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Abstract

This work provides an introduction to a very simple yet powerful

technique that is very useful in a variety of algorithmic problems – the

iterative rounding method. The generality of the iterative rounding

method allows us to apply it on many known optimization problems.

The main goal of this work is to illustrate the power and the po-

tential of iterative rounding algorithms. We explain the basics that

are needed to understand the iterative algorithms, and illustrate the

method by several examples.
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1 Introduction

The objective of this work is to explore the iterative rounding method. In

order to understand this method we analyze a number of specific iterative

algorithms. In this work we will also try to summarize some of the basic

ideas. It does not include all the material relevant to iterative algorithms.

Some of the theorems and lemmas in this work are not proved. In such

cases, the reader is referred to other books or papers for further study. A

large part of our work follows the book Iterative Methods in Combinatorial

Optimization (by L. Chi Lau, R. Ravi and M. Singh) [1] very closely. Many

of the theorems and Lemmas (as well as the ideas behind the proofs) are

taken from the book. However, we also survey some recent developements,

and in particular summarize the recent papers of J. Cheriyan and L. Vegh

[27] and A. Ene and A. Vakilian [2].

Understanding the iterative method should be easy via an example. Let

us examine the classic Minimum Weight Bipartite Perfect Matching problem:

Problem 1.1. (Minimum Weight Bipartite Perfect Matching) Given

a bipartite graph G = (V1 ∪ V2, E) with |V1| = |V2| and a weight function

w : E → R+, match every vertex from V1 with a distinct vertex from V2 while

minimizing the total weight of the matching.

This is one of the oldest problems in combinatorial optimization (see

[23]). We will examine the problem by analyzing the following example (as

can be seen in Figure 1):

Example 1.1. V1 = {a, b} and V2 = {c, d}. E = {(a, c), (a, d), (b, c), (b, d)}.
The weight function is defined as follows: w(a, c) = 1; w(a, d) = 4; w(b, c) =

4; w(b, d) = 2.
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Figure 1: Min Matching in Bipartite Example

It is obvious that the minimum weight matching includes the marked

edges as can be seen in Figure 2.

Figure 2: Min Matching in Bipartite Example - Solution

In order to use an iterative algorithm, we first formulate it as a linear

programming problem. A linear program is a mathematical way to model

a problem. It uses a system of linear constraints and an objective function

that should be maximized (or minimized, as in our case). In our example

we shall use xuv as an indicator to mark if the pair (u, v) is matched (i.e.

{u, v} ∈ E); w will denote the weight function (i.e. wuv means the weight of

the edge (u, v)). The following are the linear programming constraints:

minimize
∑
u,v

wuv xuv

subject to
∑

v:{u,v}∈E

xuv = 1 ∀u ∈ V1∑
u:{u,v}∈E

xuv = 1 ∀v ∈ V2

xuv ∈ {0, 1} ∀{u, v} ∈ E
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Solving (finding the optimal solution to) the linear program for xuv that

may only receive 0 or 1 is hard. It is possible to solve problem if we relax

each constraint xuv ∈ {0, 1}, and use the following requirement instead:

xuv ≥ 0 ∀{u, v} ∈ E

It is known that the obtained relaxation can be solved in polynomial

time ( [6]). In our example (Example 1.1) the obtained linear program is as

follows:

minimize
∑
e∈E

wexe

subject to xac + xad = 1

xbc + xbd = 1

xac + xbc = 1

xad + xbd = 1

xe ≥ 0 ∀e ∈ E

It is common to write the set of conditions in a linear program as a matrix

multiplication. The w and x are vectors corresponding to the edges (we and

xe). The A matrix holds the coefficients in the condition. The b vector holds

the results for the conditions. In our example we get the following:

minimize wT · x

subject to Ax = b

xe ≥ 0 ∀e ∈ E
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Where:

x =


xac

xad

xbc

xbd

w =


wac

wad

wbc

wbd

 b =


1

1

1

1


And:

A =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1


An optimal solution to the linear program may not give us the desired

result since we need a ”binary” solution, namely, a solution that assigns to

each edge a value in {0, 1}. Finding a good ”binary” solution is where the

iterative algorithm comes into place. The iterative algorithm is comprised of

3 steps that have to be repeated until the desired solution is received (the

formal algorithm is presented in a later section, see Algorithm 1):

1. Find an optimal solution to the current LP.

2. If any xuv is set to 1 in the solution, then we take the edge (u, v) into

our solution and delete the pair {u, v} from the instance to get a smaller

problem.

3. If any variable xuv is set to 0 in the solution, we remove the edge (u, v)

from the instance to get a smaller problem.

Running the iterative algorithm until each edge gets value either 0 or 1

produces the optimal solution. This claim is very simple to prove induc-

tively. The fact that the algorithm actually works correctly (i.e. during each

iteration, there is at least one edge with 1 or 0) is not trivial and should be

proven. We will return to this proof later. We need some definitions and

preliminary claims.

The definition of the linear program and how it is handled is presented in

the next section. In this section, it is assumed that the reader understands

the linear programming method.
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Definition 1.1. Let P = {x : Ax = b, x ≥ 0} ⊆ Rn be a set of feasible

solutions to a linear program. Then x ∈ Rn is an extreme point solution

of P if there does not exist a non-zero vector y ∈ Rn such that x+y, x−y ∈ P .

An extreme point solution is one of the corner points of the set of feasible

solution. For example, if our set of feasible solutions is defined by the shape

in Figure 3, the extreme points solutions are the solutions on the corners

marked in red.

Figure 3: Extreme Point Solution Example

Extreme point solutions are used in the next two lemmas:

Lemma 1.1. Let P = {x : Ax = b, x ≥ 0} and assume that the optimum

value min{cTx : x ∈ P} is finite. Then for any feasible solution x ∈ P , there

exists an extreme point solution x′ ∈ P with cTx′ ≥ cTx.

Lemma 1.2. ( Rank Lemma) Let P = {x : Ax = b, x ≥ 0} and let x be an

extreme point solution of P such that xi > 0 for each i. Then the number of

variables is equal to the number of linearly independent constrains of A. i.e.

the rank of A is the number of variables.

Using the above two lemmas it is possible to prove the correctness of the

algorithm described earlier. We do that by proving that in each iteration

there is a variable with value of 0/1 in the matching. We will prove that by

contradiction. Assume that no xuv receives 0 or 1 during the iteration. Let

us denote the number of remaining vertices in V1 (or V2) by n.

Step 1: Let’s look at a vertex v ∈ V1. Since each edge received a value

less than 1 and the sum of all edges connected to v must be 1, there must be
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at least 2 edges connected to v. This is true for all vertices in V1. So there

are at least 2n vertices in the graph.

Step 2: We have 2n constraints (1 per each vertex). It is easy to see

that the 2n constraints have dependencies between them (since the sum of

constraints for V1 are equal to the sum for V2). So at most we have 2n − 1

independent constraints. Looking at the Rank lemma, this means that there

are at most 2n− 1 variables (or vertices).

Step 3: The upper bound we found at Step 2 is 2n−1 vertices. The lower

bound we found in Step 1 is 2n vertices. Therefore we have a contradiction.

Hence, there is always a variable of value 0 or 1.

This proves that the algorithm works correctly.

In the next section we give basic background for linear programing and

how should linear programs be approached.
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2 Linear Programming

In order to fully understand the iterative method we first need to understand

linear programming. The subject of linear programming is extensively ex-

plored in the world of computer science and is addressed by many books. In

this section we use chapter 2.1 of [1] for the main reference as well as [18]

chapter 12 and [7]. For further study regarding linear programming and the

methods of solving and analyzing linear programs, the user is referred to [4],

[5] and [8].

As seen in the previous chapter, a linear program can be (and usually is)

expressed as follows (matrix notation):

minimize cTx

subject to Ax ≥ b

x ≥ 0

We say that x is feasible if it satisfies the constraints of the linear program

(Ax ≥ b and x ≥ 0 for the linear program above). A linear program can

be feasible or infeasible depending on whether a feasible solution exists. A

solution x∗ is called optimal if it fulfills cTx∗ = min{cTx : Ax ≥ b, x ≥ 0}. A

linear program is called unbounded (from below) if ∀λ ∈ R,∃ feasible x such

that cTx < λ.

In some cases a linear program may be presented in a max form (i.e.

maximize cTx and ≤ constraints). It is easy to show that any maximization

problem can be easily turned into an equivalent minimization problem, and

in this work we will also use the maximization version of the problem.

Before understanding the usage of iterative algorithms in linear programs,

we first need to understand how extreme points affect the linear programming

environment. First, let us define the following:

Definition 2.1. An extreme point solution x of a polytope (a geometric object

with flat sides over a general number of dimensions) P is integral if each

coordinate of x is an integer. A polytope P is said to be integral if every

vertex of P is integral.
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The following lemma was already referred to in the previous chapter. Now

we prove it.

Lemma 2.1. Let P = {x : Ax = b, x ≥ 0} and assume that min{cTx : x ∈
P} is finite. Then for every x ∈ P , there exists an extreme point solution

x′ ∈ P such that cTx′ ≤ cTx. i.e. there is always an extreme point optimal

solution.

Proof. Let x be an optimal solution. If x is an extreme point we are done.

Otherwise, we will show that it is possible to find an extreme point solution.

If x is a solution and not extreme point then by definition, there exists y 6= 0

such that x+ y ∈ P and x− y ∈ P . This leads to

A(x+ y) ≥ b, x+ y ≥ 0

A(x− y) ≥ b, x− y ≥ 0

We want to show that we can find a new optimal solution with more zero

coordinates or tighter constraints. Let A′ be a submatrix of A obtained by

choosing only rows for ehich equality holds at x, and let b′ be the vector b

restricted to these rows, and b′ be a vector comprised of elements from b (so

A′x = b′). Since x is not an extreme point, there is a y 6= 0 such that A′y ≥ 0

and A′(−y) ≥ 0, therefor A′y′ = 0. Since x is optimal we get:

cTx ≤ cT (x+ y)

cTx ≤ cT (x− y)

⇒ cTy = 0

We know that y 6= 0. So there must be at least one j such that yj < 0

(in y or −y). Lets look at x+ λy for λ > 0 and increase λ until x+ λy is no

longer feasible due to the non-negativity constraints on x:

λ∗ = min{min
j:yj<0

xj
−yj

, min
i:Aix>bi,Aiy<0

Aix− bi
−Aiy

}

Since x+ y ≥ 0 and x− y ≥ 0, either both xi and yi are zeros or none of

them is zero. Therefore, the coordinates that were at 0, remain at 0. Also,
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A′(x + y) = A′x = b since A′y = 0. Therefore, the tight constraints remain

tight. We assumed min{cTx : x ∈ P} is finite, so we get that λ∗ is finite and

the solution x + λ∗y has one more zero coordinate (when λ∗ = (xj)/(−yj))
or one extra tight constraint (λ∗ = (Aix − bi)/(−Aiy)). So x + λ∗y is an

optimal solution with more zeroes or tight constraints.

Using this method we can convert any optimal solution to an extreme

point optimal solution.

The proof of Lemma 2.1 not only proves that there is an extreme point

solution, it also shows us that it is possible to find it.

Lemma 2.2. Let P = {x : Ax = b, x ≥ 0}. For x ∈ P , let A′ be the

submatrix of A restricted to rows which are at equality at x, and let A′x

denote the submatrix of A′ consisting of the columns corresponding to the

nonzeros in x. Then x is an extreme point solution if and only if A′x has

linearly independent columns (i.e. A′x has full column rank).

We will skip the proof of this lemma. It can be found in [1].

Lemma 2.3. ( Rank Lemma) Let P = {x : Ax = b, x ≥ 0} and let x be an

extreme point solution of P such that xi > 0 for each i. Then any maximal

number of linearly independent tight constrains of the form Aix = bi for some

row i of A equals the number of variables.

Proof. We know that xi > 0. We have A′x = A′. From Lemma 2.2 it follows

that A′ has full column rank. Since the number of columns equals the number

of non-zero variables in x and row rank of any matrix equals the column

rank, we have that row rank of A′ equals the number of variables. Then

any maximal number of linearly independent tight constraints is exactly the

maximal number of linearly independent rows of A′ which is exactly the row

rank of A′ and hence the claim follows.

In the next part we introduce possible ways to solve the linear program.
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Let us consider the problem:

minimize cTx

subject to Ax ≥ b

x ≥ 0

In order to solve it, we first wish to introduce a variable sj for each

constraint in order to obtain the standard form:

minimize cTx

subject to Ax+ s = b

x ≥ 0

s ≥ 0

Now we can use the linear program in the standard form (i.e. equality

instead of greater or equal: Ax = b). We assume that A is of full row rank.

If this is not the case we can remove dependent constraints and reduce the

matrix size without affecting the optimal solution.

A subset of columns B of the constraint matrix A is called a basis if the

matrix of columns corresponding to B, i.e. AB, is invertible. A solution x is

called basic if and only if there is a basis B such that xj = 0 if j 6∈ B and

xB = A−1B b. If in addition to being basic, it is also feasible, i.e., A−1B b ≥ 0, it

is called a basic feasible solution. There can be many bases which correspond

to the same basic feasible solution. The next theorem shows the equivalence

of extreme point solutions and basic feasible solutions.

Theorem 2.1. Let A be a m × n matrix with full row rank. Then every

feasible x to P = {x : Ax = b, x ≥ 0} is a basic feasible solution if and only

if x is an extreme point solution.

The proof for this theorem can be found in [1] Theorem 2.1.5.

There are number of ways to solve a linear program. The simplex algo-

rithm is one of them (see [12] for further study). It works on the standard

form of the problem. The basic idea behind the simplex algorithm is to start

14



with a basic feasible solution and to move to a neighboring basic feasible

solution which improves the objective function. This is done repeatedly un-

til an optimal basic feasible solution is found. The main problem with the

simplex algorithm is that for some inputs it runs in exponential time.

There are several known polynomial time algorithms for linear program-

ming problems, among them the ellipsoid method (see [10]) and the interior

point method [11]. There are also efficient algorithms that compute a near

optimal solution in polynomial time.

Theorem 2.2 (Optimal Solution Theorem). There exists a polynomial

time algorithm that given an instance of a linear programming problem, either

returns an optimal extreme point solution, or determines that the problem has

no feasible solution.

In the last part of this section we introduce the dual problem. A linear

program of the following type:

minimize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≥ bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n

has the following dual program:

maximize

m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≤ cj ∀1 ≤ j ≤ n

yi ≥ 0 ∀1 ≤ i ≤ m

The following theorem is useful. It will not be proved here, but we will

use it later on.
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Theorem 2.3 (Strong Duality Theorem). If the primal linear program

has an optimal solution, so does its dual, and the respective optimal values

are equal.

The subject of linear programming is very complex and can be further

studied for a long time. The reader is referred to linear programming litera-

ture such as [7].
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3 Matching and Vertex Cover in Bipartite

Graph

3.1 Matching in Bipartite Graph

In this section we analyze problems over bipartite graphs, based on chapter

3 of [1].

The first problem we examine is Matchings in Bipartite Graphs. This

problem also appeared in the introduction section. In this section we repeat

it with a more formal approach.

Problem 3.1. (Matchings in Bipartite Graphs) Given a bipartite graph

G = (V1 ∪ V2, E) and weight function w : E → R, the maximum matching

problem is to find a set of vertex-disjoint edges of maximum total weight.

Let’s look at the following example (illustrated in Figure 4):

Example 3.1. V1 = {a, b} and V2 = {c, d}. E = {(a, c), (a, d), (b, c), (b, d)}.
The weight function is defined as follows: w(a, c) = 1; w(a, d) = 4; w(b, c) =

4; w(b, d) = 2.

Figure 4: Max Matching in Bipartite Example

The matching includes the marked edges as can be seen in Figure 5.
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Figure 5: Max Matching in Bipartite Example - Solution

The first thing we do is to find the linear program representing the prob-

lem (we actually look at the relaxation of the problem):

maximize
∑
e∈E

wexe

subject to
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V1 ∪ V2

xe ≥ 0 ∀e ∈ E

From now we refer to this problem as LPbm(G). Here δ(S) (where S is a

set of vertices) denotes the set of edges which have exactly one endpoint in

S. In our case S has only one vertex. We will use this definition in the entire

paper. Let us note that the number of constraints is similar to the number

of vertices in the problem. This linear program can be solved optimally in

polynomial time as stated in previous theorem (see Theorem 2.2). Let’s look

at the linear problem for Example 3.1:

maximize
∑
e∈E

wexe

subject to xac + xad ≤ 1

xbc + xbd ≤ 1

xac + xbc ≤ 1

xad + xbd ≤ 1

xe ≥ 0 ∀e ∈ E

Before continuing we define the characteristic vector:

18



Definition 3.1. Let χ(F ) where F ⊆ E denote the vector R|E| that has a 1

corresponding to each edge e ∈ F , and 0 otherwise. This vector is called the

characteristic vector of F .

Now that χ(F ) is defined, we characterize the problem’s extreme points

solution. We will use the Rank Lemma (Lemma 2.3) in the following way.

The Rank Lemma says that the number of variables (i.e. number of edges

|E|) is equal to the number of tight linearly independent constraints. In the

following lemma we see the three requirements (size, tightness and linearly

independence).

Lemma 3.1. Given any extreme point solution x to LPbm(G) such that xe >

0 for each e ∈ E there exists W ⊆ V1 ∪ V2 such that

1. x(δ(v)) = 1 for each v ∈ W .

2. The vectors in {χ(δ(v)) : v ∈ W} are linearly independent.

3. |W | = |E|.

Now we are ready to present the iterative algorithm.

3.1.1 The iterative Algorithm

Algorithm 1 Iterative Bipartite Matching Algorithm

1: F ← ∅
2: while E(G) 6= ∅ do
3: (a) Find an optimal extreme point solution x to LPbm(G) and remove

every edge e with xe = 0 from G.
4: (b) If there is an edge e = {u, v} with xe = 1, then update F ← F∪{e},

V1 ← V1 \ {u} and V1 ← V2 \ {v}.
5: end while
6: Return F .
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3.1.2 Correctness

In order to prove that the algorithm returns an optimal solution we need to

prove the following two things. First, that if the algorithm returns a solution,

it is optimal. Second, that the algorithm actually works (i.e. the while loop

actually ends).

In order to prove that the solution is optimal we use the following claim:

Claim 3.1. If the algorithm, in every iteration, finds an edge e with xe = 0

or an edge e with xe = 1, then it returns a matching F of weight at least the

optimal solution to LPbm(G).

Proof. By induction on the number of iterations (n).

For the base case (n = 1) the result is trivial.

For (n > 1) we assume that we either find an edge e with xe = 0 or

xe = 1.

If xe = 0 then according to line 3 we remove the edge from the graph G

and apply the algorithm on the new G′ which is now smaller. By induction

the solution to the new problem is optimal for the new G′. Now we only

need to understand why this solution is also optimal for the original G. Let

us mark the solution for LPbm(G′) as xG′ . Since the edge we removed had

xe = 0, we can assume that w · xG′ = w · x. Since xG′ is a solution to the

relaxation of the LPbm(G′) problem we know that it is at least as good as

the optimal solution to the problem. Since w · xG′ = w · x, x is also optimal.

If xe = 1 then the solution contains e and we still need to find a solution

for LPbm(G′) which is similar to LPbm(G) without vertices u and v (where

u and v are the endvertices of e) and all edges that have u and v as end-

vertices. Just like in the previous case we end up with an optimal solution

for LPbm(G′). Let us mark this solution (ie. set of edges) as F ′. Since it is

optimal we know that w(F ′) ≥ w ·xG′ . The algorithm as a whole returns the

solution F = F ′ ∪ e and we get:

w(F ) = w(F ′) + we and w(F ′) ≥ w · xG′

which implies that

w(F ) ≥ w · xG′ + we = w · x
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This proves our claim.

Now we need to prove that the algorithm always finds and edge with

xe = 0 or xe = 1, namely, we need the following lemma.

Lemma 3.2. Given any extreme point solution x of LPbm(G) (with E 6= ∅)
there exists an edge e with xe = 0 or xe = 1.

Proof. We will prove this by contradiction. Let us assume that no edge e

has xe = 0 or xe = 1. This means that 0 < xe < 1 for all edges e ∈ E.

According to Lemma 3.1 there exists W ⊆ V1 ∪ V2 such that |W | = |E| and

the constrains corresponding to W are linearly independent. We want to

show that for each v ∈ W the rank of v is 2 (i.e. dE(v) = 2) and the rank

of any v 6∈ W is 0 (i.e. dE(v) = 0). Since x(δ(v)) = 1 for each v ∈ W and

0 < xe < 1 we must have at least 2 edges per each v ∈ W . And:

2|W | = 2|E| =
∑
v∈V

dE(v) ≥
∑
v∈W

dE(v) ≥ 2|W |.

Therefore dE(v) = 2 for v ∈ W and dE(v) = 0 otherwise. Now, since each

vertex in W is connected to 2 edges from E, we can see that E is a cycle

cover on W (a cycle cover of a graph G is a set of cycles which are subgraphs

of G and contain all vertices of G). Let’s examine a cycle C on W . Since

our graph is bipartite C’s length is even. Further more:∑
v∈C∩V1

χ(δ(v)) =
∑

v∈C∩V2
χ(δ(v))

This contradicts the independence constraint of the second condition in

Lemma 3.1. Thus proving that not all edges fulfill 0 < xe < 1.

Combining the claim and the lemma proved that the algorithm performs

as required.

3.2 Vertex Cover in Bipartite Graph

Let us examine the following problem:
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Problem 3.2. (Vertex Cover in Bipartite Graphs) Given a bipartite

graph G = (V,E) with cost function c : V → R+ the vertex cover problem

asks for a set of vertices V ′ such that e∩ V ′ 6= ∅ for each e ∈ E and c(V ′) =∑
v∈V ′ cv is minimized.

For example let us look at the following problem(illustrated in Figure 6):

Example 3.2. The graph G is divided into two sets of vertices: V1 = {a, b, c}
and V2 = {d, e, f}. E = {(a, d), (a, e), (b, e), (c, d), (c, e), (c, f)}. The cost

function is defined as follows: c(a) = 2; c(b) = 1; c(c) = 3; c(d) = 3;

c(e) = 1; c(f) = 2.

Figure 6: Vertex Cover in Bipartite Example

One possible cover includes the marked vertices as can be seen in Figure 7.

Figure 7: Vertex Cover in Bipartite Example - Solution

The linear program LPpvc(G) for the problem is as follows (xv is an indi-
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cator for vertex v):

minimize
∑
v∈V

cvxv

subject to xu + xv ≥ 1 ∀e = {u, v} ∈ E

xv ≥ 0 ∀v ∈ V

For Example 3.2 this is translated to:

minimize 2xa + xb + 3xc + 3xd + xe + 2xf

subject to xa + xd ≥ 1

xa + xe ≥ 1

xb + xe ≥ 1

xc + xd ≥ 1

xc + xe ≥ 1

xc + xf ≥ 1

xv ≥ 0 ∀v ∈ V

Since the number of constrains is equal to the number of edges (i.e.

bounded) this problem can be solved optimally in polynomial time (see The-

orem 2.2).

Definition 3.2. The characteristic vector of W ⊆ V is a vector in R|V | that

has an 1 corresponding to each vertex v ∈ W , and 0 otherwise. This vector

is denoted by χ(W ).

Now we are ready to present the iterative algorithm:

3.2.1 The iterative Algorithm

3.2.2 Correctness

Similarly to the Matching problem, we prove the correctness in two steps.

First, we prove that if the algorithm returns a solution, then it is optimal.
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Algorithm 2 Iterative Bipartite Vertex Cover Algorithm

1: U ← ∅
2: while V (G) 6= ∅ do
3: (a) Find an optimal extreme point solution x to LPbvc(G) and remove

every vertex v with xv = 0 and dE(v) = 0 from G.
4: (b) If there is an vertex v ∈ V with xv = 1, then update U ← U ∪{v},

V (G)← V (G) \ {v} and E(G)← E(G) \ δ(v).
5: end while
6: Return U .

Second, we prove that the algorithm actually ends and returns a solution.

Claim 3.2. If the algorithm finds a vertex v with xv = 0 and dE(v) = 0 or a

vertex v with xv = 1 inside the while loop, then it returns a vertex cover U

of cost at most the optimal solution to LPbvc(G).

Since the proof of this claim is almost the same as Claim 3.1 we will not

elaborate on it.

Consider the following lemma (it is derived by the Rank Lemma in a

similar manner to Lemma 3.1).

Lemma 3.3. Given any extreme point x to LPbvc(G) with xv > 0 for each

v ∈ V there exists F ⊆ E such that

1. xu + xv = 1 for each e = {u, v} ∈ F .

2. The vectors in {χ({u, v}) : {u, v} ∈ F} are linearly independent.

3. |V | = |F |.

Using the above lemma we prove the following:

Lemma 3.4. Given any extreme point solution x to LPbvc(G) there must

exist a vertex v with xv = 0 and dE(v) = 0 or a vertex with xv = 1.

According to this lemma, the algorithm returns a cover of cost at most

the cost of an optimal solution of LPbvc(G).
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Proof. By contradiction, let us assume that xv < 1 and xv = 0 while dE(v) ≥
1 for all v ∈ V . Let us look at an edge e = {u, v}. From the constraints in

the LPbvc(G) we know that xu + xv ≥ 1. Since we assumed that xv < 1 then

xu > 0. In order to see that the assumption is incorrect we use Lemma 3.3.

According to the lemma there exists F ⊆ E such that |F | = |V |. We want

to show that F is acyclic. If we show that F is acyclic then it implies that

|F | ≤ |V |−1, giving a contradiction. Assume that C ⊆ F is a cycle. C must

be even since G is bipartite. Since G is bipartite, C is a disjoint union of

two matchings, say M1 and M2. The sum of the constraints for edges in M1

and M2 is the same, but this contradicts the independence of the constraints

according to lemma 3.3. Therefore C is acyclic.

3.3 Vertex Cover and Bipartite Matching Duality

As the reader probably noticed the vertex cover and maximum matching

problems discussed in the previous sections seem very similar. It is possible

to prove that on bipartite graphs they have the same value.

Theorem 3.1. Given an unweighted bipartite graph G = (V,E) we have

max{|M | : M is a matching} = min{|U | : U is a vertex cover}

Proof. First, let us remind the reader Theorem 2.3: The dual linear program

has an optimal solution that is equal to the optimal solution of the primal

problem. For simplicity, let us assume that the cost functions we use are

constant 1 (the following can also be proved when the costs are different).

Let M∗ be a matching returned by Algorithm 1 and U∗ be a cover returned

by Algorithms 2. We already know that the solutions are optimal for both

problems. If we consider the dual problem for the matching, we see that it

is the same as the vertex cover primal problem and vice versa. Now we use

the strong duality theorem (Theorem 2.3) and get that both programs have

optimal solutions of equal value.
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4 Spanning Trees

In this section we explore the spanning tree problems. The exploration of

the spanning tree problems is based on chapter 4 of [1].

4.1 Minimum Spanning Tree

Let us examine the following problem:

Problem 4.1. Minimum Spanning Tree (MST) Given an undirected

graph G = (V,E) edge costs c : E → R, and the task is to find a spanning

tree of minimum total edge cost.

Let us consider the following example (illustrated in Figure 8):

Example 4.1. For the graph G the vertices are: V = {a, b, c, d} and E =

{(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)}. The cost function is defined as fol-

lows: c(a, b) = 1; c(a, c) = 1; c(a, d) = 4; c(b, c) = 4; c(b, d) = 2; c(c, d) = 3.

Figure 8: Minimum Spanning Tree Example

For this problem the minimum tree is obvious as can be seen in the

following Figure 9.
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Figure 9: Minimum Spanning Tree Solution Example

4.1.1 The Linear Program Relaxation

Let us define xe as an indicator that states whether edge e is included in the

spanning tree. Let ce denote the cost of edge e. For a subset F of edges, let

x(F ) denote
∑
e∈F

xe. For a subset S of vertices, δ(S) is the set of edges with

exactly one endpoint in S. Finally let E(S) be the set of edges with both

endpoints in S.

The following describes the so called subtour linear program relaxation

for MST:

minimize
∑
e∈E

cexe

subject to x(E(S)) ≤ |S| − 1 ∀∅ 6= S ⊂ V

x(E(V )) = |V | − 1

xe ≥ 0 ∀e ∈ E

The constraints demand that for each subset of V , the sum of all xe for

edges inside the set is at most |S| − 1. This means that there is at least one

edge going out of the set. In addition, we require that sum of all edges is

|V | − 1. So we know that all vertices are connected once.

Let us note that even though the number of constraints in this problem

is exponential in |V |, it is still possible to solve it in time polynomial in |V |
(see [1] section 4.1.2).

Now we wish to analyze the extreme point solution. Remember that

an extreme point solution is a unique solution that fulfills the following: it
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is defined by n linearly independent tight inequalities (n is the number of

variables in the LP). Since our LP has exponential number of inequalities,

some may not be satisfied as equalities. In order to analyze the extreme point

solution, we need to find a ”good” set of tight inequalities. We will ignore

edges with xe = 0 as these edges can be removed from the graph without

affecting the feasibility of the objective value.

Let us examine the Uncrossing Technique (see [9]). This technique is

used to find a good set of tight inequalities for n extreme point solution in

the subtour LP . Let χ(F ) (F ⊆ E) denote the characteristic vector in R|E|

that has a 1 corresponding to each edge e ∈ F and 0 otherwise. Then:

Proposition 4.1. For X, Y ⊆ V ,

χ(E(X)) + χ(E(Y )) ≤ χ(E(X ∪ Y )) + χ(E(X ∩ Y ))

and equality holds if and only if E(X \ Y, Y \X) = ∅.

Proof. Immediate from

χ(E(X)) + χ(E(Y )) = χ(E(X ∪ Y )) + χ(E(X ∩ Y ))− E(X \ Y, Y \X)

Given an extreme point solution x to the subtour LP , let F = {S ⊆
V | x(E(S)) = |S|−1} be the family of tight inequalities for x. The following

lemma shows that this family is closed under intersection and union.

Lemma 4.1. If S, T ∈ F and S ∩ T 6= ∅, then both S ∩ T and S ∪ T are in

F . Furthermore, χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

We will skip this proof. It can be found in Lemma 4.1.4. in [1].

Definition 4.1. span(F) is defined as the vector space generated by the set

of vectors {χ(E(S)) | S ∈ F}.

Definition 4.2. Two sets X, Y are intersecting if X ∩Y , X−Y and Y −X
are nonempty.
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Definition 4.3. A family of sets is laminar if no two sets are intersecting.

We use the above 3 definitions in order to state that an extreme point

solution is characterized by tight inequalities whose corresponding sets form

a laminar family.

Lemma 4.2. If L is a maximal laminar subfamily of F , then span(L) =

span(F)

The proves for Lemma 4.2 is very mathematical and it is available in [1]

under Lemma 4.1.5.

Definition 4.4. A singleton is defined as a subset with only one element.

Proposition 4.2. A laminar family L over the ground set V without single-

tons has at most |V | − 1 distinct members.

Now we are ready to present the iterative algorithm.

4.1.2 Leaf-finding Iterative Algorithm

Algorithm 3 Iterative Leaf-finding MST Algorithm

1: F ← ∅
2: while V (G) ≥ 2 do
3: (a) Find an optimal extreme point solution x to the subtour LP and

remove every edge e with ev = 0 from G.
4: (b) Find a vertex v with at most one edge e = uv incident to it, then

update F ← F ∪ {e} and G← G \ {v}.
5: end while
6: Return F .

4.1.3 Correctness

We start by proving that the algorithm terminates.

Lemma 4.3. For any extreme point solution x to the subtour LP with xe > 0

for every edge e, there exists a vertex v with d(v) = 1
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Proof. By contradiction let’s assume that each vertex has d(v) > 1. This

means that 1
2

∑
v∈V

d(v) ≥ |V |. On the other hand, since there are no edges

with xe = 0 all tight inequalities are in the form of χ(E(S)) = |S| − 1. By

Lemma 4.2, there are |L| linearly independent tight constraints of the form

χ(E(S)) = |S| − 1, where L is a laminar family with no singleton sets. As a

result |E| = |L| by the Rank Lemma 2.3. By Proposition 4.2, |L| ≤ |V | − 1

and therefore |E| ≤ |V | − 1 which contradicts the original assumption.

Once we established that the algorithm terminates, we need to see that

it returns a minimum spanning tree.

Theorem 4.1. The Iterative MST Algorithm returns a minimum spanning

tree in polynomial time.

Proof. By induction on the number of iterations of the algorithm. Let’s

assume the algorithm finds a vertex v with d(v) = 1 (i.e. leaf) in line 4 (step

(b)) of the loop. The edge e connects v to the rest of the graph. Then xe = 1

since x(δ(v)) ≥ 1 is a valid inequality of the LP. The algorithm removes e

from the graph and adds it to the spanning tree. Now we are left with a

smaller problem (i.e. to solve the MST problem for G \ {v}). Once we know

the solution to the smaller problem, we can add e to the solution for a full

MST. It is easy to see that the cost of such tree is optimal.
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5 Directed Graphs

In this chapter we discuss directed graphs and how the iterative technique

can help us solve problems on directed graphs. This section is based on

chapter 6 of [1].

5.1 Minimum Cost Arborescence

Problem 5.1. Given a directed graph D = (V,A) and a root vertex r ∈ V ,

a spanning r-arborescence is a subgraph of D so that there is a directed path

from r to every vertex V − r. The minimum spanning arborescence problem

is to find a spanning r-arborescence with the minimum total cost.

For example let us look at the following example (illustrated in Figure 10):

Example 5.1. For the graph G the vertices are: V = {a, b, c, d} and E =

{(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)} (all edges are directed from first vertex

to second). The cost function is defined as follows: c(a, b) = 1; c(a, c) = 1;

c(a, d) = 4; c(b, c) = 4; c(b, d) = 2; c(c, d) = 3.

Figure 10: Minimum Cost Arborescence

For this problem the minimum spanning arborescence is obvious as can

be seen in the following Figure 11.
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Figure 11: Minimum Cost Arborescence Solution Example

As in previous sections we will first find the linear program and then

characterize the extreme point solutions. Only then we will explore the

iterative algorithm.

5.1.1 Linear Programming Relaxation

Here we define the linear program for the solution of Problem 5.1

In the following linear program ca is the cost of arc a and xa is an indicator

for the choosing of arc a. We mark δin(S) as the set of all arcs incoming to

a vertex v ∈ S from any vertex outside of S ⊆ V . The expression χ(δin(S))

represents a vector in R|A| for set S. This vector has 1 for each arc a ∈ δin(S),

and 0 otherwise. This vector is called the characteristic vector of δin(S) and

is denoted by χ(δin(S)). The term x(δin(S)) means the sum
∑

a∈δin(S)
xa.

minimize
∑
a∈A

caxa

subject to x(δin(S)) ≥ 1 ∀S ⊆ V − r

xa ≥ 0 ∀a ∈ A

The linear program simply states that for each subset of V without r

(S ⊆ V − r) we can find at least one arc that is coming into S from A− S.

5.1.2 Characterization of Extreme Point Solutions

In this section we analyze the extreme point solution to the minimum span-

ning arborescence. The reader may note that the conclusions and lemmas
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in this section are very similar to the ones in the Minimum Spanning Trees

section.

Just like in the minimum spanning trees, we use the uncrossing technique

to find a good set of tight inequalities that define an extreme point solution

to the directed LP. In this section we will use F to represent this family of

tight inequalities (F = {S|x(δin(S)) = 1}).

Proposition 5.1. For X, Y ⊆ V ,

x(δin(X)) + x(δin(Y )) ≥ x(δin(X ∪ Y )) + x(δin(X ∩ Y ))

and equality holds if and only if E(X \ Y, Y \X) = ∅.

This is similar to proposition 4.1.

Now we want to see that F is closed under intersection and union:

Lemma 5.1. If S, T ∈ F and S ∩ T 6= ∅ then both S ∩ T and S ∪ T are in

F . Furthermore, χ(δin(S)) + χ(δin(T )) = χ(δin(S ∩ T )) + χ(δin(S ∪ T ))

The proof for this can be found in [1] lemma 6.1.2.

In this section we use the following definition:

Definition 5.1. span(F) is defined as the vector space generated by the set

of vectors {χ(δin(S)) | S ∈ F}.

Let us also remind the reader that a family of sets is laminar if no two

sets are intersecting.

Lemma 5.2. If L is a maximal laminar subfamily of F , then span(L) =

span(F)

This is similar to Lemma 4.2 and will not be proven here.

Corollary 5.1. Let x be any extreme point solution to the directed LP . Then

there exists a laminar family L such that:

1. x(δin(S)) = 1 for all S ∈ L.

2. The vectors in {χ(δin(S)) : S ∈ L} are linearly independent.
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3. |A| = |L|.

A laminar family L defines naturally a forest L as follows: Each node of

L corresponds to a set in L, and there is an arc from set R to set S if R is

the smallest set containing S. R is called the parent of S, and S is called

the child of R. A node with no parent is called a root, and a node with no

children is called a leaf. Given a node R, the subtree rooted at R consists of

R and all its descendants. The forest L corresponding to the laminar family

L will be used to perform the token counting arguments inductively.

5.1.3 The Iterative Algorithm

The following is an iterative algorithm for the directed LP. This algorithm is

very similar to the MST algorithm in the previous chapter.

Algorithm 4 Iterative Minimum Spanning Arborescence Algorithm

1: F ← ∅
2: while |V (D)| ≥ 2 do
3: (a) Find an optimal extreme point solution x to the directed LP and

remove every arc a with xa = 0 from D.
4: (b) Find an arc a = uv with xa = 1 and update F ← F ∪ {a} and

D ← D \ {uv}.
5: end while
6: Return F .

5.1.4 Correctness and Optimality

The first step in proving the correctness and optimality is to prove that the

algorithm terminates.

Lemma 5.3. For any extreme point solution x to the directed LP, either

there is an arc with xa = 0 or there is an arc with xa = 1.

Proof. We explain the idea behind the proof (for a full proof see [1] Lemma

6.1.6). The proof is by contradiction – assume that there is no arc with

xa = 0 or xa = 1. We can use the laminar family L from Corollary 5.1 in

order to create the contradiction. The idea is to show that the number of
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constraints (number of sets in L) is smaller than the number of arcs. The

proof is very similar to the MST problem proof.

Now that we know that the algorithm terminates (since the number of

iterations is now limited) we only need to prove that the algorithm runs in

polynomial time. The proof for this is roughly the same as the proof for

Theorem 4.1. The reader may refer to it for further study of the case.
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6 Matching

In the previous sections we met the maximum matching problem in bipartite

graphs. In this section we want to explore the matching in a general weighted

undirected graph. This section is based on chapter 9 of [1].

6.1 Graph Matching

When we examined the bipartite matching we used a linear programming

relaxation to the problem. For general graphs this relaxation does not work.

Let us start by defining the problem:

Problem 6.1. Given an undirected graph G = (V,E) with a weight function

w : E → R the maximum matching problem is to find a set of vertex-disjoint

edges of maximum total weight.

6.1.1 Linear Programming Relaxation

Before looking at the linear program relaxation let us recall that E(S) denotes

the set of edges with both endpoints in S ⊆ V and x(F ) is short for
∑

e∈F xe

for F ⊆ E.

The linear programming relaxation for the maximum matching problem

is given by the following LPM(G) (remember that δ(x) is defined as a set of

edges that have x as one of their endpoints).

due to Edmonds [13]:

maximize
∑
e∈E

wexe

subject to x(δ(v)) ≤ 1 ∀v ∈ V

x(E(S)) ≤ |S| − 1

2
∀S ⊂ V, |S| odd

xe ≥ 0 ∀e ∈ E
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6.1.2 Characterization of Extreme Point Solutions

In this section we define χ(F ) in the following way: For a subset of edges

F ⊆ E, χ(F ) is the characteristic vector χ(F ) ∈ R|E| with an 1 corresponding

to each edge in F and 0 otherwise.

Lemma 6.1. Let x be an extreme point solution to LPM(G) with 0 < xe < 1

for each edge e ∈ E(G). Then there exists a laminar family L of odd-sets

and a set of vertices T ⊆ V such that:

1. x(E(S)) = (|S| − 1)/2 for each S ∈ L and x(δ(v)) = 1 for each v ∈ T .

2. The vectors in {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly

independent.

3. E(S) is connected for each set S ∈ L.

4. |E| = |L|+ |T |.

The proof for Lemma 6.1 is relatively long and mathematical. The reader

can find the detailed proof in [1] under Lemma 9.1.2.

6.1.3 The Iterative Algorithm

Algorithm 5 Iterative Matching Algorithm

1: F ← ∅
2: while |V (G)| 6= ∅ do
3: (a) Find an optimal extreme point solution x to the directed LPM(G)

and remove every edge e with xe = 0 from G.
4: (b) If there is an edge e = {u, v} with xe = 1 then update F ← F ∪{e}

and G← G \ {u, v}.
5: end while
6: Return F .

6.1.4 Correctness and Optimality

If we knew that during each iteration the algorithm would find an edge e

with xe = 1, then the returned solution would be optimal, by induction. So

what we need to show is that such an edge always exists.
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Lemma 6.2. Given any extreme point x to LPM(G) there must exist an edge

e with xe = 0 or xe = 1.

Proof-sketch: By contradiction, let’s assume that 0 < xe < 1 for all edges

e ∈ E. Let L be a laminar family of tight odd-sets and T be a set of tight

vertices satisfying the properties of Lemma 6.1. Let L′ = L ∪ T be the

extended laminar family. If we show that |E| = |L| + |T | = |L′| then by

contradiction our proof is done. We will use token counting argument. In

the beginning we give each edge a token (total of |E| tokens). Then each edge

gives its token to the smallest set in L′ that contains both of its endpoints.

Now we redistribute the tokens inductively so that each member in L′ has

one token. Naturally there are some tokens left. This implies that |L| > |L′|.
The complete proof is found in [1] Lemma 9.1.7.

6.2 Hypergraph Matching

In this section we consider matching problems on hypergraphs. It is easy to

understand what what hypergraphs from the following definitions:

Definition 6.1. A hypegraph H = (V,E) consists of a set V of vertices

and a set E of hyperedges.

Definition 6.2. A hyperedge e ∈ E is a subset of vertices.

Definition 6.3. A subset M ⊆ E(H) of hyperedges is a matching if every

pair of hyperedges in M has an empty intersection.

The following is the main problem we discuss over hypergraphs. Before

handling hypergraphs, let us first review what are approximation algorithms.

Sometimes, it is difficult to find a solution to an optimization problem effi-

ciently (in polynomial time). One possible approach, is instead of finding an

optimal solution to the problem, to find an approximate solution. In order

to classify the approximation we use the concepts of “ρ-approximation algo-

rithm” and “approximation ratio ρ”. Here ρ denotes the ratio between the

optimum solution and the approximate solution. We say that an algorith has

approximation ratio ρ, or that it is a ρ-approximation algorithm if it runs in
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polynomial time and produces a solution of value at most ρ the value of an

optimal solution in the case of a minimization problem, and of value at least

1/ρ the value of an optimal solution in the case of a maximization problem,

Problem 6.2. Given a hypergraph, a weight we on each hyperedge e, the

hypergraph matching problem is to find a matching with the maximum

total weight.

Note that the graph matching problem is a special case when every hy-

peredge has exactly two vertices.

Definition 6.4. A hypergraph H is called k-uniform if every hyperedge has

exactly k vertices.

Definition 6.5. A hypergraph H is called k-partite if H is k-uniform and

the set of vertices can be partitioned into k disjoint sets V1, V2, ..., Vk so that

each hyperedge intersects every set of the partition in exactly one vertex.

Note that a bipartite graph is a 2-partite hypergraph.

Theorem 6.1. For the hypergraph matching problem, there is a polynomial

time (k − 1 + 1
k
)-approximation algorithm for k-uniform hypergraphs, and a

(k − 1)-approximation algorithm for k-partite hypergraphs.

For k = 3, the problem in Theorem 6.1 is known as the 3-dimensional

matching problem. It is a classic NP-complete problem. In this work we

prove the theorem for the 3-partite hypergraphs.

6.2.1 Linear Programming Relaxation

In this section we use δ(v) to denote the set of hypergraphs that contains v.

The standard linear programming relaxation would be:

maximize
∑
e∈E

wexe

subject to
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E
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As usual xe is an indicator for edge e; we is the weight of edge e. The

original linear program would require that at most one edge of all the edges

that include the vertex v is chosen into the matching.

Let B denote the vector of all degree bounds 0 ≤ Bv ≤ 1 for each vertex

v ∈ V . Let us consider the following general linear problem denoted by

LPM(H,B) (Initially Bv = 1 for each v ∈ V ).

maximize
∑
e∈E

wexe

subject to
∑
e∈δ(v)

xe ≤ Bv ∀v ∈ V

xe ≥ 0 ∀e ∈ E

For the analysis of the iterative algorithm, we will use the LPM(H,B).

6.2.2 Characterization of Extreme Point Solutions

The lemma below follows by a direct application of the Rank Lemma.

Lemma 6.3. Given any extreme point solution x to LPM(H,B) with xe > 0

for each edge e ∈ E, there exists W ⊆ V such that:

1. x(δ(v)) = Bv > 0 for each v ∈ W .

2. The vectors in {χ(δ(v)) : v ∈ W} are linearly independent.

3. |E| = |W |.

6.2.3 Iterative Algorithm

The algorithm consists of two phases. In the first phase we use an iterative

algorithm to provide a ”good” ordering of the hyperedges. In the second

phase we apply the local ratio method to this good ordering to obtain a

matching with cost at most twice the optimum.

The Local-Ratio routine described below provides an efficient procedure

to obtain a 2-approximate solution for the 3-dimensional matching problem.

40



Algorithm 6 Iterative 3-Dimensional Matching Algorithm

1: Find an optimal extreme point solution x to LPM(H,B) with Bv = 1 for
all v.
F ← ∅

2: for i from 1 to |E(H)| do
3: (a) Find a hyperedge e with x(N [e]) ≤ 2.
4: (b) Set fi ← e and F ← F ∪ {fi}.
5: (c) Remove e from H.
6: (d) Decrease Bv by xe for all v ∈ e.
7: end for
8: M ← Local-Ratio(F,w), where w is the weight vector of the hyper-

edges.
9: Return M .

Algorithm 7 Local-Ratio(F,w)

1: Remove from F all hyperedges with non-positive weights.
2: if F = ∅, then return ∅.
3: Choose from F the hyperedge e with the smallest index. Decompose the

weight vector w = w1 + w2 where

w1(e
′) =

{
w(e) if e′ ∈ N [e],
0 otherwise.

4: M ′ ← Local-Ratio(F,w2)
5: If M ′ ∪ {e} is a matching, return M ′ ∪ {e}; else return M ′

6.2.4 Correctness and Optimality

We prove the following theorem:

Theorem 6.2. After the loop (i.e. line 8) of the iterative algorithm, there

is an ordering of the hyperedges such that:

x(N [ei] ∩ {ei, ei+1, ..., em}) ≤ 2 for all 1 ≤ i ≤ m, where m is the number of

hyperedges in x with positive fractional value.

In order to prove Theorem 6.2 we first need to prove the following Lemma:

Lemma 6.4. Suppose x is an extreme point solution to LPM(H,B). If xe > 0

for all e ∈ E, then there is a hyperedge e with x(N [e]) ≤ 2.
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Proving this is done using Lemma 6.3. Let us assume that W is a set of

tight vertices as described in Lemma 6.3. We start by proving that in any

extreme point solution to LPM(H,B), there is a vertex in W with maximum

degree of 2. By contradiction, let us assume that all vertices in W have a

degree of 3 or above. Therefore:

|W | = |E| =
∑

v∈V |δ(v)|
3

≥
∑

v∈W |δ(v)|
3

≥ |W |.

The result implies that all inequalities must be held as equalities. This

implies that every hyperedge is contained in W .

Let V1, V2, V3 be the tri-partition of V , and Wi = W ∩ Vi for 1 ≤ i ≤ 3.

Since each hyperedge intersects Wi exactly once we get:∑
v∈W1

χ(δ(v)) =
∑
v∈W2

χ(δ(v))

This implies that the characteristic vectors in W are not linearly indepen-

dent, contradicting Lemma 6.3. Therefore there is a vertex u ∈ W of degree

at most two. Let e = {u, v, w} be the hyperedge in δ(u) with larger weight.

Since u is of degree at most two, this implies that 2xe ≥ x(δ(u)). And:

x(N [e]) ≤ x(δ(u)) + x(δ(v)) + x(δ(w))− 2xe ≤ x(δ(v)) + x(δ(w)) ≤ Bv +Bw ≤ 2.

We have a hyperedge e with x(N [e]) ≤ 2 in an extreme point solution

to LPM(H,B). Now we need to show that the remaining solution in the

algorithm (second part of the iterative loop - after removing e and updating

Bv) is still an extreme point solution to LPM(H,B). We will do this by

proving the following lemma:

Lemma 6.5. In any iteration of the loop of the algorithm (lines 2-7) the re-

striction of the fractional solution is an extreme point solution to LPM(H,B).

Proof. Suppose the graph in the current iteration is H = (V,E). Let xE

be the restriction of the initial extreme point solution x to E. We prove by

induction on the number of iterations that xE is an extreme point solution

to LPM(H,B). This holds in the first iteration by first line of the algorithm.
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Let e = {v1, v2, v3} be the hyperedge found in the first line of the loop in

the algorithm. Let E ′ = E − e and H ′ = (V,E ′). Let B′ be the updated

degree bound vector. We prove that xE′ is an extreme point solution to

LPM(H ′,B′). Since the degree bounds of v1, v2, v3 are decreased by exactly

xe, it follows that xE′ is still a feasible solution. Suppose to the contrary that

xE′ is not an extreme point solution to LPM(H ′,B′). This means that xE′ can

be written as a convex combination of two different feasible solutions y1 and

y2 to LPM(H ′,B′). Extending y1 and y2 by setting the fractional value on e

to be xe, this implies that xE can be written as a convex combination of two

different feasible solutions to LPM(H,B), contradicting that xE is an extreme

point solution. Hence xE′ is an extreme point solution to LPM(H ′,B′).

Now that we also established that the solution remains an extreme point

solution we can apply Lemma 6.4 inductively. The algorithm will succeed in

finding the ordering we require.

We now wish to obtain an efficient approximation algorithm for the 3-

dimensional matching problem. We introduce the Local Ratio Theorem from

[14]:

Theorem 6.3 (Local Ratio Theorem). Let C be a set of vectors in Rn.

Let w,w1, w2 ∈ Rn be such that w = w1+w2. Suppose x ∈ C is r-approximate

with respect to w1 and r-approximate with respect to w2. Then x is r-

approximate with respect to w.

Proof. Let x∗, x∗1, and x∗2 be optimal solutions with respect to w, w1, and

w2, respectively. Clearly, w1 · x∗1 ≤ w1 · x∗, and w2 · x∗2 ≤ w2 · x∗. Thus

w · x = w1 · x+ w2 · x ≤ r(w1 · x∗1) + r(w2 · x∗2) ≤ r(w1 · x∗) + r(w2 · x∗).

Now it remains to prove that the cost of the matching we received is at

least half the optimum.

Theorem 6.4. Let x be an optimal extreme point solution to LPM(H,B).

The matching M returned by the algorithm satisfies w(M) ≥ 1
2
· w · x

Proof. We prove this using induction on the number of hyperedges having

positive weights. If the number of hyperedges with positive edges is 0 the case
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is trivial. Let e be the hyperedge chosen by the Local-Ratio algorithm. e has

the smallest index in the ordering. So by Theorem 6.2, we get x(N [e]) ≤ 2.

Let w,w1, w2 be the weight vectors from the algorithm. Let y and y′ be the

characteristic vectors for M and M ′ from the algorithm. Since w(e) > 0

and w2(e) = 0, w2 has fewer hyperedges with positive weights than w. By

the induction hypothesis, w2 · y′ ≥ 1
2
· w2 · x. Since w2(e) = 0, this implies

that w2 · y ≥ 1
2
· w2 · x. By the last step of the algorithm, at least one

hyperedge in N [e] is in M . Since x(N [e]) ≤ 2 and w1(e
′) = w(e) for all

e′ ∈ N [e], it follows that w1 · y ≥ 1
2
· w1 · x. Therefore, by Theorem 6.3, we

have w · y ≥ 1
2
· w · x. This shows that M is a 2-approximate solution to the

3-dimensional matching problem.
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7 Network Design

In this chapter we study the survivable network design problem (SNDP).

This chapter is based on chapter 10 of [1]. In addition this chapter analyzes

the degree bounded SNDP as described in [2].

Definition 7.1. Given an undirected graph G = (V,E) and a connectivity

requirement ruv for each pair of vertices u, v, a Steiner network is a subgraph

of G in which there are at least ruv edge-disjoint paths between u and v for

every pair of vertices u, v.

7.1 SNDP

Problem 7.1. The Survivable Network Design Problem is to find a Steiner

network with minimum total cost.

Note that the survivable network design problem generalizes the minimum

Steiner tree problem, the minimum Steiner forest problem, and the minimum

k-edge-connected subgraph problem.

In the first part of this section we introduce the 2-approximation algo-

rithm to the problem. This was first introduced by Jain [15]. Then we show

the connection to the traveling salesman problem and finally we consider the

minimum bounded degree Steiner network problem.

7.1.1 Linear Programming Relaxation

First we define skew supermodular set functions.

Definition 7.2. A function f : 2v → Z is called skew supermodular if at

least one of the following two conditions holds for any two subsets S, T ⊆ V :

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T )

f(S) + f(T ) ≤ f(S \ T ) + f(T \ S)

45



It is not hard to show that the set function f defined by f(S) = maxu∈S,v 6∈S{ruv}
for each S ⊆ V is a skew supermodular function.

The linear program LPsndp:

minimize
∑
e∈E

cexe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ E

It is not known whether there is a polynomial time separation oracle for a

general skew supermodular function f . This linear program for the minimum

Steiner network problem, however, can be solved in polynomial time by using

a maximum flow algorithm as a separation oracle.

7.1.2 Characterization of Extreme Point Solutions

Similar to previous sections (spanning trees) the extreme point solution to

LPsndp is characterized by a laminar family of tight constraints. The following

Lemma follows from the uncrossing arguments and the Rank Lemma.

Lemma 7.1. Let the requirement function f of LPsndp be skew supermodular,

and let x be an extreme point solution to LPsndp with 0 < xe < 1 for every

edge e ∈ E. Then, there exists a laminar family L such that:

1. x(δ(S)) = f(S) for each S ∈ L.

2. The vectors in {χ(δ(S)) : S ∈ L} are linearly independent.

3. |E| = |L|.

7.1.3 The Iterative Algorithm

The following algorithm is due to Jain [15]:

46



Algorithm 8 Iterative Minimum Steiner Network Algorithm

1: F ← ∅, f ′ ← f ;
2: while f ′ 6≡ 0 do
3: (a) Find an optimal extreme point solution x to LPsndp with cut re-

quirements f ′ and remove every edge e with xe = 0.
4: (b) If there is an edge e with xe ≥ 1/2, then add e to F and delete e

from the graph.
5: (c) For every S ⊆ V : update f ′(S)← max{f(S)− dF (S), 0}.
6: end while
7: Return H = (V, F ).

7.1.4 Correctness and Performance Guarantee

Jain’s proof of the algorithm uses a token counting argument.

Theorem 7.1. Suppose f is an integral skew supermodular function and x

is an extreme point solution to LPsndp. Then there exists an edge e ∈ E with

xe ≥ 1
2
.

It is obvious that if Theorem 7.1 is true then the iterative algorithm

terminates (since step (b) in the loop is fulfilled). Now we wish to prove

Theorem 7.1. This proof uses the fractional token idea as can be seen in [3].

Proof. We start by assuming in contradiction that 0 < xe < 1/2 for each

e ∈ E. We will show that |E| > |L| as contradiction to Lemma 7.1. The

fractional token method is used as follows: Assign each edge e = {u, v} one

token. Now, reassign the tokens as follows:

1. Rule 1 Let S ∈ L be the smallest set containing u and let R ∈ L be

the smallest set containing v. Let e distribute xe (which is smaller than

1/2 by assumption) token to S and R.

2. Rule 2 Let e distribute the remaining 1 − 2xe tokens to the smallest

set containing both u and v (denote this set as T ∈ L).

Now choose any set S ∈ L. This set has k children (k ≥ 0) denoted by
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R1, R2, ...Rk. Then:

x(δ(S)) = f(S)

x(δ(Ri)) = f(Ri) ∀1 ≤ i ≤ k

If we subtract the equations we get:

x(δ(S))−
∑
i

x(δ(Ri)) = f(S)−
k∑
i=1

f(Ri)

We define 3 groups of edges:

A = {e : |e ∩ (∪iRi)| = 0, |e ∩ S| = 1}

B = {e : |e ∩ (∪iRi)| = 1, |e ∩ S| = 2}

C = {e : |e ∩ (∪iRi)| = 2, |e ∩ S| = 2}

Edges in A have only one vertex in S but no vertices in the children.

Edges in B and C have both endnodes in S but for an edge in B only one

side of the edge is in some child of S.

According to Rule 1, for each edge e ∈ A, S receives xe tokens. For any

edge in B, both rules apply; Rule 1 for the edge that is also shared with the

children of S, and Rule 2 as trivially seen. So S received 1− xe tokens. For

any edge in C, S receives 1− 2xe tokens by Rule 2.

We rewrite the previous equation and get:

x(A)− x(B)− 2x(C) = f(S)−
k∑
i=1

f(Ri)

48



According to the token redistribution:

0 <
∑
e∈A

xe +
∑
e∈B

(1− xe) +
∑
e∈C

(1− 2xe)

= x(A) + |B| − x(B) + |C| − 2x(C)

= |B|+ |C|+ f(C)−
k∑
i=1

f(Ri)

Since the function f is integral, the sum on the last sum (right side of

equation) must be at least 1. This means that S receives at least one token.

Now, choose a set R to be the maximal set in L. Choose any edge

e ∈ δ(R). We want to see why Rule 2 cannot be applied. There is no set T

with |T ∩ e| = 2 because we already chose the maximal set. So the 1 − 2xe

tokens cannot be assigned according to the rule.

Since every set in L receives at least one token but there are still unas-

signed tokens we get the contradiction |E| > |L|.

Now we can see why the algorithm is a 2-approximation algorithm. This

is done using a simple induction. The base case is trivial. For the induction

step, let’s look at the solution H. We can write the cost as: cost(H) =

cost(H ′) + ce′ where e′ is the edge with xe′ ≥ 1/2 as found in Theorem 7.1.

Using the induction step we know that cost(H ′) ≤ 2
∑

e∈E−e′
cexe. Therefore

we get that cost(H) ≤ 2
∑
e∈E

cexe (because xe′ ≥ 1/2).

7.1.5 Connection to the Traveling Salesman Problem

First, we recall the traveling salesman problem (TSP):

Problem 7.2. Given an undirected graph G = (V,E) and a cost function

c : E → R+, the Traveling Salesman Problem (TSP) is to find a minimum

cost Hamiltonian cycle.

In this section we show a generalization of the survivable network design

problem and the traveling salesman problem. We claim that any extreme

point solution of this generalization has an edge e with xe ≥ 1
2
, and in some
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cases xe = 1. In this section we do not show the proofs, we only generally

describe the concept.

7.1.6 Linear Programming Relaxation

The following linear program relaxation models both the survival network

design problem and the traveling salesman problem. It will be denoted by

LPf where f is a skew supermodular function.

minimize
∑
e∈E

cexe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

x(δ(v)) = f(v) ∀v ∈ W

0 ≤ xe ≤ 1 ∀e ∈ E

For the survivable network design problem we set f(S) = maxu∈S,v 6∈S{ruv}
for each subset S ⊆ V and set W = ∅. For the traveling salesman problem

we set f(S) = 2 for each S ⊂ V , f(V ) = 0 and W = V .

7.1.7 Characterization of Extreme Point Solutions

The following is very similar to lemmas we have already seen:

Lemma 7.2. Let the requirement function f of LPf be skew supermodular,

and let x be an extreme point solution to LPf with 0 < xe < 1 for every

e ∈ E. Then, there exists a laminar family L such that:

1. x(δ(S)) = f(S) for each S ∈ L

2. The vectors in χ(δ(S)) : S ∈ L are linearly independent

3. |E| = |L|

7.1.8 Existence of Edges with Large Fractional Value

There is an edge e with xe = 1 in any extreme point solution of the traveling

salesman problem (this was proven by Boyd and Pulleyblank [19]). The

following theorem generalizes their result as well as Jain’s (Theorem 7.1)
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Theorem 7.2. Let f be an integral skew supermodular function, and x be

an extreme point solution to LPf with xe > 0 for all e. Then, there exists

an e ∈ E with xe = 1
2
. Moreover, if f(S) is an even integer for each subset

S ⊆ V then there exists an edge e with xe = 1.

7.2 Degree-bounded SNDP

Problem 7.3. The degree-bounded SNDP problem is similar to the SNDP

problem with a degree bound b(v) on the vertices; namely, each vertex v is

incident to at most b(v) edges in the solution graph H.

In addition we define the following problem:

Problem 7.4. The element connectivity SNDP (Elem-SNDP) problem is

similar to the SNDP problem but with two sest of vertices R,W . The vertices

in R are called reliable vertices or terminals, while the vertices in W are called

unreliable vertices. The vertices in W and the edges are called elements. The

goal of the Elem-SNDP problem is to satisfy the connectivity requirement

between each pair u, v of terminals, while the paths are element-disjoint (i.e.

paths do not share unreliable nodes or edges).

In this section, we present a bicriteria approximation to the problem

based on [2].

Theorem 7.3. There is a polynomial time approximation algorithm for the

degree bounded Elem-SNDP problem in undirected graphs that achieves an

(O(1), O(1)b(v)) bicriteria approximation.

We will get back to the problems later. First, we need to establish some

preliminary statements.

7.2.1 Preliminaries

We now introduce a number of definitions. Let V be a ground set.

Definition 7.3. A biset A = (A,A′) is a pair of sets such that A ⊆ A′ ⊆ V .

A is the inner part of A and A′ is the outer part of A. bd(A) = A′ − A is

the boundary of A.
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In addition we need the following definition.

Definition 7.4. intersection/union/difference of two bisets:

1. A ∩ B = (A ∩B,A′ ∩B′)

2. A ∪ B = (A ∪B,A′ ∪B′)

3. A− B = (A−B′, A′ −B)

Also A is contained in B: A ⊆ B if and only if A ⊆ B and A′ ⊆ B′

Now we define disjoint/intersecting bisets:

Definition 7.5. Two bisets A and B are disjoint if A ∩B is empty.

Definition 7.6. Two bisets A and B are intersecting if A and B are not

disjoint.

Definition 7.7. Two bisets A and B are strongly disjoint if A′ ∩ B and

A ∩B′ are empty.

Definition 7.8. Two bisets A and B are overlapping if A and B are not

strongly disjoint.

Definition 7.9. A family of bisets is bilaminar if, for any two bisets A and

B in the family, one of the following holds: A ⊆ B, B ⊆ A, or A and B are

disjoint.

Definition 7.10. A family of bisets is strongly bilaminar if , for any two

bisets A and B in the family, one of the following holds: A ⊆ B, B ⊆ A, or

A and B are strongly disjoint.

Definition 7.11. Let f be defined as f : 2V × 2V → Z. f is bisupermodular

if for any two bisets A and B:

f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B)

f is intersecting bisupermodular if the inequality above holds for any two

bisets A and B that intersect.
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f is positively bisupermodular if the inequality above holds for any two

bisets A and B such that f(A) > 0 and f(B) > 0.

f is bisubmodular if −f is bisupermodular.

f is binegamodular if for any two bisets A and B:

f(A) + f(B) ≤ f(A− B) + f(B− A)

f is biposimodular if −f is binegamodular.

f is skew bisupermodular if for any two bisets A and B:

f(A) + f(B) ≤ max{f(A ∩ B) + f(A ∪ B), f(A− B) + f(B− A)}

f is positively skew bisupermodular if the inequality above holds for any two

bisets A and B such that f(A) > 0 and f(B) > 0.

Definition 7.12. Let F denote a set of undirected edges. δF (A) defines the

set of all edges e ∈ F such that e has one endpoint in A and another endpoint

in V − A′. χ(δF (A)) is defined as the characteristic vector of δF (A).

Definition 7.13. Let G denote a set of directed edges. δ−G(A) defines the set

of all edges e ∈ G with head in A and tail in V − A′. δ+G(A) defines the set

of all edges e ∈ G with head in V − A′ and tail in A .

The following lemmas are brought here without proof.

Lemma 7.3. For any set F of edges and any positive weight function w on

F , the function f(A) = w(δF (A)) is both bisubmodular and biposimodular.

Lemma 7.4. For any set F of directed edges and any positive weight function

w on F , the function f(A) = w(δ−F (A)) is bisubmodular.

Lemma 7.5. For any two bisets A and A, we have:

|bd(A)|+ |bd(B)| = |bd(A ∩ B)|+ |bd(A ∪ B)|

|bd(A)|+ |bd(B)| = |bd(A− B)|+ |bd(B− A)|+ 2|bd(A) ∩ bd(B)|
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Before going to the problem definitions we define covering.

Definition 7.14. Let G = (V,E) be an undirected graph and let f : 2V ×
2V → R be a biset function. G covers f if |δG(A)| ≥ f(A) for each A. For

directed graph we need the inequality |δ−G(A)| ≥ f(A)

Now we define the problems that we consider. Let G = (V,E) be an

undirected graph with weights w(e) on edges and degree bounds b(v) on the

nodes.

Problem 7.5. Degree-bounded Element-SNDP: The vertices of V are

partitioned into two sets, the set R of reliable vertices and the set W of

unreliable vertices. The vertices of W and the edges are called elements.

The element-connectivity of a pair u, v of nodes is the maximum number of

element-disjoint paths from u to v; these paths do not share any unreliable

nodes or edges, but they may share reliable nodes. Two vertices u and v are l-

element-connected if their element connectivity is at least l. In addition to the

weights and bounds, we add integer requirement r(u, v) for u, v ∈ R. The goal

of the Degree-bounded Elem-SNDP is to select a minimum weight subgraph

H of G such that each pair u, v of terminals is r(u, v)-element-connected in

H and |δH(v)| ≤ b(v) for each v.

Problem 7.6. Degree-bounded VC-SNDP: The vertex-connectivity of a

pair u, v of vertices is the maximum number of paths between u and v that

are internnally vertex disjoint. Two vertices u and v are l-vertex-connected

if their vertex connectivity is at least l. In the Degree-bounded VC-SNDP

problem, in addition to the graph G, we are given integer requirements r(u, v)

for each pair u, v of vertices. The goal is to select a minimum-weight subgraph

H of G such that each pair u, v of vertices is r(u, v)-vertex-connected in H

and |δH(v)| ≤ b(v) for each vertex v.

Problem 7.7. Degree-bounded k-Connected Subgraph: A graph H is

k-vertex-connected if each pair u, v of vertices is k vertex connected in H. In

the Degree-bounded k-Connected Subgraph problem, the goal is to select a

minimum-weight spanning subgraph H = (V,E ′) of G such that H is k-vertex

connected and |δH(v)| ≤ b(v) for each vertex v.
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Problem 7.8. Degree-bounded Rooted k-Connectivity: A vertex r is

k-vertex-connected in H to each other vertex if, for any vertex v ∈ V − {r},
the pair r, v is k vertex connected in H. In the Degree-bounded Rooted k-

Connectivity problem, we are given a root vertex r and the goal is to select a

minimum-weight subgraph H of G such that the root r is k-vertex-connected

in H to every other vertex and |δH(v)| ≤ b(v) for each vertex v.

Problem 7.9. Degree-bounded Residual Cover: In the Degree-bounded

Residual Cover problem, we are given a function f : 2V × 2V → Z satisfying

f(A) = r(A)− |bd(A)| − |δF (A)| for each biset A, where r is a biset function

and F ⊆ E is a set of edges, and the goal is to select a minimum weight

set F ′ ⊆ E − F of edges such that |δF ′(A)| ≥ f(A) for each biset A and

|δF ′(v)| ≤ b(v) for each vertex v.

We describe approximation algorithms for the problems defined. We start

with the Degree-bounded Residual Cover problem that has an (O(1), O(1)b(v))

approximation if function r satisfies a certain condition:

Theorem 7.4. Consider an instance of the Degree-bounded Residual Cover

problem in which the function f satisfies f(A) = r(A) − |bd(A)| − |δF (A)|,
where r is an integer-valued biset function and F ⊆ E is a set of edges. Let

OPT be the weight of an optimal solution for the instance. Suppose that r

and f satisfy the following conditions:

1. For each biset (A,A′) and each vertex v ∈ A′−A, we have r((A,A′)) ≤
r((A,A′ − v)).

2. The function f is positively skew bisupermodular.

Then there is a polynomial time iterated rounding algorithm that selects a

set F ′ ⊆ E − F of edges such that w(F ′) ≤ 3OPT and |δF ′(v)| ≤ |δF (v)| +
6b(v) + 5 for each vertex v.

Let us assume that Theorem 7.4 is correct. Choose F = ∅, f = felt and

r = relt, where felt and relt are defined as follows.

Let relt : 2V×2V → Z+ be a biset function such that relt(A) = maxu∈A,v∈V−A′r(uv)

if bd(A) ⊆ W and relt(A) = 0 otherwise.
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Let felt : 2V × 2V → Z be a biset function such that felt(A) = relt(A) −
|bd(A)|.

It is easy to see that the r we chose satisfies the first condition (removing

one vertex from A′ only increases the choices of r(uv)). We need to show that

f is positively skew bisupermodular. This was already proven by Fleisher el

al (see [24]). This clearly brings us a (O(1), O(1)b(v)) approximation for the

Elem-SNDP problem.

Now, we wish to prove Theorem 7.4. We prove the theorem by giving an

iterative algorithm that fulfills the theorem requirements. First, we present

the linear program relaxation of the problem LPUndir:

minimize
∑
e∈E

w(e)x(e)

subjectto x(δE(A)) ≥ f(A) ∀A : f(A) > 0

x(δE(v)) ≤ b(v) ∀v ∈ X

0 ≤ x(e) ≤ 1 ∀e ∈ E

Where f is an integer-valued biset function and the set X ⊆ V is a subset of

the vertices that have degree bounds and b : X → R are the degree bounds

on the vertices in X.

Where G, r, F , X and b are the Degree-bounded Residual Cover param-

eters.

Now we need to prove that this algorithm terminates and provides a

feasible cover of f . In order to prove this, we first have to consider the

following theorem:

Theorem 7.5. Consider an iteration of Undir-algo. Let G′ = (V,E ′) be

the residual subgraph at the beginning of this iteration. Let F ′ be the set of

edges selected in the previous iterations. Let X ′ be the set of vertices that

have degree bounds, and let b′ : X ′ → R be the degree bounds on X ′ at the

beginning of this iteration. Let f ′ : 2V × 2V → Z be the function satisfying

f ′(A) = r(A)−|A′−A|− |δF∪F ′(A)| for each biset A. If x is a basic solution

to LPUndir for the input (G′, f ′, X ′, b′), one of the following holds:

1. There is an edge e ∈ E ′ such that x(e) = 0
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Algorithm 9 Undir-Algo - Algorithm for the Degree-bounded Residual
Cover
1: E ′ ← E − F ;
2: F ′ ← ∅;
3: X ′ ← X;
4: b′(v)← b(v) for each v ∈ X;
5: while E ′ is non-empty do
6: Let f ′ : 2V ×2V → Z be defined as f ′(A) = r(A)−|A′−A|−|δF∪F ′(A)|

for each biset A.
7: Compute an optimal basic solution to LPUndir for the input (G′ =

(V,E ′), f ′, X ′, b′).
8: If there is an edge e ∈ E ′ such that x(e) = 0 then E ′ ← E ′ − e
9: If there is an edge e = uv ∈ E ′ such that x(e) ≥ 1/3 then
10: F ′ ← F ′ ∪ e.
11: E ′ ← E ′ − e.
12: If u ∈ X ′ then b′(u)← b′(u)− x(e)
13: If v ∈ X ′ then b′(v)← b′(v)− x(e)
14: Else
15: Let v ∈ X ′ be a vertex such that |δE′(v)| ≤ |δF (v)|+ 3b(v) + 5
16: X ′ ← X ′ − v.
17: end while
18: Return F ′.
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2. There is an edge e ∈ E ′ such that x(e) ≥ 1/3

3. There is a vertex v ∈ X ′ such that |δE′(v)| ≤ |δF (v)|+ 3b(v) + 5

The proof of Theorem 7.5 is very long and complex and therefore beyond

the scope of this work. The proof can be found in [2]. Assuming that theorem

is correct, it is easy to see that the algorithm terminates. In addition, since

only edges that have x(e) ≥ 1/3 are part of the solution, the weight of the

solution is at most 3OPT . Now we want to prove the upper bound of the

degree of each vertex in the solution.

Lemma 7.6. Consider an iteration of Undir-algo. Let F ′ be the set of edges

selected in the previous iterations, let X ′ be the set of vertices that have degree

bounds, and let b′ : X ′ → R be the degree bounds on X ′ at the beginning of the

iteration. For each vertex v ∈ X ′, we have |δF ′(v)| ≤ 3(b(v) − b′(v)), where

b(v) is the initial degree bound on v.

The proof of the lemma as it can be found in [2]. Combining the lemma

with Theorem 7.5 we get:

Theorem 7.6. Let F ′ be the solution constructed by Undir-algo. The set F ′

satisfies the following:

1. |δF ′(A)| ≥ f(A) for each biset A.

2. The total weight of F ′ is at most 3OPT .

3. For each vertex v we have |δF ′(v)| ≤ |δF (v)|+ 6b(v) + 5

Theorem 7.6 directly leads to Theorem 7.4. Now we get our desired proof.

Now let us return to the result of Theorem 7.4. We already saw that it

implies an (O(1), O(1)b(v)) approximation for the Elem-SNDP. From this we

get the following result:

Theorem 7.7. There is a polynomial time (3, 3b(v) + 5) approximation for

the Degree-bounded Elem-SNDP problem in undirected graphs.
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7.2.2 Further Analysis of the SNDP Problems

Now let us consider problem on directed graphs, so let G = (V,E) be an

undirected graph with weights w(e) on edges, in-degree bound b−(v) and

out-degree bounds b+(v) on the vertices.

Problem 7.10. Degree-bounded Rooted k-Outconnectivity: In the

Degree-bounded Rooted k-Outconnectivity problem, we are given a root ver-

tex r and the goal is to select a minimum-weight subgraph H of G such that,

for each vertex v ∈ V − r, there are k internally vertex disjoint paths in H

from r to v and, for each vertex v ∈ V , |δ−H(v)| ≤ b−(v) and |δ+H(v)| ≤ b+(v).

Let us consider the Directed Degree-bounded Residual Cover problem:

Problem 7.11. Given a function f : 2V × 2V → Z satisfying f(A) = r(A)−
|bd(A)| − |δ−F (A)| for each biset A, where r is a biset function and F ⊆ E

is a set of edges. The goal of the problem is to select a minimum weight

set F ′ ⊆ E − F of edges such that |δ−F ′(A)| ≥ f(A) for each biset A, and

|δ−F ′(v)| ≤ b−(v) and |δ+F ′(v)| ≤ b+(v) for each vertex v

In order to get an approximation for the problem we use the following

theorem:

Theorem 7.8. Consider an instance of the Directed Degree-bounded Resid-

ual Cover problem in which the function f satisfies f(A) = r(A)− |bd(A)| −
|δ−F (A)|, where r is an integer-valued biset function and F ⊆ E is a set of

edges. Let OPT be the weight of an optimal solution for the instance. Sup-

pose that r and f satisfy the following conditions:

1. For each biset (A,A′) and each vertex v ∈ A′−A, we have r((A,A′)) ≤
r((A,A′ − v)).

2. The function f is positively skew bisupermodular.

Then there is a polynomial time iterated rounding algorithm that selects a set

F ′ ⊆ E − F of edges such that w(F ′) ≤ 3OPT , |δ−F ′(v)| ≤ 3b−(v) + 5 and

|δ+F ′(v)| ≤ |δ+F (v)|+ 6b+(v) + 3 for each vertex v.
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The proof for the theorem is similar to the proof of Theorem 7.4. Nat-

urally, we see that the Directed Degree-bounded residual Cover achieves an

(O(1), O(1)b−(v), O(1)b+(v)) approximation.

Let us examine Theorem 7.8 over the Rooted k-Outconnectivity problem

(Problem 7.10). Let r be defined as r = rrc where rrc : 2V × 2V → Z+ is a

biset function such that rrc(A) = k if A 6= ∅ and r ∈ V −A′, and rrc(A) = 0

otherwise. Let f be defined as frc : 2V × 2V → Z is a biset function such

that frc(A) = rrc(A) − |bd(A)|. rrc fulfills the first requirement while frc

is a positively intersecting bisupermodular (see [25]). As a corollary from

Theorem 7.8 we get the following:

Corollary 7.1. There is a polynomial time (3, 3b−(v) + 5, 6b+(v) + 3) ap-

proximation for the Degree bounded Rooted k-Outconnectivity problem in

directed graphs.

Now that we have a solution for the Degree bounded Rooted k-Outconnectivity

problem, we can easily find a solution to the Degree bounded Rooted k-

Connectivity problem. We will do that by finding a simple reduction from

the Degree bounded Rooted k-Connectivity problem to the Degree bounded

Rooted k-Outconnectivity problem. First step of the reduction is changing

the undirected graph into a directed graph. This is easily done by changing

each undirected edge into two directed edges. The same applies to the bound

requirements (each in and out requirements are equal to the bound require-

ment of the original edge). The weights are also applied in similar way. Now,

it is possible to see that using the previous corollary we have an approxima-

tion for the new problem. This results in a solution with weight twice as big

as the weight of the Degree bounded Rooted k-Connectivity problem. So we

get:

Theorem 7.9. There is a polynomial time (9, 9b(v) + 8) approximation for

the Degree bounded Rooted k-Connectivity problem in undirected graphs.

Our next step is to explore the Degree Bounded k-Connected Subgraph

problem. In this part we don’t provide the entire process that results in the

approximation. Instead, we touch the key elements of the proof.
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First, let us define rsg and fsg: Let rsg : 2V ×2V → Z+ be a biset function

such that rsg(A) = k if A 6= ∅ and A′ 6= V , and rsg(A) = 0 otherwise.

Let fsg : 2V × 2V → Z be a biset function such that fsg(A) = rsg(A) −
|bd(A)|.

Consider an instance of the problem in which the number of nodes is

at least k3. Let F ∗ be an optimal solution for the problem and let OPT

be the weight of the solution. Our first step is to pick an arbitrary set

R1 with k vertices. It is possible to create an instance of the Rooted k-

Outconnectivity problem using the given instance. When we consider this

new instance, an algorithm by Frank and Tardos [26] and Corollary 7.1 we

can find a solution F1 for the Rooted k-Outconnectivity. Let F ′1 be the set of

undirected edges corresponding to F1. We get that w(F ′1) ≤ w(F1) ≤ 6OPT

and δF ′
1
(v) ≤ δ−F1

(v)+δ+F1
(v) ≤ 9b(v)+8. The second step is similar to the first

with one difference. We choose our new set R2 using an approach developed

by Cheriyan and Vegh [27]. Again, we define an instantiation of the Rooted

k-Outconnectivity problem. Using the Corollary 7.1 we again construct a

solution F2. Let F ′2 be the set of undirected edges corresponding to F2. Once

again we get w(F ′2) ≤ w(F2) ≤ 6OPT and δF ′
2
(v) ≤ δ−F2

(v)+δ+F1
(v) ≤ 9b(v)+

8. Now, let us look at the function g(A) = rsg(A) − |bd(A)| − |δF ′
1∪F ′

2
(A)|.

The set F ∗ − (F ′1 ∪ F ′2) covers g. The Cheriyan and Vegh approach makes

sure that we choose R2 in a way that g is positively skew bisupermodular.

It is easy to see that for each biset (A,A′) and each vertex v ∈ A′ − A,

rsg((A,A
′)) ≤ rsg((A,A

′ − {v})). So now we get that rsg and g satisfy the

two conditions of Theorem 7.4. We choose F = F ′1∪F ′2, f = g and r = rsg and

we get a cover F ′3 of g from Theorem 7.4. We can see that the weight of F ′3 is

at most 3OPT and |δF ′
3
(v)| ≤ |δF ′

1∪F ′
2
(v)|+3b(v)+5 ≤ 2(9b(v)+8)+6b(v)+5.

The final solution to the k-Connected problem is F = F ′1 ∪F ′2 ∪F ′3. From all

the above it is possible to prove that:

Theorem 7.10. There is a polynomial time (15, 42b(v) + 37) approximation

for the Degree-bounded k-Connected Subgraph problem in undirected graphs

with at least k3 nodes.
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8 Constrained Optimization Problems

In this chapter we examine constrained optimization problems such as the

vertex cover problem. This section is based on chapter 11 of [1].

8.1 Vertex Cover

Recall the vertex cover problem:

Problem 8.1. Given a graph G = (V,E) and a cost function c on vertices,

the goal in the vertex cover problem is to find a set of vertices with minimum

cost which covers every edge, i.e. for every edge at least one endpoint is in

the vertex cover.

In previous chapters we handled the vertex cover problem in bipartite

graphs. In general graphs the vertex cover is NP-hard. In this section we

prove a 2-approximation for the problem based on Nemhauser and Trotter

[20]. Later we explore the partial vertex cover problem.

8.1.1 Linear Programming Relaxation

We have already seen the LPvc in previous section.

minimize
∑
v∈V

cvxv

subject to xu + xv ≥ 1 ∀e = {u, v} ∈ E

xv ≥ 0 ∀v ∈ V

The following is a theorem by Nemhauser and Trotter [20]:

Theorem 8.1. Let x be an extreme optimal solution to LPvc. Then xv ∈
{0, 1

2
, 1} for each v ∈ V .

We prove this theorem later. For now, we use it without proof. The

following theorem derives from Theorem 8.1:
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Theorem 8.2. There exists a 2-approximation algorithm for the vertex cover

problem.

Proof. Assume x is the optimal extreme point solution to LPvc. Let look at

the vertex cover constructed by choosing each vertex v such that xv = 1
2

or

xv = 1. From Theorem 8.1 we get that the cover we chose is feasible and it

costs two times as much as the fractional solution x.

8.1.2 Characterization of Extreme Point Solutions

We again use the characterization we have seen before.

Definition 8.1. For a set W ⊆ V let χ(W ) denote the characteristic vector

in R|V |: the vector has an 1 corresponding to each vertex V ∈ W , and 0

otherwise.

Lemma 8.1. Given any extreme point x to LPvc with xv > 0 for each v ∈ V ,

there exists F ⊆ E such that

1. xu + xv = 1 for each e = {u, v} ∈ F .

2. The vectors in {χ({u, v}) : {u, v} ∈ F} are linearly independent.

3. |V | = |F |.

8.1.3 Iterative Algorithm

Algorithm 10 Iterative Vertex Cover Algorithm

1: F ← ∅;
2: Find an optimal extreme point solution x to LPvc.
3: while E 6= ∅ do
4: (a) For all vertices v ∈ V with xv = 1 include v ∈ W and remove v

from G.
5: (b) For all vertices v ∈ V with xv = 0, remove v from G.
6: (c) For all vertices v ∈ V with xv = 1

2
, include v ∈ W and remove v

from G.
7: end while
8: Return W .
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8.1.4 Correctness and Performance

Now we go back to Theorem 8.1. By proving this theorem we also prove the

correctness of the algorithm.

Proof. In the first step of the loop (step (a) line 4), we remove all vertices

with xv = 1. After this step any vertex left with xv = 0 is isolated. So we

remove each vertex with xv = 0. The following is applied to each connected

component of the graph that is left: From Lemma 8.1 we know that there

is a subset F of edges with linearly independent tight constraints and that

|F | = |V | (and therefore F contains a cycle. Let us denote this cycle by

C. This cycle must be an odd cycle (otherwise the characteristic vectors in

{χ({u, v} : {u, v} ∈ E(C)} are linearly dependent). So the unique solution

to these equations is xv = 1/2 for each v ∈ C. Since xv +xu = 1, this implies

that xu = 1/2. So all vertices in C have xv = 1
2
. Proving Theorem 8.1.

8.2 Partial Vertex Cover

In this section we extend our 2-approximation algorithm to the partial vertex

cover problem.

Problem 8.2. Given a graph G = (V,E) and a cost function c on vertices

and a bound L, the partial vertex cover problem is to find a set of vertices

with minimum cost which covers at least L edges.

The partial vertex cover problem is NP-hard since it generalizes the vertex

cover problem when L = |E|. We provide a 2-approximation algorithm based

on iterative rounding of a natural linear programming relaxation.

8.2.1 Linear Programming Relaxation

We define a pruning step as performing a guess for the costliest vertex in

the optimal solution. The pruned graph is the graph in which we remove all

vertices with cost more than costliest we have guessed.

Since there are no more than n = |V | possible costliest vertices, it is

possible to find the cheapest solution in polynomial time using pruning.
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The following linear program LPpvc is the linear program for the pruned

instance. Let xv denote the existence of v in the solution and let ye denote

the existence of e ∈ E in the partial vertex cover.

minimize
∑
v∈V

cvxv

subject to
∑
v∈e

xv ≥ ye ∀e ∈ E∑
e∈E

ye = L

0 ≤ xv ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

As we proceed with the iterative algorithm, we will work with a graph

where edges could be of size one only. For example, when we have a variable

with xv = 0, we will remove v from all edges containing v. Such edges will

contain only one vertex but not two vertices.

8.2.2 Characterization of Extreme Point Solutions

We give a simple characterization of the extreme point solutions based on

the Rank Lemma.

Lemma 8.2. Given any extreme point x to LPpvc with 0 ≤ xv ≤ 1 for all

v ∈ V and 0 ≤ ye ≤ 1 for all e ∈ E, there exists a subset F ⊆ E of edges

such that:

1.
∑

v∈e xv = ye for each e ∈ F .

2. The constraints in {
∑

v∈e xv = ye : e ∈ F}∪{
∑

e∈E yv = L} are linearly

independent.

3. |F |+ 1 = |V |+ |E|.

8.2.3 Iterative Algorithm
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Algorithm 11 Iterative Partial Vertex Cover Algorithm

1: W ← ∅;
2: while E 6= ∅ do
3: (a) Find an optimal extreme point solution (x, y) to LPpvc. If there

is an edge e ∈ E with ye = 0, then remove e from G. If there is a
vertex v ∈ V with xv = 0, then remove v from G and from all edges
containing it, i.e, e← e \ {v} for all e ∈ E.

4: (b) If there is a vertex v ∈ V with xv ≥ 1
2
, then include v ∈ W and

remove v and all the edges incident at v from G. Update L← L−|{e :
v ∈ e}|.

5: (c) If G contains a single vertex v, then include v ∈ W and remove v
and all the edges incident at v from G. Update L← L− |{e : v ∈ e}|.

6: end while
7: Return W .

8.2.4 Correctness and Performance Guarantee

First, we want to show that the algorithm terminates:

Lemma 8.3. Let G be a graph with |V (G)| ≥ 2. Then at least one of the

following must hold:

1. There exists a vertex v with xv ∈ {0, 1}.

2. There exists an edge e with ye = 0.

3. There exists an edge e with ye = 1 and therefore xv = 1
2

for some v ∈ e.

Proof. By contradiction, we assume that the lemma is not correct. This

means that 0 < xv < 1 for all v ∈ V and 0 < ye < 1 for all edges. From

Lemma 8.2 we know that there is a subset F such that |F |+1 = |E|+ |V |. So

|F | ≤ |E| and therefore |V | ≤ 1. This is false. So the contradiction fails.

Now that we know that the algorithm terminates we need to show that

the algorithm provides a 2-approximation algorithm for the correct guess of

the costliest vertex.

In the second step of the loop we pick a vertex with xv ≥ 1
2
. If ye = 1

then xv ≥ 1
2

for some v ∈ e as |e| ≤ 2. We can see using simple induction

that when we pick the vertices with xv ≥ 1
2

we pay a cost of maximum twice
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the optimal fractional solution. The last vertex picked (step c) has a cost

that is no more than the cost of the costliest vertex. Since the LP value of

the costliest vertex was set to 1 in the preprocessing step, the cost of the

last vertex picked is also charged to the LP solution. Therefore we get a

2-approximation for the partial vertex cover problem.
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9 Conclusions

In this paper we described using a number of examples how to use the it-

erative method. We examined the vertex cover, minimum spanning tree,

matching, minimum cost arborescence, and the survivable network design

problems. For each problem we found the corresponding linear program

relaxation. We investigated the linear program and were able to prove a

number of theorems regarding the extreme point solutions of each linear pro-

gram. Once this was done we showed the iterative algorithm and proved

its correctness. For some problems we only found a good approximation

algorithm.

This work only touches some of the problems that can be attacked by

the iterative rounding method. It is believed that the iterative methods can

be used for more general classes of problems. Many other problems can be

(and are being) explored using iterative algorithms. There are a number of

books and articles that expand the iterative method. It is possible to find

early usage of the iterative relaxation method in the proof of a discrepancy

theorem by Beck and Fiala [17] and the approximation algorithm for the bin

packing problem by Karmarkar and Karp [16]. Again we refer to Jain [15] for

the first explicit usage of the iterative rounding method in an approximation

algorithm. The reader is referred to [1] or [21] and [22] for further study.
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 תקציר

 

 

אך יחסית פשוטה , שהיא שיטה שיטת העיגול האיטרטיביתב זו עוסקת עבודה

הכלליות של השיטה מאפשרת שימוש רון בעיות אופטימיזציה קלאסיות. יעילה לפת

 בשיטה זו עבור מגוון גדול של בעיות אופטימיזציה. 

. יביתשיטת העיגול האיטרטהמטרה העיקרית בעבודה היא להדגים את היכולות של 

 סיים הנדרשים כדי להבין את השיטה, וביניהן  בעיות תכנוןבנושאים הבסי אנו נדון

מספר  נציגבהמשך,  בעיות תכנון לינארי.לינארי וניתוח פתרונות נקודות קצה של 

, ועוד. עבור כל צדדי, עצים פורשים, עצי שטיינר-דו כגון זיווג בגרףבעיות מגוונות 

מנת לקבל אלגוריתם על  יטת העיגול האיטרטיביתבשאיך להשתמש  בעיה נדגים

המוצא פתרון אופטימלי או קרוב לאופטימלי. י פולינומ
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