
The Open University of Israel
Department of Mathematics and Computer Science

Ascending-Price Mechanism for General
Multi-Sided Markets

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science

The Open University of Israel
Department of Mathematics and Computer Science

By
Dvir Gilor

Prepared under the supervision of Prof. Rica Gonen and Dr. Erel
Segal-Halevi

August 2023

Abstract

We present an ascending-price mechanism for a multi-sided market with
a variety of participants, such as manufacturers, logistics agents, insur-
ance providers, and assemblers. Each deal in the market may consist of a
combination of agents from separate categories, and different such com-
binations are simultaneously allowed. This flexibility lets multiple inter-
secting markets be resolved as a single global market. Our mechanism is
obviously-truthful, strongly budget-balanced, individually rational, and
attains almost the optimal gain-from-trade when the market for every al-
lowed combination of categories is sufficiently large. We evaluate the
performance of the suggested mechanism with experiments on real stock
market data and synthetically produced data.

i

Acknowledgements

I would like to thank my supervisors,
Prof. Rica Gonen and Dr. Erel Segal-Halevi,
for the fruitful discussions and guidance throughout the process of writ-
ing this thesis.

I would like to express my gratitude to my father,
David Gilor,
for proofreading this work and sharing his insightful suggestions.

I am grateful to my brothers,
Shilo Gilor and Shama Gilor,
for sharing their valuable insights.

I would also like to thank the Editor-in-Chief,
Sylvie Thiebaux, and the other reviewers of Artificial Intelligence,
for providing helpful comments for publication.

I would like to express my gratitude to my wife,
Sivan Gilor,
for her unwavering support and encouragement throughout the entire
process of working on my thesis.

ii

Contents

1 Introduction 1

2 Previous Work 3

2.1 Two-sided markets . 4

2.2 Supply chain management . 5

2.3 Obviously-truthful . 6

3 Our Contribution 7

3.1 Paper Layout . 8

4 Formal Definitions 9

4.1 Agents and Categories . 9

4.2 Recipe forests . 10

4.3 Trades and Gains . 11

4.4 Mechanisms . 12

5 Binary Recipes 15

5.1 Computing an Optimal Trade 15

5.2 Ascending Auction Mechanism 17

5.3 Example Run . 21

5.4 Proof of Algorithm Properties 22

6 Integer Recipes 30

6.1 Computing an Optimal Trade 31

iii

CONTENTS iv

6.2 Ascending Auction Mechanism 32

6.3 Example Run . 35

6.4 Proof of Algorithm Properties 37

7 Experiments 48

7.1 Agents’ Values . 48

7.2 Number of Deals and Gain From Trade 49

7.3 Results and Conclusions . 52

8 Discussion and Future Work 56

8.1 Beyond Recipe-Forests . 56

8.2 Beyond Disjoint Categories 57

8.3 Beyond Identical Multiplicities 57

8.4 Transaction Costs . 58

8.5 Randomization . 58

9 Appendix 64

9.1 Notations . 64

9.2 Hardness of General Recipe Sets 65

9.3 Limitations of our approach 66

9.3.1 Rounding down . 67

9.3.2 Rounding up . 68

9.3.3 No rounding . 69

List of Figures

5.1 Examples of trees in a recipe-forest. 15

7.1 Graph of results from Table 7.1. GFT Ratio is the actual gain-
from-trade of deals achieved by the mechanism divided by
the optimal gain-from-trade. k′ Ratio is the actual number
of deals achieved by the mechanism divided by the num-
ber of deals in the optimal trade. 1 − 1/kmin Ratio is the
theoretical lower bound ratio (LB). 50

7.2 Graph of results from Table 7.2. 51

7.3 Graph of results from Table 7.3. 51

7.4 Graph of results from Table 7.4. 54

7.5 Graph of results from Table 7.5. 54

List of Tables

5.1 An example of a market with a recipe-tree as in Figure 5.1(a).
Boldface values denote values of agents participating in the
optimal trade. 16

5.2 Execution of Algorithm 2 on market from Table 5.1 22

6.1 An example market. Boldface is optimal trade 31

6.2 Execution of Algorithm 6 on market from Table 6.1 37

v

LIST OF TABLES vi

7.1 Results of experiment with stock-market prices and the recipe-
forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}. 49

7.2 Results of experiment with values chosen uniformly at ran-
dom, and recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}. 49

7.3 Results of experiment with stock-market prices and the recipe-
forest R = {(1, 2, 0, 0), (1, 0, 1, 2)}. 52

7.4 Results of experiment with values chosen uniformly at ran-
dom, and recipe-forest R = {(1, 2, 0, 0), (1, 0, 1, 2)}. 55

7.5 Results of experiment with values chosen uniformly at ran-
dom, and wide recipe-tree (20 children, agent count of 20
each). 55

9.1 Notations . 64

9.2 Notations for binary recipes 64

9.3 Notations for integer recipes 65

9.4 Execution of Algorithm 6 on the market described in the
first paragraph of subsection 9.3.1 with |R| = 3 66

9.5 Execution of Algorithm 6 on the market described in the
second paragraph of subsection 9.3.1 with |R| = 3 67

9.6 Execution of Algorithm 6 on the market described in the
first paragraph of subsection 68

9.7 Execution of Algorithm 6 on the market described in the
second paragraph of subsection 68

9.8 Execution of Algorithm 6 on the market described in the
first paragraph of subsection 69

9.9 Execution of Algorithm 6 on the market described in the
second paragraph of subsection 70

1 Introduction

The aim of this paper is to automatically arrange the trade in complex
multi-lateral markets. As an example, consider a market for a certain kind
of laptop computer, and assume for simplicity that it is made of only two
types of components, e.g. four CPUs and two RAMs. Even in this simpli-
fied market, there may be several different categories of traders: 1. Buyers,
who are interested in a laptop; 2. Laptop producers, who produce whole
laptops; 3. CPU producers; 4. RAM producers; 5. Constructors, who con-
struct a laptop from its parts; 6. Transporters, who take a laptop and bring
it to an end consumer. A deal in this market can take one of two forms:

• A buyer buys a laptop from a laptop-producer, and asks a trans-
porter to transport it to his/her place. This involves traders of cate-
gories 1, 2 and 6.

• A buyer buys four CPUs, two RAMs and a construction service, and
has the final product transported. This involves traders of categories
1, 3, 4, 5 and 6.

In each category there may be many different traders, with potentially dif-
ferent utilities for participating in a deal. Typically, the value of a buyer is
positive and the value of a producer or service-provider is negative. The
main questions of interest for automatically arranging the trade is who will
trade and how much they will pay (or receive). The answers to these ques-
tions should satisfy several natural requirements:

(1) Individual rationality (IR): no agent should lose from participating: the
amount paid by a trading agent should be at most as high as the agent’s
value (in particular, if the value is negative then the agent should receive
money). A non-trading agent should pay nothing.

(2) Weak budget balance (WBB): the total amount paid by all agents together
should be at least 0, so that the market manager does not lose money. WBB

1

CHAPTER 1. INTRODUCTION 2

allows the market-manager to gain money, and this surplus might con-
sume most of the gain-from-trade, leaving little gain for the actual traders.
This might drive traders away from the market. Therefore, we consider a
stronger requirement called strong budget balance (SBB): the total amount
paid by all agents should be exactly 0.1

(3) High gain-from-trade (GFT): the GFT is the sum of values of all agents
actively participating in the trade2 For example, suppose a certain buyer
values a laptop at 2000, the laptop-producer values it at -1500 (the cost of
production is 1500), the CPU and RAM producers and constructor value
their efforts at -200 each, and the transporter values the deal at -50 (the cost
of transportation is 50). Then, the GFT from a deal involving categories 1,
2, 6 is 2000− 1500− 50 = 450, and the GFT from a deal involving cate-
gories 1, 3, 4, 5, 6 is 2000− 200 · 4− 200 · 2− 200− 50 = 550. Maximizing
the GFT implies that the latter deal is preferred.

(4) Truthfulness: the agents’ values are their private information. We as-
sume that the agents act strategically to maximize their utility (assumed
to be their value minus the price they pay). Truthfulness means that such
a utility-maximizing agent reports his/her true valuation. A stronger re-
quirement called obvious truthfulness [33] is that, for each agent, the lowest
utility he may get by acting truthfully is at least as high as the highest
utility he may get by acting non-truthfully.

These concepts are formally defined in Section 4.

1The following procedure can be used to convert any WBB mechanism to an SBB
mechanism: Add an initial stage to the mechanism in which a trader is chosen randomly
and removed from the trade and market. After the mechanism allocation and pricing is
finished, give the chosen trader all the surplus (if any). This procedure might encourage
the arrival of agents who have nothing to do with the market (e.g. sellers with nothing to
sell or buyers with no money), only because of the chance to win all the surplus. We do
not use this procedure in our proposed solutions. Much like [16], our solutions achieve
SBB from direct-trade mechanisms — mechanisms that give/take money only to/from
agents who actually participate in the trade.

2We note that, with non-additive GFT functions, even computing the optimal trade
when all valuations are common knowledge is NP-hard problem, known as the welfare-
maximization problem. Furthermore, it is NP-hard even when the the GFT functions are
submodular; see, for example, [21].

2 Previous Work

The study of truthful market mechanisms started with [41]. He consid-
ered a market with only one category of traders (buyers), where the famous
second-price auction attains all four desirable properties: IR, WBB, maxi-
mum GFT and truthfulness.

When there are two caterogies of traders (buyers and sellers), the natural
generalization of Vickrey’s mechanism is no longer WBB — it may run a
deficit. Moreover, [36] proved that any mechanism that is IR, truthful and
maximizes the GFT must run a deficit. The way out of this impossibility
paradox was found by [34]. In his seminal paper, he presents the first
double auction (auction for a two-category market) that is IR, WBB, truthful,
and asymptotically maximizes the GFT. By asymptotically we mean that its
GFT is at least (1 − 1/k) of the optimal GFT, where k is the number of
deals in the optimal trade. Thus, when k approaches infinity, the GFT
approaches the optimum.

McAfee’s mechanism has been extended in various ways. Particularly
relevant to our setting is the extension by [3], with multiple categories of
traders, arranged in a linear supply chain. Their model contains a single
producer category, a single consumer category, and several converter cate-
gories. Each deal must involve a single producer, a single consumer, and
a single agent of each converter category. In our laptop example, their
model covers either a market with the chain 1,2,6 or a market with the
chain 1,3,4,5,6, but not a market where both chains are possible. For this
model, they present an auction mechanism that is IR, WBB, truthful, and
attains asymptotically-optimal GFT

Recently, [30], [27] considered a multiple-category market in which, like
[3]’s market, all deals must be of the same structure, which they call a
“recipe”. Their recipes are more general than the linear supply chains of
[3], since they are not restricted to a producer-converters-consumer struc-
ture. They present auctions that are IR, SBB, truthful and asymptotically-

3

CHAPTER 2. PREVIOUS WORK 4

optimal, but only for a single-recipe market.

2.1 Two-sided markets

Two-sided markets have been extensively studied since the seminal work
of [34]. Recently, [38] present a SBB variant of McAfee’s mechanism, with
similar GFT guarantees. Their mechanism may remove up to one buyer
from the optimal trade, and it is the buyer with the lowest value among
the buyers in the optimal trade. [10] present two simple mechanisms that
are IR, truthful, and WBB, and obtain, in expectation over the agents’ val-
uations (which are drawn at random from known distributions), at least
half of the expected GFT of the second-best efficiency benchmark.

[1] present approximation results for the double-auction setting and for
double-auction with some added constraints on the pairs of agents who
can trade with each other. [20] study a similar double-sided setting to that
of [1] however, their constraints are applied on each side of the market
separately. [2] show a strong analogue to the result of Bulow-Klemperer
for welfare in two-sided markets rather than revenue in auctions.

[13] consider a supply-chain auction with a sole buyer and single item-
kind, but there are different producers in different supply-locations. The
buyer needs a different quantity of the item in different demand-locations.
The buyer conducts a reverse auction and has to pay, in addition to the cost
of production, also the cost of transportation from the supply-locations
to the demand-locations. They do not guarantee SBB. [28] generalize the
above settings to a unified trade reduction procedure.

[35] designs a fixed-price SBB double auction under some assumptions of
buyers’ and sellers’ bid distributions. Our result does not assume knowl-
edge of the distribution of participating categories. Additionally, we also
allow for any number of categories in each recipe, as opposed to two, as
well as for multiple recipes to simultaneously trade.

[7, 9, 15, 16] also present SBB auctions. [7, 9, 15] target double-sided mar-
kets and [16] target combinatorial markets. [29] present a WBB ascend-
ing auction for combinatorial market. However, their goal is to maxi-
mize social welfare as opposed to our goal which is maximizing gain from
trade1. Thus their mechanisms are not asymptotically-optimal for gain
from trade. They also require a prior knowledge on the agents’ valua-

1When optimizing GFT we optimize the difference between the total value of the sold
items for the buyers and the total value of these items for the sellers. When optimizing

CHAPTER 2. PREVIOUS WORK 5

tions. Similarly to [16], [6] present a two-sided combinatorial market solu-
tion. [6]’s solution is WBB unlike our SBB solution and maximizes social
welfare as opposed to our goal which is maximizing gain from trade.

[8] present a mechanism that obtains in expectation at least 1/e of the first-
best GFT in Bayes-Nash equilibrium. However, they assume the buyer’s
valuation is drawn from a distribution satisfying the monotone hazard
rate condition. [18] present a truthful mechanism that obtains 1/8.23 of
the GFT; however, they, too, assume knowledge of the distribution from
which the agents’ valuations are drawn. In contrast our result does not
assume knowledge of the distribution of participating categories, let alone
a specific distribution.

The present work handles multiple categories of agents, but each agent is
single-parametric. An orthogonal line of work ([11, 25, 39, 40]) remains
with two agent categories (buyers and sellers), but aims to handle multi-
parametric agents. Another orthogonal line of work that also aims to han-
dle multi-parametric agents ([22, 23]) remains with three agent categories
(buyers, mediators and sellers). Moreover, their trade matches are con-
ducted in two stages: first the mediator trade with the buyers on behalf of
his sellers and then the mediator transfers payments to his matched sell-
ers. Our auction unites all three categories of buyer, seller and mediator
actions into a single simultaneous trade step.

2.2 Supply chain management

[12] provide a comprehensive survey of multiagent methods related to
supply-chain management. The most general supply-chain auction we
are aware of is the trade-reduction mechanism of [4, 5]. They allow pro-
curement sets of multiple recipes. Their model differs from ours in several
respects:

(a) They distinguish between “producer markets” and “consumer mar-
kets”, with “goods” moving between markets, and impose constraints on
the demand and supply of agents in each market. In contrast, our model
is abstract and considers only the general notion of a “category”, with no

social welfare in a market we optimize the sum of the buying agents’ valuations plus the
sum of the unsold items’ value held by selling agents at the end of trade. Despite their
conceptual similarity, the two objectives are rather different in approximation. In many
cases the social welfare approximation is close to the optimal social welfare solution;
however, the gain from trade approximation may not be within any constant factor of the
optimal gain from trade.

CHAPTER 2. PREVIOUS WORK 6

specific distinction between producers and consumers, and does not re-
quire the notion of a “good”.

(b) Their “Unique Manufacturing Technology” requirement forbids some
markets that are covered by our model, such as a market with one consumer-
category and two producer-categories with the two recipes (1, 1, 0) and
(1, 0, 1); see [4] Section 6.

(c) Their auction is WBB and truthful, while ours is SBB and obviously-
truthful.

2.3 Obviously-truthful

A randomized sequential mechanism is a lottery over deterministic sequential
mechanisms. [33] defined a randomized sequential mechanism as univer-
sally obviously-truthful if it is a lottery over obviously-truthful deterministic
sequential mechanisms.

[24] characterize obviously-truthful mechanisms for binary allocation prob-
lems. They show that every obviously-truthful mechanism must use a
greedy algorithm. Indeed, an ascending auction works similarly to a greedy
algorithm, as we explain in Section 8.3.

3 Our Contribution

We study markets with multiple kinds of supply-chains which, following
[30], [27], we call “recipes”.

In a general multi-recipe market, computing the optimal trade — even
without strategic considerations — is MAX-SNP-hard (see Appendix 9.2).
This means that, unless P=NP, there is no polytime algorithm that, given
ϵ > 0, computes a trade that attains (1− ϵ) of the optimal GFT. In partic-
ular, it is unlikely that a mechanism that runs in polynomial time can be
asymptotically-optimal.

Therefore, we focus on a special case in which computing the optimal wel-
fare is tractable: We assume that the agent categories can be arranged in a
forest (acyclic undirected graph), and each recipe is a path from a root to
a leaf in that forest. Our laptop market corresponds to a forest with the
following tree:

1

6
2 3

4
5

In Section 8.1 we discuss the challenges in extending our results to recipe-
sets that are not forests.

We present randomized ascending-prices mechanisms for markets based
on recipe forests. Our mechanisms are IR, SBB and obviously-truthful.
Moreover, all these properties hold universally — for every possible out-
come of the randomization. The expected GFT of our mechanisms is asymp-
totically optimal — it approaches the optimum when the optimal number
of deals in all recipes approaches infinity (See Section 6.2 for formal state-
ments and proofs).

7

CHAPTER 3. OUR CONTRIBUTION 8

3.1 Paper Layout

Section 4 presents the formal definitions.

Section 5 presents a mechanism for the special case in which each trade re-
quires either zero or one agent from each category, that is, the recipes are
binary. Section 6 presents a mechanism for the more general case, in which
each trade may require any non-negative integer number of agents from
each category. The mechanism of Section 5 is a special case of the mecha-
nism of Section 6; we present it in a separate section as the approximation
guarantee of the binary mechanism is not a special case of the approxima-
tion guarantee of the general mechanism. The general mechanism compu-
tation and proof techniques for reaching a GFT approximation bound are
quite different and are more involved.

Section 7 presents some simulation experiments evaluating the perfor-
mance of our auctions. Section 8 concludes by illustrating challenges in
extending our current model and providing future work directions.

An open-source implementation of our auctions, including example runs
and experiments, is available at https://github.com/dvirg/auctions.

https://github.com/dvirg/auctions

4 Formal Definitions

4.1 Agents and Categories

A market is defined by a set of agents grouped into different categories. N is
the set of agents, G is the set of agent categories, and Ng is the set of agents
in category g ∈ G. The categories are pairwise-disjoint,1 so N = ⊔g∈GNg.

Each deal in the market requires a certain combination of traders. We call
a subset of agents that can accomplish a single deal a procurement-set (PS).

A recipe is a vector of size |G|, denoted by r := (rg)g∈G, where rg ∈ Z+ for
all g ∈ G. It describes the number of agents of each category that should
be in each PS: each PS should contain r1 agents of category 1, r2 agents of
category 2, and so on. If rg ∈ {0, 1} for all g ∈ G, then r is called a binary
recipe. Otherwise, it is called an integer recipe. The set of recipes available
in the market is denoted by R.

In the market of [34] each deal requires one buyer and one seller, so there
is a single binary recipe and R = {(1, 1)}. In our initial laptop-market ex-
ample there are two recipes and R = {(1, 1, 0, 0, 0, 1); (1, 0, 4, 2, 1, 1)}. The
first one is a binary recipe corresponding to deals with a buyer, a producer
and a transporter, and the second one in an integer recipe corresponding
to deals with a buyer, four CPU producers, two RAM producers, a con-
structor and a transporter.

Each agent i ∈ N has a value vi ∈ Z, which represents the material gain
of an agent from participating in the trade. It may be positive, negative
or zero. In a two-sided market for a certain good, the value of a buyer
is typically positive, while the value of a seller is typically negative and
represents the cost of producing the good. However, our model is general
and allows the values of different agents in the same category to have
different signs.

1In Section 8.2 we discuss why removing this assumption is challenging.

9

CHAPTER 4. FORMAL DEFINITIONS 10

For simplicity, we assume that all the vi are integer numbers, e.g., all val-
uations may be given in cents.2 We also assume that there are publicly
known bounds on the possible valuations: for some sufficiently large V,
−V < vi for all i ∈ N.3

The agents are quasi-linear in money: the utility of agent i participating in
some PS and paying pi is ui := vi − pi.

4.2 Recipe forests

Recall that a forest is an acyclic graph, composed of one or more trees; a
rooted forest is a forest in which, in each tree, one vertex is denoted as its
root.

Definition 1 A recipe-set R is called a recipe-forest if there exists a rooted forest
T in which the set of nodes is G, and each recipe r ∈ R corresponds to a path P
from the root of some tree in T to a leaf of that tree (that is, rg ≥ 1 for each g ∈ P
and rg = 0 for each g ̸∈ P).4

We use the same letter g to denote both the category index and the corre-
sponding node in T. We assume that every g ∈ G appears in all recipes
with the same multiplicity, i.e., for every recipes r, r′ ∈ R, if rg > 0 and
r′g > 0 then r′g = rg.5

As an example, the set R = {(1, 2, 0, 0), (1, 0, 1, 2)} is a recipe-forest with
a single tree shown in Figure 5.1(a). The root category is N1. The recipe
(1, 2, 0, 0) corresponds to a path from N1 to the leaf N2. The recipe (1, 0, 1, 2)
corresponds to a path from N1 through N3 to the leaf N4.

2The integrality assumption does not lose much generality: if the valuations are ratio-
nal numbers, we can just multiply them by the common denominator.

3The assumption that vi > −V is needed to initialize the prices for the ascending
auction. In one sided market the price is initiated to the lowest non negative number, i.e.,
0. In two-sided markets where sellers have negative values the price has to be initialized
to a low negative value −V. Two-sided markets have much simpler setting than our
multi category, multi recipe setting and therefore we need to initialize the prices to −V.

4We can also assume, without loss of generality, that every path from a root to a leaf in
T corresponds to a recipe in R. The reason is that, if some path P in T does not correspond
to a recipe in R, then the leaf category of P can be removed from the market without
affecting the trade, since it does not participate in any recipe. Removing leaves can be
repeated until all remaining root–leaf paths in T correspond to recipes in R.

5In Section 8.3 we discuss why removing this assumption is challenging.

CHAPTER 4. FORMAL DEFINITIONS 11

A market with a single recipe is a special case of a recipe-forest with a sin-
gle tree that is a path. Note that several different trees T may correspond to
the same recipe-set R. For example, the singleton recipe-set R = {(1, 1)}
corresponds to the tree in which N1 is the root and N2 is the leaf, and also
to the tree in which N2 is the root and N1 is the leaf.

Given a fixed rooted forest T, we use the following notation:

• CHILDREN(g) := the child nodes of the node g in its tree.

• LVS(g) := the leaf descendants of the node g in its tree (if g is a leaf
then LVS(g) = {g}).

• PATH(g1 → g2) := the nodes in the unique path from g1 to its de-
scendant g2, inclusive.

• HEIGHT(g) := the largest distance between the node g and a leaf of
its tree. The height of a leaf is 0.

• DEPTH(g) := the unique distance between the node g and the root
of its tree. The depth of a root is 0.

• MAXDEPTH := maxg is a leaf in T DEPTH(g).

• WEIGHTD(g) := ∑g′∈PATH(g→root) rg′ = the distance between g and
the root of its tree (including the root), weighted by the integer quan-
tities rg′ . The weighted depth of a root category g0 is rg0 .

• MAXWD := maxg is a leaf in T WEIGHTD(g).

Tables summarizing the notations used in this paper can be found in Ta-
bles 9.1, 9.2 and 9.3 in 9.1.

4.3 Trades and Gains

The gain-from-trade of a procurement-set S, denoted GFT(S), is the sum of
values of all agents in S:

GFT(S) := ∑
i∈S

vi.

In a standard two-sided market, the GFT of a PS with a buyer b and a seller
s is vb− vs, where vs is the seller’s value for the sold item, since the seller’s
value for participating in the trade is −vs.

CHAPTER 4. FORMAL DEFINITIONS 12

Given a market (N, G, R), a trade is a collection of pairwise-disjoint pro-
curement sets. I.e, it is a collection of agent subsets, S1, . . . , Sk ⊆ N, such
that for each j ∈ [k], the composition of agents in Sj corresponds to some
recipe r ∈ R. The total GFT is the sum of the GFT of all procurement-sets
participating in the trade:

GFT(S1, . . . , Sk) :=
k

∑
j=1

GFT(Sj)

A trade is called optimal if its GFT is maximum over all trades.

The value of agent i given trade S = (S1, . . . , Sk), denoted vi(S), is either vi
or 0: it is vi if i ∈ Sj for some j ∈ [k], and 0 otherwise.

4.4 Mechanisms

The definitions below cover only the notions used in the present paper.
For a more complete treatment of mechanisms and their properties see
[37].

A deterministic direct mechanism is a function that takes as input a vector
b containing agent bids, and returns as output a trade S(b) and a price-
vector p(b). The utility of each agent i, given a fixed deterministic mecha-
nism and a bid vector b, is ui(b) := vi(S(b))− pi(b).

A deterministic direct mechanism is truthful if the utility of every agent i is
maximized when the agent bids vi, for any fixed bids of the other agents.
Formally, for every vector b = (b1, . . . , bn), denote by b|bi←x the vector
(b1, . . . , bi−1, x, bi+1, . . . , bn). A mechanism is truthful if for every agent i
and vector b:

ui(b|bi←vi) ≥ ui(b).

A deterministic direct mechanism is individually-rational (IR) if the utility
of every agent i when the agent bids vi is at least 0, regardless of the bids
of the other agents:

ui(b|bi←vi) ≥ 0.

A randomized direct mechanism is a lottery over deterministic direct mecha-
nisms. In other words, it is a mechanism in which the functions S and p
may depend not only on the bids but also on some random variables.

CHAPTER 4. FORMAL DEFINITIONS 13

A randomized direct mechanism is called universally-truthful if it is a lot-
tery over truthful deterministic direct mechanisms. In a universally-truthful
randomized mechanism, the utility of agent i is maximized when the agent
bids vi, regardless of the bids of the other agents, and regardless of the
random variable values.6 Similarly, a randomized direct mechanism is
universally-IR if it is a lottery over IR deterministic direct mechanisms.

A direct mechanism is called obviously truthful if for every agent i and vec-
tors b, b′:

ui(b|bi←vi) ≥ ui(b′).

In other words, the lowest utility the agent can get when reporting truth-
fully is at least as high as the highest utility the agent can get when re-
porting untruthfully, where “lowest” and ”highest” are w.r.t. all possible
reports of the other agents. This is a very strong property that is not satis-
fied by non-trivial direct mechanisms. However, an analogous property is
satisfied by some sequential mechanisms, described next.

In a deterministic sequential mechanism, at each time, an agent has to choose
a response from a pre-specified set of responses. In order to give meaning to
the notion of truthfulness, we assume that the “response” is an answer to a
query on the agent’s value: at time t, the designer presents a function qt to
some agent i, and the agent is expected to reveal qt(vi). Our mechanisms
will only use Boolean functions such as “is vi > 2?”. Based on the agents’
answers so far, the auctioneer may decide to continue asking queries, or to
end the mechanism. When the mechanism ends, the auctioneer examines
the vector of answers a, and determines the trade S(a) and the price-vector
p(a).

Given an answer vector a and an agent i, denote by a|ai←x the vector in
which the answer of agent i to any query qt is qt(x) (and the answers
of other agents remain as in a). A deterministic sequential mechanism
is called obviously truthful if, at any step during the execution, and for any
two vectors a and a′ consistent with the history of answers up to the cur-
rent step:

ui(a|ai←vi) ≥ ui(a′).

In other words, the lowest utility the agent can get by answering truth-
fully, according to vi, is at least as high as the highest utility he can get by
answering untruthfully.

6Universal truthfulness is stronger than other notions of truthfulness studied in the
literature, such as truthfulness-in-expectation. These weaker truthfulness notions are not
covered in the present paper.

CHAPTER 4. FORMAL DEFINITIONS 14

A deterministic direct mechanism is a special case of a deterministic se-
quential mechanism, in which there is only one step of queries, and the
queries are “what is your value?”. If such a mechanism is obviously-
truthful, then it is also truthful (set a = a′ = b in the definition of obvious-
truthfulness).

5 Binary Recipes

In this section we assume that all recipes are binary, that is, rg ∈ {0, 1} for
all g ∈ G, for all r ∈ R.

We start by presenting an algorithm for computing an optimal trade, as-
suming all values are known (Section 5.1). Then, we describe our ascending-
prices mechanism for multi-sided markets with binary recipes (Section
5.2). We continue by providing a detailed example of the mechanism exe-
cution (Section 5.3). Finally, we prove the mechanism properties (Section
5.4).

5.1 Computing an Optimal Trade

An algorithm for computing the optimal trade, assuming all values are
known, is presented as Algorithm 1. We illustrate the algorithm on the
market in Table 5.1.

The algorithm is based on contracting the recipe-forest down to a single
node. Two types of contraction operations are used.

In a vertical contraction, a leaf that is a single child is combined with its
parent in the following way. Suppose the sets of agent values in the child
category are v1 ≥ v2 ≥ . . . ≥ vmv and the agent values in the parent

N1

N2 N3

N4

(a)

N1

N2 N3 ∧ N4

(b)

N1

N2 ∪ (N3 ∧ N4)

(c)

Figure 5.1: Examples of trees in a recipe-forest.

15

CHAPTER 5. BINARY RECIPES 16

Category Agents’ values

N1: buyers 17, 14, 13, 9, 6, 2
N2: sellers -4, -5, -8, -10
N3: A-producers -1, -3, -5
N4: B-producers -1, -4, -6

Table 5.1: An example of a market with a recipe-tree as in Figure 5.1(a).
Boldface values denote values of agents participating in the optimal trade.

Input: A set of categories G, a set of traders Ng for all g ∈ G,
and a recipe-forest R based on a forest T.
For each agent i ∈ ∪gNg, the value vi is public knowledge.

Output: Optimal trade in the market.
1. If T has a single vertex g:

Return all agents in Ng with a non-negative value: {i ∈ Ng|vi > 0}
2. Else, if T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 1.
3. Else, if there is a leaf gl that is a single child of its parent gp:

Do a vertical contraction of gl into gp. Go back to step 1.
4. Else, there is a leaf gl with a sibling leaf gs:

Do a horizontal contraction of gl into gs. Go back to step 1.

Algorithm 1: Finding the optimal GFT — binary recipes.

category are u1 ≥ u2 ≥ . . . ≥ umu . Replace the parent category by a new
category with m := min(mv, mu) values: u1 + v1, u2 + v2, . . . , um + vm. For
example, a vertical contraction on the tree of Figure 5.1(a) results in the
tree of Figure 5.1(b), where N3 ∧ N4 denotes the elementwise combination
of N3 and N4. In the market in Table 5.1, N3 ∧ N4 contains the values
{−1− 1,−3− 4,−5− 6} = {−2,−7,−11}.
The rationale is that the unique root-leaf path that passes through the par-
ent passes through its child too, and vice-versa. Therefore, any PS that
contains an agent of the parent category must contain an agent of the child
category, and vice-versa. In economic terms, these two categories are com-
plements. Hence, elementwise combination of the two categories leads to a
market with identical optimal GFT.

In a horizontal contraction, two sibling leaves are combined by taking the
union of their categories. For example, a horizontal contraction on the tree
of Figure 5.1(b) results in the tree of Figure 5.1(c). In the market in Table

CHAPTER 5. BINARY RECIPES 17

5.1, N2 ∪ (N3 ∧ N4) contains the values {−2,−4,−5,−7,−8,−10,−11}.
The rationale is that, for every path from the root to one leaf there exists a
path from the root to the other leaf, and vice-versa. Therefore, in any PS
that contains an agent of one leaf-category, this agent can be replaced with
an agent from the other leaf-category. In economic terms, these categories
are substitutes. Therefore, uniting them leads to a market with the same
optimal GFT.

Given a tree with two or more vertices, we consider a leaf with a maximum
depth (that is, a leaf farthest from the root). If this leaf is a single child, we
apply vertical contraction. If it has a sibling, the sibling must also be a
leaf, so we apply horizontal contraction. By repeating this process, we can
contract any tree to a single node. For example, a vertical contraction on
the tree of Figure 5.1(c), in the market of Table 5.1, yields: {17− 2, 14−
4, 13− 5, 9− 7, 6− 8, 2− 10}. The optimal trade in such a market is just
the set of all deals with positive values, which in this case contains four
deals with values {15, 10, 8, 2}. This corresponds to an optimal trade with
k = 4 deals:

• Buyer 17, A-producer −1, B-producer −1;

• Buyer 14, seller −4;

• Buyer 13, seller −5;

• Buyer 9, A-producer −3, B-producer −4.

If the forest has two or more trees, all contracted trees can be further com-
bined using a horizontal contraction to a single node. The process is sum-
marized as Algorithm 1.

5.2 Ascending Auction Mechanism

The ascending-price auction is a randomized sequential mechanism. The
general scheme is presented as Algorithm 2. For each category g, the auc-
tioneer maintains a price pg, and a subset Mg ⊆ Ng of all agents that are
“in the market” (that is, their value is higher than the current price of their
category). At each iteration, the auctioneer chooses a subset of the prices,
and increases each price pg in this subset by 1. After each increase, the
auctioneer asks each agent in turn, in a pre-specified order (e.g. by their

CHAPTER 5. BINARY RECIPES 18

Input: A market N, a set of categories G and a recipe-forest R.
Output: Strongly-budget-balanced trade.
1. Initialization: Let Mg := Ng for each g ∈ G.

Using Equation (5.1), set an initial price pg for each category g ∈ G.
2. Using Algorithm 3, select a set G∗ ⊆ G of categories.
3. For each g∗ ∈ G∗, ask each agent in i ∈ Mg∗ whether vi > pg∗.

(a) If an agent i ∈ Mg∗ answers “no”, then
Remove i from Mg∗ and go back to step 1.

(b) If all agents in Mg∗ for all g∗ ∈ G∗ answer “yes”, then
for all g∗ ∈ G∗, let pg∗ := pg∗ + 1.

(c) If after the increase ∑g∈G pg · rg = 0 for some r ∈ R, then
go on to step 4.

(d) else go back to step 3.
4. Determine final trade using Algorithm 4.

Algorithm 2: Ascending prices mechanism for binary recipes — main
loop.

index), whether their value is still higher than the price. An agent who an-
swers “no” is permanently removed from the market. After each increase,
the auctioneer computes the sum of prices of the categories in each recipe,
defined as: Prices-sum(r) := ∑g∈G pg. When this sum equals 0, the auc-
tion ends and the remaining agents trade in the final prices. Throughout
the execution, we ensure that the sum of prices is the same for all recipes
r ∈ R, so that the price-sum crosses 0 for all recipes simultaneously, and
all deals are simultaneously SBB.

To flesh out this scheme, we need to explain (a) how the prices are initial-
ized, (b) how the set of prices to increase is selected, and (c) how the final
trade is determined.

(a) The prices are initialized as follows:

pg :=

{
−V g is not a leaf
−V · (MAXDEPTH−DEPTH(g) + 1) g is a leaf

(5.1)

This guarantees that the initial price-sum in any path from the root to a leaf
is the same: −V · (MAXDEPTH + 1). Additionally, the price in each cate-
gory is lower than the lowest possible value of an agent in this category,
which we denoted by −V.

(b) The set of prices to increase is selected by Algorithm 3. It is a recursive
algorithm: if the forest contains only a single category (a root with no

CHAPTER 5. BINARY RECIPES 19

Input: A set of categories G, a set of remaining traders Mg for
all g ∈ G, and a recipe-forest R based on a forest T.

Output: A subset of G denoting categories for price-increase.
0. Initialization: For each category g ∈ G, let mg := |Mg|.
1. If T contains two or more trees,

Recursively run Algorithm 3 on each individual tree T′;
Denote the outcome by IT′ .

Return
⋃

T′∈T IT′ .
2. Let g0 be the category at the root of the single tree.

Let cg0 := ∑g′∈CHILDREN(g0) mg′ .
3. If mg0 > cg0 [or g0 has no children at all],

then return the singleton {g0}.
4. Else (cg0 ≥ mg0), for each child g′ of g0:

Recursively run Algorithm 3 on the sub-tree rooted at g′;
Denote the outcome by Ig′ .

Return
⋃

g′∈child(g0) Ig′ .

Algorithm 3: Finding a set of prices to increase — binary recipes.

children), then this category is necessarily selected. Otherwise, in each
tree, either its root category or some of its descendants are selected for
increase. The selection is based on the number of agents of each category
g who are currently in the market. We denote this number by mg := |MG|.
We denote the root category of a tree by g0. The algorithm first compares
mg0 to the sum of the mg′ over all g′ that are children of g0 (this sum is
denoted by cg0). If mg0 is larger, then the price selected for increase is the
price of g0; Otherwise (cg0 is larger or equal), the prices to increase are
the prices of some of its descendants’ categories: for each child category,
Algorithm 3 is used recursively to choose a subset of prices to increase,
and all returned sets are combined. It is easy to prove by induction that
the resulting subset contains exactly one price for each path from a root to
a leaf. Therefore, if all prices in the subset are increased simultaneously by
one unit, then the price-sum in all recipes remains equal.

Algorithm 3 always selects exactly one price to increase in every recipe
in R. This guarantees that the equality of price-sums is preserved by the
price-increases. The price never skips any agent’s integer value, because
the initial category price was a big negative integer number (−V) and the
increment is done always by 1 so the category price visits every integer

CHAPTER 5. BINARY RECIPES 20

Input: A set of categories G,
a set of remaining traders Mg for all g ∈ G,
and a recipe-forest R based on a forest T.

Output: A set of PSs with remaining traders,
each of which corresponds to a recipe in R.

1. If T has a single vertex g:
Return Mg — the set of traders remaining in category g.

2. If T has two roots without children gl and gs:
Do a horizontal contraction of gl into gs. Go back to step 1.

3. Otherwise, pick an arbitrary deepest leaf category gl ∈ T.
4. If gl is a single child of its parent gp ∈ T:

Perform a randomized vertical contraction of gl and gp.
Go back to step 1.

5. Otherwise, gl has a sibling gs ∈ T:
Perform a horizontal contraction of gl and gs.
Go back to step 1.

Algorithm 4: Determining a feasible trade — binary recipes.

from −V to the current category price. at some point the price-sum is
exactly 0, and the auction stops.

(c) Once the auction ends, the final trade is computed using Algorithm
4. At this stage, it is possible that in some recipes, the numbers of traders
remaining in the market are not balanced. In order to construct an integer
number of procurement-sets of each recipe, some agents must be removed
from the trade. The traders to remove must be selected at random and not
by their value, since selecting traders by value would make the mechanism
non-truthful.

The computation of the final trade is similar to that of the optimal trade,
except that the vertical contraction is replaced with a randomized vertical
contraction. A leaf that is a single child is combined with its parent in
the following way. Denote the leaf and parent category by l and p re-
spectively, and let Mi be the set of traders remaining in category i. Let
mmin := min(|Ml|, |Mp|) = the number of procurement-sets that can be
constructed from the agents in both categories. For each g ∈ {l, p} if
|Mg| > mmin then choose |Mg| − mmin agents uniformly at random and
remove them from Mg. Then perform a vertical contraction with the re-
maining agents. The horizontal contractions can be performed determin-

CHAPTER 5. BINARY RECIPES 21

istically, as no traders should be removed.

5.3 Example Run

We illustrate Algorithm 2 using the example in Table 5.1, where the recipe
set is R = {(1, 1, 0, 0), (1, 0, 1, 1)} and the recipe-forest contains the single
tree shown in Figure 5.1(a). The execution is shown in Table 5.2.

Step 1 Since MAXDEPTH = 2, the initial prices determined by (5.1) are
−V,−2V,−V,−V. The price-sum in each recipe is −3V.

Step 2 The categories whose price should be increased are determined
using Algorithm 3. Initially, the numbers of remaining traders in the four
categories are 6, 4, 3, 3. The algorithm compares m1 = 6 to m2 + m3 =
4 + 3. Since 6 < 4 + 3, category 1 (buyers) is not selected, the algorithm
recursively checks the subtrees rooted at categories 2 and 3. In the former,
there is only one category (sellers), so it is selected. In the latter, there is
one child category 4. The algorithm compares m3 = 3 with m4 = 3. Since
3 ≥ 3, the algorithm selects the child category (B-producers). Therefore,
the chosen set G∗ is {2, 4} = {seller, B-producer}.

Step 3 The auctioneer increases the prices of each category g∗ ∈ G∗ by
1, until one agent of some category g∗ ∈ G∗ indicates that his value is not
higher than the price, and leaves the trade. The first agent who answers
“no” is B-producer −6. While p4 has increased to −6, p2 has increased to
−V − 6, so the price-sum in all recipes remains the same: −2V − 6. After
B-producer−6 is removed, we return to step 2 to choose a new set of prices
to increase. The algorithm keeps executing steps 2 and 3 as described in
Table 5.2. Finally, while the algorithm increases p1, and before buyer 9
exits the trade, the price-sum in all recipes becomes 0 and the loop ends.

Step 4 The final trade is determined by Algorithm 4. First, a random-
ized vertical contraction is first done between the A-producers and B-
producers. Since there is one A-producer−1 and one B-producer−1, none
of them has to be removed, and the combined category now has a single
element. Next, a horizontal contraction is done between the pair of pro-
ducers and the remaining two sellers. This results in a combined category

CHAPTER 5. BINARY RECIPES 22

Category counts G∗ Price-increase stops when New prices Price-sum

6, 4, 3, 3 2, 4 B-producer −6 exits −V,−V − 6,−V,−6 −2V − 6
6, 4, 3, 2 2, 3 A-producer −5 exits −V,−11,−5,−6 −V − 11
6, 4, 2, 2 2, 4 seller −10 exits −V,−10,−5,−5 −V − 10
6, 3, 2, 2 1 buyer 2 exits 2,−10,−5,−5 −8
5, 3, 2, 2 2, 4 B-producer −4 exits 2,−9,−5,−4 −7
5, 3, 2, 1 2, 3 seller −8 exits 2,−8,−4,−4 −6
5, 2, 2, 1 1 buyer 6 exits 6,−8,−4,−4 −2
4, 2, 2, 1 2, 3 A-producer −3 exits 6,−7,−3,−4 −1
4, 2, 1, 1 1 price-sum crosses zero 7,−7,−3,−4 0

Table 5.2: Execution of Algorithm 2 on market from Table 5.1

of size 3. Finally, a randomized vertical contraction is done between this
combined category and the buyers’ category. Since there are 4 remaining
buyers, but only 3 sets in the child category, one of the buyers is chosen at
random and removed from trade. Finally, three deals are made: two deals
follow the recipe (1, 1, 0, 0) and involve a buyer and a seller, and one deal
follows the recipe (1, 0, 1, 1) and involves a buyer, an A-producer and a
B-producer.

5.4 Proof of Algorithm Properties

A crucial feature of our mechanism is that the price-sum along each path
from the same node to a leaf is constant.

Lemma 5.4.1 Throughout Algorithm 2, for any category g ∈ G, the price-sum
along any path from g to a leaf is the same for all paths.

proof 1 After the initialization step, the price-sum in all paths from g to a leaf is
equal: −V · (MAXDEPTH−DEPTH(g) + 1). The selection of prices to increase
(Algorithm 3) guarantees that, for any g ∈ G, one of the following holds: either
(a) no descendant of g is selected, or (b) exactly one node is selected in any path
from g to a leaf. Algorithm 2 increases all selected prices simultaneously by the
same amount of one unit; therefore the price-sum remains equal.

The strategic and economic properties of the auction are summarized in
the following theorems.

Theorem 2 Algorithm 2 is universally strongly-budget-balanced, individually-
rational and obviously truthful.

CHAPTER 5. BINARY RECIPES 23

proof 3 Given a fixed priority-ordering on the agents, consider the determinis-
tic variant of the algorithm in which, in step 4 of Algorithm 4, instead of the
randomized vertical contraction, the removed agents in each category are selected
deterministically by the fixed agent ordering. Algorithm 2 is a lottery on such
deterministic mechanisms, where the agent ordering is selected uniformly at ran-
dom. Therefore, to prove that the randomized mechanism satisfies a property uni-
versally, it is sufficient to prove that each such deterministic variant satisfies this
property.

Strong budget balance holds since by Lemma 5.4.1 (applied to the root category),
the price-sum for all recipes remains the same throughout the execution, and the
algorithm stops whenever this sum becomes 0.

Individual rationality holds since an agent i ∈ Ng may remain in the market only
if vi ≥ pg. 1

To prove obvious-truthfulness, we consider an agent i ∈ Ng who is asked whether
vi > pg, and check the two possible cases:

• Case 1: vi > pg. If the agent answers truthfully “yes”, then his lowest
possible utility is 0, since the mechanism is IR. If the agent answers un-
truthfully “no”, then his highest possible utility is 0 since he is immediately
removed from trade and cannot return.

• Case 2: vi ≤ pg. If the agent answers truthfully “no”, then his lowest
possible utility is 0, since he is removed from trade immediately. If the agent
answers untruthfully “yes”, then his highest possible utility is 0, since the
utility is vi − pg and the price can only increase.

In both cases, the lowest possible utility of a truthful agent is at least the highest
possible utility of a non-truthful agent.

We now show that the ascending auction attains an asymptotically opti-
mal GFT. The analysis assumes that the valuations are generic — the sum
of valuations in every subset of agents is unique. In particular, the optimal
trade is unique. This is a relatively mild assumption, since every instance
can be modified to have generic valuations with negligible impact on the
gains from trade, as explained by [5].

First, choose a sufficiently large constant W ≥ n+ 1 and replace each value
vi by 2W · vi. This scaling obviously has no effect on the optimal or the

1If there are no two agents with the same value, then agent i remains only if vi > pg;
in case of ties, agent i may remain also when vi = pg, since only one agent is removed in
each iteration.

CHAPTER 5. BINARY RECIPES 24

actual trade. Then, arbitrarily assign a unique integer index i ∈ {1, . . . , n}
to every agent, and set v′i := 2W · vi + 2i.

Now the sum of valuations in every agent subset is unique, since the n
least significant bits in its binary representation are unique. Moreover, for
every subset I ⊆ N, ∑i∈I v′i ≈ 2W ∑i∈I vi plus some “noise” smaller than
2n+1 ≤ 2W .

Therefore, the optimal trade in the new instance corresponds to one of the
optimal trades in the original instance, with the GFT multiplied by 2W . If
the constant W is sufficiently large, the “noise” has a negligible effect on
the GFT.

Definition 2 (a) The number of deals in the optimal trade is denoted by k.

(b) For each recipe r ∈ R, the number of deals in the optimal trade corresponding
to r is denoted by kr (so k = ∑r∈R kr).

(c) The smallest positive number of deals of a single recipe in the optimal trade is
denoted by kmin := minr∈R,kr>0 kr.

(d) For each recipe r ∈ R, The GFT of all deals corresponding to r is denoted by
GFTr (so GFT = ∑r∈R GFTr).

Theorem 4 For every r ∈ R the expected GFTr of the ascending-price auction
of Section 5.2 is at least 1− 1/kr of the optimal GFTr.

As a corollary, The GFT of the ascending-price auction of Section 5.2 is at least
1− 1/kmin of the optimal GFT.

Before proving the theorem, we remark on the dependence on kmin. This
dependence may appear weak, but it is the best possible. Consider a
recipe-tree with 5 categories and 2 recipes: (dummy,buyer1,seller1) and
(dummy,buyer2,seller2). The dummy category contains infinitely-many
agents with value 0; the (buyer1,seller1) categories contain kmax pairs with
a GFT of 1; the (buyer2,seller2) categories contain kmin pairs with a GFT of
kmax

2. Here, OPT = kmax + kmin · kmax
2. It is clearly equivalent to two inde-

pendent two-sided markets: the (buyer1,seller1) market with OPT = kmax
and the (buyer2,seller2) market with OPT ≫ kmax. The approximation
ratio of any mechanism is dominated by the ratio on the (buyer2,seller2)
market, which by Myerson-Satterthwaite theorem is at most 1− 1/kmin.
When there is only one optimal deal, kmin = 1, the only way to satisfy the
truthfulness requirement of the mechanism is to remove that only deal, so

CHAPTER 5. BINARY RECIPES 25

the approximation ratio is zero. Theorem 2 of [4] provides a similar guar-
antee for their WBB auction, and they too present an example showing
that the ratio must depend on the recipe with the least number of PSs.

When there is a single recipe, kmin = k, so Theorem 4 provides the same
guarantee as [34].

The proof of Theorem 4 uses several definitions. For every category
g ∈ G:

(*) kg := the number of deals in the optimal trade containing an agent from
Ng (equivalently: the number of deals whose recipe-path passes through
g). If g is the root category then kg = k. If g is any non-leaf category then

kg = ∑
g′ is a child of g

kg′ . (5.2)

In the market in Table 5.2, kg for categories 1,2,3,4 equals 4, 2, 2, 2 respec-
tively.

(*) vg,kg := the value of the kg-th highest trader in Ng — the lowest value of
a trader who participates in the optimal trade. In the market in Table 5.2,
vg,kg for categories 1,2,3,4 equals 9,−5,−3,−4 respectively. In any path
from the root to a leaf, the sum of vg,kg is positive — otherwise we could
remove the PS composed of the agents corresponding to this path, and get
a trade with a higher GFT.

(*) vg,kg+1 := the highest value of a trader who does not participate in the
optimal trade (or −V if no such trader exists). In the market in Table 5.2,
vg,kg+1 for categories 1,2,3,4 equals 6,−8,−5,−6 respectively. In any path
from the root to a leaf, the sum of vg,kg+1 is at most 0 — otherwise we could
add the corresponding PS and get a trade with a higher GFT.

Recall that, during the auction, mg := |Mg| = the number of agents of
category g currently in the market (whose value is larger than pg), and

cg := ∑
g′ is a child of g

mg′ . (5.3)

When the algorithm starts, mg ≥ kg for all g ∈ G, since all participants
of the optimal trade are in the market. Similarly, cg ≥ kg. In contrast to
equation (5.2), mg and cg need not be equal. By adding dummy agents
with value −V + 1 to some categories, we can guarantee that, when the
algorithm starts, mg = cg for all non-leaf categories g ∈ G. For example,
in the market in Table 5.2 it is sufficient to add a buyer with value −V + 1.
This addition does not affect the optimal trade, since no PS in the optimal

CHAPTER 5. BINARY RECIPES 26

trade would contain agents with such low values. It does not affect the
actual trade either, since the price-sum is negative as long as there are
dummy agents in the market. Once mg = cg, we show that these values
remain close to each other throughout the algorithm:

Lemma 5.4.2 For all non-leaf categories g ∈ G,

cg ≤ mg ≤ cg + 1.

proof 5 The proof is by induction on the algorithm rounds. Before the first round,
mg = cg by the addition of dummy agents, so the claim holds.

In each round, if mg = cg then Algorithm 3 never selects pg for increase. Hence,
Algorithm 2 never removes agents from Mg, so cg ≤ mg still holds. It may
remove an agent from a child of g, but since at most one agent is removed in each
round, mg ≤ cg + 1 still holds after the removal.

If mg = cg + 1, then the algorithm never increases prices and never removes
agents from children of g, so mg ≤ cg + 1 still holds; it may remove at most one
agent from Mg, so cg ≤ mg holds.

Definition 3 Given a price-vector p, a subset G′ ⊆ G is called:

(a) Cheap — if pg ≤ vg,kg+1 for all g ∈ G′;

(b) Expensive — if pg ≥ vg,kg for all g ∈ G′.

We apply Definition 3 to paths in trees in the recipe-forest T. Intuitively,
in a cheap path, the prices are sufficiently low to allow the participation
of agents not from the optimal trade. In an expensive path, the prices are
sufficiently high to allow the participation of agents only from the optimal
trade.

Lemma 5.4.3 Let g1, g2 be two children of the same parent node gp ∈ T. There
cannot be simultaneously a cheap path from g1 to a leaf and an expensive path
from g2 to a leaf.

proof 6 Let q1 be the price-sum along the cheap path from g1 to a leaf, and q2 the
price-sum along the expensive path from g2 to a leaf. By definition of cheap and
expensive paths, q1 is the GFT of a part of non-optimal PS, and q2 is the GFT of a
part of an optimal PS; therefore q1 < q2. But both paths are children of the same
node g, contradicting Lemma 5.4.1.

CHAPTER 5. BINARY RECIPES 27

Lemma 5.4.4 If mg ≤ kg − 1 for some g ∈ G, then there is an expensive path
from g to a leaf.

proof 7 The fact that mg ≤ kg − 1 means that pg ≥ vg,kg , so the condition for
an expensive path holds for g itself. To show that it holds for a path from g to a
leaf, we apply induction on HEIGHT(g). If HEIGHT(g) = 0 (i.e., g itself is a
leaf), then the claim is obvious. Otherwise, by Lemma 5.4.2,

∑
g′ is a child of g

mg′ = cg ≤ mg ≤ kg − 1 =

(
∑

g′ is a child of g
kg′

)
− 1

Therefore, there is at least one child g′ of g for which mg′ ≤ kg′ − 1. Since
HEIGHT(g′) < HEIGHT(g), by the induction assumption there is an expensive
path from g′ to a leaf. Prepending g to this path yields an expensive path from g
to a leaf.

Lemma 5.4.5 If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from g
to a leaf.

proof 8 The fact that mg ≥ kg + 1 means that pg ≤ vg,kg+1, so the condition for
a cheap path holds for g itself. To show that it holds for a path from g to a leaf, we
apply induction on HEIGHT(g). If HEIGHT(g) = 0 then the claim is obvious.
Otherwise, there are two cases.

Case #1: g has a child g′ for which mg′ ≥ kg′ + 1. Then by the induction assump-
tion there is a cheap path from g′ to a leaf; prepending g to this path yields a cheap
path from g to a leaf.

Case #2: mg′ ≤ kg′ for all children g′ of g. Then,

cg = ∑
g′ is a child of g

mg′ ≤ ∑
g′ is a child of g

kg′ = kg ≤ mg − 1.

Lemma 5.4.2 implies that mg − 1 ≤ cg, so all these inequalities are in fact equal-
ities. In particular, ∑g′ mg′ = ∑g′ kg′ , where the sums are on all children g′ of
g. Together with mg′ ≤ kg′ , this implies mg′ = kg′ for all children g′ of g. Now,
let us look back at the history of price-increases made by the algorithm, and iden-
tify the most recent price-increase in a descendant of g (a category in the subtree
below g). Before this price-increase, cg = mg had necessarily held, since other-
wise Algorithm 3 would have chosen g rather than a descendant of g. After the
price-increase, we have cg = mg − 1. This means that the price-increase must

CHAPTER 5. BINARY RECIPES 28

have been in a child g′ of g, and it caused mg′ to decrease by one. So before this
increase, this child had mg′ = kg′ + 1. Since HEIGHT(g′) < HEIGHT(g), by the
induction assumption there was a cheap path from g′ to a leaf. The price-increase
of g′ stopped at the moment when agent kg′ + 1 was removed from Mg′ , i.e., it
stopped at pg′ = vg′,kg′+1; therefore, the same path from g′ to a leaf is still cheap.
Prepending g yields a cheap path from g to a leaf.

Lemma 5.4.6 If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from
the root to a leaf (through g).

proof 9 By Lemma 5.4.5 there is a cheap path from g to a leaf. Therefore, it is
sufficient to prove that there is a cheap path from the root to g. The proof is by
induction on DEPTH(g). If DEPTH(g) = 0 (i.e., g itself is the root), then the
claim is obvious. Otherwise, let gp be the parent of g.

By Lemma 5.4.3, since there is a cheap path from g to a leaf, there cannot be an
expensive path from any other child of gp to a leaf. So by Lemma 5.4.4, mg′ ≥ kg′

for any child g′ of gp. Summing over all children of gp (and adding 1 for the child
g) gives:

cgp = ∑
g′ is a child of gp

mg′ ≥ 1 + ∑
g′ is a child of gp

kg′ = kgp + 1.

Since mgp ≥ cgp by Lemma 5.4.2, this implies mgp ≥ kgp + 1. Since DEPTH(gp) <
DEPTH(g), by the induction assumption there is a cheap path from the root to gp;
appending g to this path yields a cheap path from the root to g.

Lemma 5.4.7 If mg ≤ kg − 1 for some g ∈ G, and Algorithm 3 decides to
increase the price of g or a descendant of it, then there is an expensive path from
the root to a leaf (through g).

proof 10 By Lemma 5.4.4, mg ≤ kg − 1 implies that there is an expensive path
from g to a leaf. Therefore, it is sufficient to prove that there is an expensive path
from the root to g. The proof is by induction on DEPTH(g). If DEPTH(g) = 0
(i.e., g itself is the root), then the claim is obvious. Otherwise, let gp be the parent
of g.

By Lemma 5.4.3, since there is an expensive path from g to a leaf, there cannot be
a cheap path from any other child of gp to a leaf. So by Lemma 5.4.5, mg′ ≤ kg′ for
any child g′ of gp. Summing over all children of gp (and subtracting 1 for child
g) gives:

cgp = ∑
g′ is a child of gp

mg′ ≤ −1 + ∑
g′ is a child of gp

kg′ = kgp − 1.

CHAPTER 5. BINARY RECIPES 29

The fact that Algorithm 3 decides to increase the price of g or a descendant of
it implies that mgp ≤ cgp . Therefore, mgp ≤ kgp − 1. Since DEPTH(gp) <
DEPTH(g), by the induction assumption there is an expensive path from root to
gp; appending g to this path yields an expensive path from root to g.

Lemma 5.4.8 When Algorithm 2 ends, mg ∈ {kg, kg − 1} for all g ∈ G.

proof 11 The proof is by contradiction.

First, suppose that mg ≥ kg + 1 for some g ∈ G. By Lemma 5.4.6, there is
a cheap path from the root to a leaf; denote the set of categories along this path
by G′. The sum of prices of categories g ∈ G′ is the GFT of a non-optimal PS,
which is negative. As long as the price-sum is negative, the algorithm does not
terminate.

Second, suppose that mg ≤ kg − 2 for some g ∈ G. Since at most a single agent
is removed in each iteration, this means that the algorithm decided to increase the
price of g while mg was equal to kg − 1. By Lemma 5.4.7, at that point there
existed an expensive path from the root to a leaf; denote the set of categories along
this path by G′. The sum of prices of categories g ∈ G′ is the GFT of an optimal
PS, which is positive. However, the price-sum increases by a single unit each
round, and the algorithm terminates when the price-sum hits zero, so the price-
sum can never be positive.

proof 12 (Proof of Theorem 4) By Lemma 5.4.8, each recipe r ∈ R with kr =
0 does not participate in the trade at all, since the leaf category gl of r has kgl = 0
and therefore mgl = 0. For each recipe r ∈ R with kr > 0, for each category g in
r, all kg optimal traders of g, except maybe the lowest-valued one, participate in
the final trade. Therefore, in the random selection of the final traders (Algorithm
4), for each path with a corresponding recipe r ∈ R, at least kr − 1 random deals
out of the kr optimal deals are executed. Hence, the expected GFT coming from
recipe r alone is at least (1− 1/kr) times the optimum.

Taking the minimum over all recipes yields the ratio claimed in the corollary.

6 Integer Recipes

This section extends Section 5 by allowing the recipes in the forest to be
arbitrary vectors of non-negative integers, rather than binary vectors. For
each category g there is an integer rg ≥ 0, and every PS of r ∈ R such that
g ∈ G must contain exactly rg traders from this category. We assume that,
for every category g, rg is the same for all recipes r in which rg > 0. We
call this number the multiplicity of category g.

The mechanism of Section 5 is a special case of the mechanism of Section
6. We split them into two different sections because in the binary case we
could prove a stronger approximation ratio. In 9.3 we present examples
showing that the approximation guarantee of the binary case is not true in
the general case.

The concepts and notations introduced in the binary case should be adapted
to the general case by weighting the quantity related to each category g by
its multiplicity rg. In particular:

• The sum of prices in each recipe is weighted: Prices-sum(r) := ∑g∈G pg ·
rg.

• The depth of a node g is WEIGHTD(g) := ∑g′∈PATH(g→root) rg′ . The
notation MAXWD (maximum weighted depth) is used to compute
the initial price-sum for all paths.

• The quantity mg is now |Mg| divided by rg, so that it represents the
number of deals that can be done using the agents remaining in Mg.
Note that mg is not necessarily an integer number, so we round it
down to the nearest integer.

• The notations ’cheap’ and ’expensive’ are determined based on sets
of rg agents of each category, rather than individual agents.

The notation differences between Section 5 and Section 6 can be viewed in
the Tables 9.2 and 9.3 in 9.1.

30

CHAPTER 6. INTEGER RECIPES 31

Input: A set of categories G, a set of traders Ng for all g ∈ G,
and a recipe-forest R based on a forest T.
For each agent i ∈ ∪gNg, the value vi is public knowledge.

Output: Optimal trade in the market.
1. If T has a single vertex g:

Return {Vi ∈ Ng|sumvj∈Vi(vj) ≥ 0}— all subsets of Ng’s agents with
non-negative value sums.

2. Else, if T has two roots without children gl and gs:
Do a horizontal contraction of gl into gs. Go back to step 1.

3. Else, if there is an arbitrary deepest leaf gl that is a single child of its parent gp:
Do a vertical contraction of gl into gp. Go back to step 1.

4. Else, there is a leaf gl with a sibling leaf gs:
Do a horizontal contraction of gl into gs. Go back to step 1.

Algorithm 5: Finding the optimal GFT — integer recipes.

Category g Traders per deal rg Agents’ values

N1: buyers 1 19, 18, 17, 13, 6, 2
N2: sellers 2 -2, -2, -3, -4, -5, -8
N3: A-producers 1 -1, -3, -5, -7
N4: B-producers 2 -1, -2, -3, -4, -6, -8

Table 6.1: An example market. Boldface is optimal trade

6.1 Computing an Optimal Trade

We first present an algorithm for computing the optimal trade assuming
all values are known. We illustrate the algorithm on the market in Table
6.1.

Similarly to Section 5, The algorithm is based on contracting the recipe-
forest down to a single node. In addition to vertical and horizontal con-
tractions, we need a third kind of contraction: an internal contraction.

An internal contraction acts on an individual category node g ∈ G. It
converts agent values in the category to sets of size rg in the following
way. Sort all agents’ values in descending order such that v1 ≥ v2 ≥
. . . ≥ vmv . Construct the sets (v1, . . . , vrg) ≥ (vrg+1, . . . , v2rg) ≥ . . . ≥
(. . . , vmv). If the last set (. . . , vmv) contains less than rg values, then re-
move it. For example, an internal contraction on N4 in Table 6.1 gives

CHAPTER 6. INTEGER RECIPES 32

{(−1,−2), (−3,−4), (−6,−8)} since r4 = 2, and on N3 it gives {(−1),
(−3), (−5), (−7)} since r3 = 1.

The vertical and horizontal contraction work similarly to the binary case.
In the market described by Table 6.1, a vertical contraction of N3 and
N4 yields N3 ∧ N4, which contains the values {((−1), (−1,−2)), ((−3),
(−3,−4)), ((−5), (−6,−8))} = {(−1,−1,−2), (−3,−3,−4), (−5,−6,−8)}.
A horizontal contraction of N2 with N3 ∧ N4 yields N2 ∪ (N3 ∧ N4), which
contains the values {(−1,−1,−2), (−2,−2), (−3,−4), (−3,−3,−4), (−5,−8),
(−5,−6,−8)}. A vertical contraction of the latter category with N1 yields:
{(19,−1,−1,−2), (18,−2,−2), (17,−3,−4), (13,−3,−3,−4), (6,−5,−8),
(2,−5,−6,−8)}. The optimal trade in that is the set of all deals with posi-
tive values, which in this case contains four deals with values {15, 14, 10, 3}.
This corresponds to an optimal trade with k = 4 deals:

• Buyer 19, A-producer −1, B-producers −1,−2;

• Buyer 18, sellers −2,−2;

• Buyer 17, sellers −3,−4;

• Buyer 13, A-producer −3, B-producers −3,−4.

The process is summarized as Algorithm 5.

6.2 Ascending Auction Mechanism

The ascending-price auction for integer recipes is presented as Algorithm
6. As in the binary case, for each category g, the auctioneer maintains a
price pg, and a subset Mg ⊆ Ng of all traders whose value is higher than
pg. At each iteration, the auctioneer chooses a subset of the categories and
increases their prices. In contrast to the binary case, the price-increase is
not the same in all categories: the price of category g is increased by 1/rg.
The reason is that the price-sum of every recipe r is a weighted sum of
the category prices; increasing pg by 1/rg guarantees that the price-sum of
every recipe increases by 1, so that it does not skip any integer value.

After each increase, the auctioneer asks each agent in turn whether their
value is still higher than the price. An agent who answers “no” is per-
manently removed from the market. After each increase, the auction-
eer computes the weighted sum of prices of the categories in each recipe:

CHAPTER 6. INTEGER RECIPES 33

Input: A market N, a set of categories G and a recipe-forest R.
Output: Strongly-budget-balanced trade.
1. Initialization: Let Mg := Ng for each g ∈ G. Using Equation (6.1),

set an initial price pg for each g ∈ G.
2. Using Algorithm 7, select a set G∗ ⊆ G of categories.
3. For each g∗ ∈ G∗, ask each agent in i ∈ Mg∗ whether vi > pg∗.

(a) If an agent i ∈ Mg∗ answers “no”, then
remove i from Mg∗ and go back to step 1.

(b) If all agents in Mg∗ for all g∗ ∈ G∗ answer “yes”, then
for all g∗ ∈ G∗, let pg∗ := pg∗ + 1/rg∗ .

(c) If after the increase ∑g∈G pg · rg = 0 for some r ∈ R, then go on to step 4.
(d) else go back to step 3.

4. Determine final trade using Algorithm 8.

Algorithm 6: Ascending prices mechanism — integer recipes — main
loop.

Prices-sum(r) := ∑g∈G pg · rg. When this sum equals 0, the auction ends
and the remaining agents trade in the final prices.

Similarly to the binary case, we explain (a) how the prices are initialized,
(b) how the set of prices to increase is selected, and (c) how the final trade
is determined.

(a) The prices are initialized as follows:

pg :=

{
−V g is not a leaf
−V · (MAXWD−WEIGHTD(g) + rg)/rg g is a leaf

(6.1)

This guarantees that the weighted price-sum in any path from the root to
a leaf is the same: −V ·MAXWD.

(b) The set of prices to increase is selected by Algorithm 7. In contrast
to the binary case, the selection is based on the number of agents of each
category g who are currently in the market, divided by rg.1 We denote this
number by mg := |MG|/rg.

Denote the root category of a tree by g0. The algorithm first compares mg0

to cg0 , defined as the sum of the
⌊
mg
⌋

(mg rounded down to the nearest
integer2) for all children g of g0. If mg0 is larger, then the price selected

1Note that there is no division-by-zero issue, since when rg = 0 there is no node of
such g in the recipe-forest.

2Instead of rounding mg downwards, we can keep mg not rounded, or round it up-

CHAPTER 6. INTEGER RECIPES 34

Input: A set of categories G, a set of remaining traders Mg for
all g ∈ G, and a recipe-forest R based on a forest T.

Output: A subset of G denoting categories for price-increase.
0. Initialization: For each category g ∈ G, let mg := |Mg|/rg.
1. If T contains two or more trees,

Recursively run Algorithm 7 on each individual tree T′;
Denote the outcome by IT′ .

Return
⋃

T′∈T IT′ .
2. Let g0 be the category at the root of the single tree.

Let cg0 := ∑g′∈CHILDREN(g0)

⌊
mg′
⌋
.

3. If mg0 > cg0 [or g0 has no children at all], then return the singleton {g0}.
4. Else (cg0 ≥ mg0), for each child g′ of g0:

Recursively run Algorithm 7 on the sub-tree rooted at g′;
Denote the outcome by Ig′ .

Return
⋃

g′∈child(g0) Ig′ .

Algorithm 7: Finding a set of prices to increase — integer recipes.

for increase is the price of g0; Otherwise (cg0 is larger or equal), the prices
to increase are the prices of some of its descendants’ categories: for each
child category, Algorithm 7 is used recursively to choose a subset of prices
to increase, and all returned sets are combined. It is easy to prove by in-
duction that the resulting subset contains exactly one price for each path
from a root to a leaf. Therefore, if each price in a category g in the sub-
set is increased simultaneously by 1/rg, then the weighted price-sum in
all recipes increases simultaneously by one unit, so the price-sum in all
recipes remains equal. Eventually the weighted price-sum reaches 0, and
the auction stops.

(c) Once the auction ends, the final trade is computed using Algorithm 8.

The process is similar to the computation of the optimal trade, but the
internal contraction operation is replaced with a randomized internal con-
traction operation. For each g ∈ G, denote mod g := |Mg| modulo rg.
Choose mod g agents uniformly at random and remove them from Mg.
Then perform an internal contraction with the remaining agents. Note that
after the internal contraction, all values mg = |Mg|/rg are integers.

wards.
In 9.3, we show for each of these three options, a market in which the approximation ratio
depends on |R|, and all these approximation ratios are asymptotically similar (when |R|
is large).

CHAPTER 6. INTEGER RECIPES 35

Input: A set of categories G, a set of remaining traders Mg for
all g ∈ G, and a recipe-forest R based on a forest T.

Output: A set of PSs with remaining traders,
each of which corresponds to a recipe in R.

1. Do a randomized internal contraction on all g ∈ G.
2. If T has a single vertex g, then

return Mg — the set of traders remaining in category g.
3. If T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 2.
4. Otherwise, pick an arbitrary deepest leaf category gl ∈ T.
5. If gl is a single child of its parent gp ∈ T:

Perform a randomized vertical contraction of gl and gp. Go back to step 2.
6. Otherwise, gl has a sibling leaf gs ∈ T:

Perform a horizontal contraction of gl into gs. Go back to step 2.

Algorithm 8: Determining a feasible trade — integer recipes.

Similarly, the vertical contraction operation is replaced with a random-
ized vertical contraction. A leaf that is a single child is combined with its
parent in the following way. Denote the leaf and parent category by l
and p respectively, Let mmin := min(ml, mp) = the integer number of
procurement-sets that can be constructed from the agents in both cate-
gories. For each g ∈ {l, p} if mg > mmin then choose mg − mmin sets of
agents uniformly at random and remove them from Mg. Then perform a
vertical contraction with the remaining sets of agents.3.

Horizontal contractions can be performed deterministically, as no traders
should be removed. The process of determining the final trade is summa-
rized as Algorithm 8.

6.3 Example Run

We illustrate Algorithm 6 using the example in Table 6.1, where the recipe
set is R = {(1, 2, 0, 0), (1, 0, 1, 2)} and the recipe-forest contains the single
tree shown in Figure 5.1(a). The execution is shown in Table 6.2.

3Alternatively, we can select (mg−mmin) · rg agents uniformly at random and remove
them. Then shift the remaining agents to fill in the ’holes’ in sets. After the shift, the last
mg −mmin sets should be empty, so we remove them

CHAPTER 6. INTEGER RECIPES 36

Step 1 The weighted depths of the categories are 1, 3, 2, 4, so MAXWD =
4. The initial prices determined by (6.1) are −V,−(3/2)V,−V,−V, and
the weighted price-sum of each recipe is −4V.

Step 2 The categories whose price should be increased are determined
using Algorithm 7. Initially, the numbers of remaining traders are 6, 6, 4, 6.
So m1 = 6, m2 = 6/2, m3 = 4, m4 = 6/2. Initially the algorithm compares
m1 to ⌊m2⌋+ ⌊m3⌋. Since 6/1 < ⌊6/2⌋+ ⌊4/1⌋, the price of the root cat-
egory (the buyers) is not increased, and the algorithm recursively checks
the subtrees rooted at g = 2 and g = 3. In the former, there is only one
category so it is returned; in the latter, there is one child g = 4. Since
m3 > ⌊m4⌋, the parent g = 3 is selected. The final set of prices to increase
is {p2, p3}. If the counts were m1 = 6, m2 = 6/2, m3 = 2, m4 = 4/2 in-
stead, then the set of prices to increase would be {p1}. Note that in both
cases, a single price is increased in each recipe.

Step 3 The auctioneer increases the prices of each category g∗ ∈ G∗ by
1/rg∗ , until one agent of some category g∗ ∈ G∗ indicates that his value
is not higher than the price, and leaves the trade. In the example, the
first agent who answers “no” is A-producer −7. While p3 has increased
to −7, p2 has increased to −V − (7/2) (it was incremented at steps of
1/r2 = 1/2), so the price-sum in each recipe remains the same: −7− 3V.
After A-producer −7 is removed, we return to step 2 to choose a new
set of prices to increase. The algorithm keeps executing steps 2 and 3 as
described in Table 6.2. Finally, while the algorithm increases p1, and before
buyer 13 exits the trade, the weighted price-sum in all recipes becomes 0
and the algorithm proceeds to step 4.

Step 4 The final trade is determined by Algorithm 8. First, a randomized
internal contraction is done on all nodes, which uniformly at random re-
moves surplus agents. In our example, there are surplus agents in buyers,
sellers and B-producers categories, so we remove one buyer, one seller,
and one B-producer all at random. Then we convert the agents of each
category into sets of agents. After this, a randomized vertical contraction
is done between the A-producers and B-producers. These categories are
combined into a single set of three agents, one A-producer agent and two
B-producers agents. Next, a horizontal contraction is done between the
set of producers and the remaining two sets of two sellers each. Finally,
a randomized vertical contraction is done between this combined cate-

CHAPTER 6. INTEGER RECIPES 37

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−3V/2,−V,−V −4V
6, 6, 4, 6 6/1 ≤ ⌊6/2⌋+ ⌊4/1⌋ ; 4/1 > ⌊6/2⌋ 2, 3 A-producer −7 exits −V,−V − (7/2),−7,−V −7− 3V
6, 6, 3, 6 6/1 ≤ ⌊6/2⌋+ ⌊3/1⌋ ; 3/1 ≤ ⌊6/2⌋ 2, 4 B-producer −8 exits −V,−(23/2),−7,−8 −23−V
6, 6, 3, 5 6/1 ≤ ⌊6/2⌋+ ⌊3/1⌋ ; 3/1 > ⌊5/2⌋ 2, 3 A-producer −5 exits −V,−(21/2),−5,−8 −21−V
6, 6, 2, 5 6/1 > ⌊6/2⌋+ ⌊2/1⌋ 1 buyer 2 exits 2,−(21/2),−5,−8 −19
5, 6, 2, 5 5/1 ≤ ⌊6/2⌋+ ⌊2/1⌋ ; 2/1 ≤ ⌊5/2⌋ 2, 4 B-producer −6 exits 2,−(17/2),−5,−6 −15
5, 6, 2, 4 5/1 ≤ ⌊6/2⌋+ ⌊2/1⌋ ; 2/1 ≤ ⌊4/2⌋ 2, 4 seller −8 exits 2,−8,−5,−(11/2) −14
5, 5, 2, 4 5/1 > ⌊5/2⌋+ ⌊2/1⌋ 1 buyer 6 exits 6,−8,−5,−(11/2) −10
4, 5, 2, 4 4/1 ≤ ⌊5/2⌋+ ⌊2/1⌋ ; 2/1 ≤ ⌊4/2⌋ 2, 4 B-producer −4 exits 6,−(13/2),−5,−4 −7
4, 5, 2, 3 4/1 ≤ ⌊5/2⌋+ ⌊2/1⌋ ; 2/1 > ⌊3/2⌋ 2, 3 A-producer −3 exits 6,−(11/2),−3,−4 −5
4, 5, 1, 3 4/1 > ⌊5/2⌋+ ⌊1/1⌋ 1 price-sum crosses 0 11,−(11/2),−3,−4 0

Table 6.2: Execution of Algorithm 6 on market from Table 6.1

gory and the buyers’ category. Since there are 4 remaining buyers, but
only 3 sets in the child category, one of the buyers is chosen at random
and removed. In conclusion, three deals are made: two deals follow the
recipe (1, 2, 0, 0) and involve a buyer and two sellers, and one deal fol-
lows the recipe (1, 0, 1, 2) and involves a buyer, an A-producer and two
B-producers.

6.4 Proof of Algorithm Properties

Analogously to the binary case, we first ensure that the weighted price-
sum along each path from the same node to a leaf is constant. We also
ensure that it is an integer.

Lemma 6.4.1 Throughout Algorithm 6, for any category g ∈ G, the weighted
price-sum along any path from g to a leaf is an integer, and it is the same for all
these paths.

proof 13 We first show that the lemma holds for the initial prices (6.1). Consider
a path from g to some leaf gl. The price for all non-leaf categories in this path is
−V, so

∑
g′∈PATH(g→gl),g′ ̸=gl

pg′ · rg′ = −V · ∑
g′∈PATH(g→gl),g′ ̸=gl

rg′ .

The price of gl is determined such that

pgl · rgl = −V · (MAXWD−WEIGHTD(gl) + rgl).

CHAPTER 6. INTEGER RECIPES 38

The total weighted price-sum is the sum of the above two expressions, which is

−V ·

MAXWD−WEIGHTD(gl) + ∑
g′∈PATH(g→gl)

rg′


= −V ·

MAXWD− ∑
g′∈PATH(root→gl)

rg′ + ∑
g′∈PATH(g→gl)

rg′


= −V ·

MAXWD− ∑
g′∈PATH(root→PARENT(g))

rg′


= −V · (MAXWD−WEIGHTD(g) + rg),

which is an integer and is independent of the selection of gl.

The selection of prices to increase (Algorithm 7) guarantees that, for any g ∈ G,
one of the following holds: either (a) no descendant of g is selected, or (b) exactly
one node is selected in any path from g to a leaf. Algorithm 6 simultaneously
increases the price of each selected category g∗ by 1/rg∗. Therefore, all the terms
pg∗ · rg∗ increase simultaneously by 1. Therefore, the weighted price-sum in all
paths from g to a leaf either does not change, or increases by 1. So the sum remains
an integer, and remains equal.

The strategic and economic properties of the auction are summarized in
the following theorem.

Theorem 14 Algorithm 6 is universally strongly-budget-balanced, individually-
rational and obviously truthful.

The proof is identical to Theorem 2 and we omit it.

To Analyze the gain-from-trade, we again assume that the valuations are
generic — the sum of valuations in every subset of agents is unique. In
particular, the optimal trade is unique. This is a relatively mild assump-
tion, since every instance can be modified to have generic valuations, as
explained in Section 5.

To analyze the gain-from-trade, we define for every category g ∈ G:

(*) kg := the number of deals in the optimal trade containing agents from
Ng (equivalently: the number of deals whose recipe-path passes through
g). If g is the root category then kg = k. If g is any non-leaf category then

kg = ∑
g′∈CHILDREN(g)

kg′ . (6.2)

CHAPTER 6. INTEGER RECIPES 39

In the market of Table 6.1, kg for categories 1,2,3,4 equals 4, 2, 2, 2 respec-
tively.

(*) Vg,kg := the set of values of the kg-th highest set of traders in Ng after
performing the internal contraction, i.e. the lowest set of values of traders
that participate in the optimal trade. In the market in Table 6.1, Vg,kg for
categories 1,2,3,4 equals (13), (−3,−4), (−3), (−3,−4) respectively. Note
that, in any path from the root to a leaf, the sum of all vi ∈ Vg,kg is at least 0
— otherwise we could remove the PS composed of the agents correspond-
ing to this path, and get a trade with a higher GFT.

(*) Vg,kg+1 := the set of values of the kg+1-th highest set of traders in Ng
after performing the internal contraction, i.e. the highest set of values of
traders that do not participate in the optimal trade. In the market in Ta-
ble 6.1, Vg,kg+1 for categories 1,2,3,4 equals (6), (−5,−8), (−5), (−6,−8)
respectively. Note that, in any path from the root to a leaf, the sum of all
vi ∈ Vg,kg+1 is negative — otherwise we could add the corresponding PS
and get a trade with a higher GFT.

Recall that, during the auction, mg := |Mg|/rg and

cg := ∑
g′∈CHILDREN(g)

⌊
mg′
⌋

. (6.3)

When the algorithm starts, mg ≥ kg for all g ∈ G, since all participants of
the optimal trade are in the market. Similarly, cg ≥ kg. Similarly to the
binary case, we add dummy agents with value−V + 1 to some categories,
such that, when the algorithm starts, mg = cg for all non-leaf categories
g ∈ G. For example, in the market of Table 6.1 it is sufficient to add a
buyer and two B-producers with values −V + 1. Once mg = cg, we show
that these values remain close to each other throughout the algorithm:

Lemma 6.4.2 For all non-leaf categories g ∈ G,

cg ≤ mg ≤ cg + 1.

proof 15 The proof is by induction on the algorithm rounds. Before the first
round mg = cg (thanks to the addition of dummy agents), so the claim holds.

In each round, if mg = cg then Algorithm 7 never selects pg for increase. Hence,
Algorithm 6 never removes agents from Mg, so cg ≤ mg still holds. It may
remove an agent from a child of g, but since at most one agent is removed in each
round, mg ≤ cg + 1 still holds after the removal.

CHAPTER 6. INTEGER RECIPES 40

if mg > cg then the algorithm never increases prices and never removes agents
from children of g, so mg ≤ cg + 1 still holds. It may remove at most one agent
from Mg, which decreases the value of mg by 1/rg. Since cg, rg,−V are integers,
and mg is an integer multiple of 1/rg, the value of mg does not go below cg, so
cg ≤ mg still holds.

The illustrations below show some possible states of a tree subset during
the execution. The top node is g and it has two child nodes. The numbers
in the nodes are in the following format: |Mg|/rg = mg.

Initially, mg = 11 and cg = ⌊4.33⌋+ ⌊7⌋ = 11 too. Then, an agent from the
left child is removed, and we still have mg = cg = 11:

22/2=11

13/3 = 4.33 7/1 = 7

22/2=11

12/3 = 4 7/1 = 7

Then, another agent from the left child is removed, and mg = cg + 1; Then
an agent from g is removed, and cg < mg < cg + 1:

22/2=11

11/3 = 3.66 7/1 = 7

21/2=10.5

11/3 = 3.66 7/1 = 7

The next agent will be removed from g again (since mg > cg), and at that
point we will have mg = cg = 10.

We now adapt the definitions and lemmas regarding cheap and expensive
paths from binary to general recipes.

Definition 4 Given a price-vector p, a subset G′ ⊆ G is :

(a) Cheap — if pg ≤ minvi∈Vg,kg+1(vi) for all g ∈ G′;

(b) Expensive — if pg ≥ maxvi∈Vg,kg
(vi) for all g ∈ G′;

Similarly to the binary case, in a cheap path, the prices are sufficiently low
to allow the participation of agents not from the optimal trade (those in
Vg,kg+1), while in an expensive path, the prices are sufficiently high to al-
low the participation of agents only from the optimal trade (not including
those in Vg,kg).

CHAPTER 6. INTEGER RECIPES 41

Lemma 6.4.3 Let g1, g2 be two children of the same node gp ∈ T. There cannot
be simultaneously a cheap path from g1 to a leaf and an expensive path from g2 to
a leaf.

The proof is identical to that of Lemma 5.4.3 so we omit it.

Recall that LVS(g) is the set of leaf nodes that are descendants of g.

Lemma 6.4.4 If mg < kg − |LVS(g)| for some category g ∈ G, then there is an
expensive path from g to a leaf.

proof 16 The proof is by induction on HEIGHT(g).

The base is HEIGHT(g) = 0, i.e., g is a leaf. The fact that mg < kg− |LVS(g)| =
kg − 1 implies that |Mg| < kgrg − rg. This means that at least rg agents from
category g, who participate in the optimal trade, have already left the market due
to price-increase. This means that pg ≥ maxvi∈Vg,kg

(vi), so the condition for an
expensive path holds for g.

Suppose now that HEIGHT(g) > 0, i.e., g is not a leaf. By Lemma 6.4.2, mg ≥
cg, so

∑
g′∈CHILDREN(g)

⌊
mg′
⌋
= cg ≤ mg < kg − |LVS(g)| =

= ∑
g′∈CHILDREN(g)

(
kg′ − |LVS(g′)|

)
Since the sigmas on both sides are integers, it follows that:

∑
g′∈CHILDREN(g)

⌊
mg′
⌋
≤ ∑

g′∈CHILDREN(g)

(
kg′ − |LVS(g′)|

)
− 1

Therefore, there is at least one child g′ of g for which
⌊

mg′
⌋
≤ kg′ − |LVS(g′)| −

1. Since kg′ ∈ Z+, it follows that mg′ < kg′ − |LVS(g′)|. Since HEIGHT(g′) <
HEIGHT(g), by the induction assumption there is an expensive path from g′ to a
leaf. Prepending g to this path yields an expensive path from g to a leaf.

Two possible subtrees are illustrated below. The top node is g and it has
two child leaf nodes. The numbers in the nodes are in the format mg ; kg.
The nodes in the expensive path are denoted by *.

CHAPTER 6. INTEGER RECIPES 42

10.5 ; 13 *

4.5 ; 5 6.5 ; 8 *

10.5 ; 13 *

3.5 ; 5 * 7.5 ; 8

∑
g′∈CHILDREN(g)

⌊
mg′
⌋
= 10 ≤ 13− 2− 1 = ∑

g′∈CHILDREN(g)

(
kg′ − |LVS(g′)|

)
− 1

For the top node we have |LVS(g)| = 2, so mg < kg − |LVS(g)|, and the
lemma indicates that there should be an expensive path from g to a leaf. To
identify this path, we should find a child of g in which the same inequality
holds. For the leaf nodes, we have |LVS(g′)| = 1. The inequality mg′ <
kg′ − |LVS(g′)| holds for the rightmost leaf in the leftmost tree, and for
the leftmost leaf in the rightmost subtree, so these are the leaves in the
expensive path.

Lemma 6.4.5 If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from g
to a leaf.

proof 17 The fact that mg ≥ kg + 1 implies that |Mg| ≥ kg · rg + rg. This
means that at least one set of rg agents from category g, who do not participate in
the optimal trade, is still in the market. This means that pg ≤ minvi∈Vg,kg+1(vi),
so the condition for a cheap path holds for g itself. To show that it holds for a path
from g to a leaf, we apply induction on HEIGHT(g). If HEIGHT(g) = 0 then the
claim is obvious. Otherwise, there are two cases.

Case #1: g has a child g′ for which mg′ ≥ kg′ + 1. Then by the induction assump-
tion there is a cheap path from g′ to a leaf; prepending g to this path yields a cheap
path from g to a leaf.

Case #2: mg′ < kg′ + 1 for all children g′ of g. Since
⌊

mg′
⌋

, kg′ are integers, it

follows that
⌊

mg′
⌋
≤ kg′ for all children g′ of g, therefore:

∑
g′∈CHILDREN(g)

kg′ ≥ ∑
g′∈CHILDREN(g)

⌊
mg′
⌋
= cg

By Lemma 6.4.2 we have cg + 1 ≥ mg, so

cg ≥ mg − 1 ≥ kg = ∑
g′∈CHILDREN(g)

kg′ ≥ cg

CHAPTER 6. INTEGER RECIPES 43

Therefore, in the expression above, all inequalities collapse to equalities. In partic-
ular, mg = kg + 1 and cg = mg − 1 (which implies that mg is an integer).

Now, let us look back at the history of price-increases made by the algorithm, and
identify the most recent price-increase in a descendant of g (a category in the
subtree below g). Before this price-increase, cg ≥ mg had necessarily held, since
otherwise Algorithm 7 would not have chosen a descendant of g for increase. After
the price-increase, cg = mg − 1 holds. This means that the price-increase must
have been in some child g∗ of g, and it caused

⌊
mg∗

⌋
and cg to decrease by one.

Before the increase, we had

∑
g′∈CHILDREN(g)

⌊
mg′
⌋
= cg ≥ mg = kg + 1 =

 ∑
g′∈CHILDREN(g)

kg′

+ 1.

Since for all other children g′ of g except for g∗,
⌊

mg′
⌋
≤ kg′ is still true, therefore

before the increase,
⌊
mg∗

⌋
≥ kg∗ + 1 held.

Since HEIGHT(g∗) < HEIGHT(g), by the induction assumption there was
a cheap path from g∗ to a leaf. The price-increase of g∗ stopped at the mo-
ment when an agent from set kg∗ + 1 was removed from Mg∗ , i.e., it stopped
at pg∗ ≤ minvi∈Vg∗ ,kg∗+1

(vi); therefore, the same path from g∗ to a leaf is still

cheap. Prepending g to this path yields a cheap path from g to a leaf.

This is illustrated below, where the left subtree is before and the right sub-
tree is after the price-increase mentioned in the proof. The nodes in the
cheap path are denoted by @.

15 ; 14 @

6 ; 6 9 ; 8 @
cg = 15 = mg

15 ; 14 @

6 ; 6 8.5 ; 8 @
cg = 14 = mg − 1

∑g′∈CHILDREN(g)

⌊
mg′
⌋
= 15 ≥ 14 + 1 = ∑g′∈CHILDREN(g)

(
kg′
)
+ 1

For the top node mg ≥ kg + 1, so the lemma indicates that there should
be a cheap path from g to a leaf. The leftmost subtree illustrates Case
#1: mg′ ≥ kg′ + 1 holds for the rightmost leaf g′, so it is the leaf in the
cheap path. The rightmost subtree illustrates Case #2: mg′ < kg′ + 1 for
all children of g. We have cg = 14 = mg − 1, and indeed the previous
price-increase was in a child of g (the rightmost leaf).

CHAPTER 6. INTEGER RECIPES 44

Lemma 6.4.6 If mg ≤ kg − 1 for some g ∈ G, and there is an expensive path
from g to a leaf, and Algorithm 7 decides to increase the price of g or a descendant
of g, then, even before the increase, there is an expensive path from the root to g.

proof 18 The proof is by induction on DEPTH(g). If DEPTH(g) = 0 (i.e., g
itself is a root), then the claim is obvious. Otherwise, let gp be the parent of g.
We will show that mgp ≤ kgp − 1. Then, by the induction assumption there is an
expensive path from the root to gp; appending g to this path yields an expensive
path from the root to g.

Aassume for contradiction that mgp > kgp − 1. The fact that Algorithm 7 decides
to increase the price of g or a descendant of g, implies that cgp ≥ mgp . Hence,

∑
g′∈CHILDREN(gp)

⌊
mg′
⌋
= cgp ≥ mgp > kgp − 1 = ∑

g′∈CHILDREN(gp)

kg′ − 1

Since
⌊
mg
⌋
≤ mg and mg ≤ kg − 1, we have

⌊
mg
⌋
≤ kg − 1. Removing from

both sides the term corresponding to g (which is a child of gp) yields:

 ∑
g ̸=g′∈CHILDREN(gp)

⌊
mg′
⌋ >

 ∑
g ̸=g′∈CHILDREN(gp)

kg′

 .

Since both sides are integers, it follows that:

 ∑
g ̸=g′∈CHILDREN(gp)

⌊
mg′
⌋ ≥

 ∑
g ̸=g′∈CHILDREN(gp)

kg′

+ 1.

Therefore, there is at least one child g′ of gp for which
⌊

mg′
⌋
≥ kg′ + 1. Since

mg′ ≥
⌊

mg′
⌋

, we have mg′ ≥ kg′ + 1. By Lemma 6.4.5, there is a cheap path from
g′ to a leaf. But by the assumption of the present Lemma, there is an expensive
path from g — which is a sibling of g′ — to a leaf. By Lemma 6.4.3, these two
paths cannot exist simultaneously.

An example of such an impossible subtree is illustrated below. The top
node is gp, the left child is g′, and the right child is g.

CHAPTER 6. INTEGER RECIPES 45

12 ; 13

6.6 ; 5 @ 6.8 ; 8 *

∑g′∈CHILDREN(g)

⌊
mg′
⌋
= 12 ≤ 13− 1 = ∑g′∈CHILDREN(g)

(
kg′
)
− 1

For the right child g, we have mg ≤ kg − 1, and we assume there is an
expensive path from g to a leaf, and Algorithm 7 decides to increase the
price of g or a descendant of g (since mgp = 12 ≤ 12 = cgp), then, even
before the increase, there is an expensive path from the root to g. And it is
not possible to have a cheap path on the left child g′.

Lemma 6.4.7 If mg ≥ kg + |R| − |LVS(g)|+ 1 for some g ∈ G, then there is a
cheap path from the root to a leaf (through g).

proof 19 Since |R| = LVS(root) ≥ |LVS(g)| for all g ∈ G, the lemma assump-
tion mg ≥ kg + |R| − |LVS(g)| + 1 implies mg ≥ kg + 1. By Lemma 6.4.5
there is a cheap path from g to a leaf. Therefore, it is sufficient to prove that there
is a cheap path from the root to g. The proof is by induction on DEPTH(g). If
DEPTH(g) = 0 (i.e., g itself is a root), then the claim is obvious.

Otherwise, let gp be the parent of g. We will show that mgp ≥ kgp + |R| −
|LVS(gp)|+ 1. Then, by the induction assumption there is a cheap path from the
root to gp; appending g to this path yields a cheap path from the root to g.

By Lemma 6.4.2, mgp ≥ cgp . By the present lemma assumption,
⌊
mg
⌋
≥ kg +

|R| − |LVS(g)|+ 1, since kg, |R|, |LVS(g)| are integers.

As there is a cheap path from g to a leaf, by Lemma 6.4.3 there cannot exist an
expensive path from any sibling of g to a leaf. By Lemma 6.4.4, all siblings g′ of
g must have mg′ ≥ kg′ − |LVS(g′)|, and since the right-hand side is an integer,⌊

mg′
⌋
≥ kg′ − |LVS(g′)| must hold too. Therefore:

mgp ≥ cgp

=
⌊
mg
⌋
+ ∑

g ̸=g′∈CHILDREN(gp)

⌊
mg′
⌋

≥ (kg + |R| − |LVS(g)|+ 1) + ∑
g ̸=g′∈CHILDREN(gp)

(kg′ − |LVS(g′)|)

= (kg + |R| − |LVS(g)|+ 1) + (kgp − kg)− (|LVS(gp)| − |LVS(g)|)
= kgp + |R| − |LVS(gp)|+ 1,

which concludes the proof by induction.

CHAPTER 6. INTEGER RECIPES 46

Lemma 6.4.8 When Algorithm 6 ends,

kg − |LVS(g)| ≤ mg ≤ kg + |R|

for all g ∈ G.

proof 20 The proof is by contradiction.

First, suppose that mg > kg + |R| for some g ∈ G. Then mg > kg + |R| −
LVS(g) + 1. By Lemma 6.4.7, there is a cheap path from the root to a leaf; denote
the set of categories along this path by G′. By definition of a cheap path, pg ≤
minvi∈Vg,kg+1(vi) for all g ∈ G′. So the sum of prices of categories g ∈ G′ is at
most the GFT of a non-optimal PS, which is negative. As long as the price-sum is
negative, the algorithm does not terminate.

Second, suppose that mg < kg − |LVS(g)| for some g ∈ G. Since at most a
single agent is removed in each iteration, this means that the algorithm decided
to increase the price of g while mg was equal to kg − |LVS(g)|. By Lemma 6.4.4
and Lemma 6.4.6, at that point there existed an expensive path from the root to a
leaf; denote the set of categories along this path by G′. By definition of expensive
path, pg ≥ maxvi∈Vg,kg

(vi) for each g ∈ G’, so the sum of prices of categories
g ∈ G′ is at least the GFT of an optimal PS, which is positive. However, the
price-sum increases by a single unit each round, and the algorithm terminates
when the price-sum hits zero, so the price-sum can never be positive.

We can finally prove our main theorem.

Theorem 21 For every recipe r ∈ R, The expected GFTr of Algorithm 6 is at
least max(0, (kr − |R|)/(kr + |R|)) of the optimal GFTr. As a corollary, The
GFT of Algorithm 6 is at least max(0, (kmin− |R|)/(kmin + |R|)) of the optimal
GFT.

proof 22 (Proof of Theorem 21) By Theorem 14 due to the property of Indi-
vidually Rational no agent loses money by participating in the trade, so we never
get a negative GFT. So in the case of kr < |R| the lower bound is zero. For each
recipe r ∈ R and for each category g with rg > 0, by Lemma 6.4.8, the number of
remaining agents satisfies:

rg · (kg − |R|) ≤ |Mg| ≤ rg · (kg + |R|),

So there are at least kg− |R| and at most kg + |R| sets of rg traders. Therefore, in
the random selection of the final traders (Algorithm 8), at least kr − |R| deals are

CHAPTER 6. INTEGER RECIPES 47

done, and the participants are from the at most kr + |R| highest sets of traders in
each category g. Hence, the approximation ratio of the GFT coming from recipe r
alone is at least (kr − |R|)/(kr + |R|) of the optimum4

Taking the minimum over all recipes which participate in the optimal trade (i.e.,
with kr > 0), yields the ratio claimed in the corollary.

When there is a single recipe, kmin = k and |R| = 1, so Theorem 21
provides the same guarantee (k − 1)/(k + 1) as the guarantee of [27] for
recipes with positive integer quantities.

4In Appendix 9.3 we show that this approximation ratio cannot be substantially im-
proved.

7 Experiments

We evaluated the performance of our ascending auction using simulation
experiments. 1

For these experiments, we used the recipe-forests R = {(1, 1, 0, 0), (1, 0, 1, 1)}
and R = {(1, 2, 0, 0), (1, 0, 1, 2)}, each of which each contains a single tree
with two paths (N1 −→ N2 and N1 −→ N3 −→ N4).

For several values of n ≤ 2000, we constructed a market with n · rg agents
of each category g, such that the potential number of procurement-sets is
n. We chose n to be a number divisible by |CHILDREN(groot)| (= number of
children of the root category), and at most 2000. The value of each trader
was selected randomly as described in Section 7.1 below. For each n, we
made 10,000 runs and averaged the results. We split the values among the
categories uniformly at random, so each category has n values.

7.1 Agents’ Values

We conducted two sets of experiments. In the first experiment set, the
value of each buyer (root category) was selected uniformly at random
from [1, 1000], and the value of each trader from the other three categories
was selected uniformly at random from [−1,−1000].

In the second experiment set, the values were selected based on real stocks
prices on Yahoo’s stock market site using 33 stocks. For each stock, we
collected the prices from every day from the inception of the stock until
September 2020. Every day the stock has 4 values: Open, Close, High and
Low. All price values are multiplied by 1000, so they can be represented
as integers, to avoid floating-point rounding errors. On each stock, we
collected all the price values and used those price values as agents’ values

1The code used for the experiments and the experiment results are available at
https://github.com/dvirg/auctions.

48

https://github.com/dvirg/auctions

CHAPTER 7. EXPERIMENTS 49

Table 7.1: Results of experiment with stock-market prices and the recipe-
forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 1.11 1 1 0.496 903.2 0.47 0.47 0.47 37.183 483.8 43.393
4 2.28 1.54 1.82 35.401 2003.9 1.5 1.34 1.37 64.908 1667.6 80.315
6 3.47 1.85 2.66 46.183 3092.3 2.6 1.9 2.22 74.594 2855.7 90.595

10 5.84 2.4 4.29 58.373 5163.3 4.89 2.52 3.87 83.634 5025.1 96.321
16 9.39 3.35 6.75 70.174 8415.4 8.42 3.32 6.34 89.593 8333.2 98.502
26 15.31 5.11 10.85 80.449 13683.2 14.34 4.89 10.45 93.603 13633.3 99.426
50 29.53 9.63 20.7 89.621 26223.9 28.55 9.24 20.31 96.655 26195.7 99.834

100 59.16 19.18 41.2 94.787 53135.7 58.18 18.79 40.81 98.34 53121.7 99.957
500 296 92.89 205.2 98.923 266371.5 295 94.8 204.78 99.661 266368.4 99.997

1000 592.02 182.49 410.16 99.452 532833.8 591.03 184.66 409.72 99.832 532832.4 99.999
2000 1184.19 364.14 820.05 99.725 1065649.7 1183.18 363.88 819.55 99.914 1065649.1 99.999

Table 7.2: Results of experiment with values chosen uniformly at random,
and recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 1.13 1 1 0.279 457.2 0.47 0.47 0.47 41.743 258.2 56.49
4 2.32 1.44 1.77 30.963 1027.8 1.46 1.29 1.32 63.136 823.1 80.079
6 3.51 1.59 2.54 37.158 1616 2.57 1.72 2.1 73.105 1427.8 88.354

10 5.91 1.98 4.13 49.604 2803.3 4.92 1.98 3.71 83.209 2665.2 95.073
16 9.53 3.03 6.52 67.029 4615.1 8.53 2.58 6.11 89.5 4522.6 97.994
26 15.55 5.02 10.52 80.097 7604.2 14.55 4.43 10.11 93.576 7546.7 99.244
50 29.89 9.85 20.04 89.847 14782.6 28.91 9.26 19.64 96.695 14752.3 99.795

100 59.92 19.83 40.08 94.958 29754.2 58.92 19.26 39.65 98.33 29739.3 99.949
500 300.01 99.71 200.3 98.997 149526.3 299.01 99.21 199.8 99.666 149523.7 99.998

1000 600.13 199.45 400.68 99.498 299474.3 599.12 199.04 400.08 99.832 299473.2 99.999
2000 1200.4 399.33 801.06 99.749 598969 1199.4 399.13 800.26 99.917 598968.6 99.999

at random. For the non-root categories, the values were multiplied by −1.
There were more than 5000 values for each category.

7.2 Number of Deals and Gain From Trade

In each run, we calculated k (the number of deals in the optimal trade),
kmin, kmax (recipe minimum and maximum number of deals in the opti-

CHAPTER 7. EXPERIMENTS 50

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

1− 1/kmin Ratio

Figure 7.1: Graph of results from Table 7.1. GFT Ratio is the actual
gain-from-trade of deals achieved by the mechanism divided by the op-
timal gain-from-trade. k′ Ratio is the actual number of deals achieved
by the mechanism divided by the number of deals in the optimal trade.
1− 1/kmin Ratio is the theoretical lower bound ratio (LB).

CHAPTER 7. EXPERIMENTS 51

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

1− 1/kmin Ratio

Figure 7.2: Graph of results from Table 7.2.

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

kmin−|R|
kmin+|R| Ratio

Figure 7.3: Graph of results from Table 7.3.

CHAPTER 7. EXPERIMENTS 52

Table 7.3: Results of experiment with stock-market prices and the recipe-
forest R = {(1, 2, 0, 0), (1, 0, 1, 2)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 0.41 0.4 0.4 0 511 0.05 0.05 0.05 5.258 113.1 5.601
4 1.15 0.85 0.87 0 1414.5 0.5 0.45 0.45 33.52 879.6 39.463
6 1.82 1.04 1.24 0 2284.3 1.1 0.81 0.86 53.199 1864.5 64.838

10 3.14 1.4 2.02 0 4012.6 2.38 1.23 1.64 70.782 3728.2 84.945
16 5.11 2.11 3.16 2.754 6501.7 4.33 1.88 2.79 81.226 6302.7 93.121
26 8.35 3.42 5.04 26.227 10630.7 7.56 3.12 4.65 88.208 10501.3 96.838
50 16.14 6.75 9.47 54.304 20675.6 15.34 6.38 9.09 93.824 20600.8 98.99

100 32.41 13.8 18.7 74.693 41537.5 31.6 13.42 18.31 96.905 41498.5 99.793
500 162.54 70.75 91.88 94.502 208332.9 161.72 70.47 91.5 99.338 208323.6 99.978

1000 325.07 141.99 183.1 97.222 417308 324.25 141.63 182.73 99.672 417303.1 99.993
2000 650.5 285.05 365.44 98.606 834387.5 649.7 284.65 365.06 99.837 834384.9 99.998

mal trade), LB (the theoretical lower bound ratio kmin−1
kmin

or kmin−|R|
kmin+|R|

) and
OGFT (the optimal gain-from-trade). For the ascending-price mechanism,
we calculated k′ (the actual number of deals achieved by the mechanism),
kmin

′, kmax
′ (the actual recipe minimum and maximum number of deals

achieved by the mechanism) and the GFT (the actual gain-from-trade of
deals achieved by the mechanism).

7.3 Results and Conclusions

The results from the stock-prices experiment are presented in Tables 7.1
and 7.3 and in Figures 7.1 and 7.3. The results from the uniform-random
experiment are presented in Tables 7.2 and 7.4 and in Figures 7.2 and 7.4.

The highlights of both sets of experiments are similar. Below are some of
the highlights:

• The actual number of trades (k′) is very close to k − 1. Note that,
theoretically, the mechanism might lose up to one optimal deal in
the recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)} and up to two optimal
deals in the recipe-forest R = {(1, 2, 0, 0), (1, 0, 1, 2)} (see the proof of
Theorems 4 and 21). But in practice, it loses about one optimal deal
on average.

• The actual number of minimum and maximum trades (kmin
′ and

kmax
′) is very near optimal kmin − 0.5 and kmax − 0.5. Note that, the-

oretically in the recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)} and R =

CHAPTER 7. EXPERIMENTS 53

{(1, 2, 0, 0), (1, 0, 1, 2)}, the mechanism might lose up to one and two
optimal deals respectively for each recipe (see the proof of Theorems
4 and 21). But in practice, it loses about half an optimal deal on aver-
age.2

• The actual GFT of the ascending auction is much higher than the the-
oretical lower bound (LB) of the optimum. For example, in the ex-
periments with recipe-tree R = {(1, 1, 0, 0), (1, 0, 1, 1)} when n = 10
(and kmin ≤ 3), the theoretical lower bound is approximately 50%,
but the ascending-price auction attains more than 95%. It surpasses
99.9% already for n ≥ 100. In the experiments with recipe-tree R =
{(1, 2, 0, 0), (1, 0, 1, 2)} when n = 26 (and kmin ≤ 4), the theoretical
lower bound is lower than 30%, but the ascending-price auction at-
tains more than 98%. It surpasses 99.9% already for n ≥ 500.

• We performed an experiment to compare the performance of our
mechanism on binary versus non-binary recipe-trees, by duplicat-
ing the values from the binary market to the non-binary market. The
recipe-trees were: R = {(1, 1, 0, 0), (1, 0, 1, 1)} and R = {(2, 2, 0, 0), (2, 0, 2, 2)}.
We got the exact same results as described in Tables 7.1 and 7.2, even
though the lower bound in the non-binary algorithm is lower than
the binary algorithm lower bound.

• We performed an experiment to compare the optimal deals (k) and
the actual deals (k′) that our algorithm finds and how it is dependant
on |R| of non-binary “wide” recipe-trees (with many children). We
used a market with a root that has 20 children, each with an agent
count (rg) of 20. The results are shown in Table 7.5 and Figure 7.5.

Note that theoretically, the mechanism might lose up to |R| optimal
deals (the difference between k and k′). In our experiment, for low
values of n, the mechanism loses approximately |R|/2 optimal deals
on average. For higher values of n, the number of optimal deals lost
on average, goes down to 0.5. The actual GFT of the algorithm is
much higher than the theoretical lower bound (LB) of the optimum.
It surpasses 99% already for n ≥ 500.

2Since in our experiments |R| = 2 we may think that in one leaf there are kmin optimal
deals and in the other leaf there are kmax optimal deals, which means by definition k =
kmin + kmax. But for small values of n, sometimes there are optimal deals only in one path
of the tree. In such cases kmin = kmax = k. Therefore, for small n the average of kmin plus
the average of kmax may be larger than the average of k. For the same reason, kmin

′ may
be greater than kmin for some values of n.

CHAPTER 7. EXPERIMENTS 54

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

kmin−|R|
kmin+|R| Ratio

Figure 7.4: Graph of results from Table 7.4.

101 102 103 104 105 106

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

kmin−|R|
kmin+|R| Ratio

Figure 7.5: Graph of results from Table 7.5.

CHAPTER 7. EXPERIMENTS 55

Table 7.4: Results of experiment with values chosen uniformly at random,
and recipe-forest R = {(1, 2, 0, 0), (1, 0, 1, 2)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 0.32 0.31 0.31 0 83.1 0.04 0.04 0.04 13.001 20.9 25.19
4 1.08 0.86 0.87 0 385.6 0.42 0.4 0.4 39.032 225.1 58.374
6 1.74 1.06 1.17 0 711.7 0.98 0.81 0.82 56.138 537.7 75.547

10 2.99 1.24 1.9 0 1344.2 2.21 1.19 1.53 73.794 1213.1 90.244
16 4.84 1.9 2.96 0 2280.6 4.06 1.6 2.6 83.764 2193.3 96.172
26 7.96 3.24 4.72 23.685 3841.1 7.18 2.83 4.35 90.246 3787.2 98.595
50 15.4 6.55 8.84 53.249 7552.2 14.61 6.13 8.48 94.886 7524 99.627

100 30.9 13.49 17.41 74.185 15280.4 30.1 13.04 17.05 97.409 15265.6 99.902
500 154.89 68.72 86.16 94.344 77078.1 154.1 68.3 85.8 99.492 77075.5 99.996

1000 309.97 137.53 172.44 97.133 154394.8 309.18 137.11 172.07 99.744 154393.6 99.999
2000 620.14 275.38 344.76 98.557 309003.4 619.35 275 344.35 99.871 309002.9 99.999

Table 7.5: Results of experiment with values chosen uniformly at random,
and wide recipe-tree (20 children, agent count of 20 each).

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT
20 0 0 0 0 3 0 0 0 0 0 0
50 3.7 0.9 0.9 0 768 0 0 0 2.42 49 6.5
100 9.6 1 1.1 0 3949 4.6 1 1 48.34 2572 65.13
500 45.1 3.6 5.5 28.82 22369 41.1 3 5.1 91.16 22165 99.08

1000 90.3 7.7 10.3 58.84 44523 86.1 7.2 9.9 95.29 44420 99.76
2000 180.2 16 19.9 77.83 89245 175.9 15.5 19.5 97.61 89189 99.93
5000 451.5 42.1 48.1 90.93 223104 447.1 41.7 47.7 99.04 223082 99.99

10000 901.8 85.7 94.5 95.44 446385 897.7 85.3 94.1 99.55 446371 99.99
20000 1802.9 174.3 186.2 97.73 892285 1799.6 174 186 99.81 892273 99.99
50000 4512.8 441.1 461.2 99.09 2230206 4510.3 441 461 99.94 2230193 99.99

100000 9024.3 888.6 916.9 99.55 4456886 9022.9 888.4 917.1 99.98 4456876 99.99
200000 18072 1786.2 1828.3 99.77 8919549 18070.8 1785.7 1828.2 99.99 8919540 99.99
500000 45203.4 4483.9 4555 99.91 22294888 45202.8 4483.9 4554.6 99.99 22294881 99.99

1000000 90551.1 9007.5 9099.6 99.95 44590364 90550.7 9008.9 9095.6 99.99 44590363 99.99
2000000 180953.1 17996.1 18175.9 99.97 89176913 180952.6 17980.1 18180.1 99.99 89176909 99.99

8 Discussion and Future Work

Designing obviously-truthful, strongly-budget-balanced and approximately-
efficient auctions is a challenging task even in a single-recipe market. This
paper generalizes this difficult task to multiple-recipe markets. Neverthe-
less, our model does not capture all multiple-recipe market scenarios. We
discuss next the challenges of extending our model further.

8.1 Beyond Recipe-Forests

Our mechanisms assume that the set of recipes can be arranged as a for-
est. In particular, it means that the structure is acyclic.1 With cyclic recipe-
sets, the main challenge is maintaining budget balance. Our current ap-
proach attains budget balance in all recipes simultaneously. But in the
cyclic recipe-set (1, 1, 0), (0, 1, 1), (1, 0, 1),2 to attain budget balance in all
recipes simultaneously, we need p1 + p2 = p2 + p3 = p3 + p1 = 0 (where
pg is the price in category g), and the only solution is p1 = p2 = p3 = 0.
Clearly, no good approximation of the GFT is possible when all prices
are fixed in advance. As another example, consider the cyclic recipe-set
(1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 1). To ensure that the price-sum in all recipes

1One could object to cyclic recipe-sets based on economic arguments. Consider a
recipe-tree with one parent node and two child nodes. The tree represents two different
recipes, each with a parent node category that complements a child node category. The
two recipes have mutually substitutable child nodes. Introducing a cycle, i.e., connecting
the two child nodes in the graph to form a recipe, would create categories that simul-
taneously complement and substitute each other. Economically, such a recipe model is
unavailing.

2Note that with this recipe-set, the optimal trade can be computed efficiently as fol-
lows. Construct a graph in which each node is an agent, and there is an edge between
every two agents in different categories, where the edge weight is the sum of the values
of the two agents. The optimal trade corresponds to a maximum-weight matching in this
graph.

56

CHAPTER 8. DISCUSSION AND FUTURE WORK 57

is the same throughout the algorithm, we would need to increment either
p2, p4 or p1, p2, p3 — these are the only sets of categories that contain the
same number of categories in each recipe. This means that p2 is always in-
cremented, so all agents from this category might leave the market before
the algorithm completes.

Moreover, our recipe forests do not capture all acyclic structures. For ex-
ample, the recipe-sets (1, 1, 0), (1, 1, 1) and (1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1)
are acyclic, but not a recipe-forest by our definition, since they cannot be
arranged such that every recipe corresponds to a root-leaf path.

Developing efficient auctions for more complex markets would probably
require new techniques.

8.2 Beyond Disjoint Categories

Our mechanisms assume that each agent belongs to a single category. Ex-
tending our approach to handle the setting where an agent can belong
to several categories is challenging, as the algorithm will not maintain the
truthfulness property. We illustrate the challenge with the following exam-
ple: the recipes are (1, 1, 0) and (1, 0, 1). Category 1 contains four buyers
with a value of +20; category 2 contains sellers s1 and s2, while category
3 contains sellers s1 and s3, so that s1 belongs to both seller categories. In
each iteration, our algorithm increments either p1 (the root category price)
or p2, p3 (the leaf categories prices). Initially, since cg0 = 4 ≥ mg0 , the algo-
rithm increments p2, p3. The seller s1 can lie and exit category 2 when both
prices arrive at −15, for example, but remain in category 3. Then, since
cg0 = 3 < mg0 , the algorithm will increment p1 until it arrives at +15, as
the price-sum equals 0. Then, s1 sells a single unit at a price of 15 instead
of selling two units for a price of 10, so his utility increases from 0 to +5
due to the manipulation.

8.3 Beyond Identical Multiplicities

Our ascending auction requires that every category g ∈ G appears in all
recipes with the same multiplicity (see Section 4.2). This assumption is
used in our proofs in Section 6.

The main challenge in extending our ascending-price auction to different
multiplicities is attaining a high GFT. To illustrate, consider first a special

CHAPTER 8. DISCUSSION AND FUTURE WORK 58

case of our market, where there are m sellers with value 0, and n > m
categories of buyers, where category g has a single buyer with value vg >
0. There are n recipes, where recipe g contains one seller and one buyer
of category g. The ascending-price mechanism finds the optimal trade in
a greedy way: it increases the prices, each time eliminating a low-value
buyer until only the m high-value buyers remain. Now, suppose that in
each recipe g, the sellers have a different multiplicity, rg. Then, computing
the optimal trade is equivalent to a knapsack problem: each recipe g is
an item with weight rg and value vg, and the knapsack capacity is m. It
is known that greedy algorithms do not attain a good approximation for
the knapsack problem. Since an ascending-price auction selects buyers
in a greedy way, we believe that such an auction will not attain a good
approximation of the GFT.3

8.4 Transaction Costs

In general, each procurement set may have a different cost-of-transaction,
depending on the geographic locations of the agents in the PS and other
factors. Such transaction costs make the computation of the optimal trade
difficult, even before strategic considerations and even when all transac-
tion costs are common knowledge.

Given the above, it is likely that without any restrictions on the transaction
costs, there might be no mechanism that satisfies all the desirable proper-
ties of Theorem 2. It would be interesting to see whether a mechanism
with transaction costs can be found even under some natural restrictions
on the transaction costs, such as those described by [14].

8.5 Randomization

Our algorithm must use randomness in its last step (Algorithm 4) to deter-
mine a feasible trade. Without randomness, we either lose truthfulness (if
we choose traders by their value) or lose GFT (if we choose traders by an

3There are two related negative results in the literature. (a) [19] prove that a deferred-
acceptance auction (which is based on a reverse-greedy algorithm) cannot attain an ap-
proximation better than O(log m) to the optimal outcome in a knapsack auction. (b) [24]
show that, for binary allocation problems, every obviously-truthful mechanism must use
a greedy algorithm.

CHAPTER 8. DISCUSSION AND FUTURE WORK 59

arbitrary fixed order). We conjecture that no deterministic algorithm can
attain all properties simultaneously but do not have proof for that claim.

Bibliography

[1] BABAIOFF, M., CAI, Y., GONCZAROWSKI, Y. A., AND ZHAO, M.
The best of both worlds: Asymptotically efficient mechanisms with a
guarantee on the expected gains-from-trade. In Proceedings of the 2018
ACM Conference on Economics and Computation (2018), ACM, pp. 373–
373. arXiv preprint 1802.08023.

[2] BABAIOFF, M., GOLDNER, K., AND GONCZAROWSKI, Y. A. Bulow-
klemperer-style results for welfare maximization in two-sided mar-
kets. In Proceedings of SODA’20 (2020), pp. 2452–2471. arXiv preprint
arXiv:1903.06696.

[3] BABAIOFF, M., AND NISAN, N. Concurrent Auctions Across the Sup-
ply Chain. Journal of Artificial Intelligence Research (JAIR) 21 (2004),
595–629.

[4] BABAIOFF, M., AND WALSH, W. Incentive Compatible Supply Chain
Auctions. In Multiagent based Supply Chain Management, vol. 28.
Springer Berlin Heidelberg, 2006, pp. 315–350.

[5] BABAIOFF, M., AND WALSH, W. E. Incentive-compatible, budget-
balanced, yet highly efficient auctions for supply chain formation.
Decision Support Systems 39, 1 (Mar. 2005), 123–149.

[6] BLUMROSEN, L., AND DOBZINSKI, S. Reallocation mechanisms. In
EC (2014), pp. 617–640.

[7] BLUMROSEN, L., AND DOBZINSKI, S. (almost) efficient mechanisms
for bilateral trading. In Working paper (2018).

[8] BLUMROSEN, L., AND MIZRAHI, Y. Approximating gains-from-trade
in bilateral trading. In WINE (2016), pp. 400–413.

60

BIBLIOGRAPHY 61

[9] BRAUN, A., AND KESSELHEIM, T. Truthful mechanisms for two-
sided markets via prophet inequalities. In Proceedings of the 22nd ACM
Conference on Economics and Computation (2021), pp. 202–203.

[10] BRUSTLE, J., CAI, Y., WU, F., AND ZHAO, M. Approximating Gains
from Trade in Two-sided Markets via Simple Mechanisms, June 2017.

[11] CAI, Y., GOLDNER, K., MA, S., AND ZHAO, M. On multi-
dimensional gains from trade maximization. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2021), SIAM,
pp. 1079–1098.

[12] CHAIB-DRAA, B., AND MÜLLER, J. Multiagent based supply chain man-
agement, vol. 28. Springer Science & Business Media, 2006.

[13] CHEN, R. R., ROUNDY, R. O., ZHANG, R. Q., AND JANAKIRAMAN,
G. Efficient auction mechanisms for supply chain procurement. Man-
agement Science 51, 3 (2005), 467–482.

[14] CHU, L. Y., AND SHEN, Z.-J. M. Agent Competition Double-Auction
Mechanism. Management Science 52, 8 (Aug. 2006), 1215–1222. Online
appendix available at https://pubsonline.informs.org/
doi/suppl/10.1287/mnsc.1060.0528/suppl_file/mnsc.
1060.0528-sm-chu_shen_8_06_ec1.pdf.

[15] COLINI-BALDESCHI, R., DE KEIJZER, B., LEONARDI, S., AND
TURCHETTA, S. Approximately efficient double auctions with strong
budget balance. In SODA (2016), pp. 1424–1443.

[16] COLINI-BALDESCHI, R., GOLDBERG, P. W., DE KEIJZER, B.,
LEONARDI, S., ROUGHGARDEN, T., AND TURCHETTA, S. Approx-
imately efficient two-sided combinatorial auctions. In Proceedings of
the 2017 ACM Conference on Economics and Computation (2017), ACM,
pp. 591–608.

[17] CYGAN, M. Improved approximation for 3-dimensional matching
via bounded pathwidth local search. In 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science (2013), IEEE, pp. 509–518.

[18] DENG, Y., MAO, J., SIVAN, B., AND WANG, K. Approximately effi-
cient bilateral trade. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing (2022), pp. 718–721.

https://pubsonline.informs.org/doi/suppl/10.1287/mnsc.1060.0528/suppl_file/mnsc.1060.0528-sm-chu_shen_8_06_ec1.pdf
https://pubsonline.informs.org/doi/suppl/10.1287/mnsc.1060.0528/suppl_file/mnsc.1060.0528-sm-chu_shen_8_06_ec1.pdf
https://pubsonline.informs.org/doi/suppl/10.1287/mnsc.1060.0528/suppl_file/mnsc.1060.0528-sm-chu_shen_8_06_ec1.pdf

BIBLIOGRAPHY 62

[19] DÜTTING, P., GKATZELIS, V., AND ROUGHGARDEN, T. The perfor-
mance of deferred-acceptance auctions. In Proceedings of the fifteenth
ACM conference on Economics and computation (2014), pp. 187–204.

[20] DÜTTING, P., ROUGHGARDEN, T., AND TALGAM-COHEN, I. Mod-
ularity and greed in double auctions. Games and Economic Behavior
105(C) (2017), 59–83.

[21] FEIGE, U., AND VONDRÁK, J. The submodular welfare problem with
demand queries. Theory of Computing 6, 1 (2010), 247–290.

[22] FELDMAN, M., FRIM, G., AND GONEN, R. Multi-sided advertising
markets: Dynamic mechanisms and incremental user compensations.
In GameSec (2018), pp. 227–247.

[23] FELDMAN, M., AND GONEN, R. Removal and threshold pricing:
Truthful two-sided markets with multi-dimensional participants. In
SAGT (2018), pp. 163–175.

[24] FERRAIOLI, D., PENNA, P., AND VENTRE, C. Two-way greedy: Al-
gorithms for imperfect rationality. In International Conference on Web
and Internet Economics (2021), Springer, pp. 3–21.

[25] GERSTGRASSER, M., GOLDBERG, P. W., DE KEIJZER, B., LAZOS, P.,
AND SKOPALIK, A. Multi-unit bilateral trade. In Proceedings of the
AAAI’19 (2019), vol. 33, pp. 1973–1980. arXiv preprint 1811.05130.

[26] GILOR, D., GONEN, R., AND SEGAL-HALEVI, E. Ascending-price
mechanism for general multi-sided markets. In Multi-Agent Systems
(2021), Springer Berlin Heidelberg, pp. 1–18.

[27] GILOR, D., GONEN, R., AND SEGAL-HALEVI, E. Strongly budget
balanced auctions for multi-sided markets. Artificial Intelligence 300
(2021), 103548.

[28] GONEN, M., GONEN, R., AND ELAN, P. Generalized trade reduction
mechanisms. In Proceedings of EC’07 (2007), pp. 20–29.

[29] GONEN, R., AND EGRI, O. Combima: Truthful, budget maintaining,
dynamic combinatorial market. Auton. Agents Multi Agent Syst. 34, 1
(2020), 14.

[30] GONEN, R., AND SEGAL-HALEVI, E. Strongly budget balanced auc-
tions for multi-sided markets. In Proceedings of the AAAI Conference on
Artificial Intelligence (2020), vol. 34, pp. 1998–2005.

BIBLIOGRAPHY 63

[31] KANN, V. Maximum bounded 3-dimensional matching is max snp-
complete. Information Processing Letters 37, 1 (1991), 27–35.

[32] KARP, R. M. Reducibility among combinatorial problems. In Com-
plexity of computer computations. Springer, 1972, pp. 85–103.

[33] LI, S. Obviously strategy-proof mechanisms. American Economic Re-
view 107, 11 (2017), 3257–87.

[34] MCAFEE, R. P. A dominant strategy double auction. Journal of Eco-
nomic Theory 56, 2 (Apr. 1992), 434–450.

[35] MCAFEE, R. P. The gains from trade under fixed price mechanisms.
Applied Economics Research Bulletin 1 (2008).

[36] MYERSON, R. B., AND SATTERTHWAITE, M. A. Efficient mechanisms
for bilateral trading. Journal of Economic Theory 29, 2 (Apr. 1983), 265–
281.

[37] NISAN, N. Introduction to Mechanism Design (For Computer Scien-
tists). In Algorithmic Game Theory, N. Nisan, T. Roughgarden, E. Tar-
dos, and V. Vazirani, Eds. Cambridge University Press, 2007, pp. 209–
241.

[38] SEGAL-HALEVI, E., HASSIDIM, A., AND AUMANN, Y. SBBA: A
Strongly-Budget-Balanced Double-Auction Mechanism. In Algorith-
mic Game Theory, M. Gairing and R. Savani, Eds., vol. 9928 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2016, pp. 260–
272.

[39] SEGAL-HALEVI, E., HASSIDIM, A., AND AUMANN, Y. MUDA: A
Truthful Multi-Unit Double-Auction Mechanism. In Proceedings of
AAAI’18 (Feb. 2018a), AAAI Press. arXiv preprint 1712.06848.

[40] SEGAL-HALEVI, E., HASSIDIM, A., AND AUMANN, Y. Double Auc-
tions in Markets for Multiple Kinds of Goods. In Proceedings of IJ-
CAI’18 (July 2018b), AAAI Press. Previous name: ”MIDA: A Multi
Item-type Double-Auction Mechanism”. arXiv preprint: 1604.06210.

[41] VICKREY, W. Counterspeculation, Auctions, and Competitive Sealed
Tenders. Journal of Finance 16, No. 1 (Mar., 1961) (1961), 8–37.

9 Appendix

9.1 Notations

Variable Description Equation

N Set of agents
G Set of agent categories
Ng Set of agents in category g ∈ G ⊔g∈G Ng
PS Procurement-set: a subset of agents that can perform a single deal
rg number of agents of category g that should be in each PS
r Vector of number of agents of each category that should be in each PS (rg)g∈G

vi ∈ Z Represents the material gain of an agent i from participating in a PS
V Publicly known bounds on the possible valuations ∀i ∈ N : −V < vi
T A forest in which, in each tree, one vertex is denoted as its root
R Recipe-forest: a rooted forest T in which the set of nodes is G
P Path in some tree T

CHILDREN(g) Child nodes of the node g in its tree
LVS(g) Leaf descendants of the node g in its tree (if g is a leaf then LVS(g) = {g})

PATH(g1 → g2) Nodes in the unique path from g1 to g2, inclusive
HEIGHT(g) Largest distance between the node g and a leaf of its tree. The height of a leaf is 0
DEPTH(g) Unique distance between the node g and the root of its tree. The depth of a root is 0

MAXDEPTH Maximum depth of forest T maxg is a leaf in T DEPTH(g)
GFT(S) Gain-from-trade of a procurement-set S ∑i∈S vi

kr Number of deals in the optimal trade corresponding to r
k The number of deals in the optimal trade ∑r∈R kr

kmin The smallest positive number of deals of a single recipe in the optimal trade minr∈R,kr>0 kr

GFT(S1, . . . , Sk) Sum of the GFT of all procurement-sets participating in the trade ∑k
j=1 GFT(Sj)

Prices-sum(r) The sum of prices of the categories in each recipe ∑g∈r pg

Mg Agents of category g who are currently in the market Mg ⊆ Ng

Table 9.1: Notations

Variable Description Equation

mg Number of agents of category g who are currently in the market |Mg|
cg Sum of m′g of children g′ of g ∑g′∈CHILDREN(g) mg′

vg,kg+1 The highest value of a trader that does not participate in the optimal trade
Cheap The prices are sufficiently low to allow the participation of agents not from the optimal trade if pg ≤ vg,kg+1, ∀g ∈ G′

vg,kg The lowest value of a trader that participates in the optimal trade
Expensive The prices are sufficiently high to allow the participation of agents only from the optimal trade if pg ≥ vg,kg , ∀g ∈ G′

Table 9.2: Notations for binary recipes

64

CHAPTER 9. APPENDIX 65

Variable Description Equation

WEIGHTD(g) Distance between g and the root of its tree (including the root), weighted by the rg′ ∑g′∈PATH(g→root) rg′

MAXWD Maximum weighted depth of forest T maxg is a leaf in T WEIGHTD(g)
mg Number of agents of category g who are currently in the market divided by category size rg |Mg|/rg
cg Sum of rounded down of m′g of children g′ of g ∑g′∈CHILDREN(g)

⌊
mg′
⌋

Vg,kg+1 The highest set of values of traders that do not participate in the optimal trade
Cheap The prices are sufficiently low to allow the participation of agents not from the optimal trade if pg ≤ minvi∈Vg,kg+1(vi), ∀g ∈ G′

Vg,kg The lowest set of values of traders that participate in the optimal trade
Expensive The prices are sufficiently high to allow the participation of agents only from the optimal trade if pg ≥ maxvi∈Vg,kg

(vi), ∀g ∈ G′

Table 9.3: Notations for integer recipes

9.2 Hardness of General Recipe Sets

To illustrate the difficulty of handling general recipe-sets, we prove that
calculating the optimal trade, even without strategic considerations, is
MAX-SNP-hard. This means not only that it is NP-hard, but also that
it does not have a PTAS unless P=NP. In other words, the best approxi-
mation algorithm that can be hoped for this problem is a constant-factor
approximation. The theorem was already proven in [26] and we repeat it
here for completeness.

Theorem 23 The following problem is MAX-SNP-hard. Given a set N of agents
with known integer valuations, a set G of categories, a set R of recipes, and an
integer C, decide whether there exists a feasible trade in which the GFT is at least
C.

proof 24 The proof is by reduction from 3-dimensional matching, which is
the following decision problem: given a 3-uniform hypergraph H = (V, E) (a
hypergraph in which each edge in E contains 3 vertices of V) and a positive integer
C, decide whether H has a matching that contains at least C edges. This problem
is known to be NP-hard [32] and MAX-SNP-hard [31].

Given an instance H = (V, E) of 3-D matching, construct an instance of the
GFT problem as follows.

• There is a category for each vertex: G = V.

• Each category contains a single agent.

• The value of every agent is 1/3.

• There is a recipe re for each edge e ∈ E, defined as follows:

re
i :=

{
1 i ∈ e,
0 otherwise.

CHAPTER 9. APPENDIX 66

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
3, 2, 2, 6 3/1 ≤ ⌊2/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180−V
3, 1, 2, 6 3/1 ≤ ⌊1/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 3 −V,−90,−90,−90 −180−V
3, 1, 1, 6 3/1 ≤ ⌊1/2⌋+ ⌊1/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 5 3/1 > ⌊1/2⌋+ ⌊1/2⌋+ ⌊5/2⌋ 1 price-sum crosses 0 100,−50,−50,−50 0

Table 9.4: Execution of Algorithm 6 on the market described in the first
paragraph of subsection 9.3.1 with |R| = 3

Since H is 3-uniform, each recipe contains exactly 3 ones and the other elements
are zero. Therefore, the GFT of every PS is 3 · 1/3 = 1, and the GFT of ev-
ery trade equals the number of trading PS. Since each category contains a single
agent, each category must appear in at most one PS. Therefore, every feasible trade
corresponds to a matching in H and vice-versa, so the problems are equivalent.

Note that the best known polytime algorithm for 3-D matching attains 3/4
of the optimum [17]; this illustrates the kind of approximation to the GFT
that we can hope to obtain for general recipe-sets. Developing truthful
mechanisms that attain such constant-factor approximations is another in-
teresting future work direction.

9.3 Limitations of our approach

The approximation ratio of our algorithm for general recipes (Theorem
21) depends on |R|. The reason is that Lemma 6.4.8, which bounds the
difference between the optimal and the actual number of traders in each
category, depends on |R|. In this section we show the tightness of Lemma
6.4.8. Specifically, we show examples in which the algorithm stops and the
remaining agents in g are mg ≥ kg + |R| − 1 or mg ≤ kg − |R|+ 1, which
depends on the number of recipes.

We consider three variants of our approach, using three different ways of
comparing cg to mg in Algorithm 7 step 3. Specifically, mg can be rounded
down (as in the original variant), or rounded up, or not rounded at all.
We show that the dependence on |R| exists in all variants. Removing this
dependence (if at all possible) probably requires a different approach.

CHAPTER 9. APPENDIX 67

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
5, 2, 2, 6 5/1 ≤ ⌊2/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180−V
5, 1, 2, 6 5/1 > ⌊1/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 1 Agent 101 exits from root category 1 101,−90,−90,−90 −79
4, 1, 2, 6 4/1 ≤ ⌊1/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 3 101,−90,−90,−90 −79
4, 1, 1, 6 4/1 > ⌊1/2⌋+ ⌊1/2⌋+ ⌊6/2⌋ 1 Agent 101 exits from root category 1 101,−90,−90,−90 −79
3, 1, 1, 6 3/1 ≤ ⌊1/2⌋+ ⌊1/2⌋+ ⌊6/2⌋ 2, 3, 4 price-sum crosses 0 100,−50.5,−50.5,−50.5 0

Table 9.5: Execution of Algorithm 6 on the market described in the second
paragraph of subsection 9.3.1 with |R| = 3

9.3.1 Rounding down

Consider a recipe-forest R with one tree, consisting of a root and |R| chil-
dren (leaves). All recipes require one agent from the root (rroot = 1) and
two agents from a child (rg = 2). The market contains the following
agents:

• The root contains |R| agents, each with the value 101.

• |R| − 1 children g′ contain two agents, with values −1,−90.

• One child g contains 2 · |R| agents, all with value −50.

The optimal trade has |R| deals, with one deal per child. But Algorithm 7
removes all −90 agents in the first |R| − 1 rounds. Then the algorithm in-
creases the price of child g until it reaches−50 and removes one agent from
g. Now, mroot = |R| and croot =

⌊
mg/2

⌋
= |R| − 1, so the algorithm starts

incrementing the price of the root category. It stops when proot reaches
100. Now there are |R| − 1 deals in the whole tree, each deal contains one
agent from the root and two agents of value −50 from child g. We have
kg = 1 optimal deal in this child, but the algorithm stops when there are
|Mg| = 2 · |R| − 1 agents which is mg = kg + |R| − 1− 1/rg = |R| − 1/rg
deals, so mg ≥ kg + |R| − 1. An example run is shown in Table 9.4 with
|R| = 3.

Consider now the same recipe-forest but the root category has 2 · |R| − 1
agents, each with the value 101. Each iteration removes one −90 agent
from a child g′ and the next iteration removes one agent from the root 101.
The Algorithm loops until all −90 agents are removed from g′ and |R| − 1
agents of 101 are removed from the root category. The algorithm then
stops when the price reaches −50.5 in all children categories. In this case,
the root has kroot = 2 · |R| − 1 optimal deals, but the algorithm removes
|R| − 1 agents from the root category. Now we have only |R| agents left,

CHAPTER 9. APPENDIX 68

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
3, 2, 2, 6 3/1 ≤ ⌈2/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180−V
3, 1, 2, 6 3/1 ≤ ⌈1/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 3 −V,−90,−90,−90 −180−V
3, 1, 1, 6 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 5 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈5/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 4 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈4/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 3 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈3/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 2 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈2/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 1 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈1/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
3, 1, 1, 0 3/1 > ⌈1/2⌉+ ⌈1/2⌉+ ⌈0/2⌉ 1 price-sum crosses 0 100,−50,−50,−50 0

Table 9.6: Execution of Algorithm 6 on the market described in the first
paragraph of subsection

9.3.2 with |R| = 3

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
5, 2, 2, 6 5/1 ≤ ⌈2/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180−V
5, 1, 2, 6 5/1 ≤ ⌈1/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 3 −V,−90,−90,−90 −180−V
5, 1, 1, 6 5/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
5, 1, 1, 5 5/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈5/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100−V
5, 1, 1, 4 5/1 > ⌈1/2⌉+ ⌈1/2⌉+ ⌈4/2⌉ 1 price-sum crosses 0 100,−50,−50,−50 0

Table 9.7: Execution of Algorithm 6 on the market described in the second
paragraph of subsection

9.3.2 with |R| = 3

which is mroot = kroot − |R|+ 1 = |R| deals instead of 2 · |R| − 1 optimal
deals. So mg ≤ kg − |R|+ 1. An example run is shown in Table 9.5 with
|R| = 3.

9.3.2 Rounding up

Let us see what happens if in Algorithm 7 step 3 instead of rounding the
mg′ down, we round it up. Consider the same recipe-forest as the first one
in subsection 9.3.1. The root category has |R| agents, each with the value
101. But each child g′ has two agents with values (−20,−90), The optimal
trade has |R| deals, all of them use the single category g. Algorithm 7
removes all −90 agents in the first |R| − 1 iterations. Then, the algorithm
removes 2 · |R| agents −50 from g. And then the algorithm stops when
the price reaches 100 in the root category. For g we have kg = |R| optimal
deals, but the algorithm stops when there are no agents left, |Mg| = 0
which is mg = kg − |R| = 0 deals. So mg ≤ kg − |R|+ 1. An example run
is shown in Table 9.6 with |R| = 3.

If we consider the same recipe-forest as before, but the root category has

CHAPTER 9. APPENDIX 69

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V,−V −5V
4, 4, 4, 4, 13 4/1 ≤ 4/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 2 −V,−16,−16,−16,−16 −64−V
4, 3, 4, 4, 13 4/1 ≤ 3/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 2 −V,−16,−16,−16,−16 −64−V
4, 2, 4, 4, 13 4/1 ≤ 2/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 2 −V,−16,−16,−16,−16 −64−V
4, 1, 4, 4, 13 4/1 ≤ 1/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 3 −V,−16,−16,−16,−16 −64−V
4, 1, 3, 4, 13 4/1 ≤ 1/4 + 3/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 3 −V,−16,−16,−16,−16 −64−V
4, 1, 2, 4, 13 4/1 ≤ 1/4 + 2/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 3 −V,−16,−16,−16,−16 −64−V
4, 1, 1, 4, 13 4/1 ≤ 1/4 + 1/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 4 −V,−16,−16,−16,−16 −64−V
4, 1, 1, 3, 13 4/1 ≤ 1/4 + 1/4 + 3/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 4 −V,−16,−16,−16,−16 −64−V
4, 1, 1, 2, 13 4/1 ≤ 1/4 + 1/4 + 2/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 4 −V,−16,−16,−16,−16 −64−V
4, 1, 1, 1, 13 4/1 ≤ 1/4 + 1/4 + 1/4 + 13/4 2, 3, 4, 5 Agent −15 exits from category 5 −V,−15,−15,−15,−15 −60−V
4, 1, 1, 1, 12 4/1 > 1/4 + 1/4 + 1/4 + 12/4 1 price-sum crosses 0 60,−15,−15,−15,−15 0

Table 9.8: Execution of Algorithm 6 on the market described in the first
paragraph of subsection

9.3.3 with |R| = 4

2 · |R| − 1 agents, each with the value 101. Algorithm 7 removes all −90
agents in the first |R| − 1 iterations. Then, the algorithm removes two
agents −50 from g. And then the algorithm stops when the price reaches
100 in the root category. In this case, the root has kroot = |R| optimal deals,
but the algorithm did not remove any agents from the root category. So
we have |Mroot| = 2 · |R| − 1 agents left, which is mroot = kroot + |R| − 1 =
2 · |R| − 1 deals instead of |R| optimal deals. So mg ≥ kg + |R| − 1. An
example run is shown in Table 9.7 with |R| = 3.

9.3.3 No rounding

Let us see what happens if in Algorithm 7 step 3 instead of rounding the
mg′ to any direction, we do not round it. Consider a recipe-forest R with
one tree, consisting of a root and |R| children as leaves (assuming |R| ≥ 2).
Each deal contains one root agent rroot = 1, and |R| agents from a child
rg = rg′ = |R|. The agents’ values are:

• The root contains |R| agents, each with the value |R|3.

• |R| − 1 children g′ contain |R| agents each, |R| − 1 agents with the
values −|R|2 and one agent with the value −1. (each g′ has a total
value of −|R|3 + |R|2 − 1)

• One child g has |R|2− |R|+ 1 agents with the values−|R|2 + 1. (each
deal in g has a total value of −|R|3 + |R|)

The optimal trade has |R| − 1 deals with the children g′. and one deal with
the child g

CHAPTER 9. APPENDIX 70

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V,−V −5V
7, 4, 4, 4, 16 7/1 ≤ 4/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 2 −V,−4,−4,−4,−4 −16−V
7, 3, 4, 4, 16 7/1 > 3/4 + 4/4 + 4/4 + 16/4 1 Agent 14 exits from category 1 14,−4,−4,−4,−4 −9
6, 3, 4, 4, 16 6/1 ≤ 3/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 2 14,−4,−4,−4,−4 −9
6, 2, 4, 4, 16 6/1 ≤ 2/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 2 14,−4,−4,−4,−4 −9
6, 1, 4, 4, 16 6/1 ≤ 1/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 3 14,−4,−4,−4,−4 −9
6, 1, 3, 4, 16 6/1 ≤ 1/4 + 3/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 3 14,−4,−4,−4,−4 −9
6, 1, 2, 4, 16 6/1 > 1/4 + 2/4 + 4/4 + 16/4 1 Agent 14 exits from category 1 14,−4,−4,−4,−4 −9
5, 1, 2, 4, 16 5/1 ≤ 1/4 + 2/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 3 14,−4,−4,−4,−4 −9
5, 1, 1, 4, 16 5/1 ≤ 1/4 + 1/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 4 14,−4,−4,−4,−4 −9
5, 1, 1, 3, 16 5/1 ≤ 1/4 + 1/4 + 3/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 4 14,−4,−4,−4,−4 −9
5, 1, 1, 2, 16 5/1 ≤ 1/4 + 1/4 + 2/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 4 14,−4,−4,−4,−4 −9
5, 1, 1, 1, 16 5/1 > 1/4 + 1/4 + 1/4 + 16/4 1 Agent 14 exits from category 1 14,−4,−4,−4,−4 −9
4, 1, 1, 1, 16 4/1 ≤ 1/4 + 1/4 + 1/4 + 16/4 2, 3, 4, 5 price-sum crosses 0 14,−3.5,−3.5,−3.5,−3.5 0

Table 9.9: Execution of Algorithm 6 on the market described in the second
paragraph of subsection

9.3.3 with |R| = 4

The first |R|2 − |R| iterations remove all agents with values −|R|2 from
all children g′. Then the algorithm removes one agent from g when the
price reaches −|R|2 + 1. Then the algorithm stops when the price reaches
|R|3 − |R| in the root’s category. Now we have |R| − 1 deals in the whole
tree. Each deal contains one agent from the root and random |R|2 − |R|
agents from child g. For g we have kg = 1 optimal deal, but the algorithm
stops when there are |Mg| = |R|2 − |R| agents which is mg = kg + (|R|2 −
|R|)/rg − 1 = |R| − 1 deals instead of one optimal deal in g. So mg ≥
kg + |R| − 1. An example run is shown in Table 9.8 with |R| = 4.

Consider now the same recipe-forest as before, but with the following val-
ues (assuming |R| > 2 and is even):

• The root contains 2 · |R| − 1 agents with value |R|2 − |R|+ 2.

• |R| − 1 children g′ contain |R| agents each, |R| − 1 agents with the
values −|R| and one agent with the value −1. (each g′ has a total
value of −|R|2 + |R| − 1)

• One child g has |R|2 agents with the values −|R|/2. (each deal in g
has a total value of −|R|2/2)

The first iteration removes an agent with the value −|R| from any child g′

and the next iteration removes one agent from the root. Afterwards, the
algorithm does the following until all g′ categories have only one agent
left: it removes |R| agents with the values −|R| from any child g′ and then
removes one agent from the root. The algorithm does this until all agents
with values −|R| are removed from all g′ and |R| − 1 agents are removed

CHAPTER 9. APPENDIX 71

from the root category. Then the algorithm stops when the price reaches
−|R|+ |R|−2

|R| in the children categories before removing agent−|R|/2 from
category g. In this case, the root has kroot = 2 · |R| − 1 optimal deals,
but the algorithm removes |R| − 1 agents from the root category. So only
|Mroot| = |R| agents are left, which is mroot = kroot − |R|+ 1 = |R| deals
instead of 2 · |R| − 1 optimal deals. So mg ≤ kg − |R|+ 1. An example run
is shown in Table 9.8 with |R| = 4.

עניינים תוכן iii

32 . עולה מחיר מכניזם 6.2

35 . הרצה דוגמאת 6.3

37 . האלגוריתם תכונות הוכחת 6.4

48 ניסויים 7

48 . הסוכנים ערכי 7.1

49 מהמסחר והרווח עסקאות מספר 7.2

52 . ומסקנות תוצאות 7.3

56 עתידיות ועבודות דיון 8

56 . יער מתכוני 8.1

57 . משולבות קטגוריות 8.2

57 . זהות כפולויות 8.3

58 . משלוח עלויות 8.4

58 . אקראיות 8.5

64 נספח 9

64 . סימונים 9.1

65 . כלליים מתכונים סיבוכיות 9.2

66 . שלנו הגישה מגבלות 9.3

67 . למטה עיגול 9.3.1

68 . למעלה עיגול 9.3.2

69 . עיגול ללא 9.3.3

עניינים תוכן

1 מבוא 1

3 קודמות עבודות 2

4 . צדדי דו שוק 2.1

5 . אספקה שרשרת ניהול 2.2

6 . ברורה אמיתות 2.3

7 שלנו התרומה 3

8 . המאמר מבנה 3.1

9 רשמיות הגדרות 4

9 . וקטגוריות סוכנים 4.1

10 . יער מתכון 4.2

11 . ורווחים עסקאות 4.3

12 . מכניזמים 4.4

15 בינאריים מתכונים 5

15 . אופטימלית עסקה חישוב 5.1

17 . עולה מחיר מכניזם 5.2

21 . הרצה דוגמאת 5.3

22 . האלגוריתם תכונות הוכחת 5.4

30 שלמים מספרים עם מתכונים 6

31 . אופטימלית עיסקה חישוב 6.1

ii

תקציר

של רחב מגוון עם רב־צדדי שוק עבור עולה מחיר מנגנון מציגה העבודה
הרכבה. ושירותי ביטוח, ספקי לוגיסטיקה, סוכני יצרנים, כגון: משתתפים,
קטגוריות ממגוון שונים סוכנים של שילוב להכיל עשויה זה בשוק עסקה כל
מאפשרת זו גמישות זמנית. בו שונים שילובים להכיל יכולות שונות ועסקאות
המוצג המנגנון אחד. גלובלי בשוק עסקאות של שונים מסוגים מסחר קיום
תקציבי איזון מאליה, מובנת אמיתיות של התכונות את מקיים זה במסמך
עבור לאופטימלי קרוב מסחר לרווח ומביא רציונלית, אינדיבידואליות חזק,
של הערכה ביצענו בנוסף קטגוריות. של קומבינציה לכל גדולים שווקים
וכן המניות משוק מניות של אמת נתוני ערכי עבור המוצע המנגנון ביצועי

האמת. נתוני על בהתבסס מלאכותית שיוצרו מניות נתוני

i

הפתוחה האוניברסיטה
המחשב ולמדעי למתמטיקה המחלקה

מורחבים לשווקים חזק תקציבי באיזון מכרז מנגנוני
צדדים רבי

תואר לקבלת מהדרישות כחלק הוגשה זו תזה עבודת
המחשב במדעי M.SC. למדעים״ ״מוסמך

הפתוחה באוניברסיטה
המחשב ומדעי למתמטיקה המחלקה

על־ידי
גילאור דביר

סגל־הלוי אראל וד״ר גונן ריקה פרופ׳ בהנחיית

2023 נובמבר

	Introduction
	Previous Work
	Two-sided markets
	Supply chain management
	Obviously-truthful

	Our Contribution
	Paper Layout

	Formal Definitions
	Agents and Categories
	Recipe forests
	Trades and Gains
	Mechanisms

	Binary Recipes
	Computing an Optimal Trade
	Ascending Auction Mechanism
	Example Run
	Proof of Algorithm Properties

	Integer Recipes
	Computing an Optimal Trade
	Ascending Auction Mechanism
	Example Run
	Proof of Algorithm Properties

	Experiments
	Agents' Values
	Number of Deals and Gain From Trade
	Results and Conclusions

	Discussion and Future Work
	Beyond Recipe-Forests
	Beyond Disjoint Categories
	Beyond Identical Multiplicities
	Transaction Costs
	Randomization

	Appendix
	Notations
	Hardness of General Recipe Sets
	Limitations of our approach
	Rounding down
	Rounding up
	No rounding

