
The Open University of Israel

Department of Mathematics and Computer Science

A Smart Wearable Outfit System for Anomaly Detection

Thesis (Advanced Project 22997) submitted as partial fulfilment of the requirements
towards an M.Sc. degree in Computer Science

The Open University of Israel
Department of Mathematics and Computer Science

By
German Shiklov

Prepared under the supervision of Prof. (Dr.) Leonid Barenboim

2023 / 5

A Smart Wearable Outfit System for Anomaly Detection
2

Abstract

Wearables, microcontrollers, smartphones, have become more popular over the last decade. We
seem to have come a long way to the revolution of wearable technologies, and yet there is still a
lot to do. This area has lots of fields to improve in, whether it is the overwhelming amounts of
information collected, the battery’s power consumption, wiring faults, environmental effects
(deviation) and many more. This study aims to portray a smart wearable outfit for the purposes
of normal activity recognition and abnormal (anomalous) detection. Specifically, it investigates
experiments that have been recorded for different user activities and aims to find the best usage
for real-time functionality. In this context, our wearable device - smart suit, is capable of
classifying whether the user is in the state of idle, walking or other activity, moreover, we clearly
state if the signal is invalid or abnormal regarding normal activity. To test the hypothesis that
such a smart suit can classify and differentiate normal and abnormal events, we had to validate
our methodologies of LSTM, Matrix-Profile and Self-developed model to work with the
acquired offline data. Only then, we base our real-time system to operate with the best fitting
ideas for real-time response. In this work, we describe a software system for data acquisition via
microcontrollers (Arduino or Teensy). And a real-time software system to operate the smart suit
via System-on-Module controller (Jetson Nano). We discovered in our results that Artificial
Intelligence models, as LSTM, are less effective in terms of time consumption. In addition, the
classification is found to be less effective for anomalous detection, since anomalies have
different facets. Our self developed models have shown outstanding performance in time,
classification and detection. With the aforementioned key findings in regard to recorded data, we
use it as the building block foundation for the design and implementation of the real-time
monitoring system of the suit. This project shows it is possible to forge magic - smart wearable
technology that is helpful in a broad range of applications.

Keywords:Wearable-IoT, innovation, engineering, artificial-intelligence.

A Smart Wearable Outfit System for Anomaly Detection
3

Abbreviations and Notations

RNN: recurrent neural network
LSTM: long short term memory network
AE/DE: autoencoder / decoder
VAE: variational autoencoder
FFT: fast fourier transform
iFFT: inverse fast fourier transform
MASS: mueen’s algorithm for similarity search
TSA: time-series analysis
ANN: artificial neural network
FSR: force-sensing resistor
Piezo: piezoelectric film
IMU: inertial measurement unit
DMA: direct memory access
PCT: percent change
OOP: object oriented programming
BSN: body sensor network
FSM: finite state machine

A Smart Wearable Outfit System for Anomaly Detection
4

Table of Contents

Abstract 2

Abbreviations and Notations 3

List of Figures 6

List of Tables 7

Introduction 8

Microcontrollers in Usage 8

Sensors in Usage 8

Server Node: Jetson Nano B01 8

Running the Project 9

Recorder Mode 9

Offline Mode 10

Real-time Mode 11

Architecture 12

Related Work 14

Software System - Microcontroller(slave) Nodes 15

Main 15

Context Handler 15

DMA Handler 16

Time Handler 17

Utils 17

Buffered Serial / Byte Buffer 17

SD Manager 18

Cache Handler 18

Software System - SoM(Master) Node 19

Main Method 21

Main Class / Manager Protocol 21

Context Handler 22

Recorder Manager 23

Terms to Sensors 23

Myo Controller 24

A Smart Wearable Outfit System for Anomaly Detection
5

Teensy Microcontroller 24

Core Manager 24

ML Model Protocol 25

ML Manager 25

ML SelfMind 26

ML PatternMatch 27

ML MemoryNNetwork 28

Activity Recognition - SelfMind 29

Walk Activity Simulation 29

Idle Activity Simulation 31

Scan Idle via PCT 31

Scan Idle via Moving-Average 33

Anomalous Detection - SelfMind 34

Real-Time Simulation 34

Picking the Threshold 36

Conclusions 38

Future Work 39

Futuristic Vision 39

References 40

Appendix A 41

Appendix B 44

Appendix C 45

A Smart Wearable Outfit System for Anomaly Detection
6

List of Figures

Figure 1. A high-level depiction of the smart outfit used in tact 9
Figure 2. Our project opened via PlatformIO in VisualStudioCode 9
Figure 3. Scripts, as root folder for running analysis and code on pre recorded data 10
Figure 4. VSC real-time project, execute in terminal/cmd the ‘system-main.py’ file 11
Figure 5. A high level depiction of the node's responsibilities 12
Figure 6. A UML diagram of a Node-controller 15
Figure 7. Code of main.cpp 15
Figure 8. Code of ContextHandler.cpp 17
Figure 9. Code of DMAHandler.h 17
Figure 10. Code of DMAHandler.cpp 18
Figure 11. Code of SDManager.h 19
Figure 12. Code of CacheHandler.h 19
Figure 13. An FSM depicting the wearable-system 20
Figure 14. SandboxStates.py - Configurations of system. 21
Figure 15. A light UML of the class's interaction and relations 21
Figure 16. Code of system-main.py 22
Figure 17. A general life-cycle for the classes in use 22
Figure 18. Code of ManagerProtocol.py. 23
Figure 19. Code of ContextHandler.py 23
Figure 20. Code of RecorderManager.py 24
Figure 21. Code of Microcontroller.py 25
Figure 22. Code of CoreManager.py 26
Figure 23. Code of MLManager.h 27
Figure 24. Code of ML_SelfMind.py - Walk activity detection. 28
Figure 25. Code of ML_PatternMatch.py 29
Figure 26. Code of ML_MemoryNNetwork.py 29
Figure 27. Analysis of steps inside walk activity, file ‘04_Office_Walk.csv’ 30
Figure 28. ML_SelfMind.py - probability of step & score frame walk 31
Figure 29. A seasonal decomposition of steps in walk, ‘iFFT(FFT(MA-200(input)))’ 31
Figure 30. A depiction of FSR reacting to book fall over pants, file ‘FreeFall-Book.csv’ 32
Figure 31. Analysis of all FSRs for idle recognition via PCT, file ‘FreeFall-Book.csv’. 33
Figure 32. ML_SelfMind.py - scan and score idle stream. 34
Figure 33. Analysis of all FSRs for idle recognition via MovingWindow.. 34
Figure 34. ML_SelfMind.py - score activity via MW. 34
Figure 35. A cherry-picked FSR raw data with two kicks, file ‘LegKick.csv’ 35
Figure 36. A prediction analysis of two anomalies in a short time for one fsr.. 35
Figure 37. An arbitrary FSR value over time, depicting a disconnected sensor, 36
Figure 38. A simulation result of a leg kick prediction, file ‘LegKick.csv’ 38
Figure 39. A simulation of walk prediction, file ‘01_Walk_Home.csv’ 38

A Smart Wearable Outfit System for Anomaly Detection
7

Figure A1. A high-level general wearable outfit with .. 42𝑁 = 5
Figure A2. A System-on-Module, Jetson Nano B01 with T200 shield(battery pack) 43
Figure A3. A Microcontroller, Myo-armband. used for emg signal collection 43
Figure A4. A microcontroller, Arduino Uno R3, used for fsr, piezo signal collection 43
Figure A5. A microcontroller, Teensy 3.6, used for fsr, piezo signal collection 44
Figure A6. A top and bottom outfit with sensors 44
Figure A7. A top and bottom outfit with sensors 44
Figure A8. A printed force-sensing resistor on pants 44
Figure B1. Code of RingBuffer.py 45
Figure C1. A high-level User-Interface of the smart-suit. A buzzer and a led state panel 46
Figure C2. An example of different states for a User-Interface led-panel 46

List of Tables

Table 1. Sampling rates of the used controllers and their sensors 12
Table 2. Sensors in depth 13
Table 3. Filtered values count 37

A Smart Wearable Outfit System for Anomaly Detection
8

Introduction

Over the past decade, wearable technology has evolved dramatically, with innovations
such as smartwatches and smart sport garments becoming increasingly popular. However,
existing systems often lack a widely applicable software architecture. In this paper, we propose a
general software system for System-on-Module (SoM) devices that can interface with various
sensors and microcontrollers. We refer to the SoM as the Server Node, as it acts as the receiver
for data transmitted by microcontrollers.

Microcontrollers in Usage
The primary responsibility of microcontrollers is to acquire data from interconnected

sensors via Serial communication. To enhance communication and data processing, we convert
sensor data into bytes and transmit it in binary format, significantly improving efficiency
compared to using string format. We employ high baud rates for data transmission, although
lower rates would be sufficient for human activity recognition due to the long-term nature of
action signals.

We also utilised a Myo armband, an electromyography (EMG) device, to collect real-time data
through Bluetooth-Serial communication with our Jetson Nano B01 Server Node. Although we
did not analyse this data extensively in the current study, it provided additional context for our
research.

Sensors in Usage
Our proposed system is compatible with various sensor types, depending on the desired

application. The sensors used in this project include Force-Sensing Resistors (FSRs),
Piezoelectric Films, Accelerometers, and EMG devices such as the Myo armband. These sensors
provide different types of data to facilitate the analysis and classification of user activities, as
well as the detection of abnormalities.

Server Node: Jetson Nano B01
The Jetson Nano B01 is an effective SoM for AI deployment across various industries.

While Nvidia has produced many SoM versions, none are currently wearable. Our server node
has a power consumption of 5-10 Watts, which is sufficient for most wearable sensor
applications.

In summary, this paper presents a versatile software system for SoMs that can interface with a
range of sensors and microcontrollers, allowing for the development of advanced wearable
technology applications.

A Smart Wearable Outfit System for Anomaly Detection
9

Figure 1. A high-level depiction of the smart outfit designed and used in practice.

Running the Project
Our project can be run in two modes: Real-time and Offline (Scripts).

Below, you'll find instructions for setting up and running the project in each mode.

Recorder Mode
In order to load new code into the sub-controllers, execute the project under the PlatformIO
environment, while connected with the particular USB required for Teensy or Arduino. Make
sure the COM port is recognized.

Figure 2. Our project opened via PlatformIO in VisualStudioCode.

A Smart Wearable Outfit System for Anomaly Detection
10

Creating a new data file will require using an SD-Card in Teensy, either Arduino with SD-Card
reader extension. Then, the user can perform an activity - preferred as a recurring pattern.

Offline Mode
In offline mode, the project does not require the suit in practice, but only data analysis. It
operates using only the resources available on your local machine. Here's how you can run the
project in offline mode:

1. Setup: Make sure you've completed the project's initial setup - by opening it in Visual
Studio Code environment, including installation of Python and PlatformIO extensions
and configuration. This might involve downloading necessary data or resources to your
local machine while connected to the Internet, so they are accessible for offline use.

2. Start the Project: Open the project. Since you're running in offline mode, you won't
need to login. Under Scripts, find the desired python to run. Make sure you have installed
all required libraries in the environment, to successfully execute the scripts. Run the
script files via code-cell executions in the VSC platform, similar to Jupyter Notebook.

3. Access Local Resources: Interact with the project using the resources (data files) stored
on your local machine, and replace data files that you wish to verify by yourself.
Remember that any changes made or data entered will only be saved locally, and will not
be updated on the server until your commit is updated in GitHub.

4. Exit: When finished, simply exit the project.

Figure 3. Scripts, as root folder for running analysis and code on pre recorded data.

A Smart Wearable Outfit System for Anomaly Detection
11

Real-time Mode
In real-time mode, the project runs in the Jetson and accesses various microcontrollers connected
to it via USB or Bluetooth, the sub-devices need to operate, and the control software will receive
the data and evaluate the activity or anomaly in accordance with the user's pre-coding
experiment. Follow the steps below to run the project in real-time mode:

1. Ensure Peripherals are Interconnected: Ensure your device has a stable internet
connection. The project needs this to access the necessary online resources.

2. Execute: Open the project in terminal and enter run the system-main.py, under python
environment. If you do not have the required libraries, install it.

3. User-Interface: If the project runs on a non-Jetson Nano, then the UserInterfaceHandler
is not activated to display leds intact. Then it’s the user’s responsibility to tweak and
present in terminal or offline csv the real-time outputs.

4. Exit: When you're done, you can exit the project by Control C. Any data that is available
to be recorded by the system is entered into a csv, and automatically saved to the current
project’s folder.

Figure 4. VSC real-time project, execute in terminal/cmd the ‘system-main.py’ file.

A Smart Wearable Outfit System for Anomaly Detection
12

Architecture

During the last decade, wearable technology has advanced nearly from zero to extent,
where people wear smart-watches, smart sport garments and more. Yet, those systems did not
provide any software architecture to be used in a widely spread aspect. In this paper we propose
a general software system for SoM, to interconnect with any sensors and microcontrollers. Let us
refer to the SoM as the Server Node, as it acts as the receiver from the microcontrollers.

Figure 5. A high level depiction of the node's responsibilities.

Table 1. A depiction of microcontroller sample rate in our project.
Different Sampling Rates

Type Sample Rate
Myo - IMU 50 Hz

Myo - sEMG

Arduino / Teensy /
Jetson

200 Hz

2000 Hz

The server node, Jetson Nano B01, delivers great performance in AI deployment across
industries. Nvidia has produced many versions of SoM’s, though they are not yet wearable. Our
server node has a power consumption of 5 to 10 Watts which should be sufficient in most general
cases of sensors via wearables.

As stated earlier, any sensor with logical attachment can be used in the proposed system. Table 2
describes more in depth of the sensors intact and their use-case scenario.

A Smart Wearable Outfit System for Anomaly Detection
13

Table 2. Sensors in depth.
Wearable Sensors in-depth Description and Practices.

Type Description Practically

Force-sensing
Resistor

This sensor is a material sensor whose
resistance changes in case of force,
pressure or stress that is applied to it. It's a
one-dimensional sensor, that is put over
the smart suit, and refers as

.(𝑓𝑠𝑟
0
, 𝑓𝑠𝑟

1
, ..., 𝑓𝑠𝑟

𝑘
)

The data outputs of this
sensor enabled a good
analysis and classification
of activity footprint. As
well as abnormality
recognition.

Piezoelectric Film The piezo is actually crystals that generate
electrostatic currencies in accordance with
the direction of film being stretched. This
sensor adds one additional layer to the
input’s dimensionality, .(𝑝)

Although this sensor
resembles the FSR, its
sensitivity is much higher
and requires more gentle
user activities.

Accelerometer This device uses an electromechanical
sensor to measure static or dynamic
acceleration. Acceleration sensing
operates via three dimensional axis,

and is able to tell distance(𝑥, 𝑦, 𝑧)
change across time-series.

It is commonly used in a
wide variety of research
and acts as a ground-truth
reference for the other
sensors.

Electromyography
(Myo)

It operates within eighth muscles -
, and thus(𝑒𝑚𝑔

0
, 𝑒𝑚𝑔

1
, ..., 𝑒𝑚𝑔

8
)

muscle activity can be monitored and
classified into the different states of the
user's activity.

Wide research is done
across gesture recognition
via muscles being intense
while showing hand
gestures.

Gyroscope (Myo) This device maintains measurements of
rotational motion. A unit of measure is
referred to as angular velocity, their units
are measured in degrees per seconds or
revolutions per second. A gyro simply
tells the speed of rotation across (𝑥, 𝑦, 𝑧)
axis. That said, the gyro should measure a
recurring pattern of degree shifts for each
activity.

Motion capture devices can
suit the needs of smart
sports and medical

wearables - capture the
correct motion and

compare to actual input.

A Smart Wearable Outfit System for Anomaly Detection
14

Related Work

Over the past decade, a considerable amount of research has been conducted in the area
of wearable technology. While getting-started projects, as seen in different datasheets and
websites by Arduino R3 (2022), NXP-Teensy (2022), and Nvidia-Jetson (2022), provide a useful
starting point, the proposed embedded software is often primitive and not suitable for industry
applications. As software scales during project development, code maintenance becomes
challenging. Therefore, we propose a high-level approach incorporating Object-Oriented
Programming (OOP) design patterns.

Mukhopadhyay (2015) presented a Body-Sensor-Network review and highlighted the significant
challenge of delivering real-time data. Additionally, wearable technology has been widely
applied in healthcare for monitoring and emergency medical response systems. Building on these
ideas, we aim to develop software that prioritises real-time effectiveness over fault tolerance. We
draw inspiration from Cho & (Ed.) (2009, ch 6), who presented key concepts for designing and
building a wearable outfit, including central processing devices, wire-based networks, and signal
integrity.

Kamble et al. (2022) recently proposed a fall detection system for wheelchair users utilising
accelerometer and gyroscope sensors. While their system can identify falls, it still requires user
verification, which may not be feasible in real-world scenarios. In contrast, our wearable outfit
and algorithms can simulate detection through force application on smart fabric, adapting to
different emergency medical cases.

Khan et al. (2019) also developed a patient fall detection system, achieving 95% accuracy in
detecting non-fall activities using k-Nearest Neighbour and Bayes Classifier algorithms. Their
accelerometer data is similar in pattern to our smart outfit's accelerometer, providing a
'ground-truth' for the Force-Sensing Resistor (FSR) sensor. However, their wearable design is not
suitable for long-term use due to the uncomfortable chest band. Our smart outfit, made of cloth,
offers a more comfortable and non-constraining solution for users. Despite these improvements,
further considerations regarding fabric breathability are needed for long-term wearability.

A Smart Wearable Outfit System for Anomaly Detection
15

Software System - Microcontroller(slave) Nodes

The `Platform.io` framework is used for developing the embedded system via Teensy or
Arduino. It contains an acquisition feature for the offline analysis and a real-time streamer for the
online handler of the Master Node.

Figure 6. A UML depiction of a Node-microcontroller.

Main
In both cases of Arudino and Teensy, the framework’s main method is responsible for

operating via `setup` and `loop` methods. In our case, a `ContextHandler` runs its setup and loop
methods to comply with the hardware’s life-cycle.
#include "ContextHandler.h"
DMAHandler* DMAHandler::instance;
CacheHandler* CacheHandler::instance;
ContextHandler contextHandler;
void setup() { contextHandler.setup(); }
void loop() { contextHandler.loop(); }

Figure 7. Code of main.cpp.

A Smart Wearable Outfit System for Anomaly Detection
16

Context Handler
A context handler operates to set various `Interval Timers` which are simply interrupts to

dispatch necessary functionalities. Those functions are sanity operability - a built-in blinking led
on the hardware. A sensor reader, to cache the real-time stream. And two separate writing
mechanisms, one for writing data in offline mode - straight to an SD-card placed on board, the
other is to verbose real-time streaming into the serial port, so that the Master Node is able to
decouple and predict in accordance with it.
void ContextHandler::staticReadSensorsInterrupt() {

static unsigned long counter = 0;
noInterrupts();
SensorsData currentStorage = CacheHandler::requestStorageRef();
DMAHandler::sampleToStorage(currentStorage);
send_buffer.putInt(currentStorage.piezo); // update buffer with storage
for (int index = 0; index < 8; index++) {

send_buffer.putInt(currentStorage.fsrs[index]);
}
if (counter > UINT64_MAX - 2) {

counter = 0;
}
counter++;
interrupts();

}
void ContextHandler::staticWriteSDInterrupt() {

noInterrupts();
SensorsData* storage = CacheHandler::getSensorsBatchRead();
if (storage != NULL) { // Write if data available

SDManager::tryWrite(storage, CacheHandler::STACK_CAPACITY);
}
interrupts();

}
void ContextHandler::staticWriteSerialInterrupt() {

if (!serial.isBusySending()) {
serial.sendSerialPacket(&send_buffer);

}
}
void ContextHandler::staticBlinkLed() {

static bool state = true;
state = !state;
digitalWriteFast(sanityBlinkLed, state ? HIGH : LOW);

}
void ContextHandler::setup() {

serial.init(0, this->baudrate);
send_buffer.init(BUFFER_SIZE);
pinMode(sanityBlinkLed, OUTPUT);
DMAHandler::setup();
timeHandler.setup();
sdManager.setup();
CacheHandler::shared()->setup();
PIT_readSensors.begin(staticReadSensorsInterrupt, 125);
PIT_sdWrite.begin(staticWriteSDInterrupt, 500);
PIT_serialWrite.begin(staticWriteSerialInterrupt, 2000);
PIT_blink.begin(staticBlinkLed, 500000); // half second

}
void ContextHandler::loop() {

serial.update();
timeHandler.loop();
sdManager.loop();
noInterrupts();
TimeInSec = now();

A Smart Wearable Outfit System for Anomaly Detection
17

interrupts();
return;

}
ContextHandler::~ContextHandler() { }

Figure 8. Code of ContextHandler.cpp

DMA Handler
A Direct-Memory-Access handler is a singleton, encapsulating in itself the functionalities

necessary to set both ADC (Analog-to-Digital-Converter) for sampling at higher rates the sensors

intact. It sets the resolution bits to be of 12 - maximum values of per sensor. A conversion212

rate and sampling speed at very high speeds. And an averaging of samplings of 32, which is
considered highest as well. Finally the values are stored into a `SensorsData` struct which is later
on used by the Context Handler.
class DMAHandler {
private:

DMAHandler();
~DMAHandler();
static DMAHandler* instance;
DMAHandler(const DMAHandler &dmaHandler);
const DMAHandler &operator=(const DMAHandler &dmaHandler);

public:
static void setup(); // TODO: should allow once
static DMAHandler* shared() {

if (instance == 0) {
instance = new DMAHandler();

}
return instance;

}
static volatile void saveAdcBufferToStorage(SensorsData &storage);
static volatile void sampleToStorage(SensorsData &storage);

};
#endif

Figure 9. Code of DMAHandler.h.

A Smart Wearable Outfit System for Anomaly Detection
18

volatile void DMAHandler::saveAdcBufferToStorage(SensorsData &storage) {
float voltage = 3.3;
uint32_t MaxValue = adc->adc0->getMaxValue();
storage.piezo = adc->analogRead(adc_pins_piezos[0] * voltage / MaxValue) ;
storage.accelerometer[0] = adc->analogRead(adc_pins_acc[0] * voltage / MaxValue);
storage.accelerometer[1] = adc->analogRead(adc_pins_acc[1] * voltage / MaxValue);
storage.accelerometer[2] = adc->analogRead(adc_pins_acc[2] * voltage / MaxValue);
const byte ADC_MAX_FSR = 6; // 6
const byte StructIndent = 2; // 2
for (byte fsrIndex = 0; fsrIndex < ADC_MAX_FSR; fsrIndex++) {

storage.fsrs[fsrIndex] = adc->analogRead(adc_pins_fsrs[fsrIndex] * voltage /
MaxValue);

storage.fsrs[fsrIndex+ADC_MAX_FSR + StructIndent] =
adc->analogRead(adc_pins_fsrs[fsrIndex+ADC_MAX_FSR + StructIndent] *

voltage / MaxValue);
}

}
volatile void DMAHandler::sampleToStorage(SensorsData &storage) {

// Convert to voltage => value * 3.3 / adc->adc0->getMaxValue()
float voltage = 3.3;
uint32_t MaxValue = adc->adc0->getMaxValue();
storage.piezo = (uint16_t) (adc->analogRead(adc_pins_piezos[0])) ; //
const byte ADC_MAX_FSR = 8;
for (byte fsrIndex = 0; fsrIndex < ADC_MAX_FSR; fsrIndex++) {

storage.fsrs[fsrIndex] = (uint16_t) (adc->analogRead(adc_pins_fsrs[fsrIndex]));
}

}

Figure 10. Code of DMAHandler.cpp

Time Handler
It is a simple clock mechanism that supports more than just returning the number of

seconds since the start of the Hardware. Meaning, it is processing Teensy’s clock in order to
return the number of seconds since 1970. Such mechanism supports offline analysis in knowing
the `approximate` time the sensors were sampled. It is important to notice that even though the
sampling of sensors is done swiftly and stumped with a timestamp, the actual timing between
sampled sensors has a few milliseconds of drift. For the sake of this research, we ignore the
miniature drifts, as they are less critical in our real-time system of recognizing activities which
span in durations of seconds.

Utils
Utils file has useful properties for the sake of the system. First it contains the

`SensorsData` struct, which is used widely across other objects as an object of the sensor’s data.
In addition, a helper function for the `TimeLib`, to instantiate in a proper manner. And a String to
Char array converter, for the purposes of file name handling.

Buffered Serial / Byte Buffer
A Byte Buffer is responsible for holding an array of bytes, and has the feature of putting

data into that buffer, which will represent a packet with brackets.
𝐵𝑦𝑡𝑒 𝐵𝑢𝑓𝑓𝑒𝑟 = [' < ', '𝑏

0
', ..., ''𝑏

𝑘
', ' > '].

A Smart Wearable Outfit System for Anomaly Detection
19

Buffered Serial handles the aforementioned, and brings the features of sending a packet of bytes
over the serial.

SD Manager
An SD manager takes care of the files that are saved into the SD card. It has two methods,

the first is an interrupt, controlling the writing into the file, via binary format writing the struct of
`SensorsData`. And the latter method which takes care of updating the record file name upon the
reach of an arbitrary limit.
class SDManager {
private:

uint16_t countSDWrites;
File currentFile;
char *recordFileName;
char *recordHeader;
void initializeSD();
void clearSD();

public:
SDManager();
void setup();
void loop();
static void tryWrite(SensorsData* storage, uint16_t length);
void save(SensorsData* storage, uint16_t length);
void updateRecordCountIfNeeded();

};

Figure 11. Code of SDManager.h.

Cache Handler
A class to organise the caching for the streamed data. It has a method for requesting a

storage reference of the data object to be populated with, via `DMAHandler`. Another method
when writing into the SD - a reference for the cache is returned if an arbitrary limit of cache has
been reached.
class CacheHandler {
private:

CacheHandler(){}
static CacheHandler* instance;

public:
static const uint16_t STACK_CAPACITY = 512;
static CacheHandler* shared() {

if (instance == 0) {
instance = new CacheHandler();

}
return instance; }

static void setup();
static void saveToCache(SensorsData& sensorsData);
static SensorsData& requestStorageRef();
static SensorsData* getSensorsBatchRead();

};

Figure 12, Code of CacheHandler.h.

A Smart Wearable Outfit System for Anomaly Detection
20

Software System - SoM(Master) Node

A System-on-Module enables high-level functionality execution of artificial-intelligence
libraries via Python, and hardware that can handle the processing of slave nodes and its
consequent prediction computations. The data is acquired via various short experiments which
depict different activities. Figure 13 shows the different states the wearable outfit can infer - that
is represented via different led colours, and a buzzer for anomaly detection.

Figure 13. An FSM depicting the wearable-system.

Figure 14 depicts in practice Figure 13 schema.
Figure 15 shows a UML representation of the classes intact of our high-level system.
class SystemState(Enum):

Startup = 'startup'
SyncNodes = 'sync_nodes'
Unrecognized = 'unrecognized'
Anomaly = 'anomaly'
Idle = 'idle'
Walk = 'walk'
Jump = 'jump'
Squat = 'squat'
def values():

return [member.value for member in SystemState]
def key_by(value):

for member in SystemState:
if member.value == value:

return member
return None

class JetsonNanoGPIO(IntEnum):
buzzer_pin = 7
blue_led_pin = 12
red_led_pin = 16
green_led_pin = 18
white_led1_pin = 24
white_led2_pin = 19

class MasterHardware(str, Enum):
unrecognized = 'None'

A Smart Wearable Outfit System for Anomaly Detection
21

jetson = 'Jetson-Nano-B01'
pc = 'Computer'

class NodesControllers(Enum):
right_arm = 'Myo'
left_leg = 'Teensy-3.6'
left_hand = 'ArduinoUnoR3'

class TermToSensors(str, Enum):
Teensy = 'Teensy'
Myo_Motion = 'MyoMotion'
Myo_EMG = 'MyoEMG'
def values():
return [member.value for member in TermToSensors]

class ModelType(str, Enum):
memory_neural_network = 'LSTM-AE'
pattern_matching = 'MASS'
algorithmic = 'SelfMind'
def values():

return [member.value for member in ModelType]

Figure 14. SandboxStates.py - Configurations of system.

Figure 15. A light UML of the class's interaction and relations.

A Smart Wearable Outfit System for Anomaly Detection
22

Main Method
The main method is the beginning of every software development process. Whereas in

our case, this is the starting point for the Main class, which is a clock for our live program to
operate at.
class Main(ManagerProtocol):

def __init__(self):
self.contextHandler = ContextHandler()
self.increment = 0.001 if ExecutionState.Current() == ExecutionState.Debug else

0.001
self._restart()

def _start(self) -> None:
self.next_t = time.time()
self.i = 0
self.done = False
self.contextHandler._start()

def _run(self) -> None:
print("hello ", self.i)
self.next_t += self.increment
self.i += 1
self.contextHandler._run()
if not self.done:

threading.Timer(self.next_t - time.time(), self._run).start()
def _stop(self):

self.contextHandler._stop()
self.done = True

End of Main.

Figure 16. Code of system-main.py.

Main Class / Manager Protocol
Simply, a class to organise the life-cycle of the real-time system. Figure 12 indicates a

basic protocol to formulate operability across all other node handlers.

Figure 17. A general life-cycle for the classes in use.

Every class complies with type `ManagerProtocol`, in order for it to be part of the real-time
life-cycle. This architecturing is biassed from microcontrollers, thus there exists a `setup` and
`loop` methods - basically the `start` can be thought of as setting up the class, and `run` as a
continuous loop. Now that the life-cycle is set, a context handler class operates multiple
managers and takes control of the relevant functionality of a context. In other words, the
recording and deciding what state is currently apparent.

A Smart Wearable Outfit System for Anomaly Detection
23

class ManagerProtocol(abc.ABC):
@classmethod
def __init__(self):

pass
@classmethod
@abc.abstractmethod
def _start(self) -> None:

pass
@classmethod
@abc.abstractmethod
def _run(self) -> None:

pass
@classmethod
@abc.abstractmethod
def _restart(self) -> None:

pass
classmethod
def _stop(self) -> None:

pass
@classmethod
def __del__(self):

pass

Figure 18. Code of ManagerProtocol.py.

Context Handler
Simply, the heart of the system. It is being run by the Main, so that every change of scope

,(record/classify/alert), is under its monitor. It schedules, in a round-robin old fashion way, the
different managers to operate solely. Yet, if any update of data is required, it is being delegated to
the Context Handler for treatment. A delegation of updated data can be referred to as a Resource,
meaning the resource is shared only via this class to its related context. Unlike the
interrupt-based architecture - where event-functions receive a void * parameter for context and
have difficulty for scaling big, the Object-Oriented approach presents more structure and
visibility of relation between objects and their responsibilities.

def _start(self):
didSyncNodes = False
while didSyncNodes == False:

self._systemState = SystemState.SyncNodes
didSyncNodes = self._nodesManager._start()

print('System State : ' + str(self._systemState))
self._recorderManager._start()
self._coreManager._start()
return True

def _run(self):
self._nodesManager._run()
result = self._nodesManager.get_dict_data()
self._uiHandler.display_update(self._systemState)
if len(result) > 0:

print(result)
with concurrent.futures.ThreadPoolExecutor() as executor:

self._recorderManager._run(result)
with concurrent.futures.ThreadPoolExecutor() as executor:

self._coreManager._run(result)
self._systemState = self._coreManager.current_system_state()

Figure 19. Code of ContextHandler.py

A Smart Wearable Outfit System for Anomaly Detection
24

Recorder Manager
A class to record live data of the applied microcontrollers and their sensors. Once a

certain limit has been reached, the data is output to a CSV.

Terms to Sensors
An enumeration of states depicting the table of sensors that are being sampled. Since

every table has a different baud-rate, this separation is applied.
class RecorderManager(ManagerProtocol):

def _start(self):
self._storage_limit_by_node = dict.fromkeys([TermToSensors.Myo_EMG.value,

TermToSensors.Myo_Motion.value, TermToSensors.Teensy.value], 0)
self._storage_limit_by_node[TermToSensors.Myo_Motion.value] = 150# 30 frames

per second
self._storage_limit_by_node[TermToSensors.Myo_EMG.value] = 150# 30 frames per

second
self._storage_limit_by_node[TermToSensors.Teensy.value] = 10000# 2k frames per

second
def _run(self, nodes_data_dict):

For first run, initiate with new dict.
if self._data_by_key == None:

self._data_by_key = nodes_data_dict
return

for node_key in nodes_data_dict.keys():
if nodes_data_dict[node_key] == None:
self._handle_data_save(node_key, nodes_data_dict[node_key])

Features
def _handle_data_save(self, data_key, data):

First initialization for specific table
try:

if self._data_by_key[data_key] == None:
self._data_by_key[data_key] = data
return

except:
pass

Append new data
self._data_by_key[data_key] = self._data_by_key[data_key].append(data)
data_limit = 0
if data_key == TermToSensors.Myo_EMG.value:

data_limit = self._storage_limit_by_node[TermToSensors.Myo_EMG.value]
elif data_key == TermToSensors.Myo_Motion.value:

data_limit = self._storage_limit_by_node[TermToSensors.Myo_Motion.value]
elif data_key == TermToSensors.Teensy.value:

data_limit = self._storage_limit_by_node[TermToSensors.Teensy.value]

if data_limit > 0 and len(self._data_by_key[data_key]) > data_limit:
csv_current_path = './' + str(data_key) + '.csv'
try:

pd.read_csv(csv_current_path, nrows=1)
self._data_by_key[data_key].to_csv(csv_current_path, mode='a',

index=True, header=False)
except:

self._data_by_key[data_key].to_csv(csv_current_path, mode='w',
index=True, header=True)

self._data_by_key[data_key] = None

Figure 20. Code of RecorderManager.py.

A Smart Wearable Outfit System for Anomaly Detection
25

Myo Controller
A class to work with Myo via bluetooth. Once the microcontroller is connected with

Myo’s dongle, two data frames are created. Each one of them is a real-time frame that is
populated through the `run` method. Both of the frames have a limit that has to be reached in
order for it to be read by the Context Handler.
See GitHub project code for more information.

Teensy Microcontroller
This controller is responsible for finding a teensy microcontroller to connect with. If the

controller is not available, then the software is not responsive. Once interconnected, it starts to
stream real-time data into a local variable, which is the table to be query, . It needs to be in a𝑄
size of window which is considered possible to recognize. That meant to be 1k Hertz. When
finished to populate the table with data, and data is requested from the shared manager, then it
empties and repeats the cycle. This manager also knows how to unfold the packet received via
the serial port. It converts bytes into integers that are translated into a data frame.
class Microcontroller(ManagerProtocol):

Life-cycle
def __init__(self):

self._columns_data = ['piezo', 'fsr-1', 'fsr-2', 'fsr-3', 'fsr-4', 'fsr-5',
'fsr-6', 'fsr-7', 'fsr-8']

self._Cache_Limit = 2000
self._cache = pd.DataFrame([], columns=self._columns_FSR)
self._frame = self._cache.copy()
self._cache_list = []

def _start(self):
self._targetController = self.find_teensy(baud_rate=2000000, timeout = 3)
print('Target controller is now set:\n')
print(self._targetController)

def _run(self):
result = self._unfold_packet()
result = self._convert_packet_to_data(result)
self._save_data_to_frame(result)

def request_frame(self):
result = self.__flush_data()
return result

Features
def _save_data_to_frame(self, data):

data_len = len(data)
if data_len == 0:

return
self._cache_list.extend(data) # Append new data

Figure 21. Code of Microcontroller.py

Core Manager
This class is responsible for live monitoring and classification of the SystemState. It does

that by saving the data into ring-buffers, which are later passed for processing via ML_Manager.
class CoreManager(ManagerProtocol):

Life-Cycle
def __init__(self):

self._mlManager = None
self._data_by_key = None

A Smart Wearable Outfit System for Anomaly Detection
26

self._storage_limit_by_node = dict.fromkeys([TermToSensors.Myo_EMG.value,
TermToSensors.Myo_Motion.value, TermToSensors.Teensy.value], 0)

self._storage_limit_by_node[TermToSensors.Myo_EMG.value] = 640
self._storage_limit_by_node[TermToSensors.Myo_Motion.value] = 640
self._storage_limit_by_node[TermToSensors.Teensy.value] = 2000
self._detection_state = SystemState.Unrecognized

def _start(self):
self._mlManager = MLManager()
self._mlManager._start()

def _run(self, nodes_data_dict):
Initialize frame
if self._data_by_key == None:

self._data_by_key = nodes_data_dict
return

if len(nodes_data_dict) < 1:
Might compute in background
return

Save to frames
for node_key in TermToSensors:

if nodes_data_dict[node_key] is not None:
self._save_to_frames(node_key, nodes_data_dict[node_key])

self._mlManager._run()
Features
def current_system_state(self): # is detected as anomalous.

latest_classification = self._mlManager.most_relevent_classification()
if latest_classification is not None:

self._detection_state = latest_classification
return self._detection_state

def _save_to_frames(self, data_key, data):
First initialization for specific table
if self._data_by_key[data_key] is None:

self._data_by_key[data_key] =
RingBuffer(self._storage_limit_by_node[data_key])

map(lambda row: self._data_by_key[data_key].enqueue(row), data.values.tolist())

Figure 22. Code of CoreManager.py.

MLModel Protocol
In order to use different model classes for classification, this protocol describes the

model’s operability in accordance with a typical thread state machine, via ‘ModelState’. In
addition with three general main functionalities to try and suit different terminologies of
algorithmica, pattern matching via MASS and memory neural networks via LSTM-AE. It
achieves that by providing three methods, ‘_feed_with_data(data)’, ‘_assemble()’, ‘_predict()’,
which are responsible for updating with new data, preprocessing it, and output scoring for
different activities or anomalies.
MLManager

This class organises all models, and decides which of them to use in accordance with the
developer. In addition, it includes the method ‘most_relevent_classification()’, to state the system
has ‘unrecognised’ in default, and yields the concrete system state according to the current
model’s predictions.
class MLManager(ManagerProtocol):

Life-Cycle
def __init__(self):

self._models = dict.fromkeys(ModelType.values())
self._current_key_model = None
self._current_classification = None

A Smart Wearable Outfit System for Anomaly Detection
27

def _start(self, key):
self._current_key_model = key
if key == ModelType.algorithmic:

self._models[key] = ML_SelfMind()
elif key == ModelType.pattern_matching:

self._models[key] = ML_PatternMatch()
elif key == ModelType.memory_neural_network:

self._models[key] = ML_MemoryNNetwork()
self._runnable_model = self._modes[key]

def _run(self, dataDict=None):
if self._current_key_model is not None:

if dataDict is None:
self._runnable_model._feed_with_data(dataDict)

self._runnable_model._assemble()
self._current_classification = self._runnable_model._predict()

def _restart(self):
self._current_key_model = None
self._current_classification = None

Features
def most_relevent_classification(self):

if self._current_classification is None:
return None

state_score = [SystemState.Unrecognized, 0]
state_keys = SystemState.values()
for state_key in state_keys:

probability_result = self._current_classification[state_key]
if probability_result is not None and probability_result > state_score[1]:

state_score[0] = SystemState.key_by(state_key)
state_score[1] = probability_result

return state_score[0]

Figure 23. Code of MLManager.py

ML SelfMind
A concrete model with the aspects of algorithmica in regard to expert knowledge of

signal’s representation and state scoring accordingly.

ML_SelfMind is a machine learning model that focuses on self-learning and understanding. It
incorporates techniques from unsupervised learning and reinforcement learning to adapt to new
information and situations. The model uses a combination of algorithms, probability, and
optimization techniques to learn representations and make predictions. The runtime of this model
depends on the complexity of the input data, the learning algorithms used, and the desired level
of accuracy.
def scan_stream_activity_walk(self, data_frame):

number_of_rows = data_frame.shape[0]
fifo_length = 2000
score_df = None
count = 0
all_keys = list(data_frame.columns)
fsr_keys = list(filter(self.is_fsr_key, all_keys))
for fifo_index in range(0, number_of_rows-fifo_length, 1):

start = time.time()
print('index: ' + str(fifo_index))
fifo_frame = data_frame.iloc[fifo_index:fifo_index+fifo_length]
filtered_fsr_keys =

self.__get_sanity_keys(fifo_frame.iloc[int(fifo_frame.shape[0]/2) +
int(fifo_frame.shape[0]/4):], fsr_keys)

A Smart Wearable Outfit System for Anomaly Detection
28

fsr_keys = filtered_fsr_keys
seas_decom_prob_walk_by_fsr = dict(zip(filtered_fsr_keys,

zip(len(filtered_fsr_keys) * [0])))
frame_agreement_score = 0
frame_decompose_score = 0
for fsr_key in filtered_fsr_keys:

nonoutlier_frame = fifo_frame[[fsr_key]]
nonoutlier_frame = nonoutlier_frame.rolling(window=200).mean().dropna()
fft_frame = self.__convert_to_fft_signal(nonoutlier_frame)
frame_agreement_score += self.__score_frame_walk(fft_frame[[fsr_key]])
seas_decom_prob_walk_by_fsr[fsr_key] =

self.__score_seasonal_decomposition(nonoutlier_frame[[fsr_key]])
Final Score for all.
frame_score = self.__probability_of_step(frame_agreement_score,

seas_decom_prob_walk_by_fsr)
data = [[frame_score]]
row = pd.DataFrame(data, columns=['Activity-Walk'])
if score_df is None:

score_df = row
else:

score_df = score_df.append(row)
end = time.time()
print("The time of execution of above program is :", end-start)

return score_df

Figure 24. Code of ML_SelfMind.py Walk activity detection.

ML PatternMatch
A concrete model with the aspects of pattern recognition, specifically via MASS

methodology, and scoring an activity based on signature euclidean-distance from the average.

ML_PatternMatch is an implementation of a pattern matching algorithm based on machine
learning techniques. The model identifies patterns in the input data by processing it and
comparing it to previously seen examples. By using a set of predefined rules or learned
representations, the model can recognize and classify patterns. The runtime of this model varies
depending on the size and complexity of the input data, the number of patterns to be matched,
and the chosen pattern matching technique.

class ML_PatternMatch(ML_ModelProtocol):
def __init__(self):

self._state = ModelState.Start
self._input = None
self._processed_data = None
self._predictions = dict()
self.epsilon = 1.5

def _feed_with_data(self, data) -> None:
self._input = data
self.pushups_df = pd.read_csv(data['walk_file'])
self.pushups_df =

self.pushups_df.iloc[2000:36000].rolling(window=1000).mean().dropna()
self.Q_df = self.pushups_df['fsr-2'].iloc[data['Q_start']:data['Q_end']]
self.T_df = self.pushups_df['fsr-5'].iloc[data['T_start']:data['T_end']]
self.distance_profile = stumpy.mass(self.Q_df, self.T_df)

def _predict(self) -> dict:
idx = np.argmin(self.distance_profile)
Q_z_norm = stumpy.core.z_norm(self.Q_df.values)
nn_z_norm = stumpy.core.z_norm(self.T_df.values[idx:idx + len(self.Q_df)])

A Smart Wearable Outfit System for Anomaly Detection
29

max_change = max(Q_z_norm - nn_z_norm)
min_change = min(Q_z_norm - nn_z_norm)
Check if the pattern matches within the given threshold
if max_change < self.epsilon or abs(min_change) < self.epsilon:

self._predictions['pattern_match'] = True
else:

self._predictions['pattern_match'] = False
return self._predictions

Figure 25. Code of ML_PatternMatch.py.

MLMemoryNNetwork
A concrete model with the aspects of Memory Neural Network. Specifically it can

measure the euclidean-distance between the prediction result and the input.
This model is an implementation of a memory-augmented neural network designed to recognize
patterns in sequential data. It incorporates elements from recurrent neural networks (RNNs) and
memory networks to create an efficient learning mechanism. The model processes the input data
and stores relevant information in its memory, which can be later used for making predictions.
The runtime of this model depends on the complexity of the data, the size of the memory, and the
training configurations.
class ML_MemoryNNetwork(ML_ModelProtocol):

def _feed_with_data(self, data) -> None:
self._input = data

def _assemble(self) -> None:
train_df, val_df, seq_len, n_features = self._prepare_dataset(self._input)
self.model = RecurrentAutoencoder(seq_len, n_features, 256)
self.model = self.model.to(self.device)
self.model, _ = self._train_model(self.model, train_df, val_df, n_epochs=5)

def _predict(self, model, dataset):
predictions, losses = [], []
criterion = nn.L1Loss(reduction='mean').to(self.device)
with torch.no_grad():

model = model.eval()
for seq_true in dataset:

seq_true = seq_true.to(self.device)
seq_pred = model(seq_true)
loss = criterion(seq_pred, seq_true)
predictions.append(seq_pred.cpu().numpy().flatten())
losses.append(loss.item())

return predictions, losses
class Encoder(nn.Module):
def __init__(self, seq_len, n_features, embedding_dim=64):
super(Encoder, self).__init__()
self.seq_len, self.n_features = seq_len, n_features
self.embedding_dim, self.hidden_dim = embedding_dim, 2 * embedding_dim
self.rnn1 = nn.LSTM(
input_size=n_features,
hidden_size=self.hidden_dim,
num_layers=1,
batch_first=True)

self.rnn2 = nn.LSTM(
input_size=self.hidden_dim,
hidden_size=embedding_dim,
num_layers=1,
batch_first=True)

Figure 26. Code of ML_MemoryNNetwork.py

A Smart Wearable Outfit System for Anomaly Detection
30

Activity Recognition - SelfMind

A broad offline analysis has been performed for different types of activities, but because
of research scope limitations we will be going over a portion of it.
Walk Activity Simulation

‘def scan_stream_activity_walk(data_frame)’ - A separate simulation for walking
activity, with the analysis of one second - 2k samples per window. This time we don’t use the
voltage convertage as it has no use for the FFT and even disqualifies the outputs such that they
are of no use any longer.
A moving-average of 200 is smoothing the data, though this time it is not much effective. It is
then converted into a cleaner signal via fft and an inverse of fft. Over that signal, a scoring
mechanism by ‘score_frame_walk(fft_signal)’, returns one or zero respectively with respect to
‘validate_complete_step(df)’, which goes over the signal and tries to find the occurrence of the
following arbitrary step wave.

Figure 27. Analysis of steps inside walk activity, file ‘04_Office_Walk.csv’.

Eventually, for each fsr that is eligible, we count if the current frame has detected a step of walk,
by detecting a frame as the above. For instance, have total of eights FSRs, where six of them
ineligible, and four of them detect a step, then the score for step recognition is %.4

6 = 0. 67

def __probability_of_step(self, count_agreement, decompose_score_by_fsr):
count_total = len(decompose_score_by_fsr)
probability_fsr_agreement = 0.5
probability_ARMA = 1 - probability_fsr_agreement

Compute Total Decompose Score
decompose_total_percent = probability_ARMA * 100 # 0.5 * 100 = 50%
decompose_percent_per_fsr = decompose_total_percent / count_total
decompose_percent_sum = 0
for value in decompose_score_by_fsr.values():

decompose_percent_sum += decompose_percent_per_fsr * value

A Smart Wearable Outfit System for Anomaly Detection
31

return probability_fsr_agreement * (count_agreement / count_total) +
decompose_percent_sum/100

def __score_frame_walk(self, data_frame):
is_step_validated = self.validate_complete_step(data_frame)
if is_step_validated:

return 1
return 0

Figure 28. ML_SelfMind.py - probability of step & score frame walk.

That mentioned, we continue with another process of identifying walk via seasonal
decomposition outputs, ‘score_seasonal_decomposition(data)’, which takes into account the
trend and residual appearance. Both of them are checked to satisfy the two criterias, stable
residual (min, max, mean) are in range of , ‘is_walk_residual_multiplicative(data_resid)’.1 ± ε
Additionally, a detection of trend - where a walk wave should also be recognized, via one
minimum(left side) and one maximum(right side), ‘is_walk_trend_multiplicative(data_trend)’.
Each of the parameters has a weight of 50% in seasonal decomposition scoring, such that if only
trend is available, then the score is 50%, for the particular fsr.

Figure 29. A seasonal decomposition of steps in walk, ‘iFFT(FFT(MA-200(input)))’.

A summary of the above is explicit via, ‘probability_of_step(frame_agreement_score,
seas_decomp_prob_walk_by_fsr)’, which takes into account the recognition of a step through a
preprocessed signal value, and its seasonal decomposition scores. Arbitrarily, we have chosen to
score 50% weight for all FSRs finding the step pattern, and the other 50% is built from every
eligible fsr agreeing on residual and trend.

A Smart Wearable Outfit System for Anomaly Detection
32

0% ≤ 1
2 ·

𝑐𝑜𝑢𝑛𝑡
𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

𝑐𝑜𝑢𝑛𝑡
𝑡𝑜𝑡𝑎𝑙

 + 1
2 ·

𝑖=0

𝑐𝑜𝑢𝑛𝑡
𝑡𝑜𝑡𝑎𝑙

∑ 𝑥
𝑖

· 𝑐 ≤ 100%

𝑥
𝑖

= 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒,

𝑐 = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑠𝑐𝑜𝑟𝑒, 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝐹𝑆𝑅𝑠 𝑖𝑛 𝑐𝑦𝑐𝑙𝑒.

All scores are summarised into a data-frame for later analysis that has been conducted in the
research paper.

Idle Activity Simulation
‘def scan_stream_idle(data_frame)’ - A very similar approach for idle activity detection

was done, in terms of analysing a 2k sized window, but this time with two different approaches,
and with a window-stride of size 10, rather than one. Later, a comparison of the two idle
detection is overviewed.
Scan Idle via PCT

‘def scan_stream_idle(data_frame)’ - Observe the input frame as pct changes via
smoothened frame, and picks the largest distance from zero, whether it is a spike up, (resistance
recovery) or a spike down (stretch). Once the max change distance is determined, it is scored via
exponential distribution, CDF. After cycling over all eligible FSRs, the most minimum score that
was present, meaning the FSR with greatest change will affect the analysis of the current frame.
It is seen right away that the areas of change are depicted with a strong fall to zero.
Figure 30 is an example of a book being dropped from different heights, the higher the distance
travelled till impact, the stronger is the resistance change of the sensor - that is reflected with
lower values, but this is beyond the scope of this research.

Figure 30. A depiction of FSR reacting to book fall over pants, file ‘FreeFall-Book.csv’.
Figure 31 indicates a notable perfect binary response. It is important to take this into account
because the simulation was across all eligible FSRs of the experiment and the result is
astonishing in the sense of detecting occurrence and its period.

A Smart Wearable Outfit System for Anomaly Detection
33

Figure 31. Analysis of all FSRs for idle recognition via PCT, file ‘FreeFall-Book.csv’.

def scan_stream_idle(self, data_frame):
number_of_rows = data_frame.shape[0]
fifo_length = 2000
score_df = None
count = 0
all_keys = list(data_frame.columns)
fsr_keys = list(filter(self.is_fsr_key, all_keys))
for fifo_index in range(0, number_of_rows-fifo_length, 10):

start = time.time()
print('index: ' + str(fifo_index))
fifo_frame = data_frame.iloc[fifo_index:fifo_index+fifo_length]
filtered_fsr_keys =

self.__get_sanity_keys(fifo_frame.iloc[int(fifo_frame.shape[0]/2) +
int(fifo_frame.shape[0]/4):], fsr_keys)

fsr_keys = filtered_fsr_keys
min_score = 1
for fsr_key in filtered_fsr_keys:

outlierFrame = fifo_frame[fsr_key].rolling(window=200).mean().dropna()
pct_frame = outlierFrame.pct_change(periods=200)
current_score = score_activity_idle_via_pct(pct_frame)
current_score = self.__score_activity_idle_via_MW(outlierFrame)
min_score = min(current_score, min_score)

data = [[min_score]]
row = pd.DataFrame(data, columns=['Activity-Idle'])
if score_df is None:

score_df = row
else:

score_df = score_df.append(row)
end = time.time()
print("The time of execution of above program is :", end-start)

return score_df

def __score_activity_idle_via_pct(self, pct_frame):
x = np.arange(0, 1, 0.001)
y = expon.cdf(x, 0, 0.00001)
y = 1-y
epsilon = 0.01
subframe_min = abs(pct_frame.min())
subframe_max = pct_frame.max()
subframe_max_change = subframe_max if subframe_max > subframe_min else

subframe_min
result = np.where(np.logical_and(x >= subframe_max_change-epsilon, x <=

subframe_max_change+epsilon))
if len(result[0]) == 0:

A Smart Wearable Outfit System for Anomaly Detection
34

return 0
distribution_index = result[0][0]
return y[distribution_index]

Figure 32. ML_SelfMind.py - scan and score idle stream.

Scan Idle via Moving-Average
‘def score_activity_idle_via_MW(fifo_frame)’ - Simply a Moving-Window with applied

constraints. It is an additional way of viewing the changes being made in the observed frame. By
taking the mean, max and min of the frame, the greatest distance can be determined, plainly, thus
scoring changes upon absolute value changes, in accordance to a different exponential CDF. For
example, the minimal value of score is calculated along the frame, thus the minimal score among
all FSRs is picked. As can be seen in Figure 18, below, the prediction probability of idle is not in
the correct scale we would expect, though the sense of decreasing values close to zero when the
book fell, does indicate the inverse of idle - not idle for sure.

Figure 33. Analysis of all FSRs for idle recognition via MovingWindow, file ‘FreeFall-Book.csv’.
def __score_activity_idle_via_MW(self, fifo_frame):

number_of_rows = fifo_frame.shape[0]
inner_window_length = 10
x = np.arange(0, 100, 0.01)
y = expon.cdf(x, 0, 50)
epsilon = 1
min_frame_score = 1
for i in range(0, number_of_rows-inner_window_length, inner_window_length):

window_frame = fifo_frame.iloc[i:i+inner_window_length]
window_mean = window_frame.mean()
dist_max = int(fifo_frame.max() - window_mean)
dist_min = int(window_mean - fifo_frame.min())
dist_greatest = dist_max if dist_max > dist_min else dist_min
if dist_greatest >= 100:

min_frame_score = 0
result = np.where(np.logical_and(x >= dist_greatest-epsilon, x <=

dist_greatest+epsilon))
if len(result[0])==0:

continue
distribution_index = result[0][0]
min_frame_score = min(min_frame_score, y[distribution_index])

return min_frame_score

Figure 34. ML_SelfMind.py - score activity via MW.

A Smart Wearable Outfit System for Anomaly Detection
35

Anomalous Detection - SelfMind

A broad offline analysis has been performed for different types of objects that had impact
with the smart outfit - while it was in a predefined state. Moreover, the aforementioned can be
viewed in Appendix B.

Real-Time Simulation
In order for us to have legit anomaly detection in the real-time framework, we created an

offline simulation that runs over offline recordings. In file `AnomalyDetector.py`, we first load up
a data-file we’re interested in, then execute `scan_stream(data_frame)` to observe the prediction
probability of the frame. For instance, take a leg kick recording and transform it to probability of
a hit. Figure 36 shows an excellent result in the recognition of anomalies. That is, if we decide a
threshold with the value of 0.6, then the recognition is precise.

Figure 35. A cherry-picked FSR raw data with two kicks, file ‘LegKick.csv’.

Figure 36. A prediction analysis of two anomalies in a short time for one fsr, file ‘LegKick.csv’.
It is easily seen that a simple threshold can now decide there’s a hit, though note that the other
FSR sensors will not necessarily react as well as the cherry-picked one, as can be seen in Figure
18. This means the percent change of ‘not well reacting’ sensors, is gonna be bounded by a
maximum of 10%. That can be seen due to overall values research upon hit experiments. The
beginning of ‘def scan_stream(data_frame)’ is catching up a frame of size 1000 data points,
which is roughly half a second, and analysing all incoming FSRs sequentially. Before the
analysis begins, we check if the frame is a complete noise or has saturation values, if so, the
frame is dismissed from the current analysis. The method, ‘def get_sanity_keys(data, keys)’ is
receiving the whole data file and an array of FSR keys, and returns all keys that were qualified as
not noise nor saturation signals. It is done via `def is_signal_noise(data[key])`,

A Smart Wearable Outfit System for Anomaly Detection
36

and ‘def is_signal_saturated(data[key])’. To verify the signal is not noise, a window of size 100

is sliding and checking if the minimum and maximum values are in bound of [0, -1] and the212

mean is not under the value of 10, though this boundary can be scaled to much higher values. In
addition, it checks whether the signal has a repeating mean value, which may suggest a noise
repeating itself. To verify a signal has no saturation, a sliding window of 100 is calculated of its
mean value and checked if it is under 10. The disconnected signal is mainly zero with epsilon -
negligible noise of the microcontroller. Figure 20 points out that even for disconnected sensors,
the noise that comes from the board and transmitted to the non-connected socket, is a reaction to
the outfit’s resistance change - spikes from zero.

Figure 37. An arbitrary FSR value over time, depicting a disconnected sensor, file ‘LegKick.csv’.
Once we’re prepared with FSR frames that are in high chance to be correct, we convert the data
into voltage for the sake of correct electrical engineering reference, voltage. That is done via ‘def
convert_to_voltage(data_frame, resistance)’, where (input_voltage / teensy_res_bit) / resistance.
The resistance was checked for each FSR, and was 800kOhm. We divide the input voltage, 3.3,
by the number of resolution bits set up on the teensy to sample the data, In12 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠.
continuation, we use a simple heuristic for getting rid of outliers in the input signal. Remember,
we are not supposed to lose the anomaly event since it is a process that affects many
consequential data points in time. The method, ‘def scan_stream_outliers(nonoutlier_frame)’,
uses a sliding window to check if the last value of it is outside of the mean + standard deviation
range. This method was found to be useful on great windows of time, as it encoded the signal
into a shorter range. Right after, we continue the clean-up with Grubb’s outlier detection. A
quick recall, the outliers are the extremities of the gaussian bell. The grubb’s scanning method is
‘def scan_grubb_outliers(data_frame)’ which activates the function,
‘def ESD_Test(input_series, alpha, max_outliers)‘ over the whole window. All the indexes that
are considered outliers are later excluded from a copy of the input data. A relatively small
window, size of 15, is used since more outliers can be caught for small windows and less outliers
for bigger windows. Considering a bigger window with the detection of less outliers and more
time computation, is a bad practice for this manner. The window slides in shifts of the whole
window while the previous outlier detection was using steps of size one. The final preprocessing
is the execution of `Moving-Average(200)`. It helps to reduce the noise in a signal. A window of
200 is chosen, since it is of a second, thus 100 milliseconds is sufficient for the event’s time1

10

duration for this scope of research. A data-frame built-in function,
‘rolling(window=200).mean()’, is used with ‘dropna()’, dropping all not available values that are

A Smart Wearable Outfit System for Anomaly Detection
37

created from the process of moving average. After all this preprocessing is complete, the original
window which started with the size of 1000, has decreased by roughly 300 samples.

Table 3. Filtered values count
Count of items dropped per arbitrary fsr window of size 1000.

Methodology Count Dropped Values

Moving-Average(200) 200
Grubb’s Outlier Detection 10
Self-Clean-up 70
Total 280

Later the shortened window is applied with ‘def score_frame(data_frame)’. This function is
responsible for several important processes. First, we declare a cumulative distribution function,
via exponential distribution - ‘expon.cdf(x, 0, 0.3)’, where the scale parameter

, were chosen after repeated experiments with different parameters.β = 0. 3, λ = 3. 33
understanding the difference of activity versus anomaly in terms of percent change. The
uniqueness of this distribution is it produces less than 50% for 20% stretch change. Because
activities like walking are usually bounded by 10% stretch change. Peaks of anomaly were
observed with more than 10% change, and even varied across different experiments - {20%,
30%, …, 70%}. Our preprocessed input is now applied with ‘pct_change(periods=200)’, which
produces a stream of percent change over 100ms. The change in time-series is calculated in the
background via derivatives that are converted into percentages. The new output is now shortened
again by 200 samples and is rated by the minimum pct change across the stream. For instance,
the minimum across a half second frame was found to be ,𝑚𝑖𝑛 =− 1

2 ⇒ 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑥[𝑚𝑖𝑛| |]

that will be the index of exponential distribution CDF.

Picking the Threshold
Observing the different FSRs that are considered valid for processing, usually a subgroup

of one or two FSRs will be mostly affected by the hit in the experiment's data. The great
collective of fsr sensors will produce less than 10% change, and so the probability of that is less
than 0.1, therefore there needs to be a factor to the FSRs that reacted drastically. A method
named, ‘def score_fsrs(fsrs_dict)’ handles the explained above use-case. It receives as an input
an ordered by value dictionary of key-value pairs, which is the ‘score_frame(data_frame)’ as
value, and key of the particular analysed FSR. Arbitrary, we have conducted a score mechanism
that gets as input the sorted dictionary, verifies it’s not of size zero (predicts 0 probability for
FSRs). If only one FSR key is available, then the value of that key in a dictionary is the result, as
it is the only sensor that receives valid feedback. In case of two sensors, we sum both sensor’s

A Smart Wearable Outfit System for Anomaly Detection
38

scores multiplied by 50%,
).𝑠𝑐𝑜𝑟𝑒

𝑓𝑟𝑎𝑚𝑒
(𝑓𝑠𝑟[𝑖]) = 𝑥

1
 ; 𝑠𝑐𝑜𝑟𝑒

𝑓𝑟𝑎𝑚𝑒
(𝑓𝑠𝑟[𝑗]) = 𝑥

2
 => 1

2 · 𝑥
1

+ 1
2 · 𝑥

2

Once more than two sensors are apparent, we generate the following array,
.[50%, 25%, 12. 5%, 6. 25%, 3. 125%, ...]

Since the dictionary of probabilities is sorted in reverse, the top has the largest PCT and the last
value has the least change.
𝑥

1
· 1

21 + 𝑥
2

· 1

22 + 𝑥
3

· 1

23 + ... + 𝑥
𝑘

· 1

2𝑘 = 𝑝𝑟𝑜𝑏
𝑓𝑎𝑐𝑡𝑜𝑟

 ; 𝑘 ≥ 3 𝑎𝑛𝑑 𝑘 ≤ 52

When ‘k’ reaches the end, the sum is 100, in our case the amount of sensors is less than that.
Though, the sum can be less than 100%, and so we calculate the carry by subtracting the sum
from 100, and splitting the carry in between the probabilities.
Finally, .𝑝𝑟𝑜𝑏

𝑐𝑎𝑟𝑟𝑦
 = (100 − 𝑝𝑟𝑜𝑏

𝑓𝑎𝑐𝑡𝑜𝑟
)/𝑘𝑒𝑦𝑠

𝑙𝑒𝑛𝑔𝑡ℎ

(𝑝𝑟𝑜𝑏
𝑐𝑎𝑟𝑟𝑦

+ 𝑥
1

· 1

21) + (𝑝𝑟𝑜𝑏
𝑐𝑎𝑟𝑟𝑦

+ 𝑥
2

· 1

22) + ... + (𝑝𝑟𝑜𝑏
𝑐𝑎𝑟𝑟𝑦

+ 𝑥
𝑘

· 1

2𝑘) ≤ 100%.

The result is bounded by 100%, and is returned to ‘scan_stream(data_frame)’, which saves it to
a dataframe output for later offline analysis. As can be seen in Figure 20, a simulation of a leg
kicking the outfit depicted below 10% - idle state, whereas the hit was above 50%.

Figure 38. A simulation result of a leg kick prediction, file ‘LegKick.csv’.
Figure 39 is an example of the hit detector not classifying the walk activity as hit activity, which
is a positive signal for no false-alarm.

Figure 39. A simulation of walk prediction, file ‘01_Walk_Home.csv’.

A Smart Wearable Outfit System for Anomaly Detection
39

Conclusions

The primary objectives of the wearable outfit were successfully designed and achieved, as
sensors were strategically integrated into the outfit, either through printing or glueing, and
effectively generated valuable data. The collected signals from this outfit closely resemble those
obtained in other research studies focusing on fall detection using accelerometers. A noteworthy
observation when comparing the use of FSR and accelerometers is that fall detection with
accelerometers is indicated across all three axes, while FSR sensors detect changes in resistance -
force or stretch application - which is sufficient for discerning different user activity states,
including anomalous activity.

One challenge encountered in this project was the difficulty in accurately verifying fall detection
cases. To address this issue, we knew by preparing the anomalous before the start of an
experiment. Additionally, we implemented methodologies to filter out inconsistent or noisy
signals before performing any analysis. This approach significantly streamlined the data
processing workflow.

In contrast to the conventional method of attaching gyroscopes and accelerometers to every
human body joint for user monitoring, a single FSR line on a limb can effectively classify the
user's motion as normal or abnormal. This innovative approach simplifies the overall system
while still achieving reliable and accurate results, demonstrating the potential of our wearable
outfit design for real-world applications.

A Smart Wearable Outfit System for Anomaly Detection
40

Further Work

In this research project, we managed to build different sorts of software for a variety of
necessities. Software for recording offline mechanisms by microcontrollers like Arduino, Teensy
and Myo armband. More research can be done in exploring the Myo different sensors, on the
same activities that were presented here. In addition we’ve added the ability for those
microcontrollers to communicate via serial, and present real-time monitoring. A separate,
high-level software for the Jetson B01 is implementing real-time read on the serial, and
classification of activities and anomaly detection. Further improvements can be done to optimise
the computability of functions - changing the parameters of the stream’s scan. An alert
mechanism for intrusion and interaction with the environment, for example our suit can have an
additional led panel to depict the user activity recognition while using the suit. More about that
in Appendix C.

Futuristic Vision
In this period of fast growing technology, our vision is that smart suits will become part

of our daily-use products, that can communicate with the user and assist in various scopes, just
like Smart Watches. Additionally, an important aspect of putting sensors on the user’s cloth, will
need to be printed on it to permit more breathability of the fabric while the user is wearing it.
Lastly, adaptability to an application that a user can use on his smartphone, will present the user
with more accessibility to the device itself.

A Smart Wearable Outfit System for Anomaly Detection
41

References

Arduino Uno R3 Datasheet.(2022). Arduino.cc.
https://docs.arduino.cc/hardware/uno-rev3

Jetson Nano B01 Datasheet.(2022). Nvidia.
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/Jetson
Nano_DataSheet_DS09366001v1.1.pdf?iCsjR0Mp3QI1bG2SlbaKUo_BJPhTpM_KttZIP
ezSnYSyiJL3UXMcNr1AJzIUYMU-tfPRZZx6x5unreHQZqZwq9MJtFE0fE8lVHnuox1
q3Kj_rako6nam6smE7zBSAErgxaR7TituloiNACClxJ_5NhVPbMsk8K50En9TrkcdMgF
mZ7oY5EY9N6sC-liHXQ==

Teensy 3.6 Datasheet.(2016). NXP.
https://www.pjrc.com/teensy/K66P144M180SF5V2.pdf

Visconti,P.,Gaetani,F.,Zappatore,G. & Primiceri,P.(2018).Technical Features and Functionalities
of Myo Armband: An Overview on Related Literature and Advanced Applications of
Myoelectric Armbands Mainly Focused on Arm Prostheses. International Journal on
Smart Sensing and Intelligent Systems,11(1) 1-25.
https://doi.org/10.21307/ijssis-2018-005

Mukhopadhyay, S. C.(2015). Wearable sensors for human activity monitoring: A review. IEEE
Sensors Journal, 15(3), 1321-1330. [6974987].
https://doi.org/10.1109/JSEN.2014.2370945

Kammerer K, Hoppenstedt B, Pryss R, Stökler S, Allgaier J, Reichert M.(2019). Anomaly
Detections for Manufacturing Systems Based on Sensor Data—Insights into Two
Challenging Real-World Production Settings. Sensors. 19(24):5370.
https://doi.org/10.3390/s19245370

Khan, S., Qamar, R., Zaheen, R., Al-Ali, A. R., Al Nabulsi, A., & Al-Nashash, H. (2019).
Internet of things based multi-sensor patient fall detection system. Healthcare technology
letters, 6(5), 132–137.
https://doi.org/10.1049/htl.2018.5121

Kamble, S. M., Kawle, P. R., Mohile, S. S., Meshram, M. R., Mam, Prof. G. P., & Mam, N. G.
(2022). IOT Based Person/Wheelchair Fall Detection System. International Journal for
Research in Applied Science and Engineering Technology, 10(2), 258–263.
https://doi.org/10.22214/ijraset.2022.40243

Raja, J. M., Elsakr, C., Roman, S., Cave, B., Pour-Ghaz, I., Nanda, A., Maturana, M., &
Khouzam, R. N. (2019). Apple Watch, Wearables, and Heart Rhythm: where do we
stand? Annals of Translational Medicine, 7(17), 417–417.
https://doi.org/10.21037/atm.2019.06.79

Cho, G. (Ed.). (2009). Smart Clothing: Technology and Applications (1st ed.). CRC Press.
https://doi.org/10.1201/9781420088533

Abdulla, Raed & Kumar Selvaperumal, Assoc. Prof. Dr. Sathish & Nataraj, Chandrasekharan.
(2020). WHEELCHAIR-PERSON FALL DETECTION WITH INTERNET OF
THINGS. Solid State Technology. 63. 911-922.
https://www.researchgate.net/publication/344590832_WHEELCHAIR-PERSON_FALL_
DETECTION_WITH_INTERNET_OF_THINGS

Project GitHub: https://github.com/Jeremaiha/Thesis-Project-Anomaly-Detection

https://docs.arduino.cc/hardware/uno-rev3
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/JetsonNano_DataSheet_DS09366001v1.1.pdf?iCsjR0Mp3QI1bG2SlbaKUo_BJPhTpM_KttZIPezSnYSyiJL3UXMcNr1AJzIUYMU-tfPRZZx6x5unreHQZqZwq9MJtFE0fE8lVHnuox1q3Kj_rako6nam6smE7zBSAErgxaR7TituloiNACClxJ_5NhVPbMsk8K50En9TrkcdMgFmZ7oY5EY9N6sC-liHXQ==
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/JetsonNano_DataSheet_DS09366001v1.1.pdf?iCsjR0Mp3QI1bG2SlbaKUo_BJPhTpM_KttZIPezSnYSyiJL3UXMcNr1AJzIUYMU-tfPRZZx6x5unreHQZqZwq9MJtFE0fE8lVHnuox1q3Kj_rako6nam6smE7zBSAErgxaR7TituloiNACClxJ_5NhVPbMsk8K50En9TrkcdMgFmZ7oY5EY9N6sC-liHXQ==
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/JetsonNano_DataSheet_DS09366001v1.1.pdf?iCsjR0Mp3QI1bG2SlbaKUo_BJPhTpM_KttZIPezSnYSyiJL3UXMcNr1AJzIUYMU-tfPRZZx6x5unreHQZqZwq9MJtFE0fE8lVHnuox1q3Kj_rako6nam6smE7zBSAErgxaR7TituloiNACClxJ_5NhVPbMsk8K50En9TrkcdMgFmZ7oY5EY9N6sC-liHXQ==
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/JetsonNano_DataSheet_DS09366001v1.1.pdf?iCsjR0Mp3QI1bG2SlbaKUo_BJPhTpM_KttZIPezSnYSyiJL3UXMcNr1AJzIUYMU-tfPRZZx6x5unreHQZqZwq9MJtFE0fE8lVHnuox1q3Kj_rako6nam6smE7zBSAErgxaR7TituloiNACClxJ_5NhVPbMsk8K50En9TrkcdMgFmZ7oY5EY9N6sC-liHXQ==
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/JetsonNano_DataSheet_DS09366001v1.1.pdf?iCsjR0Mp3QI1bG2SlbaKUo_BJPhTpM_KttZIPezSnYSyiJL3UXMcNr1AJzIUYMU-tfPRZZx6x5unreHQZqZwq9MJtFE0fE8lVHnuox1q3Kj_rako6nam6smE7zBSAErgxaR7TituloiNACClxJ_5NhVPbMsk8K50En9TrkcdMgFmZ7oY5EY9N6sC-liHXQ==
https://www.pjrc.com/teensy/K66P144M180SF5V2.pdf
https://doi.org/10.21307/ijssis-2018-005
https://doi.org/10.1109/JSEN.2014.2370945
https://doi.org/10.3390/s19245370
https://doi.org/10.1049/htl.2018.5121
https://doi.org/10.22214/ijraset.2022.40243
https://doi.org/10.21037/atm.2019.06.79
https://doi.org/10.1201/9781420088533
https://www.researchgate.net/publication/344590832_WHEELCHAIR-PERSON_FALL_DETECTION_WITH_INTERNET_OF_THINGS
https://www.researchgate.net/publication/344590832_WHEELCHAIR-PERSON_FALL_DETECTION_WITH_INTERNET_OF_THINGS
https://github.com/Jeremaiha/Thesis-Project-Anomaly-Detection

A Smart Wearable Outfit System for Anomaly Detection
42

Appendix A

General Wearable Outfit
A wearable outfit consists of a node list and a server node to conclude operations in

real-time. Generally meaning, there shall be . A server node is referred as a𝑁 ≥ 1 ; 𝑁 = 𝑛𝑜𝑑𝑒𝑠
node, in case , that node shall be the server. Figure 1 is an example of an outfit we built𝑁 = 1
and used for those purposes.

Figure A1. A high-level general wearable outfit with , a depiction of our implementation.𝑁 = 5

A server node is responsible for all incoming traffic, Thus triggers an activation in case of
discord detection. Each node is a streamer of sensor data.

;𝑆𝑒𝑟𝑣𝑒𝑟 𝑁𝑜𝑑𝑒 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚 − 𝑜𝑛 − 𝑀𝑜𝑑𝑢𝑙𝑒 𝑁𝑜𝑑𝑒 ≡ 𝑀𝑖𝑐𝑟𝑜𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

A Smart Wearable Outfit System for Anomaly Detection
43

Hardware in Practice
We use a powerful System-on-Module, Jetson nano B01, since it has an extension pack

for battery(long term use), and a Unix software that runs python scripts. This SoM is monitoring
its serial USB ports, and activates logic accordingly. Figure 2 through 5 are examples of devices
we worked with for this suit system.

Figure A2. A System-on-Module, Jetson Nano B01 with T200 shield(battery pack).

Figure A3. A Microcontroller, Myo-armband. used for emg signal collection.

Figure A4. A microcontroller, Arduino Uno R3, used for fsr, piezo signal collection.

A Smart Wearable Outfit System for Anomaly Detection
44

Figure A5. A microcontroller, Teensy 3.6, used for fsr, piezo signal collection.
Outfit and Sensors. The smart outfit can be any cloth part, with sensors on it. For

instance, in Figure A6, A7, we used garments provided by Xmetix. A printed fsr sensor is in
Figure A8.

Figure A6, A7. A top and bottom outfit with sensors.

Figure A8. A printed force-sensing resistor on pants.

A Smart Wearable Outfit System for Anomaly Detection
45

Appendix B

Ring Buffer
This class is a common implementation of a design pattern named ‘CircularQueue’, and

is an effective real-time data structure, as it keeps you with the most recent data depending on the
queue’s size. It consists of ‘enqueue(new_value)’, ‘dequeue()’, ‘get_list()’, ‘get_at(index)’,
‘is_full()’.
""" A class for Circular-Queue / Ring Buffer """

class RingBuffer():

def enqueue(self, new_value):

if self.is_full():

self._data[self._current] = new_value

self._current = (self._current+1) % self._capacity

else:

self._data.append(new_value)

if len(self._data) == self._capacity:

self._current = 0

def dequeue(self):

value = self._data[self._current]

self._current = (self._current-1) % self._capacity

return value

def get_list(self):

return self._data[self._current:] + self._data[:self._current] if
self.is_full() else self._data

def get_at(self, index):

if index < 0 or index >= self._capacity:

return None

return self._data[index]

Figure B1. Code of RingBuffer.py

A Smart Wearable Outfit System for Anomaly Detection
46

Appendix C

A futuristic implementation of the smart suit has to have an accessibility to the
environment, in order to notify the user of what is going on. An idea of a buzzer activation once
an abnormality is detected. And a led panel to present the user is present in some activity either
with anomaly detection.

The infrastructure is prepared in UserInterfaceHandler, and it is up for the user to choose
whether he wants to test it in a terminal environment, or display the outputs through a visual led
panel.

Figure C1. A high-level User-Interface of the smart-suit. A buzzer and a led state panel.

Figure C2. An example of different states for a User-Interface led-panel.

