
הפתוחה האוניברסיטה
המחשב ולמדעי למתמטיקה המחלקה

עלומה להעברה מבוזרים פרוטוקולים
עלומה פולינומים והערכת

תואר לקבלת מהדרישות כחלק הוגשה זו תזה עבודת
המחשב במדעי M.SC. למדעים״ ״מוסמך

הפתוחה באוניברסיטה
המחשב ומדעי למתמטיקה המחלקה

על־ידי
אריה בן אביעד

טסה תמיר פרופ׳ בהנחיית

2023 נובמבר



תקציר

,(SECURE MULTI־PARTY COMPUTATION ־ MPC) בטוח רב־משתתפים חישוב
פונקציה לחישוב ופרוטוקולים, בשיטות העוסק בקריפטוגרפיה, ענף הוא
שלהם. הקלטים פרטיות את המשמר באופן משתתפים, מספר בין מוסכמת
המחזיקים משתתפים רק מערבים MPCב־ כלל בדרך המקובלים הפרוטוקולים
מערבים הפרוטוקולים זאת, לעומת מבוזר, MPCב־ המחושבת. לפונקציה בקלט
להחשף מבלי הנדרש בחישוב לעזור היא שמטרתם ״מתווכים״ שרתים גם
מספר מציגים אנו זו בעבודה המחושבת. לתוצאה או הפרטיים לקלטים
של בבעיה מתחילים אנו יסודיות. בעיות למספר מבוזרים MPC פרוטוקולי
ומציגים (DISTRIBUTED SCALAR PRODUCT ־ DSP) מבוזרת״ סקלרית ״מכפלה
פרטיים, וקטורים שני של סקלרית מכפלה לחישוב פרטיות משמר פרוטוקול
בD־ משתמשים אנחנו מכאן לאחר פרטיות. המשמר באופן מתווכים, בסיוע
־ OT) עלומה העברה של בעיות למגוון מבוזרים MPC פרוטוקולי עבור PS
עלומה העברה , N מתוך סודות K של עלומה העברה :(OBLIVIOUS TRANSFER
.(GENERAL OT ־ GOT) כללית עלומה והעברה ,(PRICED OT ־ POT) מתומחרת
עלומה פולינומים הערכת עבור DSPב־ להשתמש איך מראים אנחנו בנוסף
רבי־משתנים פולינומים והערכת , (OBLIVIOUS POLYNOMIAL EVALUATION ־ OPE)
בכל .(OBLIVIOUS MULTIVARIATE POLYNOMIAL EVALUATION ־ OMPE) עלומה
פרטיים, וקטורים שני להם אשר ובוב, אליס משתתפים,: שני יש שלנו הבעיות
מחוייב מהבעיות אחת בכל ביניהם. הסקלרית המכפלה הוא הרצוי והפלט
הוא מהעבודה מהותי חלק כן, על מסוימת. צורה בעל וקטור לשלוח בוב
וקטור הוא בוב של שהווקטור לוודא למתווכים המאפשרות שיטות בתכנון
הוקטור על נוסף דבר כל ילמדו שהם מבלי וזאת הנדונה, הבעיה עבור חוקי
להעברה מבוזרות שיטות שהציגו קודמים מחקרים שיש בעוד כן, על בוב. של
שהם הראשונים הם שלנו הפרוטוקולים עלומה, פולינומים והערכת עלומה
מציגים שאנו הפרוטוקולים בוב. המקבל, של זדונית התנהגות כנגד בטוחים
פולינומים ולהערכת והכללית המתומחרת העלומה ההעברה לבעיות כאן
שלנו הפרוטוקולים כל אלה. בבעיות שמטפלים הראשונים הם רבי־משתנים
בטיחות מספקים הם כן ועל שמיר, של הסודות שיתוף סכמת על מתבססים

יעילים. מאד גם והם המתווכים, בקרב הגון רוב הנחת תחת מושלמת



תודות

כתיבת לפרסום. הנועד אקדמאי מאמר כותב אני שבה בחיי ראשונה פעם זו
רבים. אתגרים עם אותי הפגישה התזה

במהלך אותי שהנחה טסה, תמיר לפרופ׳ וראשונה בראש להודות רוצה אני
זמין תמיד שהיית כך על ליבי מעומק תמיר לך מודה אני התזה. כתיבת
הקריפטוגרפיה בעולם שלי ההתעניינות את למקד לי שעזרת על וסבלני,
שלא. מה את בצד ולהשאיר שחשוב, מה את ולמצות לסנן אותי ודחפת
שאלות אינספור ועל רבים נושאים על איתי לעבור רבה סבלנות לך הייתה
לבקש יכולתי לא ומכבד. סבלני באופן למיקוד להגיע לי ולעזור תיאורטיות

ענקית. תודה לך חב אני התזה. לכתיבת יותר טוב מנחה

שהיה והתזה, התואר במהלך בי שתמכה למשפחתי גם להודות רוצה אני
התמיכה האחרונות. בשנים שחוויתי המשמעותיים מהאתגרים אחד ספק ללא
האתגרים את ולצלוח שלפני במשימה להתמקד לי ואפשרה גב לי נתנה שלכם

התואר. של הרבים



Distributed Protocols for Oblivious Transfer and
Polynomial Evaluation

Aviad Ben Arie[0009−0002−9680−4494] and Tamir Tassa[0000−0001−9681−8824]

The Open University of Israel, Ra’anana, Israel
tamirta@openu.ac.il

Abstract. A secure multiparty computation (MPC) allows several par-
ties to compute a function over their inputs while keeping their inputs
private. In its basic setting, the protocol involves only parties that hold
inputs. In distributed MPC, there are also external servers who perform
a distributed protocol that executes the needed computation, without
learning information on the inputs and outputs. Here we propose dis-
tributed protocols for several fundamental MPC functionalities. We be-
gin with a Distributed Scalar Product (DSP) protocol for computing
scalar products of private vectors. We build upon DSP in designing var-
ious protocols for Oblivious Transfer (OT): k-out-of-N OT, Priced OT,
and Generalized OT. We also use DSP for Oblivious Polynomial Evalua-
tion (OPE) and Oblivious Multivariate Polynomial Evaluation (OMPE).
All those problems involve a sender and a receiver that hold private vec-
tors and they wish to compute their scalar product. However, in each
of these problems the receiver must submit a vector of a specified form.
Hence, a crucial ingredient in our protocols is a sub-protocol for vali-
dating that the receiver’s vector complies with the relevant restrictions,
without learning anything else on that vector. Therefore, while previous
studies presented distributed protocols for 1-out-of-N OT and OPE, our
protocols are the first ones that are secure against malicious receivers.
Our distributed protocols for the other OT variants and for OMPE are
the first ones that handle such problems. Our protocols offer information-
theoretic security, under the assumption that the servers are semi-honest
and have an honest majority, and they are very efficient.

Keywords: Multiparty Computation · Distributed Protocols · Oblivi-
ous Transfer · Oblivious Polynomial Evaluation.

1 Introduction

Secure multiparty computation (MPC) [38] is a central field of study in cryptog-
raphy that aims at designing methods for several parties to jointly compute some
function over their inputs while keeping those inputs private. In the basic setting
of MPC, there are n mutually distrustful parties, P1, . . . , Pn, that hold private
inputs, x1, . . . , xn, and they wish to compute some joint function on their inputs,
f(x1, . . . , xn). (The function can be sometimes multi-valued and issue different
outputs to different designated parties.) No party should gain any information



2 A. Ben Arie and T. Tassa

on other parties’ inputs, beyond what can be inferred from their own input and
the output.

Typically, the only parties that participate in the protocol are those that hold
the inputs or those who need to receive the outputs. However, some studies con-
sidered a model of computation that is called the mediated model [2,3,14,19,32,35,15],
the client-server model, [9,13,21,30], or the distributed model [6,11,12,25,27,28].
Protocols in that model involve also external servers (or mediators), M1, . . . ,MD,
D ≥ 1, to whom the parties outsource some of the needed computations. The
servers perform the computations while remaining oblivious to the private inputs
and outputs. It turns out that such a distributed model of computation offers sig-
nificant advantages: it may facilitate achieving the needed privacy goals; it does
not require the parties to communicate with each other (a critical advantage in
cases where the parties cannot efficiently communicate among themselves, or do
not even known each other); in some settings it reduces communication costs;
and it allows the parties, that may run on computationally-bounded devices, to
outsource costly computations to dedicated servers [32].

In this work we focus on basic MPC problems that involve two (n = 2)
parties, Alice (the sender) and Bob (the receiver), and propose distributed
MPC protocols for their solution. In each of the studied problems, Alice’s and
Bob’s private inputs may be encoded as vectors in a vector space over a fi-
nite field Zp; specifically, a = (a1, . . . , aN ) ∈ ZN

p is Alice’s private vector and
b = (b1, . . . , bN ) ∈ ZN

p is Bob’s, for some integer N . Alice and Bob delegate to
a set of D > 2 servers, M1, . . . ,MD, secret shares in their private vectors. Sub-
sequently, the servers perform a multiparty computation on the received secret
shares in order to validate the legality of the inputs, if the problem at hand dic-
tates rules by which the input vectors must abide. If the inputs were validated,
the servers proceed to compute secret shares in the required output and then
they send those shares to Alice and/or Bob who use those shares in order to
reconstruct the required output. The computational burden on Alice and Bob is
thus reduced to secret sharing computations in the initial and final stages.

Our contribution. We begin by discussing the generic problem of scalar
product, in which the required output is the scalar product, a · b, of the two
private input vectors [16,17,37]. We propose a simple protocol in which Alice
and Bob only perform secret sharing computations while the servers perform
only local computations, without needing to communicate among themselves.
Our distributed scalar product protocol is then used in the subsequent problems
that we tackle.

Next, we consider the problem of oblivious transfer (OT) [18,29], which is a
fundamental building block in MPC [22] and in many application scenarios such
as Private Information Retrieval (PIR) [10]. We consider several variants of OT:
1-out-of-N OT [1,23,24,26], k-out-of-N OT [7], Priced OT [1], and Generalized
OT [20,33]. While several previous studies proposed distributed protocols for
1-out-of-N OT, N ≥ 2, ours is the first one that does not rely on Bob’s honesty.
Specifically, while previous distributed 1-out-of-N OT protocols enabled Bob to
learn any single linear combination of Alice’s N secret messages, our protocol



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 3

restricts Bob to learning just a single message, as mandated in OT (see our
discussion in Section 8). As for the other OT variants that we consider, we are
the first to propose distributed protocols for their solution.

Then we deal with the problem of Oblivious Polynomial Evaluation (OPE)
[26,36]. Here, Alice holds a private uni- or multi-variate polynomial f(·) and
Bob holds a private value α. The goal is to let Bob have f(α) so that Alice
learns nothing on α while Bob learns nothing on f beyond what is implied
by α and f(α). Here too, while existing distributed OPE protocols allow Bob
to learn any single linear combination of f ’s coefficients (and thus amount to
protocols of distributed scalar product) ours is the first one that restricts Bob
to learning only point values of f , at a point of his choice. We are also the
first to propose a distributed protocol for OMPE — Oblivibious Multivariate
Polynomial Evaluation.

Our OT and OPE protocols demonstrate the advantages that the distributed
model offers. The delegation of computation to dedicated servers significantly
simplifies computations that are typically more involved when Alice and Bob
are on their own. The bulk of the computation is carried out by the servers,
while Alice and Bob are active only in the initial and final stages, that are
computationally lean. Another prominent advantage of the distributed model is
that it enables carrying out all of the MPC problems that we consider even when
Alice and Bob do not know each other and thus cannot communicate among
themselves. In fact, Alice can complete her part in the protocol well before Bob
starts his. For example, if Alice is a data custodian that holds some database,
her private vector could hold decryption keys for the items in her database. The
other party, Bob, can be any client that wishes to retrieve one of the items in
that database, while keeping Alice oblivious of his choice, which is encoded in his
private vector. Alice and Bob can use our various OT protocols for that purpose.
But as they need to communicate only with the servers, Bob may perform his
retrieval long time after Alice had already uploaded all information relating to
her database. Moreover, in such an application scenario there is a single Alice
but many "Bobs". While other protocols (non-distributed or even distributed)
require Alice to be responsive to each Bob, our protocols allow Alice to act just
once, at the initialization stage, while from that point onward only the servers
deal with each of the future requests of potential clients (Bob). Our distributed
OMPE protocol also offers such advantages.

We assume that the servers are semi-honest and have an honest majority.
Namely, the servers follow the prescribed protocol, but a minority of the servers
may collude among themselves or with Alice or Bob and share their views in
the protocol. Under these assumptions our protocols are information-theoretic
secure and provide unconditional security to both Alice and Bob, even when
some of the parties collude.

Outline of the paper. Section 2 provides the relevant cryptographic prelim-
inaries and assumptions. In Section 3 we describe our distributed scalar product
protocol. Section 4 is devoted to the various distributed OT protocols. In Section
5 we present the OMPE protocol. We analyze the communication complexity of



4 A. Ben Arie and T. Tassa

all protocols in Section 6, and report experimental results in Section 7. In Section
8 we review the prior art on distributed OT and OPE protocols and compare
those protocols to ours. We conclude in Section 9.

2 Preliminaries

Secret sharing. The main idea in our protocols for solving the various MPC
problems discussed herein is to use secret sharing. Alice and Bob distribute
among the D servers, M1, . . . ,MD, shares in each entry of their private vectors,
using t-out-of-D Shamir’s secret sharing scheme [31], with

t = ⌊(D + 1)/2⌋ . (1)

(Hereinafter we shall refer to such sharing as (t,D)-sharing.) Namely, Alice
generates for each entry an, n ∈ [N ] := {1, . . . , N}, a polynomial fA

n (x) =

an +
∑t−1

i=1 αix
i, where αi are secret random field elements, and then she sends

to Md the value [an]d := fA
n (d), d ∈ [D] := {1, . . . , D}. Bob acts similarly. The

servers then execute some distributed computation on the received shares in or-
der to arrive at secret shares in the needed output. At the end, they distribute
to Alice and/or Bob shares in the desired output from which Alice and/or Bob
may reconstruct that output. The underlying field Zp is selected so that p is
larger than all values in the underlying computation.

Computing arithmetic expressions in shared secrets. In our protocols we
will need to securely compute arithmetic expressions of shared secrets, where the
expressions are degree two polynomials in the secrets (namely, they are sums of
addends, each involving at most one multiplication of two secrets). We proceed
to describe how we execute such computations.

First, we recall that secret sharing is affine in the following sense: if s1 and
s2 are two secrets that are independently (t,D)-shared among M1, . . . ,MD, and
a, b, c are three public field elements, then the servers can compute shares in
as1 + bs2 + c. Specifically, if [si]d is Md’s share in si, i = 1, 2, d ∈ [D], then
{a[s1]d + b[s2]d + c : d ∈ [D]} is a proper (t,D)-sharing of as1 + bs2 + c.

We turn to discuss the multiplication of shared secrets. Assume that the
servers hold (t,D)-shares in si, i = 1, 2, where Md’s share in si is [si]d. Assume
that each server Md, d ∈ [D], multiplies the two shares that he holds and gets
cd = [s1]d[s2]d. It is easy to see that the set {cd : d ∈ [D]} is a (2t−1, D)-sharing
of s1s2. Therefore, the servers can recover s1s2 by computing cd = [s1]d[s2]d,
then interpolate a polynomial F of degree 2t − 2 based on {c1, . . . , cD}, and
consequently infer that s1s2 = F (0). For simplicity, we will assume hereinafter
that D is odd, in which case 2t − 1 = D. Hence, {cd = [s1]d[s2]d : d ∈ [D]}
constitute a (D,D)-sharing in s1s2.

We recall that the BGW protocol [5] enables computing polynomial func-
tions of shared secrets, where the polynomials can have any degree. The main
ingredient in the BGW protocol is the reduction of the degree of the secret shar-
ing polynomial of products of secrets back to the original degree. That is also



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 5

the most costly part of that protocol. Since for our purposes it suffices to focus
on degree two polynomials of shared secrets, we do not need to perform such a
reduction of the secret sharing polynomial’s degree and, thus, we do not invoke
the BGW protocol.

Scrambling shares. In some cases we shall perform the above described mul-
tiplication procedure when s1 and s2 are related (specifically, when s2 = s1−1).
In such cases, the above described practice is problematic since each server Md

would need to expose to his peers the product of his secret shares [s1]d[s2]d, and
due to the known relation between s1 and s2, that product of shares may reveal
information on [s1]d and [s2]d, and consequently also information on the value
of s1 and s2.

To avoid such potential information leakage, the servers perform a scrambling
of the shares {c1, . . . , cD}, in the sense that they generate a new random set of
shares {c′1, . . . , c′D} that are also (D,D)-shares in s1s2. They do that in the
following manner. Each server Md, d ∈ [D], generates a random (D,D)-sharing
of 0 and distributes the resulting shares to all servers. Subsequently, each server
adds up the zero shares that he had received from all D servers. As a result,
the mediators will hold (D,D)-shares of 0, denoted {[0]1, . . . , [0]D}, where each
share distributes uniformly in Zp. Finally, each server Md sets c′d = cd + [0]d,
d ∈ [D]. Clearly, {c′1, . . . , c′D} are also (D,D)-shares in s1s2, and their values do
not leak any information on the original shares in s1 and s2.

We note that it is essential to generate a new set of zero shares, [0]d, d ∈ [D],
for each operation of scrambling. However, it is possible to prepare such shares
offline, before running the protocol in which scrambling is needed.

Security assumptions. The servers are assumed to be semi-honest, i.e., they
follow the prescribed protocol, but try to extract from their view in the protocol
information on the private inputs. We also assume them to have an honest ma-
jority, in the sense that if some of them are corrupted by a malicious adversary,
their number is smaller than t = ⌊(D+1)/2⌋ (Eq. (1)). Hence, our protocols are
immune against a coalition of up to t− 1 servers who collude among themselves
or with Alice or Bob.

3 Distributed Scalar Product

Here we deal with the following MPC problem.

Definition 1. (DSP) Assume that Alice has a private vector a = (a1, . . . , aN ) ∈
ZN
p , and Bob has a private vector b = (b1, . . . , bN ) ∈ ZN

p . They wish to compute
their scalar product a ·b without revealing any other information on their private
vectors.

Protocol 1 solves that problem. In the first loop (Lines 1-3), Alice and Bob
distribute to the servers (t,D)-shares in each entry of their vectors. Then, each
server Md computes a (D,D)-share in an · bn for each n ∈ [N ], and subsequently
he computes a (D,D)-share in the scalar product into sd (Line 5). He then sends



6 A. Ben Arie and T. Tassa

that share to Alice and Bob (Line 6). So now Alice and Bob have a full set of
(D,D)-shares in a · b so they can recover the needed scalar product by means
of interpolation (Line 7).

Protocol 1: Distributed Scalar Product
Parameters: p - field size, N - the dimension of the vectors, D - number of

servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has a private vector a = (a1, . . . , aN ) ∈ ZN

p , Bob has a private
vector b = (b1, . . . , bN ) ∈ ZN

p .
1 forall n ∈ [N ] do
2 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
4 forall d ∈ [D] do
5 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

6 Md sends sd to Alice and Bob.
7 Alice and Bob use {s1, . . . , sD} to reconstruct a · b.

Output: Alice and Bob get a · b.

The protocol is correct and secure as we state next.

Theorem 1. Protocol 1 is correct and provides information-theoretic security
to both Alice and Bob when all servers are semi-honest and have an honest
majority. Moreover, a coalition of one of the parties (Alice or Bob) with any
subset of t− 1 servers does not yield any information beyond what is implied by
that party’s input and the output.

Proof. The correctness of the protocol follows from our assumption that the
servers are semi-honest and from the discussion in Section 2, namely that if
{[si]d : d ∈ [D]} is a (t,D)-sharing of si, i = 1, 2, then {[s1]d · [s2]d : d ∈ [D]}
is a (D,D)-sharing of s1 · s2. The honest majority assumption ensures that
the maximal number of colluding servers is t − 1, where t is the secret sharing
threshold, Eq. (1). Hence, the information-theoretic security of Shamir’s secret
sharing scheme implies that Protocol 1 provides information-theoretic security
for both Alice and Bob.

We now turn to prove the second claim. Assume that Bob colludes with
t − 1 servers in attempt to reap some additional information beyond what is
implied by his input and the output. Bob’s input b and the output α := a · b
reveal that Alice’s vector is any vector in the (N − 1)-dimensional affine space
V := {a ∈ ZN

p : a · b = α}. Assume that Bob colludes with t − 1 servers, say
M1, . . . ,Mt−1. We need to prove that the information that the servers contribute
does not yield any further information. The case b = 0 is straightforward, since
then Bob contributes nothing to the servers, and by the first part of the theorem,
a coalition of t − 1 servers learns no information on the private inputs. Hence,
we focus on the case where b ̸= 0. We may assume, without loss of generality,
that bN = 1. We will show that in such a case, the information that Bob and



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 7

M1, . . . ,Mt−1 hold together allow an, 1 ≤ n ≤ N − 1, to be any value in Zp;
that implies that a can be any vector in V .

Denote the secret sharing polynomial that Alice used for hiding an by fn(x) =∑t−1
j=0 cn,jx

j , where cn,0 = an, n ∈ [N ]. Then server Md contributes the following
N linear equations about the tN unknowns {cn,j : 0 ≤ j ≤ t− 1, n ∈ [N ]}:

t−1∑
j=0

cn,jd
j = fn(d) , n ∈ [N ] , 1 ≤ d ≤ t− 1 . (2)

To those (t− 1)N equations in the tN unknowns Bob adds a single equation
N∑

n=1

cn,0bn = α . (3)

In order to prove that the partial system of (t−1)N +1 linear equations in Eqs.
(2)+(3) allows (a1, . . . , aN−1) = (c1,0, . . . , cN−1,0) to be any vector in ZN−1

p

we show that it is possible to add to that partial system the following N − 1
equations,

cn,0 = γn , 1 ≤ n ≤ N − 1 , (4)
and it will be solvable, for any arbitrary selection of γn, 1 ≤ n ≤ N − 1. Indeed,
the resulting system of tN equations in tN unknowns has the form Mc = r
where the matrix of coefficients, the vector of unknowns, and the right hand side
vector are as shown below.
• M is an N ×N matrix of t× t blocks that is structured as follows:

M :=



Vt 0 0 · · · 0 0
0 Vt 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · Vt 0
0 0 0 · · · 0 Vt−1

b1 b2 b3 · · · bN−1 bN


. (5)

The first N − 1 rows in Eq. (7) consist of t× t blocks where Vt is the following
Vandermonde matrix

Vt =


1 1 1 · · · 1
1 2 22 · · · 2t−1

...
...

...
...

...
1 t− 1 (t− 1)2 · · · (t− 1)t−1

1 0 0 · · · 0

 .

The Nth row in Eq. (7) consists of (t− 1)× t blocks, where Vt−1 is the Vander-
monde block of dimension (t− 1)× t,

Vt−1 =


1 1 1 · · · 1
1 2 22 · · · 2t−1

...
...

...
...

...
1 t− 1 (t− 1)2 · · · (t− 1)t−1

 . (6)



8 A. Ben Arie and T. Tassa

Finally, the last row in M , Eq. (7), is a single row in which bn is the t-dimensional
row vector (bn, 0, . . . , 0), n ≤ [N ]. Hence, M is a lower triangular block matrix,
where the blocks on its diagonal are Vt (recall that we assumed that bN = 1).
• The vector of unknowns is c = (c1, . . . , cN )T , where cn = (cn,0, cn,1, . . . , cn,t−1),

n ∈ [N ].
• The right hand side vector is r = (r1, . . . , rN )T , where rn = (fn(1), . . . , fn(t−

1), γn), for 1 ≤ n ≤ N − 1, while rN = (fN (1), . . . , fN (t− 1), α).
Since detM = (detVt)

N ̸= 0, the system of equations has a unique solution
for any selection of (γ1, . . . , γN−1). Hence, the joint view of Bob and the t − 1
servers still allows a to be any vector in V = {a ∈ ZN

p : a · b = α}. 2

4 Distributed Oblivious Transfer

In this section we consider several variants of the Oblivious Transfer (OT) pro-
tocol. We begin with the basic variants of 1-out-of-N and k-out-of-N OT in
Section 4.1. We then discuss Priced OT (Section 4.2). Finally, we consider the
case of Generalized OT in Section 4.3.

4.1 k-out-of-N Oblivious Transfer

The problem that we consider here is the following:

Definition 2. (OTN
k ) Assume that Alice has a set of N messages, m1, . . . ,mN ∈

Zp. Bob wishes to learn k of those messages, say mj1 , . . . ,mjk , for some j1, . . . , jk ∈
[N ]. A k-out-of-N Oblivious Transfer (OTN

k ) protocol allows Bob to learn mj1 , . . . ,mjk ,
and nothing beyond those messages, while preventing Alice from learning any-
thing about Bob’s selection.

We begin by considering the case k = 1 and then we address the general
case. The OTN

1 problem can be reduced to DSP (Section 3) if Alice sets a :=
(m1, . . . ,mN ) and Bob sets b := ej (the unit vector that consists of N − 1 zeros
and a single 1 in the jth entry, where j is the index of the message that Bob
wishes to retrieve). However, the DSP protocol cannot be executed naïvely, since
Bob may cheat and send to the servers shares in a vector that is not a unit vector
and, consequently, he may obtain some linear combination of the messages, and
not just a single message as dictated by the OT definition. Such an abuse of
the protocol may sometimes enable a malicious Bob to learn more than just
one message. For example, if Bob happens to know that m1 belongs to some
one-dimensional subspace of ZN

p while m2 belongs to another one-dimensional
subspace of ZN

p , then by choosing to learn the linear combination m1 +m2 he
will be able to infer both m1 and m2. To that end, the DSP protocol can be
executed only after the servers apply some preliminary validation protocol:

Definition 3. (DVV) Assume that the servers M1, . . . ,MD hold (t,D)-shares
in a vector v ∈ ZN

p . Let W be a subset of ZN
p . A Distributed Vector Validation

(DVV) protocol is a protocol that the servers may execute on their shares that



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 9

outputs 1 if v ∈W and 0 otherwise, and reveals no further information on v in
the case where v ∈W .

In our case W = {ej : j ∈ [N ]}. The servers can validate that b ∈ W by
verifying the following two conditions: (1) bn · (bn − 1) = 0 for all n ∈ [N ]; and
(2)

∑
n∈[N ] bn = 1. Indeed, the first condition implies that all entries in b are

either 0 or 1, while the second condition ascertains that exactly one of the entries
equals 1. Note that if the two conditions are verified, then the servers may infer
that Bob’s vector is legal, but nothing more than that, as desired. Namely, if Bob
is honest then his privacy is fully protected. However, if Bob is dishonest and
distributed shares in a vector b /∈ W , then the above described DVV protocol
will reveal some additional information on b; however, that is acceptable since
by acting dishonestly Bob looses his right for privacy.

Protocol 2 implements those ideas. After Alice and Bob set their vectors and
distribute shares in them to the servers (Lines 1-5), the servers validate Bob’s
vector for compliance with conditions 1 (Lines 6-12) and 2 (Lines 13-17). (The
scrambling operation in Line 8 is as discussed in Section 2.) If Bob’s vector was
validated, they compute (D,D)-shares in the scalar product and send them to
Bob so that he can recover the scalar product that equals his message of choice
(Lines 18-21).

For a general k > 1, it is possible to solve OTN
k by running Protocol 2 k

times, with one exception: Alice needs to distribute shares in her vector only
once (Lines 1 and 4 in Protocol 2). We proceed to describe another solution that
is more efficient in terms of communication complexity.

Protocol 3 multiplies Alice’s vector a := (m1, . . . ,mN ) with the vector b =∑k
i=1 eji where 1 ≤ j1 < . . . < jk ≤ m are the indices of the k messages that Bob

wishes to retrieve. But instead of computing their scalar product,
∑N

n=1 anbn,
the protocol computes shares in the products anbn for all n ∈ [N ] and sends
them to Bob. Bob then uses the shares of anbn only for n ∈ {j1, . . . , jk} in order
to recover the requested messages.

Here, the DVV sub-protocol consists of verifying two conditions: that bn ·
(bn− 1) = 0 for all n ∈ [N ], and that

∑
n∈[N ] bn = k. The first condition implies

that all entries in b are either 0 or 1, while the second condition ascertains that
exactly k of the entries equal 1.

After Alice and Bob set their vectors and distribute shares in them to the
servers (Lines 1-5), the servers validate Bob’s vector for compliance with con-
ditions 1 (Lines 6-12) and 2 (Lines 13-17). If Bob’s vector was validated, they
compute (D,D)-shares in each of the N products between the components of the
two vectors and send them to Bob (Lines 18-21) for him to recover the requested
k messages (Lines 22-23).

The communication complexity of Protocols 2 and 3 as well as of the proto-
cols that we present later on (for Priced OT, Generalized OT, and OMPE) is
discussed in Section 6.

Theorem 2. Protocols 2 and 3 are correct and provide information-theoretic
security to both Alice and an honest Bob when all servers are semi-honest and



10 A. Ben Arie and T. Tassa

Protocol 2: 1-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has a selection index j ∈ [N ].

1 Alice sets a = (m1, . . . ,mN ).
2 Bob sets b = ej .
3 forall n ∈ [N ] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets cd = [bn]d · ([bn]d − 1).
8 The servers perform scrambling of (c1, . . . , cD) and compute a new set of

(D,D)-shares in bn · (bn − 1), denoted (c′1, . . . , c
′
D).

9 Each Md, d ∈ [D], broadcasts c′d.
10 The servers use (c′1, . . . , c

′
D) in order to compute ω := bn · (bn − 1).

11 if ω ̸= 0 then
12 Abort
13 forall d ∈ [D] do
14 Md computes cd ←

∑
n∈[N ][bn]d.

15 The servers use any t shares out of {c1, . . . , cD} to compute ω :=
∑

n∈[N ] bn .
16 if ω > 1 then
17 Abort
18 forall d ∈ [D] do
19 Md computes sd ←

∑
n∈[N ] ([an]d · [bn]d).

20 Md sends sd to Bob.
21 Bob uses {s1, . . . , sD} to reconstruct a · b = mj .

Output: Bob gets mj .

have an honest majority. Moreover, a coalition of one of the parties (Alice or
Bob) with any subset of t−1 servers does not yield any information beyond what
is implied by that party’s input and the output.

Proof. The proof of the first part goes along the same lines as the proof of
the first part of Theorem 1. The only distinction is that in Protocols 2 and
3 Bob may act dishonestly by submitting an illegal vector (while in Protocol
1 Bob, like Alice, is not restricted in any way). As we noted earlier, if Bob
acts dishonestly the servers may infer information on the way he cheated. For
example, if bn /∈ {0, 1} then the value bn · (bn − 1) allows the servers to learn
that bn is one of two values. As stated in the theorem, the protocol preserves
the privacy of Bob only when he is honest.

The proof of the second part for Protocol 2 is the same as the proof of the
second part in Theorem 1. The proof for Protocol 3 is different, since the output
that Bob receives is k out of the N messages, and not a single linear combination
as in Protocols 1 and 2. Assume, without loss of generality, that the k messages
that Bob selected are mn, N − k + 1 ≤ n ≤ N . In that case Bob and the t − 1
servers with whom he colluded (say, M1, . . . ,Mt−1) can reduce the system of



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 11

Protocol 3: k-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has selection indices

1 ≤ j1 < . . . < jk ≤ N .
1 Alice sets a = (m1, . . . ,mN ).
2 Bob sets b = (b1, . . . , bN ), where bn = 1 for n ∈ {j1, . . . , jk} and bn = 0

otherwise.
3 forall n ∈ [N ] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets cd = [bn]d · ([bn]d − 1).
8 The servers perform scrambling of (c1, . . . , cD) and compute a new set of

(D,D)-shares in bn · (bn − 1), denoted (c′1, . . . , c
′
D).

9 Each Md, d ∈ [D], broadcasts c′d.
10 The servers use (c′1, . . . , c

′
D) in order to compute ω := bn · (bn − 1).

11 if ω ̸= 0 then
12 Abort
13 forall d ∈ [D] do
14 Md computes cd ←

∑
n∈[N ][bn]d.

15 The servers use any t shares out of {c1, . . . , cD} to compute ω :=
∑

n∈[N ] bn .
16 if ω ̸= k then
17 Abort
18 forall d ∈ [D] do
19 forall n ∈ [N ] do
20 Md computes [cn]d ← [an]d · [bn]d.
21 Md sends [cn]d to Bob.
22 forall n ∈ {j1, . . . , jk} do
23 Bob uses {[cn]1, . . . , [cn]D} to reconstruct cn = an · bn = mn.

Output: Bob gets mj1 , . . . ,mjk .

linear equations from tN unknowns to t(N −k) unknowns, c = (c1, . . . , cN−k)
T ,

where cn = (cn,0, cn,1, . . . , cn,t−1), 1 ≤ n ≤ N−k, are the coefficients of the share
generating polynomials that Alice used for hiding mn = cn,0, 1 ≤ n ≤ N − k.
The matrix of coefficients in the system of (t− 1)(N − k) linear equations that
Bob and the servers hold in those t(N − k) unknowns is

M :=


Vt−1 0 0 · · · 0
0 Vt−1 0 · · · 0
...

...
...

...
...

0 0 0 · · · Vt−1

 , (7)

where M consists of (N − k)× (N − k) blocks of dimension (t− 1)× t and Vt−1

is as in Eq. (6). That system can be augmented with the additional N −k linear



12 A. Ben Arie and T. Tassa

equations
cn,0 = γn , 1 ≤ n ≤ N − k ,

for any arbitrary selection of (γ1, . . . , γN−k), and the augmented system will
have a unique solution. That proves that also here, a collusion of Bob with any
t − 1 servers does not yield additional information on the remaining messages.
2

In Appendix A we describe an alternative 1-out-of-N Oblivious Transfer
protocol that is also based on DSP. In that protocol, the DVV process is replaced
by another mechanism that is based on an idea that was presented by Naor and
Pinkas in [27] for their 1-out-of-2 OT protocol. The advantage in that protocol
is that it does not require the servers to communicate with each other. However,
on the down side, it enforces Alice to be responsive to any OT request of any
client (Bob), as opposed to Protocol 2 in which Alice finishes her part in the
initial phase.

4.2 Priced Oblivious Transfer

Consider a setting of OT in which each of Alice’s messages has a weight and
the retrieval policy allows Bob to learn any subset of messages in which the sum
of weights does not exceed some given threshold. For example, if Alice holds a
database of movies and each movie has a price tag, then if Bob had prepaid
some amount, Alice wishes to guarantee that he retrieves movies of aggregated
cost that does not exceed what he had paid, while Bob wishes to prevent Alice
from knowing what movies he chose to watch.

Definition 4. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
Assume that each massage mn has a weight wn ≥ 0, n ∈ [N ], and let T > 0
be some given threshold. Then a Priced OT protocol allows Bob to retrieve any
subset B ⊆ U for which

∑
mn∈B wn ≤ T . Bob cannot learn any information on

the messages in U \B, while Alice has to remain oblivious of Bob’s choice.

We assume that the weights w1, . . . , wN are publicly known, since they rep-
resent information that is supposed to be known to all. The threshold T , on the
other hand, represents the amount that Bob had paid and, therefore, it is private
and should remain so.

Protocol 4 executes Priced OT. It coincides with Protocol 3 except for the
second part of the DVV sub-protocol (Lines 13-17). If in Protocol 3 the servers
obliviously verified in that part that

∑
n∈[N ] bn ≤ k, then here it is necessary

to obliviously verify that
∑

mn∈B wn =
∑

n∈[N ] wnbn ≤ T . (Recall that in Lines
6-12 in Protocol 3 we have already verified that bn ∈ {0, 1}, for all n ∈ [N ].) To
enable that verification, the protocol starts by publishing the vector of weights
(Line 1). Then, both Alice and Bob distribute to the servers (t,D)-shares in T
(Lines 2-3) and then the servers verify that the two underlying thresholds equal,
without recovering that threshold (Lines 4-7). Those steps are necessary in order
to ascertain that Alice and Bob agree on the same value of the threshold, before



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 13

using that value in the DVV sub-protocol. (Namely, Bob is ascertained that
Alice did not provide a too low value of T while Alice is ascertained that Bob
did not provide a too high value of T ).

The core of the protocol is the execution of the OTN
k protocol - Protocol 3

(Line 8). That protocol is executed as is except for the replacement of Lines 13-17
there with Sub-protocol 5. The sub-protocol begins with the servers computing
(t,D)-shares in the difference e := T −

∑
n∈[N ] wnbn (Lines 1-2). Then, any

subset of t servers can recover e (Line 3). Finally, if e ̸= 0 the protocol aborts
(Line 4), while otherwise it proceeds towards completing the transfer.

Note that Bob is allowed to retrieve any subset of messages of aggregated
weight at most T . Sub-protocol 5, however, assumes that Bob had requested a
subset of messages of aggregated weight that equals exactly T . Such an equality
can be guaranteed as we proceed to describe. First, Bob can add to his list of
requested messages additional redundant messages that he will ignore later on.
By adopting such a practice, the difference e = T −

∑
n∈[N ] wnbn can be made

a nonnegative number smaller than w := maxn∈[N ] wn. Assume that w < 2ℓ,
for some ℓ > 0. Then Alice may add ℓ phantom messages m̂i, 0 ≤ i < ℓ, with
the weights 2i, to her list of messages. Consequently, Bob will add to his list of
requested messages also the subset of phantom messages of which the sum of
weights equals exactly e. That way, the servers will always recover in Line 3 in
Sub-protocol 5 the value 0.

The Case of Secret Weights Even though the weights of messages are typi-
cally public, it is possible to modify the protocol so that also the weights remain
hidden from the servers. To do that, instead of publishing the vector of weights
w (as done in Line 1 of Protocol 4), Alice would distribute to the servers (t,D)-
shares in them. Let [wn]d denote Md’s share in wn, d ∈ [D], n ∈ [N ]. Then, in
Sub-protocol 5, Line 2 will be replaced with [e]d ← [T ]d −

∑
n∈[N ][wn]d[bn]d. As

discussed in Section 2, the set {[e]1, . . . , [e]D} is a set of (D,D)-shares in e. The
servers may use those shares in order to reconstruct e = T −

∑
n∈[N ] wnbn. No

further changes are required.
As Protocol 4 coincides with Protocol 3 where only the DVV part is slightly

modified. Theorem 2 applies also to that protocol, in both cases (public or secret
weights).

4.3 Generalized Oblivious Transfer

Ishai and Kushilevitz [20] presented an extension of OT called Generalized Obliv-
ious Transfer (GOT). As in the basic version of OT, Definition 2, we consider
a setting with two parties, Alice and Bob. Alice has a set of N messages,
m1, . . . ,mN , that can be viewed as elements in a finite field Zp. Bob wishes
to learn a subset of those messages, according to some retrieval policy. In OTN

k ,
the policy restricted Bob to learn any subset of at most k messages. In GOT the
policy is extended as described below.



14 A. Ben Arie and T. Tassa

Protocol 4: Priced Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}, and corresponding weights wn ≥ 0,

n ∈ [N ]; Bob has a set of selection indices j1, . . . , jk ∈ [N ]; Alice and
Bob have T ≥ 0.

1 Alice publishes the vector of weights w = (w1, . . . , wN ).
2 Alice sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ′]d.
4 forall d ∈ [D] do
5 Md computes [e]d ← [T ]d − [T ′]d.
6 The servers use any t shares out of {[e]1, . . . , [e]D} to compute e = T − T ′.
7 if e ̸= 0 then Abort.
8 Alice, Bob and the servers execute Protocol 3 in which Lines 13-17 are

replaced with Sub-protocol 5.
Output: Bob gets {mj1 , . . . ,mjk} iff

∑k
i=1 wji ≤ T .

Sub-protocol 5: Priced OT: verifying that
∑k

i=1 wji ≤ T .
1 forall d ∈ [D] do
2 Md computes [e]d ← [T ]d −

∑
n∈[N ] wn[bn]d.

3 The servers use any t shares out of {[e]1, . . . , [e]D} to compute
e = T −

∑
n∈[N ] wnbn.

4 if e ̸= 0 then Abort.

Definition 5. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
An access structure is a collection of subsets of U , A ⊆ 2U , which is monotone
decreasing in the sense that if B ∈ A and B′ ⊂ B then also B′ ∈ A. The basis
of A, denoted A0, is the collection of all maximal subsets in A; namely, B ∈ A0

iff B ∈ A and for every B ⊊ B′ ⊆ U , B′ /∈ A.

Bob is allowed to retrieve any subset of messages B ⊂ U provided that
B ∈ A. As before, Bob cannot learn any information on the complement set of
messages, U \B, while Alice must remain oblivious to Bob’s selection.

The distributed GOT protocol that we present here, Protocol 6, is inspired by
the GOT protocol that was presented in [33], and it invokes the OTN

k protocol,
Protocol 3. Protocol 6 is designed for the case of uniform bases, namely, the case
where all subsets in A0 have the same size, denoted k. The case of non-uniform
bases can be reduced to the case of uniform bases as described in [33]. We refer
the reader to [33] for a detailed description of the simple reduction.

Let us define the monotone increasing closure of A0 as follows:

Γ = Γ (A0) = {C ⊆ U : ∃B ∈ A0, B ⊆ C} . (8)

The collection Γ is monotone increasing, in the sense that if B ∈ Γ and B ⊂
B′ ⊆ U , then also B′ ∈ Γ . Let Σ be a secret sharing scheme that realizes Γ , in



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 15

the following sense. It is a secret sharing scheme in which the set of participants
is U , and the access structure is Γ . Given a secret s, the scheme Σ assigns a
share sn to each message mn ∈ U , n ∈ [N ], so that the shares of any subset in
Γ reveal s while the shares of any other subset reveal no information on s. We
note that any monotone increasing access structure can be realized by a secret
sharing scheme, see e.g. [4].

Protocol 6 starts with Alice selecting a secret s ∈ Zp (Line 1). Then she
computes corresponding shares in s according to the access structure Γ (A0)
(Line 2). Namely, if B = {mj1 , . . . ,mjk} ∈ A0 is a set of messages that Bob is
allowed to retrieve, the corresponding set of shares, {sj1 , . . . , sjk}, can be used to
reconstruct s; otherwise, those shares reveal no information on s. Alice proceeds
to distribute to the servers (t,D)-shares in the secret s (Line 3).

Afterwards, Alice distributes to the servers (t,D) shares in two private vec-
tors: the vector of private shares (Line 4) and the vector of private messages
(Line 5). The mediators keep both sets of shares for use later on. At this point
Alice had completed her part in the protocol. The remainder of the protocol is
executed by Bob and the servers.

Bob and the servers execute a k-out-of-N OT for the k shares corresponding
to Bob’s k selected messages (Line 6). Note that at this stage Bob only retrieves
the shares sj1 , . . . .sjk but not the actual messages. He then proceeds to recon-
struct sB := s from those shares using the reconstruction function of the secret
sharing scheme Σ (Line 7). Subsequently, Bob distributes to the servers (t,D)-
shares in sB (Line 8). The servers proceed to verify that sB = sA = s without
actually recovering s (Lines 9-10). If the difference e = sA−sB is non-zero, then
Bob failed to prove that he attempted retrieving an allowed subset of messages;
in that case the protocol aborts (Line 11). Otherwise, the servers are convinced
that Bob did submit a selection vector b that corresponds to an allowed subset
of messages. Hence, they engage in the completion of the k-out-of-N OT, where
this time they use the shares in the actual messages (Line 12). As a result, Bob
retrieves his messages of choice.

If Bob acts honestly then the security guarantees of Protocol 6 are as those
of Protocol 3, see Theorem 2. However, Bob may attempt guessing the value of
s ∈ Zp. The probability of a successful guess is 1/p; in that case Bob may be
able to learn any subset of k messages. However, the probability of failing to
guess s is overwhelming — 1 − 1/p; if Bob fails in his cheating attempt then
the servers would infer that he attempted cheating and could refuse to engage
in further attempts.

Note that Alice performs secret sharing on s in two different places in Protocol
6 and in two entirely different ways. In Line 2, Alice secret-shares s among the
set of participants U = {m1, . . . ,mN} where the access structure is Γ ; the secret
sharing scheme here is Σ. Later on, in Line 6, Alice secret-shares the same value
s among the set of participants {M1, . . . ,MD}, i.e., the servers, where the access
structure is a simple t-out-of-D threshold access structure and t is as defined in
Eq. (1); the secret sharing scheme here is the standard Shamir threshold secret
sharing scheme [31]. The purpose of the first secret sharing is to ensure that Bob



16 A. Ben Arie and T. Tassa

Protocol 6: Generalized Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN} ⊂ Zp and an access structure A on U ,

with a k-uniform basis A0; Bob has indices 1 ≤ j1 < . . . < jk ≤ N ,
where B := {mj1 , . . . ,mjk} ∈ A

0.
1 Alice selects uniformly at random a secret s ∈ Zp.
2 Alice computes shares {s1, . . . , sN} ⊂ Zp in s using a secret sharing scheme Σ

that realizes the access structure Γ (A0) on U .
3 Alice distributes to the servers (t,D)-shares in sA := s; Md’s share is denoted

[sA]d, d ∈ [D].
4 Alice sets a = (s1, . . . , sN ) and then performs Lines 3+4 in Protocol 3.
5 Alice sets a = (m1, . . . ,mN ) and then performs Lines 3+4 in Protocol 3.
6 Bob and the servers execute Lines 2,3+5,6-23 in Protocol 3, where the servers

use the shares in a = (s1, . . . , sN ) that Alice had distributed to them in Line
4 above.

7 Bob recovers sB := s from {sn : n ∈ {j1, . . . , jk}} using the reconstruction
function of the secret sharing scheme Σ.

8 Bob distributes to the servers (t,D)-shares in the secret sB that he had
computed above; Md’s share is denoted [sB ]d, d ∈ [D].

9 Md, for all d ∈ [D], computes [e]d = [sA]d − [sB ]d.
10 The servers recover e := sA − sB from any t shares out of {[e]d : d ∈ [D]}.
11 if e ̸= 0 then Abort.
12 Bob and the servers execute Lines 18-23 in Protocol 3 where the servers use

the shares in a = (m1, . . . ,mN ) that Alice had distributed to them in Line 5
above.

Output: Bob gets mj1 , . . . ,mjk .

can retrieve only subsets of k messages from A0. The purpose of the second secret
sharing scheme is to enable the servers to verify that the value of s that Alice
used equals the value of s that Bob sends to them, without actually knowing s.
(In a simpler implementation, Alice could have sent the value of s to the servers,
without secret sharing. But then if Bob is able to corrupt a single server, he
could get from that server the value of s and then Bob would be able to learn
any subset of k messages. That is something that we prevent in Protocol 6 which
is secure under the assumption that the majority of servers are honest.)

Non-ideal access structures. We assumed that the access structure Γ (A0),
Eq. (8), is ideal in the sense that there exists a secret sharing scheme Σ that
realizes it in which all secret shares s1, . . . , sN are taken from the same field Zp

as the secret s. In cases where Γ (A0) is not ideal, or in cases where Γ (A0) is
ideal, but the selected secret sharing scheme Σ is not ideal1, then the shares
s1, . . . , sN cannot be taken from Zp. Assume that in such a case all shares can

1 It is possible that a non-ideal secret sharing scheme could be simpler and easier
to implement than an equivalent ideal secret sharing scheme that realizes the same
access structure.



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 17

be embedded in Zq for some prime q ≥ p. Then Protocol 6 works exactly as
described, where the execution of Protocol 3 with the vector a = (s1, . . . , sN )
will be executed over Zq.

A concluding remark. As noted earlier, Alice and Bob do not need to
be active at the same time. In all OT variants that we considered (k-out-of-N ,
Priced and Generalized OT), Alice can complete her part and then go offline;
only when the need arises, Bob can initiate the completion of the protocol. For
example, if Alice is a data custodian that serves many “Bob” clients, Alice may
complete her part and then let the servers attend to the request of any future
client Bob.

Exemplifying GOT for Compartmented Message Sets Assume that the
set of messages, U = {m1, . . . ,mN}, is split into r disjoint subsets, called com-
partments,

U =

r⋃
i=1

Ui , Ui ∩ Uj = ∅ , 1 ≤ i < j ≤ r .

Bob is allowed to retrieve messages only from one of those compartments. Hence,
the access structure here is

A = {B ⊂ U : |B| ⊆ Ui for some 1 ≤ i ≤ r} .

The basis of this access structure is A0 = {Ui : 1 ≤ i ≤ r}, and its monotone
increasing closure is

Γ = Γ (A0) = {B ⊂ U : B ⊇ Ui for some 1 ≤ i ≤ r} . (9)

The access structure in Eq. (9) is a simple case of a compartmented access
structure [8,34], namely, one in which the participants (messages) are split into
disjoint compartments, and all participants within the same compartment play
the same role in the access structure. The access structure Γ can be easily
realized as follows. (What follows is the computation that Alice does in Line 2
of Protocol 6 in case her access structure is as described above.)

Alice selects a random secret s ∈ Zp and then, for each compartment Ui,
1 ≤ i ≤ r, she will assign to all messages in that compartment random secret
shares that add up to s. Specifically, if Ui = {mjh : 1 ≤ h ≤ |Ui|} then Alice
selects uniformly at random |Ui| − 1 secret shares, sjh ∈ Zp, 1 ≤ h ≤ |Ui| − 1,
and then she sets sj|Ui|

= s−
∑|Ui|−1

h=1 sjh mod p.

5 Oblivious Polynomial Evaluation

The oblivious polynomial evaluation problem was presented in [26], and was
extended to the case of multivariate polynomials in [36]. We devise herein a
distributed protocol for the multivariate problem.

We begin by defining multivariate polynomials (Definitions 6 and 7) and then
define the corresponding MPC problem (Definition 8).



18 A. Ben Arie and T. Tassa

Definition 6. (Monomial) Let Zp be a finite field , x = (x1, . . . , xk) be a k-
dimensional vector over Zp and j = (j1, . . . , jk) be a k-dimensional vector of
nonnegative integers. Then the monomial xj is defined as xj :=

∏k
i=1 x

ji
i .

Definition 7. (Multivariate Polynomial) let Zk
+ := {j = (j1, . . . , jk) : ji ∈ Z+ =

{0, 1, 2, . . .} : 1 ≤ i ≤ k} be the set of all k-tuples of nonnegative integers, and
Zk,N
+ be the subset of Zk

+ consisting of all tuples of which the sum of components
is at most N , i.e: Zk,N

+ := {j ∈ Zk
+ : |j| :=

∑k
i=1 ji ≤ N}. An N -degree k-variate

polynomial f(x) over the field Zp, where x = (x1, . . . , xk) ∈ Zk
p, is defined as:

f(x) =
∑

j∈Zk,N
+

aj · x
j , aj ∈ Zp . (10)

Definition 8. (OMPE) Assume that Alice has an N -degree multivariate poly-
nomial f(x) = f(x1, . . . , xk), while Bob has a point α = (α1, . . . ,αk) ∈ Zk

p.
They wish to enable Bob to learn f(α), and nothing else on f , while keeping
Alice oblivious to α.

OMPE can be solved by reducing it to DSP, with the needed prior validations.
The vector that Alice will submit to the protocol consists of the coefficients of
her polynomial, a = (aj : j ∈ Zk,N

+ ). The vector that Bob will submit to the
protocol is the following:

b = (bj : j ∈ Zk,N
+ ) , where bj := αj . (11)

It is easy to see that the dimension of these vectors is
(
N+k
k

)
.

First, it is necessary to agree upfront on an ordering of Zk,N
+ so that in the

scalar product between the two vectors, each power of α will be multiplied by
the corresponding polynomial coefficient. We suggest ordering the set Zk,N

+ by
arranging its monomials into N +1 tiers, as follows. The 0th tier would be T0 :=
Zk,0
+ , and then the nth tier, n = 1, . . . , N , would be Tn := Zk,n

+ \Zk,n−1
+ ; namely,

the nth tier Tn consists of all monomials of degree exactly n ∈ {0, 1, . . . , N}.
The order within each tier would be lexicographical.

Protocol 7 starts with Alice and Bob setting their input vectors a and b in
accord with the ordering convention (Lines 1-2). Then they distribute to the
servers (t,D)-shares in them (Lines 3-5). Observe that the first entry in b, i.e.
bj for j = (0, . . . , 0), equals 1 (see Eq. (11)). Hence, in Line 5 for j = (0, . . . , 0)

Bob does not generate and distribute shares; instead, each server Md, d ∈ [D],
sets [bj]d = 1.

After completing the distribution of shares, the servers perform the relevant
DVV sub-protocol in order to validate that the secret input vector b is of the
form as in Eq. (11) (Lines 6-11). To that end we state the following lemma,
which we prove in Appendix B.

Lemma 1. The vector b = (bj : j ∈ Zk,N
+ ), where bj = 1 for j = (0, . . . , 0), is

of the form as in Eq. (11) if and only if ω = 0 in all stages of the validation loop
in Lines 6-11 of Protocol 7.



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 19

Protocol 7: Oblivious Multivariate Polynomial Evaluation
Parameters: p - field size, k-number of variables, N - the degree of the secret

polynomial f , D - number of servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has a secretN -degree k-variate polynomial f(x), Eq. (10); Bob

has a secret point α = (α1, . . . ,αk) ∈ Zk
p.

1 Alice sets a = (aj : j ∈ Zk,N
+ ), according to the ordering convention.

2 Bob sets b = (bj = αj : j ∈ Zk,N
+ ), according to the ordering convention.

3 forall j ∈ Zk,N
+ do

4 Alice sends to Md, d ∈ [D], a (t,D)-share in aj, denoted [aj]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bj, denoted [bj]d.
6 forall 2 ≤ n ≤ N do
7 forall j ∈ Tn do
8 Select a monomial h ∈ Tn−1 such that j = h + ei for some 1 ≤ i ≤ k,

where ei is the i-th unit vector.
9 The servers compute ω := bh · bei − bj.

10 if ω ̸= 0 then
11 Abort
12 forall d ∈ [D] do
13 Md computes sd ←

∑
j∈Zk,N

+

(
[aj]d · [bj]d

)
.

14 Md sends sd to Bob.
15 Bob uses {s1, . . . , sD} to reconstruct a · b = f(α).

Output: Bob gets f(α).

In the final stage of Protocol 7, the servers compute (D,D)-shares in the
scalar product and send them to Bob (Lines 12-14) who uses them in order to
recover the scalar product (Line 15).

Example. We illustrate the validation process when k = 2 and N = 2. Bob
is expected to submit here vectors of the form

b = (b(0,0), b(1,0), b(0,1), b(2,0), b(1,1), b(0,2)) = (1, α1, α2, α
2
1, α1α2, α

2
2) .

Since the first entry is always 1, and the next two entries can be anything,
validation is applied only on the last three entries — b(2,0), b(1,1), and b(0,2):

– To validate b(2,0), we observe that there is only one way to represent the
multi-index j = (2, 0) as a sum h+ ei, namely, (2, 0) = (1, 0)+ (1, 0). Hence,
the DVV sub-protocol checks whether b(2,0) = b(1,0) · b(1,0). Therefore, vali-
dation of this entry succeeds if and only if b(2,0) = α2

1.
– Similarly, b(0,2) is validated if and only if b(0,2) = α2

2.
– To validate b(1,1), we observe that j = (1, 1) = h + ei with h = (1, 0) and

ei = (0, 1) or with h = (0, 1) and ei = (1, 0). In either case, the DVV
sub-protocol checks whether b(1,1) = b(1,0) · b(0,1) = α1 · α2.

We conclude by noting that the security guarantees of Protocol 7 are as
stated in Theorem 2.



20 A. Ben Arie and T. Tassa

6 Communication Complexity

Here we discuss the communication complexity of our protocols. We measure
the complexity by counting field (Zp) elements, where each field element can be
represented by ⌈log p⌉ bits,

We separate the overall communication traffic to three parts:

– ComAM: Messages sent between Alice and the servers.
– ComBM: Messages sent between Bob and the servers.
– ComMM: Messages sent among the servers.

For Protocol 1 (DSP) we have ComAM = ComBM = (N + 1)D, since Alice
and Bob send to each of the D servers shares in each of the N entries in their
vectors and, at the end, each server sends a single share back to Alice and Bob.
As in this protocol the servers do not communicate among themselves, we have
ComMM = 0.

The communication costs of Protocol 2 for the DOTN
1 problem are as follows:

ComAM = ND (Line 4), ComBM = (N + 1)D (Line 5 and Line 20). As for the
communication between the servers, it is executed in the DVV sub-protocol.
We have here ND(D − 1) due to the first part in the validation (Line 9) and
t(D − 1) < D(D − 1) due to the second part (Line 15). In addition, the servers
have to communicate also in performing the scrambling (Line 8) in order to
generate random shares of 0. That communication can take place offline and its
cost is ND(D− 1). Hence, the overall communication cost among the servers is
ComMM = (2N + 1)D(D − 1).

We move on to Protocol 3 for the DOTN
k problem. Its communication costs

are as in Protocol 2 with one difference: at the end, Bob receives from each server
N field elements and not just one. Hence, the costs of this protocol are:

ComAM = ND, ComBM = 2ND, ComMM = (2N + 1)D(D − 1) . (12)

We note that the DOTN
k problem could also be solved by invoking Protocol 2

k times, where Alice’s part has to be executed just once. The communication
costs of this alternative course of action are:

ComAM = ND, ComBM = k(N + 1)D, ComMM = k(2N + 1)D(D − 1) . (13)

Comparing Eq. (13) to Eq. (12) we see that such an alternative course of action
is less efficient than Protocol 3 for every k ≥ 2.

Next, we consider Protocol 4 for the problem of Priced OT. That protocol
executes Protocol 3 (see Line 8 there), where part of the original DVV process
in Protocol 3 is replaced with Sub-protocol 5. That modification leaves the com-
munication costs of Protocol 3 unchanged. In addition, Protocol 4 includes Lines
1-7. Let us focus on the case where the weights are publicly known. Then Alice
has to send D shares in T and so does Bob, so that adds D to both ComAM

and ComBM. The computation in Line 6 adds t(D − 1) < D(D − 1) to ComMM.
Hence, we end up with the following costs:

ComAM = (N + 1)D, ComBM = (2N + 1)D, ComMM = 2(N + 1)D(D − 1) .



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 21

Next, we consider the Generalized OT protocol, Protocol 6. The protocol
performs OTN

k (Protocol 3) twice, once for the vector of secrets (Line 4) and
once for the vector of messages (Line 5); however, Bob’s input vector is the same
in the two OTN

k executions, so the DVV sub-protocol is executed just once (Line
6). In addition, Alice distributes to the servers shares in sA (Line 3), Bob does
the same for sB (Line 8), and the servers communicate in order to recover e
(Line 10). Adding up everything yields the following costs:

ComAM = (2N + 1)D, ComBM = (3N + 1)D, ComMM = (2N + 2)D(D − 1) .

We proceed with Protocol 7 for the OMPE problem. The dimension of Alice’s
and Bob’s vectors is Nk :=

(
N+k
k

)
, and the number of entries in Bob’s vector

that need to be verified in the DVV sub-protocol is Nk−k−1. In Lines 4+5 both
Alice and Bob send to the servers NkD shares. Then, in the DVV sub-protocol,
the servers send among themselves D(D−1) field elements Nk−k−1 times (for
reconstructing ω in Line 9 for all relevant vector entries). Finally, the servers
send to Bob D field elements (Line 14). The overall communication costs are
therefore

ComAM = NkD, ComBM = (Nk + 1)D, ComMM = (Nk − k − 1)D(D − 1) .

The communication costs of all protocols are summarized in Table 1.

Problem Protocol ComAM ComBM ComMM

SP 1 (N + 1)D (N + 1)D 0
OTN

1 2 ND (N + 1)D (2N + 1)D(D − 1)

OTN
k 3 ND 2ND (2N + 1)D(D − 1)

Priced OT 4 (N + 1)D (2N + 1)D 2(N + 1)D(D − 1)

OMPE 7 NkD (Nk + 1)D (Nk − k − 1)D(D − 1)

Generalized OT 6 (2N + 1)D (3N + 1)D (2N + 2)D(D − 1)

Table 1. Communication costs of all distributed protocols with D servers. N denotes
the dimension of the vectors in SP, the number of messages in all OT protocols, and
the degree of the polynomials in the OMPE protocol. The parameter k in Protocol 7
denotes the number of variables, while Nk =

(
N+k

k

)
.

7 Experiments

Implementation details. We implemented our protocols in Java on a Lenovo
Ideapad Gaming 3 laptop, powered by an AMD Ryzen 7 5800H processor and
16GB of RAM. The operating system was Windows 11 64-bit, and the en-
vironment was Eclipse-Workspace. A 64-bit prime number p was chosen at



22 A. Ben Arie and T. Tassa

random for the size of the underlying field Zp. To enable computations mod-
ulo such prime, we used the BigInteger Java class. The code is available at
https://github.com/b1086960/Distributed_OT_OPE.

All experiments were conducted on randomly generated vectors (or sets of
messages or polynomials). Each experiment was repeated ten times and the
average runtimes for Alice, Bob and the servers are reported (where the runtimes
for the servers are averaged over the ten runs as well as over the D servers). The
standard deviation is omitted from the graphical display of our results since it
is barely noticeable.

Results. In the first experiment we tested our basic protocol that solves DSP,
Protocol 1. Figure 1 shows the runtimes for Alice and Bob and the average
runtimes for the servers as a function of N (the dimension of the two vectors).
The runtimes in Figure 1 grow linearly in N . Figure 2 displays those runtimes
as a function of D. The runtimes for Alice and Bob grow quadratically in D
since they need to perform D polynomial evaluations where the polynomial is of
degree t− 1 = O(D). The servers’ runtime, on the other hand, is not affected by
D and only slightly fluctuates randomly between 125 and 150 milliseconds for
all tested values of D.

Fig. 1. Runtimes (milliseconds) for Protocol 1 (DSP), as a function of log10(N), for
D = 7. The left plot shows the runtimes for Alice and Bob; the right plot shows the
average runtimes for the servers. The runtimes are presented on a logarithmic scale.

In the next experiment we tested Protocol 3 that solves the OTN
k problem.

Here we focus only on the servers, since Bob’s computations in that protocol
are the same as in Protocol 1, while Alice’s computations are the same as in
the beginning of Protocol 1. The servers’ runtimes are shown in Figure 3. The
dependence on N is linear. As for D, while in Protocol 1 the servers’ runtimes
do not depend on D, here they do depend on D, linearly, due to the DVV part
of the protocol. Their runtimes are not affected by k.

We turn our attention to Protocol 4 (Priced OT). Like in Protocol 3, we
ignore the runtimes of Alice and Bob and focus on the servers’ average runtime
and demonstrate its linear dependence on N and on D, see Figure 4.

https://github.com/b1086960/Distributed_OT_OPE


Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 23

Fig. 2. Runtimes (milliseconds) for Protocol 1 (DSP), as a function of D, for N = 106.
The left plot shows the runtimes for Alice and Bob; the right plot shows the average
runtimes for the servers. The runtimes are presented on a linear scale.

Fig. 3. Average runtimes (milliseconds) for the servers in Protocol 3 (OTN
k ). Left:

runtimes, on a logarithmic scale, as a function of log10(N), for D = 7 and k = 10.
Right: runtimes as a function of D, for N = 1000000 and k = 10.

Next, we tested Protocol 6 (Generalized OT) with the access structure that
we described in Section 12. In all of our experiments we used compartments of
equal size, |Ui| = 10, 1 ≤ i ≤ r. The runtimes for Bob and the servers, as a
function of N and D, are reported in Figures 5 and 6.

Finally, we consider Protocol 7 (OMPE). We ran that protocol with random
polynomials of degrees N ∈ {5, 10, 20, 30, 40, 50}, where the number of variables
was set to k = 3 — see Figure 7. The shown runtimes grow linearly with

(
N+k
k

)
,

since that is the size of the two vectors in the scalar product.

8 Related Work

Naor and Pinkas [27] introduced the first version of a distributed OT. Their
setting is similar to the one that we consider here: (a) apart from the sender
(Alice) and the receiver (Bob) there are external servers that participate in the
computation; (b) Alice sends information only to the servers and her role ends



24 A. Ben Arie and T. Tassa

Fig. 4. Average runtimes (milliseconds) for the servers in Protocol 4 (Priced OT)). Left:
runtimes as a function of N , for T = 100 and D = 7; the runtimes are presented on a
logarithmic scale. Right: runtimes as a function of D, for T = 100 and N = 1000000.

Fig. 5. Runtimes (milliseconds) for Protocol 6 (GOT)), in the case of compartmented
access structures as a function of N , for D = 7. The left plot shows the runtimes
for Bob; the right plot shows the average runtimes for the servers. The runtimes are
presented on a logarithm scale.

Fig. 6. Runtimes (milliseconds) for Protocol 6 (GOT)), in the case of compartmented
access structures as a function of D, for N = 1000000. The left plot shows the runtimes
for Bob; the right plot shows the average runtimes for the servers. The runtimes are
presented on a linear scale.



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 25

Fig. 7. Runtimes (milliseconds) for Protocol 7 (OMPE), as a function of N , the poly-
nomial degree, for k = 3. Left: runtimes for Bob; right: average runtimes for the servers.

after doing so; (c) Bob can perform his part in a later time by communicating
solely with the servers.

They considered OT2
1: namely, Alice has m1 and m2, Bob has a selection

index j ∈ {1, 2}, and the goal is to let Bob have mj and nothing else, while
Alice should remain oblivious of j. Their protocols are referred to as ℓ-out-of-D
DOT2

1, meaning that Bob has to communicate with ℓ out of the D servers in
order to receive his message of choice.2.

The two protocols that are proposed in [27] are based on secret sharing of
some univariate polynomial. Specifically, Alice chooses a random bivariate poly-
nomial Q(x, y) that encodes m1 and m2, Bob chooses some random univariate
polynomial S(x) that encodes j, and then, by carefully selecting the degrees of
those polynomials, they induce a univariate polynomial R(x) = Q(x, S(x)) of
degree ℓ − 1. The free coefficient in R(x) is mj and, consequently, Bob can get
that value by obtaining the value of R(x) in ℓ points. Bob does that by receiveing
information from ℓ servers.

The first protocol uses a simple bivariate polynomial Q(x, y). It suffers from
two shortcomings: each server learns the difference m2 − m1 and, in addition,
if a single server colludes with Bob, they obtain both of Alice’s messages. The
second protocol uses a more involved bivariate polynomial, that prevents the
above described breach in Alice’s privacy. However, that protocol still allows
Bob to learn any linear combination of the two messages, rather than just m1 or
m2. Later on they outline a manner which enforces Bob to learn just m1 or m2

but not any other linear combination of the two messages. The idea is to perform
the protocol twice: in one execution Alice submits her two messages masked by
random multipliers, c1m1, and c2m2; in the second execution Alice submits the
two multipliers, c1 and c2. They then argue that if m1 ̸= m2, such a course of
action disables Bob from inferring any linear combination of m1 and m2 which
is not one of the two messages.

2 In our discussion of related work we replace the original parameter notations with
the ones that we used in the present work, for consistency and clarity.



26 A. Ben Arie and T. Tassa

Blundo et al. [6] generalized the protocols of [27] to distributed OTN
1 . In

their generalization, Alice uses an N -variate polynomial. Q(x, y1, . . . , yN−1) that
encodes her N messages, m1, . . . ,mN . Bob, on the other hand, encodes his index
j by N − 1 univariate polynomials, Z1, . . . , ZN−1. Those polynomials implicitly
induce a univariate polynomial of degree ℓ−1, R(x) = Q(x, Z1(x), . . . , ZN−1(x)),
such that R(0) = mj . As in [27], Bob contacts ℓ servers in order to get ℓ point
values of R that enable him to recover R(0) = mj . They showed that any
coalition of up to ℓ − 1 servers cannot obtain any information on j, and that
any coalition of up to ℓ− 1 servers with Bob cannot obtain any information on
Alice’s messages. However, their protocol has the same vulnerability as that of
[27]: each server learns the differences mn−m1 for all 1 ≤ n ≤ N ; and a coalition
of Bob with a single server enables the recovery of all N messages.

Hence, the protocols of [27] and [6] are vulnerable to a collusion of Bob with
just a single server. Blundo et al. defined the following privacy goal: a coalition of
Bob with any subset of ℓ− 1 servers should not be able to infer any information
on Alice’s messages, beyond the message that Bob had selected. They proved
that such a goal cannot be achieved in a one-round DOT protocol.

Nikov et al. [28] presented an analysis of the ℓ-out-of-D DOTN
1 framework

used in the above described studies. Namely, they considered protocols that
involve a sender (Alice), a receiver (Bob) and D servers, through which Bob can
retrieve a single message out of Alice’s N messages by contacting ℓ of the D
servers. They considered such a scheme to be (t, k)-secure if (a) any coalition of
t− 1 servers cannot infer anything on Bob’s selection index, and (b) a coalition
of Bob with k corrupt servers does not yeild to Bob any further information.
They then showed [28, Corollary 1] that such a scheme can exist iff ℓ ≥ t + k.
They continued to demonstrate a construction of such a scheme with a minimal
threshold of ℓ = t+k. Later on, they considered settings in which not all servers
enjoy the same level of trust and presented a DOTN

1 protocol in which Bob
can recover his message of choice by contacting an authorized subset of servers,
where the authorized subsets are defined by a general access structure.

We note that the protocols of [6,28] enable Bob to learn any single linear
combination of Alice’s messages, and not just a single message; hence, they
implement only a weaker version of OT.

Corniaux and Ghodosi [12] took a different approach in their solution of the
distributed OTN

1 problem. As opposed to the above described works, they allow
the servers to communicate with each other, thus breaching out of the framework
of one-round DOT. Their protocol is similar to our DOTN

1 protocol (Protocol 2):
Alice distributes to the servers secret shares in her vector of messages, while Bob
distributes secret shares in the binary vector that encodes his selection index.
The requested message is the scalar product between those two private vectors.
However, the protocol in [12] lacks the DVV part, which is at the heart of our
Protocol 2 (Lines 6-15). Consequently, Bob can create any selection vector and
hence can recover any linear combination of the messages m1, . . . ,mN . Hence, the
protocol in [12] too does not implement OT but a weaker form of that problem.
(We note that there are other technical differences between our Protocol 2 and



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 27

the one in [12], e.g., the fact that we do not need to perform a transformation
from one threshold scheme to another, as they do; we omit further details.)

The problem of OPE (Oblivious Polynomial Evaluation) was introduced by
Naor and Pinkas in [26]. It is closely related to OT: here, too, Alice has a set
of secrets and Bob is allowed to get a single linear combination of those secret
while Alice should remain oblivious of his choice. While in OT the secrets are
messages and the allowed linear combinations are the ones that consist of a single
message, in OPE the secrets are the coefficients of a private polynomial, f(x),
and the allowed linear combinations are those that relate to a point value of that
polynomial, f(α). In the OPE protocol of [26] Alice hides her secret polynomial
f(x) in some bivariate polynomial while Bob hides his secret point α in some
univariate polynomial. Those two polynomials induce a univariate polynomial
R(x) such that R(0) = f(α). Bob then learns dR+1 point values of R, where dR
is the degree of R, and then proceeds to recover R(0). He does that by invoking
dR + 1 instances of 1-out-of-m OT, where m is a small security parameter.

We are interested here with distributed protocols for OPE. The first such pro-
tocol was introduced by Li et al. [25]. They suggested three protocols for that
matter, which are based on secret sharing and polynomial interpolation. In the
first and simplest method, Alice secret shares each of her polynomial coefficients
among the servers, while Bob distributes secret shares in the corresponding pow-
ers of his selected point. The desired value is then obtained by computing the
scalar product between the two shared vectors. The two subsequent versions of
this basic protocol are designed in order to increase the immunity of the pro-
tocol to collusion between the servers and Bob. The protocols assume that all
parties are semi-honest. Since Bob is also assumed to be semi-honest, Bob can
submit to the protocol secret shares in any vector, not necessarily one of the
form (0, α, α2, . . . , αN ) (where N is the degree of Alice’s polynomial f). Hence,
their protocols amount to protocols of distributed scalar product.

Cianciullo and Ghodosi [11] described another DOPE protocol that offers
better security and complexity than the protocols of Li et al. [25]. Specifically,
their protocol offers security for both Alice and Bob against collusion of up to
t− 1 out of the D servers, for some threshold t that can be tuned by the degrees
of the secret sharing polynomials that the protocol uses. If f(x) =

∑N
n=0 anx

n,
Alice generates random values r1, . . . , rN and then distributes to the servers
shares in an, 0 ≤ n ≤ N , and in γn := rnan, 1 ≤ n ≤ N , where the secret
sharing polynomials are of degree t−1. In addition, she sends r1, . . . , rN to Bob.
Subsequently, Bob broadcasts to all servers the values en := αn−rn, 1 ≤ n ≤ N .
Then, a subset of t servers, say M1, . . . ,Mt, respond to Bob as follows: server Md,
1 ≤ d ≤ t, sends to Bob the value [z]d := [a0]d +

∑N
j=1 (en[an]d + [γn]d), where

[x]d denotes Md’s share in the value x. Those values enable Bob to reconstruct a
polynomial Z(x) of degree t such that Z(0) = f(α). Despite the advantages that
their protocol offers with respect to that of Li et al. [25], it too does not restrict
Bob to learning only point values of f(x), as it allows Bob to learn any linear
combination of f ’s coefficients. In addition, it requires Alice to communicate
with Bob and generate a new set of secret shares per each request. Protocol



28 A. Ben Arie and T. Tassa

7 that we presented herein allows Alice to act just once and by thus serve an
unlimited number of future queries of "Bobs"; it allows the computation only of
point values of f ; and it is the first protocol that is designed for multi-variate
polynomials.



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 29

9 Conclusion

We presented here distributed MPC protocols for three fundamental MPC func-
tionalities: scalar product, oblivious transfer (k-out-of-N , Priced, and General-
ized OT), and oblivious (multivariate) polynomial evaluation (OMPE). While
previous studies offered distributed MPC protocols for 1-out-of-N OT and for
(univariate) OPE, ours are the first ones that consider malicious receivers and
restrict them to receive only the outputs that the MPC problem dictates. To the
best of our knowledge, our study is also the first one that suggests distributed
MPC protocols for k-out-of-N OT, Priced OT, Generalized OT, and OMPE.

Our OT and OMPE protocols demonstrate the advantages that the dis-
tributed model offers: the existence of external servers enables much simpler
and more efficient MPC protocols; it allows the MPC parties (the sender Alice
and the receiver Bob) to delegate the bulk of the computation to the dedicated
servers; and it completely disconnects Alice from Bob so that they do not need
to communicate with each other, or even to know each other or to be active at
the same time. Moreover, in cases where the sender wishes to serve a multitude
of receivers, she can perform her part just once, and from that point onward
only the servers attend to any request of any future receiver.

When the servers are semi-honest and have an honest majority, our protocols
are information-theoretic secure and provide unconditional security to both Alice
and Bob, even when some of the parties collude. In that regard, we note that a
malicious server can sabotage the correct operation of the protocols. For example,
a malicious server can contribute incorrect shares in the DVV process so that
the result of the DVV process would suggest that Bob had submitted shares
in an illegal vector, even though Bob’s vector was legal. Such an outcome, if it
repeats several times, may result in a decision of the servers to deny service to
Bob. On the contrary, a malicious server may collude with Bob and together
they can change the inputs of the server to the DVV process so that it passes
successfully, even though Bob’s vector was illegal. An interesting future research
direction would be to strengthen our protocols in order to render them secure
against malicious servers.

While OT and OPE can serve as building blocks for general MPC problems
[22,25], it would be interesting to use the ideas presented here in order to develop
distributed protocols for the following fundamental two-party MPC problems:
• Oblivious Function Evaluation (OFE): Alice has a function that is repre-

sented by a Boolean circuit and Bob has a suitable input binary vector. The goal
is to let Bob learn the output of Alice’s circuit over his input and nothing else,
while Alice remains oblivious of Bob’s input.

As a Boolean circuit can be represented as a multi-variate polynomial over
Z2 in the k binary input wires, that problem is, in essence, a special case of
OMPE. However, as it can be impractical to represent a Boolean circuit by a
polynomial, another approach that evaluates the circuit gate by gate seems more
suitable.
• Oblivious Automaton Evaluation (OAE): Alice has a deterministic finite

or pushdown automaton A with an input alphabet Σ; Bob has a word w ∈ Σ∗.



30 A. Ben Arie and T. Tassa

The goal is to let Bob learn whether w is a word that A accepts without learning
any other information on A, while Alice remains oblivious of w.
• Oblivious Turing Machine Evaluation (OTME): Alice has a Turing Machine

M with an input alphabet Σ and Bob has a word w ∈ Σ∗. The goal is to let
Bob know the output M(w) without learning any other information on M , while
Alice remains oblivious of w.

We believe that the distributed model can be most effective in designing
solutions to such fundamental problems of multiparty computation as well as in
practical problems that arise in privacy-preserving distributed computation.



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 31

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How
to sell digital goods. In EUROCRYPT, pages 119–135, 2001.

2. Joël Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, Abhi Shelat, and
Ivan Visconti. Collusion-free multiparty computation in the mediated model. In
CRYPTO, pages 524–540, 2009.

3. Joël Alwen, Abhi Shelat, and Ivan Visconti. Collusion-free protocols in the medi-
ated model. In CRYPTO, pages 497–514, 2008.

4. Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing
via robust conditional disclosure of secrets. In STOC, pages 280–293, 2020.

5. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In STOC, pages 1–10, 1988.

6. Carlo Blundo, Paolo D’Arco, Alfredo De Santis, and Douglas R. Stinson. On
unconditionally secure distributed oblivious transfer. J. Cryptol., 20(3):323–373,
2007.

7. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure
of secrets. In CRYPTO, pages 234–238, 1986.

8. Ernest F. Brickell. Some ideal secret sharing schemes. In EUROCRYPT, pages
468–475, 1989.

9. Octavian Catrina and Florian Kerschbaum. Fostering the uptake of secure multi-
party computation in e-commerce. In ARES, pages 693–700, 2008.

10. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private infor-
mation retrieval. J. ACM, 45(6):965–981, 1998.

11. Louis Cianciullo and Hossein Ghodosi. Unconditionally secure oblivious polynomial
evaluation: A survey and new results. J. Comput. Sci. Technol., 37(2):443–458,
2022.

12. Christian L. F. Corniaux and Hossein Ghodosi. Scalar product-based distributed
oblivious transfer. In ICISC, pages 338–354, 2010.

13. Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

14. Lihi Dery, Tamir Tassa, and Avishay Yanai. Fear not, vote truthfully: Secure
multiparty computation of score based rules. Expert Systems with Applications,
168:114434, 2021.

15. Lihi Dery, Tamir Tassa, Avishay. Yanai, and Arthur Zamarin. Demo: A secure
voting system for score based elections. In CCS, pages 2399–2401, 2021.

16. Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative statistical
analysis. In ACSAC, pages 102–110, 2001.

17. Wenliang Du and Justin Zhijun Zhan. A practical approach to solve secure multi-
party computation problems. In NSPW, pages 127–135, 2002.

18. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

19. Alon Ben Horin and Tamir Tassa. Privacy preserving collaborative filtering by
distributed mediation. In RecSys, pages 332–341, 2021.

20. Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with
applications. In ISTCS, pages 174–184, 1997.

21. Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party
computation. IACR Cryptology ePrint Archive, 2011. 272.



32 A. Ben Arie and T. Tassa

22. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

23. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In CCS, pages
818–829, 2016.

24. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In FOCS, pages 364–373,
1997.

25. Hong-Da Li, Xiong Yang, Dengguo Feng, and Bao Li. Distributed oblivious func-
tion evaluation and its applications. J. Comput. Sci. Technol., 19(6):942–947, 2004.

26. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
STOC, pages 245–254, 1999.

27. Moni Naor and Benny Pinkas. Distributed oblivious transfer. In ASIACRYPT,
pages 205–219, 2000.

28. Ventzislav Nikov, Svetla Nikova, Bart Preneel, and Joos Vandewalle. On uncon-
ditionally secure distributed oblivious transfer. In INDOCRYPT, pages 395–408,
2002.

29. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

30. Johannes Schneider. Lean and fast secure multi-party computation: Minimizing
communication and local computation using a helper. In SECRYPT, pages 223–
230, 2016.

31. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
32. Erez Shmueli and Tamir Tassa. Mediated secure multi-party protocols for collabo-

rative filtering. ACM Transactions on Intelligent Systems and Technology, 11:1–25,
2020.

33. Tamir Tassa. Generalized oblivious transfer by secret sharing. Des. Codes Cryp-
togr., 58(1):11–21, 2011.

34. Tamir Tassa and Nira Dyn. Multipartite secret sharing by bivariate interpolation.
In ICALP, pages 288–299, 2006.

35. Tamir Tassa, Tal Grinshpoun, and Avishay Yanai. PC-SyncBB: A privacy preserv-
ing collusion secure DCOP algorithm. Artificial Intelligence, 297:103501, 2021.

36. Tamir Tassa, Ayman Jarrous, and Yonatan Ben-Ya’akov. Oblivious evaluation of
multivariate polynomials. J. Math. Cryptol., 7(1):1–29, 2013.

37. Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. In SIGKDD, pages 639–644, 2002.

38. Andrew C. Yao. Protocols for secure computation. In FOCS, pages 160–164, 1982.



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 33

A A 1-out-of-N Distributed OT Protocol with
Non-interacting Servers

The central part in Protocol 2 was the DVV sub-protocol, namely, the part in
which the servers validate that Bob had submitted a legal vector b ∈W = {ej :
j ∈ [N ]}. That part is essential in order to verify that Bob learns exactly one
of the secret messages and not an arbitrary linear combination of them. This is
the only part in the protocol where the servers communicate with each other.

The alternative protocol achieves the same goal as the DVV sub-protocol
by applying a different mechanism. In that protocol Alice generates a random
vector of nonzero multipliers α = (α1, . . . , αN ) ∈ (Z∗

p)
N (where Z∗

p = Zp \ {0}).
Then, she performs her part in Protocol 2 (Lines 1 and 3-4) twice: once with the
vector of masked messages aα = (α1m1, . . . , αNmN ), and once with the vector
of random multipliers α. Bob performs his part in the initial stage of Protocol 2
(Lines 2, 3+5) exactly the same. After completing this initial stage, the servers
skip to the last stage in Protocol 2 (Lines 18-21). But now that part is performed
twice so that Bob recovers two scalar products — aα · b and α · b. If Bob had
submitted a legal selection vector b = ej , j ∈ [N ], then aα · b = αjmj and
α ·b = αj . Since αj ̸= 0 Bob can recover the message of his choice, mj . However,
if Bob had submitted b /∈W = {ej : j ∈ [N ]}, he will get no information at all.

Theorem 3. If Bob submits an illegal vector b /∈ W = {ej : j ∈ [N ]}, the
two scalar products aα · b and α · b reveal no information on the messages
m1, . . . ,mN .

The proof of Theorem 3 is given below. We note that the mechanism that
we used here to ensure that Bob respects the protocol is based on an idea that
was presented in [27] for their 1-out-of-2 OT protocol. This approach is advanta-
geous with respect to our DVV mechanism as it does not require the servers to
communicate with each other. However, it enforces Alice to be online whenever a
client (Bob) wishes to engage in an information retrieval since she needs to gen-
erate a new set of random masks for each request. So, for example, if Alice holds
some database that serves multitude of clients ("Bob"s), while our approach
enables Alice to act only once and then, whenever a client wishes to retrieve
a record from the database he only needs to communicate with the servers, in
the approach presented here Alice (as well as the servers) have to be responsive
to each client. Another problem with the approach presented here is that it is
tailored to 1-out-of-N OT. We solve herein many other problems of OT and
OPE: while the approach that we used here for 1-out-of-N OT does not extend
to such problems, the DVV approach does, as we show hereinafter.

Proof of Theorem 3. Denote by q the number of entries in b that are nonzero.
Let us assume, without loss of generality, that bn ̸= 0 for all 1 ≤ n ≤ q and bn = 0
for all q < n ≤ N . Then Bob will receive two values from the two stages in the
DOT protocol —

∑q
n=1 bnαnmn and

∑q
n=1 bnαn. Since αn distribute uniformly



34 A. Ben Arie and T. Tassa

in Z∗
p = Zp \ {0} and bn ̸= 0, 1 ≤ n ≤ q, those two values are of the form

U :=

q∑
n=1

βnmn and V :=

q∑
n=1

βn , (14)

where βn distribute uniformly in Z∗
p.

Our goal is now to show that U and V reveal no information on any given
linear combination of (m1, . . . ,mq). Namely, that if (c1, . . . , cq) is any arbitrary
nonzero vector in Zq

p and X =
∑q

n=1 cnmn, then U and V reveal no information
on X. To do that we view U , V and X as random variables in Zp. Their value
is determined by the random vectors (β1, . . . , βq) and (m1, . . . ,mq). The first
distributes uniformly in (Z∗

p)
q, while the second distributes uniformly in Zq

p. Our
goal is to show that H(X|U, V ) = H(X), namely, that the conditional entropy
of X, given U and V , equals the a-priori entropy of X. We show that by proving
that for any three scalars u, v, x we have

P (X = x|U = u, V = v) = P (X = x) . (15)

We begin by the considering the case (c1, . . . , cq) = (1, 0, . . . , 0). In this case
X = m1. Hence, as we assume that Bob has no prior knowledge on the value
of the messages m1, . . . ,mN , the probability on the right hand side of Eq. (15)
equals

P (X = x) =
1

p
, ∀x ∈ Zp . (16)

The conditional probability on the left hand side of Eq. (15) is

P

(
m1 = x

∣∣∣ q∑
n=1

βnmn = u and
q∑

n=1

βn = v

)
. (17)

Let us fix a specific tuple (β′
1, . . . , β

′
q) such that

∑q
n=1 β

′
n = v. Then

P

(
m1 = x

∣∣∣ q∑
n=1

β′
nmn = u

)
=

P (m1 = x and
∑q

n=1 β
′
nmn = u)

P (
∑q

n=1 β
′
nmn = u)

. (18)

As the messages m1, . . . ,mN are independent, the probability in the numerator
on the right hand side of Eq. (18) equals

P

(
m1 = x and

q∑
n=1

β′
nmn = u

)
= P (m1 = x) · P

(
q∑

n=2

β′
nmn = u− β′

1x

)
.

(19)
Since all messages distribute uniformly in Zp we infer that each of the two
multiplicands on the right hand side of Eq. (19) equals 1

p . For the same reason
also the probability in the denominator on the right hand side of Eq. (18) equals
1
p . It follows that

P

(
m1 = x

∣∣∣ q∑
n=1

β′
nmn = u

)
=

p−1 · p−1

p−1
=

1

p
. (20)



Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 35

Since (β′
1, . . . , β

′
q) is an arbitrary tuple that satisfies

∑q
n=1 β

′
n = v, Eqs. (17)+(20)

imply that

P (X = x|U = u, V = v) =
1

p
. (21)

Hence, Eq. (15) follows from Eqs. (16)+(21).
The general case where (c1, . . . , cq) is any nonzero vector in Zq

p can be reduced
to the case (c1, . . . , cq) = (1, 0, . . . , 0) by applying a suitable linear transforma-
tion. As (c1, . . . , cq) ̸= 0 we can assume, without loss of generality, that c1 = 1.
Define m′

1 =
∑q

n=1 cnmn, and m′
n = mn for all 2 ≤ n ≤ q. Then the conditional

probability on the lefy of Eq. (15) equals

P

(
m′

1 = x
∣∣∣ q∑

n=1

β′
nm

′
n = u, and

q∑
n=1

βn = v

)
, (22)

where β′
n = βn − β1cn, 1 ≤ n ≤ q. Since also m′

n, 1 ≤ n ≤ q, distribute
independently and uniformly on Zp, arguing along the same lines as above shows
that the probability in Eq. (22) equals 1

p , and also P (m′
1 = x) = 1

p . That settles
our claim for any arbitrary linear combination of m1, . . . ,mN in which there are
q > 1 nonzero coefficients. 2

B Proof of Lemma 1

Assume that b is as in Eq. (11). Then for every multi-index j ∈ Zk,N
+ , the

corresponding entry in b is bj := αj. Hence, for any 2 ≤ n ≤ N and for any
j ∈ Tn, there exists at least one monomial h ∈ Tn−1 such that j = h + ei, for
some 1 ≤ i ≤ k. Let us compare the monomial bj := αj with the monomial

bh := αh. The two multi-indices j and h equal in all entries except for the ith
entry, where ji = hi + 1. Therefore,

bj := αj = αh · αi = bh · bei
.

Hence, such a vector will pass all stages of the DVV in Lines 6-11.
Assume next that b does not comply with the form as in Eq. (11). That

means that
b = (1, α1, . . . , αk, bj : 2 ≤ |j| ≤ N) ,

where there exists at least one entry bj, where 2 ≤ |j| ≤ N , that is not of the
form as in Eq. (11). Let us focus on the first multi-index j that is not of that
form. Namely, j is the first multi-index for which

bj ̸= αj , (23)

where α = (α1, . . . , αk). Assume that |j| = n ∈ [2, N ] and let i be any index
between 1 and k such that j = h + ei for some h ∈ Tn−1. By the minimality of
j it means that

bh = αh . (24)



36 A. Ben Arie and T. Tassa

From Eqs. (23) and (24) it follows that the validation check in Lines 9+10 would
fail for those multi-indices. That completes the proof. 2



The Open University of Israel
Department of Mathematics and Computer Science

Distributed Protocols for Oblivious Transfer and
Polynomial Evaluation

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science

The Open University of Israel
Department of Mathematics and Computer Science

By
Aviad Ben Arie

Prepared under the supervision of Prof. Tamir Tassa

November 2023


