Open University of Israel

Department of Mathematics and Computer Science

Locally-Iterative Distributed (A + 1)-Coloring below
Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization
and to Restricted-Bandwidth Models

By
Uri Goldenberg

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science
The Open University of Israel

Computer Science Division

Prepared under the supervision of

Prof. Leonid Barenboim

December 21, 2020



Contents

1 Introduction 1
1.1 The Classical Model . . . . . . . . . . . . e 1
1.2 Locally iterative algorithms . . . . . . . .. ... . L L 1
1.3 Ourresults . . . . . . . . e e 2
1.4 Applications . . . . . . . . L e 3
1.5 Tight bounds . . . . . . . . . . e e 4
1.6 Self-Stabilizing Symmetry Breaking . . . . . . . . . . ... ... 4
1.7 Edge-Coloring . . . . . . . . . . o e 5
1.8 SET-LOCAL Model . . . . . . e e e 6
1.9 Summary . . . .. 6
1.10 Technical Overview . . . . . . . . . . . . e 6

2 Preliminaries 8
2.1 Definitions . . . . . . . L e e 8
2.2 The algorithm of Cole and Vishkin [12] . . .. ... ... ... .. ... ... ..... 8
2.3 Shift down . . . . . . . L e 9
2.4 Linial’s coloring using O(A?) colors, within O(log*n) rounds [33] . . . . . . ... ... .. 10

3 Additive-Group Coloring 11
3.1 Basic additive-group coloring . . . . . . ... 11
3.2 Halving the number of colors using 1-bit-messages per-round . . . . .. .. ... .. ... 14
3.3 Computing O(A - k) coloring within O(A/k) rounds . . . . .. ... ... ... .. .... 15
3.4 Arbdefective O(%)—Coloring with defect O(p) . . . . . .. ..o 17

4 Fully-Dynamic Self-Stabilizing algorithms with O(A + log* n) rounds 20
4.1 Fully-Dynamic Self-Stabilizing O(A)-Coloring . . . . . . . . . . . ... ... ... 20
4.2 Fully-Dynamic Self-Stabilizing MIS, MM, and (2A — 1)-Edge-Coloring . . . . . . . . . .. 24

5 Edge Coloring within O(A +1log* n) Rounds in the CONGEST Model and O(A + logn)
Rounds in the Bit-Round Model 26

6 3-Dimensional Additive Group Algorithm 28

7 Conclusion and Future Work 31



List of Tables

1

Known results for locally-iterative (A +1)-coloring. . . . . . . . . .. ... ... ... ... 3

List of Algorithms

Tt = W N

One-bit AG halving reduction . . . . . . . . . . . . . 14
Refine-AG . . . . . . e e 16
Arbdefective-Color(G,v,p=VA) . . . . . . . 18
Self-Stabilizing-Coloring . . . . . . . . . . . . e e 23

BAG(D) . o o 29



Abstract

We consider graph coloring and related problems in the distributed message-passing model. Locally-
iterative algorithms are especially important in this setting. These are algorithms in which each vertex
decides about its next color only as a function of the current colors in its 1 — hop — neighborhood. In
STOC’93 Szegedy and Vishwanathan showed that any locally-iterative (A+1)-coloring algorithm requires
Q(Alog A +1log* n) rounds, unless there exists ”a very special type of coloring that can be very efficiently
reduced” [42]. No such special coloring has been found since then. This led researchers to believe that
Szegedy-Vishwanathan barrier is an inherent limitation for locally-iterative algorithms, and to explore
other approaches to the coloring problem [4, 31, 2, 19]. The latter gave rise to faster algorithms, but their
heavy machinery which is of non-locally-iterative nature made them far less suitable to various settings. In
this thesis we obtain the aforementioned special type of coloring. Specifically, we devise a locally-iterative
(A + 1)-coloring algorithm with running time O(A + log* n), i.e., below Szegedy-Vishwanathan barrier.
This demonstrates that this barrier is not an inherent limitation for locally-iterative algorithms. As a
result, we also achieve significant improvements for dynamic, self-stabilizing and bandwidth-restricted

settings. This includes the following results.

e We obtain self-stabilizing distributed algorithms for (A + 1)-vertex-coloring, (2A — 1)-edge-coloring,
maximal independent set and maximal matching with O(A + log* n) time. This significantly im-

proves previously-known results that have O(n) or larger running times [23].

e We devise a (2A — 1)-edge-coloring algorithm in the CONGEST model with O(A + log*n) time
and O(A)-edge-coloring in the Bit-Round model with O(A +logn) time. The factors of log* n and
logn are unavoidable in the CONGEST and Bit-Round models, respectively. Previously-known

algorithms had superlinear dependency on A for (2A — 1)-edge-coloring in these models.

e We obtain an arbdefective coloring algorithm with running time O(\/Z +log* n). Such a coloring is
not necessarily proper, but has certain helpful properties. We employ it in order to compute a proper
(1 4+ €)A-coloring within O(v/A + log* n) time, and (A + 1)-coloring within O(v/Alog Alog* A +
log* n) time. This improves the recent state-of-the-art bounds of Barenboim from PODC’15 [2] and
Fraigniaud et al. from FOCS’16 [19] by polylogarithmic factors.

e Our algorithms are applicable to the SET-LOCAL model [25] (also known as the weak LOCAL
model). In this model a relatively strong lower bound of Q(A'/3) is known for (A + 1)-coloring.
However, most of the coloring algorithms do not work in this model. (In [25] only Linial’s O(A?)-
time algorithm and Kuhn-Wattenhofer O(A log A)-time algorithms are shown to work in it.) We

obtain the first linear-in-A algorithms that work also in this model.



1 Introduction

1.1 The Classical Model

Consider an n-vertex graph G = (V, F) with maximum degree A whose vertices host processors. The
vertices communicate with one another over the edges of G in synchronous rounds. The problem that we
are studying is how many rounds (also known as running time in the message-passing model of distributed
computing) are required for computing a proper! (A+1)-coloring of G. This is one of the most fundamental
and well-studied distributed symmetry-breaking problems [12, 21, 33, 42, 32, 5, 6, 7, 8, 10, 2, 19], and
it has numerous applications to resource and channel allocation, scheduling, workload balancing, and to
mutual exclusion [31, 23]. The study of distributed coloring algorithms on paths and cycles was initiated
by Cole and Vishkin in 1986 [12], who devised a 3-coloring algorithm with O(log*n) time?. The first
distributed algorithm for the (A + 1)-coloring problem on general graphs was devised by Goldberg and
Plotkin in 1987 [21]. The running time of their algorithm is 29(4) +O(log* n). (log* is a very slow-growing
function, defined formally in Section 2.) Goldberg, Plotkin and Shannon [22] improved this bound to
O(A? +log* n). Linial [33] showed a lower bound of §log*n — O(1). His lower bound applies to a more
relaxed f(A)-coloring problem, for any, possibly quickly-growing function f(). Linial also strengthened
the upper bound of [22], and showed that an O(A?)-coloring can be computed in log*n + O(1) time.
(Via a standard color reduction, described e.g., in [7] Chapter 3, given an a-coloring one can compute a
(A + 1)-coloring in o — (A 4 1) rounds. Thus, Linial’s algorithm also gives rise to (A + 1)-coloring in
O(A? +1og* n) time.)

1.2 Locally iterative algorithms

In STOC93, Szegedy and Vishwanathan [42] studied locally-iterative coloring algorithms. An algorithm
A is an a-to-f locally-iterative, for a pair of parameters « > 3, if it maintains a sequence 1, @a, ..., 1
of proper a-colorings, where ; is the coloring on round i, for every 1 < ¢ < T, the coloring ¢r is a
(-coloring, and 1" is the running time of the algorithm. On each round i, every vertex v computes its
new color ;1 (v) based only on the colors {¢;(u) | u € ['(v)}, where I'(v) = {v} U{u € V | (u,v) € E}
is the 1 — hop — neighborhood of v. Szegedy and Vishwanathan showed upper and lower bounds on
the quantity ¥(n, A, D), which is the number of colors into which an n-vertex graph G of maximum
degree A can be properly recolored within one single round, assuming that it was properly D-colored
in the beginning of the round. Note, however, that for the lower bound of [42] to hold, the proper D-
coloring of G is assumed to be arbitrary. As a corollary of their upper bound on ¥(n, A, D), Szegedy

YA coloring ¢ : V — [A + 1] is called proper, if o(u) # p(v), for every edge e = (u,v) € E.
2Unless said otherwise, algorithms that we discuss are deterministic.



and Vishwanathan [42] derived an improved upper bound of O(AlogA + log*n) for locally-iterative
(A + 1)-coloring. Specifically, they devised an O(A?)-to-(A + 1)-locally-iterative algorithm with running
time O(AlogA). (This upper bound was later re-derived in a somewhat more explicit way by Kuhn
and Wattenhofer [32].) As a corollary of their lower bound on ¥(n,A, D), Szegedy and Vishwanathan
[42] showed a heuristic lower bound on the number of rounds that a locally-iterative algorithm needs in
order to compute a (A + 1)-coloring from an O(A?)-coloring. Their lower bound (Theorem 12 in [42],
marked as "heuristic”) is Q(Alog A). By Linial’s lower bound [33], 3 log*n—O(1) rounds are required to
compute an O(A?)-coloring. All (A +1)-coloring algorithms developed before 2009 were locally iterative.
(See Table 1 below for a summary of known locally-iterative algorithms.) In [4, 31] and independently
Kuhn, devised an O(A + log* n)-time (A + 1)-coloring algorithm, using defective colorings. (See Section
2 for the definition of this notion.) The algorithms of [4, 31, 8] are, however, not locally-iterative.
This direction was further pursued by Barenboim in [2], who devised an algorithm with running time
O(A3/* +1og* n), using arbdefective colorings. (See Section 2; the notion originates from [5].) This result
was further improved by Fraigniaud at al. [19], who devised the current state-of-the-art (A + 1)-coloring
with running time O(v/Alog?® A+log* n). The algorithms of [4, 31, 2, 19] are all not locally-iterative, as
they all decompose the graph into many subgraphs, compute colorings for them, and carefully combine
them into a single coloring for the original graph. In view of Szegedy-Vishwanathan’s heuristic lower

bound (henceforth, SV barrier), this seemed to be inevitable.

1.3 Our results

In the current thesis I show the first locally-iterative (A + 1)-coloring algorithm with running time O(A +
log* n), i.c., below the SV barrier of Q(Alog A + log*n). Unlike previously locally-iterative algorithms,
our algorithm does not necessarily reduces the number of employed colors in every round. Instead, if the
initial number of colors is A2, it can keep being (A?) for almost the entire execution of the algorithm,
and then ”suddenly” reduce to A+1 in the last few rounds. The colorings ¢1, 2, ...., or, T = O(A), that
it computes on rounds 1,2, ..., T, respectively, are all proper, but they are not at all arbitrary. Rather
they have some special properties that guarantee that in O(A) rounds the number of colors reduces to
(A+1).

Interestingly, in their seminar paper [42], Szegedy and Vishwanathan mention a possibility of such a
phenomenon. In the preamble to their aforementioned ”heuristic” theorem (Theorem 12) they wrote:

”There is a possibility, however, that after a few steps of iteration we arrive at a very special type of
coloring that can be very efficiently reduced in steps thereafter. Assuming that this does not happen, the
results of the previous section give the following theorem:

Theorem 12 (heuristic): Let 1 <b < a < A/2. To decrease the number of colors from alA to bA it takes



O(Alog(a/b)) steps. In particular, to decrease the number of colors from A?/2 to A requires ©(Alog A)
steps. !

We also use our new locally iterative technique to devise improved not locally-iterative coloring al-
gorithms. Specifically, we obtain (1 4 ¢)A-coloring within O(v/A + log* n) time, for an arbitrarily small
constant € > 0, and a (A + 1)-coloring within O(y/Alog Alog* A + log* n) time. This improves the best
previously-known running time O(v/Alog®® A 4 log* n) of Fraigniaud et al. [19)].

Running time Reference
20(4) 1+ O(log* n) Goldberg, Plotkin [21]
O(A?) +log*n Linial [33]
O(A) -logn Goldberg at el. [22]
O(A?) +log*n Goldberg et al. [22]

O(Alog A) + 3log*n  Szegedy, Vishwanathan [42)]
O(Alog A) +log*n Kuhn, Wattenhofer [32]
O(A) +log"n This thesis

Table 1: Known results for locally-iterative (A 4+ 1)-coloring.

1.4 Applications

In the Conclusions section of the paper [32] by Kuhn and Wattenhofer, the authors explain why locally-
iterative algorithms are particularly important from practical perspective. They mention ”emerging
dynamic and mobile distributed systems such as peer-to-peer, ad-hoc, or sensor networks” as examples of
networks for which such algorithms can be especially suitable. They also point out that locally-iterative
algorithms are typically communication-efficient ones.

In this thesis I demonstrate that our novel locally-iterative algorithms indeed provide dramatically im-
proved bounds for both the dynamic Self-Stabilizing scenarios and for scenarios in which communication-
efficiency is crucial. In the next three subsections I discuss these applications of our locally-iterative

technique one after another.

!The argument of [42] applics, in fact, to reducing the number of colors to A + 1, as opposed to A.



1.5 Tight bounds

Very recently, Balliu, Brandt, Hirvonen, Olivetti, Rabie And Suomela proved in [3] that MIS (Maximal
independent set) and MM (Maximal matching) require Q(A +log* n) rounds in general graphs. Together
with the results of the current work and [8], several tight bounds are obtained. Specifically, in LOCAL
and CONGEST models the running time of MIS and maximal matching is O(A + log*n) , However,
in one bit model our technique still requires O(A + logn) rounds when using deterministic methods.
Nevertheless, as explained in [35], the factor of O(logn) is unavoidable in the case of one-round MIS

algorithms.

1.6 Self-Stabilizing Symmetry Breaking

The Self-Stabilizing setting was introduced by Dijkstra [13], and is being intensively studied since then.
See, e.g., Dolev’s monograph [14] and surveys by Herman [26], by Guelleti and Kheddouci [23]. Self-
stabilization in dynamic systems was defined in [15]. In the context of (A + 1)-coloring, the setting we
consider is the following one. Every vertex v of a graph G = (V, F) of maximum degree at most A and
at most n vertices has a unique ID number. The memory of each vertex consists of two areas. The
Read Only Memory (henceforth, ROM) consists of hard-wired data such as vertex ID, degree bound A,
vertices bound n, and program code. The ROM is faultless, but its contents cannot be changed during
execution. The other area of the memory is Random Access Memory (henceforth, RAM). This memory
may change during execution, and it is appropriate for storing variables, such as vertex colors. However,
this memory area may change not only as a result of an algorithm instruction, but also as a result of
faults. Such faults may make arbitrary and completely unpredictable changes in any round in the entire
RAM. Moreover, in the Fully-Dynamic Self-Stabilizing setting, in each round vertices may crash, new
vertices may appear and communication links between vertices may change arbitrarily, as long as the
bounds on n and A hold'. For example, colors are stored in RAM, and as long as faults occur, vertices
may hold arbitrary colors, possibly the same as those of their neighbors, no matter what operations are
performed by an algorithm. The objective is to devise algorithms in which once faults stop occurring,
the algorithm self-stabilizes quickly to a proper solution. The relevant notion of running time in this
context is called stabilization time (also known as ”quiescence” time), which is the maximum number T
of rounds, so that 1" rounds after the last fault or dynamic change of the graph we are guaranteed that
an algorithm arrives to a proper solution, e.g., the coloring of the graph is a proper (A + 1)-coloring. One

can define analogously self-stabilizing variants of (2A — 1)-edge-coloring (see Section 1.2.2), of Maximal

n fact, since the dependence of our algorithms’ running time on n is just log* n, the bound for the number of vertices
may be double- or triple-exponential in the real number of vertices, and still the running time will be affected by just an
additive constant term.



Independent Set (henceforth, MIS) and of Maximal Matching (henceforth, MM)?2.

Self-stabilizing symmetry-breaking problems were extensively studied [27, 28, 29, 41]. See also [23]
for an excellent survey of self-stabilizing symmetry-breaking algorithms. However, all of them have
prohibitively large stabilization time of O(n) or more. In this thesis I devise the first self-stabilizing
algorithms with stabilization time of O(A + log*n) for all these four fundamental problems. We note
that the fact that our algorithms are deterministic is particularly useful in this setting. Indeed, this

prevents the possibility that adversarial faults will manipulate random bits of the algorithm.

1.7 Edge-Coloring

Another classical and extremely well-studied symmetry breaking problem is that of (2A —1)-edge-coloring
[38, 6, 9, 10, 17, 16, 20, 18, 39]. An edge-coloring ¢ of a graph G = (V, E) is a function ¢ : E — N. It is
said to be proper if for every pair of incident edges e, e’ € E, e # €', we have p(e) # p(e’). The classical
theorem of Vizing [43] states that every graph is (A + 1)-edge-colorable. However, existing distributed
deterministic solutions [38, 6, 9, 10, 17, 18] employ (2A — 1) colors or more in general graphs. (There are
efficient randomized distributed algorithms [10, 17] that compute (1 + €)A-edge-colorings in time close
to (logn)/A'=°(M). This running time is incomparable to running time of the form f(A) + O(log* n),
for some function f(), achieved by deterministic algorithms that we discuss here.) The first efficient
deterministic algorithm for (2A — 1)-edge-coloring was devised by Panconesi and Rizzi [38]. Its running
time is O(A + log* n).

In the LOCAL model of distributed computing, messages of arbitrary size are allowed. The (2A —1)-
edge-coloring problem for a graph G reduces to (A + 1)-vertex-coloring problem for the line graph L(G)
of GG, and in the LOCAL model this reduction can be implemented without any overhead in running
time. Therefore, the novel sublinear-in-A time algorithms for (A 4 1)-vertex-coloring [2, 19] immediately
give rise to sublinear-in-A time algorithms for (2A — 1)-edge-coloring. However, all these edge-coloring
algorithms [38, 2, 25] are not locally iterative. Moreover, they do not apply (or require significantly more
time) in the CONGEST model of distributed computing. In the latter model, every vertex v is allowed to
send O(logn) bits of information to each of its neighbors in every round. Implementing Panconesi-Rizzi
algorithm in the CONGEST model requires O(A2? + log* n) time. Simulating vertex-coloring for a line
graph also yields a multiplicative overhead of factor at least A in the running time. Therefore, to the best
of our understanding, the state-of-the-art solution for (2A — 1)-edge-coloring in the CONGEST model
requires f)(A?’/ 2 + log* n) time, and it is not locally iterative. The best currently-known locally-iterative

solution is even slower, and requires O(A?log A + log* n) time. (It is achieved by simulating the locally-

2A subset U C V of vertices is an MIS if there are no edges between pairs of vertices in U, and for every vertex v € V\ U,
there exists a neighbor u € U. A subset M C E of edges is an MM if no tow edges of M are incident, and for every e € B\ M,
there exists an edge ¢’ € M incident on it.



iterative O(Alog A)-time algorithm of [32, 42] in the line graph in the CONGEST model.) The problem
of devising communication-efficient algorithms for symmetry-breaking problems was raised in a recent
work by Pai et al. [37].

We adapt our locally-iterative algorithm for (A + 1)-vertex-coloring to work for (2A — 1)-edge-coloring
directly, i.e., without simulation of the line graph. As a result we obtain a locally-iterative (2A —1)-edge-
coloring algorithm with running time O(A+log* n) in the CONGEST model. Moreover, we show that un-
like previous solutions (that require stabilization time of Q(n)), our algorithm works in the self-stabilizing
setting, still with small messages, with stabilization time O(A + log* n). Moreover, our algorithm is also
applicable to the more restricted Bit-Round [30] model in which each vertex is only allowed to send 1 bit

in each round over each edge.

1.8 SET-LOCAL Model

An additional application of our algorithms is in the SET-LOCAL model [25] that represents restricted
networks in which vertices do not have IDs (but start from a proper coloring), and are not capable
to distinguish between identical messages received from different neighbors. Since our algorithms are
locally-iterative and compute the next colors based only on sets of current colors of 1-hop-neighborhoods,
our algorithms are directly applicable to the SET-LOCAL model. Thus our algorithms compute proper
(A + 1)-coloring (and solve related problems) in O(A) time in the SET-LOCAL model starting from a
proper O(A?) coloring. The best previous algorithms in this model required O(Alog A) time [42, 32, 25].
A lower bound of Q(A'Y3) for (A + 1)-coloring in this setting was obtained by Hefetz et al. [25].

1.9 Summary

We believe that these applications demonstrate the power of locally-iterative coloring. Bypassing Szegedy-
Vishwanathan barrier via a locally-iterative algorithm does not only provide a surprising answer to a
quarter-century-old open problem, but also provides new precious insights into distributed coloring in
general. We are confident that these insights will be instrumental in achieving further breakthroughs in

this important field.

1.10 Technical Overview

We start with describing our most basic subroutine, which we call Additive Group algorithm, or shortly,

AG algorithm. The subroutine starts with a proper (A 4 1)2-vertex-coloring ¢ of the input graph G, and



produces its proper (A + 1)-coloring in O(A) rounds, in a locally-iterative way. Assume (for simplicity
of presentation) that A +1 = p is a prime number. We represent every initial color ¢(v) = pg(v) as a
pair (a,,b,), where a,,b, are from the field of integers with characteristic p, i.e., a,,b, € GF(p). Then
every vertex v € V (in parallel) checks if there exists a neighbor v € I'(v), with b, = b,. If there is no
such a neighbor, then the vertex v finalizes its color, i.e., sets it to (0,b,). Otherwise, the vertex v sets
its color to (ay, b, + a,), where the addition is performed in GF(p). We show (see Section 3) that when
all vertices run this simple iterative step for 2p + 1 = 2(A + 1) 4+ 1 rounds, the ultimate coloring v is a
proper (A + 1)-coloring. Moreover, at all times the graph is properly colored.

The simplicity and the uniformity of this iterative step makes it very powerful. In dynamic self-
stabilizing environments vertices run this step forever in conjunction with an appropriate ” check-and-fix”
procedure, no matter what changes or faults occur in the network. It turns out that still, once faults
stop occurring, within additional O(A) rounds the coloring converges to a proper (A + 1)-coloring. In
the edge-coloring scenario, every edge e = (u,v) has a color ¢(e) = (a., be), known to both endpoints.
The endpoint u checks locally if there is an edge e, incident on u, e, # e, with b., = b., and v makes
an analogous test among edges incident on it. Then u and v communicate to one another one single
bit each, which enables both of them to update the color of e. Therefore, this algorithm gives rise to
the first communication- and time-efficient (2A — 1)-edge-coloring algorithm. Moreover, this algorithm
is extremely well suited to dynamic and self-stabilizing scenarios.

Some subtleties arise when (A +1) is not prime, and we overcome them by showing that in some cases
the proof goes through even if the arithmetics are performed in an additive group Za1, rather than in
a Galois field GF(p). Another difficulty stems from the need to combine the AG algorithm with Linial’s
algorithm. The latter algorithm reduces the number of colors to O(A?), and from there the AG algorithm
takes over. However, in the self-stabilizing setting some vertices may run Linial’s algorithm, while others
have already proceeded to AG algorithm. Careful adaptations to both algorithms are required to handle
such situations.

Finally, we also extend the AG algorithm to computing arbdefective coloring. For a pair of parameters
« and S, a coloring ¢ is said to be a-arbdefective 5-coloring if the 8 color classes of G induce subgraphs
of arboricity at most a each. Arbdefective colorings were introduced by the first- and the second-
named authors in [5], and they were shown to be extremely useful for efficient computation of proper
colorings in [5, 2, 19]. Our extension of AG algorithm from proper to arbdefective colorings (we call the
extended algorithm ArbAG) works very similarly to the AG algorithm. The only difference is that on
each round, each vertex v tests if it has at most a certain number of neighbors u with b, = b,. (Recall
that in AG algorithm, this threshold number is 0.) Other than that ArbAG has the same simple locally-

iterative structure as algorithm AG, but the number of iterations of ArbAG is significantly smaller. (Note,



however, that strictly speaking, a locally iterative algorithm is required to maintain a proper coloring
on each round, while algorithm ArbAG maintains an arbdefective coloring.) This is in sharp contrast to
previous methods [5, 2] of computing arbdefective colorings. The latter are far more involved, far less
communication-efficient, and less time-efficient by polylogarithmic factors. As a result we also obtain
improved (again, by polylogarithmic factors) algorithms for general (not necessarily locally-iterative)

(A + 1)-coloring and (1 + €)A-coloring.

2 Preliminaries

2.1 Definitions

The function log* n

The function log* n is the number of times the logy function has to be applied iteratively starting from
n, until we arrive at a number smaller than 2.

Vertex ID

The unique identity number (ID) of a vertex v in a graph G is denoted id(v).

Graph diameter

The diameter Diam(G) of a graph G = (V, F) is the maximum (unweighted) distance between vertices
u,veV.

Arboricity

The arboricity a = a(G) of a graph G = (V, E) is the minimum number of forests into which the edge set
E can be partitioned.

Defective coloring

A d-defective p-coloring is a vertex coloring using p colors such that each vertex has at most d neighbors
colored by its color.

Arbdefective coloring

A b-arbdefective p-coloring is a vertex coloring using p colors, such that each subgraph induced by vertices

of the same color has arboricity at most b.

2.2 The algorithm of Cole and Vishkin [12]

One of the simplest configurations in the distributed setting is an oriented tree. An oriented tree
T = (V,E) is rooted at a vertex r € V | and every vertex v € V knows the identity of its parent
7(v) in the rooted tree (7,7). On the other hand, in an unoriented tree there is no distinguished root,
and there is no parent-child relationship between neighbors. Notice that in oriented trees each vertex has

information that allows it to orient the edges adjacent on it towards the parents. (For each edge (u,v)



exactly one of the endpoints is the parent of the other one. Thus each edge can be oriented towards the
parent endpoint.) Consequently, an acyclic orientation of out-degree at most 1 is obtained. Therefore, an
oriented tree can be 2-colored using BFS algorithm starting from r where each round switches the color.
Unoriented trees can be 2-colored as well, since trees are bipartite. However, 2-coloring a tree (even an
oriented one) in the distributed model requires ©(n) rounds [33]. Moreover, if the tree is unoriented,
then even with any constant number of colors one still needs at least ©(log n) rounds to color a tree [33].
However, an oriented tree can be 3-colored within just log* n 4+ O(1) rounds. This is a fundamental result
by Cole and Vishkin [12], and Goldberg, Plotkin and Shannon [22]. We start with describing a 6-coloring
algorithm for oriented trees. It will be later refined to a 3-coloring one. Initially, each vertex v has an
identity number Id(v) from the set [1..n], where n is the number of vertices. It initializes its color ¢(v)
to be equal to its identity number Id(v). Denote by |¢(v)| the number of bits used to represent the color
¢(v) of v. The algorithm works iteratively. In each iteration each vertex v # r compares the bit string
¢(v) which represents its current color with the bit string ¢, (v) which represents the color of its parent.
It finds an index ¢ such that ¢(v)[i] # ¢(m)(v)[i], and sets ¢'(v) =< i, ¢(v)[i] >. Specifically, ¢'(v) is the
new color of the vertex v, and it consists of two fields. The first field contains the binary representation of
the bit string ¢, and the second field contains the single bit ¢(v)[i]. The color ¢'(v) is the concatenation
of these two fields. The root r of the tree T picks an arbitrary index ¢ and sets ¢'(r) =< 4, ¢(r)[¢] >. The
algorithm is executed for log* n iterations. (For simplicity we assume that all vertices know the value of

n. However, this assumption can be omitted using a slightly more delicate argument.)

Lemma 2.1. Given a proper coloring ¢, the resulting coloring ¢' is proper as well.

Proof. Consider an edge (v,u) € E, and suppose without loss of generality that u = 7(v). By the as-
sumption of the lemma, ¢(v) # ¢(u). Let i(v) (respectively, i(u)) be the index selected by v (respectively,
w). If i(v) # i(u) then ¢'(v) # ¢/'(u) by the difference of the first index. Otherwise, if i(v) = i(u) then
¢ (v) # ¢'(u) , since the index i is selected in such a way that ¢(v)[i] # ¢(u)[i]. Thus the values of the

i-th bits of the new colors ¢'(v), ¢'(u) are different one from another. O

Lemma 2.2. The algorithm above can produce a proper coloring using at most 6 colors

Proof. Note that in each iteration if the number of colors used by ¢ is « then number of colors used by

¢ is 2 - [log(a) ]. This iterative process can proceed until e = 6 because 2 - [log(6) | = 6. O

2.3 Shift down

The number of colors is further reduced to 3 by a different technique, called the shift-down. This phase

of the algorithm requires 3 additional iterations, with O(1) rounds each. (Generally, it can be used to



reduce the number of colors from « to 3 within « - 3 rounds).

In each iteration the number of colors is reduced by 1 within two steps.

In the first step each vertex v # r adopts the color ¢(7(v)) of its parent 7w(v). The root changes its color
to an arbitrary color from {1,2,3}, different from the color it used to have. After this phase all siblings
nodes have the same color.

The second step is to choose a proper coloring ¢ where each node with color o chooses colors from

{1,2,3} different from the color of its children and the color of its parent.

2.4 Linial’s coloring using O(A?) colors, within O(log*n) rounds [33]

Linial suggested the state of the art algorithm reducing a proper coloring ¢ using n colors into O(A?)
coloring within O(log*n) rounds. The algorithm employs an algebric technique that will be described
next. Denote X = GF(q) - GF(q), representing a 2-dimentional discreet graph with size of ¢ for each
axis. Let |X| = m, be a ground-set, where m = ¢ for a prime number q. We consider the Galois
field GF(q) of ¢°>. For any positive parameter d, let Poly(d,q) the set of polynomials of degree d over
GF(q). For each polynomial ¢g() € Poly(d, q), let Sy = {S4lg() € Poly(d,q)}, representing the points on
X over Poly(d,q). Let Fy, = {S4lg9() € Poly(d,q)}, reperesenting the family of possible polynomials
in Poly(d,q). Observe that |Sy| = ¢. for every g() € Poly(d,q). Note that two such distinct sets
may intersect in at most d elements (This is because every polynomial can be represented in a form of
g() = (z—11)-...-(xr —x;,)). Hence to cover a fixed set Sy, one needs at least ¢/d other sets Sj, from the
family Fy,. Let A < [(¢/d) — 1] < ¢/d. It follows that F,, is a A cover free family, which means that
for every set in Fy , there is always an item not covered by another set of F;, as long as [Fy,| < A. Its

d+1 > . If we express ¢ and d by terms of n - (number of nodes) and m - (ground

cardinally is |F| = ¢
set size) and A. We obtain m - log?m < 4- (A +1)? - log?n. hence, m < 4- (A 4 1)? - log? n. Now that
we have a ground set m and an upper bound for the Ist round, it follows that m = O(A?-log? m). Next
consider the next round. Let us mark |X| = m’ where m' represents the number of colors after the 1st
round reduction. That is | X| = O(A? -log? m). Then we need to choose a polynomial constructed by the
new ¢’ < 2-|X|. Repeating the idea log* n times will produce an O(A?) coloring. By using appropriate

parameters for the case d = 2 we get n = ¢, m = ¢%. This reduces the number of colors to O(A?) as

expected.
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3 Additive-Group Coloring

3.1 Basic additive-group coloring

In this section we present our main algorithm that computes a proper O(vk)-coloring from a proper
k-coloring, where k = Q(A?). Consider a graph G = (V, E) with a proper k-coloring ¢. For all vertices
v € V, we represent a color ¥(v) =i by a pair (a,,b,). We do it by finding a prime number ¢, vk < ¢ <
2vVk. The color ¥(v) = i is represented by the following pair ¥ (v) = (|i/q] ,i mod ¢). Our final goal is
to eliminate the first coordinate, i.e., to change all nodes colors such that for every vertex v € V, it will
hold that ¥ (v) = (0,b,), 0 < b, < ¢, and 1) is a proper g-coloring. Our algorithm proceeds in iterations,
starting from the initial coloring . In each iteration colors may change, but the coloring remains proper.

We employ the following definition.

Definition 3.1. Two neighbors u,v in G conflict with one another if and only if ¥ (v) = (a,b) and
¥(u) = (d’,b), where 0 < a,b,d’ < q.

Denote ¢(v) = (a,b). We will refer to a as the first coordinate and to b as the second coordinate.
Denote by ;(v) the color of v € V' in round i. Our algorithm starts from a proper k = Q(A?) coloring
of the input graph G = (V, E). In each round the algorithm performs the following step. For all v € V
in parallel, if a node v conflicts with a neighboring node wu, then the new color of v in the end of this
round is ¢;41(v) = (a, (b + a) mod gq). Otherwise (this means v does not conflict with any neighbor), we
set ¥;41(v) = (0,b), and the color of v becomes final and will not change anymore.! This completes the
description of the algorithm. Note that a node does not have to send its new color to all of its neighbors.
Rather it is enough to send only one bit indicating whether its color became final or that it changed

according to the rule specified above. We will use this property later. Next, we prove correctness.

!Note, however, that a finalized vertex v, i.e., a vertex with ;(v) = (0,b), can keep running the same iterative step, and
still its colors will stay unchanged.
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Lemma 3.2. For each iteration i, the coloring 1;(G) is proper.

Proof. The proof is by induction on i. Base: (i = 0): holds trivially, since the initial coloring is proper.
Step: Assuming that in iteration ¢ the coloring is proper, we prove that in iteration ¢ + 1 it is proper
as well. If a color of a node v € V is ¢;(v) = (a,b), then for the next iteration the color is either
Yip1(v) = (0,b) or ¢it1(v) = (a,(b+ a) mod ¢). Consider an adjacent node u, ie., (u,v) € E. If
¥i(u) = (e, b), where 0 < ¢ < g, then ¢ # a, by the induction hypothesis. In this case, the new colors of
the nodes will be 1;11(v) = (a, (b+a) mod ¢) and ;11(u) = (¢, (b+¢) mod ¢) and since ¢ # a this means
that the new colors of u and v are distinct. Otherwise, 1;(u) = (¢, d), where d # b. If in iteration i 4 1 it
holds that 1;41(v) = (0,b) and 9;41(u) = (0,d), we are done since b # d. Otherwise, u or v had conflicts
in iteration . If exactly one of them had a conflict, then their colors in iteration i 4+ 1 are distinct. (One
of them has 0 in the first coordinate, while the other has not, in iteration 7 4+ 1.) It is left to consider
the case that both had conflicts. Thus, 9;41(v) = (a, (b+ a) mod ¢) and ;11 (u) = (¢, (d + ¢) mod q). If
a # ¢, we are done. Otherwise, a = ¢ and b # d, because v; is proper. Thus, b+ a # d + ¢ (mod ¢), and

Vit1(v) # Yit1(u). 0

We say that a vertex is in a working stage as long as its color (a, b) satisfies a # 0. Once a becomes
0, the vertex is in the final stage. In order to analyze the running time of the algorithm we observe in
Lemmas 3.3, 3.4 and Corollary 3.5, assuming that ¢ is sufficiently large, a pair of neighbors can conflict
at most twice in ¢ rounds. (Once in a working stage, and once in a final stage of one of the vertices.)
Therefore, a vertex with less than ¢/2 neighbors will have a round out of ¢ in which it conflicts with no
neighbor. In this round it will select a final color. Since g > 2 - A, all vertices in the graph will select a

color within ¢ rounds. This gives rise to the following Corollary.

Lemma 3.3. Fort < q, suppose that our algorithm is executed for t rounds, and consider two neighboring
nodes u,v in G that are in their respective working stages during these entire t rounds. Then u,v have
the same second coordinate in their colors in the same round i, 0 < i < t (that is, ¥;(u) = (a,b) and

Yi(v) = (e, b), for some 0 < a,b,c < q) at most once during these t consequent rounds.

Proof. Assume that in some iteration 4 it holds that ¢;(u) = (a,b) and 1;(v) = (¢, b). For each of the
following iterations j = i+1,i+2, ..., the difference between the second coordinates is (c—a)-(j—i) mod q.
Note that since ¢ is a prime and a # ¢ (since, by Lemma 3.2, the coloring is proper in all iterations,
and in particular, t; is a proper coloring), the equality (¢ — a)(j — i) mod ¢ = 0 can only hold when

(j —i) mod ¢ = 0, i.e., only after additional ¢ iterations. Ol

In the following lemma we complement Lemma 3.3.
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Lemma 3.4. Fort < q, suppose that our algorithm is executed for t rounds, and consider two neighboring
nodes u,v in G, such that u is in working stage and v is in final stage during these entire t rounds. Then
u,v have the same second coordinate in their colors in the same round i, 0 <1i <t (that is, ;(u) = {(a,b)

and ¥;(v) = (0,b), for some 0 < a,b < q) at most once during these t consequent rounds.

Proof. Since v is in final stage, its color does not change during these ¢t rounds. Indeed, it holds that
(0,b) = (0,(b+ 0) mod ¢g). On the other hand, w is in the working stage. If initially the color of v is
(e,d), for some 0 < ¢,d < ¢, then in the following ¢ rounds it changes as follows: (¢, (d 4+ ¢) mod ¢),
(¢, (d + 2c¢) mod q), ..., {c,(d + tc) mod gq). Since ¢ is prime, all these values of the second coordinate
arc distinct in the field of integers modulo ¢. In other words, the equality d + xz¢ = b (mod ¢) holds
for exactly one element x of this field. Thus v conflicts with « at most once, in the round i where

d+ic=b (mod q). O]

Corollary 3.5. Given a graph G = (V, E) with a proper k-coloring, where k = O(A?), our Additive-
Group Coloring algorithm produces a proper O(Vk) coloring within O(A) rounds.

Proof. By Lemma 3.3, for ¢ > 2A, two adjacent nodes in the working stage (whose colors are not final)
cannot conflict with one other more than once during the first ¢ rounds of the algorithm. However, two
adjacent nodes can also conflict if exactly one of them has selected a final color. Once this happens, it
will conflict with its neighbor that is still in the working stage at most once during these ¢ rounds. (See
Lemma 3.4.) Since any node starts from a working state, and once the state transits to final its color
does not change anymore, a node cannot conflict with each of its neighbors more than twice. Therefore,
for each node, within ¢ > 2 - A rounds, there must be a round in which it does not conflict with any
of its neighbors. Hence, all nodes will reach a final stage within ¢ rounds. Since ¢ < 2vk = O(A), the
statement about the running time of the corollary follows. A final color is of the form (0,0), 0 < b < g.

Thus the number of employed colors is at most ¢ = O(Vk). ]

Corollary 3.6. Any graph G = (V, E) can be colored with A + 1 colors within O(A) 4 log* n rounds, by

a locally-iterative algorithm.

Proof. Running Linial’s algorithm [33] on the input graph G = (V, E) will produce a coloring ¢(G) using
O(A?) colors within log* n + O(1) rounds. (Recall that Linial’s algorithm is locally-iterative.)

At the second stage we run our Additive-Group algorithm on ¢(G). This results in a new proper coloring
¥ (G) that employs O(A) colors. Computing the coloring v from ¢ requires O(A) rounds, by Corollary
3.5. At the last stage we reduce the number of colors to A + 1 using the standard color reduction. This
also requires O(A) time. Note that the standard color reduction is a locally-iterative algorithm as well.

Therefore, the overall running time is log*n 4+ O(1) + O(A) + O(A) = O(A + log* n). O
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3.2 Halving the number of colors using 1-bit-messages per-round

In this section we devise a more bit-efficient algorithm than the algorithm presented in the previous
section. Specifically, while the Additive-Group coloring stage requires just 1 bit per edge per round,
the standard reduction performed in the last stage may require O(log A) bits for color updates for each
round. We devise an improved method that requires messages of just 1 bit. Specifically, we devise an
algorithm reducing the number of colors from O(A?) to A 4 1 within O(A) rounds using messages of
1 bit per edge per round. Consequently, the overall bit complexity of the (A + 1) coloring algorithm is
O(logn + A) in the one bit model.

In this algorithm there is no need for a prime parameter, any integer greater than A will do. Given a
graph with a proper k coloring, k > 2A + 2, we use the parameter [¢ = ]g] where ¢ > A + 1 and produce
a proper ¢ coloring. Initially, each color ¢, 0 < ¢ < k, is represented as an ordered pair: (|c/q],c mod g).

Note that |¢/q] € {0,1}. The pseudocode is provided below.

Algorithm 1 One-bit AG halving reduction
1: fori=0,1,,...[A+1]| do
. let 9 (v) = (aw, by) be the color of v in iteration i // a, € {0,1}
Vv € V such that ¥;(v) = (1,b,) in parallel do:
if not exists (v,u) € E where ¢;(u) = (0, b,) then
Yig1(v) = (0,by)

2
3
4
5
6: else
7
8
9:

Yiv1(v) = (1,b, + 1 mod q)
end if
end for

We analyze the algorithm using the following lemmas.

Lemma 3.7. Given an arbitrary graph G = (V, E) with a proper k > 2A+2 coloring, one-bit AG halving

reduction preserves a proper coloring of the input graph in every round.

Proof. Assume that in iteration i the coloring is proper. Therefore, V(u,v) € E, {(ay,b,) = ¥i(u) #
¥i(v) = (ay, by). In iteration ¢ + 1 there are 2 options.

Option 1: 9;41(v) = (0,by), and this means that 1;(u) # (0,b,), since in this case 1;(v) is either
(0,by,) or (1,b,). Moreover, this means that 1;41(u) cannot become (0, b,) during this iteration. Thus,
Yip1(u) # piy1(v).

Option 2: ¢;41(v) = (1,b, +1 mod ¢q). From the proper coloring assumption we know that if ¢;(u) =
(1,b,) then ;(v) is (1,b,) with b, # b,. Therefore, either ¢;y1(u) = (1,b, + 1 mod ¢) # ¥;+1(v) or
Yit1(u) = (0,by) # iy1(v). On the other hand, if ¢;(u) = (0, by), then ¥;11(u) = (0,b,) as well, and
again ¥ y1(u) # Yiy1(v). 0
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Lemma 3.8. Given any graph G = (V,E) with a proper k > 2A + 2 coloring, one-bit AG halving
reduction will cause every node to have a final color in the range {0,1,....p — 1},p = [k/2], after A+ 1

rounds.

Proof. Note the following: A node u can conflict with another node v in One-bit AG halving if ¥ (u) =
(0,b,) and ¥ (v) = (1,b,). After that these nodes may conflict again only once p additional rounds have
passed. Therefore, within p rounds, a node can have a conflict at most once with every adjacent node.

So, if p > A 4+ 1, from the pigeonhole principle there will always be a round where v becomes final. [

Now we discuss the scenario when (A + 1)-coloring is computed from scratch. To this end, Linial’s
algorithm is executed first. In each of its O(log* n) rounds, vertices exchange their colors in that round
with their neighbors. The ranges of colors in round 1,2, 3, ... are O(n), O(Alogn)?, O(Aloglogn)?, etc.
Consequently, the bit complexity per edge is O(logn + log A + loglogn + log A + logloglogn + ....) =
O(logn+1log A -log* n). Note that log Alog"n < O(logn + A). We summarize this in the next corollary.

Corollary 3.9. Coloring any input graph properly with A+1 colors can be computed within O(A+logn)
rounds in the one-bit model. Moreover, obtaining a (A + 1)-coloring from O(A?)-coloring in this model

requires O(A) rounds.

3.3 Computing O(A - k) coloring within O(A/k) rounds

In this section we describe a minor change in AG algorithm that works in the CONGEST, LOCAL
and SET-LOCAL models. (It will not work in the one-bit model). This way, a faster computation is
performed, in the expense of increasing the number of colors. Specifically, for an integer k, such that,
1 <k < A we compute O(A - k)-coloring within O(A/k) rounds, starting from an O(A?)-coloring. The
change we suggest is to use triplets instead of ordered pairs for representing colors. Next, we provide the
pseudocode of the algorithm. Below, we analyze the algorithm. The algorithm starts with a proper O(A?)
coloring, where each color is represented by a triplet (a,, by, c,), such that a,, b, € {0,1,.....,q — 1},¢ =
O(A), ¢, = 0. During an execution the colors change, but it always holds that 0 < a,,b, < ¢ and
0<cy, <k.
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Algorithm 2 Refine-AG
1: Let ¢;(v) = (ay, by, ¢y) be the current color // 0 < ¢, < k, initially ¢, =0
// Invariant: a, =0 or ¢, =0
if a, # 0 then
. if exists an index 7,0 < j < k, such that:

2:
3
4: 1. for all neighbors u of v with a, # 0:

5: <(bv +j'av) mOdp7]>7é<(bu +]au) mOdQ:j>
6: and

7. 2. for all neighbors u of v with a, = 0:

8

((by+ 3 - av) mod ¢, j) # (bu, cu)

then
9 i1 (v) = (0, (by +j - @) mod g, )
10: else
11: Yi+1(v) = (ay, (by + k - a,) mod ¢, 0)
12:  end if
13: end if

14: if a, = 0 then
15:  iy1(v) = ¥i(v)

16: end if

Lemma 3.10. Given an arbitrary graph G = (V, E) with a proper O(A?) coloring, Refine AG produces

a proper coloring after every round.

Proof. The proof is by induction.
Base: The initial coloring is proper.
Step: We assume that in iteration ¢ the coloring is proper. Next, we show that it is also proper in iteration
1+ 1. For a positive integer x, we denote the values of a,, by, ¢, in iteration = by a,,, by, , ¢y, , respectively.
If line 9 of the algorithm was executed then ;41 (v) = (0, (by + j - ay) mod q, j). Since ay,, = 0, ¥;11(v)
cannot be equal to the chosen colors in iteration 7 + 1 of any of v’s neighbors u that executed line 11,
simply because a,, , # 0. Thus, assume that another node executed line 9 and caused a conflict. This
means that both nodes have the same index j, and ((by, + j - ay,) mod ¢, ) = ((by, + j - ay,) mod gq, j).
But this is impossible, since the if statement in lines 3-5 prevents it.

It is left to analyze the case that both neighbors execute line 11. This means that a,,,, # 0 and
ay,,, # 0. Thus u and v have not executed line 9 before. The value of ¢, and ¢, can become non-zero
only in line 9. Therefore, ¢,, = ¢,, = 0. Hence, if (ay,, (by, +k-ay,) mod ¢q,0) = (ay,, (by, +k-a,,) mod ¢, 0),

then (ay,, by, , ¢y,) = (ay,, by,, ¢y, ). This is a contradiction to the correctness of the coloring in round ¢. [

Lemma 3.11. For (u,v) € E with a, # 0,a, # 0, in each round there can be at most one index j, such

that (by + j - ay) mod g = (b, + j - ay,) mod g.

Proof. Assume for contradiction that there are tow indices j; > jo, such that
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(1) (by + j1 - ay) mod g = (by + j1 - ay) mod ¢

and

(2) (by + j2 - ay) mod q = (by + j2 - ay) mod q.

By subtracting (2) from (1) we get (j1 — j2)(ay, — ay,) = 0( mod q). Since 0 < j; — jo < k < ¢, it follows
that j; — j2 # 0 ( mod ¢), and thus a, = a, ( mod ¢). Then, from (1) it follows that b, = b, ( mod g).
But this means that (a,, by, cy) = (ay, by, ¢y), since a, # 0,a, # 0 implies ¢, = ¢, = 0. However, this is

a contradiction to the correctness of the coloring in each round. 0

We say that a node u confiicts with its neighbor v, if v caused u to execute line 11 of Refine-AG. Next,
we analyze how many times a node u can conflict with a neighbour v during an execution of O(A/k)

rounds of Refine-AG.

Lemma 3.12. A node uw € V' can conflict with a neighbor v of u at most twice during |q/k| rounds of
refine-AG.

Proof. 1f a,, = a, # 0, then b, # b, and no conflict occurs. Otherwise, once a conflict of u with v occurs,
the next conflict is going to occur after at least g/k rounds, as long as both u and v are in non-final
states, i.e., ay # 0,a, # 0. This is because in each round the second coordinate of v advances k times
by a value of a,, while the second coordinate of v advances k times by a value of a,. A conflict can also

occur if u is in non-final state and v is in a final state. But this can happen only once. O
Corollary 3.13. Refine-AG produces a proper coloring using O(A - k) colors within O(A/k) rounds.

Proof. From Lemma 3.10 - Lemma 3.12 we observe that in order for a node not to select a final color
in a certain round, it must conflict with at least k neighbors in that round. Moreover, within |g/k]
rounds, this node can conflict with a certain neighbor only twice. Let ¢ > 2A + k be a prime number.
By the Pigeonhole principle, the number of rounds out of |¢g/k| in which a node conflicts with k different
neighbors is at most 2- A/k < |q/k|. Therefore, within [2-A/k + 1] rounds each node must find a final

color. ]

3.4 Arbdefective O(%)-coloring with defect O(p)

Lovasz [34] showed that in a graph with maximum degree A, there exists a p-defective %-coloring, where
1 < p < A. In this section we devise an algorithm for O(v/A)-arbdefective O(v/A)-coloring within
O(vA + log* n) rounds. More generally, our algorithm computes an O(p)-arbdefective O(A /p)-coloring
within time O(A/p+1log* n). (Definitions of defective- and arbdefective-colorings are found in Section 2.)

Our algorithm starts with computing an O(v/A)-defective O(A)-coloring. This is done using the algorithm
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of [8] within O(log*n) rounds. (More generally, the algorithm of [8] computes a p-defective O((A/p)?)-
coloring, for any positive parameter p, in log* n40O(1) time.) Then we perform O(A/p) = O(v/A) rounds
of color updates, rather than O(A) as in our Additive-Group algorithm. The update rule for arbdefective
coloring is different from the rule for proper coloring. Specifically, we tolerate up to p conflicts. In other
words, instead of setting ;1(v) = (0,b) only if there are no neighbors with the same value b in the
second coordinate, we set this if there are at most p = ©(yv/A) neighbors of different original v-color with
the same second coordinate b. We will show in the sequel that after O(A/p) = O(v/A) rounds all colors
are of the form (0,b), and each color class induces a subgraph of arboricity O(p). Thus, as a result we
have an O(v/A)-arbdefective O(v/A)-coloring. The pseudocode of the algorithm is provided below. The

next lemmas analyze its running time and show its correctness.

Algorithm 3 Arbdefective-Color(G,v,p = VA)
1: ¥ = compute an O(p)-defective O((A/p)?)-coloring of G using [8] /* O(v/A)-defective O(A)-coloring
*/

2: represent ty(v) as an ordered pair (a,b), such that a,b € O(A/p). /* a.b € O(VA) %/

3: let ¢ = O(A/p) be the smallest prime such that ¢ is greater than 2 [A/p] + 1

4: for i =0,1,,..2[A/p| do

5. if v has at most p neighbors u of a different w-color, such that the second coordinate of ;(u)
equals the second coordinate of ¥;(v) then

6: Yit1(v) = (0,b)

7. else

8: Yit1(v) = (a, (a + b) mod q)

9: end if

10: end for

Lemma 3.14. The produced coloring o /)41 s of the form (0,0), 0 < b < q=O(A/p), for allv V.

Proof. Consider a vertex v € V. The vertex v can conflict at most twice with each neighbor u of different
1p-color within ¢ rounds, i.e., at most once before u finalizes its color, and at most once after that. If v
conflicts with more than p neighbors in each round, it means it has more than 3 -p- (2[A/p] +1) > A
neighbors. This is a contradiction. Therefore, there is a round i € {0,1,...,2[A/p]} in which v conflicts

with at most p neighbors. In this round its color finalizes, i.e., becomes of the form (0, b). O]
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Lemma 3.15. The resulting coloring Y jp1+1 has arbdefect at most O(p) = O(VA).

Proof. For the purpose of analysis, orient each edge (u,v) € E towards the endpoint that first set ;41
to (0,b). If both endpoints u,v did it in the same round, orient (u,v) towards the endpoint with greater
ID. Let i denote the round in which v selects a color of the form (0,b) for the first time. Observe that
once a vertex v selects a color of the form (0, b), its outgoing neighbors have already colors of the form
(0,b'). Thus, they will never change their colors from this moment and on. Moreover, the number of
such neighbors of v of different original ¢)-color and the same second coordinate of ; is at most p = VA.
In addition, v may have at most O(p) neighbors with the same original t-color, since the coloring 1
computed in line 1 is O(p)-defective. Thus, upon termination all vertices of the same A /p141-color
induce a subgraph with arboricity O(p). This is because each vertex in such a subgraph has O(p) outgoing
edges, each of which can be assigned a distinct label from a range of size O(p). Then, all edges of the
same label form a forest, and the number of forests is O(p). In other words, the resulting coloring has

arbdefect at most O(p). O
Lemma 3.16. The running time of the algorithm is O(A/p +log* n) = O(VA +log* n).

Proof. Computing a defective-coloring in line 1 requires O(log*n) time. Each iteration of the for-loop

requires a single round. There are O(A/p) = O(v/A) such iterations. O

The latter result gives rise to improved (1 + €)A-coloring and (A + 1)-coloring algorithms. This is

summarized in the next theorem.

Theorem 3.17. We compute (1 + €)A-coloring within O(v/A + log*n) deterministic time, for an ar-
bitrarilly small constant € > 0, and (A + 1)-coloring within O(\/Alog Alog* A + log*n) deterministic

time.

Proof. In [2] it was shown that given an O(v/A)-arbdefective O(v/A)-coloring one can compute a proper
(1+ €)A-vertex-coloring within O(v/A +log* n) deterministic time. (For more details, we refer the reader
to the discussion in Section 3.4 of [2]. However, such an arbdefective coloring is computed in [2] only
within time (vVAlog® A +log*n). See Lemma 3.5, Corollary 3.12, and the discussion preceding it in [2].
Consequently, the overall running time of the algorithm of [2] for (1 + €)A-coloring is (v/A log® A +1log* n)
as well.) Our improved running time of arbdefective coloring (c¢f. Lemma 3.16) in conjunction with the
procedure of [2] (i.e., by replacing the invocation of line 1 of Algorithm 1 of [2] by an invocation of our
new algorithm Arbdefective-Color), gives rise to a deterministic (1 4 €)A-coloring within O(v/A 4log* n)
time.

It is shown in [19] that a deterministic (A+1)-coloring is obtained in O(v/Alog?® A+log* n) time using
arbdefective colorings. Specifically, the proof of Lemma 4.2 of [19] shows that given an S-arbdefective k-
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coloring algorithm with O(k) running time, a proper (A + 1)-coloring is computed within time O(log* n+
T4), where T4 is given by the recursive formula Ta(A) = O(klog* A) + Ta(O(B?log A)). By setting
8= \/m and k = v/cAlog A, for a sufficiently large constant ¢, this recursive formula evaluates
to O(yv/Alog Alog* A). Moreover, we compute such S-arbdefective k-coloring within O(y/ATog A+log* n)
time. (See Lemma 3.16.) Thus by using our Arbdefective-Color algorithm in conjunction with the

procedure of [19], we obtain (A + 1)-coloring in O(y/Alog Alog* A + log* n) time. O

4 Fully-Dynamic Self-Stabilizing algorithms with O(A + log®n) rounds

4.1 Fully-Dynamic Self-Stabilizing O(A)-Coloring

In this section we employ a variant of Linial’s algorithm for O(A?)-coloring that allows a vertex v to avoid
being colored by colors from a given set R(v) of size at most O(A) [2]. (This is useful when selecting a
new color, to avoid collisions with some neighbors that have already obtained final colors.) We refer to
this algorithm as Algorithm Excl-Linial.

Algorithm Excl-Linial is identical to Linial’s original algorithm, except for the final stage that trans-
forms a proper O(A3)-coloring into a proper O(A?)-coloring. In this stage each vertex v computes a
polynomial P,(x) of degree 2 in a field of size O(A), and selects a color (z, P,(z)), such that (z, P,(z)) #
(y, P,(y)), for any neighbor u of v and any y in that field. Since the degree of the polynomials in this
stage is 2, each polynomial intersects with a neighboring node’s polynomial in at most two points. Hence,
there are at most 2A points on P, that may intersect with some neighbor. If the field is of size 2A + 1,
there must be a point such that (z, P,(x)) # (y, Pu.(y)) for all neighbors u of v and all elements y in the
field. Such a pair is selected by the original algorithm of Linial. In the modified variant, on the other
hand, the field is of size greater than 3A. Consequently, if a set R(v) of at most A forbidden colors is
provided, there still exists an element z in that field, such that (x, P,(z)) is not equal to any of the colors
in the set R(v), and neither to any (y, P,(y)), for a neighbor u and an element y. Such a color is selected
as a final color. Thus, we obtain an O(A?)-coloring were all colors belong to sets that exclude O(A)
colors each, within log*n + O(1) time. This completes the description of algorithm Excl-Linial.

Before describing our self-stabilizing algorithm, we define some notation, and describe yet another
useful variant of Linial’s algorithm, which we call Algorithm Mod-Linial. Let r = log*n + O(1) de-
note the number of iterations in Linial’s algorithm. Let ¢, = O((Alogn)?),t,—1 = O((A(log A +
loglogn)?),...,t1 = O(A?) denote upper bounds on the number of colors in the different iterations of
Linial’s algorithm. Define the intervals Iy, I1, I, ... as follows. Iy = [0,t1—1], 1 = [t1,t1+t2—1], ..., [,—1 =
[t1+to+ ... +trog, L1 +to+ ..+t =1, I, = [t1 +ta+ ... +tp, L1 + 12+ ...+t + n — 1]. Since each

such interval contains sufficient number of colors, we can map each color palette of each iteration of
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Linial’s algorithm to one of the intervals defined above. Specifically, the palette of the first iteration is
mapped to I,_1 (which is of size t,), the palette of the second iteration is mapped to I,_s (which is of
size t,_1), and so on, up to the last palette that is mapped to Iy. This way Linial’s algorithm is modified,
so that in each iteration ¢ = 1,2,...,7 a coloring using a palette I,_;;1 is transformed into a coloring
using the palette I,_;. (The actual number of colors used from this palette is O((Alog n)2).) The
modified algorithm will be referred to as Mod-Linial. It accepts as input a color of a vertex v, a (sub)set
of its neighbors colors, and a set of O(A) forbidden colors, and returns a new color for v. The range
I, =[ti+ta+ ..+t t1 +ta+ ...+t +n — 1] will be used for an initial n-coloring obtained from IDs.

Our fully-dynamic self-stabilizing algorithm works as follows. The RAM of each vertex consists of
a variable that holds a color in a range {0,1,...,¢; +to + ... + ¢, + n — 1}. The ROM of each vertex
holds the algorithm, the number of vertices n and the maximum degree A. In each round each vertex
v checks whether it is in a proper state, i.e., its color is distinct from all colors of its neighbors. (See
the pseudocode of Procedure Check-Error below.) If v is not in a proper state, the vertex returns to its
initial state. (See lines 1- 3 of Procedure Self-Stabilizing-Coloring.) We define the initial state of a vertex
with ID j € 0,1,...,n — 1 by the color t; + t2 + ... + t, + j. Otherwise, the vertex is in a proper state.
Then, the vertex v computes its next color or finalizes the current one. (See lines 4 - 20 of Procedure
Self-Stabilizing-Coloring.) Specifically, as long as the vertex color belongs to an interval I; for j > 2, i.e.,
the color is significantly larger than A2, the vertex computes the next color from a smaller range using
the algorithm Mod-Linial (lines 6-7 of Procedure Procedure Self-Stabilizing-Coloring). Once a color is in
the interval 7, the vertex must select a new color in the interval Iy that is distinct from any neighboring
color that is also in Iy. This is done in lines 9 - 11 of the procedure. The set S’, computed in line 10
and provided as the third parameter of Procedure Mod-Linial in line 11, contains all possible colors that
neighbors w of v that run already lines 12 - 18 (i.c., their colors are small enough) may obtain in the
current iteration. Note that for each such u € T'(v) there are at most 2 such colors. Finally, a color that
is in the range Iy either becomes final or changes to another color in Iy according to Algorithm AG. See
lines 12 - 18. This completes the description of the algorithm. Its pseudocode is provided below. Next,

we analyze the algorithm.

Lemma 4.1. Given an arbitrary graph G = (V, E), our self-stabilizing algorithm produces a proper

coloring ¥(G) in each round, once faults no longer occur.

Proof. Consider a round ¢. If a node v € V has a color that is equal to that of a neighbor w, i.e.,
Yi(u) = ;(v), then VY11 (v) = tp +tr—1+... +t1 +id(v) # Yiv1(u) =t +tr—1+... +t1 +id(u). Otherwise,
lines 3 - 20 are executed. Since it is assumed that no more faults will occur, we prove that lines 3-20
provide a proper coloring. If j > 2 (line 7) then v;1(v) will be in the range I;_;. (Any element in J; is

greater than any element in I;_1, and thus numerical values of colors decrease as the algorithm proceeds.
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Also, all intervals are disjoint.) Therefore, all neighbors w with ;(u) ¢ I; will not select a new color
¥iq1(u) from I;_;. For a neighbor u with t;(u) € I, its color belongs to @, and Mod-Linial algorithm
will produce a proper coloring.

If j = 1 then Mod-Linial algorithm works in the following way. It computes a new color from ¢y, such
that it is distinct from all neighbors’ colors that transit from I; to Iy in round 4, and from all colors of
the set S’. The latter set contains all possible colors that can be used in round i + 1 by neighbors of
v with colors in the range [y in round i. Consequently, the new color of 1;11(v) of v is distinct from
the new colors of such neighbors. Moreover, the new color is also distinct from new colors of the rest of
the neighbors, since they were either in I; in round 4, and do not collide with v in round i + 1 due to
correctness of Mod-Linial, or in a higher range, and thus are not in Iy in round 7 + 1.

If j = 0, then lines 12 - 19 execute our Additive-Group algorithm (see Corollary 3.5), and produce a
proper coloring for neighbors with j = 0. For neighbors with j > 0, the coloring is proper as well, by

analysis of previous cases in this proof. O
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Check-Error (my_color, [neighbors_colors))

—_

if my_color € neighbors_colors then
return error

end if

return valid

Algorithm 4 Self-Stabilizing-Coloring
1. if Check-Error(my_color, [neighbors_colors|) = error then

2:  my-color =t1 +ta+...+t, + my_ID /* initial state */

3: else

4:  Let I; denote the range that my_color belongs to

5. Let @ denote the subset of [neighbors_colors] of all colors that belong to I;

6: if j > 2 then

7: my_color = Mod-Linial(my_color, Q, 1)

8: elseif j =1 then

9 Let S denote the subset of [neighbors_colors] of all colors that belong to Iy, represented as

ordered pairs
10: Let 8" = {(a, (b+ a) mod q) | (a,b) € S} U{(0,b) | (a,b) € S}

11: my_color = Mod-Linial(my_color, @, S") /* avoid collisions with S’ */
12:  else if j =0 then

13: represent my_color as an ordered pair (a, b)

14: if (a,b) conflicts with a color in Q) then

15: my-_color = (a, (a + b) mod q)

16: else

17: my-_color = (0,b) /* final color */

18: end if

19:  end if

20: end if
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Lemma 4.2. Given an arbitrary graph G = (V, E), our fully-dynamic self-stabilizing algorithm produces
a proper O(A)-coloring with O(A + log™ n) stabilization-time.

Proof. In the end of each round i = 1,2, ..., counting from the moment that faults stop occurring, all
colors are in the range Io U Iy U...U I, 41_;. Therefore, within » + 1 = log*n 4+ O(1) rounds, all colors
are in the range Iy. From this moment and on, the procedure executes our Additive-Group algorithm in

all vertices. Therefore, by Corollary 3.5, within O(A) additional rounds the number of colors becomes

O(A). 0

We also obtain a self-stabilizing algorithm that employs exactly (A 4 1) colors. To this end, in each
round each vertex v with a color of the from < 0,b, > whose all neighbors also have 0 in their first color
coordinate performs the following. If b, is greater then the colors of all v’s neighbors, then v selects a
new color < 0,b), > such that 0 < b, < A, and < 0, > is distinct from all colors of v’s neighbors.
Consequently, once all colors are of the form < 0,b >, b = O(A), at most O(A) additional rounds are
required to arrive to a (A + 1)- coloring, because at least one color is eliminated in each round. (This is

the greatest color, as long as there are colors greater than A.) Further discussion about (A + 1)-coloring

appears in the full version of this thesis [11]. T'll summarize this below.

Theorem 4.3. Given an arbitrary graph G = (V, E), our fully-dynamic self-stabilizing algorithm produces
a proper (A + 1)-coloring with O(A + log* n) stabilization time.

4.2 Fully-Dynamic Self-Stabilizing MIS, MM, and (2A — 1)-Edge-Coloring

We employ our self-stabilizing coloring algorithm from the previous section in order to compute MIS as
follows. We add a bit u, to the RAM of each vertex v € V. This bit represents whether v is in the
MIS (if p,, = 1) or not in the MIS (if y, = 0). We add the following instruction in the end of Procedure
Self-Stabilizing-Coloring. If all neighbors u of v with smaller colors than that of v have u, = 0, then we
set py = 1. Otherwise, we set p, = 0. This completes the description of the changes required to compute
an MIS. The next lemma shows that within i rounds, for i > 0, after the stabilization of coloring, all
vertices with colors 1,2, ...,7 induce a subgraph with a properly computed MIS. Consequently, within

O(A) additional rounds an MIS of the entire input graph is achieved.

Lemma 4.4. Consider a graph G after the stabilization of coloring. Fori > 0, within i additional rounds,
all vertices with colors 1,2, ...,1 induce a subgraph with a properly computed MIS. Consequently, within

O(A) additional rounds an MIS of the entire input graph is achieved.

Proof. The proof is by induction on i. Base (i = 0): All vertices of color < 0,0 > do not have neighbors

with smaller colors, and thus their g bits become equal to 1. Since in this stage the coloring is proper,
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the set of such vertices is independent. Since it does not contain vertices of other colors in the current
stage, the set is also maximal. (in other words, this set is an MIS of itself.)

Step: We consider the subset of vertices with the following colors:

(0,0),(0,1),....,(0,7). By induction hypothesis, within i rounds from stabilization of the coloring, the
subgraph induced by vertices of colors (0,0),(0,1),....,(0,i — 1) has a properly computed MIS. Since
colors do not change after stabilization, the p bits of the vertices of this subgraph will not change in
round ¢ + 1. In this round each vertex of color (0,i) sets its g bit to 1 if it has no neighbors with a
smaller color in the MIS, and sets it to 0 otherwise. Consequently, there are no pair of neighbors with
colors from {(0,0),(0,1),....,(0,4)}, for which both their p bits are set to 1. Moreover, each vertex of
color smaller than (0, ) for which g = 0 must have a neighbor with g = 1, by induction hypothesis. Each
vertex of color (0,4) for which ;4 = 0 must have a neighbor with a smaller color and = 1, according to
the instruction that is executed in round i + 1 after the stabilization of the coloring. Hence, after that

round, the subgraph induced by (0,0), (0, 1), ....,(0,) has a properly computed MIS. ]

Theorem 4.5. Given an arbitrary graph G = (V, E), our self-stabilizing algorithm produces a proper
MIS within O(A 4+ log* n) rounds after the last fault.

Proof. Let t.q = O(A + log* n) be the stabilization time of the coloring algorithm. (See Theorem 4.3.)
Denote by U;, i = 1,2, ..., A + 1, the set of vertices v that belong to MIS (i.e., have u, = 1) at round
teq + 1 after faults stop occurring. Let 1) be the (A + 1)-coloring maintained by the algorithm. (We know
that t.q rounds after the last fault occurred, ¢ is indeed a proper (A + 1)-coloring.)

We prove by induction on ¢ that at time t.q + 4 after faults stop occurring, for i = 1,2,..... A+ 1, U;
is an MIS for the set V; = {v |1 <;(v) < i}, where 1); is the coloring 1) maintained by the algorithm at
that time.

Base (i = 1): All vertices of V; form an independent set (because ¢; is a proper (A + 1)-coloring,
because it is the coloring 1 more than t.4 rounds after the last fault occurred), and cach of them joins
MIS because they have no neighbors of smaller color.

Step: For some ¢ < A we assume that U; is an MIS for V; Consider a vertex v € Uijt1, i.e., ¥ip1(v) = i+1.
This vertex had the same color i + 1 for all the rounds t.q + 1,tcq + 2, ...., teg + ¢ + 1, counting from the
moment 1" when faults stopped occurring. By end of round T + t.q + i or earlier, all its neighbors of
smaller color (they also did not change their colors during the time interval [T+ t.q, T + t.q + i]) have set
their values pi,. So in round T'+t.q+1i-+ 1, if v has no smaller color neighbor in the MIS, it joins MIS. (It
might have joined earlier, but it will anyway check again whether it has to join in round T +t.q+1i+1.)
Since vertices of Vi11 = {v | ¥j+1(v) = ¢ + 1} form an independent set, the resulting set U;;1 is an

independent set for ViU Visr = V,-H. O
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In the ordinary (non-stabilizing) setting it is possible to compute a maximal matching and an edge
coloring by simulating the line-graph of the input graph, and computing an MIS and vertex-coloring of
it. These solutions on the line graph directly provide solutions for maximal matching and edge coloring
of the input graph within the same running time. This technique is applicable also to the self-stabilizing
setting. Specifically, each vertex v simulates virtual vertices, one virtual vertex per edge adjacent on v.
In the beginning of each round each vertex verifies whether the state of each of its virtual vertices that
correspond to some edge equals to the state in the other endpoint of that edge. If this is not the case, the
endpoint with a greater ID copies the state of the other endpoint for that virtual vertex. Consequently
all edges have consistent representations, i.e., the same state in both their endpoints, in the entire graph.
Now, a self-stabilizing MIS or vertex-coloring algorithm can be simulated correctly on the line graph in
order to produce self-stabilizing maximal matching and edge-coloring of the input graph. In conjunction

with Theorems 4.3, 4.5 this leads to the following result.

Theorem 4.6. Given an arbitrary graph G = (V, E), our self-stabilizing algorithms produce a maximal

matching and a proper (2A — 1)-edge-coloring within O(A + log* n) stabilization time.

5 Edge Coloring within O(A+log”n) Rounds in the CONGEST Model
and O(A +logn) Rounds in the Bit-Round Model

We employ our techniques in order to compute edge colorings using small messages. The algorithm
consists of two stages. The first stage constructs an O(A?)-edge-coloring from scratch, and the second
stage computes an O(A)-coloring from this O(A2)-coloring. We remark that we cannot use the algorithm
of Linial for the first stage, since its message complexity in the case of edge-coloring is quite large. Instead,
we do the following. We invoke Kuhn’s algorithm [31] for 2-defective A2-edge coloring. This algorithm
orients all edges towards endpoints with greater IDs. Then, each vertex assigns its outgoing edges distinct
colors from the set {1,2,...,A}. It also assigns its incoming edges distinct colors from the same range.
Consequently, each edge obtains a pair of colors, one color from each of its endpoints. This is done within
a single round by sending a message of size O(logn) per edge (in both directions).

Each color of an edge e € E can be represented as an ordered pair v(e) = (i,j), where i,j €
{1,2,...,A}. Note that a set of edges with the same w)-color consists of paths and cycles, since each
vertex on such an edge has at most one another edge adjacent on it in this set. This is because the defect
of 1 is 2. To remove the defect we run Cole and Vishkin coloring algorithm [12] on edges of each color
class in parallel and assign a new color to each e € E in the form (e) = (i, j, k). The first two indices
i,7 are the result of the first stage, and the rightmost index k € {1,2,3} is the result of Cole-Vishkin’s

algorithm invocation.
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Next, we compute an O(A)-edge-coloring from the O(A?)-edge-coloring as follows. In each round
both endpoints of an edge hold its color, that will be from now on represented as an ordered pair (a,b),
a,b € O(A), rather than a tuple. Consequently, each endpoint can check for conflicts of edges adjacent on
it. For each edge with a conflict at an endpoint, the endpoint sends a message over this edge (consisting
of a single bit) to notify the other endpoint about the conflict. Then, for each edge, both of its endpoint
know whether it has a conflict with some adjacent edge or not. If the current edge color is (a,b), and
there is a conflict, the new color becomes (a, (a4 b) mod ¢). Otherwise, it becomes (0, ). Both endpoints
update the new color of their edge. This is done within a single round and by exchanging just a single
bit on each edge. Then all vertices of the graph are ready to proceed to the next round and perform it
in a similar way. The algorithm stops once all edges have colors of the from (0,b), 0 < b < g = O(A).

(Here ¢ is a prime number that satisfies that the original number of colors is at most ¢? and ¢ > 2A —1.)
Lemma 5.1. A proper O(A)-edge coloring is obtained in O(A+log™ n) rounds in the CONGEST model.

Proof. The algorithm starts with the invocation of Kuhn’s algorithm that results in a 2-defective A2-
edge-coloring within O(1) time. Then it is turned into a proper coloring using Cole-Vishkin algorithm
within O(log® n) time. Indeed, if prior to the execution of the latter algorithm a pair of adjacent edges
had the same color (7, j), they now have distinct colors (i, j, k) and (i, j, k'), since Cole-Vishkin algorithm
produces a proper 3-coloring of the edges in the set of color class (i, 7). Next, in each round each color
of an edge of the form (a, b) is transformed either into {(a, (a + b) mod ¢) or into (0,b). In both cases the
new coloring is proper. See Lemma 3.5. Within O(A) rounds all colors obtain the form (0, b). O]

Lemma 5.2. The bit complexity of our edge-coloring algorithm is O(A + logn) per edge. If initially
vertices know the IDs of their neighbors, then the bit complexity is O(A + loglogn) per edge.

Proof. Exchanging initial IDs between neighbors requires O(logn) bits. Exchanging the colors during
the 2-defective A2-edge-coloring requires O(log A) bits. The first round of Cole-Vishkin algorithm is
performed based on IDs of O(log n) bits. The second round of Cole-Vishkin algorithm requires O(log log n)
bits, the third one requires O(logloglogn) bits, and so on. The last round of Cole-Vishkin algorithm
requires a constant number of bits. The exchange between neighbors of the resulting proper O(A?)-edge

coloring of the input graph requires O(log A) bits. Each of the following O(A) rounds requires 1 bit. [

We can also produce edge-coloring with exactly (2A — 1)-colors as follows. Once the stage of O(A)-
edge-coloring terminates, we apply a procedure similar to One-bit AG halving reduction. (See Section
3.2.) Specifically, let k be the current number of colors, and ¢ = [k/2]. we represent each color of an
edge as an ordered pair (ae, be), where a. € {0,1}, be € {0,1,...,¢ — 1}. Then we execute 2A rounds to

halve the number of colors. In each round, for each edge e = (u,v) € E, its endpoints u, v check whether
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be is distinct from all b, of edges €’ adjacent on these endpoints. Then v notifies u whether this is the
case for all edges adjacent on v. In parallel, u notifies v whether this is the case for all edges adjacent
on u. If both v and v pass the check, they update the color of e to (0,b.). Otherwise, they update it to
(1,be + 1 mod ¢q). Since each edge has at most 2A — 1 edges adjacent on it, within 2A rounds all edges
e € F select a color with a. = 0. Hence the number of colors is halved. Repeating this for a constant
number of phases converts the O(A)-edge-coloring into a (2A — 1)-edge-coloring. We summarize this

below.

Theorem 5.3. We compute (2A — 1)-edge-coloring within O(A + log*n) rounds in the CONGEST
model, within O(A + loglogn) rounds in the Bit-Round model with knowledge of neighbors’ IDs, and
within O(A +logn) time in the Bit-Round model without knowledge of neighbors’ IDs.

6 3-Dimensional Additive Group Algorithm

In Section 3 we described our Additive Group (shortly AG) algorithm that starts from a proper O(p?)-
coloring, for some prime p > 2- A+ 1, and computes a proper p-coloring in O(p) rounds. This algorithm
can be used, of course, also for decreasing the number of colors more than quadratically. Specifically, if we
have an O(p?)-coloring, for some prime p > 2- A + 1, we can decrease the number of colors to O(p) in the
following way. Partition the palctte [p?] into p disjoint sub-palettes [p?], [p? + 1,2p%, ..., [p* — p? + 1, p%],
and run AG(p) algorithm in each sub-palette in parallel. Within O(p) rounds the number of colors reduces
to O(p?), and by an additional application of AG(p), we obtain a p-coloring in overall 2 - O(p) = O(p)
rounds.

In some faulty network setting it is, however, desirable to employ algorithms that do not consist of
several distinct phases, like the algorithm above. These distinct phases may pose a problem when faults
are introduced, and some vertices are in one phase of the algorithm, while others are in another. We,
therefore, next devise a variant of our AG algorithm that reduces the number of colors from O(p?) to
O(p) within O(p) rounds, but it is more uniform than the above algorithm, i.e., at all times all vertices
perform precisely the same step. We call this algorithm 3-dimensional AG with a parameter q, or shortly,
3AG(q). The algorithm starts by representing colors ¢(v) = (cy, by, ay) as triples, ay, by, ¢, € Zg. It then

runs the following iterative step for 2 - p rounds. We will assume p > 3- A + 1. All additions are in Z,.
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Algorithm 5 3AG(p)
1: for v € V in parallel do

2:  if ¢, # 0 then

3: if Yu € I'(v) it holds that b, # b, then
4: (v) = (0, by, ay)

5: else

6: (V) = (v, by + Co, ay)

7: end if

8: else

9: if Yu € T'(v) it holds that a, # a, then
10 (v) = (0,0,0,)

11: else

12: d’(”) = <07 by, ay + bv>

13: end if

14:  end if

15: end for

Next, we analyze the algorithm.

Lemma 6.1. Suppose we have a proper coloring p. Then the coloring 1 obtained after one round of

3AG(p) is proper as well.

Proof. Denote p(v) = (cy, by, a,) and consider an edge (u,v). We split the analysis into two cases,
depending on whether ¢, is non-zero.

Case 1: (¢, # 0). In this case our analysis splits again into two cases, depending on whether all neighbors
u’ of v have b, # by, or not.

Case 1.1: (Vu' € T'(v), by # by). Then the algorithm sets: ¥(v) = (0, by, ay).

The vertex u € I'(v) (recall that we have fixed an edge (u,v)) with ¢(u) = (cy, by, a,) could have been in
one of the following cases.

Case 1.1.1: (¢, # 0). Then, if Vz € I'(u), we have b, # b,, then ¢)(u) = (0, by, ay). But recall that
by # by, and thus ¥(u) # ¥ (v) as required. Otherwise, there exists a neighbor z € I'(u) whith b, = b,.
Then the algorithm sets (u) = (cy, by + ¢y, ay) and ¢, # 0. But ¢¥(v) = (0, by, ay). i.e., P(v) # P (u).
Case 1.1.2: (¢, = 0). In this case ¢(u) = (0,by,ay). The analysis here splits again to a number of
sub-cases.

Case 1.1.2.a (b, = 0). Then ¢(u) = (0,0, a,), and so ¥(u) = (0,0, a,) as well. But we have for every
' € T'(v), by # by, and so b, # 0. Hence 9 (v) # ¢ (u).

Case 1.1.2.b: b, # 0, but b, stayed as is, i.e., ¥(u) = (0, by, ay + by) (this means that there exists a
neighbor z € T'(u) with a, = a,). But then again b, # by, because for every v’ € I'(v), b, # b,. Hence
U(v) # ¢(w).

Case 1.1.2.c: ¢(u) = (0, by, ay,) and b, # 0 and Vz € T'(u), a, # ay. Then ¢(u) = (0,0, a,). But then,
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in particular, a, # a,, and so ¥ (v) = (0, by, a,) # (0,0, a,) = ¥ (u), as required.

Case 1.2: (¢, # 0, and there exists v’ € T'(v) with b, = b,). Then ¥ (v) = (cy, by + ¢y, ay). Then if
cu =0 (ie., p(u) = (0,by, ay)), then in ¥ (u) the first coordinate is also 0 (by the rules of the algorithm),
and so ¥ (v) # ¥ (u).

Else we have ¢, # 0. So both v and u have non-zero first coordinate, and so they do not change their
third coordinate. So if a, # a, then ¥(v) # ¥ (u). Otherwise (a, = ay), and so (cy, by) # (cy, by). So if u
sets Y(u) = (0, by, ay,), then (v) # 1 (u), because ¢, # 0.

Else, u sets ¢¥(u) = (cy, by + cu, ay), but {cy, by + ¢) # (cyu, by + ) because (cy, by) # (cy, by). In either
case $(v) # ¥(u).

Case 2: (¢, =0). If p(u) = (cy, by, ay) and ¢, # 0, then by symmetric argument, ¥ (v) # 9 (u). Finally,
if p(v) = (0,by, ay), p(u) = (0, by, a,) and p(v) # @(u), then by our analysis of the two-dimensional AG,
we have ¥ (v) # ¢ (u). O

Within the first 3 - A 4+ 1 rounds, each vertex v will have ¢, = 0. This is because each neighbor u
of v may have a conflicting b, to the b-value b, at most three times: once with a non-finalized b-value,
once with a finalized b-value (on line 4 of the algorithm), and once with a b-value 0 (set on line 10 of the
algorithm). So among 3 - A + 1 first rounds, there will be a round on which for all w € T'(v), b, # by,
and on that round v finalizes its b-value. (In fact, 2- A + 2 rounds suffice, as b, can be zero at most once
during all these rounds, assuming p > 2 - A + 2).

After all vertices have their ¢, = 0, in 2- A + 1 additional rounds, by the same argument, all a,’s will be

finalized.

Corollary 6.2. The algorithm 3AG(p), starting with a proper p*-coloring, where p > 2A + 2, computes

a proper p-coloring in O(p) rounds.

We next argue that one can decrease the palettes size (in both ordinary and 3-dimensional variants
of the algorithm AG), at the expense of slightly increasing the running time. Consider first the ordinary
(two dimensional) variant of algorithm AG, and suppose that instead of running it for p > 2- A + 1
rounds, we run it for p > (1 + ¢) - A rounds, for an arbitrary small constant ¢ > 0. We will run it for
1+ [H phases, each lasting for p rounds. (Observe, however, that vertices that run the algorithm are
oblivious of the phases. They always run the same AG-iteration, on which a vertex v with ¢(v) = (b, a,)
checks if it has a neighbor v with a, = a,,. If it does not, it finalizes its color to ¥ (v) = (0, a,). Otherwise
it sets it to ¥(v) = (by,ay + by).) Consider a fixed vertex v. Note that if it does not finalize its color
on phase 1, it means that at least ¢ - A of its neighbors « have finalized their colors (and had a conflict
with the color of v at least twice during the phase). Observe also that these neighbors u will be able to

conflict at most once with v on each subsequent phase. Hence if v does not finalize its color for i phases,
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i1 =1,2,..., i < 1/¢, it means that at least ¢ - €A among its neighbors did. Hence after [%] phases, all
neighbors of v have finalized their colors, and on the next phase v will necessarily finalize its color. The
same reasoning is applicable to the 3-dimensional variant of the AG algorithm, but the number of phases

grows by a factor of 2.

Corollary 6.3. Given a proper O(p®)-coloring, for some p > (1+¢€)-A, for some € > 0, running SAG(p)

for O(% - p) rounds produce a proper p-coloring.

7 Conclusion and Future Work

The coloring technique based on Additive groups gives rise to general graph coloring. It allowed us to
break a 25 years old heuristic barrier in terms or running time. Our technique also incurs a very low
bit complexity of just 1 bit per round. We believe that it may turn out to be the most efficient possible
technique for O(A) proper coloring in terms of network usage.
Additive groups technique has a several variants. It can be more specific or more generic and can also
compute arbdefective coloring very efficiently. With those features it can also be used as a black box for
solving other problems in graph theory as described in this work.

This work presented the begining of usage of algebric techniques that might be useful for some more
applications. An example is distance-2 coloring techniques using minimal network usage. There could be
also an improvment in running time for coloring graphs with bounded arboricity. It may be also possible

to discover a better running time rulling sets algorithms.
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