
Secure Order Based Voting Using Distributed Tallying

Tamir Tassaa, Lihi Deryb, Arthur Zamarina,

aThe Open University, 1 University Road, Ra’anana, 4353701, Israel
bAriel University, 3 Kiryat HaMada Street, Ariel, 40700, Israel

Abstract

Electronic voting systems have significant advantages in comparison with
physical voting systems. One of the main challenges in e-voting systems is
to secure the voting process: namely, to certify that the computed results
are consistent with the cast ballots and that the voters’ privacy is preserved.
We propose herein a secure voting protocol for elections that are governed
by order-based voting rules. Our protocol, in which the tallying task is
distributed among several independent talliers, offers perfect ballot secrecy in
the sense that it issues only the required output while no other information
on the cast ballots is revealed. Such perfect secrecy, achieved by employing
secure multiparty computation tools, may increase the voters’ confidence and,
consequently, encourage them to vote according to their true preferences.
We implemented a demo of a voting system that is based on our protocol
and we describe herein the system’s components and its operation. Our
implementation demonstrates that our secure order-based voting protocol can
be readily implemented in real-life large-scale electronic elections.

Keywords: Secure voting, Order-based voting rules, Secret sharing,
Multiparty computation

1. Introduction

Electronic voting has significant advantages in comparison with the more
commonplace physical voting: it is faster, it reduces costs, it is more sustain-
able, and in addition, it may increase voters’ participation. In recent years,
due to the COVID-19 pandemic and the need for social distancing, e-voting
platforms have become even more essential. One of the main challenges in
holding e-voting is to secure the voting process: namely, to make sure that it

Preprint submitted to Journal of Information Security and Applications June 10, 2025

is secure against attempted manipulations so that the computed results are
consistent with the cast ballots and that the privacy of the voters is preserved.

The usual meaning of voter privacy is that the voters remain anonymous.
Namely, the linkage between ballots and the voters that cast them remains
hidden, thus preserving anonymity. However, the final election results and
the full tally (i.e., all ballots) are revealed. While such information exposure
may sometimes be considered benign or even desired, in some cases it may
be problematic. For example, in small-scale elections—such as those for a
university senate—publishing the full tally may compromise ballot secrecy.
Suppose Bob is a candidate and only a small number of voters participate.
If the final tally reveals that Bob received zero votes, and it is known or
assumed that Alice supported him, observers (including Bob himself) may
infer that Alice did not follow through. Such inference risks may deter
voters from expressing their true preferences, either out of fear of social
consequences or due to pressure from candidates or peers, particularly in
close-knit communities.

In contrast to weaker privacy notions, such as anonymity or partial tally
hiding, perfect ballot secrecy ensures that nothing is disclosed except for the
final results. The final results could be just the identity of the winner (say,
when selecting an editor-in-chief or a prime minister), K > 1 winners (e.g.,
when needing to select K new board members), K > 1 winners with their
ranking (say, when needing to award first, second and third prizes), or a
score for each candidate (as is the case in elections for parliament, where the
candidates are parties and the score for each party is the number of seats in
the parliament).

In this paper, we present the design of a tally-hiding voting system that
ensures perfect ballot secrecy—a concept sometimes referred to as full privacy
(see, e.g., [12]). Such secrecy ensures that given any coalition of voters, the
protocol does not reveal any information on the ballots beyond what can be
inferred from the published results. Such perfect ballot secrecy may reduce
the possibility of voters’ coercion and increase their confidence that their vote
remains secret. Hence, it may encourage voters to vote according to their
true preferences.

There are various families of voting rules that can be used in elections. For
example, in score-based voting rules, a score for each candidate is computed
subject to the specifications of the underlying voting rule, and then the
winning candidate is the one whose aggregated score is the highest. In this
study, we focus on order-based (a.k.a pairwise-comparison) voting rules, where

2

the relative order of the candidates is considered by the underlying voting
rule [8].

Our contributions. We consider a scenario in which there is a set of
voters that hold an election over a given set of candidates, where the election
is governed by an order-based voting rule. We devise a fully private protocol
for computing the election results. The election output is a ranking of the
candidates from which the winning candidate(s) can be determined. Our
protocol is lightweight and can be readily implemented in virtual elections.

In order to provide privacy for the voters, it is necessary to protect their
private data (i.e. their ballots) from the tallier while still allowing the tallier to
perform the needed computations on the ballots in order to output the required
election results. The cryptographic tool that is commonly used towards this
end is homomorphic encryption, namely, a form of encryption that preserves
the algebraic structure and thus enables the performance of meaningful
computations on the ciphertexts. However, homomorphic encryption has
a significant computational overhead. The main idea that underlies our
suggested system is to use distributed tallying. Namely, our system involves
D > 1 independent talliers to whom the voters send information relating to
their private ballots. With such distributed tallying, it is possible to replace
the costly cryptographic protection shield of homomorphic encryption with
the much lighter-weight cryptographic shield of secret sharing (all relevant
cryptographic background is provided in Section 2). The talliers then engage
in specially designed protocols of multiparty computation that allow them
to validate that each cast ballot is a legitimate ballot (in the sense that
it complies with the specifications of the underlying voting rule) and then
to compute from the cast ballots the required election results, while still
remaining totally oblivious to the content of those ballots. A high-level
description of our system is presented in Figure 1. The first phase is the
voting phase: the voters send to each of the talliers messages (shares) relating
to their secret ballots. In the second phase, the talliers communicate among
themselves in order to validate each of the incoming ballots (which remain
secret to them) and then, at the end of the day, perform the tallying over all
legal ballots according to the underlying rule. Finally, the talliers broadcast
the results back to the voters.

The bulk of this study is devoted to two order-based voting rules –
Copeland [15], and Maximin [47] (a.k.a Kramer-Simpson), which are
formally defined in Section 3.1. In Appendix Appendix B we describe two

3

Figure 1: A high-level description of the protocol.

other rules in this family, Kemeny-Young [31, 51] and Modal Ranking
[10], and describe the extension of our methods for those rules as well.

The paper is structured as follows. In Section 2 we explain the crypto-
graphic principles of distributed tallying. In Section 3 we present our secure
voting protocols for Copeland and Maximin rules. We focus there on the
case where voters must determine a strict ranking of the candidates. Then,
in Section 4, we extend our discussion to the more involved case in which the
voters’ rankings may include ties between some of the candidates. In Section
5 we describe an implementation of a secure voting system that is based on
our protocols; our implementation is in Python and is open source. In Section
6 we survey related work. Lastly, Section 7 provides concluding comments,
as well as a description of an implementation of our presented protocol and
system in the Gentoo1 council elections.

The Appendix includes additional discussions. In Appendix A we describe
cryptographic sub-protocols that we use in our protocol, while in Appendix B
we discuss secure protocols for two other order-based voting rules − Kemeny-
Young and Modal Ranking.

1https://www.gentoo.org/

4

2. Distributed tallying

A key principle of our protocol is distributing the tallying task among
multiple independent talliers. This distribution is supported by secret shar-
ing [44] and secure multiparty computation (MPC) [50]. In Section 2.1 we
give a brief recap of secret sharing. Then, in Section 2.2 we describe the
distributed tallying on which our protocol is based.

Our protocol utilizes MPC sub-protocols that perform secure computa-
tions over secret shares. We treat those sub-protocols as black boxes. We
describe their inputs and outputs in Section 2.2. Readers seeking a deeper
understanding of these MPC components may refer to Appendix A.

2.1. Secret sharing

Secret sharing schemes [44] enable distributing a secret s among a set
of parties, T = {T1, . . . , TD}. Each party, Td, d ∈ [D] := {1, . . . , D}, is
given a random value sd, called a share, that relates to the secret s. Those
shares satisfy the following two conditions: (a) s can be reconstructed only by
combining the shares given to specific authorized subsets of parties, and (b)
shares belonging to unauthorized subsets of parties reveal zero information
on s. In threshold secret sharing there is some threshold D′ ≤ D and then the
authorized subsets are those of size at least D′. Such secret sharing schemes
are called D′-out-of-D.

Shamir’s D′-out-of-D secret sharing scheme operates over a finite field Zp,
where p > D is a prime sufficiently large so that all possible secrets may be
represented in Zp. It has two procedures: Share and Reconstruct:

• ShareD′,D(x). The procedure samples a uniformly random polynomial
g(·) over Zp, of degree at most D′−1, where the free coefficient is the secret s.
That is, g(x) = s+ a1x+ a2x

2 + . . .+ aD′−1x
D′−1, where aj, 1 ≤ j ≤ D′ − 1,

are selected independently and uniformly at random from Zp. The procedure
outputs D values, sd = g(d), d ∈ [D], where sd is the share given to the dth
party, Td, d ∈ [D].

• ReconstructD′(s1, . . . , sD). The procedure is given any selection of D′

shares out of {s1, . . . , sD}; it then interpolates a polynomial g(·) of degree at
most D′ − 1 using the given point values, and it outputs s = g(0). Clearly,
any selection of D′ shares out of the D shares will yield the same polynomial
g(·) that was used to generate the shares, as D′ point values determine a
unique polynomial of degree at most D′−1. Hence, any selection of D′ shares
will issue the secret s. On the other hand, any selection of D′ − 1 shares

5

reveals nothing about the secret s (in the sense that every value in the field
remains equally probable to be the secret s).

2.2. Distributed tallying and secure computations over secret shares

Our protocol involves a set of parties, {T1, . . . , TD}, that are called talliers.
In the protocol, each voter creates shares of his2 private ballot and distributes
them to the D talliers. Since those ballots are matrices over Zp, as we
discuss in Section 3, the secret sharing is carried out for each matrix entry
independently.

We will use Shamir’s D′-out-of-D secret sharing with D′ := ⌊(D + 1)/2⌋
(namely, the value (D+1)/2 rounded down to the nearest integer). With that
setting, at least half of the talliers would need to collaborate in order to recover
the secret ballots. If the set of talliers is trusted to have an honest majority,
then such a betrayal scenario is impossible. Namely, if more than half of
the talliers are honest, in the sense that they would not attempt cheating,
then even if all other dishonest talliers collude in attempt to recover the
secret ballots from the shares that they hold, they will not be able to extract
any information on the ballots. Higher values of D (and consequently of
D′ := ⌊(D + 1)/2⌋) will imply greater security against coalitions of corrupted
talliers, but they will also imply higher costs.

The first task of the talliers upon receiving the shares of a voter’s ballot
matrix is to verify that those shares correspond to a legal ballot (see Section
3.2 where we explain what constitutes a legal ballot). Then, at the end of
the election period, the talliers need to compute the identity of the winning
candidates, as dictated by the rule. These tasks would be easy if the talliers
could use their shares in order to recover the ballots. However, they must
not do so, in order to protect the voters’ privacy. Instead, they must perform
these computations on the distributed shares, without revealing the shares
to each other. As we shall see later on, these computations boil down to the
four specific tasks that we proceed to describe.

Let x1, . . . , xL be L secrets in the underlying field Zp (L is any integer) and
assume that the talliers hold D′-out-of-D shares of each of those secrets. Then
the talliers can perform the following computational tasks without recovering
the secrets x1, . . . , xL or learning anything about them:

2For the sake of simplicity, we keep referring to parties by the pronoun “he”. In our
context, those parties may be voters, who are humans of any gender, or talliers, that are
typically (genderless) servers.

6

1. Evaluating arithmetic functions. If y = f(x1, . . . , xL), where f is
some public arithmetic function, compute D′-out-of-D shares of y.

2. Secure comparisons. If y = 1x1<x2 is the bit that equals 1 if x1 < x2

and 0 otherwise3, compute D′-out-of-D shares of y.

3. Testing positivity. If p > 2N (where N is the number of voters) and
x1 ∈ [−N,N], compute D′-out-of-D shares of the bit 1x1>0.

4. Testing equality to zero. If p > 2N and x1 ∈ [−N,N], compute
D′-out-of-D shares of the bit 1x1=0.

All those computational tasks can be carried out by secure multiparty
computation (MPC) [50] sub-protocols. We treat those computations as
black boxes. Namely, it is sufficient to understand what are their inputs and
outputs, as described above, but there is no need to understand their internal
operation. However, interested readers may refer to Appendix A for more
information on those computations.

3. A secure order-based voting protocol

In this section, we describe our method for securely computing the winners
in two order-based voting rules, Copeland and Maximin.4 We begin with
formal definitions in Section 3.1. Then, in Section 3.2, we characterize legal
ballot matrices for each of the two rules. Such a characterization is an essential
part of our method since the talliers need to verify, in an oblivious manner,
that each cast ballot is indeed legal, and does not hide a malicious attempt
to cheat or sabotage the elections. In other words, the talliers need to verify
the legality of each cast ballot only through its secret shares, i.e., without
getting access to the actual ballot. The characterization that we describe in
Section 3.2 will be used later on to perform such an oblivious validation.

3For any predicate Π, we denote by 1Π the bit that equals 1 if and only if (iff hereinafter)
the predicate Π holds.

4Our protocols are designed for scenarios in which it is required to issue just the identity
of the winners. In scenarios where more information is needed, such as a ranking of all
candidates, or even a score for each candidate, our protocols can easily output also that
additional information.

7

Then, in Section 3.3 we introduce our secure voting protocol. The protocol
description includes sub-protocols for validating the cast ballots and a sub-
protocol for computing the final election results from all legal ballots. The
validation sub-protocols are described in Sections 3.4 and 3.5. The sub-
protocols for computing the election results are described in Sections 3.6 and
3.7 for Copeland and Maximin rules, respectively.

We conclude this section with a discussion on how to set the size of the
underlying field in which all computations take place (Section 3.8), and a
discussion of the overall security of our protocol (Section 3.9).

3.1. Formal definitions

We consider a setting in which there are N voters, V = {V1, . . . , VN}, that
wish to hold an election over M candidates, C = {C1, . . . , CM}. The output
of the election is a ranking of C. We proceed to define the two order-based
rules for which we devise a secure MPC protocol in this section.
• Copeland. Define for each Vn a matrix Pn = (Pn(m,m′) : m,m′ ∈

[M]), where Pn(m,m′) = 1 if Cm is ranked higher than Cm′ in Vn’s ranking,
Pn(m,m′) = −1 if Cm is ranked lower than Cm′ , and all diagonal entries are
0. Then the sum matrix,

P =
N∑

n=1

Pn , (1)

induces the following score for each candidate:

w(m) := |{m′ ̸= m : P (m,m′) > 0}|+ α|{m′ ̸= m : P (m,m′) = 0}| . (2)

Namely, w(m) equals the number of candidates Cm′ that a majority of the
voters ranked lower than Cm, plus α times the number of candidates Cm′ who
broke even with Cm. The parameter α can be set to any rational number
between 0 and 1. The most common setting is α = 1

2
; the Copeland rule

with this setting of α is known as Copeland
1
2 [24].

• Maximin. Define the matrices Pn so that Pn(m,m′) = 1 if Cm is
ranked higher than Cm′ in Vn’s ranking, while Pn(m,m′) = 0 otherwise. As
in Copeland rule, we let P denote the sum of all ballot matrices, see Eq.
(1). Then P (m,m′) is the number of voters who preferred Cm over Cm′ . The
final score of Cm, m ∈ [M], is then set to w(m) := minm′ ̸=m P (m,m′).

In both these order-based rules, we shall refer hereinafter to the matrix
Pn as Vn’s ballot matrix, and to P as the aggregated ballot matrix.

8

3.2. Characterization of legal ballot matrices

Here, we characterize the ballot matrices in each of the two order-based
rules that we consider. Such a characterization will be used later on in the
secure voting protocol.

Theorem 1. An M ×M matrix Q is a valid ballot under the Copeland
rule iff it satisfies the following conditions:

1. Q(m,m′) ∈ {−1, 1} for all 1 ≤ m < m′ ≤M ;

2. Q(m,m) = 0 for all m ∈ [M];

3. Q(m′,m) +Q(m,m′) = 0 for all 1 ≤ m < m′ ≤M ;

4. If Qm :=
∑

m′∈[M] Q(m,m′) then Qm ̸= Qm′ for all 1 ≤ m < m′ ≤M .

Theorem 2. An M ×M matrix Q is a valid ballot under the Maximin rule
iff it satisfies the following conditions:

1. Q(m,m′) ∈ {0, 1} for all 1 ≤ m < m′ ≤M ;

2. Q(m,m) = 0 for all m ∈ [M];

3. Q(m′,m) +Q(m,m′) = 1 for all 1 ≤ m < m′ ≤M ;

4. If Qm :=
∑

m′∈[M] Q(m,m′) then Qm ̸= Qm′ for all 1 ≤ m < m′ ≤M .

Conditions 1-3 in both theorems are clear. As for condition 4, it states that
the pairwise relations that Q defines are consistent with a linear ordering of
the M candidates. As a counter-example, consider the following Copeland
ballot matrix over M = 3 candidates:

Q =

 0 1 −1
−1 0 1
1 −1 0

 .

It complies with conditions 1-3 in Theorem 1, but violates condition 4 since
Q1 = Q2 = Q3 = 0. Hence, it is an illegal matrix. Indeed, the matrix states
that C1 > C2 (since Q(1, 2) = 1), C2 > C3, and C3 > C1. Such cyclicity is
impossible in a linear ordering.

9

Proof of Theorem 1. Assume that the ordering of a voter over the set
of candidates C is (Cj1 , . . . , CjM) where j := (j1, . . . , jM) is some permutation
of [M]. Then the ballot matrix that such an ordering induces is

Q = (Q(m,m′))1≤m,m′≤M

where Q(m,m′) = 1 if m appears before m′ in the sequence j, Q(m,m′) = −1
if m appears after m′ in j, and Q(m,m) = 0 for all m ∈ [M]. Such a matrix
clearly satisfies conditions 1, 2 and 3 in the theorem. It also satisfies condition
4, as we proceed to show. Fix m ∈ [M] and let k ∈ [M] be the unique index
for which m = jk. Then the mth row in Q consists of exactly k − 1 entries
that equal −1, M − k entries that equal 1, and a single entry on the diagonal
that equals 0. Hence, Qm, which is the sum of entries in that row, equals
M +1− 2k. Clearly, all those values are distinct, since the mapping m 7→ k is
a bijection. That completes the first part of the proof: every legal Copeland
ballot matrix satisfies conditions 1-4.

Assume next that Q is an M ×M matrix that satisfies conditions 1-4.
Then for each m ∈ [M], the mth row in the matrix consists of a single 0
entry on the diagonal where all other entries are either 1 or −1. Assume that
the number of −1 entries in the row equals k(m)− 1, for some k(m) ∈ [M],
while the number of 1 entries equals M − k(m). Then the sum Qm of entries
in that row equals M + 1 − 2k(m). As, by condition 4, all Qm values are
distinct, then k(m) ̸= k(m′) when m ̸= m′. Stated otherwise, the sequence
k := (k(1), . . . , k(M)) is a permutation of [M]. Let j := (j1, . . . , jM) be the
inverse permutation of k; i.e., for each m ∈ [M], jk(m) = m. Then it is easy
to see that the matrix Q is the Copeland ballot matrix that corresponds to
the ordering j. That completes the second part of the proof: every matrix
that satisfies conditions 1-4 is a legal Copeland ballot matrix.

The proof of Theorem 2 is similar to that of Theorem 1 and thus omitted.

We conclude this section with the following observation. Let us define a
projection mapping Γ : ZM×M

p 7→ Z
M(M−1)/2
p , which takes an M ×M matrix

Q ∈ ZM×M
p and outputs its upper triangle,

Γ(Q) := (Q(m,m′) : 1 ≤ m < m′ ≤M) . (3)

Conditions 2 and 3 in Theorems 1 and 2 imply that every ballot matrix, Pn,
is fully determined by its upper triangle, Γ(Pn), in either of the two voting
rules that we consider.

10

3.3. The protocol

Here we present Protocol 1, a privacy-preserving implementation of the
Copeland and Maximin order-based rules. The protocol computes, in a
privacy-preserving manner, the winners in elections that are governed by
those rules. It has two phases. We begin with a bird’s-eye view of those two
phases, and afterward, we provide a more detailed explanation.

Phase 1 (Lines 1-8) is the voting phase. In that phase, each voter Vn,
n ∈ [N] := {1, . . . , N}, constructs his ballot matrix, Pn (Line 2), and then
creates and distributes to all talliers corresponding D′-out-of-D shares, with
D′ = ⌊(D+1)/2⌋, as described in Section 2.1 (Lines 3-7). Following that, the
talliers jointly verify the legality of the shared ballot (Line 8). Phase 2 of the
protocol (Lines 9-11) is carried out after the voting phase had ended. In that
second phase, the talliers perform an MPC sub-protocol on the distributed
shares in order to find the winning candidates, while remaining oblivious to
the actual ballots.

After constructing his ballot matrix in Line 2, voter Vn, n ∈ [N], samples
a random share-generating polynomial of degree D′ − 1 for each of the
M(M − 1)/2 entries in Γ(Pn), where Γ is the projection mapping defined in
Section 3.2 (Lines 3-5). Then, Vn sends each tallier Td his relevant share of
each of those entries, namely, the value of the corresponding share-generating
polynomial at x = d, d ∈ [D] (Lines 6-7).

In Line 8, the talliers engage in an MPC sub-protocol to verify the legality
of Vn’s ballot, without actually recovering that ballot. There are two validation
sub-protocols that need to be executed and we describe them in Sections 3.4
and 3.5. Ballots that are found to be illegal are discarded. (In such cases it
is possible to notify the voter that his ballot was rejected and allow him to
resubmit it.)

Phase 2 (Lines 9-11) takes place at the end of the voting period, after
the voters had cast their ballots. First (Lines 9-10), each of the talliers, Td,
d ∈ [D], computes his D′-out-of-D share, denoted Gd(m,m′), in the (m,m′)th
entry of the aggregated ballot matrix P , see Eq. (1), for all 1 ≤ m < m′ ≤M .
This computation follows from the linearity of the secret-sharing scheme.
Indeed, as gn,m,m′(d) is Td’s share of Pn(m,m′) in a D′-out-of-D Shamir’s
secret sharing, then Gd(m,m′) =

∑
n∈[N] gn,m,m′(d) is a D′-out-of-D Shamir’s

secret share of P (m,m′) =
∑

n∈[N] Pn(m,m′).
Then, in Line 11, the talliers engage in an MPC sub-protocol in order to

find the indices of the K winning candidates. How can the talliers do that

11

when none of them actually holds the matrix P ? We devote our discussion in
Sections 3.6 and 3.7 to that interesting computational challenge.

Protocol 1: A basic protocol for secure order-based voting

Input: A set of M candidates C; K ∈ [M]; a set of voters V.
1 forall Vn, n ∈ [N], do
2 Construct the ballot matrix, Pn, according to the selected

indexing of candidates and the voting rule
3 forall 1 ≤ m < m′ ≤M do
4 Select uniformly at random an,m,m′,j ∈ Zp, 1 ≤ j ≤ D′ − 1

5 Set gn,m,m′(x) = Pn(m,m′) +
∑D′−1

j=1 an,m,m′,jx
j

6 forall d ∈ [D] do
7 Send to Td the set {(n,m,m′, gn,m,m′(d)) : 1 ≤ m < m′ ≤M}
8 After all talliers receive their shares of Vn’s ballot, they engage in

an MPC sub-protocol to check its legality
9 forall Td, d ∈ [D] do

10 Set Gd(m,m′) =
∑

n∈[N] gn,m,m′(d), for all 1 ≤ m < m′ ≤M

11 T1, . . . , TD find the indices of the K winners and publish them
Output :The K winning candidates from C.

3.4. Verifying the legality of the cast ballots

Voters may attempt to cheat by submitting illegal ballots in order to
help their preferred candidate. For example, a dishonest voter may send
the talliers shares of the matrix cQ, where Q is his true ballot matrix and c
is an “inflating factor” greater than 1. If such a cheating attempt remains
undetected, then that voter would manage to multiply his vote by a factor of
c. The shares of the illegal “inflated” matrix are indistinguishable from the
shares of the legal ballot matrix (unless, of course, a majority of D′ talliers
collude and recover the ballot − a scenario that is impossible under our
assumption that the talliers have an honest majority). Hence, it is necessary
to devise a mechanism that would enable the talliers to check that the shares
they received from each of the voters correspond to a legal ballot matrix,
without actually recovering that matrix.

Malicious voters can sabotage the elections also in other manners. For
example, a voter may create a legal ballot matrix Q and then alter the sign of
some of the ±1 entries in the shared upper triangle Γ(Q), so that the resulting

12

matrix no longer corresponds to an ordering of the candidates. Even though
such a manipulated matrix cannot serve a dishonest voter in an attempt to
help a specific candidate, it still must be detected and discarded. Failing
to detect the illegality of such a ballot may result in an aggregated matrix
P that differs from the aggregated matrix P ′ that corresponds to the case
in which that ballot is rejected. In such a case, the set of winners that P
would determine may differ from that which P ′ determines. In summary,
it is essential to validate each of the cast ballots in order to prevent any
undesirable sabotaging of the elections.

In real-life electronic elections where voters typically cast their ballots on
certified computers in voting centers, the chances of hacking such computers
and tampering with the software that they run are small. However, for full-
proof security and as a countermeasure against dishonest voters that might
manage to hack the voting system, we proceed to describe an MPC solution
that enables the talliers to verify the legality of each ballot, even though those
ballots remain hidden from them. We note that in case a ballot is found to
be illegal, the talliers may reconstruct it (by means of interpolation from
the shares of D′ talliers) and use the recovered ballot as proof of the voter’s
dishonesty. The ability to construct such proofs, which could be used in legal
proceedings against dishonest voters, might deter voters from attempting
cheating in the first place.

We proceed to explain how the talliers can verify the legality of the cast
ballots in each of the two order-based rules. That validation is based on
the characterizations of legal ballots as provided in Theorems 1 and 2 for
Copeland and Maximin, respectively. Note that the talliers need only to
verify conditions 1 and 4 (in either Theorem 1 or 2); condition 2 needs no
verification since the voters do not distribute shares of the diagonal entries,
as those entries are known to be zero; and condition 3 needs no verification
since the voters distribute shares only in the upper triangle and then the
talliers use condition 3 in order to infer the lower triangle from the shared
upper triangle.

3.4.1. Verifying condition 1

Consider the shares that a voter distributed in Γ(Q), where Q is his
ballot matrix. The talliers need to verify that each entry in the shared
Γ(Q) is either 1 or −1 in Copeland, or either 1 or 0 in Maximin. The
verification is performed independently on each of the M(M − 1)/2 entries of
the shared upper triangle. A shared scalar x is in {−1, 1} (resp. in {0, 1}) iff

13

(x+1) ·(x−1) = 0 (resp. x ·(x−1) = 0). Hence, the talliers use their shares of
x in order to compute the product (x+1) · (x−1) for Copeland or x · (x−1)
for Maximin, using the procedure for evaluating arithmetic functions (as
described in Section 2.2 and further discussed in Section Appendix A.1 in
the Appendix). If the computed results are zero for all M(M − 1)/2 entries
of Γ(Q), then Γ(Q) satisfies condition 1 in Theorem 1 (Copeland) or in
Theorem 2 (Maximin). If, on the other hand, at least one of the results is
nonzero, then the ballot will be rejected.

3.4.2. Verifying condition 4

As the talliers received D′-out-of-D shares of each entry in Γ(Q), they can
compute D′-out-of-D shares of the corresponding row sums, Qm, m ∈ [M], as
we proceed to show. In Copeland, conditions 2 and 3 in Theorem 1 imply
that

Qm =
∑

m′∈[M]

Q(m,m′) =
∑
m′>m

Q(m,m′)−
∑
m′<m

Q(m′,m) . (4)

Since the talliers hold shares of Q(m′,m) for all 1 ≤ m′ < m ≤ M , they
can use Eq. (4) and the linearity of secret sharing to compute shares of Qm,
m ∈ [M]. In Maximin, on the other hand, conditions 2 and 3 in Theorem 2
imply that

Qm =
∑
m′>m

Q(m,m′)−
∑
m′<m

Q(m′,m) + (m− 1) . (5)

Here too, the linearity of secret sharing and the relation in Eq. (5) enable
the talliers to compute shares of Qm, m ∈ [M], also in the case of Maximin.

Now, it is necessary to verify that all M values Qm, m ∈ [M], are distinct.
That condition can be verified by computing the product

F (Q) :=
∏

1≤m′<m≤M

(Qm −Qm′) . (6)

Condition 4, in both rules, holds iff F (Q) ̸= 0. Hence, the talliers, who hold
shares of Qm, m ∈ [M], may compute F (Q) and then accept the ballot iff
F (Q) ̸= 0.

3.4.3. Privacy

A natural question that arises is whether the above described validation
process poses a risk to the privacy of the voters. In other words, a voter that

14

casts a legal ballot wants to be ascertained that the validation process only
reveals that the ballot is legal, while all other information is kept hidden from
the talliers. We proceed to examine that question.

The procedure for verifying condition 1 in Theorems 1 and 2 offers perfect
privacy for honest voters. If the ballot Q is legal then all computed values
will be zero. Hence, apart from the legality of the ballot, the talliers will not
learn anything about the content of the ballot.

The procedure for verifying condition 4 in Theorems 1 and 2 offers almost
perfect privacy, in the following sense. If Q is a valid ballot in Copeland,
then the ordered tuple (Q1, . . . , QM) is a permutation of the ordered tuple
(−M + 1,−M + 3, . . . ,M − 3,M − 1). This statement follows from the proof
of condition 4 in Theorem 1. Hence, as can be readily verified, if Q is a legal
ballot then the value of F (Q), Eq. (6), which the talliers compute in the
validation procedure, equals

F (Q) = ±2(
M
2) ·

∏
1≤m′<m≤M

(m−m′) , (7)

where the sign of the product in Eq. (7) is determined by the signature of
(Q1, . . . , QM) when viewed as a permutation of the ordered tuple (−M +
1,−M + 3, . . . ,M − 3,M − 1). Hence, since a ballot in Copeland describes
some ordering (permutation) of the candidates, the talliers will be able to infer
the signature of that permutation, but nothing beyond that. To eliminate
even that negligible leakage of information, the talliers will simply compute
F (Q)2 instead of F (Q).

Similarly, the procedure for verifying condition 4 in Theorem 2, for Max-
imin, is also privacy-preserving in the same manner. Indeed, in the case of
Maximin, (Q1, . . . , QM) is a permutation of the ordered tuple (0, 1, . . . ,M −
2,M − 1), and, therefore,

F (Q) = ±
∏

1≤m′<m≤M

(m−m′) ,

where the sign of the above product is determined by the signature of
(Q1, . . . , QM) as a permutation of (0, 1, . . . ,M − 2,M − 1). Here too, the
talliers will recover F (Q)2 instead of F (Q) to ensure perfect privacy.

3.5. Verifying the legality of the secret sharing

A malicious voter V may attempt to sabotage the election by distributing
to the D talliers shares that do not correspond to a polynomial of degree D′−1.

15

Namely, if {s1, . . . , sD} are the shares that V distributed to T1, . . . , TD in one
of the entries in his ballot matrix, it is possible that there is no polynomial
g of degree (up to) D′ − 1 such that g(d) = sd for all d ∈ [D]. By carefully
selecting those shares, they may still pass the verification tests as described
in Section 3.4 with some non-negligible probability, and then they would be
integrated in the final computation of the winners. Since such shares do not
correspond to a legal vote, they may sabotage the final computation of the
winners (as we describe later on in Sections 3.6 and 3.7). To prevent such
an attack, we explain herein how the talliers may detect it without learning
anything on the submitted ballot (beyond the mere legality of the secret
sharing that was applied to it).

Sub-protocol 2 performs the desired testing. The talliers apply it on
the secret shares {s1, . . . , sD} that they had received in any of the entries
s = Q(m′,m) in an incoming ballot matrix Q.

First, each tallier Td, d ∈ [D], produces a random number rd and dis-
tributes to all talliers D′-out-of-D shares of it (Lines 1-3). Then, each tallier
Td adds to his share, sd, the shares received from all talliers in the random
numbers that they had produced, and broadcasts the result, denoted ŝd (Lines
4-6). The talliers proceed to find, by means of interpolation, a polynomial f
that satisfies f(d) = ŝd for all d ∈ [D] (Line 7). If the degree of the polynomial
is D′ − 1 or less, the set of values {s1, . . . , sD} constitute a legal D′-out-of-D
sharing in some (still unknown) secret s ∈ Zp; otherwise, it is not (Lines
8-11).

Lemma 3. Sub-protocol 2 is correct and fully preserves the voter’s privacy.

Proof. Assume that V is honest. Then for each entry s = Q(m′,m) in his
ballot matrix there exists a polynomial g of degree at most D′ − 1 such that
sd = g(d), d ∈ [D]. Define

G := g +
∑
j∈[D]

gj , (8)

where gj , j ∈ [D], is the polynomial of degreeD′−1 that Tj used for generating
the secret shares of its random value rj (Line 3 in Sub-protocol 2). Then

G(d) = g(d) +
∑
j∈[D]

gj(d) = sd +
∑
j∈[D]

rj,d = ŝd , d ∈ [D] . (9)

Hence, the interpolating polynomial f that the talliers compute in Line 7
coincides with G. As G is a sum of polynomials of degree D′− 1 at most, the

16

Sub-Protocol 2: Verifying that the shares distributed in some scalar
secret constitute a legal D′-out-of-D sharing

Input: Td, d ∈ [D], has sd, a supposedly D′-out-of-D share in some
secret s ∈ Zp.

1 forall d ∈ [D] do
2 Td produces a random rd ∈ Zp

3 Td distributes to all talliers D′-out-of-D shares of rd, denoted
rd,1, . . . , rd,D

4 forall d ∈ [D] do
5 Td computes ŝd = sd +

∑
j∈[D] rj,d

6 Td broadcasts ŝd
7 All talliers compute a polynomial f of degree up to D − 1 such that

f(d) = ŝd, d ∈ [D]
8 if deg f ≤ D′ − 1 then
9 Output ”A legal D′-out-of-D sharing”

10 else
11 Output ”An illegal D′-out-of-D sharing”

Output :The legality of the secret sharing operation.

validation in Lines 8-9 will pass successfully. In that case, the talliers would
learn G(0) = g(0) +

∑
j∈[D] rj. Here, g(0) is the secret entry in V ’s ballot

matrix and rj is the secret random value that Tj had chosen, j ∈ [D]. Hence,
G(0) reveals no information on g(0). Since all other coefficients in G are
also random numbers that are not related to g(0), this validation procedure
provides perfect privacy for the voter.

Assume next that V had distributed illegal shares for one of his ballot
matrix entries. Namely, V had distributed shares {s1, . . . , sD} such that the
minimum-degree polynomial g that satisfies g(d) = sd for all d ∈ [D] is of
degree t > D′ − 1. In that case, the polynomial f that the talliers compute
in Line 7 would be f = g +

∑
j∈[D] gj. Since the degree of that polynomial is

t > D′ − 1, they would reject the ballot (Lines 10-11). Hence, the verification
procedure is correct and provides perfect privacy.

When the talliers receive shares in some ballot matrix, they must first
execute Sub-protocol 2 for each of its entries, and only if that validation
passes successfully they will proceed to perform the validation described in
Section 3.4.

17

Finally, we note that Lines 1-3 in Sub-protocol 2 can be executed even
before the election period starts. Namely, once the number of registered
voters, N , and the number of candidates, M , are determined, the talliers
can produce NM(M − 1)/2 random values and distribute shares of them to
be used later on in masking the M(M − 1)/2 entries in each voter’s ballot
matrix.

3.6. An MPC computation of the winners in the Copeland rule

The parameter α in Eq. (2) is always a rational number; typical settings
of α are 0, 1, or 1

2
[24]. Assume that α = s

t
for some integers s and t. Then

t ·w(m) = t ·
∑

m′∈[M]\{m}

1P (m,m′)>0 + s ·
∑

m′∈[M]\{m}

1P (m,m′)=0 . (10)

The expression in Eq. (10) involves all entries in P outside the diagonal.
However, the talliers hold D′-out-of-D shares, denoted Gd(m,m′), d ∈ [D], in
P (m,m′) only for entries above the diagonal, 1 ≤ m < m′ ≤ M (see Lines
9-10 in Protocol 1). Hence, we first translate Eq. (10) into an equivalent
expression that involves only entries in P above the diagonal. Condition 3 in
Theorem 1, together with Eq. (1), imply that P (m′,m) = −P (m,m′). Hence,
for all m′ < m, we can replace 1P (m,m′)=0 with 1P (m′,m)=0, while 1P (m,m′)>0

can be replaced with 1−P (m′,m)>0. Hence,

t ·w(m) =

t ·

{ ∑
m′>m

1P (m,m′)>0 +
∑
m′<m

1−P (m′,m)>0

}
+

s ·

{ ∑
m′>m

1P (m,m′)=0 +
∑
m′<m

1P (m′,m)=0

} (11)

Eq. (11) expresses the score of candidate Cm, re-scaled by a factor of t, only
by entries in P above the diagonal, in which the talliers hold D′-out-of-D
secret shares.

In view of the above, the talliers may begin by computing secret shares of
the bits of positivity in the first sum on the right-hand side of Eq. (11), by
using the MPC sub-protocol described in Section Appendix A.3. As for the
bits of equality to zero in the second sum on the right-hand side of Eq. (11),
the talliers can compute secret shares of them using the MPC sub-protocol

18

described in Section Appendix A.4. As the value of t · w(m) is a linear
combination of those bits, the talliers can then use the secret shares of those
bits and Eq. (11) in order to get secret shares of t · w(m), for each of the
candidates, Cm, m ∈ [M].

Next, they perform secure comparisons among the values tw(m), m ∈ [M],
in order to find the K candidates with the highest scores. To do that, they
need to perform M − 1 secure comparisons (as described in Section 2.2 and
then further discussed in Section Appendix A.2) in order to find the candidate
with the highest score, M − 2 additional comparisons to find the next one,
and so forth down to M −K comparisons in order to find the Kth winning
candidate. Namely, the overall number of comparisons in this final stage is

M−1∑
m=M−K

m = K ·
(
M − K + 1

2

)
.

The above number is bounded by M(M − 1)/2 for all K < M . Once this
computational task is concluded, the talliers publish the indices of the K
winners (Line 11 in Protocol 1)).

We summarize the above described computation in Sub-protocol 3, which
is an implementation of Line 11 in Protocol 1. It assumes that the talliers hold
D′-out-of-D secret shares of P (m,m′) for all 1 ≤ m < m′ ≤M . Indeed, that
computation has already taken place in Lines 9-10 of Protocol 1. Sub-protocol
3 starts with a computation of D′-out-of-D shares of all of the positivity bits
and equality to zero bits that relate to the entries above the diagonal in P
(Lines 1-4). Then, in Lines 5-7, the talliers use those shares in order to obtain
D′-out-of-D shares of t ·w(m) for each of the candidates, using Eq. (11); the
D′-out-of-D shares of t ·w(m) are denoted {wd(m) : d ∈ [D]}. Finally, using
the secure comparison sub-protocol, they find the K winners (Lines 8-10).

3.6.1. Privacy

The talliers hold D′-out-of-D shares of each of the ballot matrices, Pn,
n ∈ [N], as well as in the aggregated ballot matrix P . Under our assumption
of honest majority, and our setting of D′ = ⌊(D + 1)/2⌋, the talliers cannot
recover any entry in any of the ballot matrices nor in the aggregated ballot
matrix. In computing the final election results, they input the shares that
they hold into the secure comparison sub-protocol, the positivity testing
sub-protocol, or the sub-protocol that tests equality to zero (Sections Ap-
pendix A.2–Appendix A.4). The secure comparison sub-protocol is perfectly

19

Sub-Protocol 3: Determining the winners in Copeland rule

Input: Td, d ∈ [D], has Gd(m,m′) (a share of P (m,m′)) for all
1 ≤ m < m′ ≤M .

1 forall 1 ≤ m < m′ ≤M do
2 The talliers apply the positivity sub-protocol to translate

{Gd(m,m′) : d ∈ [D]} into shares {σ+
d (m,m′) : d ∈ [D]} in

1P (m,m′)>0;
3 The talliers apply the positivity sub-protocol to translate

{Gd(m,m′) : d ∈ [D]} into shares {σ−
d (m,m′) : d ∈ [D]} in

1−P (m,m′)>0;
4 The talliers apply the equality to zero sub-protocol to translate

{Gd(m,m′) : d ∈ [D]} into shares {σ0
d(m,m′) : d ∈ [D]} in

1P (m,m′)=0;

5 forall d ∈ [D] do
6 forall m ∈ [M] do
7 Td computes

wd(m) = t ·
{∑

m′>m σ+
d (m,m′) +

∑
m′<m σ−

d (m
′,m)

}
+

s ·
{∑

m′>m σ0
d(m,m′) +

∑
m′<m σ0

d(m
′,m)

}
;

8 forall k ∈ [K] := {1, . . . , K} do
9 The talliers perform M − k invocations of the secure comparison

sub-protocol over the M − k + 1 candidates in C in order to find
the kth elected candidate;

10 The talliers output the candidate that was found and remove him
from C;

Output :The K winning candidates from C.

secure, as was shown in [39]. The positivity testing sub-protocol that we
presented here is just an implementation of one component from the secure
comparison sub-protocol, hence it is also perfectly secure. Finally, the testing
of equality to zero invokes the protocol for evaluating arithmetic functions
of [19] and [14], which was shown there to be secure. Hence, Sub-protocol 3
is perfectly secure.

3.7. An MPC computation of the winners in the Maximin rule

Fixing m ∈ [M], the talliers need first to find the index m′ ̸= m which
minimizes P (m,m′) (where P is, as before, the sum of all ballot matrices, see
Eq. (1)). Once m′ is found then w(m) = P (m,m′). To do that (finding a

20

minimum among M − 1 values), the talliers need to perform M − 2 secure
comparisons. That means an overall number of M(M−2) secure comparisons
for the first stage in the talliers’ computation of the final results (namely, the
computation of the scores for all candidates under the Maximin rule). The
second stage is just like in Copeland, namely, finding the indices of the K
candidates with the highest w scores. As analyzed earlier, that task requires
an invocation of the secure comparison sub-protocol at most M(M − 1)/2
times. Namely, the determination of the winners in the case of Maximin
requires performing the comparison sub-protocol less than 1.5M2 times.

The above described computation maintains the privacy of the voters, as
argued in Section 3.6.1.

3.8. A lower bound on the field’s size

Here we comment on the requirements of our protocol regarding the size
p of the underlying field Zp.

The prime p should be selected to be greater than the following four
values:

(i) D, as that is the number of talliers (see Section 2.1).
(ii) 2N , since the field should be large enough to hold the entries of the

sum P of all ballot matrices, Eq. (1), and the entries of that matrix are
confined to the range [−N,N].

(iii) max{t, s} · (M − 1), since that is the upper bound on t ·w(m), see
Eq. (10), which is secret-shared among the talliers.

(iv) 2(M − 1), since in validating a given ballot matrix Q, the talliers need
to test the equality to zero of F (Q), see Eq. (6). As F (Q) is a product of the
differences Qm −Qm′ , and each of those differences can be at most 2(M − 1)
(in Copeland) or M − 1 (in Maximin), it is necessary to set p to be larger
than that maximal value.

Hence, in summary, p should be selected to be larger than each of the
above four values. Since D (number of talliers), M (number of candidates),
and s and t (the numerator and denominator in the coefficient α in Copeland
rule, Eq. (2)), are typically much smaller than N , the number of voters, the
essential lower bound on p is 2N . In our evaluation, we selected p = 231 − 1,
which is sufficiently large for any conceivable election scenario.

3.9. The security of the protocol

An important goal of secure voting is to provide anonymity; namely, it
should be impossible to connect a ballot to the voter who cast it. Protocol 1

21

achieves that goal, and beyond. Indeed, each cast ballot is distributed into
D′-out-of-D random shares and then each share is designated to a unique
tallier. Under the honest majority assumption, the voters’ privacy is perfectly
preserved. Namely, unless at least D′ ≥ D/2 talliers betray the trust vested
in them and collude, the ballots remain secret. Therefore, not only that a
ballot cannot be connected to a voter, even the content of the ballots is never
exposed, and not even the aggregated ballot matrix. The only information
that anyone learns at the end of Protocol 1’s execution is the final election
results. This is a level of privacy that exceeds mere anonymity.

A scenario in which at least half of the talliers collude is highly improbable,
and its probability decreases as D increases. Ideally, the talliers would be
parties that enjoy a high level of trust within the organization or state in
which the elections take place, and whose business is based on such trust.
Betraying that trust may incur devastating consequences for the talliers.
Hence, even if D is set to a low value such as D = 5 or even D = 3, the
probability of a privacy breach (namely, that D′ = ⌊(D+1)/2⌋ talliers choose
to betray the trust vested in them) would be small.

Instead of using a D′-out-of-D threshold secret sharing, we could use an
additive “All or Nothing” secret sharing scheme, in which all D shares of
all D talliers are needed in order to reconstruct the shared secrets and use
suitable MPC protocols for multiplication and comparison. The necessary
cryptographic machinery for such D-out-of-D secret sharing was already
developed in [4], so our protocols can be readily converted to such a setting.
That approach would result in higher security since the privacy of the voters
would be jeopardized only if all D talliers betray the trust vested in them
and not just D′ out of them. However, such a scheme is not robust: if even a
single tallier is attacked or becomes dysfunctional for whatever reason, then
all ballots would be lost. Such a risk is utterly unacceptable in voting systems.
Our protocols, on the other hand, can withstand the loss of D −D′ talliers.

In view of the above discussion, the tradeoff in setting the number of
talliersD is clear: higher values ofD provide higher security since more talliers
would need to be corrupted in order to breach the system’s security. Higher
values of D also provide higher robustness, since the system can withstand
higher numbers of tallier failures. However, increasing D has its costs: more
independent and reputable talliers are needed, and the computational costs
of our protocols increase, albeit modestly (see Section 5.4).

We would like to stress that our protocols focus on securing the compu-
tation of the election results. Needless to say that those protocols must be

22

integrated into a comprehensive system that takes care of other aspects of
voting systems. For example, it is essential to guarantee that only registered
voters can vote and that each one can vote just once. It is possible to ensure
such conditions by standard means. Another requirement is the need to
prevent attacks of malicious adversaries. In the context of our protocols, an
adversary may eavesdrop on the communication link between some voter Vn

and at least D′ of the talliers, and intercept the messages that Vn sends to
them (in Protocol 1’s Line 7) in order to recover Vn’s ballot. That adversary
may also replace Vn’s original messages to all D talliers with other messages
(say, ones that carry shares of a ballot that reflects the adversary’s preferences).
Such attacks can be easily thwarted by requiring each party (a voter or a
tallier) to have a certified public key, encrypt each message that he sends out
using the receiver’s public key and then sign it using his own private key; also,
when receiving messages, each party must first verify them using the public
key of the sender and then send a suitable message of confirmation to the
sender. Namely, each message that a voter Vn sends to a tallier Td in Line 7
of Protocol 1 should be signed with Vn’s private key and then encrypted by
Td’s public key; and Td must acknowledge its receipt and verification.

4. Order-based voting with ties

So far we concentrated on the case in which the voters submit a strict
ordering of the candidates, see Section 3.1. However, order-based rules allow
voters to set ties between candidates. For example, if there are six candidates,
C1, . . . , C6, a voter may identify C1 as her most preferred candidate, C2, C3, C4

as her second-tier candidates, where she is indifferent between them, and
C5, C6 as her least preferred candidates. In that case, her ballot matrix would
be

Q =

0 1 1 1 1 1
−1 0 0 0 1 1
−1 0 0 0 1 1
−1 0 0 0 1 1
−1 −1 −1 −1 0 0
−1 −1 −1 −1 0 0

 . (12)

The aggregation of ballots and the determination of the election results is
carried out as described earlier: the score w(m) for each candidate Cm is
computed by Eqs. (1)+(2), and then the winners are those with the highest
scores.

23

The challenge that allowing ties brings about is in the characterization
of legal ballot matrices and in the design of an MPC protocol for securely
verifying the legality of a voter’s shared ballot matrix (in the sense that it
corresponds to an ordering of the candidates with possible ties). That is
what we do in Sections 4.1 and 4.2 below. Our focus in those sections is the
Copeland rule. The Maximin rule with ties is discussed in Section 4.3.

4.1. Characterizing legal ballot matrices when ties are allowed

Theorem 4 characterizes legal ballot matrices in the Copeland rule when
ties are allowed. It is a generalization of Theorem 1.

Theorem 4. An M ×M matrix Q is a valid ballot under the Copeland
rule with ties iff it satisfies the following conditions:

1. Q(m,m′) ∈ {−1, 0, 1} for all 1 ≤ m < m′ ≤M ;

2. Q(m,m) = 0 for all m ∈ [M];

3. Q(m′,m) +Q(m,m′) = 0 for all 1 ≤ m < m′ ≤M ;

4. If Q(m′,m) = 0 then Q(m, ·) = Q(m′, ·).

5. For all m ∈ [M] set ηm = 1 if Q(m′,m) ̸= 0 for all m′ < m, and ηm = 0
otherwise. Define Qm :=

∑
m′∈[M] ηm′ ·Q(m,m′). Then Qm′ ̸= Qm for

all 1 ≤ m′ < m ≤M such that ηm′ = ηm = 1.

The differences between Theorem 1 (no ties) and Theorem 4 (ties allowed)
are in the first condition (where in the latter theorem zero entries are allowed
also in non-diagonal entries), condition 4 (that holds trivially in Theorem 1, as
there are no zeroes outside the diagonal), and in condition 5 that generalizes
condition 4 in Theorem 1 (because when there are no ties we have ηm = 1 for
all m ∈ [M]).

Before proving the theorem, we discuss conditions 4 and 5 and exemplify
their necessity. The rational behind condition 4 is as follows. If Q(m,m′) = 0
then candidates Cm and Cm′ are equivalent for the voter, and hence their
relative ranking with respect to each of the other candidates (as manifested by
their corresponding rows in the matrix) must be the same. As for condition
5, let us first define the relation ∼ on [M] as follows: m ∼ m′ iff Cm and Cm′

are in a tie (namely, Q(m′,m) = 0). That is obviously an equivalence relation.
Let [M]/ ∼ denote the quotient set, and k := |[M]/ ∼ | be the number of

24

equivalence classes, i.e., the number of distinct tiers in the ranking. In what
follows we represent each equivalence class by the minimal index in it. Then
condition 5 considers the reduced k × k matrix over the set of representative
indices, and it restates condition 4 from Theorem 1, namely, that all row
sums in that reduced (and tie-free) matrix must be distinct. For the sake
of illustration, the ballot matrix Q in Eq. (12) induces k = 3 equivalence
classes, [M]/ ∼= {{1}, {2, 3, 4}, {5, 6}}. The representative indices are 1, 2, 5
and the reduced 3× 3 matrix is the sub-matrix of Q that consists of its 1st,
2nd, and 5th rows and columns,

Q|1,2,5 =

 0 1 1
−1 0 1
−1 −1 0

 .

Indeed, the row sums in that reduced matrix are distinct.
Next, we give examples to matrices that comply with conditions 1-3 of

Theorem 4, but violate condition 4 or 5:

Q1 =

0 1 1 1
−1 0 0 1
−1 0 0 −1
−1 −1 1 0

 , Q2 =

0 1 −1 −1
−1 0 1 1
1 −1 0 0
1 −1 0 0

 .

Q1 violates condition 4: on one hand, Q1(2, 3) = Q1(3, 2) = 0, which means
that C2 and C3 are in a tie, but the corresponding rows differ, sinceQ1(2, 4) = 1
while Q1(3, 4) = −1. However, there can be no ranking of the candidates in
which C4 is ranked lower than C2 and higher than C3, while at the same time
C2 and C3 are in a tie. As for Q2, it does comply with condition 4: indeed,
there are two candidates in a tie, C3 and C4, and their corresponding rows
are equal. But Q2 violates condition 5: indeed, while η1 = η2 = η3 = 1 (and
η4 = 0) we have Q1 = Q2 = Q3 = 0, in contradiction with condition 5 that
requires those row sums to be distinct. That equality of the row sums is
the result of the circular (and hence illegal) ranking between the candidates:
C1 > C2 > C3 = C4 > C1.

We now proceed to prove Theorem 4.

Proof. Assume that Q is a legal Copeland ballot matrix with ties; namely,
it is a matrix that describes some given ranking over [M]. Then it clearly
satisfies conditions 1-3. As for condition 4, it merely states that two candidates

25

that are in a tie (Q(m′,m) = 0) must have the same relative ranking vis-a-vis
all candidates, hence it clearly holds. Finally, the row sums Qm in condition
5 are the row sums in the reduced ballot matrix over [M]/ ∼, where ∼ is as
defined earlier (m ∼ m′ if Cm and Cm′ are in a tie in the underlying ranking).
Since there are no ties over [M]/ ∼, those row sums must be distinct as
implied by Theorem 1.

Assume now that Q is an M ×M matrix that complies with conditions
1-5. We proceed to show that it induces a ranking over [M]. First, we say that
m ∼ m′, for m,m′ ∈ [M], if Q(m′,m) = 0. Clearly, that relation is reflexive
(condition 2), symmetric (condition 3), and transitive (as implied by condition
4). Hence, it is an equivalence. Let us represent each equivalence class by the
minimal index in it, and let [M]/ ∼ denote the set of representative indices
and k := |[M]/ ∼ | denote their number. Then ηm = 1 iff m ∈ [M]/ ∼. Let
Q′ be the reduced k × k matrix that is obtained from Q by retaining only
rows and columns of indices m ∈ [M]/ ∼. Then Q′ is a matrix that complies
with all four conditions in Theorem 1 (where condition 4 in Theorem 1 follows
from condition 5 herein). Hence, Q′ induces a ranking (with no ties) over
[M]/ ∼. It follows that Q induces a ranking with ties over [M] by adding
each index in [M] \ ([M]/ ∼) to the ranking over [M]/ ∼, next to the index
in [M]/ ∼ that is equivalent to it, with a tie between them. The resulting
ranking with ties over [M] is consistent with Q.

4.2. Verifying the legality of the cast ballots when ties are allowed

Recall that if a voter’s ballot matrix is Q then it suffices to distribute
shares only in its upper triangle Γ(Q), Eq. (3), see Section 3.2. Herein we
explain how to verify the conditions of Theorem 4. As before, conditions 2
and 3 do not need to be verified since the talliers complete Γ(Q) into a full
ballot matrix Q in accordance with those anti-symmetry conditions.

The talliers can verify condition 1 if for all 1 ≤ m′ < m ≤M they compute
shares of

x := Q(m′,m) · (Q(m′,m) + 1) · (Q(m′,m)− 1) ,

using the techniques described in Section Appendix A.1, recover x and verify
that x = 0. If all those M(M − 1)/2 tests pass successfully then Q complies
with condition 1 and no other information on Q is revealed.

For the verification of conditions 4 and 5 the talliers compute for each
Q(m′,m), 1 ≤ m′ < m ≤ M , shares of ξm′,m := 1Q(m′,m)=0, where the latter
computation is carried out as described in Section Appendix A.4. After that

26

preliminary computation, the talliers compute shares of

πm′,m,k := ξm′,m · (Q(m′, k)−Q(m, k)) , 1 ≤ m′ < m ≤M , k ∈ [M] ,

as described in Section Appendix A.1, and then recover πm′,m,k. Condition 4
is verified iff

πm′,m,k = 0 , 1 ≤ m′ < m ≤M , k ∈ [M] . (13)

Indeed, πm′,m,k = 0 iff either ξm′,m = 0 or Q(m′, k) = Q(m, k) for all k ∈ [M].
Since ξm′,m = 0 iff Q(m′,m) ̸= 0, Eq. (13) is equivalent to condition 4 in
Theorem 4. Hence, a matrix Q passes that test iff it complies with condition
4, and if it does, no further information on it is leaked as a result of that
verification. Note that the talliers do not hold shares of Q(k,m) whenever
k ≥ m. Hence, in such cases the talliers rely on conditions 2 and 3 and make
the following substitutions: when k = m they set Q(k,m) = 0, and when
k > m they set Q(k,m) = −Q(m, k).

Finally, we turn to the verification of condition 5. Here, the talliers
compute for all m ∈ [M] shares of

ηm :=
m−1∏
m′=1

(1− ξm′,m) . (14)

It can be easily verified that ηm = 1 if Q(m′,m) ̸= 0 for all 1 ≤ m′ < m,
while ηm = 0 otherwise. Hence, the indicator variables ηm as defined above
equal the indicator variables ηm that are defined in Theorem 4’s condition
5. The computation in Eq. (14) is carried out by the method described in
Section Appendix A.1. Next, the talliers compute shares of

Qm =
∑

m′∈[M]

ηm′ ·Q(m,m′) , (15)

where, as before, we recall that Q(m,m) = 0 and when m′ > m we rely
on the equality Q(m′,m) = −Q(m,m′). Condition 5 requires that for all
1 ≤ m′ < m ≤ M , whenever ηmηm′ ̸= 0 then also Qm′ − Qm ̸= 0. That
condition can be rephrased as follows:

γm′,m := (1− ηmηm′) + ηmηm′ · (Qm′ −Qm) ̸= 0 , 1 ≤ m′ < m ≤M . (16)

Indeed, if ηm = 0 or ηm′ = 0, a case in which condition 5 is void, then the first
addend in Eq. (16) equals 1 while the second addend is zero, so γm′,m = 1.

27

If, on the other hand, ηmηm′ = 1, then condition 5 requires the difference
Qm′ − Qm to be nonzero, and since in that case γm′,m = Qm′ − Qm, the
inequalities in Eq. (16) are indeed equivalent to condition 5.

The talliers could compute shares of γm′,m, using the techniques described
in Section Appendix A.1, and then recover γm′,m and check that it is nonzero.
Alas, the value of γm′,m will reveal information on the ballot matrix. To
refrain from such leakage of information, the talliers produce offline (even
prior to the election period) a large pool of shared nonzero random values from
the underlying field Zp. Then, for each value γm′,m they would pull a fresh
nonzero random value r from that pool and then recover rγm′,m, using the
shares that they had computed in γm′,m, the shares that they had computed
offline in r, and the multiplication procedure from Section Appendix A.1.
Since rγm′,m ̸= 0 iff γm′,m ≠ 0, the talliers can verify condition 5 without
learning any further information on Q.

We summarize the verification procedure in Sub-protocol 4. In Lines 1-5
the talliers complete Γ(Q) into a full ballot matrix Q, based on Q’s asymmetry.
In Lines 6-10 they verify condition 1; in Lines 11-17 they verify condition 4;
and in Lines 18-29 they verify condition 5. In any event of detecting that the
ballot is illegal, the sub-protocol outputs a message about that illegality and
aborts (Lines 10, 17, 29). If the sub-protocol reaches the end, it outputs a
message about the legality of the input ballot matrix and then terminates
(Line 30). Note that the computation in Line 25 is independent of the input
and can be carried out offline, even before the election period had started.

4.3. The Maximin rule with ties

As discussed in Section 3.1, the ballot matrix in Maximin consists of 0,1
entries, where the (m,m′)-th entry in the matrix equals 1 iff Cm is ranked
strictly higher than Cm′ in the voter’s ranking. Instead of formalizing a
characterization and designing a corresponding verification MPC protocol for
such matrices, we propose that also in Maximin rule, just like in Copeland,
the voters will submit a matrix of {−1, 0, 1}-entries that fully spells out their
ranking. The talliers can then verify the legality of that matrix by running
Sub-protocol 4. After the ballot matrix is verified to be legal, the talliers may
easily translate it to a Maximin ballot matrix of {0, 1}-entries, as described
in Section 3.1, by running the following computation on each of the matrix
entries, x = Q(m,m′), 1 ≤ m ̸= m′ ≤M :

x← x+ 1x+1=0 . (17)

28

The computation in Eq. (17) involves an invocation of the equality to zero
protocol of Section Appendix A.4. It is easy to see that the computation in
Eq. (17) substitutes (shares of) x = −1 with (shares of) x = 0, but leaves
(the shares of) x unchanged if x ̸= −1. After that update, the ballot matrix
(that was already verified to be a legal Copeland ballot matrix) will be a
legal Maximin matrix, consisting only of 0, 1 entries, and the aggregation of
all ballots and the computation of the election results will be as described in
Section 3.7.

5. An implementation of a secure order-based voting system

Our goal herein is to establish the practicality of our protocol and demon-
strate it in action. To that end, we had implemented a demo of a voting
system based on the protocols that we presented here for the Copeland and
Maximin voting rules. The full source code of the demo is open source and
is available on GitHub (https://github.com/arthurzam/SecureVoting). The
demo is available at https://securevoting.ddns.net/. Interested readers can
use it to define a new election (by setting all the necessary parameters) and
invite voters to cast their votes and then compute the final election results.

The system is implemented in Python. We chose that programming
language for ease of development and best cross-platform support. In addition,
it makes the code easier to read, verify, and modify as required.

In our system there are users (clients) and talliers (servers). A user can
be either an election manager, namely a party that initiates a new election
and defines its characteristics, or a voter in an election that was initiated and
is managed by another user. As for the talliers, even though our code can be
executed with any number of talliers, we focus in our demo on the case of
three talliers.

The demo uses docker and docker-compose to easily deploy on servers.
The deployment includes a nearly-static Web server (which supplies the user
interface), a PostgreSQL database (holding details on all currently defined
elections, either future ones, on-going elections, or complete elections, and on
all voters), and the tallier module. A high-level block diagram of the demo is
given in Figure 2. For the sake of simplicity, the figure illustrates only two
talliers; the structure of all talliers, and the communication between each
tallier and the client and between each pair of talliers is as shown in the figure
for Talliers 1 and 2.

29

https://github.com/arthurzam/SecureVoting
https://securevoting.ddns.net/

Sub-Protocol 4: Verifying the legality of a ballot matrix in
Copeland rule with ties
Input: Td, d ∈ [D], has Qd(m

′,m) (a share of Q(m′,m), where Q is a
ballot matrix of some voter) for all 1 ≤ m′ < m ≤M .

1 forall d ∈ [D] do
2 forall 1 ≤ m ≤M do
3 Td sets Qd(m,m)← 0
4 forall m < m′ ≤M do
5 Td sets Qd(m

′,m)← −Qd(m,m′)

6 forall 1 ≤ m′ < m ≤M do
7 Compute shares of x := Q(m′,m) · (Q(m′,m) + 1) · (Q(m′,m)− 1)
8 Recover x
9 if x ̸= 0 then

10 Output ”Illegal ballot” and Abort

11 forall 1 ≤ m′ < m ≤M do
12 Compute shares of ξm′,m := 1Q(m′,m)=0

13 forall 1 ≤ k ≤M do
14 Compute shares of πm′,m,k := ξm′,m · (Q(m′, k)−Q(m, k))
15 Recover πm′,m,k

16 if πm′,m,k ̸= 0 then
17 Output ”Illegal ballot” and Abort

18 forall 1 ≤ m ≤M do

19 Compute shares of ηm :=
∏m−1

m′=1(1− ξm′,m)
20 forall 1 ≤ m ≤M do

21 Compute shares of Qm :=
∑M

m′=1 ηm′ ·Q(m,m′)
22 forall 1 ≤ m′ < m ≤M do
23 Compute shares of ηmηm′

24 Compute shares of γm′,m := (1− ηmηm′) + ηmηm′ · (Qm′ −Qm)
25 Compute shares of a nonzero random r ∈ Zp

26 Compute shares of x := r · γm′,m

27 Recover x
28 if x = 0 then
29 Output ”The ballot is illegal” and Abort

30 Output ”The ballot is legal” and Terminate
Output :The legality of the input ballot matrix Q.

30

Tallier 1

Docker
Election Info

WebSocket
Server

Docker

PostgreSQL
DB

Tallier 2

Docker

WebSocket
Server

Docker

PostgreSQL
DB

TLS 1.3

Web Server & UI

Docker

HTTPS
Static
Content
Supplier

Ballot

Election Info

Ballot

Client
(inside browser)

Figure 2: A high-level block diagram of the demo’s system.

5.1. Web server and user interface

The Web server is implemented using the Flask and Jinja2 libraries, which
render nearly static Web pages that serve as the user interface for the demo.
Importantly, the Web server does not store any information or connect to
the PostgreSQL database, thus ensuring a stateless and lightweight design.
For real-world deployment, it is recommended to host the Web server on a
separate machine in order to mitigate potential security risks.

The client-side code is developed using HTML and JavaScript. It is
responsible for presenting to the voter the election form (through which the
voter can conveniently input her or his preferred ranking). After the voter
had submitted her vote, the client generates the corresponding ballot matrix,
computes the corresponding secret shares according to the protocol, and
distributes them to the talliers.

31

5.2. The tallier module

The tallier module is implemented using the websocket and asyncpg li-
braries. Communication between the user and any given tallier is done by an
encrypted TLS 1.3 WebSocket channel, for ensuring secure data transmission.
Users must register with all talliers, create an election, and submit their votes
through this interface.

The MPC computations are implemented using async functions, which
align with the natural structure of the protocol. This design closely mirrors
implementations in referenced research papers, making the codebase easier to
verify and extend.

To facilitate future development, a robust unit-testing setup has been
implemented. This setup enables developers to verify the correctness of
the implementation after modifications, and to streamline the development
process.

5.3. User’s usage flow

Upon entering the demo, new users are directed to a registration page,
in which they fill out a registration form by providing their email address
and full name. Consequently, a password will be sent to their email inbox,
ensuring secure account setup. After registration, users return to the main
page of the demo in which they can log in. The top bar on that page displays
the communication status with each of the talliers, for real-time feedback on
system connectivity.

Once logged in, users are directed to their dashboard, which displays all
the elections they are managing or participating in as voters. (For new users,
the list is empty.) From the dashboard, users can start a new election (for
which they will be the managers), vote in an ongoing election (in which they
are voters), and view the results of completed elections.

If a user wishes to start a new election, she must fill in an election creation
form, see Figure 3. In that form she will configure various election parameters,
including: election title, the voting rule (currently we implement two order-
based rules, Copeland and Maximin), the names of all candidates, the
desired number of winning candidates, and the emails of all eligible voters.
The list of voters’ emails can be provided either manually or by a CSV file in
which each row holds an email address of a single voter.

Upon the successful creation of a new election, the election manager is
redirected back to the dashboard. From there, the manager can start the

32

Figure 3: Election creation form

voting session for the election. By doing so, an email with election details
and a link for submitting the vote will be sent to all eligible voters.

Each voter, upon accessing the voting link, fills in her preferences, by
determining her ranking of the candidates (where ties are allowed), see Figure
4. The client translates that ranking to a corresponding ballot matrix and
then generates secret shares of its (above diagonal) entries and distributes

33

Figure 4: Voting page

them to the talliers. The talliers perform the proper validation checks, and if
the ballot is verified they inform the voter that they had successfully received
her ballot.

The election manager ends the election once the pre-determined election
period had elapsed. At that point the talliers finalize the process by securely
computing the winners and sending to all voters and to the manager an email
with the election results.

5.4. Runtime evaluation

We have implemented our protocol over the field Zp where p = 231 − 1.
As explained in Section 3.8, such a setting is sufficient for any conceivable
election scenario.

The two parameters that affect the protocol’s runtime are D, the number
of talliers, and M , the number of candidates. Based on our discussion in
Section 3.9 we set the value of D to D ∈ {3, 5, 7, 9}. The value of M was
selected from the range M ∈ {3, 5, 10, 15, 20}. This range is representative
of real-world elections, which rarely feature higher numbers of candidates or
parties. In most national elections the number of competing entities remains
modest—for example, parliamentary elections in many European countries
typically involve fewer than 20 parties. Moreover, it is cognitively unrealistic
to expect voters to meaningfully rank a large number of candidates. Empirical
evidence suggests that individuals can comfortably evaluate and rank only a
small number of alternatives (see, e.g., [33, 35]). Therefore, our choice of M
values reflects both realistic election settings and voter capabilities.

As for the number of voters, N , it affects only the runtime for validating
incoming ballots. The time for computing the final election results, on the

34

other hand, is independent of N . The runtimes reported in our experiments
correspond to the cost of validating either a single ballot or a fixed-size batch
of b = 64 ballots. Therefore, the total validation runtime for an election with
N voters is obtained by multiplying the per-ballot cost by N , or multiplying
the b-batch cost by N/b.

For each of the two voting rules, Copeland and Maximin, we measured
the average runtime for validating the cast ballots, as well as measuring the
time to compute the final election results at the end of the election period,
and present their dependence on D and M . Indeed, the validation of a single
ballot or a batch of ballots does not depend on N , while the computation
of the final election results depends only on the dimension M ×M of the
aggregated ballot matrix P =

∑N
n=1 Pn, Eq. (1), but not on the number N

of addends in the sum that defines it.
All experiments were executed on three servers that resided on the same

LAN. Each of the servers had two AMD EPYC 7543 32-core processors, 128
GB RAM, and a ”Gentoo Linux” operation system.

In the first experiment we measured the time for validating a single ballot
in each of the two rules. As our implementation allows ties, the presented
runtimes are for Sub-protocol 4. Recall that the same protocol is used for
both rules − Copeland and Maximin. The results are shown in Figure 5.
As can be seen, larger values of D entail computing more secret shares and
sending more messages and, consequently, the overall runtime increases with
D. As for M , the quadratic dependence of the runtime on M is clearly shown
in the figure.

In the second experiment we measured the time for validating a batch of
ballots, where we used batches of size 64. By validating several ballots in
parallel, we can compute concurrently independent multiplications and thus
reduce the overall runtime. In Figure 6 we show the ratio between the time
to validate a batch of 64 ballots and the time to validate 64 single ballots.
All shown values are smaller than 1 (namely, batching always saves time),
where the more significant improvements (i.e., smaller ratios) were obtained
for higher values of M and D. For example, if we concentrate on the highest
parameters in our experiments, M = 20 and D = 9, then the average time to
validate a single ballot, when using a 64-batch validation strategy, is roughly
50 msec, as implied by the values in Figures 5 and 6. That means that within
a day it is possible to validate over 1,700,000 ballots. Clearly, those numbers
can be further improved by using larger batches.

By choosing larger-size batches we could reduce the average runtime for

35

3 5 10 15 20
0

50

100

150

200

250

M

T
im

e
(m

s)

D = 3
D = 5
D = 7
D = 9

Figure 5: Runtimes (milliseconds) for validating a single ballot in each of the two
rules, as a function of the number of candidates, M , and number of talliers, D.

3 5 10 15 20
0

0.2

0.4

0.6

0.8

M

Im
p
ro
ve
m
en
t
fa
ct
or

D = 3
D = 5
D = 7
D = 9

Figure 6: The improvement factor in runtime when validating batches of 64 ballots.

validating any single ballot even further. However, while selecting larger batch
sizes translates to reduced computation times, it also translates to increased
response times, since the validation of any single ballot will be delayed until a

36

sufficient number of ballots is received in order to form a batch of the desired
size. If we wish to issue to the voter an immediate response regarding the
validity of the ballot that he had submitted (so that in case the received ballot
was not validated the voter would be asked to submit a new ballot), then the
system should perform single ballot validation or set a short time window
and then validate in parallel the batch of all ballots that were received during
that window.

In the third and fourth experiments we measured the time to compute
the winners in Copeland and Maximin rules; those runtimes are shown in
Figures 7 and 8 respectively.

3 5 10 15 20
0

2

4

6

8

10

M

T
im

e
(s
)

D = 3
D = 5
D = 7
D = 9

Figure 7: Runtimes (seconds) for computing election results in Copeland.

6. Related work

Secure e-voting can be approached using various cryptographic techniques.
The earliest suggestion is that of Chaum [13], who suggested using a mix
network (mixnet). The idea is to treat the ballots as ciphertexts. Voters
encrypt their ballots and agents collect and shuffle these messages and thus
anonymity of the ballots is preserved. Other studies followed and improved this
model, e.g. Sako and Kilian [42], Adida [1], Boneh and Golle [6], Jakobsson
et al. [30], Lee et al. [34], Neff [38]. However, while such systems preserve

37

3 5 10 15 20
0

0.5

1

1.5

2

2.5

3

M

T
im

e
(s
)

D = 3
D = 5
D = 7
D = 9

Figure 8: Runtimes (seconds) for computing election results in Maximin.

anonymity, the talliers are exposed to the actual ballots. The mere anonymity
of the ballots might not provide sufficient security and this may encourage
voters to abstain or vote untruthfully [21].

One of the approaches towards achieving tally-hiding privacy, and not
just anonymity, is by employing homomorphic encryption, which allows
performing computations on encrypted values without decrypting them first.
The most common ciphers of that class are additively homomorphic, in the
sense that the product of several ciphertexts is the encryption of the sum
of the corresponding plaintexts. Such encryptions are suitable for secure
voting, as was first suggested by Benaloh [3]. The main idea is to encrypt
the ballots using a public-key homomorphic cipher. An agent aggregates the
encrypted ballots and then sends an aggregated encrypted value to the tallier.
The tallier decrypts the received ciphertexts and recovers the aggregation
of the ballots, but is never exposed to the ballots themselves. Secure voting
protocols that are based on homomorphic encryption were presented in e.g.
[17, 18, 26, 29, 40, 41, 49].

While most studies on secure voting offered protocols for securing the
voting process, some studies considered the question of private execution
of the computation that the underlying voting rule dictates. We begin our
survey with works that considered score-based voting rules. Canard et al.

38

[9] considered the Majority Judgment (MJ) voting rule [2]. They first
translated the complex control flow and branching instructions that the
MJ rule entails into a branchless algorithm; then they devised a privacy-
preserving implementation of it using homomorphic encryption, distributed
decryption schemes, distributed evaluation of Boolean gates, and distributed
comparisons. Nair et al. [37] suggested to use secret sharing for the tallying
process in Plurality voting [7]. Their protocol provides anonymity but
does not provide perfect secrecy as it reveals the final aggregated score of
each candidate. In addition, their protocol is vulnerable to cheating attacks,
as it does not include means for detecting illegal votes. Küsters et al. [32]
introduced a secure end-to-end verifiable tally-hiding e-voting system, called
Ordinos, that implements the Plurality rule and outputs the K candidates
that received the highest number of votes, or those with number votes that is
greater than some threshold. Dery et al. [21] offered a solution based on MPC
in order to securely determine the winners in elections governed by score-based
voting rules, including Plurality, Approval, Veto, Range and Borda.
Their protocols offer perfect privacy and very attractive runtimes.

Recently, few researchers have begun looking at order-based voting rules.
Haines et al. [27] proposed a solution for the order-based Schulze rule [43].
Their solution does not preserve the privacy of voters who are indifferent
between some pairs of candidates. In addition, their solution is not scalable to
large election campaigns, as they report a runtime of 25 hours for an election
with 10,000 voters. Hertel et al. [28] proposed solutions for Copeland,
Maximin and Schulze voting rules. The evaluation of the Schulze method
took 135 minutes for 5 candidates and 9 days, 10 hours, and 27 minutes for 20
candidates. Finally, Cortier et al. [16] considered the Single Transferable
Vote (STV) rule, which is a multi-stage rule, as well as Schulze rule. Even
though their method is much more efficient than the one in Hertel et al. [28]
for the Schulze rule, it is still not scalable to large election settings, as it
took 8 hours and 50 minutes for N = 1024 voters and M = 20 candidates.

Our study is the first one that proposes protocols for order-based rules
that are both fully private and lightweight so they offer a feasible and fast
solution even for democracies of millions of voters, as our experiments indicate
(see Section 5.4). The overwhelming advantage, in comparison to the above-
mentioned recent works, is achieved mainly by our novel idea of distributed
tallying.

39

7. Conclusion

Here we summarize our study (Section 7.1), describe a real-life implemen-
tation of the proposed protocol and system (Section 7.2), and outline future
research directions (Section 7.3).

7.1. Summary

In this study we presented a protocol for the secure computation of order-
based voting rules. Securing the voting process is an essential step toward a
fully online voting process. A fundamental assumption in all secure voting
systems that rely on fully trusted talliers (that is, talliers who receive the
actual ballots from the voters) is that the talliers do not misuse the ballot
information and that they keep it secret. In contrast, our protocol significantly
reduces the trust vested in the talliers, as it denies the talliers access to the
actual ballots and utilizes MPC techniques in order to compute the desired
output without allowing any party access to the inputs (the private ballots).
Even in scenarios where some (a minority) of the talliers betray that trust,
privacy is ensured. Such a reduction of trust in the talliers is essential to
increase the confidence of the voters in the voting system so that they would
be further motivated to exercise their right to vote and, moreover, vote
according to their true preferences, without fearing that their private vote
will be disclosed to anyone.

Our protocol offers perfect ballot secrecy: the protocol outputs the identity
of the winning candidates, but the voters as well as the talliers remain oblivious
to any other related information, such as the actual ballots or any other value
that is computed during the tallying process (e.g., how many voters preferred
one candidate over the other). The design of a mechanism that offers perfect
ballot secrecy must be tailored to the specific voting rule that governs the
elections. We demonstrated our solution on the following order-based rules:
Copeland, Maximin, Kemeny-Young and Modal-Ranking.5 Ours is
the first study that offers a fully private solution for order-based voting rules
that is lightweight and practical for elections in real-life large democracies.

While several cryptographic voting protocols exist, they primarily focus
on securing the casting and verification of ballots, rather than on computing
complex voting outcomes under strict privacy constraints. To the best of our
knowledge, there is currently no protocol that supports privacy-preserving

5The discussion of the latter two rules is deferred to the appendix.

40

computation of order-based voting rules with perfect ballot secrecy. Moreover,
in related domains such as privacy-preserving collaborative filtering, prior
art [45, 46] shows that secure multiparty computation based on secret sharing
is significantly more efficient than comparable approaches using homomorphic
encryption. This performance gap reinforces the practicality of our approach
for real-world elections.

7.2. An implementation of the proposed protocol and system in the Gentoo
council elections

The Gentoo Linux project (https://www.gentoo.org/) is a community-
driven project with a decentralized governance model. Its two main organi-
zational units are the Gentoo Foundation, which is a legal entity that holds
trademarks, domains, and other assets related to Gentoo, and the Gentoo
Council—a seven-member elected body that is responsible for policy decisions
as well as resolving disputes.

The Gentoo Council holds an annual election for selecting seven council
members from a pool of candidates. During a two-week voting period, the
voters submit ranked ballots to three election officials (talliers). These officials
then perform a transparent tallying process, without ballot secrecy, and publish
the results on the organization’s mailing list.

Through private communication with Gentoo officials, we learned that
the original election rule was Schulze [43]. We demonstrated to the Gentoo
officials our proposed voting model with a functional prototype implementa-
tion, which underwent a private evaluation. Following a successful vote by
the election committee, they decided to adopt Copeland rule instead of
Schulze’s, using our system as a pilot program for their next election cycle.

7.3. Future research directions

The present study suggests several directions for future research:
(a) Multi-winner elections. Typical voting rules are usually oblivious

to external social constraints, and they determine the identity of the winners
solely based on private ballots. This is the case with the voting rules that
we considered herein. In contrast, multi-winner election rules are designed
specifically for selecting candidates that would satisfy the voters the most [23,
25], in the sense that they also comply with additional social conditions (e.g.,
that the selected winners include a minimal number of representatives of a
specific gender, race, region, etc.). This problem has unique features, and
therefore requires its own secure protocols. Examples of voting rules that

41

are designed for this purpose are Chamberlin-Courant [11] and Monroe
[36].

(b) A hierarchical tallier model. We assumed a “flat” tallier model,
where all talliers are operating on all ballots. However, in large voting systems,
a hierarchical tallier may be more suitable. For example, in the US, it may be
more suitable to use a hierarchy by county (first level), state (second level),
and national (third and highest level). A modification of our protocol for
such settings is in order.

(c) Malicious talliers. Our protocol assumes that the talliers are semi-
honest, i.e., that they follow the prescribed protocol correctly. The semi-
honesty of the talliers can be ensured in practice by securing the software and
hardware of the talliers. However, it is possible to design an MPC protocol
that would be immune even to malicious talliers that may deviate from the
prescribed protocol. While such protocols are expected to have significantly
higher runtimes, they could enhance even further the security of the system
and the trust of voters in the preservation of their privacy.

42

Appendix A. Secure computations over secret shared data

In Section 2.2 we described the sub-protocols that our protocol utilizes.
Here we provide an inside look at each of those four MPC sub-protocols.

Appendix A.1. Evaluating arithmetic functions

Let f(x1, . . . , xL) be an arithmetic function of L variables. Assume that
the talliers hold D′-out-of-D shares of each of the inputs, x1, . . . , xL. They
wish to compute D′-out-of-D shares of y := f(x1, . . . , xL) without learning
any information on any of the inputs nor on the output y. This challenge
translates to the following two basic computational tasks: given D′-out-of-D
shares of two secret values u, v ∈ Zp, compute D′-out-of-D shares of au+ bv
(where a and b are public field elements), and of u · v, without revealing u, v
or the computed results (au+ bv and u · v).

Let ud and vd denote the shares held by Td, d ∈ [D], corresponding to the
two secrets u and v, respectively. Computing shares of the linear combination
au + bv is easy, since {aud + bvd : d ∈ [D]} is a valid D′-out-of-D sharing
of au+ bv, as implied by the linearity of secret sharing. Consequently, each
tallier can locally compute his share of the linear combination from his shares
of the two inputs without any interaction with his peers.

Computing secret shares of the product u · v is more involved and requires
the talliers to interact. In our protocol, we use the multiplication protocol
proposed by Damg̊ard and Nielsen [19], enhanced by a work by Chida et al.
[14] that demonstrates some performance optimizations. We consider that
computation as a black-box since the details of that computation are not
relevant for our needs. Interested readers may refer to [19, 14] for more
details.

Appendix A.2. Secure Comparison

Assume that T1, . . . , TD hold D′-out-of-D shares of two nonnegative inte-
gers u and v, where both u and v are smaller than p, which is the size of the
underlying field Zp. The goal is to compute D′-out-of-D secret shares of the
bit 1u<v without learning any other information on u and v. Such a protocol
is called secure comparison. In our protocol we used the secure comparison
protocol proposed by Nishide and Ohta Nishide and Ohta [39], with some
performance enhancements that we introduced.

43

Appendix A.3. Secure testing of positivity

Let u be an integer in the range [−N,N]. Assume that T1, . . . , TD hold
D′-out-of-D shares of u, where the underlying field is Zp, and p > 2N . Our
goal is to design an MPC protocol that allows the talliers to obtain D′-out-
of-D shares of the bit 1u>0, without learning any additional information on
u.

One way of solving such a problem would be to set v = u+N and then
test whether N < v using the protocol of secure comparison from Section
Appendix A.2. However, we propose a more efficient method for testing
positivity. To this end, we state and prove the following lemma.

Lemma 5. Under the above assumptions, u > 0 iff the LSB of (−2u mod p)
is 1.

Proof. Recall that u ∈ [−N,N] and N < p
2
. Assume that u > 0, namely,

that u ∈ (0, N]. Hence, −2u ∈ [−2N, 0). Therefore, as 2N < p, (−2u
mod p) = −2u + p. As that number is odd, its LSB is 1. If, on the other
hand, u ≤ 0, then u ∈ [−N, 0]. Hence, −2u ∈ [0, 2N] ⊂ [0, p− 1]. Therefore,
(−2u mod p) = −2u. As that number is even, its LSB is 0.

Hence, the talliers can compute shares of 1u>0 by computing shares of the
LSB of only one shared secret (−2u in this case). In order to compute shares
of 1u<v using the protocol of [39] it is necessary to compute shares of three
LSBs of shared secrets. Hence, computing shares of 1u>0 based on Lemma 5
is more efficient, roughly by a factor of 3, than computing such shares based
on the general secure comparison protocol of [39]. In our protocol we compute
shares of positivity bits based on this efficient computation.

Appendix A.4. Secure testing of equality to zero

Let u be an integer in the range [−N,N]. Assume that the talliers
T1, . . . , TD hold D′-out-of-D shares of u, where the underlying field is Zp, and
p > 2N . Our goal is to design an MPC protocol that enables the talliers to
compute D′-out-of-D shares of the bit 1u=0, without learning any additional
information on u.

A näıve approach would be to use the MPC positivity testing from Section
Appendix A.3, once for u and once for −u. Clearly, u = 0 iff both of those
tests fail. However, we can solve that problem in a more efficient manner, as
we proceed to describe.

44

Fermat’s little theorem states that if u ∈ Zp \ {0} then up−1 = 1 mod
p. Hence, 1u̸=0 = (up−1 mod p). Therefore, shares of the bit 1u̸=0 can be
obtained by simply computing up−1 mod p. The latter computation can
be carried out by the square-and-multiply algorithm with up to 2⌈log p⌉
consecutive multiplications. Finally, as 1u=0 = 1− 1u̸=0, then shares of 1u̸=0

can be readily translated into shares of 1u=0. The cost of the above described
computation is significantly smaller than the cost of the alternative approach
that performs positivity testing of both u and −u.

Appendix B. Other order-based rules

Here we consider two other order-based rules − Kemeny-Young [31, 51]
and Modal Ranking [10], and describe secure protocols for implementing
them.

Appendix B.1. Kemeny-Young

Appendix B.1.1. Description

The ballot matrices here, Pn, n ∈ [N], are as in Maximin and, as before,
P =

∑
n∈[N] Pn is the aggregated ballot matrix. For every 1 ≤ m ̸= ℓ ≤ N ,

P (m, ℓ) equals the number of voters who ranked Cm strictly higher than
Cℓ. The matrix P induces a score for each of the possible M ! rankings
over C = {C1, . . . , CM}. Let ρ = (σ1, . . . , σM), where (σ1, . . . , σM) is a
permutation of {1, . . . ,M}, be such a ranking. Here, for each m ∈ [M], σm

is the rank of Cm in the ranking. For example, if M = 4 then ρ = (3, 1, 4, 2)
is the ranking in which C2 is the top candidate and C3 is the least favored
candidate. The score of a ranking ρ is defined as

w(ρ) =
∑

ℓ,m∈[M]:σm<σℓ

P (m, ℓ) ; (B.1)

namely, one goes over all pairs of candidates Cm and Cℓ such that ρ ranks
Cm higher than Cℓ (in the sense that σm < σℓ) and adds up the number of
voters who agreed with this pairwise comparison. The ranking ρ with the
highest score is selected, and the K leading candidates in ρ are the winners
of the election.

45

Appendix B.1.2. Secure implementation

As in Protocol 1 for Copeland and Maximin, each voter Vn secret shares
the entries of his ballot matrix Pn among the D talliers using a D′-out-of-D
scheme. Since the ballot matrices here are as in Maximin, where ties are
allowed, their validation is carried out as described in Section 4.3.

After validating the cast ballots, the talliers add up their shares of Pn, for
all validated ballot matrices, and then get D′-out-of-D shares of each of the
non-diagonal entries in P .

To compute secret shares of the score of each possible ranking ρ, the
talliers need only to perform summation according to Eq. (B.1). Note that
that computation does not require the talliers to interact. Finally, it is needed
to find the ranking with the highest score. That computation can be done by
performing secure comparisons, as described in Section Appendix A.2.

Appendix B.2. Modal ranking

In Modal Ranking, every voter submits a ranking of all candidates,
where the ranking has no ties. Namely, if RC is the set of all M ! rankings
of the M candidates in C, the ballot of each voter is a selection of one
ranking from RC, as determined by his preferences. The rule then outputs
the ranking that was selected by the largest number of voters (i.e., the mode
of the distribution of ballots over RC). In case there are several rankings
that were selected by the greatest number of voters, the rule outputs all of
them, and then the winners are usually the candidates whose average position
in those rankings is the highest.

The Modal Ranking rule is an order-based voting rule over C, but it is
equivalent to the Plurality score-based voting rule (see Brandt et al. [7])
over the set of candidate rankings RC. Hence, it can be securely implemented
by the protocol that was presented in Dery et al. [21].

46

References

[1] Ben Adida. 2008. Helios: Web-based Open-Audit Voting.. In USENIX
security symposium, Vol. 17. 335–348.

[2] Michel Balinski and Rida Laraki. 2007. A theory of measuring, electing,
and ranking. Proceedings of the National Academy of Sciences 104, 21
(2007), 8720–8725.

[3] Josh Benaloh. 1986. Secret sharing homomorphisms: Keeping shares of
a secret secret. In CRYPTO. 251–260.

[4] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A
framework for fast privacy-preserving computations. In ESORICS. 192–
206.

[5] G.R. Blakley. 1979. Safeguarding Cryptographic Keys. In International
Workshop on Managing Requirements Knowledge. 313–317.

[6] Dan Boneh and Philippe Golle. 2002. Almost entirely correct mixing
with applications to voting. In CCS. 68–77.

[7] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D
Procaccia. 2016. Handbook of computational social choice. Cambridge
University Press.

[8] Felix Brandt and Tuomas Sandholm. 2005. Decentralized voting with
unconditional privacy. In AAMAS. 357–364.

[9] Sébastien Canard, David Pointcheval, Quentin Santos, and Jacques
Traoré. 2018. Practical strategy-resistant privacy-preserving elections. In
European Symposium on Research in Computer Security. 331–349.

[10] Ioannis Caragiannis, Ariel D Procaccia, and Nisarg Shah. 2014. Modal
ranking: A uniquely robust voting rule. In AAAI. 616-622.

[11] John R Chamberlin and Paul N Courant. 1983. Representative delibera-
tions and representative decisions: Proportional representation and the
Borda rule. The American Political Science Review (1983), 718–733.

[12] David Chaum. 1988. Elections with Unconditionally-Secret Ballots and
Disruption Equivalent to Breaking RSA. In EUROCRYPT. 177–182.

47

[13] David L Chaum. 1981. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[14] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. 2018. Fast Large-Scale Honest-Majority
MPC for Malicious Adversaries. In CRYPTO. 34–64.

[15] Arthur H Copeland. 1951. A reasonable social welfare function. In
Mimeographed notes from a Seminar on Applications of Mathematics to
the Social Sciences, University of Michigan.

[16] Véronique Cortier, Pierrick Gaudry, and Quentin Yang. 2022. A toolbox
for verifiable tally-hiding e-voting systems. In European Symposium on
Research in Computer Security. 631–652.

[17] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A
secure and optimally efficient multi-authority election scheme. In EU-
ROCRYPT. 103–118.

[18] Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. 2010. A generaliza-
tion of Pailliers public-key system with applications to electronic voting.
International Journal of Information Security 9 (2010), 371–385.

[19] Ivan Damg̊ard and Jesper Buus Nielsen. 2007. Scalable and Uncondi-
tionally Secure Multiparty Computation. In CRYPTO. 572–590.

[20] Herbert Aron David. 1963. The method of paired comparisons. Vol. 12.
London.

[21] Lihi Dery, Tamir Tassa, and Avishay Yanai. 2021. Fear not, vote truth-
fully: Secure Multiparty Computation of score based rules. Expert
Systems with Applications 168 (2021), 114434.

[22] Lihi Dery, Tamir Tassa, Avishay Yanai, and Arthur Zamarin. 2021. A
Secure Voting System for Score Based Elections. In CCS. 2399–2401.

[23] Edith Elkind, Piotr Faliszewski, Jean-François Laslier, Piotr Skowron,
Arkadii Slinko, and Nimrod Talmon. 2017. What Do Multiwinner Voting
Rules Do? An Experiment Over the Two-Dimensional Euclidean Domain.
In AAAI. 494-501.

48

[24] Piotr Faliszewski, Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg
Rothe. 2009. Llull and Copeland voting computationally resist bribery
and constructive control. Journal of Artificial Intelligence Research 35
(2009), 275–341.

[25] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon.
2017. Multiwinner voting: A new challenge for social choice theory.
Trends in computational social choice 74 (2017), 27–47.

[26] Xingyue Fan, Ting Wu, Qiuhua Zheng, Yuanfang Chen, Muhammad
Alam, and Xiaodong Xiao. 2020. HSE-Voting: A secure high-efficiency
electronic voting scheme based on homomorphic signcryption. Future
Generation Computer Systems 111 (2020), 754–762.

[27] Thomas Haines, Dirk Pattinson, and Mukesh Tiwari. Verifiable ho-
momorphic tallying for the schulze vote counting scheme. In Verified
Software. Theories, Tools, and Experiments: 11th International Con-
ference, VSTTE 2019, New York City, NY, USA, July 13–14, 2019,
Revised Selected Papers 11, pages 36–53. Springer, 2020.

[28] Fabian Hertel, Nicolas Huber, Jonas Kittelberger, Ralf Küsters, Julian
Liedtke, and Daniel Rausch. 2021. Extending the Tally-Hiding Ordinos
System: Implementations for Borda, Hare-Niemeyer, Condorcet, and
Instant-Runoff Voting. In E-Vote-ID 2021. University of Tartu Press,
269–284.

[29] Alejandro Hevia and Marcos Kiwi. 2004. Electronic jury voting protocols.
Theoretical Computer Science 321 (2004), 73–94.

[30] Markus Jakobsson, Ari Juels, and Ronald L Rivest. 2002. Making mix
nets robust for electronic voting by randomized partial checking. In
USENIX. 339–353.

[31] John G Kemeny. 1959. Mathematics without numbers. Daedalus 88, 4
(1959), 577–591.

[32] Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch, and
Andreas Vogt. 2020. Ordinos: A verifiable tally-hiding e-voting system.
In IEEE European Symposium on Security and Privacy (EuroS&P).
216–235.

49

[33] Richard R Lau and David P Redlawsk. Advantages and disadvantages
of cognitive heuristics in political decision making. American journal of
political science, pages 951–971, 2001.

[34] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo
Yang, and Seungjae Yoo. 2003. Providing receipt-freeness in mixnet-based
voting protocols. In International conference on information security and
cryptology. 245–258.

[35] George A Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review,
63(2):81, 1956.

[36] Burt L Monroe. 1995. Fully proportional representation. American
Political Science Review (1995), 925–940.

[37] Divya G. Nair, V. P. Binu, and G. Santhosh Kumar. 2015. An Im-
proved E-voting scheme using Secret Sharing based Secure Multi-party
Computation. CoRR abs/1502.07469 (2015).

[38] C Andrew Neff. 2001. A verifiable secret shuffle and its application to
e-voting. In CCS. 116–125.

[39] Takashi Nishide and Kazuo Ohta. 2007. Multiparty Computation for
Interval, Equality, and Comparison Without Bit-Decomposition Protocol.
In PKC. 343–360.

[40] J Chandra Priya, Ponsy RK Sathia Bhama, S Swarnalaxmi, A Aisathul
Safa, and I Elakkiya. 2018. Blockchain centered homomorphic encryp-
tion: A secure solution for E-balloting. In International conference on
Computer Networks, Big data and IoT. 811–819.

[41] Fatemeh Rezaeibagha, Yi Mu, Shiwei Zhang, and Xiaofen Wang. 2019.
Provably secure (broadcast) homomorphic signcryption. International
Journal of Foundations of Computer Science 30, (2019), 511–529.

[42] Kazue Sako and Joe Kilian. 1995. Receipt-free mix-type voting scheme.
In International Conference on the Theory and Applications of Crypto-
graphic Techniques. 393–403.

50

[43] Markus Schulze. 2011. A new monotonic, clone-independent, rever-
sal symmetric, and condorcet-consistent single-winner election method.
Social choice and Welfare 36, (2011), 267–303.

[44] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22 (1979),
612–613.

[45] Erez Shmueli and Tamir Tassa. Mediated secure multi-party protocols for
collaborative filtering. ACM Trans. Intell. Syst. Technol., 11:15:1–15:25,
2020.

[46] Tamir Tassa and Alon Ben Horin. Privacy-preserving collaborative
filtering by distributed mediation. ACM Trans. Intell. Syst. Technol.,
13:102:1–102:26, 2022.

[47] Paul B Simpson. 1969. On defining areas of voter choice: Professor
Tullock on stable voting. The Quarterly Journal of Economics (1969),
478–490.

[48] Alan Szepieniec and Bart Preneel. 2015. New techniques for electronic
voting. In IACR Cryptol. ePrint Arch.. 809.

[49] Xuechao Yang, Xun Yi, Surya Nepal, Andrei Kelarev, and Fengling Han.
2018. A secure verifiable ranked choice online voting system based on
homomorphic encryption. IEEE Access 6 (2018), 20506–20519.

[50] A.C. Yao. 1982. Protocols for secure computation. In FOCS. 160–164.

[51] Peyton Young. 1995. Optimal voting rules. Journal of Economic Per-
spectives 9, (1995), 51–64.

51

	Introduction
	Distributed tallying
	Secret sharing
	Distributed tallying and secure computations over secret shares

	A secure order-based voting protocol
	Formal definitions
	Characterization of legal ballot matrices
	The protocol
	Verifying the legality of the cast ballots
	Verifying condition 1
	Verifying condition 4
	Privacy

	Verifying the legality of the secret sharing
	An MPC computation of the winners in the Copeland rule
	Privacy

	An MPC computation of the winners in the Maximin rule
	A lower bound on the field's size
	The security of the protocol

	Order-based voting with ties
	Characterizing legal ballot matrices when ties are allowed
	Verifying the legality of the cast ballots when ties are allowed
	The Maximin rule with ties

	An implementation of a secure order-based voting system
	Web server and user interface
	The tallier module
	User's usage flow
	Runtime evaluation

	Related work
	Conclusion
	Summary
	An implementation of the proposed protocol and system in the Gentoo council elections
	Future research directions

	Secure computations over secret shared data
	Evaluating arithmetic functions
	Secure Comparison
	Secure testing of positivity
	Secure testing of equality to zero

	Other order-based rules
	Kemeny-Young
	Description
	Secure implementation

	Modal ranking

