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Abstract

Boolean Functional Synthesis (BFnS) is the problem of synthesizing a Boolean
function from a Boolean specification that describes a relation between in-
put and output variables. Due to the many applications of BFnS, such as
in circuit design, QBF solving, and reactive synthesis, efforts are continu-
ously made to explore and better study BFnS. In this work we deepen our
understanding of BFnS by analyzing underlying graph structures of BFnS
instances. This is motivated by a chain of works on SAT instances, where
analysis of graph features, such as graph modularity, is used to explore the
performance of SAT solvers on industrial SAT instances. We first show that
unlike instances that are random, industrial BFnS instances admit high mod-
ularity, even more than is common in SAT. Observing that, we construct a
novel BFnS random instance generator with controlled modularity, which we
use to study the effect of modularity on performance of state-of-the-art BFnS
solvers. Finally we white-box these solvers to determine how the structure
of generated instances changes iteratively through the solving process. Our
findings indicate that instances modularity has a direct effect on the various
solvers performance and their behavior.
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Chapter 1

Introduction

Boolean Functional Synthesis (BFnS) is the problem of extracting a boolean
function from a given Boolean specification that describes a relation be-
tween input and output variables. Due to its clean formulation, BFnS has
found applications in many areas, among which circuit design [24], QBF
solving [30], reactive synthesis [35], and automated program synthesis [33].
As such, study of BFnS has evolved over the last decade and various re-
search groups have suggested different approaches and tools to battle BFnS
(e.g. [2, 19, 22, 23, 34]). Even so, BFnS still remains a very hard problem to
solve at a large scale, which is not surprising as it is a computational com-
plexity challenging problem, specifically ΠP

2 -hard. Moreover, it is very likely
that not all BFnS instances even admit a polynomial size solution [1].
One of the means to battle BFnS is to reason on the structure of the given
specification. There are already a few stratagems for solving BFnS such as
factorization [23] and sequential decomposition [14] that utilize decomposi-
tion of the specification into clauses. A question to ask, however, is whether
there is a more inherent structure of BFnS specifications that can be related
to solutions run-time by the various BFnS solvers. This challenge is already
met for the problem of satisfiability (SAT) that also consists of input as a
Boolean formula. Indeed, discerning structure from a given Boolean formula
has been explored in SAT in recent years [6]. Specifically, it was shown
that unlike random Boolean formulas, real-world originated Boolean formu-
las, sometimes called industrial benchmarks, admit certain graph properties
when represented as graphs in various ways. This resulted in a whole line of
research that aims to utilize these properties to understand SAT problems in
a deeper way [5–7, 26].
In this work we elevate the study of structure analysis of SAT to BFnS, thus

1



CHAPTER .1 INTRODUCTION 2

making the first step in structure analysis of BFnS. Our research questions
are whether BFnS real-world instances have designated graph properties, dis-
tinguished from random BFnS instances, and whether such graph properties,
if exist, affect the behavior of BFnS solvers. An affirmative answer to these
questions can open the door to a more thorough study that seeks to improve
BFnS tools performance by exploiting these graph properties.
To answer these questions, we chose graph representations of Boolean for-
mulas that are natural for BFnS. Specifically, as BFnS is related to SAT, we
examine the Variable Incidence Graph (VIG) and Clause to Variable Inci-
dence Graph (CVIG) representations that are used for SAT structure analysis
in [5–7]. In addition, we examine the Input Consensus Graph (ICG) repre-
sentation that is used throughout the process of a BFnS solver called Back
and Forth (BnF) [14]. The graph property that we choose to analyze in these
graph representations, is graph modularity that is related to the graph com-
munity structure, and is used in SAT structure analysis. For benchmarks
we use both random generated BFnS instances and so-called real-world or
industrial BFnS instances, that originate from real problems and thus have
some semantic interpretations.
We first show that unlike random instances, industrial instances admit very
high graph modularity for the VIG representations. Typically, graph mod-
ularity ranges within the interval [0,1] and is defined high within [0.3,0.7],
where for SAT benchmarks the average is 0.15 for random instances and just
below 0.7 for industrial SAT instances [6]. For BFnS industrial instances
the average modularity is 0.75, where for nearly all benchmarks is above 0.5
and for some it is as high as 0.9. The reason for that could be that in real
world BFnS problems - some variables tend to be much more popular than
others. These findings give a positive answer to our first research question
and already serve as a promising start and encourage us to continue our ex-
ploration. While modularity distinctions were also noted for the other graph
representations, we decided from this point to focus more on the popular
VIG graph and its graph modularity (henceforth called VIG modularity).
Our next step is find how the VIG modularity of BFnS instances affects
solvers performance. To meet this challenge, however, we need to find bench-
marks with spanned VIG modularity over the [0,1] range. Note that we
cannot use real-world benchmarks as we already showed that their VIG
modularity is mostly focused in a small interval. As such, we construct a
random BFnS instance generator called ModQBF with which we can con-
trol the VIG modularity of the generated instances. Our generator, based on
a similar random SAT instance generator [20], can specifically produce BFnS
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benchmarks of VIG modularity similar to those of industrial instances. Thus
as a second use, ModQBF can produce random instances that are one-step
closer to real world ones.
Using ModQBF , we deepen our analysis and check how various BFnS
solvers perform on our randomly generated BFnS instances with controlled
modularity. The solvers that we use are current state-of-the-art solvers:
CADET [32], BnF [14], BFSS [1] and Manthan [22]. Our results give a pos-
itive answer to our second research question as we show that the average
run-time of all solvers is indeed affected by the change of modularity. Specif-
ically we show that as the VIG modularity increases, the average run-time of
all solvers tends to decrease, whether moderately as in CADET and BFSS,
or more drastically as BnF and Manthan.
Finally, we construct a monitoring method to better understand the relation
between the structure of the BFnS benchmarks and the solvers performance.
For that, we observe that all the solvers in mention work by iterative trans-
formations and additions to the given formula as a part of the execution
process. We white-boxed the solvers to find the precise places, called itera-
tion points, in the solvers algorithms in which each change of the processed
formula occurs. Then we extracted the structure of the formula in these it-
eration points for analysis. This gives us an abundance of data out of which
we point out several observations of interest that relate the benchmarks VIG
modularity and BFnS solvers performance.



Chapter 2

Background

2.1 Boolean Formulas and Boolean Functional Synthesis

Given a set of Boolean variables {x1, ..., xn}, a literal is an expression of the
form xi or ¬xi. A clause c of size s is a disjunction of s literals, l1 ∨ ... ∨ ls.
We denote s = |c| to be the size of c. For a variable x and a clause c we
denote x ∈ c, if c contains the literal x or ¬x. A CNF formula of length
t is a conjunction of t clauses, c1 ∧ ... ∧ ct. We use the notation cj ∈ φ
when a clause cj is one of the clauses in the formula φ. A k−CNF formula
is a conjunction of k-sized clauses. A Boolean formula may be quantified,
meaning that some or all of its variables are applied by either universal
∀ or existential ∃ quantifiers. A Boolean formula is fully quantified if all
its variables are quantified. Given an unquantified Boolean formula φ, the
problem in Boolean Satisfiability (SAT) is whether there is an assignment to
the variables of φ under-which φ is evaluated to be true. An example of a
SAT instance: ∃y⃗ : ((y1 ∨ ¬y2 ∨ y5) ∧ (¬y2 ∨ y4 ∨ y5) ∧ (¬y1 ∨ ¬y3 ∨ ¬y4))

Boolean Functional Synthesis

In Boolean functional synthesis (BFnS) we are given a specification φ in a
form of a Boolean formula with two types of variables: input variables Xin

and output variables Xout. The challenge is to find a function, called skolem
function, f : {0, 1}Xin → {0, 1}Xout such that for every possible assignment
σ⃗ to Xin, φ(σ⃗, f(σ⃗)) is evaluated to true. The output function can take
various forms such as a Boolean formula [1] or a decision-list [14]. The
related problem of realizability is whether such a function exists. Realizability
is equivalent to the satisfiability of the fully quantified boolean formulas

4



CHAPTER .2 BACKGROUND 5

with two alternations ∀∃, that we call 2QBF. Indeed, a BFnS formula φ
with x⃗ input variables and y⃗ output variables is realizable if and only if
the formula ∀x⃗∃y⃗φ(x⃗, y⃗) is true. An example of a BFnS instance: ∀x⃗∃y⃗ :
((x1 ∨ ¬y1 ∨ y2) ∧ (¬x1 ∨ y1 ∨ ¬y2) ∧ (x2 ∨ y1 ∨ y2) ∧ (¬x1 ∨ x2 ∨ ¬y1 ∨ ¬y2))
In this work we assume that the BFnS specification φ is given in CNF, and
contains m clauses. We also assume that every clause in φ contains at least
one output variable (otherwise φ is surely not realizable). When focusing on
only the inputs of a clause, as is sometimes done in BFnS analysis (e.g. [14]),
we define the projection cin of a clause c on the input variables by removing
all output variables from the clause c. Finally we sometimes refer to a BFnS
instance with input variables Xin, output variables Xout and a set of clauses
C, as a tuple (Xin, Xout, C). When we are not concerned about the type
of each variable (i.e. whether input or output), we simply refer to a BFnS
instance with X variables and C clauses as a pair (X,C).

2.2 Graphs

An undirected weighted graph G is a pair G = (V,w) with a set of vertices
V and a weight function w : V × V → R≥0. In this work w is symmetric
(i.e. w((v, u)) = w((u, v)) for every u, v ∈ V ) therefore we abuse notation
and denote w((u, v)) by w(u, v). A pair (u, v) of vertices is an edge in G if
w(u, v) > 0. We denote deg(v) =

∑
u∈V

w(v, u) to be the (weighted) degree of

a vertex v. A bipartite weighted graph Gbip = (V1 ∪ V2, w) is an undirected
graph with two distinct sets V1, V2 of vertices, and a weight function w :
V1 × V2 → R≥0 that maps between vertices in these distinct sets.
The modularity of a graph [16, 28, 29], is a measure of what is called the com-
munity structure in that graph. Intuitively, the vertices of a graph can be
partitioned into sets called communities, where the size of every community
is determined by how dense it is compared to the expected graph density in
an Erdös Rényi random graph of with the same vertices and degrees [17].
The community structure (i.e. the partition of the graph to communities)
then describes how random and uniform, or conversely - how distinctly par-
titioned, the graph is when looking at density of edges over the vertices. The
modularity of a graph in a given partition is calculated as the ratio between
weight of inner edges in the partition of vertices and total edges of the graph,
compared to the expected ratio in a random Erdös Rényi graph on the same
vertices and degrees. The overall modularity of a graph is then the max-
imal modularity over all possible graph partitions. Formally we have the
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following.

Definition 1 (Graph Modularity) Given a weighted undirected graph G =
(V,w), and a partition of its vertices P , the modularity of G with respect to
P is defined to be:

Q(G,P ) =
∑
Pi∈P

( ∑
u,v∈Pi

w(u, v)∑
u,v∈V

w(u, v)
−

∑
v∈Pi

deg(v)∑
v∈V

deg(v)

2)

The modularity of a graph G is then max{Q(G,P )|P is a partition of V }.

2.3 BFnS Solvers

This work consists in part of analyzing the performance of BFnS solvers on
BFnS instances and moreover white-boxing the solvers in order to deepen
our analysis. For that, we give a description of four current state-of-the-art
solvers that we use in this work.
CADET [32] is a BFnS solver that generalizes SAT-CDCL solvers to 2QBF,
thus learns clauses implied by the given instance using a specified proof sys-
tem until either a contradiction is reached or all variables have skolem func-
tions and no further contradictions exist. CADET has quite a few extensions
and we use the main one as in [32].
BnF [14] is a BFnS solver that decomposes the BFnS instance into input
and output components, then constructs a graph structure called ICG (see
Chapter 4.1) from the input component. Having that, BnF goes back and
forth iteratively between finding cliques on the ICG and finding maximal
satisfiable sets (MSS) on the output components, until no more MSS can
be found. At every iteration step BnF produces another line in a growing
decision list that eventually becomes the overall output solution.
BFSS [1] is a BFnS solver combined of two steps. In the first step that
already solves most instances, BFSS uses verilog to find unate variables and
other semantically implied dependencies to reduce the size of the formula.
In the second step, BFSS uses a CEGAR approach [23] that iteratively finds
counterexamples to candidate solutions, and refines them until no such coun-
terexample is found.
Manthan [22] is a BFnS solver also combined of two steps. In the first step,
as in BFSS, Manthan searches for unate variables to eliminate. Then how-
ever, it uses machine-learning and sampling techniques to learn candidate
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solutions. In the second step, Manthan employs a refinement iterative proce-
dure, different than CEGAR, that utilizes an unsatisifiability core found in
a given error formula that contradicts the candidate solution, to produce an
adjusted solution to offer for the next step and so on, until the error formula
is not satisfiable, thus an overall solution is found.



Chapter 3

Previous Work

The problem of Boolean Functional Synthesis (BFnS) has its roots in the
works of Boole, Lowenheim and Skolem [12, 25]. Since then it has been
studied in various areas [24, 30, 33, 35] and there are many approaches to-
wards its solution [1, 14, 22, 31, 32], some we detail in this work. BFnS was
recently proven to be not only computationally hard to solve (specifically
ΠP

2 -hard), but also to have instances that admit super-polynomial solutions
unless the Polynomial Hierarchy collapses [1]. One of the approaches to
tame the computational-complexity of problems is the notion of decompo-
sition and indeed there are works in BFnS that harness decomposition to
construct better solvers [14, 34]. Specifically the work of [14] is inspired by
exploration of sequential decomposition in computer science [18], and has a
follow-up the area of reactive synthesis [4].
The world of BFnS has not yet had the time to delve deep into the un-
derstanding of some of the governing principles and dynamics behind BFnS
solving or even real-world BFnS instances. In this work we study BFnS by
deploying an analysis on structure of instances. We are inspired by a string
of works in the field of SAT solving that analyzes SAT solvers performance
through instance structure e.g. [5–7, 26]. Some of these works further refine
the distinction between ”real world” industrial SAT instances and randomly
generated instances, created to produce instances at a required size and with
predetermined features such as graph modularity [8, 9, 20, 21]. This string
of works is a result of the attention that SAT received over the years which
is at present day much greater than the attention given by research groups
and researchers to BFnS.
Thus far, BFnS has been studied to try and better formulate instances, with-
out understanding the underlying structures fully, for example in [14] and

8



CHAPTER .3 PREVIOUS WORK 9

[23]. While this approach has led to advancements and insights, by compar-
ison to the world of SAT we can note that it avoids looking into what ”real
world” BFnS instances look like, and only employs factoring of the formula
to different representations as a first step in solving them, not as a means of
better understanding them.
This work seeks to be step towards evening out the playing field and allow-
ing the world of BFnS to start ”catching up to” the world of SAT in some
respects. The BFnS random instance generator that we construct in this
work (see Chapter 5) is an adaptation of some of these works to BFnS. We
note that current BFnS generators are focused on generating instances that
are either k-CNF adaptations to BFnS [15] or generating harder instances
for specific tools [3]. As far as we know, no current BFnS generators control
the modularity of BFnS instances. Next - we migrate the conclusions and
analysis done in the world of SAT for graph modularity and give an analysis
of the effects of modularity on BFnS solvers and instances, and we show the
potential of this approach in improving the performance of solvers in the
future, in ways both alike to those in the world of SAT and different from
them.
This work builds on a trend in analyzing and understanding SAT that is still
being researched and published even now, and much is yet to be discovered in
that respect. Works such as [27] study features of SAT instances that present
potential for analysis and appear congruent to modularity and community
structure, and show that more is yet to be learned even in the field of SAT.
The fact that analysing community structure is being researched in the SAT
community for the last decade and more shows that it is an insightful tool
for researchers, and this work sets out to put this tool in the hands of BFnS
researchers for the first time.



Chapter 4

Analyzing Graph Structures of BFnS
Instances

Our first objective is to find whether real-world BFnS benchmarks exhibit
specific graph properties that are not found in random benchmarks. For that,
we first provide several optional representations of BFnS formulas as graphs.
We then focus on the graph modularity as the graph property that we analyze
on each of the graph representations. We describe this in Chapter 4.1. Then,
in Chapter 4.2 we perform our analysis and report our results.

4.1 BFnS Graph Representations and Properties

We first describe the graphs that we use to represent the Boolean formu-
las as. Although these can be found in previous works (e.g. [6, 14]),
we elaborate here to keep the paper self-contained. We explore three dif-
ferent graph representations that are natural to explore in the BFnS set-
ting: the Variable Incidence Graph (VIG) and Clause to Variable Inci-
dence Graph (CVIG) that are used for analyzing SAT instances [5–7], and
a version of the Input Consensus Graph (ICG), that is used in the BnF
solver [14]. We will use as an example the formula given before: ∀x⃗∃y⃗ :
((x1 ∨ y1 ∨ y2) ∧ (¬x1 ∨ ¬y2 ∨ y3) ∧ (x2 ∨ y3 ∨ y4) ∧ (¬x1 ∨ x2 ∨ ¬y1 ∨ ¬y4))

Definition 2 The Variable Incidence Graph (VIG) of a BFnS instance φ
with variables X and clauses C, is a graph Gvig

φ = (X,wvig) where

10
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Figure :4.1 VIG of the example BFnS instance (Q = 0.163194)

wvig(xi, xj) =
∑

c∈C s.t. xi,xj∈c

1(|c|
2

)
The V IG represents the relationships between every two variables and the
amount of clauses they both appear in. As discussed in [5–7], this graph may
allow insights about the overall structure of the instance and the centrality of
certain variables in it. The VIG is the main representation that we analyze
in our work. The VIG of the running example is given in figure 4.1.

Definition 3 The Clause to Variable Incidence Graph (CVIG) of a BFnS
instance φ with variables X and clauses C is a bipartite graph Gcvig

φ =
(X ∪ C,wcvig) where

wcvig(x, c) =

{ 1
|c| if x ∈ c

0 otherwise

The CV IG is a bipartite graph that describes a relation between ”variable-
vertices” and ”clause-vertices”, in which the degrees of every ”variable-vertex”
represents the amount of clauses the corresponding variable appears in. Again,
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Figure :4.2 CVIG of the example BFnS instance (Q = 0.28559)

as discussed in [5–7], the CVIG may allow us to better understand the cen-
trality of certain variables and the amount of clauses a variable can appear
in. The CVIG of the running example is given in figure 4.2.

Definition 4 The Input Consensus Graph (ICG) of a BFnS instance φ with
clauses C, is a graph Gicg

φ = (V icg, wicg) where V icg = {cin|c ∈ C} and

wicg(ci, cj) =

{
1 if ci ∧ cj = True
0 otherwise

The ICG represents the relationships between the input components of dif-
ferent clauses. Note that ci∧ cj = True for clauses ci, cj in which no variable
appears in one clause with its negation in the other. The ICG of the running
example is given in figure 4.3.
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c1
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Figure :4.3 ICG of the example BFnS instance (Q = 0.333333)

Using graph modularity

In this work we focus on graph modularity (see Chapter 2) as the property to
analyze for the various graph representations. This is inspired by previous
works on SAT analysis as [5, 6]. We also note that generation of random
graphs with a specified modularity is more manageable, as we show in Chap-
ter 5. Other graph properties such as the fractal dimension of a graph [5],
are left for future work.
Since finding the graph modularity of a given graph is an NP-hard prob-
lem [13], we use the Louvain approximation, as is commonly used in [6, 11],
which gives the best-to-date lower bound on the modularity of a graph. Then,
similarly to the analysis done for SAT, we take an approximation Q of the
VIG modularity and test whether Q ∈ [0.3, 0.7]. If Q is within these values,
the graph is said to have high modularity. High modularity points out a
certain partition of the graphs vertices into communities wrt to which most
edges are internal. This interval is set since lower values tell of no parti-
tion of the graph, and higher values are very rare [16, 28, 29]. For bipartite
graphs we use the definition given by [10], which is not required for the rest
of this work. We note, however, that CVIG and VIG modularities tend to
be similar.

4.2 BFnS Structure Analysis

We next analyze the graph modularity of BFnS benchmarks for the graph
representations that we defined. for that, we construct the three graph rep-
resentations from each BFnS benchmark in our repository, and calculate the
graphs (approximated) modularity. Since our purpose is to explore features
of instances that come from ”real world” problems, we choose benchmarks
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that are used to analyze and compare BFnS solvers. Specifically we use
benchmarks from the 2QBF track of the 2016-2018 QBFEval, an annual com-
petition for solvers of QBF problems that includes BFnS. The timeout that
we used for modularity calculation is 24hr, see Chapter 8 for machine setup.
Modularity calculation for several benchmarks timed-out, thus is missing
from our analysis. To finalize the distinction between industrial and random
benchmarks, we also analyze random BFnS instances, generated by a 2QBF
random generator called ChenInterian [15].
We report our analysis in Table 4.1. It is apparent that instances from
QBFEval admit very high modularity for their VIG and CVIG of average 0.75
and 0.82 respectively, that is above the [0.3,0.7] high modularity definition.
Moreover, apart from qshifter and Q_2_3 which is a random generator (it is
practically ChenInterian), all benchmarks have modularity above 0.5. The
average modularity for QBFEval instances is even higher than the average
found for SAT instances which is 0.7 [6]. On the other hand the random
generator ChenInterian produces instances with VIG modularity typically
around the value of 0.15 or less. Note also that QBFEval instances tend to
admit very low modularity for their ICG, much below the 0.15 expected in
a randomly generated graph.
All in all, our analysis confirms our first research question and shows that
industrial BFnS benchmarks indeed admit high VIG and CVIG modularity,
specifically compared to random generated instances. We henceforth choose
to focus on the VIG graph that is more popular, and refer to the modularity
of VIG as VIG modularity.

Input/Output projection analysis

Since BFnS is a problem that relates input and output variables, we also
ran some analyses on graphs that consider only the input or only the output
variables (i.e. the input projections and output projections of the BFnS for-
mulas) and tested them for their VIG and CVIG modularity. The differences
that we found between input and output projections were not significant, al-
though we did find that VIG modularity tends to be slightly higher in the
input projection. As such, we decided to leave the projection analysis for
future work.
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Table :4.1 Average initial modularity in QBFEval

Benchmark Number Average Initial
Family of Modularity value

Benchmarks VIG CVIG ICG
total 637 0.7579 0.8232 0.0153
sketch 11 0.7217 0.8277 0.0079
mutexP 7 0.7850 0.8468 0.0109

Sorting_networks 42 0.8071 0.8592 0.0004
ltl2dpa 1 0.6944 0.8207 0.0012

terminator 69 0.7957 0.8580 0.0074
qshifter 6 < 0.0001 0.1241 0.9590
toy 5 0.7271 0.8327 0.0219

ltl2dba 4 0.6770 0.7922 0.0014
Reduction-finding 99 0.7482 0.7689 0.0083
Model_instances 6 0.5112 0.7280 0.0063
RankingFunctions 87 0.8659 0.9128 0.0009
hardwareFixpoint 96 0.7919 0.8680 0.0040

irqlkeapclte 65 0.8839 0.9162 0.0032
Q_2_3 20 0.0738 0.2675 0.0059
arith 11 0.9024 0.9281 0.0008
driver 6 0.7189 0.8239 0.1058

disjunctive_decomposition 9 0.6722 0.7685 0.0028
hwmcc 2 0.8507 0.8939 0.0015

ltl2aig-comp 4 0.6794 0.7933 0.0009
cycle_sched 6 0.7040 0.8095 0.0133
wmiforward 40 0.8317 0.8735 0.0100
Selection-hard 20 0.5155 0.7376 0.0018
mult_matrix 6 0.6783 0.8313 0.0086

tree 5 0.6348 0.7308 0.0227
amba 5 0.6337 0.6762 0.0187
genbuf 5 0.6270 0.6815 0.0122



Chapter 5

Generating BFnS Instances with
Controlled Modularity

Our next objective is to construct a generator that produces random BFnS
instances with a desired modularity. Such a generator allows us to continue
our exploration and to answer our second research question of how BFnS
solvers run-time is affected by the changes of the benchmarks modularity.
More than that, since we established that BFnS industrial instances tend to
have high VIG modularity, such a generator can produce random instances
that are one-step closer to real-world benchmarks. Our construction follows
the works done in the SAT community in which similar generators for SAT
are discussed [9, 20, 21].

5.1 Generator Algorithm Description

Based on the Community Attachment algorithm for random SAT genera-
tor described in [20], we provide an algorithm ModQBF for the generation
of random BFnS k-CNF instances exhibiting desired modularity, see Algo-
rithm 1.
The input for ModQBF is n,m, p that are respectively number of variables,
number of clauses, and ratio of input-variables to total variables. In addition
we have k as the number of variables per clause, c as the desired number of
communities and Q as the desired modularity of the instance. The output of
ModQBF is a BFnS k-CNF instance with n variables, out of which ⌊p ∗ n⌋
are input variables, m clauses, c communities, and modularity of at least Q.
Since BFnS differentiates between input and output variables, we make the

16
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following considerations for using ModQBF when assigning input/output
variables. We first require that each clause contains at least one output
variable, as otherwise the instance is trivially nonrealizable (i.e. has no so-
lution). Note however that ModQBF can still generate nonrealizable in-
stances. Next, we added an option to require every clause to contain at least
one input variable, so as to differentiate the problem from SAT. Finally note
that the parameter p in practice also controls the ratio of input to output
variables.
As an overview, ModQBF works as follows. First, the algorithm partitions
the variables into c different communities, and each of these communities
into respective parts of input and output variables. Each community has the
same number of variables, as in [20], and is assigned the same number (plus
or minus one) of input variables. Next, two types of clauses are generated:
clauses that contain variables from only one community, or clauses that con-
tain variables from k distinct communities. The choice between clause types
is controlled by a probability, calculated by following the strategy described
in [20], that promises VIG modularity bounded above given Q. Our main ad-
dition compared to Community Attachment is that in each clause an output
variable is selected, and optionally an input variable is selected as well. This
change is required to handle two problems not found in the case of SAT:
First, nonrealizability may be trivial if no output variable is found in any
clause, and second, if input variables occur in only a few clauses, then the
instances degenerate in practice to become too similar to SAT instances.
In detail, ModQBF is described as follows. Rand is a random generator
function that we overload to simplify notation. Hence Rand([i, j]) returns a
uniformly distributed real value in the interval [i, j], and Rand(S) returns a
uniformly distributed random element from the discrete set S. In lines 1-2 of
Algorithm 1, the returned BFnS instance I is initialized, and the variable d,
that indicates the number of variables per community, is defined. In lines 3-6
the communities are defined, first input variables of each community, then
output variables of each community, then the union of both as whole com-
munity. In lines 7-27 there is a loop that generates new clauses (and assures
there are no repeated variables in any clause). In lines 9-18 communities are
chosen for each variable in the new clause - lines 9-12 are for the case that
all variables are from the same community, and lines 13-18 are for the case
that each variable is in a distinct community. Lines 19-26 assign variables
to the clauses, from the community assigned to each variable, Line 19 makes
sure an output variable is chosen and line 20 is optional and makes sure an
input variable is chosen.
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Algorithm 1 ModQBF

Require: Integers n,m, k, c, Real values Q, p ∈ (0, 1), s.t.:
3 ≤ k ≤ min(c, n

c
) and c ≤ ⌊p ∗ n⌋ ≤ n− c

Output: A k-CNF BFnS instance with n variables m clauses, and modularity ≥ Q
:1 I = ∅
:2 d = n

c

:3 for i = 1 to c do
:4 Comin

i = {⌈(i− 1)d⌉+ 1, . . . , ⌈(i− 1)d⌉+ ⌈pd⌉}
:5 Comout

i = {⌈(i− 1)d⌉+ ⌈pd⌉+ 1, . . . , ⌈id⌉}
:6 Comi = Comin

i ∪ Comout
i

:7 end for
:8 while |I| < m do
:9 Cl = false
:10 if Rand([0, 1]) ≤ Q+ 1

c
then {same community}

:11 j = Rand({1, . . . , c})
:12 for i = 1 to k do
:13 C[i] = j
:14 end for
:15 else {distinct communities}
:16 for i = 1 to k do
:17 repeat
:18 j = Rand({1, . . . , c})
:19 until j /∈ C[0, ..., i− 1]
:20 C[i] = j
:21 end for
:22 end if
:23 Cl = Cl ∨Rand({−1, 1}) ·Rand(Comout

C[1])

:24 Cl = Cl ∨Rand({−1, 1}) ·Rand(Comin
C[2])

:25 for i = 3 to k do
:26 repeat
:27 v = Rand(ComC[i])
:28 until v /∈ Cl
:29 Cl = Cl ∨Rand({−1, 1}) · v
:30 end for
:31 I = I ∪ Cl
:32 end while
:33 return I



CHAPTER .5 GENERATING BFNS INSTANCES WITH CONTROLLED MODULARITY19

The choice between two types of clauses according to a certain probability is
done to control the modularity of the resulting instance [20]. Each variable is
chosen randomly and uniformly among its community wrt to its distinction
(input or output). Moreover communities for each variable in a clause are
chosen uniformly and randomly, with the requirement being that there are
either k distinct communities or one repeated community. To get an instance
with modularity Q, probability of P = Q + 1

c
is used, as discussed in [20].

Specifically, note that if the distinction between input and output variables
was removed, ModQBF would yield the same instances that Community
Attachment in [20] does. As a result, all arguments regarding modularity
from [20] apply to our model, and specifically Theorem 1.

Theorem 1 Let φ be an instance generated by ModQBF with modularity
value Q. Then the modularity of Gvig

φ is at least Q.



Chapter 6

Generated Instance Characteristics

In this chapter we give a comparison of BFnS instances generated using Mod-
QBF and ChenInterian presented in [15], to test whether or not prevalent
generators are able to produce industrial instances easily, as well as how our
generator fares when trying to produce them. First, we describe the pa-
rameters of ModQBF and ChenInterian, renaming parameters to fit our
description. We generated 10 instances of each of the possible combinations
of following the values.

� n ∈ {100, 200, 300}

� m ∈ {3n, 3.5n, 4n, 4.5n, 5n}

� p ∈ {0.2, 0.4, 0.6, 0.8}

� k ∈ {3, 5}

� For ModQBF only: Q ∈ {0.05i|1 ≤ i ≤ 19}

� For ModQBF only: c ∈ {n/20, n/10}

� For ChenInterian only: a ∈ {i ∈ N|1 ≤ i ≤ k − 1}

It is apparent that there are many more ModQBF instances than there
are ChenInterian instances, but the analysis is split between the two to
make the number of instances irrelevant. We aim to study both the inherent
features of the two instance generators, for use of industrial benchmarks for
solvers.

20
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Table :6.1 Average initial values of features in benchmarks generated by
ChenInterian

Benchmarks Number Average Initial
Grouped of Modularity Value

By Benchmarks VIG CVIG ICG
total 3600 0.1205 0.3489 0.0089

p=0.2 900 0.1152 0.3474 0.0170
p=0.4 900 0.1262 0.3506 0.0086
p=0.6 900 0.1263 0.3507 0.0057
p=0.8 900 0.1144 0.3470 0.0043

k=3 1200 0.1769 0.4471 0.0054
k=5 2400 0.0923 0.2998 0.0106

m/n=3.0 720 0.1417 0.3691 0.0090
m/n=3.5 720 0.1285 0.3563 0.0090
m/n=4.0 720 0.1181 0.3468 0.0089
m/n=4.5 720 0.1105 0.3396 0.0088
m/n=5.0 720 0.1039 0.3329 0.0088

a=1 1200 0.1328 0.3727 0.0032
a=2 1200 0.1360 0.3736 0.0076
a=3 600 0.0959 0.3014 0.0131
a=4 600 0.0896 0.2995 0.0185

We give a table for each of the generated instance groups. Table 6.2 shows av-
erage initial feature values for ModQBF generated instances, and Table 6.1
shows average initial feature values for ChenInterian generated instances.
A quick glance at the tables reveals a rather interesting fact: while Mod-
QBF could be given a configuration to produce ”real-world”-like features
in a rather small instance - ChenInterian seems to be much harder to ma-
nipulate to get different values of modularity in the VIG and CVIG of the
produced instance. From looking at other families of benchmarks in QBFLIB
1 it is clear that by changing the parameters one can get different modular-
ity values, but due to the nature of the generator ChenInterian expected
modularity values are very hard to control.

1to access the different families of benchmarks in QBFLIB, go to http://www.qbflib.org/
benchmarks_start_page_old.php

http://www.qbflib.org/benchmarks_start_page_old.php
http://www.qbflib.org/benchmarks_start_page_old.php
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Table :6.2 Average initial values of features in benchmarks generated by MODQBF

Benchmarks Number Average Initial
Grouped of Modularity Value

By Benchmarks VIG CVIG ICG
total 45600 0.5080 0.6196 0.0063

p=0.2 11400 0.5084 0.6203 0.0086
p=0.4 11400 0.5077 0.6190 0.0059
p=0.6 11400 0.5080 0.6192 0.0054
p=0.8 11400 0.5080 0.6199 0.0051

k=3 22800 0.5155 0.6515 0.0047
k=5 22800 0.5006 0.5877 0.0078

m/n=3.0 9120 0.5126 0.6248 0.0063
m/n=3.5 9120 0.5099 0.6216 0.0063
m/n=4.0 9120 0.5076 0.6191 0.0063
m/n=4.5 9120 0.5062 0.6172 0.0062
m/n=5.0 9120 0.5039 0.6152 0.0062

c=5 7600 0.4934 0.5857 0.0105
c=10 15200 0.5080 0.6175 0.0076
c=15 7600 0.5110 0.6274 0.0035
c=20 7600 0.5134 0.6325 0.0050
c=30 7600 0.5145 0.6370 0.0033

Q=0.05 2400 0.1466 0.3768 0.0066
Q=0.10 2400 0.1597 0.3830 0.0066
Q=0.15 2400 0.1846 0.3957 0.0066
Q=0.20 2400 0.2186 0.4146 0.0066
Q=0.25 2400 0.2592 0.4395 0.0066
Q=0.30 2400 0.3049 0.4695 0.0065
Q=0.35 2400 0.3526 0.5020 0.0065
Q=0.40 2400 0.4024 0.5376 0.0065
Q=0.45 2400 0.4511 0.5729 0.0064
Q=0.50 2400 0.5008 0.6094 0.0063
Q=0.55 2400 0.5496 0.6451 0.0063
Q=0.60 2400 0.5987 0.6811 0.0062
Q=0.65 2400 0.6493 0.7183 0.0061
Q=0.70 2400 0.6996 0.7552 0.0061
Q=0.75 2400 0.7490 0.7914 0.0060
Q=0.80 2400 0.7993 0.8283 0.0059
Q=0.85 2400 0.8405 0.8584 0.0058
Q=0.90 2400 0.8819 0.8887 0.0057
Q=0.95 2400 0.9042 0.9049 0.0057



Chapter 7

Monitoring Solver Behavior on BFnS
Structures

We so far answered our two research questions: we showed that VIG modu-
larity of BFnS industrial benchmarks is high, and that solver performance is
affected by the instances modularity. In this chapter we monitor the on-going
change in VIG modularity of a given BFnS instance while being processed
through the BFnS solvers. By doing that we get an abundance of data of
how the solvers work, out of which we already make several observations that
further relate the solvers performance to VIG modularity.

7.1 Finding Solver Iteration Points

To monitor the solvers work process, we make use of an observation that
during execution of every BFnS solver that we studied, the original instance
keeps changing through the solving process. For example, for CADET that
is CDCL-based, learned clauses are added to the original formula. Hence, as
the formula is changing, so does its structure.
Therefore we first identify in each BFnS solver designated points, called iter-
ation points, in which the structure of the instance being solved is changing.
We then monitor the solvers at these points and update the instance and
the graph representations at each of these point. For the purpose of this
research no solver behaviors are altered, but rather the data is written to a
log through the run of the solvers.
For CADET and BnF, identifying iteration points is more or less straight-
forward. First see that since CDCL is an iterative process, in which every

23
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iteration produces an additional learned clause to the instance, there is an
iteration point for CADET whenever a new clause is learned. For BnF note
that since every new line in the output decision list can be thought of as a
clause being learned, there is an iteration point for every line in the decision
list that is gradually written.
For BFSS and Manthan identifying iteration points task is more challenging.
BFSS has three distinct types of iteration points: The first is the propagate-
unates iteration point in which a discovered unate variable is removed from
all clauses, and entire clauses may be removed from the original formula.
The second is the propagate-dependencies iteration point in which a vari-
able is replaced by a simple function, followed by removing clauses that are
now trivially true. Finally in the learning phase, there is an iteration point
whenever a new counterexample is learned as a clause, much like CADET
iterations. Manthan, on the other hand, has two types of iterations points.
The first type is propagate-unates iteration point as in BFSS. The second
type of iteration point is where an unsatisfiability core of a counterexample
is learned. We note that since the unsatisfiability core is given in DNF, the
structure analysis in practice is harder and takes longer to run for Manthan.
This explains why some of our analyses for Manthan timed-out (as shown in
Chapter 9).

7.2 Analysis via Monitoring Iteration Points

By using the iteration points that we defined, we ran all four BFnS solvers
through ModQBF benchmarks with controlled modularity, in order to ob-
serve how VIG modularity changes for the various graph structures, as the
benchmarks being processed by the solvers. The amount of data that we have
gathered that way is enormous and can take a while to fully comprehend and
process. For example, a single solved instance on 300 variables can have more
than 300 iterations when running through CADET, where each iteration re-
quires computing graph representations and features analysis. Nevertheless,
we present below several observations that we can already make, that further
describe the connection between the instances and their modularity, and also
shed more lights on how these solvers work. More details can be found in
Chapter 9.
We first compare the number of iterations that every tool makes on non-
trivial instances against its initial VIG modularity. This is given in Fig-
ure 8.1:d. We see that as initial VIG modularity increases, CADET and
BnF require more iterations, while Manthan requires less. BFSS seems ag-
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Figure :7.1 Modularity change against VIG modularity for ModQBF instances:
:7.1a - average VIG modularity change, :7.1b - average ICG modularity change

nostic to instance VIG modularity in the amount of iterations it requires.
Comparing with Figure 8.1:c that describes the tools run-time against the
initial VIG modularity, we observe that although requiring more iterations
to solve higher VIG modularity instances - both BnF and CADET solve
these instances much faster. For example 300 BnF iterations for Q=0.9 take
roughly 10 times less to execute than 20 BnF iterations for Q=0.5. This
finding demonstrates an additional connection between tools run-time and
VIG modularity.
Next, we check how VIG modularity changes (in percentage) from before to
after the instance is solved, compared to the initial VIG modularity. This is
given in Figure 7.1:a. As the x axis describes the initial VIG modularity, The
y axis presents the change in modularity in percentage: percentages above
0 indicate an increase in modularity and percentages below 0 indicate a de-
crease. Note that while VIG modularity does not change much for three of
the tools, Manthan’s solving process affects VIG modularity decidedly, going
in a smooth curve from increasing it for low VIG modularity instances to de-
creasing VIG modularity for high VIG modularity instances. It is interesting
to see that of all tools, Manthan that relies on ML techniques, demonstrates
such a clean curve.
Finally, we run a similar analysis and this time check how the ICG modularity
is changed (in percentage) by the solvers as initial VIG modularity increases.
As Figure 7.1:b shows, the ICG modularity almost always increases through
solving, even by roughly 300 percent for BnF and Manthan at various VIG
modularity values. Manthan again has the most pronounced effect. These
findings, that connect VIG modularity to ICG modularity are surprising,
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since apart from BnF, no other tool does any use with the ICG structure.



Chapter 8

Solvers Performance on
Specified-Modularity Instances

Using our generator ModQBF , we can now answer our second question of
interest, of how does the VIG modularity of BFnS instances affects perfor-
mance of BFnS solvers. For that, we use ModQBF to generate instances
with various values of VIG modularity, solve each instance using each solver,
and compare results to see whether or not VIG modularity affects the solvers
run-time. Note that using QBFEval instances to answer this question may
not do, since these mostly admit modularity of around 0.75. The solvers that
we explore are CADET, BnF, BFSS and Manthan, see details in Chapter 2.3.
Machine setup All tests and algorithms were executed on HPC clusters at
The Open University of Israel, comprised of 44 compute node machines, each
node having 2 Intel Xeon Gold 6130 16 Cores or Xeon Gold 6230 20 Cores
CPU processors, 192 GB RAM. The run-time for the solvers was limited to
8 hours until timeout, and each running job was allocated 4GB of RAM.
Solver analysis was allotted additional 8 hours.
Analysis setup We analyze the BFnS solver performance over instances
with various VIG modularity generated by ModQBF . We generated 45600
instances, varying between 3-CNF and 5-CNF and ranging in size of 100-300
variables. The ratio of clauses/variables is ranged from 3 to 5 to situate it
around the phase transition for 3-CNF. We also used the option of having
an input variable in every clause. The VIG modularity is generated from
Q=0.05 to Q=0.95 in 0.05 steps.
We ran our analysis to see whether VIG modularity affects BFnS solvers per-
formance. Our results are described in Figure 8.1, see Table 9.3 in Chapter 9
for full details.

27



CHAPTER .8 SOLVERS PERFORMANCE ON SPECIFIED-MODULARITY INSTANCES28

0 0.3 0.7 1
0

2,000

4,000
a(

VIG Modularity

A
vg
.
To
ta
l
R
un
tim

e[
s]

0 0.3 0.7 1
0

500

1,000

b(

VIG Modularity

A
vg
.
N
o
Ti
m
eo
ut

R
un
tim

e[
s]

0 0.3 0.7 1
0

500

1,000 c(

VIG Modularity

A
vg
.
N
on
-T
ri
v.

R
un
tim

e[
s]

BnF CDT BFSS MNT

0 0.3 0.7 1
0

100

200

300 d(

VIG Modularity

A
vg
.
So
lv
er

It
er
at
io
ns

Figure :8.1 Time analyses against VIG modularity for ModQBF instances:
:8.1a - average total run-time, :8.1b - average non-timeout run-time, :8.1c - average
non-trivial instance run-time, :8.1d - average number of iterations (discussed in Chap-
ter 7.2(

Figure 8.1:a (see caption at upper-right corner of each figure) depicts the aver-
age solver run-time (in seconds) against initial VIG modularity. In this figure
we included timed-out instances that counted as 8 hours. It is clear from this
figure that the average run-time for all solvers decreases as VIG modularity
goes up, specifically after Q=0.3 which is the lowest bar for high-modularity
as defined in [29]. BnF seems to be affected the most by VIG modularity,
only starting to reduce in run-time around a modularity of Q=0.5. Manthan
run-times decrease more sharply starting at Q=0.3, and CADET is shown
to be affected by VIG modularity as well, decreasing run-times considerably
starting at Q=0.75, which is the average VIG modularity of QBFEval in-
stances. Note that in all this, BFSS curve is extremely low, as also depicted
in additional figures. We believe that the reason for that is that BFSS solves
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most instances that we generated rapidly fast, using no more than a few
first-step iterations.
Since timed-out instances can affect the average run-time considerably (al-
though curves still imply that less timeout occurs as modularity go up, see
Chapter 9 for details), we wanted to check the curves filtering these out.
Figure 8.1:b depicts the average solver run-time (in seconds) against initial
VIG modularity. In this figure we filtered out timed-out instances. Manthan
maintains the descent into a plateau, but it is clear that it times out much
more on lower VIG modularity instances. BnF and CADET are much much
closer to BFSS in average run-time for solved instances, which shows that all
3 solvers are very fast for instances they manage to solve, unlike in the case
of Manthan. The curve for BFSS is again almost flat.
The two analyses given above already demonstrate a connection between
instance VIG modularity and solver performance. Nevertheless, since many
instances terminate almost immediately, we can learn more about the solvers
behavior by observing non-trivial instances - instances that did not time-out
but required solvers to perform at least a single iteration (as defined in Chap-
ter 7). For that, Figure 8.1:c depicts solver run-times of non-trivial instances,
against VIG modularity. The time scale is at most 1050 seconds since all
instances that did not meet that time have timed-out and were disregarded.
Also here we see that average run-time is affected by modularity, for example
for BnF that drops dramatically starting from Q=0.6 which is more or less
the average modularity for QBFEval instances, or for Manthan that drops
in Q=0.3 then slowly stabilizes. With respect to Manthan it is interesting to
observe that its average run-time is increased when timeouts and immediate
instances are disregarded. We suspect that the reason is that Manthan may
immediately find correct solutions in instances with no unate variables, re-
sulting in no iterations being made. More generally, our experiments suggest
that Manthan may reduce its run-time, and still maintain its advantage in
solving more benchmarks, by adapting the entire first stage of BFSS (not
only the unates step).



Chapter 9

Generator Test Results In Depth

9.1 Analyses Completion

To complete the the analyses done in Chapters 8 and 7, we provide Figure 9.1
below.
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Figure :9.1 A few more analyses with respect to VIG modularity on ModQBF instances
:9.1a - number of solver timeouts, :9.1b - average CVIG modularity change

In Figure 9.1:a the number of solver timeouts is plotted against ModQBF
VIG modularity, for completion of Figures 8.1:a-c. BnF and CADET can be
seen to struggle with instances of VIG modularity Q ≤ 0.7, and timeouts
only decrease dramatically for higher modularity. Manthan struggles with
instances of modularity Q ≤ 0.3, but then quickly flattens out and is able
to solve many more instances. The curve for BFSS is again rather flat, and
it may be the case that Manthan seems to be a somewhat more exaggerated
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version of it is due to the exclusion of dependency analysis and the differences
between the second stages of both solvers.
In Figure 9.1:b the average change of CVIG modularity is plotted against
ModQBF VIG modularity, for completion of Figures 7.1:a-b. Comparison
with Figure 7.1:a shows that solver behaviour for CVIG modularity is indeed
very much in keeping with what was observed for VIG modularity. It is
interesting to note that changes inflicted on CVIG modularity seem to be a
lesser magnitude version of the changes inflicted to VIG modularity.

9.2 Further Data and Observations

We give Tables 9.1, 9.2, and 9.3 that describe the full detail of the analysis
for solvers run on BFnS instances generated by ModQBF . Each table is
described in its caption. In these tables the data relates to instances that
did not time out and for which the relevant solver performed at least one
iteration. The flag DNS is used if a solver was not successful in solving or
starting the iterative process, on any benchmark in the family. Moreover, for
reasons of brevity - CDT and MNT will respectively represent CADET and
Manthan. Double horizontal separators separate different dissections of the
data (by Q value, k value, etc.).
Table 9.1 shows analysis of performance on non-trivial instances for different
solvers, detailing both number of non-trivial instances for each solver, and
average number of iterations made. Note that Manthan is the most prolific
solver in terms of instances it requires iterations to solve, leading the next
runner up in CADET by more than a 50% margin. BnF seems to be highly
affected by VIG modularity again, as it requires iterations for more instances
as VIG modularity increases. CADET and BFSS are well rounded out as
far as VIG modularity is concerned, requiring iterations for roughly the same
number of instances at each modularity. Manthan requires increasingly more
iterations as modularity increases to Q = 0.3 and then less iterations as
modularity increases past that point. It is interesting to note that BFSS is
the only solver to require iterations for more 3-CNF instances than 5-CNF
instances, and all other solvers show the opposite behaviour.
Table 9.2 shows analysis of change of modularity for all 3 graphs studied
in this work (VIG, CVIG, ICG) on non-trivial instances for different solvers.
It has been analyzed wrt to VIG modularity above, and so we only give
supplemental observations here. Note that all solvers tend to behave very
differently for 3-CNF and 5-CNF instances, with the exception being Man-
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than for ICG modularity.
Table 9.3 shows analysis of run-times for 3 different dissections of instances,
that was analyzed in Chapter 8. BnF and CADET seem to work faster as
the ratio of input variables to total variables, p, increases. BFSS seems to
work slower as p increases. All solvers aside for Manthan seem to work faster
for 3-CNF than they do for 5-CNF, while Manthan works faster for 5-CNF
than for 3-CNF.

Table :9.1 Average performance in solving process by different solvers for ModQBF
instances

Grouping # Avg.
Based Non-Trivial #
on Instances Iterations

BnF CDT MNT BFSS BnF CDT MNT BFSS
total 7511 21494 34863 13039 91.67 150.35 36.59 9.25

p = 0.2 4884 5269 8603 5541 23.15 432.99 42.43 11.41
p = 0.4 1764 5855 8960 4152 325.13 160.43 40.41 8.20
p = 0.6 808 4270 8892 2293 2.27 1.14 34.70 7.20
p = 0.8 55 6100 8408 1053 1.20 1.00 28.52 6.46

k = 3 121 3392 12066 11998 1.70 1.00 34.45 9.78
k = 5 7390 18102 22797 1041 93.14 178.34 37.72 3.15

m/n = 3.0 2006 4105 8905 4099 125.08 82.22 39.47 9.67
m/n = 3.5 1753 4213 8217 3420 79.07 213.05 43.26 9.91
m/n = 4.0 1606 4131 6570 2936 103.38 205.47 30.78 13.33
m/n = 4.5 1223 4320 5698 1537 26.04 128.01 32.97 4.11
m/n = 5.0 923 4725 5473 1047 109.55 125.89 32.60 1.52

c = 5 1789 4366 5794 1924 43.84 81.70 26.44 7.39
c = 10 2840 7572 11828 4125 79.44 117.26 31.10 8.94
c = 15 812 3194 5736 2384 114.13 245.22 53.88 10.28
c = 20 1135 3305 5928 2214 85.02 194.97 33.52 9.88
c = 30 935 3057 5577 2392 208.85 183.03 44.23 9.65

Q = 0.05 261 1248 1914 657 8.68 79.98 45.82 8.91
Q = 0.10 256 1214 1950 626 8.04 120.62 46.55 8.99
Q = 0.15 267 1225 1963 638 5.60 60.65 47.28 9.24
Q = 0.20 255 1174 1991 684 6.41 61.06 47.08 7.35
Q = 0.25 272 1172 2035 650 4.93 69.45 44.38 8.33
Q = 0.30 275 1120 2102 645 11.59 29.50 44.02 8.39
Q = 0.35 295 1174 2091 678 10.10 99.59 43.08 9.12
Q = 0.40 277 1130 2070 674 6.94 116.64 38.45 8.82
Q = 0.45 294 1143 1991 679 4.79 119.68 37.76 8.93
Q = 0.50 302 1118 1945 722 15.09 178.49 35.78 9.41
Q = 0.55 327 1091 1891 706 18.07 118.97 33.31 9.80
Q = 0.60 356 1141 1819 760 28.11 119.78 28.69 9.26
Q = 0.65 388 1106 1721 703 40.94 178.49 28.61 9.40
Q = 0.70 409 1086 1703 761 66.03 252.40 25.32 9.32
Q = 0.75 464 1070 1643 737 170.49 255.63 25.94 9.44
Q = 0.80 556 1063 1587 705 46.10 227.78 25.59 10.89
Q = 0.85 607 1077 1500 699 318.21 331.54 26.21 9.45
Q = 0.90 762 1071 1481 645 202.53 250.54 26.98 10.53
Q = 0.95 888 1071 1466 670 174.12 243.65 29.44 9.96
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Table :9.2 Average changes in modularity over solving process by different solvers for
ModQBF instances

Grouping Avg. Change of Modularity
Based Through Solving (percents)
on VIG CVIG ICG

BnF CDT MNT BFSS BnF CDT MNT BFSS BnF CDT MNT BFSS
total 3.78- 1.84- 1.95- 0.35 3.51- 1.29- 0.69- 0.52 99.69 25.49 259.33 0.39-

p = 0.2 1.12- 3.38- 3.04- 0.70 1.07- 2.11- 2.45- 0.80 23.72 32.66 161.39 0.75-
p = 0.4 10.89- 3.33- 3.42- 0.17 10.53- 2.50- 2.42- 0.37 383.46 58.84 291.15 0.32-
p = 0.6 0.23- 0.07- 1.25- 0.02 0.22- 0.13- 0.06 0.23 0.64 0.68 333.56 0.27
p = 0.8 0.04- 0.05- 0.01- 0.02 0.03- 0.13- 2.15 0.24 2.13 0.50 294.13 1.84

k = 3 0.18- 0.08- 3.59- 0.38 0.13- 0.15- 4.00- 0.55 1.35- 0.47 289.98 0.49-
k = 5 3.87- 2.14- 1.17- 0.06- 3.59- 1.51- 1.11 0.03 101.21 29.19 249.57 0.46

m/n = 3.0 5.79- 1.34- 2.77- 0.01- 5.18- 1.02- 2.07- 0.07 159.90 19.58 356.91 0.21
m/n = 3.5 3.98- 2.49- 2.27- 0.14 3.59- 1.76- 1.62- 0.36 100.25 35.66 308.23 0.85-
m/n = 4.0 2.55- 2.43- 1.35- 1.41 2.32- 1.69- 0.33 1.67 54.71 26.52 206.17 1.31-
m/n = 4.5 2.33- 1.74- 1.02- 0.21 2.29- 1.22- 0.81 0.34 59.87 23.59 190.68 0.26
m/n = 5.0 3.53- 1.24- 1.68- 0.04- 3.59- 0.82- 0.36 0.02- 100.21 22.10 181.09 0.23

c = 5 3.70- 1.93- 6.71- 0.06- 3.48- 1.57- 3.14- 0.39 71.89 27.54 191.48 0.58-
c = 10 4.00- 1.58- 4.38- 0.39 3.70- 1.13- 2.33- 0.62 96.35 21.62 226.49 0.44-
c = 15 2.91- 1.46- 1.45- 0.33 2.74- 1.09- 0.74- 0.40 145.45 31.70 419.69 0.53-
c = 20 3.73- 2.70- 1.42 0.60 3.44- 1.68- 1.24 0.71 130.83 32.65 295.28 0.15-
c = 30 4.14- 1.86- 3.96 0.37 3.78- 1.15- 3.07 0.37 189.33 20.45 408.00 0.06

Q = 0.05 1.52- 0.89- 49.20 5.64 0.73- 0.73- 14.42 2.03 38.65 17.55 288.12 1.42-
Q = 0.10 1.70- 1.23- 42.23 5.07 0.60- 0.72- 14.28 1.91 36.84 20.30 294.65 1.27-
Q = 0.15 1.13- 0.78- 32.52 4.54 1.03- 0.42- 13.97 1.98 23.77 18.58 293.90 0.61-
Q = 0.20 1.28- 0.85- 21.32 2.05 0.82- 0.15- 11.89 1.38 28.14 16.82 306.55 0.18-
Q = 0.25 1.00- 0.90- 14.59 1.70 0.82- 0.26- 9.78 1.29 20.61 20.92 318.96 1.05-
Q = 0.30 1.99- 0.51- 8.14 0.96 1.59- 0.03- 7.39 1.06 56.42 14.96 318.15 0.58-
Q = 0.35 1.61- 1.28- 4.12 0.63 1.47- 0.51- 5.16 1.17 37.52 20.65 317.36 1.52-
Q = 0.40 1.52- 1.23- 1.13 0.24 1.38- 0.53- 3.25 0.69 33.45 21.41 309.76 0.43-
Q = 0.45 0.98- 1.47- 0.78- 0.13 0.91- 0.80- 1.70 0.55 17.66 24.43 302.54 0.31-
Q = 0.50 2.64- 1.88- 2.90- 0.11 2.61- 1.12- 0.07- 0.51 68.78 25.70 293.70 0.01-
Q = 0.55 2.79- 1.73- 3.88- 0.08 2.73- 1.13- 1.39- 0.53 79.19 30.00 272.10 0.29-
Q = 0.60 4.09- 1.72- 4.47- 0.02 3.93- 1.24- 2.44- 0.36 129.15 31.10 236.80 0.67-
Q = 0.65 4.84- 2.18- 6.32- 0.04- 4.61- 1.66- 4.30- 0.22 154.00 38.10 234.32 0.33
Q = 0.70 4.87- 2.52- 7.39- 0.16- 5.00- 1.96- 5.96- 0.09 159.35 35.27 206.73 0.03-
Q = 0.75 7.54- 2.76- 8.70- 0.19- 7.58- 2.16- 7.33- 0.03 272.69 36.80 182.90 0.14-
Q = 0.80 4.28- 2.31- 10.00- 0.22- 4.30- 1.96- 9.06- 0.04- 146.17 30.96 167.29 0.08-
Q = 0.85 5.99- 2.63- 11.71- 0.19- 5.98- 2.32- 10.80- 0.09- 222.58 37.69 155.07 0.12
Q = 0.90 3.78- 1.67- 11.54- 0.24- 3.67- 1.70- 10.94- 0.17- 136.74 26.45 135.60 0.30
Q = 0.95 2.06- 1.67- 11.14- 0.23- 1.86- 1.80- 10.74- 0.19- 45.41 27.10 127.34 0.50
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Table :9.3 Average runtime in solving process by different solvers for ModQBF instances

Grouping Average Time Taken Average Time Average Total
Based on Non Timeout Taken on Non-Trivial Time Taken on
on Instances [s] Instances [s] Instances [s]

BnF CDT MNT BFSS BnF CDT MNT BFSS BnF CDT MNT BFSS
total 89.65 36.43 720.79 14.78 424.24 68.82 679.70 31.62 3276.58 1252.04 1469.95 131.40

p = 0.2 117.43 160.86 704.34 6.62 227.27 236.73 678.28 6.38 2605.62 5509.46 1137.27 6.62
p = 0.4 491.60 19.24 738.10 24.71 1156.64 35.17 696.34 54.47 13610.13 158.76 1758.54 24.71
p = 0.6 5.39 2.30 750.31 21.31 44.54 2.59 691.29 62.87 96.61 2.30 1786.17 46.57
p = 0.8 2.66 2.32 692.21 6.22 2.49 2.45 651.17 6.27 2.66 2.32 1209.47 452.51

k = 3 2.53 2.31 885.91 22.35 4.59 3.50 881.90 33.67 2.53 2.31 2412.16 22.35
k = 5 234.77 77.16 572.76 7.08 431.11 81.06 572.69 7.99 7368.25 2612.05 576.48 241.33

m/n = 3.0 71.48 20.77 714.68 9.64 270.69 43.69 710.46 8.87 2141.61 122.11 714.68 41.25
m/n = 3.5 83.47 40.90 844.49 6.41 355.39 82.65 873.85 6.31 2489.31 698.91 1305.64 9.56
m/n = 4.0 58.88 51.58 591.18 45.15 265.96 100.49 557.73 114.97 2845.19 1526.28 2552.93 54.61
m/n = 4.5 103.33 25.49 689.77 6.94 572.32 44.22 486.20 8.00 4055.57 1961.75 1586.70 455.83
m/n = 5.0 140.32 44.68 750.13 5.45 967.87 73.15 686.05 4.30 5024.82 2044.43 1257.40 100.48

c = 5 165.22 11.90 438.28 6.70 609.83 17.44 381.62 7.21 1958.90 68.83 438.28 6.70
c = 10 107.56 28.81 600.97 8.04 464.59 51.60 571.83 8.78 2845.30 870.43 727.69 13.73
c = 15 22.61 47.96 992.67 40.30 136.36 95.98 869.75 105.72 4691.95 2383.63 3436.66 462.68
c = 20 58.68 60.52 786.18 5.50 297.48 124.72 790.98 5.15 3563.31 1464.57 964.23 5.50
c = 30 58.65 44.64 979.24 20.92 350.42 96.06 904.41 41.30 3904.84 1970.28 2750.89 292.31

Q = 0.05 115.29 20.99 1421.92 69.25 738.97 34.38 1011.16 208.04 4930.97 1642.34 4733.89 335.05
Q = 0.10 98.38 47.00 1297.08 55.11 642.39 81.33 973.12 144.24 4835.54 1653.52 4438.09 284.49
Q = 0.15 101.84 11.80 1183.82 26.61 637.01 18.81 891.33 71.64 4854.67 1687.31 3942.91 305.02
Q = 0.20 68.45 9.78 1120.20 24.33 435.37 15.92 913.10 63.15 5072.57 1685.40 3513.52 193.17
Q = 0.25 38.18 19.18 1249.09 16.76 228.30 33.26 1057.19 38.85 4655.65 1667.42 2724.60 234.26
Q = 0.30 133.79 3.44 916.69 9.86 831.83 4.54 821.31 17.84 4687.72 1719.80 1779.06 203.08
Q = 0.35 122.69 28.82 776.24 8.99 700.26 51.14 708.03 15.15 4839.63 1556.38 1263.30 177.93
Q = 0.40 76.89 35.40 588.64 6.61 468.13 65.62 564.70 7.05 4623.79 1549.33 849.63 127.09
Q = 0.45 88.88 40.34 563.51 6.22 519.79 74.58 553.69 6.58 4442.39 1474.55 717.29 126.70
Q = 0.50 174.11 57.13 521.86 6.05 1023.32 108.57 517.52 5.70 4247.95 1477.31 533.64 138.63
Q = 0.55 174.83 36.59 478.05 5.83 973.87 70.62 466.21 5.77 3909.72 1457.78 478.05 77.99
Q = 0.60 185.93 17.47 485.02 5.60 977.73 31.22 490.06 5.72 3528.01 1347.44 485.02 5.60
Q = 0.65 130.25 39.56 491.74 5.57 645.96 75.57 506.31 5.28 3052.51 1407.91 491.74 5.57
Q = 0.70 79.73 70.22 531.09 5.87 386.28 140.47 529.48 5.31 2436.40 1176.65 531.09 53.94
Q = 0.75 61.15 80.55 482.86 5.85 266.94 164.69 500.54 5.46 1949.85 1199.48 482.86 41.88
Q = 0.80 42.27 63.33 494.77 6.04 159.83 133.75 527.87 5.89 1188.59 775.00 494.77 30.06
Q = 0.85 30.73 59.45 490.59 6.12 109.93 127.07 515.51 6.08 505.96 374.22 490.59 42.16
Q = 0.90 21.73 28.98 523.85 5.72 62.38 61.87 567.16 5.56 130.05 101.08 523.85 41.76
Q = 0.95 25.47 18.08 558.28 5.83 64.09 38.03 573.17 5.74 157.96 18.08 558.28 78.00



Chapter 10

Conclusion

In this work we studied structure analysis for the BFnS problem. We first
showed that unlike random instances, industrial BFnS instances admit very
high VIG modularity. This motivated us to provide methods that can allow
us to better understand VIG modularity for BFnS. One of the methods is
ModQBF , a BFnS instance generator that provides random instances with
a desired VIG modularity. Using ModQBF we showed that VIG modularity
affects the performance of various state-of-the-art BFnS solvers. Specifically,
the run-time for some of these solvers decreases dramatically as modularity
increases. Another method for structure analysis that we showed, is how
to white-box the solvers to mark designated iteration points in the solvers
process in order to monitor the ongoing change in the instance structure
through the BFnS solving process. Using that, we were able to show various
behaviors of interest, that relate tools performance to VIG modularity.
A point to consider is how well can ModQBF simulate industrial instances.
While ModQBF can be adjusted to generate instances with VIG modularity
set to Q = 0.75, same as the average VIG modularity of industrial instances,
we believe that there may be more properties that industrial instances may
posses that we did not yet capture. As evidence, we found that the execution
of BFSS on ModQBF almost always never reached step 2 of its process.
This is while for industrial benchmarks BFSS reached step 2 for roughly 17
percent of the cases. Obviously more research is required in this case.
Finally, as this work is inspired by modularity analysis for SAT, there is
the question of how much the current impact of modularity analysis in SAT
solvers, reflects on future deployment of structure analysis in BFnS solvers.
One must remember however, that the BFnS research is far behind SAT,
which enjoys much more attention and has current solving tools that are suf-
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ficiently good for many real-world problems. Due to this distinction, analyses
that have proven to improve SAT solvers, even if minutely, may yet prove to
be beneficial for the problem of BFnS. In that aspect, this work is the first
step towards potentially utilizing structure analysis in the area of BFnS.
A point should be made that the use of modularity and community structure
in the analysis of SAT has conflicting evidence to its relevance. However,
as the tool of community structure has been studied this past decade in
various ways by various groups and all concluded in publish-worthy papers
describing new insights on SAT, this work has its place in the world of BFnS
as the pioneering venture into the field of analysis of BFnS instances as an
insightful tool. Not all insights are yet pointed out and not all potential is
yet realized, but future works building upon this work will tackle all those
questions and more.
At this current point in time this work presents more questions than it an-
swers, and the case could be made that many more questions should be
posed.Questions like: is there any semantic interpretation to the different
representations of instances? What does high modularity mean for BFnS
instances? What does it mean for a benchmark to increase its modularity
when going through a certain solver? are all questions we do not have many
more answers for than insights and gut feelings this work already suggested.
As in other areas in computer science, we may find ways to exploit the var-
ious properties of BFnS instances graph structures long before interpreting
their meaning to the full extent.
Time will tell if the field of BFnS will benefit from mimicking trends from
the field of SAT. If this work is any reference - there is reason for optimism
that it will, and that is good news, due to the uneven amount of attention
between both fields. This work will continue, because the raw potential in
using the world of SAT as a compass to navigate the world of BFnS is yet to
be realized, and will require more studies that will begin to answer some of
the questions posed above.
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תקציר

בוליאני ממפרט בוליאניות פונקציות של היצירה בעית היא הבוליאנית הסינתזה בעיית
למשל כמו רבים, שימושים זו ולבעיה מאחר ופלט. קלט משתני בין קשרים המתאר
סינתזה וכן לעייפה מכומתות בוליאניות נוסחאות פתרון מודפסים, מעגלים בעיצוב
הבוליאנית. הסינתזה בעיית את ולחקור להבין מאמצים העת כל נעשים - ריאקטיבית
ניתוח ידי על הבוליאנית הסינתזה בעיית של ההבנה את המעמיק מחקר ישנו זו, בעבודה
מרצף מונעת זו עבודה הבוליאנית. הסינתזה בעיית של למופעים אופיניים גרפים מבני של
מקבילים, גרפים של תכונות בהן SAT, הבוליאנית, הספיקות בעיית של בעולם עבודות
של הביצועים את להבין מנת על מחקרי כלי שימשו גרפים, של מודולריות למשל כמו
האמיתי. מהעולם המגיעים הבעיה, של תעשייתיים מופעים על SAT לבעיית פתרון כלי

מופעים הבוליאנית, הסינתזה בעיית של אקראיים ממופעים בשונה כי נראה ראשית,
הגרפים עבור גבוהה גרף מודולריות מציגים האמיתי" "מהעולם מופעים או תעשייתיים
של במקרה שנמצא מכפי יותר משמעותית בצורה ואף זו, בעבודה המנותחים המייצגים
סינתזה מופעי של אקראי מחולל נציג כך, לאור לעיל. המוזכר העבודות ברצף SAT בעיית
לחקור מנת על בו ונשתמש מבוקשת, מודולריות עם מופע חילול מאפשר אשר בוליאנית,
על הבוליאנית הסינתזה בעיית של מופע עבור מייצג גרף מודולריות של ההשפעה את
המנוע" למכסה "מתחת נציץ לבסוף, הבעיה. עבור מודרניים פתרון כלי של ביצועיהם
הם צורה באיזו לקבוע מנת על פתרון כלי אותם של הפנימי המימוש תוך אל ונביט

הפתרון. תהליך לאורך מופע של מודולריות על ומשפיעים מושפעים
על ישיר באופן משפיעה מופע של מודולריות כי מעידים זה מחקר של הממצאים

מופע. על והתנהגותם פתרון כלי של הביצועים

i
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