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Abstract

Given a photo of an object, and a 3D representation of that object, the pose esti-
mation problem is determining the object’s transformation (rotation and translation).
We present a method for model-based pose estimation of rigid objects in a single ca-
sual photo. Having a 3D CG model of the subject object in the photo allows reducing
the 3D-2D matching problem to a series of conventional image to image matching
operations based on image-space descriptors. However, treating all views of the CG
model alike, independent of the given model and input photo, often fails. We argue
that not all views contribute equally to the task and thus develop a view relevancy
measure. First, for each CG view and a calibrated training photo of the same model,
our method computes a series of measurements — a feature vector that captures char-
acteristic properties of the match. We learn a model that predicts the reliability and
relevancy of each view based on these feature vectors. Then, given a new query
photo, and a new CG model, the pose estimation based on matches to each gener-
ated CG view is evaluated via the learned model to select the best pose estimate. To
evaluate our method we have assembled two challenging data sets of 3D CG mod-
els of cars and building combined with uncontrolled web images. We demonstrate
empirical results showing that our pose estimation improves existing methods.



Chapter 1

Introduction

1.1 Background

The estimation of the six degrees of freedom of a rigid object’s 3D pose from a single
image is a key enabling requirement in many machine vision, graphics, and robotics
systems. This process might be performed by utilizing any number of available shape
and appearance representations of the object at hand.

The most common representation of 3D objects is a Computer Graphics (CG)
model. Such models are available and accessible over the web. CG models, repre-
sented with, e.g., textured triangulated meshes, capture the approximated appearance
and structure of the object, and allow the rendering of the model under arbitrary view
points (see Fig. 5.1). Using a model, estimating the pose can be done by the gener-
ated views which can in turn be compared to the input photo to assist the posing task,
reducing the 3D posing problem to image-to-image comparisons. Given a 3D CG
model, computing an object’s pose may therefore involve forming correspondences
between features in the input photo and the computer graphics images (CGI) of the
model.

Since CG models are very common nowdays, using them to solve the pose es-
timation problem could be preferable to obtaining photos of the same object taken
from many different view points. In addition, storing such a model occupies less
space than storing many single photos.

However, solving the pose estimation problem using a photo and a CG model is
not trivial. The object’s size in the photo can differ from the CGI view. In addition,
its location can be different and it can also be partially occluded by other objects.
Finding the rotation of the object is another problem and using a very dense viewing
sphere of the CG model is not efficient. Another difficulty arises from the modality
problem between the generated view and the photo’s textures - the model’s textures
usually have much lower quality. This makes it hard to form correspondences be-



tween them. Also, the CG model usually represents the object’s structure only in
general and not in an exact way (e.g. the object’s parts might have different propor-
tions than in reality).

Ostensibly, this photo-CGI approach reduces the problem of pose estimation to
cross-modal feature matching, where features from a query photo are matched to
features extracted from a gallery of rendered (CGI) views. Establishing such matches
is challenging, even when high quality models are available, often leading to merely
a small ratio of positive matches to false positive matches.

To improve the quality of the estimated matches, a number of papers have sug-
gested seeking robust features — features more likely to appear in different views of
the same object [13, 15, 16]. An additional means of boosting pose estimation pre-
cision may be obtained by considering the relevancy of a view. Specifically, some
views perform better than other in recovering the true pose. However, this leads to a
chicken-and-egg problem: Relevant views are those which provide the most accurate
estimate for the pose. On the other hand, knowing which views provide accurate
pose estimates might benefit from knowing the correct pose.

Our goal in this research is to learn to identify the views that are the most relevant
to the input images by employing a statistical model. Our key observation is that
relevant views exhibit tell tale signs indicating that they indeed provide a reliable
pose estimate. We characterize each CGI view by a feature vector which includes
various features of the pose estimate. Views are then classified using a standard
classifier trained on a similar set of feature vectors. The relevant views are the ones
with the highest classification confidence score. These relevant views are then used
to estimate the object’s pose directly. We take this idea a step further and show how
the performance of the RANSAC process, used to produce pose estimates, may be
boosted by applying the same learning technique to select a pose hypothesis.

To evaluate the efficacy of our method we have collected two data sets, each in-
cluding low-resolution, textured, 3D models as well as images of the real objects
being modeled. These 3D models and associated images were collected from the
web. The CG models, therefore, demonstrate a challenging variability in parame-
ters such as fidelity, detail level, and texture quality. The photos vary in resolution,
background clutter, illumination, and pose. We show our method to substantially
outperform existing state-of-the-art systems in these tests. We make our benchmark
tests, data and code available to the public.

1.2 Related work

Over the years numerous pose estimation methods have been proposed. Broadly
speaking, these can be categorized into two main groups: methods using image-
based, implicit models for the underlying geometry of the physical object, and meth-



ods employing explicit, 3D representations.

A large number of photos may be used to capture the appearance of an object
from different viewpoints and thus facilitate pose estimation. This approach has the
advantage that typically it is easier to compare images of the same modalities rather
than photos to CG images. The downside is the requirement of having multiple,
often a great deal, of photos to capture the appearance of the object from all possible
viewing angles [ 1, 10, 26, 28].

The alternative of explicit 3D information has been exploited in different ways in
the past, typically by using a CG representation of the object. A popular approach
is to compute pose-estimation and segmentation jointly by using the object’s con-
tour. Some recent examples include [22, 24, 25]. Although contours often provide
accurate information, they are sensitive to occlusions, they do not provide sufficient
information when objects are smooth or convex, and they may be mislead by back-
ground noise.

Correspondences are often established between points [23], pixel patches [30],
contours [22, 24, 27], line segments [5], image descriptors [8, 10, 20], or multi-
modal cues [14]. These provide links between 2D coordinates in the input photo and
3D coordinates of the model. Pose information can then be computed from these
correspondences.

More related to our work are methods which exploit texture information on the
3D geometry. Here, matches are formed between the input photo and a rendered
view of the 3D model acting as a proxy for the 3D geometry [8]. More recently, this
approach has been combined with recognition [29] and detection [15, 16]. These
methods use many 3D models from the same class, employing correspondences be-
tween query features and features from multiple CG views. In this thesis, on the other
hand, we advocate using a single, carefully selected, CGI view of a model represent-
ing the particular object in the photo.

Pose estimation benchmarks. As far as we know, there is no widely accepted
benchmark for testing the performance of pose estimation algorithms. Some bench-
marks have been used recently for the related problems of detection and viewpoint
classification include subsets of the PASCAL challenge (e.g., [6]) and the 3D Ob-
ject Classes data set of [26]. These do not provide 3D geometry associated with the
objects in each image. Poses estimated for images in these sets are therefore only
estimated to within a small set of discrete poses. Other data sets were assembled
for evaluating pose estimation with multiple views (e.g., [3]) or multi-modal meth-
ods [14], neither of which is relevant to our method. We therefore assemble our own
test data, including images from the web, along with models of the objects appear-
ing in them. This allows us to accurately measure the precision of our method on
unconstrained images.



Chapter 2

Model-based pose estimation

We are given a 3D CG model m and a photo, /™, of the same object, taken with
a camera whose unknown external parameters are given by some rotation matrix R
and translation vector t. We wish to recover the six degrees of freedom of these
parameters in the CG model’s coordinate frame.

Having the model m at our disposal allows us to render images of the model,
producing CGI views V™. Each view includes, besides its intensities, also the 3D
coordinates of the points projected onto each of its pixels. By establishing a link
between a pixel z; in I™ and pixel z; in V"', we obtain the correspondences (;, X;),
were X; is the 3D point projected onto z. These can then be used to estimate the
camera’s pose in /™ using standard camera calibration methods [11]. Specifically,
given correspondences (z;, X;), the matrix R3y3 and vector ¢3,; may be obtained by
solving

x; ~ AR t]X; (2.1)

Where Az, 3 is the intrinsic camera matrix, and R is constrained to be an orthonormal
matrix.

A preprocessing step is done similar to the one proposed in [ 16]. For every model
m we produce 324 CG views V™, 108 views uniformly distributed over the upper
hemisphere of the object at three radii. Image descriptors are extracted using the
Harris-Affine interest point detector using the code from [18]. SIFT descriptors [17]
were computed using the code made available by [31]. The descriptors are upright
orientated.

The keypoints are evaluated by employing the technique of Discriminative Filter-
ing [12, 16] to reduce the number of descriptors extracted to those which are stable
across small view variations, and do not contain background. The filtering stage
eliminate around 80% of the keypoints found.

Given a descriptor set extracted from a new photo, it is matched against the de-
scriptor set of the current CG view. Each descriptor in /™ is matched to its L2-nearest



neighbor in V™. We have found that better performance is obtained without applying
the nearest neighbor distance ratio (NNDR) criterion of [19]. Instead, further filtering
of the image descriptors is performed by adding the non-class descriptors as possible
matching candidates for those in the photo. A descriptor matched to any of these
non-class descriptors is discarded. This step eliminate around 90% of the matches.
Pose can then be recovered by employing RANSAC as a robust estimator [7].

Many of the views may be disregarded at this early stage, thus reducing the com-
putational load to a short-list of potentially relevant viewpoints. Following [16], we
collect all descriptors for all CGIs extracted from the given training model. These
are then clustered using standard k-means. Each cluster is associated with the list of
all viewpoints (out of 324 possible CG views) that contributed to the descriptors in
this cluster (the specific model is not retained, only the position of the viewpoint).
When evaluating a new photo, its descriptors are matched against these cluster cen-
ters. Each center then votes for the viewpoints associated with it. The third of the
viewpoints with the highest number of votes are evaluated further, and the rest of the
views are discarded.

The complete process of Model based pose estimation without learning is de-
scribed in Alg. 1.

If multiple CGIs V™ exist and a sufficient number of correct matches is estab-
lished in each of these views, then this process should yield the same pose estimate
for all views. In practice, however, the overwhelming presence of many false matches
results in pose estimates that vary greatly between the different CGIs.

The question is then, how can we tell apart the relevant views, where pose estima-
tion is successful, from those which mislead the process? Ideally, we seek a solution
that would be statistically stable over many models and photos.

Algorithm 1 No learning
1: Given a CG model m and a photo of the model’s object /™:
2: Form matches between the descriptors of /™ and the model m clustered robust
features
Vote for each CGI view using the matches
S = the top third voted CGI views
for every view V" € S do
Match the view’s extracted robust features with the query features
Perform RANSAC calibration
end for
Return the view with maximum inliers

e AEW




Chapter 3

Adding Learning to the Basic
Algorithm

3.1 Learning relevant views

We assume a training set of a certain class or family of 3D CG models and associated
photos of these objects. The camera poses for the photos included in this training set
are computed by manually establishing point correspondences between the photos
and the CGls.

For every training model m we render CGI views V", sparsely covering the ob-
ject’s viewing hemisphere. For each of the model’s training images, /;" we then es-
timate the pose automatically (Section 2) using each and every one of these rendered
views. Each such estimate provides us with (i) a pose error eg’}g and (ii) a number of
parameters characterizing the behavior of the pose estimation process collected as a
feature vector v7;. The measurements included in the feature vector are described in
detail in Sec. 3.2. Once these vectors are assembled we apply a statistical learning
machinery over all image and CGI view-pairs for all available models, that links the
error €7 to the vector of parameters v7;. If this estimation implies a large error, the
view is said to be irrelevant, otherwise, the view is considered relevant.

Specifically, for every CGI view V™ in the training set, and for every given photo
I of the same model m we obtain an estimate of the pose in I;*. This is then
compared to the (known) ground-truth pose and an error is computed as a function of
the angular and translational difference between the estimated pose and the ground
truth pose. This error serves to compute training labels. The pair (1;",V;™) is assigned
a label of 1 if the error ¢, falls below a predefined threshold and —1 otherwise. In
other words, the positive class is the class of relevant views. This learning phase is
described in Alg. 2.

In our implementation we define €7} based solely on angular differences. It is
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Algorithm 2 Learning phase
1: Given a CG model m and a photo of the model’s object I;*:
2: Compute 7" using the known ground truth pose as in Eq. (3.1)
3: for every view V" € 5 do

4. Compute T as in Eq. (3.1)
Compute ¢’} using points p from Eq. (3.2)
if €7}, < a predefined threshold then
Assign (I,T,ij) a label of 1
else
Assign (I;",V;™) alabel of —1
10:  end if
11:  Obtain the feature vector v7; of all the features in Table 3.1
12: end for
13: Obtain an LDA classifier using the labels of (/ ,T,ij) and the data of the feature
vectors vﬂ

e w

measured as the angle between the principle axes of the known and estimated posi-
tions of the bounding box of m. Let p € R? be a point on the ground truth pose of
m (in homogeneous notation), 1" defined as
. [ R
T = 1
o] 6.1

be the estimated extrinsic camera matrix, and 7' similarly defined using the ground
truth rotation R and translation ¢. Assuming a fixed camera matrix, we compute:

p=TT""p (3.2)
Points p are then used to produce the estimated bounding box and compute €.

The feature vectors v}y, along with the labels computed based on pose estimation
accuracy, are used to train a discriminative model for selecting relevant views. Here
we use a standard LDA classifier [2]. Although better performance may presumably
be obtained with more sophisticated classifiers, we chose to focus here on the features
rather than the classification engine.

The LDA classifier obtained is used to link the features extracted from new CGlIs
of new models to new photos. During the application (test) phase, the feature vector
v’ is computed as above for each CGI view. The LDA classifier is then employed
on these vectors to obtain a numeric score that is expected to be positive and high if
the CGI is relevant to the given photo and negative and low otherwise. This numeric
score is used to rank the CGIs and identify the most relevant views. In practice, this

11



score is taken to be the LDA projection obtained for the vector vj. The relevancy
learning process is described in Alg. 3.

Algorithm 3 Relevancy Learning

1: Given a CG model m and a photo of the model’s object I}
Perform the No learning algorithm as defined in Alg. |
Perform the learning phase as defined in Alg. 2
Perform the test phase:
for every view V" € S do

Obrtain the feature vector v’

end for
Use the classifier on the vectors v’
Score each view according to the LDA projection of its feature vector
Return the pose estimation of the view with the best score

D A AN i

_
e

3.2 The features in vﬂ

Table 3.1 lists the values used in the feature vector v7;. Their purpose is to reflect
the quality of the pose estimates in each CGI view. We briefly review these values
next. We first note that additional features may also be conceived and added to these
features. In our experiments, however, we found these values to work well.
Number of inliers. The pose computed by RANSAC for each view V™ is the one
obtained in the iteration with the largest number of correspondence inliers; this value
is considered a good measure for the quality of the computed pose. We store it as a
first characteristic feature of the pose estimated in each view (Item 1 in Table 3.1).
Photo-to-CGI pose difference. The angle o between the estimated pose of /;" and
the known pose of the CGI view ij, used to estimate it, is a key parameter (Item 2
in Table 3.1, see also Fig 3.1). Here, large values may either be due to an actual large
difference in poses (unlikely, as in this case, few matches, if any, will be accurate) or
unreliable estimates. Small differences are also either the result of a correct estimate,
or an unreliable estimate. Assuming a uniform distribution of erroneous estimates,
however, it is less likely for a small angle difference to be the result of an error. In
practice, oy is computed similarly to €7 (Eq. (3.2)) using the known extrinsic matrix
of CGI view V;™ and the estimated matrix of ;.

Correspondence quality. We consider the Euclidean distances between feature de-
scriptors extracted from of the corresponding points z; in ;" and z} in V™ (3 in
Table 3.1). The median distance between all inlier corresponding descriptor pairs is
thus recorded.

12



Table 3.1: Features used by our system to characterize the match between photo I;"* and the CGI view
V™ of the same model m.

1 Number of inliers

2 Angle aZ} between estimated pose for I}
and known pose of V™

3 Median inlier descriptor distances

4 Standard deviation of the inliers scale ratio

5 Sum of (1) over the 3 x 3 spatial neighborhood
of V™

6 Sum of (2) over the 3 x 3 spatial neighborhood
of V™

7  Sum of angle difference between estimated pose
for I;"* using V;™ and estimated poses obtained
using the 3 x 3 spatial neighbors of V™

Inlier scale ratio variation. We compute the ratio of the scales returned by the
feature detector [18] for both z; and 2/ in every inlying corresponding pair. The
standard deviation of these values then gives a measure of the consistency of scale
differences in ;" and V;™ (4 in Table 3.1).

Neighborhood consensus. Finally, we evaluate the consensus of these parameters
amongst the poses estimated using the neighboring 3 x 3 views on the viewing sphere
(5,6,7 in Table 3.1). The rational is that for a correct pose estimate, neighboring views
should roughly agree on the pose and produce similar values.

Figure 3.1: Photo-to-CGI pose difference. Illustrating the angle «’; between the pose estimate for
photo I} according to correspondences established between its image-features and those of CG view
V™. Note that views in this illustration are positioned around the object, whereas in practice they
cover the viewing hemisphere.
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Chapter 4
Modifying the RANSAC process

4.1 Selecting the winning hypothesis

In the method described so far, a relevant view was selected based on a number of
scores representing the pose hypothesis produced by RANSAC for each view. Con-
ventionally, a RANSAC process selects a winning hypothesis based on the number
of inliers [4]. Here, however, we suggest applying the same idea of using a learned
statistical model for selecting the winning RANSAC iteration: Instead of counting
the number of inliers, we score each iteration based on a feature vector computed as
described above. That is, we apply the same idea of using a learned statistical model
for the selection of the winning RANSAC iteration.

Specifically, we choose the winning RANSAC iteration by considering only the
first four features out of the seven in Table 3.1. Features 5-7 are excluded, as they
rely on the final pose estimates for the neighboring views, information not available
before RANSAC has terminated in all the views. We train a classifier on these four
features using the training data, as described above, and apply it within each CGI’s
RANSAC, pose-estimation routine. Once we pick the winning iteration for each
view, based on features 1-4, we can continue in several ways:

1. Relevancy based on maximum inliers - select the view with maximum inliers.
See Alg. 4.

2. Relevancy based on best RANSAC score - select the view with the best se-
lected hypothesis score. See Alg. 4.

3. Full approach - add features 5—7, computed from neighboring views and con-
tinue as described above to select the best view. See Alg. 5.
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Algorithm 4 Modified RANSAC

1:
2:
3:

10:
: end for
12:
13:
14:
15:
16:

R A A

Given a CG model m and a photo of the model’s object I;"*:
Perform the No learning algorithm as defined in Alg. 1
Obtain an LDA classifier for the RANSAC process by using Alg. 2 with only the
first four features in Table 3.1
for every view V" € S do

Perform a modified (test phase) RANSAC calibration:

for each RANSAC hypothesis do

Obrtain the four feature vector 77"

end for

Use the classifier on the hypotheses vectors 7";’,?

Select the hypothesis with the best score as the pose estimation of V™

if Relevancy based on maximum inliers then

Return the pose estimation of the view with maximum inliers
else if Relevancy based on best RANSAC score then

Return the pose estimation of the view with the best selected hypothesis score
end if

Algorithm 5 Full approach

1:
2:
3:

10:

R e A

Given a CG model m and a photo of the model’s object I;"*:
Perform steps 2-12 of Alg. 4
Obtain an LDA classifier by using Alg. 2 with the following features:
All the features in Table 3.1
An additional feature - the view’s selected hypothesis score
Perform the test phase:
for every view V" € S do
Obrtain the feature vector v’
end for
Use the classifier on the vectors v}’
Score each view according to the LDA projection of its feature vector
Return the pose estimation of the view with the best score

15



Chapter 5

Experiments and results

5.1 Implementation

Our method is implemented in MATLAB, using a MATLAB OpenGL wrapper for
rendering the CG models. Standard OpenCV routines were used to compute the pose
given 2D-3D correspondences.

For simplicity, we assume that the focal length is known and set it to 800 in
image pixel units, that the principle point is at the center of the image, that the pixel’s
aspect ratio is one, and that there is no skew. Our method is agnostic to the type
of camera calibration model that is used to estimate the pose from point matches
and it is straightforward to relax these assumptions by using more elaborate camera
calibration techniques.

Pose was estimated using 2, 000 RANSAC iterations. The features in Vi (Sec.3.1)
were normalized to the range of [0..1]. LDA was applied with a regularization con-
stant of 0.1 in all our experiments, taking views which produce an angular error of
9 degrees or less as class examples, all others as non-class. When the LDA method
is applied, the view with the highest LDA projection value is selected, and its pose
estimate is then returned as our method’s output.

5.2 Data sets and Benchmarks

In order to test our method we have collected textured, 3D, CG models of car and
building objects, along with images from the web, taken of those same objects. Our
models were obtained from the Google 3D Warehouse collection [9] and the images
were mostly downloaded from Wikipedia. In total, we have 31 car models with 90
test images and 11 building models with 30 images, models having one to three query
images each. All models were scaled to unit size. Car models were further roughly
aligned — all facing the same direction. We manually recover the ground-truth camera
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Figure 5.1: The pose of the object in each in-
put photo (right) is estimated using a reference
3D CG model. Estimation is done using the
proposed method in this thesis. The estimated
pose is illustrated on the left by posing and
displaying the CG model in the detected pose.
Note that these images are re-scaled for illus-
trative purposes.

pose of all our test images by establishing manual correspondence between the im-
ages and CGI views of their associated CG model. Fig. 5.2 presents some examples
of our models and test images.

Figure 5.2: Examples from our data sets. Top row are rendered views of the 3D CG models. Bottom
are example query photos collected from the web.

With this data set, we define a straightforward leave-one-out testing protocol as
follows. Given an image, we estimate the pose of the object in the image, using
the object’s CG model. In addition, all other models, their images, and ground truth
poses are available for training; the only information excluded from the training is,
of course, the ground truth pose of the input image, as well as other query photos of
the same object and their known poses. Pose estimate precision is measured follow-
ing [16] by considering both the translational ¢; and angular €, errors. Specifically, €,
is the difference between the center of the ground truth model and the center of the
model in the estimated position, ¢, is the angle between the principle axes of the real
and estimated bounding boxes. We use Eq. (3.2) to obtain the estimated position of

17



the object’s bounding box.

5.3 Algorithms analysis

5.3.1 Relevancy learning

Based on Sec. 3.1 we’ve examined Alg. 3 and compared the No learning and Rele-
vancy learning methods. Fig. 5.3 shows examples where even when a correct pose
estimation was found, the wrong view is chosen by the No learning algorithm, while
the correct one is chosen by the Relevancy learning algorithm.

Figure 5.3: No learning vs Relevancy learning. Note that these images are re-scaled for illustrative
purposes

5.3.2 Winning iteration selection

Based on Sec. 4.1 we’ve examined the winning iteration selection approach, compar-
ing the hypothesis chosen based on largest #inliers and based on highest LDA score.
Fig. 5.4 shows an example of comparing these two criterias, number of inliers and
LDA score, of each iteration in a RANSAC procedure. It shows that each criteria
leads to a different iteration being selected.

There are cases when several iterations have the same maximum number of in-
liers. In such cases the lower iteration is picked. Even if one of the other, maximum
#inliers iteration, is the right estimation, the simple, No learning algorithm, does not

18



have the information to find it. Note that this examination only shows part of the
Modified RANSAC method (Alg. 4). The part where we choose the relevant view is
ignored here, and discussed next.

Figure 5.4: Winning iteration selection. Top row: Left is the query image. Middle is the estimation
based on iteration selected by #inliers. Right is estimation based on iteration selected by score. Bottom
row: values vs iteration number plot (#inliers and score are normalized). The selected maximum
values for each way are circled.

5.3.3 Modified RANSAC

Fig. 5.5 shows examples where a correct pose estimation was found by the Modi-
fied RANSAC approach. However, the wrong view is chosen afterwards when the
selection is based on maximum inliers (relevancy based on maximum inliers), while

the correct view is chosen based on best hypothesis score (relevancy based on best
RANSAC score).

5.3.4 Full approach

Fig. 5.6 shows examples where a correct pose estimation was found by the Modified
RANSAC approach. However, the wrong view is chosen afterwards when the se-
lection is based on best hypothesis score, while the correct view is chosen based on
learning and using more features (Full approach).

19



Figure 5.5: Modified RANSAC, relevancy based on maximum inliers vs Modified RANSAC, rele-
vancy based on best RANSAC score. Note that these images are re-scaled for illustrative purposes

Figure 5.6: Modified RANSAC, relevancy based on best RANSAC score vs Full approach. Note that
these images are re-scaled for illustrative purposes

5.4 Results

Fig. 5.7 and Fig. 5.8 compare the performance of the following methods over the
Cars and Buildings data-sets:

1. Random selection baseline. The CGI view V™ is selected randomly and its
matches are then used to estimate the pose (Sec. 2).

2. Nearest neighbor. The view selected for the pose estimation is the one providing
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the most nearest neighbor matches for the descriptors in the query photo. Once
selected, pose is estimated as before.

3. Estimation based on [16]. The method proposed in [16] obtains pose from
multiple models from a set of related objects. In an effort to closely follow their
description, testing is performed using all our training models, including the model
who’s object appears in the test photo. We found that providing this method with
only the reference model reduces pose estimation precision. We employ our own
implementation of the method described in their paper, using the same parameters
and reported values.

4. No learning. The relevant view is the view whose estimated pose had the most
inlying correspondences. See Alg. 1.

5. Relevancy learning. The method described in this paper, in Sec. 3.1, with no
modifications to the standard RANSAC algorithm; the winning RANSAC iteration
for each CGI is the one with the most inliers. See Alg. 3.

6. Modified RANSAC, relevancy based on maximum inliers. Using our version
of RANSAC s rule for selecting a winning pose hypothesis at each view (Sec. 4.1).
The relevant view is then selected based on the maximum number of inliers, without
using the learned view relevancy score. See Alg. 4.

7. Modified RANSAC, relevancy based on best RANSAC score. Same as above,
but here the relevant view is selected based on the RANSAC score for the wining
hypothesis, rather than the maximum number of inliers. See Alg. 4.

8. Single view, relevancy learning with modified RANSAC. Our full approach
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Figure 5.7: Performance summary on the Cars collection. Top figure presents angular errors, bottom,
positional errors. In each figure the X-axis is increasing errors rates, Y is the number of queries (out
of 90) whose pose estimate fell below this error. Top curve is best. Please see text for further details.
Best viewed in color.
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Figure 5.8: Performance summary on the Building collection.

(Sec. 3.1). Same as above, but now, following a pose estimation in each view using
our modified RANSAC, the relevant view is selected based on a statistical model
trained on features 1-7 in Table 3.1. See Algorithm 5.

Cars Buildings
Angular Error Position Error Angular Error Pos. Error
Method Median Mean + SE  Median Mean + SE | Median Mean = SE ~ Median Mean + SE
1. Random selection 1179 116.6 +5.49 1.73 1.86 £0.29 | 91.04 90.56 +£7.53 0.89 1.36 £ 0.31
2. Nearest neighbor 93.09 96.32 +5.30 1.19 2.01+£053| 7753 7992+843 0.84 1.30 £ 0.27
3. Liebelt et al. [16] 6647 77.52+574 058 0.83+0.11| 4840 58.19+7.67 0.55 0.81 £0.19
4. No learning 63.21 68.37+520 037 095+0.14| 2609 4889+853 0.09 0.85+0.32
5. Relevancy learning 4294 56.12+530 0.18 098+£030| 19.05 3292+634 0.03 0.28 +0.09
6. Mod. RANSAC + #inl. 3947 5438 +517 032 073+0.11| 2351 4508+8.58 0.08 0.81 +£0.33
7. Mod. RANSAC +score | 18.55 4201 +5.14 010 094 +0.32| 2226 39.78 £7.41 0.08 0.66 +0.28
8. Mod. RANSAC +relev. | 17.83 41.83+£537 0.12 0.88+0.29| 19.76 2947+5.77 0.05 0.28+0.11

Table 5.1: Percision statistics. Median and mean (4 standard error of the means, SE) angular and
position errors on the Cars and Buildings data sets for all tested methods. Lower values are better.

Table 5.1 summarize the results for both the Cars and Buildings sets, listing an-
gle and position median and mean =+ standard error (SE). The angular error in our
complete method is equal or lower than all other variations by a significant margin. It
seems that the boost in performance is mainly due to the statistical model employed
within the RANSAC procedure. Position errors, on the other hand vary little from
one method to the other, all of them doing well. This is unsurprising considering that
translational element can be estimated, to a large degree, based on a crude identifi-
cation of those keypoints that are within the object’s boundaries, which all methods
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do well. In contrast, our method excels in evaluating the pose hypothesis induced by
multiple matches. Telling the correct hypothesis apart from the others is needed in
order to obtain an accurate rotational pose. Figure 5.9 demonstrates this point. The
type of errors obtained in the rotational model by the method of [ 6] have little effect
on the location of the 3D bounding.

-
\ )
2 D

Figure 5.9: Visually comparing angular pose estimates of our method to [16]. Top row is the input
photo, middle is [16] and bottom our results. Note that these images are re-scaled for illustrative
purposes.

The limitations of our methods are presented in Figure 5.10. The method is
challenged by similarity among completely different views or by lack of details in the
given photo. While a better criteria for hypothesis selection improves performance,
the problem of multiple hypothesis testing remains, which may lead to additional
errors.

Figure 5.10: Examples of failed es-
timations. These are typically cases
where the object appears similar from
different views (top), has few features
(middle), or are caused by poor ran-
dom hypothesis selection by RANSAC
(bottom). Note that these images are
re-scaled for illustrative purposes.
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5.5 Switching models

In order to evaluate the robustness of the statistical learning method, we have per-
formed two additional experiments: The first was performed by learning on the cars
dataset models and using the learned model in the test phase of the buildings dataset.
The obtained model was used in both of the testing phases - in the modified RANSAC
and in the relevancy learning parts.

The second experiment had the settings reversed - learning on the buildings
dataset models and using the learned model when testing on the cars dataset. The
results in Table 5.2 show that learning on a different dataset yields similar results to
learning on the tested dataset.

Cars Buildings
Angular Error Position Error Angular Error Pos. Error
Method Median Mean £ SE  Median Mean &+ SE | Median Mean &= SE  Median Mean + SE
1. Random selection 1179 116.6 £5.49 1.73 1.86 £0.29 | 97.61 92.24 +8.21 1.70 1.79 + 0.31
2. Nearest neighbor 93.09 96.32 +5.30 1.19  2.01+£053| 7753 7992+843 0.84 1.30 + 0.27
3. Liebelt et al. [16] 6647 77.52+574 058 0.83+0.11| 4840 58.19+7.67 0.55 0.81 £0.19
4. No learning 63.21 68.37+£520 037 095+0.14| 26.09 48.89+853 0.09 0.85+0.32
5. Relevancy learning 4237 5658 +£537 0.17 0.70+0.13 | 2392 35324+7.10 0.03 0.24 +0.08
6. Mod. RANSAC + #inl. 56.48 63.52+5.60 0.53 1.11 £0.18 | 22.26 44.02+8.59 0.10 0.81 +0.33
7. Mod. RANSAC +score | 19.10 45.68+549  0.10 1.02 £ 0.33 | 21.66 36.30 + 6.81 0.11 0.66 £ 0.28
8. Mod. RANSAC +relev. | 18.72 4442 +546  0.10 1.34 £0.59 | 22.77 3026 £5.63 0.03 0.19 + 0.05

Table 5.2: Percision statistics using switched learned models. Median and mean (+ standard er-
ror of the means, SE) angular and position errors on the Cars and Buildings data sets for all tested
methods. Lower values are better.

The angular and positional errors for both experiments are similar to the ones in
Section 5.
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Chapter 6

Conclusions

Matching across modalities is a challenging task that results in a potentially large
number of false matches. Furthermore, it is not easy to distinguish between true and
false matches even when considering consensus among multiple matches. The com-
bination of geometric projection models and robust statistics tools such as RANSAC
often fails in identifying a set of matches that support a correct hypothesis from sets
that support false hypotheses that have equally high scores due to a nasty combina-
tion of inaccurate matches and multiple hypothesis testing.

In this work we propose to augment the RANSAC procedure by a learning based
relevancy score which makes it much more robust. The computed view relevancy
score shows its value both within the RANSAC procedure, in selecting among mul-
tiple random hypothesis, and at the level of selecting the most relevant view among
multiple rendered CG views. Overall, the simplicity of our method makes the pro-
posed solution practical, robust and efficient, and results on a large database of 3D
models demonstrate its effectiveness. The robustness is also apparent when using a
model learned from a different dataset, meaning our method can be used on a new
dataset without learning on it. Our framework can be readily extended by incorporat-
ing new features, and possibly other learning method, perhaps considering consensus
among distant views which support similar poses.
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Chapter 7

Appendix

7.1 Data Sets

We have collected two data sets, each including low-resolution, textured, 3D models
as well as images of the real objects being modeled. These 3D models and associ-
ated images were collected from the web. The CG models, therefore, demonstrate a
challenging variability in parameters such as fidelity, detail level, and texture quality.
The photos vary in resolution, background clutter, illumination, and pose.

The cars data set include 31 CG models. For each model, 2-3 photos of the car
model were obtained. The buildings data set include 11 CG models. For each model,
2-3 photos of the building model were obtained. Each model were transformed to a
common 3D format to be used by the undelying 3D rendering system - OpenScene-
Graph [21] (OSG format). Afterwards, the models were scaled to unit size. The cars
models were also aligned to the same view.

In order to find the ground truth pose in each photo /"™ of a model m - the rotation
matrix R3.3 and translation vector ¢3.1, we have manually found a similar view V;m
to the one taken in the photo. Next, we proceeded as in Section 2 - established a link
between a pixel z; in I™ and pixel z} in V™. Such links were then used to solve
Equation 2.1 and obtain the ground truth pose in the photo.

7.1.1 Data sets Files

Each data set is packaged as a ZIP file. The data set consists of a queries/ folder
where all the photos reside. Some of the models are in a single .OSG file, while
others resides in their own subfolder along with their texture files. In addition, a
text file, data-set.ref, includes all the required information: The model file name, its
originating URL, the number of photos for each model, the photos file names and
their originating URLs.
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7.2 Models Renderer

In order to render the CG model from different views, a renderer has been written
in C++. The rendering is done off-screen (no window is opened), and the image is
returned as a variable. It can be used from Matlab. The underlying renering library
is OpenSceneGraph [21] which parses a CG model and renders it using OpenGL.

Typing rend without arguments will show the following help:

[depth_image, rendered_image, unproject, out_A, out_R, out_T] =
rend (width, height, filename,writefiles, lighting,

sphere orientation (4 arguments)/camera orientation (3 arguments));
Most input and output parameters are optional.

width and height should be unsigned integers.

filename - the input mesh filename.

writefiles should be 0 or 1 (also outputs PPM files of depth_image
and rendered_image) .

lighting should be 0 (disabled) or 1 (enabled).

sphere orientation are the following 4 arguments: distance,
elevation, azimuth and yaw.

distance - a number added to the (auto calculated) model’s
bounding sphere radius. 0 is usually suitable.

elevation, azimuth and yaw are degrees. The camera position on

the bounding sphere is specified using them.

camera orientation are 3 arguments: A, R and T. Add an additional
dummy argument (e.g. 0) if further input parameters are specified.

Examples:

[depth, rendered]=rend (300, 300, ’"file.wrl’);

[depth, rendered, unproject, A, R, T]=rend(300, 300, ’file.wrl’,O,
0.5,10,20,30);

Renders the mesh with a distance of 0.5, an elevation of 10 degrees,
azimuth of 20 degrees and yaw of 30 degrees.

unproject (125,149,1:3)’ returns the world XYZ coordinate of the
image point (x=148,y=124).

Next:

[depth, rendered, unproject]=rend (300, 300, ’'file.wrl’,0,A,R,T);

Will yield the same results.

7.3 Learning code

We provide the code used in the thesis. It is written in MATLAB. The code features:

e Extracting robust features - implemented similary as in [16]. Extract robust
features from a given CG model and also cluster them.

e Examining a given query image and obtaining a pose estimation (without learn-
ing). See Alg. 1.

e Examining a given query image and obtaining a pose estimation (with learning)
See Alg. 3- 5.
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The readme file provides more detailed information.

28



Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]
[13]

[14]

[15]

M. Arie-Nachimson and R. Basri. Constructing implicit 3D shape models for pose
estimation. In ICCV, 2009. 7

P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fisherfaces: recognition
using class specific linear projection. TPAMI, 19(7):711-720, 1997. 11

T. Brox, B. Rosenhahn, D. Cremers, and H. Seidel. High accuracy optical flow serves
3-D pose tracking: exploiting contour and flow based constraints. In ECCV, 2006. 7

S. Choi, T. Kim, and W. Yu. Performance evaluation of RANSAC family. In BMVC,
2009. 14

D. DeMenthon and L. Davis. Model-based object pose in 25 lines of code. IJCV, pages
123-141, 1995. 7

M. Everingham, A. Zisserman, C. Williams, and L. Gool. The PASCAL visual object
classes challenge 2006 results. TR, U Oxford, U Edinburgh, KU Leuven, 2006. 7

M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting
with application to image analysis and automated cartography. Com. of the ACM, 24,
1981. 9

J. Gall, B. Rosenhahn, and H. Seidel. Robust pose estimation with 3D textured models.
Advances in Image and Video Technology, pages 84-95, 2006. 7

Google 3D warehouse. http://sketchup.google.com/3dwarehouse/. 16

I. Gordon and D. Lowe. What and where: 3D object recognition with accurate pose.
Toward category-level object recognition, pages 67-82, 2006. 7

R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
Univ Pr, 2003. 8

V. Lepetit and j. y. Fua, P. Keypoint recognition using randomized trees. 8

V. Lepetit, J. Pilet, and P. Fua. Point matching as a classification problem for fast and
robust object pose estimation. In CVPR, page 2004, 244-250. 6

J. Liebelt and K. Schertler. Precise registration of 3D models to images by swarming
particles. In CVPR, 2007. 7

J. Liebelt and C. Schmid. Multi-view object class detection with a 3D geometric model.
In CVPR, 2010. 6,7

29


http://sketchup.google.com/3dwarehouse/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-independent object class detection
using 3D feature maps. In CVPR, 2008. 3, 6,7, 8,9, 17,21, 22,23, 24,27

D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91—
110, 2004. 8

K. Mikolajcyk and C. Schmid. Scale and affine invariant interest point detectors. IJCV,
2004. 8, 13

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. TPAMI,
27:1615 - 1630, 2005. 9

H. Najafi, Y. Genc, and N. Navab. Fusion of 3D and appearance models for fast object
detection and pose estimation. ACCV, pages 415-426, 2006. 7

R. Osfield and D. Burns. Open scene graph. http://www.openscenegraph.
org/, 2010. 26, 27

V. Prisacariu and I. Reid. PWP3D: Real-time segmentation and tracking of 3D objects.
In BMVC, 2009. 7

L. Quan and Z. Lan. Linear n-point camera pose determination. TPAMI, 21:774-780,
1999. 7

B. Rosenhahn, C. Perwass, and G. Sommer. Pose estimation of free-form contours.
1JCV, 62(4):267-289, 2005. 7

R. Sandhu, S. Dambreville, A. Yezzi, and A. Tannenbaum. Non-rigid 2D-3D pose
estimation and 2D image segmentation. In CVPR, pages 786793, 2009. 7

S. Savarese and L. Fei-Fei. 3D generic object categorization, localization and pose
estimation. In ICCV, 2007. 7

C. Schmaltz, B. Rosenhahn, T. Brox, and J. Weickert. Region-based pose tracking with
occlusions using 3D models. Machine Vision and Applications, pages 1-21, 2011. 7

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from Internet photo
collections. IJCV, 2008. 7

M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from
3D CAD data. In BMVC, 2010. 7

L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3D tracking using online and
offline information. TPAMI, 26(10):1391-1391, 2004. 7

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision
algorithms. http://www.v1feat.org/,2008. 8

30


http://www.openscenegraph.org/
http://www.openscenegraph.org/
http://www.vlfeat.org/

PPN

NNONN N DNNNN YN NMY 08N DY Y THN-NON NN 1NN DY DY NN 1N»N2
NN YN DIYN DV (NITN) 212°0) NINNNN
TN NITYA DTN TNNNA (NN ND) DINOWP DINSY HY NNNN 1IN NVOYW DIV PN

-NONA DTN NP P2 MNRNN NINNY GWaN NN oxvn DY (CG model) »mn-non
TN DY NMNN DY NITO NPN T HY INT MUYY 1) . THN-1T2 DNV MTIPN THN
(image MHNNN 2NN NPMIPHN NMNIN DY NNRNN NNOXN) (NNY NN NPIND)

.descriptors)

NN 799 YN PINAD MY JDIND MNNN (MMANN NPNT) MNNNN DI XD D DININ IN
DV NMIT DYDY ONINNRND NN ,TPYRD .NIIWIWN NNNN DI DY NPOLIMNMDIN NPITID NVIY
DMNINN DY MOPY— M1 DY NITO DXAYNNI NNIORY NINNM N MNNNND NINNDN
NNNN DI DY MPNND NN NN MIOXD 91D GUN D710 OXTNID NN .DNNNNN NN AN

LUTN Y THN-NYN DTN NYTN NNDIRY NNIND 1NN LJ0N INNRD ION DINIVPI NITYA NN
97N NITY2 NN NITOL NNNN D .NXTHN-NONN DTN DY MNNN NITO DIN»HD NN
N1 N2VN DNNNN NIN NOIADY TIOIN

SV DMTHN-NON DXYTIM : DMNNNND DIINI PDIDA MY NIDN NNNY NVIVN NN PITAY ¥To2
DN MDY NINII DMDNN MXNIN .NYINND VN DIIXY HY NNINN) D02I»I2) NPNON
YN PINAD MNPPN MOLIVD



10
10
12

14

16
16
16
18
18
18
19
19
20
24

25

26
26
26
27
27

29

02391 199N

TP
................................................ ypI.1.1
.................................... MNTIP MMay.1.2

19210 NYN DTN NITYA DY HY NNNN IYIN

YOIDAN ONIMNYNY 1Y NADIN
.................. NPLINDIT MNNN NTNY 3.1
................. V™ 2 09980 3.2

RANSAC 7 99905 »ov

........................................................................... NNNINN NIYWNN NN .4.1

NN 00"
.................................... DWMN II7T.5.1
. I IND NTTH 9N DN YDY01.5.2
........................ DINNMINONND NN .5.3
............ VINDI NN NTND.5.3.1
............ NNNINPN NIYYNN NPNA.5.3.2
............ RANSAC 7Y n Mm9vw.5.3.3
........................ NN NYIIN.5.3.4

........................................................................................................ MINNIN.5.4

............ TIY9H OYTINND NAYNN.5.5

Mpon

0'N9v)

.................................... DMMN DD1.7.1
............ DMININ YO0 ON2P.7.1.1

DOTHN NON DYDTIN MINND NIDIN.7.2

.................................... TIOHN OTIN.7.3

MNPN NIV



AMNNON NVIDIINN
AUNNN YN NPIVRNNY NPYNNN

91NN DY HY NIWIVNH HNNNND MASWN NIIYN
DT NININa

ININ NJAPS MYAITNN POND NWYNN N N NTIAY
AWNNN YN M.Sc. 7Dy 11Y 7001

DNINON NVIDININA
VNN YN NVNN

Y-Dy
90N ANYY

ON YV VT DY INOTITNA NINN NTIAYN

2011 72NV



