLP analysis produces 13 coefficients for a single time-frame. When PLP is 

applied to a voice sample (that contains numerous time-frames), 13 vectors are produced: one 

vector per coefficient. For each of these 13 vectors we computed the first derivative vector 

(DEL) and the second derivative vector (DDEL). We computed the α-value and the β-value 

for both vectors. Thus, we computed 52 values for each voice sample (13 PLP coefficient 

vectors * 2 [DEL + DDEL] * 2 [α-value + β-value] = 52). In each computation, the value of ε 

was set to 1/20 of the range (|max-min|) of the values in the vector (i.e., ε=|max-min|*0.05). 

Implementation of these measures was made using MATLAB version 7.12.0.365 (R2011a). 

2.7.2. Heat map thresholding 

 The second type of feature that was developed is based on Heat Map Thresholding. 

The motivation for this approach emerged after viewing the heat map image presentations of 

common feature extraction techniques, such as LPC, MFCC and PLP. In this presentation, the 

coefficients that were extracted from a voice sample are set in a 2-dimensional matrix: The 

first dimension is the number of the frame, and the second dimension is the coefficient values 

of that frame. The matrix is then displayed in a heat map format, using a color scheme that 

helps to illustrate phenomena in the image. This presentation can be applied to any feature 

extraction technique that produces a list of coefficients for a single frame. Figure 4 presents a 

heat map of a voice sample that was produced in the aforementioned way, and colored using 

the "jet" colormap. 

 

Figure 4 – Voice sample presented as a 2-dimesion matrix of RASTA-PLP coefficients and colored 

with the "jet" colormap. The X-axis is the number of the frame, the Y-axis presents the coefficients.  

 

We compared pairs of such images, where each pair was produced by two voice 

samples that were taken from the same participant. The first sample is with a low pain-level 

reported and the second is with a high pain-level reported. Visually we noticed differences in 
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the color patterns of the two images, where these differences motivated us to investigate them 

in a more rigorous manner than merely observing the image.   

   

Figure 5 – Visual comparison between two images of voice samples of the same word, uttered by the 

same participant, once with a high pain-level reported (left) and once with a low pain-level reported 

(right). 

We produced images using this method for the RelAtive SpecTral PLP (RASTA-PLP) 

coefficients. RASTA-PLP is an extension of the PLP technique that deals more effectively 

with problems of real-world recording and communication environment [27]. Similarly to 

PLP, RASTA-PLP computes the critical-band spectrum and its logarithm, but then it 

estimates its temporal derivative using regression and spectral values at 5 consecutive time 

instants, and not just a simple difference [28]. It actually filters the PLP coefficients with a 

band-pass filter that corresponds to the timing characters of the speech. This operation cancels 

the convolutional noise that is typical of recordings and communication media. Since we use 

recorded audio material that was recorded in field conditions, this technique seemed 

appropriate. 

We performed image analysis in the following manner: The image underwent 

thresholding with five different threshold values (1/6, 2/6, 3/6, 4/6 and 5/6 in the range of 

values in the original image). We now had five new images for each voice sample. Each 

image contained a different number, pattern and size of spots ("spot" is a simply-connected 

space on the 2-dimensional image). Figure 6 illustrates an original image and its five 

derivatives.  
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Figure 6 – Original RASTA-PLP 2 dimensional image (upper, left) and its five threshold derivative 

images (clockwise). The upper-right image contains 10 spots; the lower-left image contains 2 spots. 

 

For each of the five new images, six measures were taken:  

i. The number of spots in the image. 

ii. The relative area of the spots of the total area of the image. 

iii. The mean size of a spot in the image. 

iv. The relative sum of values of the spots of the total sum of values in the image. 

v. The mean of the values in the spots in the image. 

vi. The standard deviation of the values in the spots in the image. 

These two types of features (the α/β sequence indication features and heat map 

thresholding features), which together we call "original features", include altogether 260 

features. As in the former case, we performed a feature selection phase to form a short list of 

features.  

  



21    

 

2.8. Feature sets 

In conclusion, we had the following feature sets to test as classifiers: 

i. The full openSMILE 'Emobase 2010' feature set, annotated "Emobase 2010", 

containing 1582 features. 

ii. The full openSMILE 'Emobase 2010' feature set + all the 260 "original features", 

annotated "Emobase 2010 + original features", containing 1582 + 260 = 1842 

features. 

iii. The short-list of selected features from openSMILE 'Emobase 2010', annotated as 

"OS short-list", containing 43 features. 

iv. The short-list of selected features from openSMILE 'Emobase 2010' + the short-

list of "original features", annotated as "OS + original features short-list", 

containing 43 + 20 = 63 features. 

The first two feature sets were very comprehensive and actually included all the 

features that were available. Our goal was not to use this type of giant set of features, but to 

find a short list of parameters which are the most significant for the classification. 
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3. Results 

Kappa Correctly 

Classified 

Instances 

(CCI 

ratio) 

Classification 

Instances Division 

Feature set Real Instances 

Division 

No. of 

Instances 

Corpus 

True 

negative 

True 

positive 
Negative Positive 

0.3725 74.75% 59 240 OS short-list only 

129 271 400 

Whole 

(males + 

females) 
0.4022 76.00% 61 243 

OS + original features short-

list 

0.5177 80.75% 56 200 OS short-list only 

97 220 317 Males only 

0.5201 80.44% 

59 

196 

OS + original features short-

list 

0.6440 83.13% 25 44 OS short-list only 

32 51 83 Females only 

0.6398 83.13% 

24 

45 

OS + original features short-

list 

Table 1 – Classification results for small sets of features ("short-lists") 

Table 1 presents the results of the analysis. Each line represents a classification 

process that was executed on the data. The results are presented initially as one unified corpus 

of 400 instances ("whole (males+females)"), and then as two sub-sets: Male participants 

("males only") and female participants ("females only"), containing 317 and 83 instances 

respectively. The Real Instances Division column shows the way the instances were actually 

divided: "Positive" is "Significant Pain" reported (i.e. pain level 2.5 to 8); "Negative" is "No 

Significant Pain" reported (i.e. pain level 1 to 2). The Feature Set column indicates which set 

of features was deployed in the classification. The Classification Instances Division column 

demonstrates the success of the classification: The number of instances that were classified 

"True Positive" and the number of instances that were classified "True Negative". The 

Correctly Classified Instances (CCI) ratio presents the percentage of the correctly classified 

samples from the total number of samples in the corpus. Kappa is the kappa inter-rater 

agreement value (a.k.a. "Cohen's kappa", [29]) which serves as a better rater of the 

classification quality than the CCI [30], [31]. 

Examining the results in table 1 we can see that in all three cases the classification 

algorithm succeeded to classify the samples with relatively high ratio. Dividing the corpus 

into separate sub-sets according to gender made the results much better both in CCI ratio and 

in kappa statistic.  
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The addition of original features improved the results of the "whole (males+females)" 

corpus. In the "males only" corpus they provided a minor improvement. In the "females only" 

corpus they actually had no significant impact. 

The results shown on table 1 relate only to classifications which include low number 

of features (<100), since it was our goal to find a short list of parameters that are the most 

significant in distinguishing between "pain" and "no pain". It should be stated that leaving the 

"short-list demand" out, the "original features" can obtain a large improvement to the 

"Emobase 2010" feature set classification. As an example, Table 2 demonstrates a significant 

increase both in the CCI ratio and in the Kappa statistic when the "original features" are 

appended to the "Emobase 2010" list. 

Kappa Correctly 

Classified 

Instances 

(CCI 

ratio) 

Classification 

Instances Division 

Feature set Real Instances 

Division 

No. of 

Instances 

Corpus 

True 

negative 

True 

positive 

Negative Positive 

0.3981 73.75% 76 219 Emobase 2010 (1582 features) 

129 271 400 

Whole (males 

+ females) 0.4697 77.25% 79 230 

Emobase 2010 + original 

features (1842 features) 

Table 2 – Example of classification results for a large set of features  

4. Discussion 

In this study, we aimed to find connection between pain experience as reported by the 

patient and the patient's voice at the time of the report. The results show that there is indeed a 

connection. We were able to classify the voice samples, distinguishing between samples that 

were uttered when the patient reported having no significant pain, and samples that were 

uttered when the patient reported having pain. This classification was done using the recorded 

voice samples only, with no further information about the situation or about the patient. 

This connection between pain and voice might be indirect. Perhaps the pain, which the 

patients reported having, caused a physiological or mental effect, and that effect caused the 

vocal change which we found. For example, possible mental effects that might be the middle 

link in this type of connection are stress, anxiety or fear. Nevertheless, we indicate a chain of 

causes that begins with pain and ends with distinguishable vocal results. 

The classification was performed using a relatively small number of audio features 

from the comprehensive openSMILE 'Emobase 2010' feature set (the "OS short-list"), with 
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additional features that were developed during the study ("original features"). The most 

effective acoustic features for pain classification from the 'Emobase 2010' feature set were the 

MFCC (Mel-Frequency Cepstral Coefficients 0-14), the logMelFreqBand (logarithmic power 

of Mel-frequency bands 0-7) and the lspFreq (8 line spectral pair frequencies computed from 

8 LPC coefficients). Features derived from these LLDs formed the "OS short-list" feature set. 

From the "original features", both sequence indication features and heat map thresholding 

features were found to be significant and were included in the short list. 

The "original features" that were added to the "OS short-list" feature set improved the 

classification in part of the tests, i.e., in the general case and in the male-patients-only case. 

The "original features" had no significance in the female-patients-only case. 

Our results comply with previous studies which found it possible to distinguish "no 

pain" from "pain" using various physiological indications, but had difficulty in differentiating 

between the levels of pain [32]. A possible explanation for this finding might be the 

subjectivity of the experience of pain, and the significant dissimilarity in the ways different 

people assess their pain [1]. This dissimilarity is very dominant in fine classification, but may 

be prevailed in two-category classification.  

Our results were achieved with voice samples that were recorded in the patient's 

natural environment. This fact had some disadvantages (that will be further discussed below), 

but it indicates that future practical use of the findings might be done in medical and 

therapeutic areas, and is not confined to "sterile" surroundings only.  

5. Limitation and future direction 

We maintained the Natural Environment Principle, since the participants were 

approached in their natural environment at the medical center, and in their regular day-to-day 

course of behavior. This principle allowed us to include numerous participants and conduct 

interviews in their most authentic conditions, while compelling us to ignore several factors 

that may have affected the results. Medication taken regularly or irregularly by participants, 

diet changes, depression and brain injury effects are all factors that were overlooked in this 

study. Furthermore, differences of gender were found to affect the success of the 

classification. Since our study is a preliminary one, we believe that there is need for further 

study in these areas. Researchers that try to isolate and control these factors to find their 

separate affects on classification abilities might reveal interesting results.   

All of the participants in our study suffered spinal and/or brain damage. These kinds 

of injuries have special characteristics that affect both the pain and the reporter, and might be 
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different from other types of paining situations. We believe that other populations should be 

investigated as well. 

Another factor that was influenced by the Natural Environment Principle is the voice 

recording set-up. The recordings were performed in quiet rooms, but these were regular quiet 

rooms in the medical center and not recording studio rooms with noise absorption equipment. 

We checked each recording post factum and removed samples that included surrounding 

noises. Nevertheless, the recording quality of the interviews is not that of a studio. 

We tried several methods of feature extraction and found a number of effective 

features, while other features were found to be useless. We believe that more relevant features 

may be found using various feature extraction methods. 

6. The Open University of Israel corpus of speeCH in pain (OUCH-corpus) 

During our study we understood that the data we collected might enable many other 

directions of research. Some of these possible directions are described above, but many other 

possibilities exist. We felt that making the data available for other researchers would 

contribute to the research of voice, speech and pain. 

To enable use of the data we had to process the audio in a different manner, in order to 

maintain participants' privacy and confidentiality. We decided to cut only single-digit 

samples, and no more than 5 digits per participant. The selection of digits from the recorded 

interviews is deliberately partial and non-sequential, in order to prevent identification. 

6.1. Content of the Database 

The Open University of Israel corpus of speeCH in pain (OUCH-corpus) contains 

good quality voice samples of single digits processed from the raw material. It contains 437 

voice samples from 97 interviews of the 27 participants. Statistical information about the 

distribution of the data is presented in figures 7 and 8.  
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Figure 7 - Number of interviews and samples for each participant in OUCH-corpus. For each 

participant (on the X-axis), the number of interviews that were maintained with him (light bar) and the 

number of voice samples that were produced from these interviews (dark bar) are shown on the Y-axis. 

 

Figure 8 - number of interviews and samples for each pain level in OUCH-corpus. For each level of 

pain (on the X-axis), the number of interviews in which this pain-level was reported by participants 

(light bar), and the number of voice samples that were produced from these interviews (dark bar) are 

shown on the  

Y-axis. 
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6.2. Technical Organization of OUCH-corpus 

The samples are stored in an MS-Excel spreadsheet. Each line represents a single 

sample. The line contains the participant's number, age, gender, and the level of pain reported 

by him in the interview from which the sample was taken. The line includes also the name of 

the audio file of the sample, and a direct link ("attachment") to the audio file (in WAVE 

format). Naturally, the spreadsheet may be sorted, screened and searched in order to 

investigate its contents according to user needs. 

In addition, all the audio files are stored in a folder. Files can be accessed via the MS-

Excel file (as described above) or directly from the folder. 

6.3. Comparison to other voice and speech databases and corpora 

There are numerous voice and speech databases that were collected for various 

objectives. Many of the real-life speech databases were collected to assist in development of 

automatic speech recognition (ASR) systems. Such systems need voice material for training 

and calibrations, and various corpora of speech, in many languages, dialects and 

communication media, were collected for this purpose [33], [34], [35]. Other objective, with 

much resemblance to the previous one, is language identification [36].  

For emotion identification, real-life collection is much harder, since it is very difficult 

to specify the emotion that the recorded person felt at the real-life situation in which he was 

involved. Moreover, often more than one specific emotion exists at a certain moment, and a 

single emotion cannot be isolated. Hence, acted emotions which are played by actors are 

recorded and stored in databases for emotion studies [37]. There are different opinions about 

the authenticity of such acted recordings and their applicability in research of emotions [38]. 

There are databases which are neither acted nor real-life, but are in reading speaking 

style, i.e. the participants are recorded while reading written text [34]. Again, these databases 

are satisfactory for ASR, but might be inadequate for emotion recognition.   

As it was presented in the previous section, OUCH-corpus contains speech samples 

taken from interviews. The participants neither read nor acted, but answered genuinely to the 

personal questions they were asked. Therefore the corpus can actually be considered a real-

life database. 

Moreover, OUCH-corpus contains pain level reports for each sample. The pain was 

not a result of an artificial stimuli inflicted during research, which naturally, because of 

humanitarian reasons, is limited to low levels of pain [3], [4]. Part of the participants in our 
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study experienced high levels of pain due to their injuries, and the amplitude of values in the 

corpus is wide.     

6.4. Corpus availability 

The OUCH-corpus can be accessed via the Open University site in the Internet at the 

following URL: http://www.cslab.openu.ac.il/proj/ouch. Terms of use are described at that 

location, too.  

7. Conclusions 

Our study established evidence to connections between human voice and pain. We 

achieved good classification abilities between voice sample of "no significant pain" and 

samples of "Significant pain", using the audio recordings only. The classification was based 

upon known audio features and original features that were developed during the study.  

The study is a preliminary one. We pointed at several directions for future 

investigation. We established The Open University of Israel corpus of speeCH in pain 

(OUCH-corpus) and made it open-source in order to facilitate access to the data by other 

researchers.   

Further investigations in this direction may improve the ability to distinguish "pain" 

from "no pain", and might evolve into a skill that can distinguish between different levels of 

pain. This capability might be useful in many practical uses, and especially as an aide to 

physicians in assessing the pain which their patients experience. 
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 תקציר

מטרת מחקר זה היא לחפש ולבחון קשרים . היא אתגר לרופאים ולקלינאים השגת חיווי אובייקטיבי של עוצמת כאב

כצעד לקראת התמודדות , מדידה של הקול האנושי בעת הדיווח-כאב סובייקטיביים לבין פרמטרים בני-בין דיווחי

 .ל"עם האתגר הנ

לטות בוצעו בסביבה ההק. עם דיווחים על רמות שונות של כאב, מטופלים המדווחים על כאב הוקלטו מספר פעמים

דגימות קול נחתכו מתוך ההקלטות והופקו מהן מאפיינים . הטבעית של המטופלים במרכז הרפואי בו הם שוהים

בוצע תהליך סיווג המבוסס על  . ובכלל זה גם מאפיינים שפותחו במיוחד במסגרת מחקר זה, (features)קוליים 

לבין דיווחים מסוג " אין כאב משמעותי"בין דיווחים מסוג  במטרה להבחין( machine learning)למידה חישובית 

, תוך שימוש במספר קטן, תהליך הסיווג השיג שיעורי הצלחה טובים בין שתי הקטגוריות". קיים כאב משמעותי"

. סיווג המבוסס על מספר גדול של מאפיינים הגיע לשיעורי הצלחה טובים אף יותר. של מאפיינים קוליים, יחסית

תוך שימוש גם במאפיינים הייחודיים שפותחו במהלך המחקר הביא לשיפור בשיעורי ההצלחה לעומת סיווג סיווג 

 . נמצאו הבדלים בין גברים לנשים בשיעורי ההצלחה של תהליך הסיווג. שהתבסס על מאפיינים מוכרים בלבד

. לבין עוצמת הכאב המדווח מדידה של הקול האנושי-התוצאות מצביעות על קשר בין פרמטרים פיזיולוגיים בני

ממצאים אלה עשויים לסייע בפיתוח שיטות להערכת עוצמת כאב בהיעדר תקשורת מילולית ובמקרים בהם נדרשת 

הערכה אובייקטיבית
1
. 

 באמצעות חומרים אלה הוקם. נערכו והונגשו, המחקר עובדו במסגרתחומרי השמע שנאספו 

 The Open University of Israel corpus of speeCH in pain (OUCH-corpus) – קורפוס דגימות שמע ,

אודות הקשר בין כאב לבין הקול האנושי-המשך על-שיוכל לשמש כבסיס למחקרי, זמין דרך האינטרנט
2
. 

  

                                                           
1
 .עת-ויישלח לכתב מאמר המבוסס על עבודה זו נכתב 
2
 .נכתב ויישלח לכתב עת OUCH-corpusמאמר המתאר את  
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 האוניברסיטה הפתוחה 

 המחלקה למתמטיקה ולמדעי המחשב 

  

  

 טביעות האצבע של הכאב בקול האנושי 

  

 עבודת תזה זו הוגשה כחלק מהדרישות לקבלת תואר 

 במדעי המחשב  M.Sc" .מוסמך למדעים"

 באוניברסיטה הפתוחה 

 החטיבה למדעי המחשב 

  

  

 ידי -על

 יניב אשרת

  

  

 ר מיריי אביגל"ר עזריה כהן וד"ד, ענת לרנר ר"העבודה הוכנה בהדרכתם של ד

  

  

 4102יולי 


