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Abstract

This research work presents Deep Integrated Explanations (DIX) - a universal method

for explaining vision models. DIX generates explanation maps by integrating information

from the intermediate representations of the model, coupled with their corresponding

gradients. Notably, our method’s unique utilization of multiple layer integration proves

instrumental in producing explanation maps that are both faithful and accurate. Through

an extensive array of both objective and subjective evaluations spanning diverse tasks,

datasets, and model configurations, we showcase the robustness of DIX, surpassing current

state-of-the-art methods.
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 תקציר 

  Deep Integrated Explanation (DIX)בעבודה זו מוצגת שיטה גנרית ופשוטה בשם  
ממוחשבת. לראייה  מודלים  בעזרת    להסברת  הסברה  מפות  יוצרת  זו  שיטה 

בשילוב עם הגרדיאנט שלהם.    רשתשונות ב השכבות  האינטגרציה על המידע מייצוגי  
גדול  בתחום הסברת המודלים, שימוש במגוון  ם  מגוון של מדדיניסוי רחב שכלל    בוצע

דאטה  רשתות,  ל-של  שנחשבות  שיטות  להרבה  והשוואה    state-of-the-art- סטים 
היכולת  אפקטיביות השיטה ו את    . תוצאות הניסוי מדגישבתחום הסברת המודלים

יותר משאר השיטות.  שלה לאורך תהליך המחקר, התבצעה    לספק תוצאות טובות 

יוכלו   אלמנטיםבכדי להבין אילו    DIX-בחינה מעמיקה של אפשרויות הגדרה שונות ל
ביותר.  המוצלחות  המפות  ליצירת  המיטבית  בצורה   להועיל 
לבסוף, בוצעו בדיקות שפיות לשיטות הסברה אשר הראו את רגישות השיטה לשינוי  

 או במשקולות המודל. מידע המתויג ב
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1 Introduction
In the present landscape of computer vision, deep Convolutional Neural Networks (CNNs) [1,

2, 3, 4], alongside recent Vision Transformers (ViTs) models [5, 6] have risen to prominence,

exhibiting outstanding performance in a variety of vision tasks [1, 7, 8, 9]. This surge

in popularity emphasizes the need to comprehend the underlying rationale driving the

decisions and predictions of deep learning models.

Despite their remarkable achievements, most deep neural networks remain enigmatic, often

considered black boxes due to their vast number of parameters and intricate non-linearities.

This opacity has ignited the growth of explainable AI as a focal research area within the

realm of deep learning. Consequently, numerous methodologies have been proposed for

explaining the predictions of deep learning models in computer vision [10, 11, 12, 13],

natural language processing [14, 15], and recommender systems [16, 17, 18].

Explanation techniques aim to bridge the gap in understanding by generating heatmap-like

explanation maps. These maps spotlight distinct input regions, attributing predictions to

specific areas within the input image. Initially, rooted in gradient-based approaches, early

methods generated explanation maps by analyzing the gradient of predictions concerning

the input image [11, 1, 19]. Subsequently, several works [12, 20, 21, 22] proposed deriving

explanation maps from the internal activation maps produced by the network, along with

their gradients. Other techniques, such as Integrated Gradients (IG) [23], relying on path

integration, created explanation maps by accumulating gradients from linear interpolations

between input and reference images.

Predominantly applied to CNNs, the aforementioned methods arose before the emergence

of Transformer-based architectures [24]. With the advent of ViT models [25], a variety of

methodologies were proposed to interpret and explain them, including recent explanation

techniques like those presented in [13, 26].

This work introduces Deep Integrated Explanations (DIX), a comprehensive approach

aimed at explaining vision models, which finds applicability across both CNN and ViT

architectures. DIX employs integration over the internal model representations and their

gradients, facilitating the extraction of insights from any activation (or attention) map

within the network.

We present a thorough objective and subjective evaluation, showcasing the efficacy of DIX

on both CNN and ViT models. Our results reveal its superiority over other baselines
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across various explanation and segmentation tasks, encompassing diverse datasets, model

architectures, and evaluation metrics. Additionally, we validate the credibility of DIX in

producing faithful explanation maps through an extensive set of sanity tests, as outlined

in [27].
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2 Explainable AI and Interpretable

AI
In recent years, the increasing integration of artificial intelligence (AI) systems into various

domains has given rise to concerns about their opacity and lack of transparency. This

has led to the emergence of two closely related concepts: Explainable AI (XAI) and

Interpretable AI (IAI). These concepts aim to enhance our understanding of AI models and

their decision-making processes, fostering trust, accountability, and regulatory compliance.

Although often used interchangeably, explainable AI and interpretable AI encompass distinct

paradigms, each addressing specific challenges associated with AI system opacity. This

section delves into the fundamental differences between Explainable AI and Interpretable

AI, highlighting their underlying principles, methodologies, and implications.

Explainable AI: A Holistic Understanding Explainable AI, often referred to as XAI,

emphasizes the provision of human-understandable explanations for the decisions made by

AI models. The objective of XAI is to bridge the gap between the complex inner workings

of AI algorithms and the comprehension of non-expert users. The key emphasis here is on

the comprehensibility of the explanation rather than the transparency of the model itself.

XAI techniques aim to answer questions such as "Why did the AI make this decision?"

by providing insights into the features, data points, or reasoning that contributed to a

particular outcome. Techniques encompassed within the realm of XAI include:

1. Feature Attribution: This involves identifying the contribution of individual features

or input data to the model’s output. Techniques like LIME (Local Interpretable

Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) fall under

this category.

2. Rule-based Explanations: These approaches seek to generate explanations in the

form of human-understandable rules, enabling users to comprehend decision logic.

Rule-based systems often use decision trees or if-then-else constructs.

3. Example-based Explanations: Explanations are provided by presenting examples

similar to the input data that led to a particular decision. This technique can be

particularly useful in visual domains like image classification.
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Interpretable AI: Unveiling Model Transparency Interpretable AI, or IAI, is

concerned with the transparency and comprehensibility of the AI model itself. Unlike

XAI, which focuses on post hoc explanations, IAI aims to build models that are inherently

understandable. An interpretable AI model is one in which the relationship between

inputs and outputs can be directly inferred, facilitating intuitive reasoning. IAI techniques

seek to simplify model architectures, reduce complexity, and ensure that the model’s

decision-making process aligns with human cognitive capabilities. Techniques associated

with Interpretable AI encompass:

1. Linear Models: Linear models, such as linear regression and logistic regression, offer

inherent interpretability due to their clear relationship between inputs and outputs.

2. Decision Trees: Decision trees partition data based on features, leading to easily

interpretable decision paths. However, they might struggle with capturing complex

relationships.

3. Sparse Models: These models emphasize the use of a limited number of features,

enhancing interpretability by focusing on the most relevant inputs.

4. Symbolic Models: Symbolic AI approaches aim to represent knowledge in a symbolic

form, making the reasoning process explicit and human-readable.

Conclusion Explainable AI and Interpretable AI represent two intertwined yet distinct

approaches in addressing the challenges of AI transparency and understandability. While

Explainable AI concentrates on providing comprehensible explanations for AI decisions, In-

terpretable AI focuses on constructing models with inherent transparency. The convergence

of these paradigms holds the potential to not only improve the adoption of AI systems

but also to ensure responsible and accountable AI deployment across various applications.

As AI continues to evolve, the ongoing development and integration of both XAI and IAI

techniques will play a crucial role in shaping the future of AI technology.

Our research is centered on the domain of Explainable AI (XAI). Within this context, we

introduce a simple and versatile approach designed to explain vision models. Our method

leverages insights extracted from the intermediary feature representations of the model,

coupled with their corresponding gradients. This aggregation of information is employed

to generate an output akin to a heatmap, thereby highlighting the pixels that have exerted

the most pronounced influence on the model’s prediction. This outcome, denoted as an
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explanation map, serves as a visual representation of the significant contributors to the

model’s predictions in the computer vision explainability world.
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3 Related Work
3.1 Explanation Methods for CNNs

A diverse range of explanation methods were proposed for explaining CNN models, cat-

egorized into various types including perturbation-based methods, gradient methods,

saliency-based methods,and gradient-free methods. Perturbation-based methods [28, 29]

gauge output sensitivity concerning input through random perturbations applied in the

input space. Saliency-based methods [30, 11, 31, 32, 10, 33] leverage feature maps obtained

through forward propagation to interpret model predictions.

Gradient methods utilize prediction gradients with respect to the input or intermediate

activation maps. These methods yield explanation maps based on the gradient itself

or by a combination of the activation maps with their gradients [34, 35]. For instance,

SmoothGrad [36] presents a smoothing approach, applied by adding random Gaussian

noise to the input image at each iteration. Another notable example is the Grad-CAM

(GC) [12] method, which leverages activation maps from the final convolutional layer in

conjunction with their pooled gradients to generate explanation maps. The effectiveness of

GC has subsequently inspired numerous follow-up work [20, 37, 21, 22].

Gradient-free methods generate explanation maps by manipulating activation maps with-

out relying on gradient information [38, 39]. For instance, LIFT-CAM [40] utilizes the

DeepLIFT [41] technique to estimate SHAP values of activation maps [42], which are then

combined with the activation maps to produce the explanation map. However, gradient-free

methods have a drawback: they neglect gradient information, thereby constraining their

ability to steer explanations toward the target or predicted class.

Finally, a notable avenue of research pertains to path integration methods. Integrated

Gradients (IG) [23] involves integration across interpolated image gradients. Blur IG

(BIG) [43] focuses on introducing information using a baseline and adopts a path that

gradually removes Gaussian blur from the attributed image. Guided IG (GIG) [44] refines IG

by introducing an adaptive path strategy. By computing integration along an alternative

path, it circumvents high gradient regions, often resulting in a reduction of irrelevant

attributions.

Distinguished from the aforementioned works, DIX employs integration, facilitating inter-

polation on the internal representations produced by the network, and offers to combine

the resulting explanation maps from all network layers. Furthermore, DIX does not confine
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the integrand to simple gradients, but rather encompasses an arbitrary function involving

the activation (attention) maps and their gradients.

3.2 Explanation Methods for ViTs

Early attempts to explain Transformers employed the attention scores inherent to ViT

models in order to glean insights w.r.t. the input [24, 45]. However, it is not clear how

to combine the scores from different layers. Simple averaging the attention scores of each

token, for example, leads to blurring of the signal [13].

Abnar and Zuidema [46] proposed the Rollout method to compute attention scores to

input tokens at each layer by considering raw attention scores in a layer as well as those

from precedent layers. Rollout improved results over the utilization of a single attention

layer. However, by relying on simplistic aggregation assumptions, irrelevant tokens often

become highlighted. LRP [47], proposed to propagate gradients from the output layer to

the beginning, considering all the components in the transformer’s layers and not just the

attention layers.

Recently, Chefer et al.[13] introduced Transformer Attribution (T-Attr), a class-specific

Deep Taylor Decomposition method that employs relevance propagation for both positive

and negative attributions. More recently, the same authors introduced Generic Attention

Explainability (GAE)[26], which is an extension of T-Attr aimed at explaining Bi-Modal

transformers. T-Attr and GAE stand as state-of-the-art methods for explaining ViT models,

exhibiting superior performance when compared to other effective explanation methods,

including LRP and partial LRP [48].

DIX differs from T-Attr and GAE in two main aspects: First, DIX is a versatile method

capable of producing explanation maps for both CNNs and ViTs. Second, in the context

of ViT models, DIX employs path integration on the interpolated attention matrices while

incorporating the Gradient Rollout (GR) representation (a variant of the Rollout method)

as the function for integration.
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4 Method
Let f : RD0 → RK be a neural network with L hidden layers that takes an input (image)

x ∈ RD0 and produces a prediction f(x) ∈ RK . We denote xl (1 ≤ l ≤ L) as the

intermediate representation generated by the l-th hidden layer in f (based on the input

x), and f l : RDl → RK as the sub network of f that takes xl as an input and outputs the

prediction f(x). Consequently, we have the relationship f l(xl) = f(x). Additionally, we

denote x0 = x and f0 = f .

Our assumption is that xl preserves the spatial structure of x (though at a different

resolution) such that each element in xl is associated with its corresponding elements

in x (e.g., this assumption holds true for CNNs). W.l.o.g, we restrict the discussion to

multi-class classification problems, hence f outputs a vector assigning score to each class,

and the score for the class k is denoted as fk(x).

Our objective is to explain the prediction fk(x) for the class k. In this work, we define an

explanation map ml as a tensor assigning an attribution score to each element in xl w.r.t.

the prediction f lk(x
l) = fk(x). Consequently, ml must match the dimensions of xl. Note

that our ultimate goal is to attribute the prediction to each element in the input x, and

due to the spatial structure preservation, each element in ml can be associated with a set

of elements in x.

Let zl ∈ RDl be a baseline serving as a reference for the informative representation xl. zl can

be the null representation, random noise, or other baselines representing missing information.

In what follows, we present a decomposition of the score difference fk(x)− f lk(z
l), from

which an explanation map ml is derived.

Let Cl be a differentiable curve connecting zl to xl. Cl is parameterized by a vector function

rl : [0, 1] → RDl such that rl(0) = zl and rl(1) = xl. The score difference fk(x)− f lk(z
l)

can then be expressed as follows:

fk(x)− f lk(z
l) = f lk(r

l(1))− f lk(r
l(0))

=

∫ 1

0

d

dt
f lk(r

l(t))dt

=

∫ 1

0

∇f lk(rl(t)) ·
drl(t)

dt
dt

=

Dl∑
i=1

∫ 1

0

gli(t)h
l
i(t)dt,

(1)
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where

gli(t) =
∂f lk(r

l(t))

∂rli(t)
and hli(t) =

drli(t)

dt
,

with · representing the dot product operator, and rli(t) being the i-th element in the

interpolant rl(t). The first equality in Eq. 1 consequents from the design of rl and the fact

that f l(xl) = f(x). The second equality stems from the fundamental theorem of calculus.

The third equality arises from the multivariate chain rule, and the last equality results

from decomposing the dot product into a summation and then interchanging the order of

finite sum and integration.

Equation 1 breaks down the score difference into a sum, where each term is a line integral

along the i-th element of curve Cl, and the integrand is a function involving the partial

derivative of the prediction f lk(r
l(t)) w.r.t. the i-th element in the interpolant rl(t).

Consequently, each term in the sum resembles the attribution of the prediction fk(x) to

an individual element in xl through the integrated partial derivatives along Cl. Equipped

with Eq. 1, an explanation map for xl can be formed as follows:

ml =

∫ 1

0

gl(t) ◦ hl(t)dt, (2)

where ◦ denotes the element-wise multiplication, gl(t) =
∂f l

k(r
l(t))

∂rl(t)
is the gradient of

the prediction w.r.t. the interpolant, and hl(t) = drl(t)
dt . Note that ml ∈ RDl with

ml
i =

∫ 1

0
gli(t)h

l
i(t)dt. Notable, for l = 0, Eq. 2 is equivalent to the IG [23] explanation map,

where the interpolation takes place in the input space.

Equation 2 integrates the gradients of the interpolated activation maps rl(t). Empirically,

we found that incorporating the information from rl(t) itself (beyond its gradient) yields

enhanced explanations, both visually and quantitatively. This observation is consistent

with previous works [12, 20, 22]. Furthermore, since for l > 0, ml does not match the

spatial dimensions of the input x, a subsequent transformation ψl is employed to ensure a

proper match. To this end, we define the DIX explanation map as follows:

ml
DIX = ψl

(∫ 1

0

ϕ
(
rl(t),gl(t)

)
◦ hl(t)dt

)
, (3)

where the exact implementation details of ϕ and ψ are architecture dependent and are

outlined in Sec. 4.1.
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In this work, we choose Cl to be the linear curve connecting zl to xl, hence

rl(t) = zl + t(xl − zl) and hl(t) = xl − zl. (4)

In practice, the integration in Eq. 3 is numerically approximated as follows:

ml
DIX ≈ ψl

(
xl − zl

N
◦

N∑
n=1

ϕ
(
rl
( n
N

)
,gl
( n
N

)))
, (5)

where we have employed the linear interpolation from Eq. 4. In this work, we set N = 10.

The complexity of DIX is similar to IG, except for the extra computation induced by ϕ

and ψl.

Given that different network layers capture varying types of information and resolution,

we propose aggregating information from explanation maps produced for different values

of l. As such, the final explanation map is constructed as follows:

mS
DIX =

1

|S|
∑
l∈S

ml, (6)

where S is a set indicating the layer indexes participating in the aggregation. Our experi-

mentation indicates that the best-performing DIX configurations leverage a combination

of explanation maps from the last two or three layers. Thus, in Sec. 6, we report results

for S = {L− 1, L} (DIX2) and S = {L− 2, L− 1, L} (DIX3). However, for the sake of

completeness, we also present results for S = {L} (DIX1) as part of our ablation study in

Sec. 6.4.

4.1 Implementation Details

In this section, we describe concrete implementations of DIX for both CNN and ViT

architectures.

CNN Models: In the case of CNNs, the architecture of f consists of residual blocks [49]

that produces 3D tensors representing the activation maps xl. Correspondingly, zl is

a 3D tensor where each channel is determined by broadcasting the minimum value of

the respective activation map within xl. Furthermore, we set ϕ to the element-wise

multiplication.

We motivate this design choice by the fact that rl(t) represents the interpolated activation

map, highlighting regions where filters are activated and patterns are detected. Its gradient
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gauges the attribution degree of the specific class of interest to each element in the activation

map. Thus, we expect that regions exhibiting both large gradient and activation (of the

same sign) will yield effective explanations. This property is achieved through element-wise

multiplication of rl(t) by its gradient gl(t). Finally, ψl is set to the mean reduction on the

channel axis followed by a resize operation yielding a 2D explanation map that matches

the spatial dimensions of x.

ViT Models: In ViT [5], the architecture of f consists of transformer encoder blocks

producing 2D tensors (sequence of token representations). The input x is transformed to a

2D tensor as well, where the first token is the [CLS] token, and the rest of the tokens are

representations of patches in the original image.

In our implementation, we choose to interpolate on the attention matrices, which in turn

affect the output produced by the encoder block. Specifically, rl(t) is a 3D tensor that

accommodates all the attention matrices produced by the l-th encoder block. The reference

zl is set to the zero tensor (since the values in the attention matrix are in [0, 1]). ϕ

implements a variant of the Attention Rollout (AR) method [46] that we name Gradient

Rollout (GR). GR is similar to AR, with a slight modification. Instead of operating solely

on the plain attention matrices, GR initially performs an element-wise multiplication of

the attention matrices by their corresponding gradients. Following this, GR proceeds

with the original Rollout computation [46], resulting in the first row of the derived matrix

(associated with the [CLS] token). This output is further processed by truncating its initial

element and reshaping it into a 14× 14 matrix. The exact implementation of GR appears

in our GitHub repository1. Lastly, ψl remains consistent across all layers, conducting a

resize operation to align with the spatial dimensions of x.

1 It is worth noting that our experimental findings suggest comparable performance when substituting
the matrix product operation with summation within the context of the GR computation
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5 Experimental Setup
Our evaluation encompasses three distinct CNN architectures: ResNet101 (RN)[2], DenseNet201

(DN)[3], and ConvNext-Base (CN)[4], and two different architectures of ViT: ViT-Base

(ViT-B) and ViT-Small (ViT-S)[5]. The information regarding preprocessing method-

ologies and direct access to all the aforementioned models can be found in our GitHub

repository. DIX is evaluated and compared to other explanation methods through a series

of explanation, segmentation, and sanity tests.

5.1 Explanation Metrics

It is difficult to quantify the quality of explainability methods, and there is no single

agreed-upon metric. The explanations metrics in this study aim to assess how well the

explanations align with hypothetical changes (counterfactuals) to the input. Essentially,

it’s about asking “what if” questions regarding the input and determining whether the

explanations provided are consistent with those hypothetical scenarios. To comprehensively

evaluate our method, we carefully followed several prominent evaluation protocols.

Perturbation Tests We followed the protocol from [13], which is the current state-of-

the-art in explaining ViTs, and report the Negative Perturbation AUC (NEG) and the

Positive Perturbation AUC (POS). NEG is a counterfactual test that entails a gradual

blackout of the pixels in the original image in increasing order according to the explanation

map while searching to see when the model’s top predicted class changes. By masking pixels

in increasing order, we expect to remove the least relevant pixels first, and the model’s

top predicted class is expected to remain unchanged for as long as possible. Results are

measured in terms of the Area Under the Curve (AUC), and higher values are considered

better. Accordingly, the POS test entails masking the pixels in decreasing order with

the expectation that the model’s top predicted class will change quickly, hence in POS,

lower values are better. In addition, we follow [50] and report the Insertion AUC (INS)

and Deletion AUC (DEL) perturbation tests. INS and DEL entail a gradual blackout in

increasing or decreasing order, similar to NEG and POS, respectively. However instead

of tracking the point at which the top predicted class changes, in INS and DEL the

AUC is computed with respect to the predicted probability of the top class. By masking

pixels according to increasing/decreasing order of importance, we expect that the predicted

probability of the top class will decrease slowly/quickly, respectively. Hence, for INS higher

values are better and for DEL lower values are better.
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ADP and PIC Tests We follow [20] and report the Average Drop Percentage (ADP)

and the Percentage Increase in Confidence (PIC) tests. Both tests relate to the change in

the probability of the predicted class after applying the mask to the original image. A good

explanation map is expected to highlight the most significant regions for decision-making.

Hence, applying such a mask can be seen as a removal of the “background”. The ADP

test measures the average percentage of model confidence drop after applying the mask.

A good mask is expected to maintain the most relevant areas and minimize confidence

drop, hence for ADP lower values are considered better. However, we note that ADP

is a problematic metric since a naive all-ones mask yields an optimal ADP value of 0.

Nevertheless, we included it for the sake of compatibility with previous works [20]. In some

instances, the model’s confidence increases after applying a good explanation mask that

removes a confusing background. Hence, PIC is a binary test that measures the percentage

of instances in which the model’s confidence increased after applying the mask on the

original input. For PIC higher values are considered better.

AIC and SIC Tests We follow [51] and report the Accuracy Information Curve (AIC)

and the Softmax Information Curve (SIC) tests. In these tests, we start with a completely

blurred image and gradually sharpen the image areas that are deemed important by a

given explanation method. Gradually sharpening the image areas increases the information

content of the image. We then compare the explanation methods by measuring the

approximate image entropy (e.g., compressed image size) and the model’s performance

(e.g., model accuracy). The AIC metric measures the accuracy of a model as a function of

the amount of information provided to the explanation method. AIC is defined as the AUC

of the accuracy vs. information plot. The SIC metric measures the information content of

the output of a softmax classifier as a function of the amount of information provided to

the explanation method. SIC is defined as the AUC of the entropy vs. information plot.

The entropy of the softmax output is a measure of the uncertainty or randomness of the

classifier’s predictions. For both AIC and SIC, the information provided to the method

is quantified by the fraction of input features that are considered during the explanation

process.

5.2 Segmentation Metrics

While possessing a superior segmentation capability does not necessarily imply a superior

explanatory aptitude, we undertake this evaluation task for the sake of completeness in

our comparison with previous works assessing this aspect [13, 26, 21, 52]. Segmentation

accuracy is assessed according to the following metrics: Pixel Accuracy (PA), mean-
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intersection-over-union (mIoU), mean-average-precision (mAP), and the mean-F1 score

(mF1) [13].

5.3 Datasets

Explanation maps are produced for the ImageNet [53] ILSVRC 2012 (IN) validation set,

consisting of 50K images from 1000 classes. We follow the same setup from [13], where

for each image, an explanation map is produced w.r.t. the class predicted by the model.

Segmentation tests are conducted on three datasets: (1) ImageNet-Segmentation [54] (IN-

Seg): This is a subset of ImageNet validation set consisting of 4,276 images from 445 classes

for which annotated segmentations are available. (2) Microsoft Common Objects in COntext

2017 [55] (COCO): This is a validation set that contains 5,000 annotated segmentation

images from 80 different classes. Some images consist of multi-label annotations (multiple

annotated objects). In our evaluation, all annotated objects in the image are considered

as the ground-truth. (3) PASCAL Visual Object Classes 2012 [56] (VOC): This is a

validation set that contains annotated segmentations for 1,449 images from 20 classes.

5.4 Evaluated Methods

Our evaluation encompasses a comprehensive assessment of various explanation methods,

including gradient-based approaches, path-integration techniques, as well as gradient-free

methods.

For CNN models, the following explanation techniques are considered: Integrated Gra-

dients (IG) [23], Guided IG (GIG) [44], Blur IG (BIG) [43], Ablation-CAM (AC) [39],

Layer-CAM (LC) [21], LIFT-CAM (LIFT) [40], Grad-CAM (GC) [12], Grad-CAM++

(GC++) [20], X-Grad-CAM (XGC) [37], and FullGrad (FG) [35].

For ViT models, we consider two state-of-the-art methods: Transformer Attribution (T-

Attr) [13] and Generic Attention Explainability (GAE) [26]. Both methods were shown to

outperform other strong baselines such as partial LRP [48], and GC [26] for transformers.

A detailed description of all explanation methods is provided in our GitHub repository.

Lastly, our universal DIX method is evaluated on both CNNs and ViTs, where we consider

two versions: DIX2 and DIX3 following the description in Sec. 4. In what follows, we

briefly describe the evaluated methods.

• Grad-CAM (GC) [12] integrates the activation maps from the last convolutional

layer in the CNN by employing global average pooling on the gradients and utilizing

them as weights for the feature map channels.
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• Grad-CAM++ (GC++) [20] is an advanced variant of Grad-CAM that utilizes a

weighted average of the pixel-wise gradients to generate the activation map weights.

• XGrad-CAM (XGC) [37] calculates activation coefficients using two axioms. Al-

though the authors derived coefficients that satisfy these axioms as closely as possible,

their derivation is only demonstrated for ReLU-CNNs.

• Integrated Gradients (IG) [23] integrates over the interpolated image gradients.

• Blur IG (BIG) [43] is concerned with the introduction of information using a baseline

and opts to use a path that progressively removes Gaussian blur from the attributed

image.

• Guided IG (GIG) [44] improves upon Integrated Gradients by introducing the idea

of an adaptive path method. By calculating integration along a different path than

Integrated Gradients, high gradient areas are avoided which often leads to an overall

reduction in irrelevant attributions.

• LIFT-CAM (LIFT) [40] employs the DeepLIFT [41] technique to estimate the

activation maps SHAP values [42] and then combine them with the activation maps

to produce the explanation map.

• The FullGrad (FG) method [35] provides a complete modeling approach of the

gradient by also taking the gradient with respect to the bias term, and not just with

respect to the input.

• LayerCAM (LC) [21] utilizes both gradients and activations, but instead of using the

Grad-CAM approach and applying pooling on the gradients, it treats the gradients

as weights for the activations by assigning each location in the activations with an

appropriate gradient location. The explanation map is computed with a location-wise

product of the positive gradients (after ReLU) with the activations, and the map is

then summed w.r.t. the activation channel, with a ReLU applied to the result.

• Ablation-CAM (AC) [39] is an approach that only uses the channels of the activations.

It takes each activation channel, masks it from the final map by zeroing out all

locations of this channel in the explanation map produced by all the channels,

computes the score on the masked explanation map (the map without the specific
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channel), and this score is used to assign an importance weight for every channel. At

last, a weighted sum of the channels produces the final explanation map.

• The Transformer attribution (T-ATTR) [13] method computes the importance

of each input token by analyzing the attention weights assigned to it during self-

attention. Specifically, it computes the relevance score of each token as the sum

of its attention weights across all layers of the Transformer. The intuition behind

this approach is that tokens that receive more attention across different layers are

likely more important for the final prediction. To obtain a more interpretable and

localized visualization of the importance scores, the authors also propose a variant

of the method called Layer-wise Relevance Propagation (LRP), which recursively

distributes the relevance scores back to the input tokens based on their contribution

to the intermediate representations.

• Generic Attention Explainability (GAE) [26] is a generalization of T-Attr for

explaining Bi-Modal transformers.

5.5 Sanity Tests for Explanation Methods

To comprehensively assess the robustness and credibility of DIX, we conducted the parameter

randomization and data randomization sanity tests as outlined in [27]. For these evaluations,

we employed DIX3, along with the VGG-19[57] model and the IN dataset.

5.5.1 Parameter Randomization Test

The parameter randomization test compares the explanation maps produced by the ex-

planation method based on two setups of the same model architecture: (1) Trained - the

model is trained on the dataset (e.g., a pretrained VGG-19 model that was trained on

ImageNet, and (2) Random - the same model architecture, with random weights (e.g., a

randomly initialized VGG-19 model). For a method that relies on the actual model to be

explained, we anticipate significant differences in the explanation maps produced for the

trained model and those produced for the random model. Conversely, if the explanation

maps are similar, we conclude that the explanation method is insensitive to the model’s

parameters, and thus may not be useful for explaining and debugging the model.

Given a trained model, we consider two types of parameter randomization tests: The first

test randomly re-initializes all weights of the model in a cascading fashion (layer after

layer). The second test independently randomizes one layer at a time, while keeping all
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other layers fixed. In both cases, we compare the resulting explanations obtained by using

the model with random weights to those derived from the original weights of the model.

Cascading Randomization The cascading randomization method involves the random-

ization of a model’s weights, starting from the top layer and successively moving down to

the bottom layer. This process leads to the destruction of the learned weights from the top

to the bottom layers.

Independent Randomization We further consider another version of the model’s

parameters randomization test, in which a layer-by-layer randomization is employed, one

layer at a time. In this test, we aim to isolate the influence of the randomization of each

layer, hence randomization is applied to one layer’s weights at a time, while all other

layers’ weights are kept identical to their values in the original model. This randomization

methodology enables comprehensive evaluation of the sensitivity of the explanation maps

w.r.t. each of the model’s layers.

5.5.2 Data Randomization Test

The data randomization sanity test is a method used to assess whether an explanation

method is sensitive to the labeling of the data used for training the model. This is done by

comparing the explanation maps produced by the explanation method for two models with

identical architecture that were trained on two different datasets: one with the original

labels and another with randomly permuted labels. If the explanation method is sensitive

to the labeling of the dataset, we would expect the produced explanation maps to differ

significantly between the two cases. However, if the method is insensitive to the permuted

labels, it indicates that it does not depend on the relationship between instances and labels

that exists in the original data. To conduct the data randomization test, we permute the

training labels in the dataset and train the model to achieve a training set accuracy greater

than 95%. Note that the resulting model’s test accuracy is never better than randomly

guessing a label. We then compute explanations on the same test inputs for both the

model trained on true labels and the model trained on randomly permuted labels.
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6 Results
6.1 Explanation Tests

Tables 1 and 2 provide a comprehensive explanation tests for CNN and ViT models, respec-

tively. We report results for all combinations of datasets, models, methods, and metrics.

Our analysis demonstrates that DIX consistently surpasses all baseline methods across

a spectrum of metrics and architectural configurations. On CNN-based DIX variations

(Tab. 1), DIX3 outclasses DIX2 in terms of NEG, INS, SIC, and AIC metrics for both RN

and DN backbones, while demonstrating dominance across all metrics for the CN backbone.

Regarding the ViT-based DIX variants (Tab. 2), DIX3 outperforms DIX2 across all metrics

(with the exception of PIC on ViT-B, and PIC and ADP on ViT-S).These trends showcase

the advantage of aggregating information from more layers. In the context of CNNs, the

second-best performing methods are GC and GC++, which leverage both activation and

gradients to outperform other approaches across most evaluation metrics. Additionally, we

note that path integration techniques (IG, BIG, and GIG) demonstrate competitive results

in terms of POS and DEL metrics, while displaying comparatively weaker performance in

other aspects. This disparity may be attributed to the grainy output maps generated by

path integration techniques, as evidenced in Fig.3 for IG explanation maps on CNNs. These

methods ignore the activations and integrate on the image domain only, hence missing

some of the key features. This is particularly evident in the significant contrast between

their strong performance on POS and the corresponding weaker performance on NEG.

As path integration methods produce sparse maps that can negatively affect performance

in certain metrics, , we extend our analysis to encompass the SIC and AIC metrics as

well [51]. These metrics were originally employed to assess GIG[44] and BIG[43]. Yet, the

incorporation of SIC and AIC did not alter the trend of the results. This suggests that

DIX is highly effective for generating high-quality explanation maps. Finally, we present

an ablation study in Section 6.4, aimed at comparing diverse versions and alternatives of

DIX. This analysis serves to emphasize the effectiveness of the integration process and the

strategic utilization of information from multiple layers within the DIX methodology.

6.2 Segmentation Tests

Tables 3 and 4 present segmentation tests results on CNN and ViT models, respectively.

The results are reported for all combinations of datasets, models, explanation methods, and

segmentation metrics. In these experiments, only the 5 best performing CNN explanation
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Table 1: Explanation tests results on the IN dataset (CNN models): For POS, DEL and
ADP, lower is better. For NEG, INS, PIC, SIC and AIC, higher is better. See Sec. 6.1 for
details.

GC GC++ LIFT AC IG GIG BIG FG LC XGC DIX2 DIX3

RN

NEG 56.41 55.20 55.39 54.98 45.66 43.97 42.25 54.81 53.52 53.46 56.28 57.13
POS 17.82 18.01 17.53 19.38 17.24 17.68 17.44 18.06 17.92 21.02 15.69 17.11
INS 48.14 47.56 45.39 47.05 39.87 37.92 36.04 42.68 46.11 43.26 48.09 48.91
DEL 13.97 14.17 15.32 14.23 13.49 14.18 13.95 14.64 14.31 14.98 12.84 13.36
ADP 17.87 16.91 18.03 16.18 37.52 35.28 40.85 21.06 24.34 17.02 15.68 16.02
PIC 36.69 36.53 35.95 35.52 19.94 18.72 24.53 31.59 35.43 36.18 40.21 37.29
SIC 76.91 76.44 76.73 73.36 54.67 55.04 56.98 75.35 73.93 72.64 77.61 78.12
AIC 74.36 71.97 72.76 70.35 51.92 53.38 53.36 71.49 65.77 69.85 76.09 76.34

CN

NEG 52.86 53.82 53.98 53.68 45.24 41.43 40.72 52.06 54.12 52.13 54.40 55.23
POS 17.52 17.85 18.23 18.19 17.42 18.03 18.14 18.26 17.58 20.83 16.96 16.51
INS 45.65 45.19 43.86 49.18 37.22 32.99 31.02 42.01 44.14 42.07 49.53 49.86
DEL 13.43 14.17 15.18 14.73 12.36 13.08 13.29 14.21 13.64 14.78 11.95 11.74
ADP 22.46 22.35 29.13 24.38 36.98 35.79 41.73 30.75 37.62 25.68 22.24 22.19
PIC 23.16 24.42 22.34 24.59 17.65 13.12 20.69 22.13 22.17 23.26 28.31 28.47
SIC 65.93 67.94 54.75 63.95 53.36 58.35 57.27 62.84 69.11 59.12 69.83 70.18
AIC 75.64 75.52 57.06 71.53 51.68 55.82 53.82 67.15 75.41 62.38 76.44 77.29

DN

NEG 57.40 57.16 58.01 56.63 40.74 37.31 36.67 56.79 56.96 55.74 57.31 58.25
POS 17.75 17.81 18.87 18.67 17.31 17.46 17.38 17.84 17.62 18.67 16.59 17.14
INS 51.09 50.89 50.63 50.41 37.58 33.31 31.32 50.44 50.60 49.62 50.97 51.58
DEL 13.61 13.63 13.29 15.31 13.26 13.27 13.54 14.34 13.85 14.75 12.73 12.98
ADP 17.46 17.01 19.45 17.13 35.61 34.51 40.04 20.21 24.23 19.59 16.29 16.58
PIC 34.68 35.21 34.13 31.22 22.35 16.62 26.18 31.05 33.81 30.39 38.91 37.78
SIC 75.62 74.75 74.72 73.94 54.59 58.55 57.66 72.93 74.34 73.94 77.24 77.32
AIC 74.22 71.82 72.65 70.21 54.74 54.56 56.08 70.63 71.82 70.12 75.98 76.39

methods from Tab. 1 are considered. Once again, it becomes evident that DIX consistently

delivers the most favorable segmentation outcomes for both CNN and ViT models. This

outcome can be rationalized by the localized and precise maps that DIX generates.

6.3 Qualitative Evaluation

Figure 1 presents a qualitative comparison of the explanation maps obtained by the top-

performing CNN explanation methods on a large set of examples that are randomly drawn

from multiple classes from the IN dataset. Arguably, DIX (DIX3) produces the most

accurate explanation maps in terms of class discrimination and localization. These results

correlate well with the trends from Tabs. 1 and 3. We observe that in the case of class

‘accordion, piano accordion, and squeeze box’, DIX focuses mostly on the correct item,

while the gradient-free methods focus mostly on other parts of the image, exposing their

class-agnostic behavior. Moreover, a similar trend is observed with the ’sturgeon’ class, in

which DIX is the only one to focus on the relevant class. Figure 2 presents a qualitative

comparison of the explanation maps obtained by explanation methods for ViT. Once again,
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Table 2: Explanation tests results on the IN dataset (ViT models): For POS, DEL and
ADP, lower is better. For NEG, INS, PIC, SIC and AIC, higher is better. See Sec. 6.1 for
details.

T-Attr GAE DIX2 DIX3

ViT-B

NEG 54.16 54.61 56.43 56.94
POS 17.03 17.32 15.10 14.85
INS 48.58 48.96 49.51 50.59
DEL 14.20 14.37 12.62 12.16
ADP 54.02 37.84 35.93 35.58
PIC 13.37 23.65 28.21 27.41
SIC 68.59 68.35 68.94 69.11
AIC 61.34 57.92 62.42 65.03

ViT-S

NEG 53.29 52.81 55.98 56.13
POS 14.16 14.75 13.09 12.32
INS 45.72 45.21 46.62 47.36
DEL 11.28 11.92 11.18 10.56
ADP 51.94 36.98 36.31 36.57
PIC 13.67 8.68 18.39 18.25
SIC 69.46 70.19 70.92 71.55
AIC 63.86 64.49 65.17 65.58

we see that DIX produces the most accurate and focused explanation maps.

6.4 Ablation Study

In this work we present and evaluate DIX2 and DIX3. In this section, we justify these

choices via an ablation study. To this end, we set n = 10, and consider three alternatives:

(1) DIX1 - we use the last layer as the only layer to interpolate i.e., S = {L}. (2)

DIX2-MUL - mL
DIX and mL−1

DIX are being element-wise multiplied to produce the final

explanation map. (3) DIX3-GRADS - we use the plain gradients without explicitly

incorporating the information from the activation or attention maps.

Table 5 reports the results for the RN and ViT-B models on the IN dataset. For the sake

of completeness, we further include the results for IG, DIX2, and DIX3 (taken from Tabs. 1

and 2). First, we can see the superior performance of DIX2 and DIX3 across all metrics and

models. We further observe that both DIX1 and DIX2-MUL fall short in comparison to

DIX2. This observation underscores the inherent necessity of incorporating information from

additional layers and shows the advantages of aggregation via summation. When aggregating

the explanation maps of different layers, the objective is to effectively incorporate data

from each map to capture a richer spectrum of insights and class-specific signals. Notably,

the multiplication operator exhibits a behavior akin to intersection, where both high pixel
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Figure 1: CNN Qualitative Results: Explanation maps produced using RN w.r.t. the
classes (top to bottom): ‘tripod’, ‘vulture’, ‘accordion, squeeze box’, ‘garden spider, Aranea
diademata’, ‘sturgeon’, ‘American Staffordshire terrier, Staffordshire terrier, American pit
bull terrier, pit bull terrier’, ‘eft’, ‘sea snake’, ‘trombone’ and ‘violin, fiddle’.
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Figure 2: ViT Qualitative Results: Explanation maps produced using ViT-B w.r.t. the
classes (top to bottom): ‘sea lion’, ‘cougar, puma, catamount, mountain lion, painter,
panther, Felis concolor’, ‘Ibizan hound, Ibizan Podenco’, ‘garden spider, Aranea diademata’,
‘bulbul’, ‘tench, Tinca tinca’, ‘sea snake’, ‘night snake, Hypsiglena torquata’ and ‘European
fire salamander, Salamandra salamandra’.
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Table 3: Segmentation tests on three datasets (CNN models). For all metrics, higher is
better. See Sec. 6.2 for details.

GC GC++ LIFT AC DIX2 DIX3

IN-SEG

CN

PA 77.01 77.54 63.77 77.04 78.32 78.93
mAP 81.01 85.63 69.40 86.93 87.13 87.34
mIoU 56.58 58.35 53.81 58.42 58.64 58.79
mF1 36.88 38.26 35.91 41.29 42.51 42.95

RN

PA 71.93 71.96 71.68 70.36 72.43 73.17
mAP 84.21 84.23 83.79 81.14 84.58 85.37
mIoU 53.06 53.29 52.17 52.91 53.93 54.16
mF1 42.51 42.68 41.95 42.08 42.75 43.18

DN

PA 73.00 73.21 72.87 72.44 73.58 73.90
mAP 85.04 85.53 84.82 84.62 85.57 85.98
mIoU 54.18 54.57 54.11 54.89 55.42 56.03
mF1 41.74 42.58 41.61 43.51 43.71 43.79

COCO

CN

PA 68.75 66.49 60.37 64.10 68.87 69.38
mAP 75.02 75.21 67.98 76.09 76.94 77.43
mIoU 43.46 44.01 37.08 44.27 44.89 45.06
mF1 28.96 29.85 26.92 30.81 31.28 31.99

RN

PA 64.17 64.39 64.02 63.90 64.75 64.94
mAP 74.19 74.27 73.78 72.80 74.38 74.91
mIoU 42.37 43.25 42.59 42.88 43.54 43.87
mF1 31.64 32.82 31.77 32.41 33.39 33.71

DN

PA 63.50 64.06 63.25 64.51 64.98 65.37
mAP 72.61 73.07 72.15 73.85 74.02 74.67
mIoU 43.02 43.75 42.85 44.16 44.75 44.82
mF1 31.04 32.31 30.83 33.93 34.14 34.59

VOC

CN

PA 72.54 72.09 63.32 69.83 72.68 72.81
mAP 77.27 79.47 68.83 80.45 81.35 81.79
mIoU 50.28 50.63 48.86 49.76 51.12 51.29
mF1 35.24 35.67 33.26 34.51 35.92 36.57

RN

PA 68.74 69.01 68.61 68.00 69.38 69.74
mAP 79.68 79.96 79.41 78.02 81.02 81.49
mIoU 49.44 49.91 49.15 49.32 50.43 51.58
mF1 33.08 33.56 32.69 32.74 34.28 34.68

DN

PA 68.43 68.78 68.24 68.36 68.89 68.95
mAP 78.68 79.06 78.52 78.62 79.43 79.66
mIoU 49.29 49.68 49.03 49.11 49.91 50.24
mF1 32.92 33.83 32.28 32.56 34.11 34.26

values are required for proper appearance in the final map. This characteristic, as depicted

in Figure 3, contrasts with the intended outcome. Furthermore, the superiority of DIX3

over DIX3-GRADS underscores the benefit from exploiting intermediate representation

information alongside its corresponding gradients, which contributes to the generation of
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Table 4: Segmentation tests on three datasets (ViT models). For all metrics, higher is
better. See Sec. 6.2 for details.

T-Attr GAE DIX2 DIX3

IN-Seg

ViT-B

PA 79.70 76.30 79.91 81.02
mAP 86.03 85.28 87.12 87.45
mIoU 61.95 58.34 62.53 63.47
mF1 40.17 41.85 44.94 45.66

ViT-S

PA 80.86 76.66 81.54 81.83
mAP 86.13 84.23 86.48 86.96
mIoU 63.61 57.70 64.13 64.67
mF1 43.60 40.72 46.34 46.82

COCO

ViT-B

PA 68.89 67.10 68.95 69.42
mAP 78.57 78.72 80.63 81.22
mIoU 46.62 46.51 47.75 47.79
mF1 26.28 31.70 33.87 34.12

ViT-S

PA 69.90 67.95 70.41 70.64
mAP 79.28 78.65 80.55 80.89
mIoU 48.62 46.52 50.81 51.22
mF1 30.88 30.96 35.61 35.74

VOC

ViT-B

PA 73.70 71.32 75.33 75.84
mAP 81.08 80.88 81.75 81.89
mIoU 53.09 51.82 53.62 53.71
mF1 31.50 35.72 36.38 36.59

ViT-S

PA 74.96 71.85 76.35 76.56
mAP 81.76 80.60 82.74 82.91
mIoU 55.37 51.55 55.83 55.98
mF1 36.03 34.95 39.27 39.41

localized, accurate and class discriminative explanation maps. The results presented in

Table 5 highlight a distinct advantage for IG and DIX2-MUL with respect to the POS

and DEL metrics when compared to DIX3-GRADS and DIX1, both of which generate less

concentrated explanation maps. This is due to the fact that the deletion of the most relevant

pixels results in fewer pixels being removed, and the mask is more focused on a subset

of pixels. DIX1, for instance, produces less focused explanation maps that may highlight

irrelevant areas. Such coarse highlighting leads to a slower decrease in the prediction score

during the deletion process. On the contrary, DIX1 and DIX3-GRADS exhibit superior

performance in relation to the NEG and INS metrics. This divergence in performance can

be attributed to the expansive nature of their explanation map, resulting in numerous pixels

that require removal. In the context of the NEG metric, this characteristic contributes to

a slow decrease in the prediction score during the deletion process and, subsequently, a

larger area under the curve (AUC).
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Table 5: Ablation study results for various DIX configurations on the IN dataset. See
Sec. 6.4 for details.

DIX1 IG DIX2 DIX2-MUL DIX3-GRADS DIX3

RN

NEG 55.47 45.66 56.28 55.24 56.05 57.13
POS 17.47 17.24 15.69 17.28 18.13 17.11
INS 47.53 39.87 48.09 47.13 47.88 48.91
DEL 13.72 13.49 12.84 13.59 14.52 13.36
ADP 17.21 37.52 15.68 21.38 17.43 16.02
PIC 36.54 19.94 40.21 28.46 37.10 37.29
SIC 76.85 54.67 77.61 75.17 76.13 78.12
AIC 75.48 51.92 76.09 74.21 74.88 76.34

ViT-B

NEG 55.98 40.94 56.43 55.62 55.78 56.94
POS 15.49 22.43 15.10 15.37 15.81 14.85
INS 49.38 35.07 49.51 49.27 49.33 50.59
DEL 13.06 17.90 12.62 12.85 13.12 12.16
ADP 36.96 41.35 35.93 38.62 36.08 35.58
PIC 26.94 16.89 28.21 26.39 27.13 27.41
SIC 67.79 58.91 68.94 68.43 68.32 69.11
AIC 61.56 54.93 62.42 62.18 61.94 65.03

6.5 Sanity Tests

Unless stated otherwise, the experiments utilize the ImageNet ILSVRC 2012 validation

set [53] with the VGG-19 [57] model and DIX3. In what follows, we show that DIX passes

all sanity tests success- fully, thereby furnishing additional substantiation for the authen-

ticity of DIX as a robust machinery for generating accurate expla- nation maps.

6.5.1 Parameter Randomization Test

Cascading Randomization Figure 4 presents the Spearman correlation (averaged on

50K examples) between the original explanation map obtained by DIX and the original

(pretrained) VGG-19 model and the explanation map obtained by DIX and each of the

cascade randomization versions of the original model. The markers on the x-axis are

between ’0’ and ’16’, where x = k means that the weights of the last k layers of the model

are randomized. At x = 0 there is no randomization, hence the correlation with the original

model is perfect. Starting from x = 1 (marked by the horizontal dashed line) and up to

x = 16, the graph depicts a progressive cascade randomization of the original model. We

observe that as more layers’ weights are randomized, the correlation with the explanation

map of the original model significantly deteriorates. This behavior showcases the sensitivity

of DIX to the model’s parameters - an expected and desired property for any explanation

method [27].
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Figure 3: Ablation study results. Explanation maps produced using RN (rows 1,2) and
ViT-B (rows 3,4) w.r.t. the classes (top to bottom): ‘African hunting dog, hyena dog, Cape
hunting dog, Lycaon pictus’, ’Kerry blue terrier’, ’vulture’, ’alp’.

Figure 5 displays a representative example of explanation maps (bottom) and their overlay

to the original image (top), illustrating the cascading randomization process. The first

column presents explanation maps produced by DIX and the original model, while the

rest of the columns present explanation maps produced by DIX and cascading randomized

models, where the number i above each column indicates that the explanation map is

produced by a model in which the weights of the last i layers were randomized. It is evident

that the quality of produced explanation maps significantly degrades as more and more

layers are set with random weights.

Independent Randomization Figure 6 presents results for the independent randomiza-

tion tests. At x = 0 no randomization was applied and the correlation to the original model

is perfect. For x = i (i > 0) the graph indicates the correlation of the original model with

a model in which only the weights of the i-th penultimate layer were randomized while the

weights of all other layers were kept untouched. We observe that the correlation values are

low across all layers which indicates DIX’s sensitivity to weight randomization in each layer

separately. This property is a desired property for an explanation method, as it indicates

the method’s sensitivity to each of the model’s layers, independently. Finally, Fig. 7

26



Figure 4: Cascading Randomization: The VGG-19 model is subjected to successive
weights randomization, beginning from the last model’s layers on the ImageNet dataset.
The presented graph depicts the Spearman rank correlation (averaged on 50K examples)
between the explanation produced by DIX using the original and randomized model’s
weights. The x-axis corresponds to the number of layers being randomized, starting from
the output layer. The dashed line indicates the point where the successive randomization
of the network commences, which is at the top layer. The first dot (x=0) corresponds to no
randomization (the original model is used), hence the correlation between the explanation
maps is perfect. See Sec. 6.5.1 for further details.

presents a qualitative example in the same fashion as Fig. 5, this time for the independent

randomization test. We observe that the quality of all explanation maps produced by a

randomized version of the model differs significantly from the original explanation map.

We conclude that DIX successfully passes both types of parameter randomization tests.

6.5.2 Data Randomization Test

Figure 8 presents a box plot computed for the Spearman correlation values obtained for

paired explanation maps (50K examples): one produced using the original model that

is trained with the ground truth, and another produced by the model trained with the

permuted labels. We can see that the correlation values are very low indicating DIX’s

sensitivity to the labeling of the dataset. Hence, we conclude that DIX successfully passes

the data randomization test.

Finally, Figure 9 presents additional qualitative examples for both tests, this time with

different models. The first row shows two explanation maps produced by DIX w.r.t. the

“tabby cat” class. We see that when DIX utilizes an ImageNet pretrained ResNet50 model,
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Figure 5: Cascading Randomization on VGG-19 (ImageNet): The figure presents
the original explanations (first column) for ‘electric guitar’. Progression from left to right
depicts the gradual randomization of network weights up to the layer number depicted at
the top of the column (starting from the last layer). See Sec. 6.5.1 for further details.

Figure 6: Independent Randomization: The randomization process is carried out
independently for each layer of the model, while the remaining weights are retained at their
pretrained values. The y-axis of the presented graph represents the rank correlation between
the original and randomized explanations, with each point on the x-axis corresponding to
a specific layer of the model. The dashed line marks the point where the randomization of
the network layers commences, which is at the top layer.

it produces a focused explanation map (around the cat), but when applying DIX to the

same model with random weights, it fails to detect the cat in the image. The second row

shows that DIX produces an adequate explanation map when the model (LeNet-5 [58])

is trained with the MNIST ground truth labels but fails when the model is trained with

random labels.
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Figure 7: Independent Randomization on VGG-19 (ImageNet): Similar to Fig. 5,
however, this time, each specific layer is randomized independently, while the rest of the
weights are kept at their pretrained values.

Figure 8: Data Randomization Test: Spearman rank correlation box plot for DIX with
the VGG-19 model.
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Figure 9: Sanity checks. Rows 1 and 2 present DIX results for the parameter randomization
and data randomization tests w.r.t. the “tabby cat” (ImageNet) and “one” (MNIST)
classes, using ResNet50 and LeNet-5, respectively. Left to right: Row 1: Original image,
explanation map produced by DIX and the trained model, explanation map produced
by DIX and untrained model (model’s weights are randomly initialized without further
training). Row 2: Original image, explanation map produced by DIX and a model trained
with the ground truth labels, explanation map produced by DIX and a model trained with
random labels.
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7 Conclusion
We presented the Deep Integrated Explanations (DIX) method for producing explanations

for vision models. The uniqueness of DIX lies in its versatility together with the accu-

mulation of maps originating from multiple layers, encompassing interpolated network

representations along with their corresponding gradients. We demonstrated the appli-

cability of DIX for explaining CNN and ViT models, where it is shown to outperform

state-of-the-art explanation methods across multiple tasks, datasets, network architectures,

and metrics. In order to substantiate the efficacy of the specific configuration choices

inherent to DIX, an ablation study was systematically conducted. The benefits of employing

multiple layers in the interpolation process, the aggregation of distinct layer maps through

summation, and the combination of the representation term with its corresponding gradient

in the generation of the final explanation map were prominently observed. Finally, we

validated DIX as a machinery for generating faithful explanation maps via an extensive set

of sanity tests.

In the future, we plan to investigate novel methodologies that build upon the foundation of

DIX, incorporating a more complex integration approach that encompasses the features and

gradients of the models, to produce a better explanation. Furthermore, we plan to explore

further architectures and application domains such as NLP and recommender systems.
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