The Open University of Israel

Department of Mathematics and Computer Science

Improvements in Obfuscation and Detection

Techniques of Malicious Code

Thesis submitted as partial fulfillment of the requirements
Towards an M.Sc. degree in Computer Science
The Open University of Israel
Computer Science Division

By:
Ishai Rosenberg

Prepared under the supervision of Prof. Ehud Gudes

November 2016

Acknowledgments

I would like to thank Prof. Gudes, my instructor, for reviewing my work, providing
helpful tips and investing time in our research above and beyond the call of duty.

I would also like to thank Eitan Menachem, from Ben-Gurion University, for
providing the benign third party program collection for our research.

Table of Contents

I Introductionoiiiiiiii 9
2 Background and Related Work o i 11
2.1 Machine Learning Binary Classifier 11
2.2 Sandboxing Dynamic Analysis IDSs............... 13
2.3 Camouflage Algorithms 14
3 Problem Descriptionouuiiiuneiiin i 19
3.1 Evaluating the Classification., 20
3.2 Evaluating the Camouflage Algorithm 20
3.3 Defending against the Camouflage Algorithm Using Input
Transformations i i 21
4 IDS Implementationoouueeunetineennneeineeaeennns 23
4.1 Sand-Boxing Mechanismttt 23
4.2 Feature Extraction: System Calls Recorder...................... 23
4.3 Feature Selection and Classification: The Machine-Learning
Classifler . .. oot 24
4.3.1 Decision Tree Learning (DTL) Algorithm................. 26
432 BOOPY o vvte et 27
4.3.3 InformationGain (IG) 27
434 Ginilmpurity 28
5 The Camouflage Algorithm Implementation 29
5.1 Run-Time Performance 33
6 Experimental Evaluation........... i, 34
6.1 IDSDetectionRate il 34
6.2 Comparison To Other Classification Algorithms 34
6.3 Camouflage Algorithm Effectiveness 35
6.4 Training SetUpdatesot 36
6.5 Partial Knowledge of the IDS L. 37
6.5.1 Partial Training Set Knowledge 37
6.5.2 Full Training Set Knowledge, Lack of Features’ Knowledge . 38
7 Countering the Basic Camouflage: Input Transformation 39
7.1 Section-based transformationsoiiiiiaa.. 39
7.2 Histogram-based transformations. 40
8 Experimental evaluation of the transformed IDS model 41

8.1 IDS detection rate - DecisSion trees.covviriinenenon.. 41

8.2 IDS detection rate - Other classifiers 41

8.3 Camouflage algorithm - Decisiontrees 43
9 Countering the Input Transformations with Custom-Fit Camouflage
Algorithm 44
9.1 Training Set Updatesoviuiiineiie i 45
10 Random Forest Camouflage Algorithm.............................. 47
10.1 Handling Soft Voting i, 48
10.2 Shortest Tree Edit Distance Optimization 48
11 Conclusionsoooouii e 50
Referencesuuuu 51
A Appendix A: Sample decision trees used by the IDS classifier........... 55
A.1 Decision Tree without input transformation 55
A.2 Decision Tree with section-based input transformation,
order-preserving, with duplicates removal 57
B Appendix B: Computing Levenshtein Distance 59
B.l ReCUISIVE 59
B.2 TIterative with Full Matrixo iiiiii.. 59
B.3 TIterative with Two Matrix Rows o .. 60
C Appendix C: Levenshtein Distance: Inferring the edit operations from
the MALIIXot 62
D Appendix D: Various Machine Learning Classifiers - Mathematical and
Technical Background.o 65
D.1 Random-Forest Classifier, 65
D.1.1 Tree baggingoouuniniit i 65
D.1.2 Feature Baggingo, 65
D.1.3 Implementationttt 66
D.2 K-Nearest Neighbors (k-NN) Classifier 66
D.2.1 Implementationooviiiininneieiinneeennn.. 66
D.3 Naive Bayes (NB) Classifier..............ooiiiiiniiii.. 66
D.3.1 The NB Probability Model 66
D.3.2 The NB Classifier ..., 67
D.3.3 Gaussian Naive Bayes 67
D.3.4 Bernoulli Naive Bayes, 67
D.3.5 Implementationooiiiiiin i 67
D.4 AdaBoostClassifierc.uuiiiiiiiniiiiiiaeaan. 67
DAl Training oottt e 68
D42 Weighting ... 68
D.4.3 Discrete AdaBoost oo ool 68
D.4.4 Implementationooiiiniineieiniinneennnn.. 69
D.5 Support Vector Machine (SVM) Classifier 69
D.5.1 Linear SVM .o 70
D.5.2 Nonlinear classification 72
D.5.3 Implementation.ouuviineiinneineenneenn.. 73

List of Figures

NN R WD =

A System Call-Based Decision Treeo .. 26
Example Features to Split-by o i 27
The Decision Tree Camouflage Algorithm Overview 30
A Different System Call-Based Decision Tree.................... 31
Example of Separating Hyperplanes 70
Example of Support Vectors.cooviiiniiiniinen... 72

Example of the Kernel Trick it 73

List of Tables

11

Detection Rate of the IDS by Classifier Type.....................
Percentage of Successfully Camouflaged Malware Samples When
UsingUpdated DB
Camouflage Algorithm Effectiveness Using Partial DB
Detection Rate of the Decision Tree Classifier by Input
Transformation Typettt
Detection Rate of the Naive Bayes (Gaussian) Classifier by Input
Transformation Typeo
Detection Rate of the Linear SVM Classifier by Input
Transformation Type
Detection Rate of the AdaBoost Classifier by Input Transformation
YD e e
Detection Rate of the Random Forest Classifier by Input
Transformation Type
Detection Rate of the k-NN Classifier by Input Transformation Type .
Percentage of Successfully Camouflaged Malware Samples When
Using Input Transformations,
Percentage of Successfully Transformed Camouflaged Malware
Samples When Using Updated DB

Abstract

Machine-learning has been researched as an effective method to augment today’s
signature-based and heuristic-based detection methods capability to cope with un-
known malware. However, if an attacker gains knowledge about the machine learn-
ing algorithm, he or she can create a modified version of the malicious code, which
can evade detection by the IDS.

In this thesis we create an IDS based on various classifiers, using system calls ex-
ecuted by the inspected code as features. We compare the detection rate of several
classifiers, concluding that random forest is the best.

We then present a camouflage algorithm used to modify a malicious system call
sequence to a non-detectable sequence by a decision tree classifier, while preserv-
ing the original code’s functionality. This is done by adding dummy system calls to
change the decision tree path of the malware to a benign path, thus misleading the
classifier.

We test the stability of the camouflage for classifier’s training set updates.

We also present several transformations to the classifier’s input (system calls at a
specific sequence index), to prevent this camouflage. We then show a modified cam-
ouflage algorithm that overcomes those transformations.

We extend our camouflage algorithm to handle random forest classifiers. Our al-
gorithm has 100% success rate on the test set examined for both decision tree and
random forest classifiers, and every input transformation variant, assuming the at-
tacker have full knowledge about them.

Finally, we show that partial knowledge about the classifier is enough to implement
a probabilistic camouflage algorithm.

Our research shows that it is not enough to provide a machine learning classifier
with a large training set of benign and malicious samples to counter malware - one
must also to be aware of the possibility that a machine learning algorithm would
be fooled by such a camouflage algorithm to provide a wrong classification for the
inspected code - and possibly try to counter such option with techniques such as the
input transformation or training set updates that we’ve shown.

An abbreviated revision of this research was published in WISTP 2016 and NSS
2016 conferences. An extended revision would be published in the journal Concur-
rency and Computation: Practice and Experience.

1 Introduction

The constant rise in the complexity and number of malware entities makes improv-
ing the detection rates of intrusion detection systems (IDS) a challenging task. In
this report, we refer to IDS as a tool to detect and classify malware.

Past IDS generally used two methods of malware detection:

— Signature-based detection - Searching for known patterns of data within the exe-
cutable code. Malware, however, can modify itself to prevent a signature match,
e.g., by using encryption. Thus, this method can be used to identify only known
malware.

— Heuristic-based detection - Composed of generic signatures, including wild-
cards, which can identify a malware family. Thus, this method can identify only
variants of known malware.

Recent IDSs are not limited to the use of signatures. Machine-learning can be used
in-order to extend the IDS capabilities to cope with unknown malware by classifying
training samples as benign software or malware, based on specific features which
could be used afterward to classify software unseen before as malware or benign.
Feature extraction can be done using static or dynamic features of the code.

However, our research shows that the arms race between security researchers
and malware writers is far from over: Malware code can be transformed to render
machine learning classifiers almost useless, without losing the original (malicious)
functionality of the modified code. We call such a generic transformation, based on
the classifier type and the features used, a camouflage algorithm.

In this thesis, we present a camouflage algorithm for decision tree and random
forest based classifiers, whose input features are sequences of system calls executed
by the code at run-time. Using system call sequences as a classifier’s input was re-
ported in [48], [18]. However, attempts to fool the classifier have also been reported
in [23, 56]. The main idea presented in this thesis, assuming the enemy knows the
classifier’s features, is that the fooling action can be done automatically by a cam-
ouflage algorithm. Thus it can be applied easily to many instances of malware and
creates a real problem for the IDS. This suggests that it is not enough to provide a
machine learning classifier with a large DB of benign and malicious samples: One
must also be aware of the possibility that a machine learning algorithm would be
fooled by such a camouflage algorithm, and take defensive actions against it. Our
research has three main contributions:

1. Developing an automatic algorithm to decide which system calls to add to a
malware code that is classified as malicious by the IDS, to classify this code as
benign by the same IDS, without losing its functionality. We also investigate the
stability of the camouflage algorithm, meaning its ability to maintain its benign
classification even when additional training samples are added to the training set
(similar to virus definition updates of an anti-virus software). We then alleviate
the assumption of full knowledge of the classifier by the attacker, showing that
partial training set information might be enough.

2. Evaluating the algorithm against a large subset of malware samples, while pre-
vious work evaluated specific examples only.

3. Investigating possible transformations of the IDS input in-order to counter the
camouflage algorithm and restore the true classification - as-well-as a modified
camouflage algorithm to evade those transformations.

While the above contributions are shown for specific classifiers (decision tree and
random forest) and for specific features as input (system call sequences), we be-
lieve the ideas are more general, and can be applied also to different classifiers with
different features.

An abbreviated revision of this research was published in [41] and [42]. An
extended revision would be published in the journal Concurrency and Computation:
Practice and Experience, Tianjin 2016 special issue.

The rest of the thesis is structured as follows. Section 2 discusses the background
and related work. Section 3 presents the problem definition and discusses the evalua-
tion criteria for the camouflage algorithm. Section 4 describes in detail the IDS. Sec-
tion 5 specifies our camouflage algorithm implementation, and section 6 presents the
experimental evaluation. Section 7 shows the input transformations we’ve applied to
counter the camouflage algorithm, and section 8 presents the relevant experimental
evaluation. In section 9, we show the implementation of a camouflage algorithm to
counter the input transformations. Section 10 extends the camouflage algorithm to
handle random forest, dealing with both soft and hard voting. Section 11 concludes
the thesis and outlines future research.

10

2 Background and Related Work

We divide the background and related work into three areas: discussion of IDS clas-
sifiers which are based on system calls, designing the monitoring part of such IDSs,
and presentation of previously published camouflage algorithms.

2.1 Machine Learning Binary Classifier

The usage of system calls to detect abnormal software behavior has been introduced
in [18]. The authors scanned traces of normal behavior (running benign programs)
and build up a database of characteristic normal patterns, i.e. observed sequences
of system calls. They defined normal behavior in terms of short n-grams of system
calls. The authors used a small fixed size window and “slide” it over each trace,
recording which calls precede the current call within the sliding window. Then they
scanned new traces that might contain abnormal behavior, looking for patterns not
present in the normal database: System call pairs from test traces are compared
against those in the normal profile. Any system call pair (the current call and a
preceding call within the current window) not present in the normal profile is called
a mismatch. A system call is defined as anomalous if there are any mismatches
within its window. If the number of anomalous system calls within a time frame
exceeds a certain threshold - an intrusion is reported. The authors also introduced
open source tools to report such anomalies ([48] and [57]).

For example, consider a mail client that is under attack by a script that exploits
a buffer overrun, adds a backdoor to the password file, and spawns a new shell lis-
tening on port 80. In this case, the system call trace will probably contain a segment
looking something like: open(), write(), close(), socket(), bind(), listen(), accept(),
read(), fork(). Since it seems unlikely that the mail client would normally open a
file, bind to a network socket, and fork a child in immediate succession, the above
sequence would likely contain several anomalous sub-traces, and thus this attack
would be easily detected.

Data mining techniques and machine learning algorithms such as Naive Bayes
have also been used with the Windows platform ([46]). Other machine learning
algorithms, such as decision trees, SVM, boosted trees, Bayesian networks and ar-
tificial neural networks were used and compared in-order to find the most accurate
classification algorithm - with varying results (e.g.: [28] and [27] chose boosted de-
cision trees as the most accurate method, [33] and [17] chose decision trees, etc.).
The different results are affected by the exact samples in the training set and their
number, the types of the features used, etc.

In [36], the authors used a feature extraction technique based on call-flow graphs
(CFGs) of opcodes of the inspected code, which was introduced in [29], and then
used deep learning sum-product network (SPN) model to calculate the similarity
of the inspected code to the nearest malware family. While this method seems to be
suited to detect the differences between different families of malware, an IDS which
monitors and analyzes the system calls directly, such as ours, works on a higher
abstraction level, on-which differences between malware and benign programs are

11

easier to detect, as the resemblance between opcode CFGs doesn’t cover all cases.
For instance, consider two identical programs, one is a benign back-up utility, and
another is a malicious program, which has the exact same opcodes, except for a
single call to a DeleteFile() function in the malware variant, instead-of a CopyFile()
in the benign variant, thus deleting an important system file instead-of backing it up.
Those programs would both be classified the same using an opcode CFG similarity
technique, since, opcode-wise, the call to a different system call (with the same
parameters) is different only in the jump address to the new function and not in the
opcode. Using system calls as features, on the other hand, would help us recognize
a different (and malicious) feature in the malware variant.

In-order to classify code as benign or malicious, machine-learning algorithms
use distinct features as input. Types of features that have been used to classify soft-
ware are either collected statically (i.e. without running the inspected code): byte-
sequence (n-gram) in the inspected code (as in [28] and [27]), APIs in the Import
Address Table (IAT) of executable PE headers (as in [47]), or dis-assembly of APIs
in the executable (as in [45]). The features can also be collected dynamically (i.e.
by running the inspected code): CPU overhead, time to execute (e.g., if a system
has an installed malware driver being called whenever accessing a file or a directory
to hide the malware files, then the additional code being run would cause file ac-
cess to be longer than usual), memory and disk consumption (as in [33] and [34]),
machine-language op-codes sequence executed (as in [44]), executed system call
sequence (as in [48] and [57]) - or non-consecutive executed system call sequence
(as in [43]).

A survey of system calls monitors (including analyzing system call arguments,
stack trace and return value, and execution graphs) and the attacks against them
were conducted in [19], stating that in-spite of their disadvantages, they are com-
monly used by IDS machine learning classifiers. The authors also specified similar
design principles to such classifiers based IDSs and to the biological immune sys-
tems (generic, adaptable, autonomy, graduated response and diversity), with exam-
ples from their own IDS implementation.

While gathering the inspected code’s features using static analysis has the ad-
vantage that it does not require running a possibly malicious code (for example,
in [47] and [45]) - it has a main disadvantage: since the code isn’t being run -
it might not reveal its “true features” (as shown in [32]). For instance, if you in-
spect the APIs in the Import Address Table (IAT) of executable PE headers (as
done in [47]), you would miss APIs that are being called dynamically (using Load-
Library()\GetProcAddress() in Windows and dl_open()\dl_sym() on Unix). If you
look for byte-sequence (or signatures) in the inspected code (as done in [28]), you
might not be able to catch polymorphic malware, in which those signatures are ei-
ther encrypted or packed and decrypted only during run-time, by a specific bootstrap
code. Similar bootstrap code can be used for “legitimate”, benign applications also,
so detection of such code is not enough. Other limitations of static analysis and
techniques to counter it appear in [32].

12

Thus, in our research we decided to use dynamic analysis, which reveals the true
features of the code. Obviously, malware can still try to hide, e.g., by detecting if
some other application (the IDS) is debugging it or otherwise monitoring its features
and not operating its malicious behavior at such cases. However, doing so (correctly)
is more challenging for a malware writer and in the end, in-order to operate its
malicious functionality - malware must reveal its dynamic features, during run-time.
However, those features can be altered in a way that would fool an IDS, as shown
in the following sections.

2.2 Sandboxing Dynamic Analysis IDSs

A main issue with using a dynamic analysis IDS is the fact that it must run the
inspected code, which might harm the hosting computer. In-order to prevent a dam-
age to the host during the inspection of the code, it’s common to run the code in
a sandbox: a controlled environment, which isolates between the (possibly) mali-
cious code to the rest of the system, preventing damage to the latter. Any harmful
modifications done in the sandbox can usually be monitored and reverted, if needed.
In-order to avoid the malicious code from detecting that it’s running on a sandbox
(and thus is being monitored), the sandbox should be as similar as possible to the
actual system. The isolation can be done in 3 levels:

— At the application-level, meaning that the malicious code is running on the same
operating system as the rest of the system, but its system calls effect only a quar-
antined area of the system, e.g., registry key modifications done by the code are
being redirected to different keys (as done in [60]),

— On the operating-system level (e.g., VMWare Workstation), meaning the operat-
ing system is isolated (and thus damage to that operating system does not effect
the host operating system) - but the processor is the same (as done in [58]).

— At the processor level, meaning all machine instruction are emulated by a soft-
ware called an emulator (like QEMU, [9]).

CWSandbox ([58]) is an operating-system level sand-boxing tool. During the ini-
tialization of an inspected binary executable, CWSandbox’s dll is injected into its
memory to carry out API hooking. This dlII intercepts all API calls and reports them
to CWSandbox. The same procedure is repeated for any child or infected process.
CWSandbox and the malicious code are being executed inside a virtual machine (or
VM, a software implementing a completely isolated guest operating system instal-
lation within a host operating system) based on VMware Server and Windows XP
as guest system. After each code analysis, the VM is reverted to a clean snapshot.
An XML report of all executed system calls is being generated by this tool.

TTAnalyze ([4]) uses processor level sand-boxing to run the unknown binary
together with a complete operating system in software. Thus, the malware is never
executed directly on the processor. While both tools generate a system calls report,
some of the major differences between TTAnalyze and CWSandbox are:

13

— TTAnalyze uses the open-source PC emulator QEMU rather than a virtual ma-
chine, which makes it harder for the malware to detect that it’s running in a con-
trolled environment (since all machine instruction are emulated by the software it
should be transparent to the analyzed code running inside the guest OS) .

— TTAnalyze does not modify the program that it executes (e.g., through API call
hooking), making it harder to detect by malicious code via code integrity checks.
Instead, it is adding the inspection code in the processor level, after each basic
block (a sequence of one or more instructions that ends with a jump instruction
or an instruction modifying the static CPU state in a way that cannot be deduced
at translation time) translated by QEMU.

— TTAnalyze monitors calls to native kernel functions (undocumented internal im-
plementation, susceptible to changes) as well as calls to Windows API functions
(documented functions that call internally to the native functions). Malware au-
thors sometimes use the native API directly to avoid DLL dependencies or to
confuse virus scanner’s operating system simulations, as done in the case of
CWSandbox.

— TAnalyze can perform function call injection. Function call injection allows TT-
analyze to alter the execution of the program under analysis and run TTAnalyze
code in its context. This ability is required in certain cases to make the analysis
more precise (for example, the CreateFile() API could both create a new file or
open an existing one, so a code that checks whether the file existed before the call
should be injected before such a call in the analyzed code in-order to properly log
to API call effect).

Other dynamic analysis tools are surveyed at [14].

While an emulator-based sand-boxing technique might be harder to detect - it
can be done, as shown in [15], [16] and [40]. Furthermore, the significant perfor-
mance degradation (up to 20 times slower, as described in [62]) makes such system
vulnerable to timing attacks (as described, for example, in [26]).

Thus, in our research we use the virtual machine sandboxing approach, as men-
tioned in section 4.1.

2.3 Camouflage Algorithms

Adversarial machine learning is the safe adoption of machine learning techniques
in adversarial settings like spam filtering or malware detection, assuming that a ma-
licious adversary can carefully manipulate the input data exploiting specific vulner-
abilities of learning algorithms to compromise the system security. The taxonomy
for this concept was introduced in [2] and extended (including review of relevant ex-
amples) in [3]. Attacks against supervised machine learning algorithms have been
categorized along three primary axes:

1. Attack influence - It can be causative, if the attack aims to introduce vulnerabil-
ities (to be exploited at classification phase) by manipulating training data; or
exploratory, if the attack aims to find and subsequently exploit vulnerabilities
at classification phase.

14

2. Security violation - It can be an integrity violation, if it aims to get malicious
samples misclassified as legitimate; or an availability violation, if the goal is to
increase the misclassification rate of legitimate samples, making the classifier
unusable (e.g., a denial of service).

3. Attack specificity - It can be rargeted, if specific samples are considered (e.g.,
the adversary aims to allow a specific intrusion or he wants a given spam email
to get past the filter); or indiscriminate.

The arms race of modifying the samples in-order to bypass the classifier was mod-
eled using game theory terms, possibly reaching a Nash equilibrium, for a Naive
Bayes classifier, in [13], assuming that the attacker has a perfect knowledge of the
classifier. The problem of achieving the required data by the attacker was modeled
in [30].

The purpose of the camouflage algorithm presented here is to automate the trans-
formation of a malware code, which is being identified by the IDS, to a malicious
code which should not be detected. Using the taxonomy mentioned in [2], it is an
exploratory and targeted attack which aim is integrity violation, or evasion, by the
terminology of [24].

Modification of the malware code features used by a decision-tree classifier
based on static analysis was presented in [23]. The features used by the classification
process were binary n-gram — a specific byte sequence (=sub-string of bytes) in the
binary, collected via static analysis. The authors have constructed a simulation of the
IDS classifier for the installed anti-virus program by submitting a diverse collection
of malicious and benign binaries to the IDS classifier, via a query COM interface
(IOfficeAntiVirus), which runs the installed anti-virus on the file-name given as an
argument and returns the classification decision for this file. Then, they’ve manu-
ally found in the simulated classifier a feature-set similar to the attacker’s code that
would be classified as benign. Finally, the authors used feature insertion on the at-
tacker’s code to manually transform its feature set to the one found. The feature
insertion applied was adding n-grams in a way that would change the decision tree
path of the inspected code. This was done by appending the feature bytes to the end
of the file, or insert them between existing sections - These bytes will be ignored by
the system loader and will not be present in the process memory image when the
binary is loaded. They will therefore have no effect upon the run-time behavior of
the process.

In contrast, as will be explained later, we are using the system call sequence
of the inspected code, as collected during the code execution (dynamic analysis) as
the features of our classifier, since those features (the actual behavior of the code)
present a bigger challenge to modify without affecting the code’s malicious func-
tionality. Since the decision tree features, in our case, are system calls being exe-
cuted by the code at a certain time, changing the decision path of the code means
we need to modify the system calls being executed by it.

Suggested ways to modify system call sequences were presented in [56]. This
article deals with mimicry attacks, a term first coined at [55]. A mimicry attack is
where an attacker is able to “develop malicious exploit code that mimics the opera-

15

tion of the application, staying within the confines of the model and thereby evading
detection”. Some mimicry attacks are based on specific exploits. For instance, in
[52], a helper program to the restore utility program was replaced by a user-defined
helper, thus unprofileable, to gain root access.

In the context of this thesis, we use a different approach: The possibility of mod-
ifying generic system call sequences of malware in-order for the IDS to classify it
as benign. The authors present several ways of obfuscating the system call sequence
in [56]:

1. Modifying the system calls’ parameters — The authors mention that except for
specific cases, the system calls’ parameters are ignored by IDS. Thus, for in-
stance, an innocuous system call: open(“/lib’libc.so”, O_RDONLY) (to load libc
by an executable) looks indistinguishable (to the IDS) from the malicious call:
open(“/etc/shadow”, O_RDWR) (to write to the shadow password file). Thus,
benign code system call parameters could be modified to become malicious.

2. Adding semantic “no-ops” - The term “no-op” indicates a system call with no
effect, or whose effect is irrelevant to the goals of the attacker. Opening a non-
existent file, opening a file and then immediately closing it, reading O bytes
from an open file descriptor, and calling getpid() and discarding the result are
all examples of likely no-ops. Most system calls can be called with invalid ar-
guments, making them fail although counted by the IDS: Any system call that
takes a pointer, memory address, file descriptor, signal number, pid, uid, or gid
can be nullified by passing invalid arguments. The authors showed that almost
every system call can be no-op-ed, and thus the attacker can add any needed
no-op system call to his code in-order to achieve a benign system call sequence.

3. Equivalent attacks — There is usually more than a single system call sequence to
achieve the same effect. For instance, any call to read() on an open file descrip-
tor can typically be replaced by a call to mmap() followed by a memory access.
As another example, in many cases the system calls in the malicious sequence
can be re-ordered. A consecutive series of read() or chdir() calls can also be
replaced with a single call. Finally, most IDSs handle fork() by cloning the IDS
and monitoring both the child and the parent application process independently.
Hence, if an attacker can reach the fork() system call and can split the exploit
sequence into two concurrent chunks (e.g., overwriting the password file and
placing a backdoor in the Is program), then the attacker can call fork() and then
execute the first chunk in the parent and the second chunk in the child, thus
avoiding a malicious system call sequence.

In our work, which also uses system call sequences, we focus on the second tech-
nique only, because it’s the most flexible. Using this technique, we could add no-op
system calls that would modify the decision path of the inspected code in the deci-
sion tree, as desired. The main differences from our thesis:

— We have created an automatic algorithm and tested it on a large group of malware
to verify that it can be applied to any malware, not only specific samples.

16

— We verified that the modified malicious code functions properly and evasively by
executing it after its camouflage.
— We refer to partial knowledge of the attacker.

The authors mentioned several other limitations of their technique in [19] due-to the
usage of code injection, which don’t apply to our thesis.

[49] implemented evasion attack for PDFRATE, a random forest classifier for
static analysis of malicious PDF files, by using either a mimicry attack of adding
features to the malicious PDF to make it “feature-wise similar” to a benign sample,
or by creating a SVM representation of the classifier and subvert it using the same
method mentioned in [6].

The main difference from our work was that the mimicry attack used in the
article is classifier-agnostic, while our camouflage algorithm takes advantage of the
classifier type, yielding superior results.

Similarly, [51] showed an attack as a systematic process of moving an attack
sequence into the IDS detection’s blind region through successive attack modifica-
tion and displayed specific examples of modifications of known exploits system call
traces in a way that would bypass an IDS. However, the focus in these works was
to demonstrate the feasibility of mimicry attacks for a few test cases only, but not to
develop an automatic algorithm to generate such attacks for many samples.

Other mimicry attacks, less relevant to this thesis, can be used to forge the pro-
gram counter and return address ([21]), thus able to mislead IDSs that can analyze
the stack trace of the inspected code and not just the system calls and their argu-
ments.

A similar method to ours was presented in [31]. The authors used a replace-
ment attack, similar to our mimicry attack, to modify the malware code. They used
system calls dependence graph (SCDG) with graph edit distance and Jaccard in-
dex as clustering parameters of different malware variants and used several SCDG
transformations on their malware source code to move it to a different cluster. Our
approach is different in the following ways:

— Our classification method is different, and handles cases which are not covered
by their clustering mechanism. For instance, if we add a system call to the end
of the malware code, it would always affect the SCDG graph edit distance (and
might fool SCDG classifiers), but would not affect the decision tree path of the
malware.

— The authors of [31] showed that their transformations can cause similar malware
variants to be classified at a different cluster - but they didn’t show that it can
cause malware to be classified (or clustered) as a benign program, as shown in
this thesis, which is the attacker’s main goal. Even if we assume that their method
allows benign classification, their algorithm effectiveness is lower than ours.

— Their transformations are limited to certain APIs only - and would not be effective
for malware code that doesn’t have these APIs. The fact that their implementation
doesn’t support C++ standard library and Windows Platform SDK, as used by
many malware escalates this problem. In contrast, our method is applicable to
those commonly used APIs.

17

— The authors of [31] mentioned a performance degradation of 33% due-to the
added system calls. As shown in section 5.1, we got an upper bound on the per-
formance degradation of less than 0.02% - better performance.

[50] presented an algorithm for automated mimicry attack on FSA (or overlapping
graph) classifier using system call n-grams. However, this algorithm limits the mal-
ware code that can be camouflaged using it, to one that can be assembled from
benign trace n-grams.

[5, 7] presented a different method: a poisoning attack. Attacker-generated sam-
ples were added to the training set of the classifier, in-order for it to subvert the
classification of malware code as benign, due-to its similarity to the added samples.
The problem with this method is that it requires the attacker to modify the classi-
fier’s DB, which is usually secured. Our method, which modifies the malware code
and not the classifier, is more feasible to implement.

[6] showed an evasion algorithm for SVM and Neural Network classifier by fol-
lowing the gradient of the weighted sum of the classifier’s decision function and the
estimated density function of benign examples. The starting point of the gradient
descent is the feature vector of the malicious sample. The starting sample is usually
correctly classified as malicious; the goal is to move to the area where the classifi-
cation algorithm classifies points as benign. In order to avoid moving to infeasible
areas of the feature space with negative classifications, the algorithm’s objective
function has the second term, the density of benign examples. This ensures that the
final result lies close to the region populated by real benign examples. [8, 59] added
poisoning and privacy attacks against SVM classifiers.

Another technique appears in [37]. The authors used persistent interposition at-
tacks, which can evade system-call-monitoring IDS that have perfect knowledge of
the values of all system call arguments as well as their relationships, with the excep-
tion of data buffer arguments to read and write. They inject code that interposes on
I/O operations performed by the victim, potentially modifying the data read or writ-
ten by the victim (and stealing his data), while leaving the control-flow and other
system-call arguments unmodified. This attack requires code injection vulnerability
in-order to work. Thus, their method is relevant to specific applications which can
utilize this specific exploit. In contrast, our method can work with any malware.

18

3 Problem Description

As was explained in the introduction, our main goal is to show an effective camou-
flage algorithm. Since this algorithm is highly dependent on the selected classifier,
we deal with two separated issues:

1. Classifying the previously un-encountered inspected code, via the IDS, as be-
nign or malicious, using its system call sequences.

2. Developing an algorithm to transform the inspected code, in-order to change
the IDS inspected code classification from malicious to benign, without losing
its functionality.

The general problem can be defined formally as follows:

Given the traced sequence of system calls as the array sys_call, where the cell:
sys_call[i] is the i-th system call being executed by the inspected code (sys_call[1]
is the first system call executed by the code),

Define the IDS classifier as:
classify(benign_training_set, malic_training _set, inspected_code_sys_calls), where in-
spected_code_sys_calls is the inspected code’s system call array, benign_training_set
is a set of system call arrays used to train the classifier with a known benign clas-
sification (supervised learning) and malic_training_set is a set of system call arrays
used to train the classifier with a known malicious classification. classify() returns
the classification of the inspected code: either benign or malicious.

Given that an inspected code generates the array: malic_inspected_code _sys_calls,
define the camouflage algorithm as a transformation on this array, resulting with the
array: C(malic_inspected_code_sys_calls). The success of the camouflage algorithm
is defined as follows: Given that classify (benign_training_set, malic_training_set,
malic_inspected_code_sys_calls) = malicious, the camouflage algorithm result is:
classify(benign_training_set, malic_training_set,
C(malic_inspected_code_sys_calls)) = benign and:
malic_behavior(C(malic_inspected_code_sys_calls)) =
malic_behaviour (malic_inspected_code_sys_calls).

We demonstrate the general problem for our specific classifier’s types (decision
tree and random forest classifiers). However, similar ideas can be applied to other
types of classifiers.

In section 5, we follow the assumption specified in [24]: The classifier’s type and
the features being used are known to the attacker. This is also a common assump-
tion in cryptography (Kerckhoffs’ principle). However, we also assume a stronger
assumption: The classifier can be fully reconstructed by the attacker (perfect knowl-
edge in [6]), by obtaining either the entire training set or the model itself. Such
knowledge can be gained by reverse engineering of the IDS on the attacker’s com-
puter, without the need to gain access to the attacked host - one just needs access to
the IDS. As shown in [23], an IDS decision tree can be recovered this way by ex-
ploiting public interfaces of an IDS and building the decision tree by feeding it with
many benign and malicious samples and examining its classifications for them. Re-
construction attacks such as the one described in [20] for a C4.5 decision tree could

19

also be used for this purpose. This assumption, that the IDS classifier can be recon-
structed, is common in several papers on this subject (e.g.: [5, 6, 7, 13, 19, 31, 37],
etc.). In section 6.5 we would alleviate this assumption and would show that par-
tial knowledge of the training set and no knowledge about the selected features is
enough to generate a probabilistic camouflage, which performs quite well.

We further assume the attackers know the system call trace that would be pro-
duced by the malware on the inspected system. While this assumption seems quite
strong since the system call trace might be affected by, e.g., files’ existence and
environment variables’ values on the target system, it is highly unlikely, since the
IDS should be generic enough to work effectively on all the clients’ hosts, mak-
ing system-dependent flows rare. The attacker can also get data about the targeted
system without compromising it, e.g. by using tools such-as nmap to detect the OS'.

3.1 Evaluating the Classification

The effectiveness of our IDS is determined by two factors (P is the probabil-
ity\frequency of occurrence):

1. We would like to minimize the false negative rate of the IDS, i.e. to minimize
P(classify(benign_training _set, malic_training _set, malic_inspected_code_sys_calls)
benign).

2. We would like to minimize the false positive rate of the IDS, i.e. to minimize
P(classify(benign_training_set, malic_training _set, benign_inspected_code_sys_calls)
= malicious).

In-order to take into account both true and false positives and negatives when com-
paring between different classifiers in section 6.2, we try to maximize the Matthews
correlation coefficient (MCC), which is used in machine learning as a measure of
the quality of binary classifications:

= TP+xTN—FPxFN
MCC= \/(TP+FP)«(TP+FN)«(TN+FP)x(TN+FN) ([38D).

TP - True Positive - Malware that has been classified as malicious.
FP - False Positive - Benign software that has been classified as malicious.
TN - True Negative - Benign software that has been classified as benign.
FN - False Negative - Malware that has been classified as benign.

The advantage of MCC is that other measures, such as the proportion of correct
predictions (also termed accuracy), are not useful when the two classes are of very
different sizes. For example, if there are more benign software than malicious in the
test set, assigning a benign classification to every sample achieves a high proportion
of correct predictions, but is not generally a useful classification.

3.2 Evaluating the Camouflage Algorithm

The effectiveness of the camouflage algorithm will be measured by the increased
number of false negatives, i.e. we would like that:

Uhttps://nmap.org/book/man-os-detection.html

20

https://nmap.org/book/man-os-detection.html

P(classify(benign_training _set, malic_training _set,C(malic_inspected_code_sys_calls
))=benign) > P(classify(benign_training _set, malic_training_set, malic_inspected_code_sys_calls)

benign). Therefore, the effectiveness of the camouflage algorithm is defined as the
difference between the two probabilities (which are computed by the respective fre-
quencies). The higher the difference between those frequencies, the more effective
is the camouflage algorithm.

One would like that the camouflage algorithm will stay effective even if the clas-
sifier was modified due to new training instances. We define the camouflage to be
stable if, after adding benign and malicious samples to our IDS training set and re-
evaluating the classifier, the malicious code would still be classified as benign by
the IDS, meaning:
classify(updated_benign _training_set, updated_malic_training set,
C(malic_inspected_code_sys_calls)) = benign. We evaluate the stability of the cam-
ouflage algorithm by the difference in the percentage of false negatives before and
after the training set update.

3.3 Defending against the Camouflage Algorithm Using Input
Transformations

One way to fight the camouflage algorithm is to apply transformations on the input
sequences of system calls and apply a classification on the transformed sequences.
The assumption is that the transformed sequences would reduce the effectiveness
of the camouflage algorithm. We define an inspected system call trace transforma-
tion as T(inspected_code_sys_calls). Given an inspected code, a system calls array,
inspected_code _sys_calls, of the inspected code, and a function, classify(), represent-
ing the IDS classifier, we define the transformation T to be effective iff:

1. It would not reduce the malware detection rate, i.e.:

P(classify(T(benign_training _set), T(malic _training_set), T(malic_inspected_code_sys_calls))
= malicious)>

P(classify(benign_training _set, malic_training _set, malic_inspected_code_sys_calls)
malicious)

2. It would not reduce the benign software detection rate, i.e.:
P(classify(T(benign_training _set), T(malic _training set), T(benign_inspected_code_sys_calls))
= benign)>
P(classify(benign_training_set, malic_training _set, benign_inspected_code_sys_calls)
= benign)

3. It would reduce the camouflage algorithm effectiveness, that is, at least some of
the malware samples modified by the camouflage algorithm would be detected
by the classifier after the input transformation, i.e.:

P(classify(benign_training_set, malic_training _set, C(malic_inspected_code_sys_calls))
= benign) >

P(classify(T(benign_training_set), T(malic _training _set), T(C(malic_inspected_code_sys_calls)))

=benign) .

21

In the following sections we show the implementation of the three parts of our IDS:
the implementation of the monitoring system and the classifier (section 4), the im-
plementation of the camouflage algorithm (section 5) and the implementation of the
input transformations based defense mechanism (section 7).

22

4 IDS Implementation

Our IDS has 3 main parts:

1. A sand-boxing mechanism that would run the inspected code inside a virtual
machine for a limited amount of time.

2. Feature extraction - Recording all the system calls made by the inspected code
while it’s running.

3. Feature selection and classification - Feeding the system call sequence to a
machine-learning binary classifier and receiving a classification for the in-
spected code: malicious or benign.

4.1 Sand-Boxing Mechanism

In-order to implement a dynamic analysis IDS that would sandbox the inspected
code effects, we have used VM Ware Workstation, a commonly used virtual machine
software, where changes made by a malicious code can be reverted.

Our IDS executes the inspected code on a virtual machine with Windows XP
SP3 OS without an internet connection (to prevent the possibility of infecting other
machines).

Windows OS better suits our needs than Unix variants, used by available open-
source tools (e.g., [48] and [57]), since most malware target it2.

The inspected executables were run for a period of 10 seconds (and then force-
fully terminated), which resulted in about 10,000 recorded system calls per ex-
ecutable on average (the maximum number recorded per executable was about
60,000).>

4.2 Feature Extraction: System Calls Recorder

The system calls recorder is the only part of our IDS code which is platform-
dependent. Other than that, our IDS design is cross-platform (written in Python*
cross-platform programming language and designed for modularity) and it could
easily be modified to operate on Linux OS, using strace() to record system calls by
the inspected code, instead-of our custom system-calls recorder.

The system calls recorder we have used for Windows records the Nt* system-
calls®. The usage of this low layer of system calls was done in-order to prevent

Zhttps://www.daniweb.com/hardware-and-software/microsoft-windows/viruses-
spyware-and-other-nasties/news/310770/99-4-percent-of-malware-is-aimed-at-windows-
users

3Tracing only the first seconds of a program execution might not detect certain malware
types, like “logic bombs” that commence their malicious behavior only after the program has
been running some time. However, this can be mitigated both by classifying the suspension
mechanism as malicious or by tracing the code operation throughout the program execution
life-time, not just when the program starts.

“https://www.python.org/

Shttp:/fundocumented.ntinternals.net/

23

https://www.daniweb.com/hardware-and-software/microsoft-windows/viruses-spyware-and-other-nasties/news/310770/99-4-percent-of-malware-is-aimed-at-windows-users
https://www.daniweb.com/hardware-and-software/microsoft-windows/viruses-spyware-and-other-nasties/news/310770/99-4-percent-of-malware-is-aimed-at-windows-users
https://www.daniweb.com/hardware-and-software/microsoft-windows/viruses-spyware-and-other-nasties/news/310770/99-4-percent-of-malware-is-aimed-at-windows-users
https://www.python.org/
http://undocumented.ntinternals.net/

malware from bypassing Win32API (e.g. CreateFile()) recording by calling those
lower-level, Nt* APIs (e.g. NtCreateFile()). We have recorded 444 different system
calls, such-as NtClose(), NtWaitForMultipleObjects(), etc.

There are many ways to implement such a recorder, e.g.: IAT (import address
table) patching, EAT (export address table) patching, detours ([25]), Proxy\Trojan
DLL or kernel hooks (e.g. SSDT or IDT). However, we decided to use debugging
events, i.e., to run the inspected code via a custom-made debugger which would set
breakpoints and monitor the Nt* API calls from the inspected code.®

This method was chose due-to the following reasons:

— It uses a documented API that is unlikely to change in following OS versions,
e.g., like kernel patching was blocked by Microsoft Patch-Guard feature.

— It monitors only the inspected process, unlike, e.g., proxy dll.

— The debugger has full read and write permissions to a process it attached to and
thus it’s harder to fool it.

A thrall discussions of the other alternatives and why they were not chosen can be
found in Progress Report #2.

4.3 Feature Selection and Classification: The Machine-Learning Classifier

We have implemented the classifier using the Python scripting language and scikit-
learn’. This library provides a common interface for many data-mining and machine-
learning algorithms. For most parts of this paper, we used the CART decision tree
algorithm®, similar to C4.5 (J48) decision tree, which was already proven to be a le-
gitimate and even superior algorithm for malware classification (see [17] and section
6.2 for our comparison). This tree is the successor of the ID3 decision tree classifier
([39]), which was the first algorithm to use maximum entropy as a decision factor.
A decision tree is invariant under scaling and various other transformations of fea-
ture values, is robust to inclusion of irrelevant features, and produces inspectable
models. It is commonly used for implementing malware detection (for example in
[44]).

The training set for the binary classifier contains malicious and benign executa-
bles. The malicious executables were taken from VX Heaven’. They were selected
from the Win32 Virus type (and not, e.g., Trojan, Worm or Rootkit). This focus
allowed us both to concentrate on a specific mode of action of the malicious code

SWhile, as mentioned in section 2.1, Malware can try to hide, e.g.,
by detecting if some other application (the IDS) is debugging it, the fact
that the process is being debugged (e.g., by the APl IsDebuggerAtta-
hed()) can be concealed by modifying the PEB, as written, for example, in:
http://undocumented.ntinternals.net/source/usermode/undocumented ~ functions/nt ob-
jects/process/peb.html

http://scikit-learn.org/

8http://scikit-learn.org/stable/modules/tree.htm]

http://vxheaven.org/

24

http://undocumented.ntinternals.net/source/usermode/undocumented functions/nt objects/process/peb.html
http://undocumented.ntinternals.net/source/usermode/undocumented functions/nt objects/process/peb.html
http://scikit-learn.org/
http://scikit-learn.org/stable/modules/tree.html
http://vxheaven.org/

and to reduce the chance of infection of other computers caused by using, e.g., worm
samples. Benign executables were taken from both the .\ Windows\ System32 folder
and a collection of benign third-party programs. The number of malicious and be-
nign samples in the set was roughly equal (521 malicious samples and 661 benign
samples) to prevent the imbalanced data problem - a bias towards classification with
the same value as the majority of the training samples, as presented, for example, in
[63].

As features for the decision tree we used the position and the type of the system
call, i.e. sys_call[i] = system_call_type[k], e.g.: sys_call[3] = NtCreateFile

One might argue that the position of the system call as a feature may be too
specific and may creates over-fitting. In chapter 7 we relax this definition and just
denote the position within a window or a region. The results of the camouflage
algorithm, as can be seen in that chapter, did not change significantly. Two reasons
are:

— Specific system calls are indicative of malware even in specific locations in the
code, e.g. creating a remote thread using the CreateRemoteThread() APl in the be-
ginning of the code for code injection, or CreateThread() to create “logic bombs”.

— Many malware writers tend to use the same bootstrap code and libraries for,
e.g., code injection, privilege escalation exploits, encryption or packing, such-
as Metasploit'®. Compiler optimizations such as code blocks reordering or dead
code elimination can bring different malware code variants using the same li-
braries to the same post-compiled system call sequence (same system calls in the
same sequence position).

However the main reason for choosing those features is to ease the explanation of
our algorithm in section 5. In section 7 we would use more robust features and show
that our algorithm works in this case as well.

The number of available feature values was very large (about 850,000)'!. There-
fore, we performed a feature selection ([22]), selecting the 10,000 (best) features
with the highest values for the 2 (chi-square) statistic out of the 850,000 available
features, and created the decision tree based only on the selected features. If more
than a single feature has the same 2 value, their selection order is random.

The 2 is a statistical hypothesis test in which the sampling distribution of the test
statistic is a chi-square distribution when the null hypothesis is true. Test statistics
that follow a chi-squared distribution arise from an assumption of independent nor-
mally distributed data, which is valid in many cases due to the central limit theorem.
A chi-squared test can be used to reject the hypothesis that the data are independent.
Here, this statistic measures dependence between stochastic variables, so a trans-

10https://www.metasploit.com/

"Note that the fact that we have 444 different system calls type being monitored and
10,000 system calls on the trace on average does not mean each of the 44419:090 combinations
is being considered. A feature value is available only if it ever appeared in any part of the
training set. E.g.: If sys_call[1] was never equal to NtWaitForMultipleObjects in the training
set then sys_call[1][=NtWaitForMultipleObjects would not be a valid feature of the tree.

25

https://www.metasploit.com/

former based on this function “weeds out” the features that are the most likely to be
independent of class and therefore irrelevant for classification.

Assume without loss of generality that if the answer is yes (i.e., system_call[i]
= system_call_type[k]), the branch is to the right (R child), and if the answer is no,
the branch is to the left (L child). An example for a simplified system-calls based
decision tree is shown in Figure 1.

sys_call[1]=7
NtQuerylnfor
mationFile

sys_call[4]=?

e NtOpenPaocess [

sys_call[3]=?
NtCreateFile

sys_call[2]=?
NtWriteFile

sys_call[3]=?
NtAddAtom

sys_call[4]=?
NtOpenFile

sys_call[4]=?
NtWriteFile

Benign

P1 M

Fig. 1. A System Call-Based Decision Tree

Example 1. In this decision tree, if the inspected code trace contains:
{sys_call[1]=NtQueryInformationFile, sys_call[2] = NtOpenFile, sys_call{3]=NtWriteFile,
sys_call[4]=NtClose},
Its path in the IDS’ decision tree is: M=RRL (=Right-Right-Left),
since: sys_call[2] = NtOpenFile, sys_call[1][=NtQuerylInformationFile and sys_call[3]!=NtAddAtom,
and it would be classified as a malicious.

If the code trace contains:
{sys_call[1]=NtQueryInformationFile, sys_call[2]=NtOpenFile, sys_call[3]=NtAddAtom,
sys_call[4]=NtClose},
the classifier would declare this code as benign,
because the decision path would be P/=RRRL,
since: sys_call[2] = NtOpenFile, sys_call[1][=NtQuerylnformationFile and sys_call[3][=NtAddAtom,
sys_call[4]!=NtWriteFile.

The actual decision tree generated by the training set can be found in appendix A.1.

4.3.1 Decision Tree Learning (DTL) Algorithm Our aim is to find a small tree
consistent with the training examples.
The idea: (recursively) choose “most significant” attribute as root of (sub)tree:
function ID3 _Decision_Tree(examples, attributes)

26

—_

Create a root node for the tree
2. If all examples have the same target value: Return the single-node tree root
labeled by that value
3. If no attributes were left: Return the single-node tree root labeled by the most
common value in examples
4. else:
a) Select the attribute A that best classifies the examples
b) for each value v of A do:
i. Split the tree (add a new branch to the tree corresponding to v)
ii. If there are no examples having value v for the attribute A: Add a leaf
node below this branch labeled by the most common value in examples
iii. else: Create a subtree below this new branch

How do we choose the feature to split by? A good feature splits the examples into
subsets that are (ideally) “all positive* or ““all negative*.
An example of two possible features appear in Figure 2.

Patrons?

None Some Full French Burger

Fig. 2. Example Features to Split-by

In this case, Patrons? is a better choice: It minimizes the entropy and increases
the uniformity of the classification of the members in the splatted groups, in com-
parison to the Type? feature.

4.3.2 Entropy To select the attribute that best classifies the examples, show in step
4.ain section 4.3.1, we’d use terms taken from Shannon’s information theory:
Information Content (Entropy), ([39]):
HW)=I(P(vy), ... ,Pwy)) = X% | —P(vi)1gP(v;)
Where v;...v, are the different possible values the random variable V.
The entropy for a training set containing p positive examples and n negative

examples:

Gk) =~ le(e) — s e l)

4.3.3 Information Gain (IG) A chosen attribute A divides the training set E into

subsets Ey, ... , E, according to their values for A, where A has v distinct values:
1 _\yV pitni Di n
reminder(A) = Y B (S o)

Information Gain (IG) or reduction in entropy from the attribute test is:

_ 14 ; — 14 pitn; Di n;
IG(A) = I(m, ﬁ) — remlnder(A) = I(m, ﬁ) — }}:1 Wl(pi‘f’”i 5 pi+’1i)
Thus, we choose the attribute with the largest IG.

27

4.3.4 Gini Impurity An alternative method to choose the attribute that best classi-
fies the examples is Gini impurity. This is a measure of how often a randomly chosen
element from the set would be incorrectly labeled if it were randomly labeled ac-
cording to the distribution of labels in the subset. Gini impurity can be computed
by summing the probability of each item being chosen times the probability of a
mistake in categorizing that item. It reaches its minimum (zero) when all cases in
the node fall into a single target category.

To compute Gini impurity for a set of items, suppose i € {1,2,...,m}, and let f;
be the fraction of items labeled with value i in the set.

Io(f) =Xy fil = fi) = Ty (fi— f7) = XLy fi - B 2 = 1= T f

This was the method used by our classifier, since it’s faster to compute than IG,
which contains a more expensive log calculation, with minor effect on the result
classifications.

28

5 The Camouflage Algorithm Implementation

As was discussed above, the goal of the camouflage algorithm is to modify the
sequence of system calls of the inspected code in a way that would not harm its
functionality but would cause the classifier to change its classification decision from
malicious to benign. This is done by finding a benign decision path (i.e., a path that
starts from the tree root and ends in a leaf with benign classification) in the decision
tree with the minimal edit distance ([35]) from the decision path of the malware
(or the minimal Levenshtein distance between the paths’ string representations) and
then adding (to prevent harming the malware functionality, we are not removing or
modifying) system calls to change the decision path of the modified malware code
to that of the benign path. Selecting the minimal edit distance means less malware
code modifications. We define the edit distance between the paths M and P as: d(M,
P).

Calculating the Levenshtein distance was done using the python-Levenshtein
library'?. The algorithm for finding the Levenshtein distances matrix between 2
strings appears in Appendix B and the algorithm to compute the edit operations
from it appear in Appendix C).

In-order to modify the system call sequence without affecting the code’s func-
tionality, we add the required system calls with invalid parameters. This can be done
for most system calls with arguments. Others can be called and ignored. For exam-
ple: opening a (non-existent) file, reading (0 bytes) from a file, closing an (invalid)
handle, etc.

One may claim that the IDS should consider only successful system calls to
counter this method. However, such claim may not be safe because every system
call may fail (e.g., a failure to open a socket due to the lack of internet connectivity,
etc.). Furthermore, even if the IDS observes the function arguments, it is difficult for
it to determine whether a system call is invoked with invalid parameters just to fool
it, since even system calls of legitimate programs are sometimes being called with
arguments that seem to be invalid, e.g.: trying to read a registry key, and creating it
(only) if it doesn’t already exist. Thus, such IDS might generate false classification.
In addition, IDSs that verify the arguments as done in [53] tend to be much slower
(4-10 times slower, as mentioned by the same authors in [54]). The conclusion is
that the insertion of system calls with invalid arguments is a reasonable method to
use by the camouflage algorithm.

In the basic version of our classifier, an internal node in the decision tree con-
tains a decision condition of the form: system_call[i] =? system_call_type[k]. As
mentioned in section 4.3, we can assume without loss of generality that if the an-
swer is yes (i.e., system_call[i] = system_call_type[k]), the branch is to the right (R
child), and if the answer is no, the branch is to the left (L child). The algorithm will
add system calls that will cause the desired branching to take place, as shown in
Figure 3.

12https://github.com/ztane/python-Levenshtein/

29

https://github.com/ztane/python-Levenshtein/

Find all the benign tree paths of the classifier

Evaluate the current code decision path in the classifier

If the code’s
classification Yes: return success
is benign

Find the benign tree path with the minimum edit distance from the
current code sequence of Right\Left node decisions

Add the first system call needed to switch to the benign path, with
invalid arguments, thus not affecting the code’s functionality

Fig. 3. The Decision Tree Camouflage Algorithm Overview

An example of a decision tree is presented in Figure 1. In this decision tree, if
the malware code trace contains:

{sys_call[1]=NtQueryInformationFile, sys_call[2]=NtOpenFile, sys_call[3]=NtAddAtom,
sys_call[4]=NtWriteFile}

(decision path: M’=RRRR, classified as a malicious) and if the algorithm will insert

as the fourth system call a system call with a different type than NtWriteFile, the
classifier will declare this malware code as benign, since the decision path would
change from M’ to P1.

The general algorithm is depicted in Algorithm 1. Before explaining the details
of the algorithm, lets discuss the possible edit operations when modifying a malware
decision path. We will demonstrate the edit operations using two decision trees,
depicted in Figure 1 and Figure 4:

1. Substitution: There can be two types of substitutions: Sub; - a substitution L—R
(e.g., from PS=RRRL to P9=RRRR in Figure 4) and Subp, - a substitution R—L
(e.g., from M=RRL to P3=LRL in Figure 1).

2. Addition: Addg - an addition of R (e.g., from M=RRL to PI=RRRL in Figure
1) or Add} - an addition of L (e.g., from P7=RRL to P4=LRRL in Figure 4).

3. Deletion: Dely, - A deletion of L (e.g., from PI0=LRL to P6=RL in Figure 4)
or Delp - a deletion of R (e.g., from P7=RRL to P6=RL in Figure 4).

Since the only allowed modification is an insertion of a dummy system call, the
algorithm handles the above 6 edit operations as follows:

30

L sys_call[2]=?

____————"_ NtOpenFile
pf———

sys_call[4]=?
NtOpenPoce .
55 \-\\

sys_call[2]=?

= S
A NtWriteFile 7 =0
//'/ \\ ﬁs_:all[d]:?
I M Pe A NtWriteFile A
s Yy N
/// N\

sys_call[4]=?
NtOpenFile

sys_call[3]=7
z NtClose

P10

Fig. 4. A Different System Call-Based Decision Tree

— If the edit_op is Suby, or Addpg, or Dely: Given that the condition (in the parent
node of the modified\added node) is:
sys_call[i] =? sys_call_type[k], add sys_call[i]=sys_call_type[k]. Note that the
equivalent of Del; is Suby followed by a tree re-evaluation, since this is the only
edit op allowing you to remove the L without actually deleting a system call,
which might harm the code’s functionality.

— If the edit_op is Subg, or Add or Delg: Given that the condition:
sys_call[i] =? sys_call_type[k], add sys_call[i]=sys_call type[m] s.t. m != k. The
above note about deletion applies here too, with R < L.

After each edit operation, the malware trace changes: The dummy system call addi-
tion might have affected every condition on the tree in the form of:

sys_call[j] =7 sys_call_type[k] s.t. j>i. Therefore, we need to re-evaluate the entire
decision path and find again the benign paths which are closest to it. Step 2(a) exists
in-order to minimize the effects of the current edit operation on the path after re-
evaluating it. Step 3 prevents an endless switch between 2 different most promising
paths. max_decision_path_count should be chosen to be longer than the longest path
in the tree.

Example 2. We demonstrate Algorithm 1 using the decision tree in Figure 1:
Given the malware code:
{sys_call[1]=NtQuerylnformationFile, sys_call[2] = NtOpenFile, sys_call[3]=NtWriteFile,
sys_call[4]=NtClose},
Its path in the IDS’ decision tree is: M=RRL (=Right-Right-Left),
and the benign paths in the decision tree are: P/=RRRL, P2=LLL and P3=LRL,
the edit distances are d(M, P1)=1, d(M, P2)=2, d(M, P3)=1.
The tuples to check are: {(M, PI), (M, P2), (M, P3)}.
We have two paths with a minimal edit distance: edit_sequence(M, P1)={Addg (at
position 3)} and edit_sequence(M, P3) = {Subg(at position 1)}.

31

Algorithm 1 No Input Transformation System-Calls Based Decision Tree’s Cam-
ouflage Algorithm
1. Given the decision tree of the IDS and a specific malware trace (i.e. its sequence of
system calls as recorded) with the decision tree’s path M, find all the IDS’ decision
tree’s benign paths, P1..Pm, and create a list 1 of m tuples to check:
{(M, P1)..(M, Pm)}. Set path_count[M] = 0
2. For each tuple (dec_path, Pj) in 1, find the minimum edit distance between dec_path and
Pj, d(dec_path, Pj). Select the tuple with the minimal such edit distance and find the
minimal sequence of edit operations needed to change dec_path to Pj, ordered from the
root of the tree to the leaf\classification node (i.e. by position in the decision path). If 1
is empty: Report failure.

a) If there is more than a single path with the same minimal edit distance, look at
the first edit operation in each such path. Assuming the condition is of the form:
system_call[i] =? system_call_type[k], select the path that maximizes i.

3. Set path_count[des_path] += 1. If path_count[des_path]>max_decision_path_count :
Remove all tuples that contain dec_path from | and go to step 2.

4. Assuming the benign path to fit is Pj, modify the malware code based on the first edit
operation in the edit sequence, as was explained above:

a) If the edit.op is Suby, Addg, or Delyp then: Add sys_call[i]=sys_call_type[k].
Else: Add sys_call[i]=sys_call_type[m] s.t. m != k.

5. system_callfi..n] from before the modification now become system_call[i+1..n+1]. Re-
evaluate the new system call sequence and generate a new decision path M’.

6. If M’ ends with a benign leaf: Report success.
Else: Remove (dec_path, Pj) from [, and add all the tuples with the modified
malware code {(M’, P1)..(M’, Pm)} to 1. Set path_count[M’] = 0

7. Go to step 2.

The condition for which we need to add R in PI is: system_call[3] = NtAddAtom.
Thus: i=3.

The condition for which the edit operation applies in P3 is:

system_call[2] = NtOpenFile. Thus: i=2.

Therefore, we start from P/ and not from P3, since its index is larger.

In order to modify M to P1, we add: sys_call[3] = NtAddAtom(NULL, O, NULL)
(the edit_op is Addg). Notice that we add the system call with invalid parameters.
The new malware code is: {sys_call[1]=NtQuerylnformationFile, sys_call[2] =
NtOpenFile, sys_call[3]= NtAddAtom, sys_call[4]= NtWriteFile, sys_call[5]=NtClose}.
Its decision path is M’=RRRR.

M’ is not classified as benign — so we remove (M, P1), and add all the tuples with
the modified code M’.

Thus, we need to examine: {{M, P2), (M, P3), (M’, P1), (M’, P2), (M’, P3)}.

The tuple we would inspect in the next iteration is (M’, P1): d(M’, PI1)=1 and i=4
(which is larger than 2 for (M, P3)).

32

The algorithm would converge after the next iteration, in which we would add
sys_call[4]!= NtWriteFile, and the modified malware code would be classified as
benign (P1).

The system calls insertion would ideally be done automatically, e.g, by usage of
tools such-as LLVM, as done in [31]. As mentioned by the authors, however, such
tools are currently lack support for dealing with the Windows CRT and Platform
SDK API calls, as used by most Windows malware. Thus we assume that the at-
tacker would manually insert the system calls, added by the camouflage algorithm,
to the malware source code. This is demonstrated for the “Beetle” virus, in section
6.3.

While there is no guarantee that the algorithm would converge (step 3 in Al-
gorithm 1 exists in-order to prevent an infinite loop by switching back and forth
between the same paths), it did converge successfully for all the tested samples,
as shown in section 6. The reason for this is the rationale behind the decision tree
based on system calls: The behavior of malware (and thus the system call sequences
used by it) is inherently different from that of benign software. Because-of that, and
since the decision tree is trying to reduce the entropy of its nodes, the malicious and
benign software are not spread uniformly at the leaf nodes of the decision tree and
tend to be clustered at certain areas. Our path modifications direct the decision path
to the desired cluster.

5.1 Run-Time Performance

While we hadn’t measure our camouflage algorithm performance, we can estimate
the effect on the code’s performance by the amount of code we add. The decision
tree’s longest path in our classifier is less than 20 decision nodes long. Thus, we add
no more than 20 system calls. If the average code flow is 10,000 system calls, we
get an upper bound on the performance degradation of less than 0.02%.

In practice, most modifications were much shorter, with 1-2 additional system
calls on average.

33

6 Experimental Evaluation

6.1 IDS Detection Rate

In-order to test the true positive detection rate of our IDS for both benign software
and malware, we have used benign files collection from the Program Files folder
of Windows XP SP3 and from our collection of third party benign programs and
malware of Win32 Virus type, from VX Heaven’s collection. The test set contained
about 650 benign programs and about 500 malware. The files used to test the detec-
tion rate were different from the ones used to train the IDS in section 4.3 and thus
they present code that wasn’t encountered before. The malware detection rate and
the benign detection rate (as computed by the definitions specified in section 3.1),
were 84.3% and 88.9% respectively, as shown in the first line of Table 1.

6.2 Comparison To Other Classification Algorithms

We have chosen to attack the decision tree classifier in this thesis. However, before
we quantify our results, we should verify that this classifier isn’t under-performed by
other classification algorithms, which would render our attack useless in practice.
We’ve compared the effectiveness of different classification algorithms, using the
same IDS, features, training set and test set. The mathematical and technical back-
ground for the other classifiers is outside the scope of this thesis, but is brought, for
the reader’s convenience, in Appendix D.

The evaluation criteria between the different classifiers is shown in section 3.1.

The results appear in Table 1.

Table 1. Detection Rate of the IDS by Classifier Type

Cusifirtype | MR oy | Dettion et Ry | MCC
| Decision Tree [84.3 | 88.9 [076]
l Random Forest \ 86.1 H 89.5 H 0.77 ‘
| K-Nearest Neighbors | 89.4 | 86.0 [077]
| Naive Bayes (Gaussian) | 87.0 [545 [050]
| Naive Bayes (Bernoulli) | 97.9 | 59.9 [o064]
| Ada-Boost \ 874 [84.8 [074]
Support Velctor Machine]75 36.4 076
(Linear)
[Support Vector Machine (RBF)] 96.3 | 74.9 [074]

We can see that all classifiers out-performed random classification (with more
than 50% detection rate for both malware and benign software).

34

We also see that, as expected, the Bernoulli NB classifier performs better than
the Gaussian one, because the features are independent booleans.

Except for the NB classifiers (with both Gaussian and Bernoulli distributions)
and the RBF-kernel based SVM, most classifiers had similar detection rates.The
Random Forest classifier and k-Nearest Neighbors classifier were the best overall,
taking into account both malware and benign software detection rate (by maximiz-
ing the MCC), where the k-Nearest Neighbors classifier was better in malware de-
tection and the Random Forest classifier was better in benign software detection.

One might ask: Why is a Random Forest classifier better in classifying benign
software while k-NN is better classifying malware?

As mentioned in Section 5, our assumption is that malicious software tend to
have similar behavior. In a virus this might be file infetion, manifested as many file
access API calls. Thus, many malware have similar features. k-NN is classifying
by the nearest neighbors, which best fit when software with similar features are
similarly classified. Since malware have similar features, k-NN works best for them.

Different benign software types, on the other hand, have different features, e.g., a
browser would have many network API calls while a compression utility would have
many file and mathematics API calls. However, different decision trees, each trained
by a subset of features that fit a different type of benign software (e.g., a browser
or a compression utility), would compose a Random Forest that could successfully
classify benign programs.

While the Random Forest classifier and k-Nearest Neighbors classifier were the
best overall, the Decision Tree classifier, used in the other sections, is almost iden-
tical in its performance; since its much easier to implement and test, we used this
classifier in most of the thesis, before extending it to a random forest classifier in
section 10.

6.3 Camouflage Algorithm Effectiveness

In-order to test our camouflage algorithm, we have selected all the malware samples
from our test set, which were correctly classified (i.e., as malicious) by our IDS, 436
samples. We applied the camouflage algorithm on the samples. The results appear
in the first line of Table 10; 84.3% of the samples were identified before applying
the camouflage algorithm on their system call sequence, as shown in the first line
of table 4. However, none of the camouflaged system call sequences of the same
samples were identified by our IDS (effectiveness of 100%, by the definition in
section 3, and thus the modified malware false-negative rate in Table 2 is 100%).
The value of max_decision_path_count in section 5 was set to 30.

To test a complete “end-to-end” application of our system in real-life, we used
the source code of the virus “Beetle”'3. We compiled the source code and ran it
through our IDS. The virus system call trace was classified correctly as malicious
by our IDS. After using our camouflage algorithm, we received the modified system

13The description and the source code of this virus are available at:
http://vxheaven.org/lib/vpe01.html

35

http://vxheaven.org/lib/vpe01.html

call sequence, which was classified as benign by our IDS. We matched the system
calls in this sequence to the virus original source code, and applied the same mod-
ifications to it - and then recompiled the modified version. The modified version of
the virus was then run in our IDS, and was falsely classified by it as benign. As
expected, the malicious functionality of the code remained intact.

6.4 Training Set Updates

In-order to test the stability of our camouflage, we have added increments of 10 ad-
ditional benign programs and 10 additional malware system call sequences to our
IDS training set (or DB) - a 1.7% increment in the training set size, totaling 785 be-
nign programs and 639 malware in the training set. This increment had a negligible
effect on the detection rate of the IDS as a whole. After recalculating the decision
tree, the benign detection rate changed from 88.9% to 88.7% and the malware de-
tection rate changed from 84.3% to 86.5% for the same test set, as shown in the
last line of Table 4. However, This update had a significant effect on the stability of
the camouflage, by the definition given in section 3.1, as shown in Table 2. A false-
negative rate of 100% means that none of the camouflaged malware system-calls
traces were classified as malicious. The percentage is out of the 84.3% of malware
that were successfully classified by the IDS in section 6.1.

Table 2. Percentage of Successfully Camouflaged Malware Samples When Using Updated
DB

IDB Increment (Percentage) [Modiﬁed Malware False-Negative Rate

0 (original DB) 100.0
1.7 74.5
6.8 67.9
11.8 63.1
13.5 50.5
16.9 443

We see that even less than 2% increment in the training set causes a 75% stability
rate. The reason is that even a small increment cause a re-calculation of the entire
decision tree, where the distinguishing features might be different from the original
decision tree, rendering the camouflage useless. Furthermore, we see that the larger
the increase in the training set - the lower the stability rate becomes (down to 44%,
when the training set size is being increased by 17%).

This means that training set updates can decrease the camouflage algorithm ef-
fectiveness.

However, frequent classifier updates isn’t a big concern for an attacker: the clas-
sifier size (300-400MB in our case - not including sandbox update of GBs of data),
makes a full replacement of the classifier expensive, and would cause maintain-
ability issues. To mitigate that, replacing it infrequently would allow an attacker to

36

modify the malware code to fit the new classifier. Another possibility is using in-
cremental decision trees, updating the classifier in the client’s system instead-of re-
placing the entire classifier. The camouflage against incremental CART algorithms,
as mentioned in [12], is more stable by design since in-order to reduce the compu-
tation burden by invoking the CART procedure repeatedly, the decision tree usually
remains the same, or have a new split close to the original tree leaves. The camou-
flage would become infective only if the malware code flaw was modified, which
is less likely in this case. Since scikit-learn doesn’t have an incremental decision
trees implementation, we have tried to implement the CART extension in Python
on our own. However, due-to the programming language memory limitations - we
weren’t able to create incremental decision trees with a training set size of more
than 150 samples - about 10% the size of our scikit-learn classifiers’ training set.
Since implementing such trees in a different language requires a complicated inter-
op mechanism that is beyond the limits of this thesis, the numerical results of testing
our camouflage against incremental CART decision trees would be presented in fu-
ture research.

However, even if we take the results as-is, a 50% success rate for the camouflage
algorithm is not something which is tolerable by an IDS - and the system would be
considered unsafe against the camouflage algorithm variants even in such case.

6.5 Partial Knowledge of the IDS

So far, we have assumed that the attacker has full knowledge of the classifier type,
the training set used to create it, and its features, in-order to generate the exact
same classifier and use it to camouflage the malicious code. We can alleviate this
assumption: If the attacker can gain partial knowledge about the training set, he
can construct the simulated classifier using only the training set he knows about
and use it in Algorithm 1. Such partial knowledge is easy to gather, e.g., using the
VirusTotal'* samples closest to the IDS release date, which are very likely to be
used as part of the IDS training set. This makes the implementation of this variant
more feasible.

6.5.1 Partial Training Set Knowledge We have trained the attacker classifier us-
ing a part of the training set which is used by the IDS classifier, as mentioned in
section 6. We then camouflaged the entire test set using Algorithm 1, based on the
attacker partial knowledge based classifier. The success rate of the camouflage is
shown in Table 3.

Notice that the training set updates, mentioned in the previous section, also re-
flect partial knowledge of the training set: full knowledge of the original training
set, but not about the updates. The numbers in both cases (Tables 2 and 3) are sim-
ilar: about 50% camouflage algorithm effectiveness for knowledge of 85% of the
training set.

https://www.virustotal.com/

37

https://www.virustotal.com/

Table 3. Camouflage Algorithm Effectiveness Using Partial DB

Percentage of Training Set known to the Attacker|Modified Malware False-Negative Rate

100 (original DB) 64.0
86.4 56.6
77.7 31.3
69.1 25.4

6.5.2 Full Training Set Knowledge, Lack of Features’ Knowledge As men-
tioned in section 4.3, we select only the most statistically-significant 10,000 fea-
tures. If more than a single feature has the same 2 value, their selection order is
random. In this case, a different classifier might be generated by the attacker from
the same training set. The same is correct for Gini impurity, during the construction
of the decision tree out-of those selected features. Therefore, we tested a case of full
knowledge about the training set, but not about the features being selected, in case
of chi-square equality during feature selection and Gini impurity equality during
decision tree building. As can be seen in the first line of Table 3, in this case the
camouflage is 64% effective. However, as the training set grows, the probability of
getting the same classifier increases, since the features would tend to have differ-
ent chi-square and Gini impurity values, and the effect lacking feature knowledge
would be reduced.

From all experiments, it is clear that the camouflage algorithm is useful to an
attacker - even with partial knowledge of the classifier.

38

7 Countering the Basic Camouflage: Input Transformation

As mentioned in the previous sections, the input to our IDS is a sequence of (sys-
tem_call_type, position) tuples, represented as an array of system calls. The basic
form of decision tree node condition is: system_call[i]="7system_call_type[k]. How-
ever, using this kind of input makes the IDS classification fragile: It’s enough that
we add a single system call in the middle of the sequence or switch the positions of
two system calls, to change the entire decision path.

Therefore, we want to transform the input data (the system call array) in a way
that would make a modification of the inspected code harder to impact the modified
code’s decision tree path, thus countering the camouflage algorithm.

7.1 Section-based transformations

In-order to define those transformations, we first divide the system call sequence to
small sections of consecutive system calls. Each system calls section would have a
fixed length, m.
Thus, section[i]={sys_call[(i-1)*m+1],..,sys_call[i*m]}.
In an order-preserving without duplicates removal section-based transforma-
tion, we define the discrete values of the the decision nodes in the tree to be:
section[i] =7 sys_call[(i-1)*m+1], sys_call[(i-1)*m+2],.., sys_call[i*m].
Notice that when m=1 this is equivalent to no transformation.

Example 3. If the inspected code has 6 system calls:

sys_call[1]=NtQueryInformationFile, sys_call[2]=NtOpenFile, sys_call[3]=NtYieldExecution,
sys_call[4]=NtWriteFile, sys_call[5]=NtWriteFile, sys_call[6]=NtClose and m=3
then
section[1] = NtQueryInformationFile, NtOpenFile, NtYieldExecution and section[2]=NtWriteFile,
NtWriteFile, NtClose

However, this transformation is more specific than the basic model - so it would be
easier to fool - and thus we didn’t use it.

This changes when adding duplicates removal: If there is more than a single
system call of the same type in a section - only the first instance (which represent all
other instances) appears in the section. This transformation prevents the possibility
of splitting a system call into separate system calls: e.g. two NtWriteFile() calls,
each writing 100 bytes, instead of a single call writing 200 bytes. Therefore, this
was the first transformation we used.

Example 4. In the example shown in the former transformation:
section[1] = NtQueryInformationFile, NtOpenFile, NtYieldExecution and
section[2]= NtWriteFile, NtClose.

The second section-based transformation we examined is non-order-preserving
without duplicates removal. This transformation is identical to the order-preserving
without duplicates removal transformation, except for the fact that the system calls

39

in each section are ordered in a predetermined manner (lexicographically), regard-
less of their order of appearance in the trace. Using this transformation decreases
the probability of affecting the decision tree path by switching the places of two ar-
bitrary system calls. Only the switching of two system calls from different sections
might affect the decision path.

Example 5. In the example shown in the former transformation:
section[1] = NtOpenFile, NtQuerylnformationFile, NtYieldExecution and
section[2]=NtClose, NtWriteFile, NtWriteFile.

In this transformation, the probability of affecting the decision tree path by switch-
ing the places of two arbitrary system calls is *~* times the probability of the non-
order-preserving without duplicates removal transformation, since switching of two
system calls affect the node condition only if the two system calls are in different
sections.

The last transformation we considered is non-order-preserving with duplicates
removal. This transformation is identical to the former, except for the fact that only
one instance (which represents all other instances) would appear in the section if
there is more than a single system call of the same type in a section. This transfor-
mation handles both system calls switching and splitting. Notice that this transfor-
mation makes a section similar to a set of system calls: Each value can appear at
most once, without position significance.

Example 6. In the example shown in the former transformation:
section[1] = NtOpenFile, NtQuerylnformationFile, NtYieldExecution and
section[2]=NtClose, NtWriteFile.

7.2 Histogram-based transformations

The histogram-based transformations switch the keys and values of the section-
based transformations, that is, for each system call we enumerate all the sections
in which it appears:

The first histogram-based transformation is without duplicates removal. In this
transformation, we concatenates all the sections in-which a system call type appear.

Example 7. In the example from section 7.1:
NtQueryInformationFile=section[1], NtOpenFile=section[1], NtYieldExecution=section[1],
NtWriteFile=section[2], section[2] and: NtClose=section[2].

The second histogram-based transformation is with duplicates removal.

Example 8. In the example from the last transformation:
NtQueryInformationFile=section[1], NtOpenFile=section[1], NtYieldExecution=section[1],
NtWriteFile=section[2], and: NtClose=section[2].

40

8 Experimental evaluation of the transformed IDS model

8.1 IDS detection rate - Decision trees

In-order to test the true positive detection rate of our modified IDS, we used the
same test set used for the basic model.

A section size of m=10 was chosen.

The detection rate, computed by the definitions specified in section 3.1, appear
in Table 4.

Table 4. Detection Rate of the Decision Tree Classifier by Input Transformation Type

Input Type Malware Detection Benign Software
put yp Rate Detection Rate

No transformation - original DB 84.3 88.9

Section-based, non order-preserving, without ’7.4 907
duplicates removal ’ ’

Section-based, non order-preserving, with
duplicates removal 86:5 88.1
Section-based, order-preserving, with

duplicates removal 87.6 13

l Histogram-based, without duplicates removal \ 72.5 \ 94.5

l Histogram-based, with duplicates removal [72.3 [93.9

l No transformation - updated DB \ 86.5 \ 88.7

As can be seen from this table, section-based transformations are effective, by
the definition in section 3, while histogram-based transformation aren’t. The best
input-transformed classifier, order-preserving, with duplicates removal, appear in
Appendix A.2.

8.2 IDS detection rate - Other classifiers

In section 6.2, we have presented different classifiers detection rates. The effect of
the input transformations mentioned in section 7 on their detection rate appear in
Tables 5-9.

We can see that in-general, histogram-based outperformed section-based input
transformations by the criteria provided in section 3.1. We also see that different
classifiers have different better-suited input transformation. For instance, section-
based, non order-preserving, without duplicates removal is better suited for a Lin-
ear SVM classifier while section-based, order-preserving, with duplicates removal
transformation is better suited for random forest classifier.

41

Table 5. Detection Rate of the Naive Bayes (Gaussian) Classifier by Input Transformation

Type
Input Tvpe Malware Detection Benign Software
put 2yp Rate Detection Rate
No transformation 87.0 54.5
Section-based, non order-preserving, without 913 75
duplicates removal ' ’
Section-based, non order-preserving, with 238 743
duplicates removal ' ’
Section-based, order-preserving, with 27.0 76.1
duplicates removal ' ’
l Histogram-based, without duplicates removal ‘ 77.2 91.1
l Histogram-based, with duplicates removal \ 77.0 91.5

Table 6. Detection Rate of the Linear SVM Classifier by Input Transformation Type

Input Type

Malware Detection

Benign Software

Rate Detection Rate

No transformation 86.5 86.4

Section-based, non order-preserving, without 38.0 90.0
duplicates removal

Section-based, non order-preserving, with 841 88.7
duplicates removal

Sectlon—based., order-preserving, with 87.0 88.7
duplicates removal

| Histogram-based, without duplicates removal [65.4 97.2

l Histogram-based, with duplicates removal \ 64.4 97.4

Table 7. Detection Rate of the AdaBoost Classifier by Input Transformation Type

Input Type

Malware Detection

Benign Software

Rate Detection Rate

No transformation 87.4 84.8

Section-based, nop order-preserving, without 26.9 375
duplicates removal

Section-based, n.on order-preserving, with 26.9 39.3
duplicates removal

Sectlon—based., order-preserving, with 83.0 917
duplicates removal

l Histogram-based, without duplicates removal \ 68.3 92.7

l Histogram-based, with duplicates removal [68.5 91.7

42

Table 8. Detection Rate of the Random Forest Classifier by Input Transformation Type

Input Type

Malware Detection

Benign Software

Rate Detection Rate

l No transformation 86.1 89.5

Section-based, non order-preserving, without 328 91.9
duplicates removal

Section-based, non order-preserving, with 82.6 91.9
duplicates removal

Sectlon—based., order-preserving, with 86.3 915
duplicates removal

| Histogram-based, without duplicates removal [59.2 98.4

l Histogram-based, with duplicates removal \ 60.9 97.0

Table 9. Detection Rate of the k-NN Classifier by Input Transformation Type

Malware Detection

Benign Software

Tnput Type Rate Detection Rate

No transformation 89.4 86.0

Section-based, non order-preserving, without 739 937
duplicates removal

Section-based, n.on order-preserving, with 316 93 1
duplicates removal

Section—based., order-preserving, with 30.3 921
duplicates removal

l Histogram-based, without duplicates removal \ 42.2 98.6

l Histogram-based, with duplicates removal [40.2 98.4

8.3 Camouflage algorithm - Decision trees

In-order to test our camouflage algorithm stability vs. the modified IDS, we have
used the same malware samples which were used before. That-is, we used the cam-
ouflage algorithm shown in Algorithm 1 to modify their system call traces. Then we
applied the input transformation on the modified system call traces - we then fed
them to the input-transformed IDS variant. The results appear in Table 10.

We see that each input transformation decreases the effectiveness of the cam-
ouflage generated by Algorithm 1 dramatically. This makes sense, since Algorithm
1 modifies single system calls, not entire sections or system calls frequencies, as
detected by the input transformations mentioned in this section. In the next section
we modify the camouflage algorithm, to deal with input transformations and remain

effective.

43

Table 10. Percentage of Successfully Camouflaged Malware Samples When Using Input
Transformations

Inout Type Modified Malware

put yp False-Negative Rate
l No transformation (original DB) H 100.0 ‘
lSection—based, non order-preserving, without duplicates removalH 18.8 ‘
l Section-based, non order-preserving, with duplicates removal H 17.2 ‘
] Section-based, order-preserving, with duplicates removal H 17.4 [
l Histogram-based transformation, without duplicates removal H 24.8 ‘
] Histogram-based transformation, with duplicates removal H 21.1 [

9 Countering the Input Transformations with Custom-Fit
Camouflage Algorithm

One might argue that camouflaging a system call trace in our basic IDS (without
the transformations suggested in section 7) is an easy task. One needs to add only
a single system call at the beginning to change all following system calls positions,
thus affecting the decision path in the tree. Can we apply our camouflage algorithm
on our section-based IDS with the same effectiveness?

In-order to fit our camouflage algorithm to section-based transformations, we
have slightly modified Algorithm 1: In each iteration we added an entire system
calls section (i.e., m consecutive system calls), instead of a single system call. This
is done in step 4: If the edit_op is Suby, Addg, or Del; then we add the same section.
Else, we add a section with a different first system call (thus, we add a different
section). The section is added with the same transformation type as the IDS: If the
input transformation for the decision tree was order preserving, so would the section
added. If the input transformation included duplicates removal, so would the added
section - and vice-versa.

The modified version is shown in Algorithm 2.

Notice that when the section size, m, is 1 - Algorithms 1 and 2 are identical.

We have applied this algorithm on all section-based transformations described
in section 7.1, both order preserving and not, and both with and without duplicate
removal.

Like Algorithm 1, there is no guarantee that the algorithm would converge. How-
ever, all 436 modified section traces were classified as benign by our IDS, with all
input transformations, i.e., camouflage algorithm effectiveness of 100% (as can be
seen in the first line of Table 11). This is due-to the same rationale mentioned in
section 5.

A camouflage algorithm for histogram-based input transformation, as those
mentioned in section 7.2, wasn’t developed, since those transformations aren’t ef-
fective by the definition in section 3.2, so they would less likely to be used. In this
case, the back-tracking from the modified path to the modified malware source is
more challenging. We might discuss this algorithm in our future research.

44

Algorithm 2 Section-Based Input Transformed System-Calls Based Decision Tree’s
Camouflage Algorithm
1. Given the decision tree of the IDS and a specific malware trace (i.e. its sequence of
system calls as recorded) with the decision tree’s path M, find all the IDS’ decision
tree’s benign paths, P1..Pm, and create a list 1 of m tuples to check:
{(M, P1)..(M, Pm)}. Set path_count[M] = 0
2. For each tuple (dec_path, Pj) in 1, find the minimum edit distance between dec_path and
Pj, d(dec_path, Pj). Select the tuple with the minimal such edit distance and find the
minimal sequence of edit operations needed to change dec_path to Pj, ordered from the
root of the tree to the leaf\classification node (i.e. by position in the decision path). If 1
is empty: Report failure.

a) If there is more than a single path with the same minimal
edit distance, look at the first edit operation in each such path.
Assuming the condition is: section[i] =? sys_call[(i-1)*m+1], sys_call[(i-
1)*m+2],.., sys_call[i*m], select the path that maximizes i.

3. Set path_count[des_path] += 1. If path_count[des_path]>max_decision_path_count :
Remove all tuples that contain dec_path from 1 and go to step 2.

4. Assuming the benign path to fit is Pj, modify the malware code based on the first edit
operation in the edit sequence, as was explained above:

a) If the edittop 1is Suby, Addr, or Delp then: Add section[i]
= sys_call[(i-1)*m+1], sys_call[(i-1)*m+2],.., sys_call[i*m].
Else: Add section[i]=sys_call’[(i-1)*m+1], sys_call[(i-1)*m+2],.., sys_call[i*m]
s.t. sys_call’[(i-1)*m+1] != sys_call[(i-1)*m+1].

5. section[i..n] from before the modification now become section[i+1..n+1]. Re-evaluate
the new system call sequence and generate a new decision path M’.

6. If M’ ends with a benign leaf: Report success.
Else: Remove (dec_path, Pj) from [, and add all the tuples with the modified
malware code {(M’, P1)..(M’, Pm)} to 1. Set path_count[M’] = 0

7. Go to step 2.

9.1 Training Set Updates

In-order to test the stability of our transformed camouflage, we have used the same
training set and test set we used in section 6.3. We have applied the input transforma-
tion on both, and then run the transformed camouflage algorithm, which was done
by the original training set (not the updated one), on the test set. Following that, we
fed it to the input-transformed IDS variant after the training set (DB) update and re-
calculating the decision tree. Like in section 6.3, we see there is no significant effect
on the detection rate. However, this update had a significant effect on the stability
of the camouflage by the definition given in section 3.1, as shown in Table 11.

We see that for all input transformations the larger the increase in the training
set - the lower the stability rate becomes. We can also see that the stability of the
camouflage algorithm reduces more drastically when using the input transformed
IDSs’ than when using the non input-transformed IDS, when the training set size is
being updated. This makes sense, because the input transformation make the IDS

45

Table 11. Percentage of Successfully Transformed Camouflaged Malware Samples When
Using Updated DB

Non orfler— Non order- Order-
DB Increment No pr;?:;‘;ﬁig’ preserving, preserving,

(Percentage) . . with duplicates || with duplicates

transformation duphcatfl:s removal removal

remova

[0 (original DB)[[100.0 J[1000 [[1000 [[1000 |
| 6.8 [6719 56.9 | 812 [4038 |
| 118 [631 [555]| 307 [523]
| 13.5 [505 [483 [262 [532 |
| 169 [443 [404 [248 [42 |

more effective and less sensitive to modifications in the malware (including camou-
flage). Therefore a training set update should make the camouflage easier to detect
- and thus less stable.

46

10 Random Forest Camouflage Algorithm

In section 5 we’ve devised a camouflage algorithm to counter a decision tree classi-
fier. However, as mentioned in section 6.2, the classifier with the best performance
was random forest. This algorithm is known to be one of the best-of-breed not only
in our tests, but in other cases - as mentioned in [28] and [27]. As mentioned in
appendix D.1, a random forest is actually a collection of decision trees. Thus, if we
extend the same assumptions made in section 3, that-is: we know all the trees in
the random forest, we can extend the algorithm mentioned in section 5 to handle
random forests. The general algorithm is depicted as Algorithm 3.

Algorithm 3 No Input Transformation System-Calls Based Random Forest’s Cam-
ouflage Algorithm
1. Given the random forest of the IDS, containing the decision trees
RF={RF_DT[1],..RF-DT[n]} and a specific malware trace (i.e. its sequence of
system calls as recorded) with the decision tree’s path M, set curr_tree_ind = 0,
curr_trace = M.
2. Calculate curr_non_bypassed_trees for curr_trace by feeding it to all the trees in RF. Set
curr_bypassed_trees_num =|RF|-|curr_non_bypassed_trees|.
. If curr_bypassed_trees_num>|RF|/2, return curr_trace.
4. Set curr_tree_ind = curr_tree_ind + 1
5. If curr_tree_ind>|RF|:

a) If currnon_bypassed_trees is empty, return Failure: Else: curr_tree_ind =
curr_non_bypassed_trees.pop()

w

6. If RF_DT|[curr_tree_ind] classifies curr_trace as benign, go to step 4.
7. Operate Algorithm 1 on RF_DT[curr_tree_ind] and curr_trace to generate modi-
fied_trace.
8. If Algorithm 1 returned Failure, go to step 4.
9. Calculate new_non_bypassed._trees, the list of trees which classify modified_trace as ma-
licious. Set new_bypassed_trees_num =|RF|-|new_non_bypassed_trees|.
10. If curr_bypassed_trees_num>new_bypassed_trees_num, go to step 4.
11. Set: curr_trace=modified_trace, curr_bypassed_trees=new _bypassed_trees,
curr_bypassed_trees_num=new_bypassed_trees_num. Go to step 2.

The rationale of the algorithm is simple: Since all decision trees in RF actually
represents parts of the same code flow, we can modify each of them in turn, using Al-
gorithm 1, until we can fool the majority of them, thus fooling the entire random for-
est (step 3). In-order to finish as-fast-as-possible, the algorithm uses a back-tracking
forest state, where curr_trace is the current (possibly already modified to fool other
trees) system call trace of our malware, curr_tree_ind is the index of the decision tree
we currently trying to fool (i to fool RF_DT[i]), curr_non_bypassed_trees is a queue
of trees which still classify curr_trace as malicious, and curr_bypassed_trees_num
is the number of trees in RF currently being fooled by curr_trace (steps 1 and 2).
Since sometimes modifying the code can affect a tree we’ve already successfully

47

fooled, we skip every step which makes our state worse by reducing the amount of
trees we’ve fooled so far - we advance only if the number of fooled trees doesn’t
decrease (step 11). Otherwise we implement a back-tracking strategy (step 10). We
don’t have to fool all the trees in the random forest - only the majority of them (step
3). We don’t try to modify the code for trees which already classify our code as
benign (step 6). If we don’t succeed fooling a specific tree, we try to fool the next
trees (step 8). Once we’ve passed all the trees and still don’t have majority of fooled
trees we try again the trees we’ve skipped, hoping that they would succeed now. If
all trees have been tried but we still don’t have majority we return Failure (step 5.a).

Notice that when the number of decision trees in the forest, n, is 1, algorithms 1
and 3 are identical.

We have applied this algorithm on all the malware code that were detected by
the random forest: 445 different samples.

Like Algorithm 1 and 2, there is no guarantee that the algorithm would converge.
However, all 445 modified section traces were classified as benign by our IDS, i.e.,
camouflage algorithm effectiveness of 100%. This is due to the same rationale men-
tioned in section 5. This was also the case when adding input transformation and
used Algorithm 2 instead of Algorithm 1 in steps 7 and 8 of Algorithm 3.

10.1 Handling Soft Voting

In contrast to the CART trees described in [10], scikit-learn combines classifiers by
averaging their probabilistic prediction (soft voting), instead of letting each classifier
vote for a single class'. This creates a challenge to our algorithm, which handles
majority vote (hard voting). Thus, we have modified our algorithm: in step 3 of
Algorithm 3, we changed the condition: We’re returning the current trace (success)
only if the random forest as a whole classifies curr_trace as benign. This is true also
to the back-tracking, which now conditions the random forest benign probability
and should be bigger than before (step 10).

We also tested our hard voting algorithm (Algorithm 3 without modifications)
against the soft voting random forest IDS, for all samples of all input transforma-
tions mentioned before: 1 sample out of 1746 wasn’t successfully camouflaged,
99.94% success rate. When we used the soft voting algorithm, we got a 100% suc-
cess rate for all input transformation variants.

10.2 Shortest Tree Edit Distance Optimization

In Algorithm 3, we go over the decision trees sequentially, as shown in step 4. This
might not be an optimized way to iterate the trees: If two trees are similar in their
nodes, it makes more sense to iterate over them one-after-the-other, under the as-
sumption that if two trees are similar, only a small modification would be needed to
fool both.

http://scikit-learn.org/stable/modules/ensemble.html#random-forests

48

http://scikit-learn.org/stable/modules/ensemble.html#random-forests

One way to determine the similarity between trees is the Zhang-Sasha algorithm
for tree edit distance ([64]). If, instead of iterating the trees sequentially, we would
first calculate the edit distance between the different trees and iterate them by edit
distance from each other - we might finish with less edit operations.

In-order to examine this, we’ve applied the Zhang-Sasha algorithm, written in
Pyth0n16, on the random-forest trees. Unfortunately, the decision trees in the random
forest were very distinct from each other (an average edit distance of more than 200)
- and the time it took to calculate the edit distance was significant, compared to the
negligible performance boost gained due-to changing the iteration order.

16https://github.com/timtadh/zhang-shasha

49

https://github.com/timtadh/zhang-shasha

11 Conclusions

While the usage of machine learning algorithms to detect malware is a commonly
researched subject, the research of camouflage techniques of malware, to mislead
such algorithms, has just began scratching the surface. In this thesis, we have shown
that malware code which has been identified by specific machine learning classifier
(decision tree and random forest) can be camouflaged in-order to be falsely classi-
fied as benign. We have done so by modifying the actual code being executed, with-
out harming its malicious functionality. We have implemented such a camouflage
algorithm not only for a decision tree classifier, but also for one of the best-of-breed
classifiers: Random Forest. We also applied a defense mechanism to the first cam-
ouflage algorithm, called input transformation, making our IDS more robust than
basing it on (position, type) pairs of system calls. We also showed that it can also be
evaded.

This suggests that the malware - anti-malware war is ongoing: It is not enough
to use a machine learning classifier with a large training set of benign and mali-
cious samples to detect malware: one must also be aware of the possibility that a
machine learning algorithm would be fooled by this camouflage algorithm to pro-
vide a wrong classification for the inspected code and try to counter such an option
with techniques such as continuously updating the classifier’s training set, the same
way signatures DB are being updated in current anti-virus programs, or applying
the input transformation discussed. However, as we have shown, even such transfor-
mations are susceptible to camouflage algorithms designed against them. Another
alternative is to use multiple classifiers simultaneously in order to reduce the cam-
ouflage risk. Finally, one can train a classifier to detect the camouflage instead-of
maliciousness, e.g., by finding a sequence of system calls which is unreasonable.

Our future work in this area would examine those mitigation possibilities. We
would also investigate the effectiveness of our camouflage algorithm on other
machine-learning classifiers (e.g. SVM, boosted trees, etc.) and find other algo-
rithms to cope with such classifiers. We would also like to research camouflage
algorithms for classifiers with other input types besides system call sequences (e.g.
call flow graphs), for classifiers with more than a single input type and for ensemble
learning.

50

References

1.

10.
11.

12.

13.

14.

15.
16.

18.

Baldi P, Brunak S., Chauvin Y., Andersen CA., Nielsen H.: Assessing the accuracy
of prediction algorithms for classification: an overview. In: Bioinformatics, Volume 16
Issue 5, pp. 412-24 (2000)

. Barreno M., Nelson B., Sears R., Joseph A., Tygar J.: Can machine learning be secure?

In: ASTACCS’06, pp. 16-25 (2006)

. Barreno M., Nelson B., Joseph A., Tygar J.: The security of machine learning. Machine

Learning, Vol 81, pp. 121-148 (2010)

. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware. In: Pro-

ceedings of the 15th Ann. Conf. European Inst. for Computer Antivirus Research, pp.
180-192 (2006)

. Biggio, B., Pillai, I., Rota Bul‘o, S., Ariu, D., Pelillo, M., Roli, F.: Is data clustering

in adversarial settings secure? In: Proceedings of the 6th ACM Workshop on Artificial
Intelligence and Security (2013)

. Biggio B., Corona I., Maiorca D., Nelson B., Srndic N., Laskov P., Giacinto G., Roli

F.: Evasion attacks against machine learning at test time. In: European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), Part III, volume 8190 of Lecture Notes in Computer Science, pp. 387—
402 (2013)

. Biggio, B., Rieck, K., Ariu, D., Wressnegger, C., Corona, 1., Giacinto, G., Rol., F.: Poi-

soning behavioral malware clustering. In: Proceedings of the 7th ACM Workshop on
Artificial Intelligence and Security (2014)

. Biggio B., Corona 1., Nelson B., Rubinstein B., Maiorca D., Fumera G., Giacinto G.,

Roli F.: Security evaluation of support vector machines in adversarial environments. In:
Support Vector Machines Applications, pp. 105-153 (2014)

. Bellard FE.: QEMU, A Fast and Portable Dynamic Translator. Proc. Usenix 2005 Ann.

Technical Conf. (Usenix ’05), Usenix Assoc., pp. 41-46 (2005)

Breiman, L: Random Forests. In: Machine Learning, 45(1), pp. 5-32 (2001)

Caruana, R., Niculescu-Mizil, A.: An Empirical Comparison of Supervised Learning
Algorithms. ICML ’06, Proceedings of the 23rd international conference on Machine
learning, pp. 161-168.

Crawford, S. L.: Extensions to the CART algorithm. In: International journal of man-
machine studies, vol. 31, pp. 197-217 (1989)

Dalvi N., Domingos P., Mausam, Sanghai S., Verma D.: Adversarial classification. In
KDD ’04: Proceedings of the 2004 ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 99-108 (2004)

Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware-
analysis techniques and tools. In: ACM Computing Surveys, Vol. 44, No. 2, Article 6,
pp. 1-42 (2012)

Ferrie P.: Attacks on Virtual Machine Emulators. Symantec Advanced Threat Research.
Ferrie P.: Attacks on More Virtual Machine Emulators. Symantec Advanced Threat Re-
search.

. Firdausi, I., Lim, C., Erwin, A.: Analysis of Machine Learning Techniques Used in Be-

havior Based Malware Detection. In: Proceedings of 2nd International Conference on
Advances in Computing, Control and Telecommunication Technologies, pp. 201-203
(2010)

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longsta, T.A.: A Sense of Self for Unix Pro-
cesses. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 120-128, IEEE
Press, USA (1996)

51

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Forrest, S., Hofmeyr, S., Somayaji, A.: The evolution of system-call monitoring. In: Pro-
ceedings of the Annual Computer Security Applications Conference, pp. 418—430 (2008)
Gambs, S., Gmati, A., Hurfin, M.: Reconstruction attack through classifier analysis. In:
Proceedings of the 26th Annual IFIP WG 11.3 Working Conference on Data and Appli-
cations Security and Privacy, pp. 274-281 (2012)

Gao, D., Reiter, M., Song, D.: On gray-box program tracking for anomaly detection. In:
USENIX Security Symposium, pp. 103-118 (2004)

Guyon, L., Elisseeft, A.: An introduction to Variable and Feature Selection. In: Journal
of Machine Learning Research 3, pp. 1157-1182 (2003)

Hamlen, K.W., Mohan, V., Masud, M.M., Khan L., Thuraisingham B.: Exploiting an
Antivirus Interface. In: Computer Standards & Interfaces, Volume 31 Issue 6, pp. 1182-
1189 (2009)

Huang L., Joseph A., Nelson B., Rubinstein B., Tygar J.: Adversarial machine learning.
In: 4th ACM Workshop on Artificial Intelligence and Security, pp. 43-57 (2011)

Hunt, G.C., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In: Pro-
ceedings of the 3rd Usenix Windows NT Symp., pp. 135-143 (1999)

King, S.T., Chen, PM., Wang, Y.M., Verbowski, C., Wang, H.J., Lorch, J.R.: SubVirt:
Implementing Malware with Virtual Machines. In: Proceedings of the 2006 IEEE Sym-
posium on Security and Privacy, pp. 314— 327 (2006)

Kolter J.Z., Maloof M.A.: Learning to detect and classify malicious executables in the
wild. In: Journal of Machine Learning Research, 7(Dec), pp. 2721 — 2744 (2006)
Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In:
Proceedings of the 10th International Conference on Knowledge Discovery and Data
Mining, pp. 470-478 (2004)

Lakhotia, A., Preda, M.D., Giacobazzi, R.: Fast Location of Similar Code Fragments
using Semantic ’Juice’. In: Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop, (2013)

Lowd D., Meek C.: Adversarial learning. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pp. 641-647 (2005)

Ming, J., Xin, Z., Lan, P., Wu, D., Liu, P., Mao, B.: Replacement Attacks: Automatically
Impeding Behavior-based Malware Specifications. In: Proceedings of the 13th Interna-
tional Conference on Applied Cryptography and Network Security (2015)

Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection. In:
23rd Annual Computer Security Applications Conference, pp. 421-430 (2007)
Moskovitch, R., Gus, L., Pluderman, S., Stopel, D., Fermat, Y., Shahar, Y., Elovici, Y.:
Host Based Intrusion Detection Using Machine Learning. In: Proceedings of Intelligence
and Security Informatics, pp. 107-114 (2007)

Moskovitch R., Nissim N., Stopel D., Feher C., Englert R., Elovici Y.: Improving the De-
tection of Unknown Computer Worms Activity Using Active Learning. In: Proceedings
of the 30th annual German conference on Advances in Artificial Intelligence, pp. 489 —
493 (2007)

Navarro, G.: A guided tour to approximate string matching. In: ACM Computing Sur-
veys, vol. 33, no. 1, pp. 31-88 (2001)

Ouellette, J., Pfeffer, A., Lakhotia, A.: Countering malware evolution using cloud-based
learning. In: Malicious and Unwanted Software: *The Americas’ (MALWARE), 2013
8th International Conference, pp. 85-94 (2013)

Parampalli, C., Sekar, R., Johnson, R.: A Practical Mimicry Attack Against Powerful
System-Call Monitors. In: Proceedings of the ACM Symposium on Information, Com-
puter and Communications Security, pp. 156-167 (2008)

52

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Powers D.: Evaluation: From Precision, Recall and F-Measure to ROC, Informedness,
Markedness & Correlation. In: Journal of Machine Learning Technologies 2 (1), pp.
37-63 (2011)

Quinlan, J.R.: Discovering rules from large collections of examples: A case study. In:
Expert Systems in the Microelectronic Age, Michie, D. (Ed.), pp. 168-201 (1979)
Raffetseder, T., Kruegel, C., Kirda, E.: Detecting System Emulators. In: Proceedings of
Information Security, 10th International Conference, pp. 1-18 (2007)

Rosenberg 1., Gudes, E.: Attacking and Defending Dynamic Analysis System-Calls
Based IDS. In: Information Security Theory and Practice (WISTP), 10th International
Conference, pp. 103-119 (2016)

Rosenberg 1., Gudes E.: Evading System-Calls Based Intrusion Detection Systems. In:
Network and System Security (NSS) 10th International Conference, pp. 200-216 (2016)
Rozenberg, B., Gudes, E., Elovici, Y., Fledel, Y.: Method for Detecting Unknown Ma-
licious Executables. In: Proceedings of the 12th International Symposium on Recent
Advances in Intrusion Detection, pp. 376-377 (2009)

Santos, 1., Brezo, E., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as representa-
tion of executables for data-mining-based unknown malware detection. In: Information
Sciences 227, pp. 63-81 (2013)

Shabtai, A., Menahem, E., Elovici, Y.: F-Sign: Automatic, Function-Based Signature
Generation for Malware. In: IEEE Trans. Systems, Man, and Cybernetics—Part C: Ap-
plications and Reviews, vol. 41, no. 4, pp. 494-508 (2011)

Schultz M., Eskin E., Zadok E., Stolfo S.: Data mining methods for detection of new
malicious executables. In: Proceedings of the IEEE Symposium on Security and Privacy,
pp- 38-49 (2001)

Singhal, P., Raul, N.: Malware Detection Module Using Machine Learning Algorithms
to Assist in Centralized Security in Enterprise Networks. In: International Journal of
Network Security & Its Applications, Vol.4, No.1, pp. 661-67 (2012)

Somayaji, A., Forrest, S.: Automated Response Using System-Call Delays. In: Proceed-
ings of the 9th USENIX Security Symposium, pp. 185-198 (2000)

Srndic N., Laskov P.: Practical evasion of a learning- based classifier - A case study. In:
Proceedings of the 2014 IEEE Symposium on Security and Privacy, pp. 197-211 (2014)
Sufatrio, Yap, R. H. C.: Improving Host-Based IDS with Argument Abstraction to Pre-
vent Mimicry Attacks. In Proceedings of the 5th International Symposium on Recent
Advances in Intrusion Detection, pp. 146-164 (2005)

Tan, K., Killourhy, K., Maxion, R.: Understanding an Anomaly-Based Intrusion Detec-
tion System Using Common Exploits. In Proceedings of the 5th International Sympo-
sium on Recent Advances in Intrusion Detection(2002)

Tan K., McHugh J., Killourhy K.: Hiding intrusions: from the abnormal to the normal
and beyond. In: Proceedings of Information Hiding: 5th International Workshop, pp.
1-17 (2003)

Tandon, G., Chan, P.: Learning Rules from System Call Arguments and Sequences for
Anomaly Detection. In: Proceedings of ICDM Workshop on Data Mining for Computer
Security, pp. 20-29, IEEE Press, USA (2003)

Tandon, G., Chan. P.: On the Learning of System Call Attributes for Host-Based
Anomaly Detection. In: International Journal on Artificial Intelligence Tools, 15(6), pp.
875-892 (2006)

Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of the IEEE
Symposium on Security and Privacy (2001)

53

56.

57.

58.

59.

60.

61.

62.

63.

64.

Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Systems. In:
Proceedings of the 9th ACM conference on Computer and Communications Security, pp.
255-264 (2002)

Warrender C., Forrest S., Pearlmutter B.: Detecting Intrusions Using System Calls: Al-
ternative data models. In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 133-145 (1999)

Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis Using
CWSandbox. IEEE: Security & Privacy, Volume 5 , Issue: 2, pp. 32 — 39 (2007)

Xiao H., Biggio B., Nelson B., H. Xiao H., Eckert C., Roli F.: Support vector machines
under adversarial label contamination. In: Neurocomputing, Special Issue on Advances
in Learning with Label Noise, Vol. 160, pp. 53-62 (2014)

Yang, Y., Fanglu, G., Susanta, N., Lap-chung, L., Tzi-cker, C.: A Feather-weight Virtual
Machine for Windows Applications. In: Proceedings of the 2nd International Conference
on Virtual Execution Environments, pp. 24-34 (2006)

Yates, F.: Contingency table involving small numbers and the y 2 test. In: Journal of the
Royal Statistical Society, vol. 1-2, pp. 217-235 (1934)

Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-wide
Information Flow for Malware Detection and Analysis. In: Proceedings of the 14th ACM
Conference of Computer and Communication Security, pp. 116-127 (2007)

Zheng Z., Wu X., Srihari R.: Feature Selection for Text Categorization on Imbalanced
Data. SIGKDD Explorations, pp. 80-89 (2002)

Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and
related problems. In: SIAM Journal of Computing, 18, pp. 1245-1262 (1989)

54

A Appendix A: Sample decision trees used by the IDS classifier

Attached are two decision trees created from the training set, one with and one
without input transformation.

If the decision tree condition specified in a node is, e.g.: sys_call10018=NtEnumerateKey,
this means the right child of this node in the decision path is chosen if sys_call[10018]=NtEnumerateKey,
and the left child is chosen if not.

A leaf node has a value vector of [benign_training_set_samples, malicious_training _set_samples].
Thus, an inspected code would be classified as malicious if |malicious_training _set_samples|
¢ |benign_training _set_samples| at that node, or as benign otherwise.

A.1 Decision Tree without input transformation

55

SpeEel _ﬂﬂ = =
D/ﬂ_,ﬂi ,ﬂ_]., g, ,,ﬂﬂ: , ﬂ_, ,ﬂu,

(=]
== =5 ﬂﬂﬂﬂd%l_

ﬂ_ s

‘,ﬂ

— -~ :L\|W_ EELL B JEEL = Il == ,lﬂ

EEL L] =] E (= L] S | | ﬂ_ =5
E= s] = = |E =] | =
= e J =] B I = L

A.2 Decision Tree with section-based input transformation, order-preserving,
with duplicates removal

57

B Appendix B: Computing Levenshtein Distance
B.1 Recursive

A straightforward, but inefficient, recursive pseudo-code implementation of a Lev-
enshteinDistance function that takes two strings, s and t, together with their lengths,
and returns the Levenshtein distance between them:
//'len_s and len_t are the number of characters in string s and t respectively
int LevenshteinDistance(string s, int len_s, string t, int len_t)
{
/* base case: empty strings */
if (len_s == 0) return len_t;
if (len_t == 0) return len_s;
/* test if last characters of the strings match */
if (s[len_s-1] == t[len_t-1])

cost =0;
else
cost=1;

/* return minimum of delete char from s, delete char from t, and delete char
from both */
return minimum(LevenshteinDistance(s, len_s - 1, t,len_t) + 1,
LevenshteinDistance(s, len_s , t,len_t- 1) + 1,
LevenshteinDistance(s, len_s - 1, t, len_t - 1) + cost);

B.2 Iterative with Full Matrix

Computing the Levenshtein distance is based on the observation that if we reserve a
matrix to hold the Levenshtein distances between all prefixes of the first string and
all prefixes of the second, then we can compute the values in the matrix in a dynamic
programming fashion, and thus find the distance between the two full strings as the
last value computed:
function LevenshteinDistance(char s[1..m], char t[1..n]):

// for all i and j, d[i,j] will hold the Levenshtein distance between

// the first i characters of s and the first j characters of t;

/I note that d has (m+1)*(n+1) values

declare int d[0..m, 0..n]

set each element in d to zero

/I source prefixes can be transformed into empty string by

// dropping all characters

for i from 1 to m:

dfi, 0] ;=1

/I target prefixes can be reached from empty source prefix

// by inserting every character

for j from 1 to n:

59

d[o, jl =
for j from 1 to n:
for i from 1 to m:
if s[i] = t[j]:
d[i, j] := d[i-1, j-1] // no operation required
else:
d[i, j] := minimum(d[i-1, j] + 1, // a deletion
d[i, j-1] + 1, // an insertion
d[i-1, j-1] + 1) // a substitution
return d[m, n]

Example 9. The Levenshtein distance between *Sunday’ and *Saturday’:

Saturday

012345678

S101234567
u211223456
n322233456
d433334345
254344443

y654455543

B.3 Iterative with Two Matrix Rows

It turns out that only two rows of the table are needed for the construction if one does
not want to reconstruct the edited input strings (the previous row and the current row
being calculated).
The Levenshtein distance may be calculated iteratively using the following al-
gorithm:
int LevenshteinDistance(string s, string t)
{
// degenerate cases
if (s ==1t) return O;
if (s.Length == 0) return t.Length;
if (t.Length == 0) return s.Length;
/I create two work vectors of integer distances
int[] vO = new int[t.Length + 1];
int[] vl = new int[t.Length + 1];
// initialize vO (the previous row of distances)
// this row is A[O][i]: edit distance for an empty s
/I the distance is just the number of characters to delete from t
for (inti = 0; i vO.Length; i++)

60

vO[i] =1;
for (inti=0;1 s.Length; i++)
{
// calculate v1 (current row distances) from the previous row v0
// first element of v1 is A[i+1][0]
/I edit distance is delete (i+1) chars from s to match empty t
vi[0]=i+1;
// use formula to fill in the rest of the row
for (int j = 0; j | t.Length; j++)
{
var cost = (s[i] ==t[j]) ?0: 1;
v1[j + 1] = Minimum(v1[j] + 1, vO[j + 1] + 1, vO[j] + cost);
}
/Il copy v1 (current row) to vO (previous row) for next iteration
for (int j = 0; j ; vO.Length; j++)
vO[j1 = v1[jl;
}

return v1[t.Length];

}

61

C Appendix C: Levenshtein Distance: Inferring the edit
operations from the matrix

Given the matrix produced by the Levenshtein algorithm (see Appendix B), how can
we find the precise sequence of string operations: inserts, deletes and substitution
[of a single letter], necessary to convert the ’s string’ into the ’t string’?

By “decoding” the Levenshtein matrix, one can enumerate ALL such optimal
sequences. The general idea is that the optimal solutions all follow a “path”, from
top left corner to bottom right corner (or in the other direction), whereby the matrix
cell values on this path either remain the same or increase by one (or decrease by one
in the reverse direction), starting at 0 and ending at the optimal number of operations
for the strings in question. The number increases when an operation is necessary, it
stays the same when the letter at corresponding positions in the strings are the same.

This path finding algorithm should start at the lower right corner and work its
way backward. The reason for this approach is that we know for a fact that to be an
optimal solution it must end in this corner, and to end in this corner, it must have
come from one of the 3 cells either immediately to its left, immediately above it
or immediately diagonally. By selecting a cell among these three cells, one which
satisfies our “same value or decreasing by one” requirement, we effectively pick a
cell on one of the optimal paths. By repeating the operation till we get on upper left
corner (or indeed until we reach a cell with a 0 value), we effectively backtrack our
way on an optimal path.

The conventions are:

— An horizontal move is an INSERTION of a letter from the ’t string’
— A vertical move is a DELETION of a letter from the ’s string’
— A diagonal move is either:

— A no-operation (both letters at respective positions are the same); the number
doesn’t change

— A SUBSTITUTION (letters at respective positions are distinct); the number
increase by one

One possible approach to select one path among several possible optimal paths is
loosely described below:
Starting at the bottom-rightmost cell, and working our way backward toward the
top left.
For each “backward” step, consider the 3 cells directly adjacent to the current
cell (in the left, top or left+top directions)
if the value in the diagonal cell (going up+left) is smaller or equal to the values
found in the other two cells AND if this is same or 1 minus the value of the current
cell
then “take the diagonal cell”
if the value of the diagonal cell is one less than the current cell:
Add a SUBSTITUTION operation (from the letters corresponding to the
current cell)

62

otherwise: do not add an operation this was a no-operation.
elseif the value in the cell to the right is smaller of equal to the value of the
of the cell above current cell AND if this value is same or 1 minus the value of the
current cell
then “take the cell to right”, and add an INSERTION of the letter corre-
sponding to the cell
else
take the cell above, add
Add a DELETION operation of the letter in ’s string’

Example 10. Following this informal pseudo-code, we get the following:

r e pub 1l i ¢ a n

a 1 2 3 4 5 8 7 & 9 1e

d 1 1 2 3 4 5 & 7 8 9 1e
e 2 2 1 2 3 4 5 & 7 8 9
m 3 3 2 2 3 4 5 & 7 B8 9
c 4 4 3 3 3 4 5 6 7 8 9
c % 5 4 4 4 4 5 6 6 7 B8
r & 5 5 5 5 5 5 & 7 7 B
a 7 &8 &6 6 & 6 B8 6 7 7 8
t 8 7 7 7 7 7 7P 7 7 8B B

Start on the “n”, “t” cell at bottom right.
Pick the [diagonal] “a”, “a” cell as next destination since it is less than the other
two (and satisfies the same or -1 condition).
Note that the new cell is one less than current cell
therefore the step 8 is substitute “t” with “n”: democra N
Continue with “a”, “a” cell,
Pick the [diagonal] “c”, “r” cell as next destination...
Note that the new cell is same value as current cell ==; no operation needed.
Continue with “c”, “r”’ cell,
Pick the [diagonal] “i”, “c” cell as next destination...
Note that the new cell is one less than current cell

[} [TPXLR

therefore the step 7 1is substitute “r” with “c”: democ C an

Continue with “i”, “c” cell,
Pick the [diagonal] “1”, “0” cell as next destination...
Note that the new cell is one less than current cell

6 99 [T3LIN

therefore the step 6 is substitute “c” with “i”: demo I can

Continue with “1”, “0” cell,
Pick the [diagonal] “b”, “m” cell as next destination...

Note that the new cell is one less than current cell

63

@ 9

therefore the step S5 is substitute “o” with “I”: dem L ican

Continue with “b”, “m” cell,
Pick the [diagonal]”’u”, “e” cell as next destination...
Note that the new cell is one less than current cell

o9

therefore the step 4 is substitute “m” with “b”: de B lican

Continue with “u”, “e” cell,
Note the “diagonal” cell doesn’t qualify, because the “left” cell is less than it.
Pick the [left] “p”, “e” cell as next destination...

[TAR]

therefore the step 3 is instert “u” after “e”: de U blican

Continue with “p”, “e” cell,

again the “diagonal” cell doesn’t qualify Pick the [left] “e”, “e” cell as next
destination...

therefore the step 2 is instert “p” after “e”: de P ublican

Continue with “e”, “e” cell,
Pick the [diagonal] “r”, “d” cell as next destination...
Note that the new cell is same value as current cell ==; no operation needed.

Continue with “r”, “d” cell,
Pick the [diagonal] “start” cell as next destination...
Note that the new cell is one less than current cell

therefore the step 1 is substitute “d” with “r”: R epublican

You’ve arrived at a cell which value is O : The operations were found.

64

D Appendix D: Various Machine Learning Classifiers -
Mathematical and Technical Background

D.1 Random-Forest Classifier

Decision trees that are grown very deep tend to learn highly irregular patterns: they
overfit their training sets, because they have low bias, but very high variance.

Random forests are a way of averaging multiple deep decision trees, trained on
different parts of the same training set. When splitting a node during the construc-
tion of the tree, the split that is chosen is no longer the best split among all features.
Instead, the split that is picked is the best split among a random subset of the fea-
tures. As a result of this randomness, the bias of the forest usually slightly increases
(with respect to the bias of a single non-random tree) but, due to averaging, its vari-
ance also decreases, usually more than compensating for the increase in bias, hence
yielding an overall better model.

D.1.1 Tree bagging The training algorithm for random forests applies the general
technique of bootstrap aggregating, or bagging, to tree learners. Given a training set
X =xl1,...,xn with responses Y =yl1, ..., yn, bagging repeatedly selects a random
sample with replacement of the training set and fits trees to these samples:

1. Forb=1,...,B:
a) Sample, with replacement, n training examples from X, Y; call these Xb,
Yb.
b) Train a decision or regression tree fb on Xb, Yb.

After training, predictions for unseen samples x’ is made by taking the majority vote
in the case of decision trees.

As already mentioned, this bootstrapping procedure leads to better model perfor-
mance because it decreases the variance of the model, without increasing the bias,
or with a minimal increase in total. This means that while the predictions of a single
tree are highly sensitive to noise in its training set, the average of many trees is not,
as long as the trees are not correlated. Simply training many trees on a single train-
ing set would give strongly correlated trees (or even the same tree many times, if the
training algorithm is deterministic); bootstrap sampling is a way of de-correlating
the trees by training them with different training sets.

The number of samples/trees, B, is a free parameter.

D.1.2 Feature Bagging The above procedure describes the original bagging algo-
rithm for trees. Random forests differ in only one way from this general scheme:
they use a modified tree learning algorithm that selects, at each candidate split in
the learning process, a random subset of the features. This process is sometimes
called “feature bagging*. The reason for doing this is the correlation of the trees in
an ordinary bootstrap sample: if one or a few features are very strong predictors for
the response variable (target output), these features will be selected in many of the
decision trees, causing them to become correlated.

65

D.1.3 Implementation The IDS classifier was implemented using scikit-learn’s
sklearn.ensemble.RandomForestClassifier class!’. The default value is B=10 deci-
sion trees, using a default metric of Gini impurity.

D.2 K-Nearest Neighbors (k-NN) Classifier

The input of the k-Nearest Neighbors algorithm consists of the k closest training
examples in the feature space. The output is a class membership. An object is clas-
sified by a majority vote of its neighbors, with the object being assigned to the
class most common among its k nearest neighbors. k-NN is a type of instance-based
learning, or lazy learning, where the function is only approximated locally and all
computation is deferred until classification.

A shortcoming of the k-NN algorithm is that it is sensitive to the local structure
of the data.

The training examples are vectors in a multidimensional feature space, each with
a class label. The training phase of the algorithm consists only of storing the feature
vectors and class labels of the training samples.

In the classification phase, k is a user-defined constant, and an unlabeled vector
(a query or test point) is classified by assigning the label which is most frequent
among the k training samples nearest to that query point.

The used distance metric is Euclidean distance.

D.2.1 Implementation The IDS classifier was implemented using scikit-learn’s
sklearn.neighbors.KNeighborsClassifier class'®. The default values are: k=5, dis-
tance metric=standard Euclidean metric.

D.3 Naive Bayes (NB) Classifier

The classifier is based upon a naive assumption, by which it is named: Even if
features depend upon the existence of others, they independently contribute to the
classification.
A pro of this classifier: It requires a small amount of training data to estimate
the parameters (means and variances of the variables) necessary for classification
A con of this classifier: Bayes classification is outperformed by approaches such
as random forest and SVM (as mentioned in [11]).

D.3.1 The NB Probability Model naive Bayes is a conditional probability model:
given a problem instance to be classified, represented by a vector X = (xy,...,x,)
representing some n features (dependent variables), it assigns to this instance prob-
abilities

p(Cilxt, ... xn)

for each of k possible outcomes or classes.

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble. RandomForestClassifier.html
18http://scikit-learn.org/stable/modules/generated/sklearn.neighbors. KNeighborsClassifier.html

66

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Using Bayes’ theorem, under the above independence assumptions, the condi-
tional distribution over the class variable C is:

P(Cilxt,.. xa) = 7p(CO) Ty p(xilCr)

where the evidence Z = p(x) is a scaling factor dependent only on xi,...,x,,
that is, a constant if the values of the feature variables are known.

D.3.2 The NB Classifier This classifier pick the hypothesis that is most probable;
this is known as the maximum a posteriori or MAP decision rule.

The corresponding classifier, a Bayes classifier, is the function that assigns a
class label y = Cy for some k as follows:

n
9= argmax p(Co)[[p(xilCy)
ke{l,...K} i=1
D.3.3 Gaussian Naive Bayes A typical assumption is that the values associated
with each class are distributed according to a Gaussian distribution. For example,
suppose the training data contain a continuous attribute, x. We first segment the data
by the class, and then compute the mean and variance of x in each class. Let u, be
the mean of the values in x associated with class c, and let 62 be the variance of the
values in x associated with class c. Then, the probability distribution of some value
given a class, p(x = v|c), can be computed by plugging v into the equation for a

Normal distribution parameterized by . and 6. That is,
(v—pc)?

1 e 2652

plx=vle) = ——

D.3.4 Bernoulli Naive Bayes In the multivariate Bernoulli event model, features
are independent booleans (binary variables) describing inputs. If x; is a boolean
expressing the occurrence or absence of the i’th term from the vocabulary, then the
likelihood of a document given a class Cy, is given by:

P(XICe) =TT ps(1 = pr) ')

where py; is the probability of class Cy generating the term x;.

D.3.5 Implementation The IDS Gaussian NB classifier was implemented using
scikit-learn’s sklearn.naive_bayes.GaussianNB class'®.

The IDS Bernoulli NB classifier was implemented using scikit-learn’s
sklearn.naive_bayes.BernoulliNB class®’.

D.4 AdaBoost Classifier

AdaBoost, short for “Adaptive Boosting®, can be used in conjunction with many
other types of learning algorithms to improve their performance. The output of the
other learning algorithms ("weak learners’) is combined into a weighted sum that
represents the final output of the boosted classifier. AdaBoost is adaptive in the sense

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.htm]
20http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html

67

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html

that subsequent weak learners are tweaked in favor of those instances misclassified
by previous classifiers. The core principle of AdaBoost is to fit a sequence of weak
learners (i.e., models that are only slightly better than random guessing, such as
small decision trees) on repeatedly modified versions of the data. The predictions
from all of them are then combined through a weighted majority vote (or sum) to
produce the final prediction. The data modifications at each so-called boosting it-
eration consist of applying weights wy,wy,...,wy to each of the training samples.
Initially, those weights are all set to w; = 1/N, so that the first step simply trains a
weak learner on the original data. For each successive iteration, the sample weights
are individually modified and the learning algorithm is reapplied to the reweighted
data. At a given step, those training examples that were incorrectly predicted by the
boosted model induced at the previous step have their weights increased, whereas
the weights are decreased for those that were predicted correctly. As iterations pro-
ceed, examples that are difficult to predict receive ever-increasing influence. Each
subsequent weak learner is thereby forced to concentrate on the examples that are
missed by the previous ones in the sequence. AdaBoost (with decision trees as the
weak learners) is often referred to as the best out-of-the-box classifier. Unlike neu-
ral networks and SVMs, the AdaBoost training process selects only those features
known to improve the predictive power of the model, reducing dimensionality and
potentially improving execution time as irrelevant features do not need to be com-
puted.

D.4.1 Training AdaBoost refers to a particular method of training a boosted clas-
sifier. A boost classifier is a classifier in the form

Fr(x) =X fi(x)

where each f; is a weak learner that takes an object x as input and returns a real
valued result indicating the class of the object. The sign of the weak learner output
identifies the predicted object class and the absolute value gives the confidence in
that classification. Similarly, the T-layer classifier will be positive if the sample is
believed to be in the positive class and negative otherwise.

Each weak learner produces an output, hypothesis A (x;), for each sample in the
training set. At each iteration ¢, a weak learner is selected and assigned a coefficient
oy such that the sum training error E; of the resulting z-stage boost classifier is
minimized.

E; =Y E[F—1(x:) + 0h(x;)]

Here F,_; (x) is the boosted classifier that has been built up to the previous stage
of training, E(F) is some error function and f; (x) = o h(x) is the weak learner that
is being considered for addition to the final classifier.

D.4.2 Weighting At each iteration of the training process, a weight is assigned to
each sample in the training set equal to the current error E(F,_;(x;)) on that sample.
These weights can be used to inform the training of the weak learner, for instance,
decision trees can be grown that favor splitting sets of samples with high weights.

D.4.3 Discrete AdaBoost The discrete variant, used in our IDS, is as follows:
With:

68

Samples xj ...x,

Desired outputs y; ...y,,y € {—1,1}
Initial weights wy 1...w, 1 set to %
Error function E(f(x),y, i) = e i/ (%)
Weak learners /: x — [—1,1]

Fortinl...T:

1. Choose f;(x):

a) Find weak learner A, (x) that minimizes &, the weighted sum error for mis-
classified points & = Y., w; E (h(x),y,i)

b) Choose ¢y = 11n (l;g’)
2. Add to ensemble:

a) Fi(x)=F_1(x)+ oy (x)
3. Update weights:

) Wit = wige Y% for all i
b) Renormalize w;, 1 such that Y ;w; ;1 =1

D.4.4 Implementation The IDS classifier was implemented using scikit-learn’s
sklearn.ensemble.AdaBoostClassifier class?!. The default value is a maximum of 50
estimators for boosting (or less if a perfect fit is achieved before).

D.5 Support Vector Machine (SVM) Classifier

A data point is viewed as a pdimensional vector (a list of p numbers), and we want
to know whether we can separate such points with a (p — 1)dimensional hyperplane.
This is called a linear classifier. There are many hyperplanes that might classify the
data. One reasonable choice as the best hyperplane is the one that represents the
largest separation, or margin, between the two classes. So we choose the hyperplane
so that the distance from it to the nearest data point on each side is maximized. If
such a hyperplane exists, it is known as the maximum-margin hyperplane and the
linear classifier it defines is known as a maximum margin classifier; or equivalently,
the perception of optimal stability.

An example of such separation in Figure 5. H3 does not separate the classes. H1
does, but only with a small margin. H2 separates them with the maximum margin.

2l http://scikit-learn.org/stable/modules/generated/sklearn.ensemble. AdaBoostClassifier.html

69

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

o Nl

/ 'x

Fig. 5. Example of Separating Hyperplanes

D.5.1 Linear SVM Given some training data &, a set of n points of the form

2 ={(xi,yi) [xi €RP,y; e {1, 1}}.,

where the y; is either 1 or —1, indicating the class to which the point x; be-
longs. Each x; is a pdimensional real vector. We want to find the maximum-margin
hyperplane that divides the points having y; = 1 from those having y; = —1. Any
hyperplane can be written as the set of points x satisfying:

w-x—b=0

where - denotes the dot product and w the (not necessarily normalized) normal
vector to the hyperplane. The parameter ﬁ determines the offset of the hyperplane
from the origin along the normal vector w.

If the training data are linearly separable, we can select two hyperplanes in a
way that they separate the data and there are no points between them, and then try
to maximize their distance. The region bounded by them is called “the margin®.
These hyperplanes can be described by the equations

w-x—b=1

and

w-x—b=-1

By using geometry, we find the distance between these two hyperplanes is =t

[[wil”
so we want to minimize ||w||. As we also have to prevent data points from falling
into the margin, we add the following constraint: for each i either

w-X; — b > 1 for x;of the first class
or

70

w-X; — b < —1 for x;of the second.

This can be rewritten as:

yilw-x;—b) > 1, forall1 <i<n

We can put this together to get the optimization problem:

Minimize (in w, b)

[[wll

subject to (forany i = 1,...,n)

yi(w-xj—b) > 1

In Figure 6 we see a maximum-margin hyperplane and margins for an SVM
trained with samples from two classes. Samples on the margin are called the support
vectors.

71

Fig. 6. Example of Support Vectors

D.5.2 Nonlinear classification A way to create nonlinear classifiers is by ap-
plying the kernel trick to maximum-margin hyperplanes. The resulting algorithm
is formally similar, except that every dot product is replaced by a nonlinear ker-
nel function. This allows the algorithm to fit the maximum-margin hyperplane in
a transformed feature space. The transformation may be nonlinear and the trans-

72

formed space high dimensional; thus though the classifier is a hyperplane in the
high-dimensional feature space, it may be nonlinear in the original input space.

An example of such a kernel function is a Gaussian Radial Basis Function
(RBF):

k(xi,xj) = exp(—7Y|[xi — xj||*), for y > 0. Sometimes parametrized using y =
1/20°

If the kernel used is a Gaussian radial basis function, the corresponding feature
space is a Hilbert space of infinite dimensions.

he kernel is related to the transform ¢@(x;) by the equation k(xj,Xj) = @(x;) -
@(xj). The value w is also in the transformed space, with w = Y; 0;y;9(x;). Dot
products with w for classification can again be computed by the kernel trick, i.e.
w-@(x) =¥, otyik(x;, x)

An example for the kernel trick is shown in Figure 7.

(]
& o
s} © o & o
o
o o © o
o 0
o o o
5 L]
3
o 5 . o
o
I}
o ¢j o
a o
o I
I
o
@ ‘-7 o
I PN
Q. - o N -
o ° o @ °
o
© o
© o
o
o]

Fig. 7. Example of the Kernel Trick

D.5.3 Implementation The IDS Linear SVC classifier was implemented using
scikit-learn’s: sklearn.svm.LinearSVC class?2.

The IDS SVC classifier was implemented using scikit-learn’s: sklearn.svm.SVC
class??, with a default RBF kernel.

22http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.htm]
23http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

73

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

pperly

X7 12 TP oY TTMNNY N7 27T TIR 1IN'T7 DAY 9'0In% N7aipn 0T XN NIYN TNy
TN DX NAYY 210' XIN — NDWNN 7w a10nn 7y YT W' 97In71 n TN ,IRT-0Y .22 177M)
AloNN T2V NNIT K7W D 1IN

,NIYN NTNY 79 DRIY A0 MNNIAYR 7V nooinn LIt TIy? N7 N> 1D It NTha
Random -w nxn n7v AZNNN . INXM AT alonn TN -2V NIY¥annn nd>wnn NIk 199
NI DI0N 0OWINAN 7va DNNR7RN KN Forest

IITTD NNITAN N2IYN NINMP Q¥ 7¢ N'¥NII90110 WXI'Y ,ARION DNMIAYR DAXD ,[DN NKRY
CTIPN 79 DT NIFArYRI90 [TAIR K77 ,0MND A1ony N7 nV7NN YV 100 alon -7y
2V VoW N7 'RY ,0"T71 X7 DIVNID DY NDWA NIRNP NOOIN *T-7V NYY1 12Th
qQPIMN 'R NNATN .YV TIzn 7w airon 71700 7y nyswn [0 W' 7ax — TIpn DIraryin
J10wnn MY DRI 'RY ATT TIRY T TR DY T DNMR7RA wnnun

XY ARIONN DNNIATR 2V 1IN'TN NN aIon 7 training set-n 12TV 7w nydwnn NX NN
.AIENAN anonn NN

2w2 (9¥12 '9'¥D0 DIPNA NDWNA NIXNMIP) DTN DDA 7Y 0777 NILYNII90IN0 190N 11AX¥N
NRIION DNMIIAZX NIYYANA [N'7V 72aNNYT QWOK 'K DA 'R .AXRIONN DNNYR 7V NIWpnY
J7m pme

N 7D nnitw ,Random Forest 2100 a110n2a 719107 AXI0NN DNMIATR DX 12NN
72U X'm YT NN 07PN NN OoIN0I DRAoNN 72 Yy NI 100% nw DNNTRY
.DN"MY 9Emn

NNANO0NA TAIWY NXION DNNIAYR WINM'Y 'o0n training set-n 72y ‘70 yT'W IXIN 91017
.NNNna

NI N2NMIN NoNa .NSS 2016-1 WISTP 2016 0'0122 nnNO1SNN 7NnNn ¢ Nn¥nixn noMa
.Concurrency and Computation: Practice and Experience 7111'Ta DoNonn

DOJ7 |NND II'R 7ITA training set DY NIY'N NTNY DNNNARA WIN'WY RN N7 pnnn
NXIION DNNIRAZRN NYSYIN NIFNYT NIYY NDIWNNY [I2WN] NNR7 NNVAX 'NAIN 7V NIDPNNT
YIN'Y IX 1TN [9INA training set-n 12TV |12 YIN "TY¥] V17171 — MxnY 1787 Nnim

.1x¥NY 07N NI'YNII90110VA

0171 191N

9 anTrn A
11 NS0 njrol yp .2
11 NIY'N NT'NY7 alon 2.1
13 v n'arT nr'7ax? "N rtaax” 2.2
0T TIR
14 axion N 2.3
19 avannman .3
20 AlI'ON MDY 3.1
20 AXIIONN DNMIAZX MDA 3.2
21 JIn'y "T'-9y n1an 3.3
0777 NI'YNID011LA
23 27T TIEA 1IN'T YN winm .4
23 "7ina A" nan 4.1
23 v'7in :n'-Feature-n yi''n 4.2
NdYNN NIRM]?
24 :amonl n'-Feature-n n'na 4.3
NIY'N AT'NY7 Alion
26 nv7na yy '97 aro onax .4.3.1
27 noNnvax .4.3.2
27 Information Gain .4.3.3
28 Gini Impurity .4.3.4
29 ANNONN DNNIAIX WInm .5
33 n¥n Aty 5.1
34 NIXXINN M1 .6
34 myna W At TNk .6.1
34 DIV DAlION WINA NXIWA 6.2
35 AXNoONN DNMMAX NIty 6.3
36 Training Set-n DTV .6.4
37 anona NITIX '‘g7nyT 6.5
37 Training Set-n nITIX '‘p7n yT .6.5.1
38 ,Training Set-n NITIXN X'm yT .6.5.2
n'-Feature-n NITIX '77n YT
Nnv
39 o7 n'ynaivonv .7
39 Section-Based Transformations .7.1
40 Histogram-Based 7.2
Transformations
41 NI'YNII9011V 1AV NIXXIN NN .8
o'
41 nv7Na yy anon — AT 'tink .8.1
41 D"NX DAlION — 'IN'T 'TINR - .8.2
43 YV a1on — axnon nona'x - .8.3
nov7nn
44 DXNIN AXIION DNNAYXR .9
07j7 NI'YNII901NV
45 Training Set-n DTV .9.1
47 Random 2anon'7 nxnon nn"ia'tx .10

Forest

48
48

50
51
55

59
62

65

Soft Voting-a 719'0 .10.1
Shortest Tree Edit Distance .10.2
Optimization
nnpon .11
n' aryan
nLV7NNN XY NIXNAIT :A NP1 .A
AlIONN YNNYn [N
|""owai? pnan a1w'n :B 901 .B
NN NIy awn :C nooa .C
|""owa1? Pnna
¥ 1DVI 'vnnNN Yy D Nnox D

n'alnonn

mTn

NIXY NN ,NTIAVN MIZ'A] NI NIVY V'PYUnY 9 nnann L,0TIA 'oNd? NITIn 1x1a
APNNAIN'NINA [DIT NRXI' [AT NYPWNl NI'YIN'Y

NIDINN MARNY UNNWNYT 7 AWORY 7V [1IM12-[2 NV'0N2IINNA DN [N'R? NTIN IR ,|2-1ND
29 DTN "aXY Ninfann

AMNDT WITRING

WA SPTARY ounnn e

AWITT TIR DR DN ARNSTY NIPUIDY 2D

XN N2APY MW TR PO AW T TN DTy
2w v7ma M.Sc. "oy Jnon
TMINDT TYIDI2OIN2
2WmAT YT 2%

o L))

ATR2aTY9 Sws

OTIX TR 'D171D SW N7 710N AT

2016 72n2an

