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ABSTRACT
Electronic voting systems have significant advantages in compari-

son with physical voting systems. One of the main challenges in

e-voting systems is to secure the voting process: namely, to certify

that the computed results are consistent with the cast ballots and

that the voters’ privacy is preserved. We propose herein a secure

voting protocol for elections that are governed by order-based vot-

ing rules. Our protocol offers perfect ballot secrecy in the sense that

it issues only the required output while no other information on the

cast ballots is revealed. Such perfect secrecy, achieved by employing

secure multiparty computation tools, may increase the voters’ confi-

dence and, consequently, encourage them to vote according to their

true preferences. Evaluation of the protocol’s computational costs

establishes that it is lightweight and can be readily implemented in

real-life electronic elections.
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1 INTRODUCTION
Electronic voting has significant advantages in comparison with

the more commonplace physical voting: it is faster, it reduces costs,

it is more sustainable, and in addition, it may increase voters’ par-

ticipation. One of the main challenges in holding e-voting is to

secure the voting process: namely, to make sure that it is secure

against attempted manipulations so that the computed results are

consistent with the cast ballots and that the privacy of the voters is

preserved.

The usual meaning of voter privacy is that the voters remain

anonymous. Namely, the linkage between ballots and the voters

that cast them remains hidden, thus preserving anonymity. How-

ever, the final election results and the full tally (i.e., all ballots) are

revealed. While such information exposure may be deemed benign
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or even desired, in some cases, it may be problematic. For example,

in small-scale elections (say, elections to university senates), the

full tally may put the voters’ privacy at risk; say, if Alice promised

Bob to vote for him, but at the end of the day, no one had voted for

him, Alice’s failure to keep her promise to Bob would be exposed.

Such potential privacy breaches may be an obstacle for some vot-

ers to vote truthfully. In some cases, exposing the full tally might

severely damage the image of some candidates who may, conse-

quently, refrain from submitting their candidacy again in future

elections. Such problems can be averted if the voting system is

tally-hiding [42]; namely, if it reveals only the desired final results

and nothing else. The final results could be just the identity of the

winner (say, when selecting an editor-in-chief or a prime minister),

𝐾 > 1 winners (e.g., when needing to select𝐾 new board members),

𝐾 > 1 winners with their ranking (say, when needing to award first,

second and third prizes), or a score for each candidate (as is the case

in elections for parliament, where the candidates are parties and

the score for each party is the number of seats in the parliament).

In this paper, we design a tally-hiding voting system that offers

perfect ballot secrecy, or full privacy [13]; i.e., given any coalition

of voters, the protocol does not reveal any information on the

ballots beyond what can be inferred from the published results.

Such full privacy may reduce the possibility of voters’ coercion and

also increase the voters’ confidence that their vote remains secret.

Hence, full privacy may encourage voters to vote according to their

true preferences.

There are various families of voting rules that can be used in

elections. For example, in score-based voting rules, a score for each

candidate is computed subject to the specifications of the underly-

ing voting rule, and then the winning candidate is the one whose

aggregated score is the highest. In this study we focus on order-
based (a.k.a pairwise-comparison) rules, where the relative order of
the candidates is considered by the underlying voting rule [7].

In order to provide privacy for the voters, it is necessary to

protect their private data (i.e. their ballots) from the tallier while

still allowing the tallier to perform the needed computations on

the ballots in order to output the required election results. The

cryptographic tool that is commonly used towards that end is ho-
momorphic encryption, namely, a form of encryption that preserves

algebraic structure and thus enables the performance of mean-

ingful computations on the ciphertexts. However, homomorphic

encryption has a significant computational overhead. The main

idea that underlies our suggested system is to use distributed tal-
lying. Namely, our system involves 𝐷 > 1 independent talliers to

whom the voters send information relating to their private ballots.

With such distributed tallying, it is possible to replace the costly

cryptographic protection shield of homomorphic encryption with

https://doi.org/10.1145/3664476.3664503
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Figure 1: A high-level description of the protocol.

the much lighter-weight cryptographic shield of secret sharing. The

talliers then engage in specially designed protocols of multiparty

computation that allow them to validate that each cast ballot is a le-

gitimate ballot (in the sense that it complies with the specifications

of the underlying voting rule) and then to compute from the cast

ballots the required election results, while still remaining totally

oblivious to the content of those ballots.

A high-level description of our system is presented in Figure

1. The first phase is the voting phase: the voters send to each of

the talliers messages (shares) relating to their secret ballots. In

the second phase, the talliers communicate amongst themselves in

order to validate each of the incoming ballots (which remain secret

to them) and then, at the end of the day, perform the tallying over

all legal ballots according to the underlying rule. Finally, the talliers

broadcast the results back to the voters.

Our contributions.We consider elections that are governed by

an order-based voting rule. We focus on two such rules – Copeland

[15], and Maximin [41] (a.k.a Kramer-Simpson). We devise a fully

private protocol that the talliers perform on secret shares of the

voters’ ballots. At the end of the protocol the talliers deduce a

(partial) ranking of the candidates from which they can infer the

identity of the winners and publish those results to the voters. Our

protocol is lightweight and can be readily implemented in virtual

elections.

The reader is referred to the Appendix of [43] where we describe

two other order-based rules, Kemeny-Young [30, 48] and Modal

Ranking [11], and describe the extension of our methods for those

rules as well.

The paper is structured as follows. In Section 2 we explain the

cryptographic foundations on which our protocol is based. In Sec-

tion 3 we present our secure voting protocol for Copeland and

Maximin rules and then, in Section 4, we evaluate its computa-

tional costs. A survey of related work is given in Section 5, and we

conclude in Section 6.

2 CRYPTOGRAPHIC PRELIMINARIES
Our protocol relies heavily on cryptographic machinery. This sec-

tion provides the required cryptographic background and an ex-

planation of how the presented techniques are implemented in our

protocol. In Section 2.1 we provide a brief introduction to secret

sharing. In Section 2.2 we describe the cryptographic principles

of our protocol. Then, in the following sections (Sections 2.3-2.6)

we provide the details of specific computations that we use in our

protocol.

We note that while Sections 2.1 and 2.2 are necessary for under-

standing our protocol that is presented in Section 3, they are also

sufficient, in the sense that readers who are less interested in the

cryptographic details may skip Sections 2.3-2.6 and still be able to

fully understand the secure voting protocol.

2.1 Secret sharing
Secret sharing schemes [40] enable distributing a secret 𝑠 among

a set of parties, T = {𝑇1, . . . ,𝑇𝐷 }. Each party, 𝑇𝑑 , 𝑑 ∈ [𝐷] :=

{1, . . . , 𝐷}, is given a random value 𝑠𝑑 , called a share, that relates to
the secret 𝑠 . Those shares satisfy the following conditions: (a) 𝑠 can

be reconstructed only by combining the shares given to specific

subsets of parties, which are called authorized subsets (the collection
of all authorized subsets is called the access structure); (b) shares
held by any other subset of parties reveal zero information on 𝑠 .

The notion of secret sharing was introduced, independently, by

Shamir [40] and Blakley [4], for the case of threshold secret sharing.

In threshold secret sharing there is some threshold 𝐷 ′ ≤ 𝐷 and

then the access structure consists of all subsets of size at least 𝐷 ′
.

Such secret sharing schemes are called 𝐷 ′
-out-of-𝐷 .

Shamir’s 𝐷 ′
-out-of-𝐷 secret sharing scheme operates over a

finite field Z𝑝 , where 𝑝 > 𝐷 is a prime sufficiently large so that all

possible secrets may be represented in Z𝑝 . It has two procedures:

Share and Reconstruct:
• Share𝐷′,𝐷 (𝑥). The procedure samples a uniformly random

polynomial 𝑔(·) over Z𝑝 , of degree at most 𝐷 ′ − 1, where the free

coefficient is the secret 𝑠 . That is, 𝑔(𝑥) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 + . . . +
𝑎𝐷′−1𝑥𝐷

′−1
, where 𝑎 𝑗 , 1 ≤ 𝑗 ≤ 𝐷 ′ − 1, are selected independently

and uniformly at random fromZ𝑝 . The procedure outputs 𝑠𝑑 = 𝑔(𝑑),
𝑑 ∈ [𝐷], where 𝑠𝑑 is the share given to the 𝑑th party, 𝑇𝑑 , 𝑑 ∈ [𝐷].

• Reconstruct𝐷′ (𝑠1, . . . , 𝑠𝐷 ). The procedure is given any selec-

tion of 𝐷 ′
shares out of {𝑠1, . . . , 𝑠𝐷 }; it then interpolates a polyno-

mial𝑔(·) of degree at most𝐷 ′−1 using the given points and outputs
𝑠 = 𝑔(0). Clearly, any selection of 𝐷 ′

shares out of the 𝐷 shares



Towards Secure Virtual Elections: Multiparty Computation of Order Based Voting Rules ARES 2024, July 30-August 2, 2024, Vienna, Austria

will yield the same polynomial 𝑔(·) that was used to generate the

shares, as 𝐷 ′
point values determine a unique polynomial of degree

at most 𝐷 ′ − 1. Hence, any selection of 𝐷 ′
shares will issue the

secret 𝑠 . On the other hand, any selection of 𝐷 ′ − 1 shares reveals

nothing about the secret.

We note that there are secret sharing schemes that realize more

general access structures, e.g, [8, 24, 40, 44], but for our purposes

the basic Shamir’s scheme suffices.

2.2 The cryptographic principles of our
protocol

Our protocol involves two sets of parties: voters, V = {𝑉1, . . . ,𝑉𝑁 },
and talliers, {𝑇1, . . . ,𝑇𝐷 }. The talliers are assumed to be semi-honest,

i.e., they follow the prescribed protocol, but try to extract from their

view in the protocol information on the private inputs of the voters.

We also assume them to have an honest majority, in the sense that if

some of them are corrupted by a malicious adversary, their number

is smaller than

𝐷 ′
:= ⌊(𝐷 + 1)/2⌋ . (1)

On the other hand, the voters (any number of them) may be mali-

cious. Hence, our protocol includes mechanisms to detect potential

deviations from the prescribed protocol in order to ensure that the

computed election results correctly identify the winners as dictated

by all legal ballot and the underlying rule. During the entire process,

the sensitive information that should be kept secret are the private

ballots as well as all intermediate computed values.

In the protocol, each voter creates shares of his
1
private ballot

and distributes them to the 𝐷 talliers. As those ballots are matrices

(see the definitions in Section 3), the secret sharing is carried out

for each matrix entry independently.

We use Shamir’s 𝐷 ′
-out-of-𝐷 secret sharing, where hereinafter

𝐷 ′
is as defined in Eq. (1). With that selection of the threshold

𝐷 ′
, at least half of the talliers would need to collude in order to

recover the secret ballots. Under our assumption that the set of

talliers has an honest majority, our protocol provides information-

theoretic security. Higher values of 𝐷 will imply greater security

against coalitions of corrupted talliers, but they will also imply

higher costs.

The first thing that the talliers need to do when receiving from

a voter his ballot matrix shares is to verify that those shares cor-

respond to a legal ballot (see Section 3.2 where we explain what

constitutes a legal ballot). Then, at the end of the election period,

the talliers need to compute the identity of the winning candidates,

as dictated by the rule. Those tasks would be easy if the talliers

could use their shares in order to recover the ballots. However,

they must not do so, in order to protect the voters’ privacy. Instead,

they must perform those computations on the distributed shares,

without revealing the shares to each other. As we shall see later

on, those computations boil down to the four specific tasks that we

proceed to describe.

Let 𝑥1, . . . , 𝑥𝐿 be 𝐿 secrets in the underlying field Z𝑝 (𝐿 is any

integer) and assume that the talliers hold𝐷 ′
-out-of-𝐷 shares in each

one of those secrets. Then the talliers need to perform the following

1
For the sake of simplicity, we keep referring to parties by the pronoun “he”. In our

context, those parties may be voters, who are humans of any gender, or talliers, that

are typically (genderless) servers.

computational tasks without recovering the secrets 𝑥1, . . . , 𝑥𝐿 or

learn anything about them:

(1) If 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝐿), where 𝑓 is some public arithmetic func-

tion, compute 𝐷 ′
-out-of-𝐷 shares in 𝑦.

(2) If 𝑦 = 1𝑥1<𝑥2 is the bit that equals 1 if 𝑥1 < 𝑥2 and 0 other-

wise
2
, compute 𝐷 ′

-out-of-𝐷 shares in 𝑦.

(3) If 𝑝 > 2𝑁 (𝑁 is the number of voters) and 𝑥1 ∈ [−𝑁, 𝑁 ],
compute 𝐷 ′

-out-of-𝐷 shares in the bit 1𝑥1>0.

(4) If 𝑝 > 2𝑁 and 𝑥1 ∈ [−𝑁, 𝑁 ], compute 𝐷 ′
-out-of-𝐷 shares

in the bit 1𝑥1=0.

In the next subsections, we describe sub-protocols of secure multi-

party computation (MPC) [47] for performing those computations.

2.3 Evaluating polynomials
Let 𝑓 (𝑥1, . . . , 𝑥𝐿) be an 𝐿-variate polynomial. Assume that the tal-

liers have 𝐷 ′
-out-of-𝐷 shares in each of the 𝐿 inputs and they wish

to compute 𝐷 ′
-out-of-𝐷 shares in the output 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝐿) To

do so, it is necessary to solve the following problems: given 𝐷 ′
-out-

of-𝐷 shares in two secret values 𝑢, 𝑣 ∈ Z𝑝 , compute 𝐷 ′
-out-of-𝐷

shares in 𝑎𝑢 + 𝑏𝑣 , where 𝑎, 𝑏 are public field elements, and in 𝑢 · 𝑣 ,
without reconstructing any of those values (𝑢, 𝑣 , 𝑎𝑢 + 𝑏𝑣 and 𝑢 · 𝑣).

Let 𝑢𝑑 and 𝑣𝑑 denote the shares held by 𝑇𝑑 , 𝑑 ∈ [𝐷], in the two

input values 𝑢 and 𝑣 , respectively. The linearity of secret sharing

implies that 𝑎𝑢𝑑 + 𝑏𝑣𝑑 , 𝑑 ∈ [𝐷], are proper 𝐷 ′
-out-of-𝐷 shares in

𝑎𝑢 + 𝑏𝑣 . Hence, linear combinations may be resolved without any

interaction amongst the talliers.

The procedure for resolving multiplication is trickier and re-

quires the talliers to interact. In our protocol, we use the construc-

tion proposed by Damgård and Nielsen [19], enhanced by a work

by Chida et al. [14] that demonstrates some performance optimiza-

tions.

The complexity of securely evaluating arithmetic functions is

measured by the number of multiplications (as those are the oper-

ations that require significantly more computational and commu-

nication costs), and the degree of the polynomial (as it determines

the number of rounds of communication).

2.4 Secure Comparison
Assume that 𝑇1, . . . ,𝑇𝐷 hold 𝐷 ′

-out-of-𝐷 shares in two integers 𝑎

and 𝑏, where both 𝑎 and 𝑏 are smaller than 𝑝 , which is the size of

the underlying field Z𝑝 . They wish to compute 𝐷 ′
-out-of-𝐷 secret

shares in the bit 1𝑎<𝑏 without learning any other information on 𝑎

and 𝑏. A protocol that does that is called secure comparison.
Nishide and Ohta [35] presented a method for secure comparison

that is based on the following simple observation. Let us denote

the bits 1
𝑎<

𝑝

2

, 1
𝑏<

𝑝

2

, 1[ (𝑎−𝑏) mod 𝑝 ]< 𝑝

2

, and 1𝑎<𝑏 by 𝑤 , 𝑥 , 𝑦, 𝑧,

respectively. Then

𝑧 = 𝑤 (1 − 𝑥) + (1 −𝑤) (1 − 𝑥) (1 − 𝑦) +𝑤𝑥 (1 − 𝑦)
= 1 − 𝑥 − 𝑦 + 𝑥𝑦 +𝑤 (𝑥 + 𝑦 − 2𝑥𝑦) . (2)

Hence, we reduced the problem of comparing two secret shared

values, 𝑎 and 𝑏, to computing three other comparison bits —𝑤, 𝑥,𝑦,

and then evaluating an arithmetic function of them, Eq. (2). What

makes this expression efficiently computable is the fact that in the

2
Hereinafter, for any predicate Π, we let 1Π denote the binary variable that equals 1

iff (if and only if) the predicate Π holds.
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comparison bits,𝑤 = 1
𝑎<

𝑝

2

, 𝑥 = 1
𝑏<

𝑝

2

, and 𝑦 = 1[ (𝑎−𝑏) mod 𝑝 ]< 𝑝

2

,

the right-hand side is
𝑝
2
, as we proceed to explain.

Lemma 1. Given a finite field Z𝑝 and a field element 𝑞 ∈ Z𝑝 , then
𝑞 <

𝑝
2
iff the least significant bit (LSB) of (2𝑞 mod 𝑝) is zero.

(The proofs of all lemmas and theorems are given in theAppendix

of [43].)

In view of Lemma 1, the talliers may compute𝐷 ′
-out-of-𝐷 shares

in𝑤 = 1
𝑎<

𝑝

2

(and similarly for𝑥 = 1
𝑏<

𝑝

2

, and𝑦 = 1[ (𝑎−𝑏) mod 𝑝 ]< 𝑝

2

)

as follows: each 𝑇𝑑 will translate the share he holds in 𝑎 to a share

in 2𝑎 by multiplying the share by 2; then, all talliers will use their

shares in 2𝑎 in order to compute shares in the LSB of 2𝑎 [35].

We conclude this section by commenting on the complexity of

the above described secure comparison protocol. Computing shares

in the LSB of a shared value requires 13 rounds of communication

and 93ℓ + 1 multiplications, where hereinafter ℓ = log
2
(𝑝). Since

we have to compute three such bits (i.e., 𝑤 , 𝑥 , and 𝑦) then we

can compute shares of those three bits in 13 rounds and a total of

279ℓ + 3 multiplications. Finally, we should evaluate the expression

in Eq. (2), which entails two additional rounds and two additional

multiplications. Hence, the total complexity is 15 rounds and 279ℓ+5
multiplications.

2.5 Secure testing of positivity
Let 𝑥 be an integer in the range [−𝑁, 𝑁 ]. Assume that 𝑇1, . . . ,𝑇𝐷
hold 𝐷 ′

-out-of-𝐷 shares in 𝑥 , where the underlying field is Z𝑝 , and
𝑝 > 2𝑁 . Our goal here is to design an MPC protocol that will issue

to 𝑇1, . . . ,𝑇𝐷 𝐷 ′
-out-of-𝐷 shares in the bit 1𝑥>0, without learning

any further information on 𝑥 .

Lemma 2. Under the above assumptions, 𝑥 > 0 iff the LSB of (−2𝑥
mod 𝑝) is 1.

Lemma 2 implies that testing the positivity of a secret requires

a single LSB computation. Hence, in view of the discussion in

Section 2.4, the computational cost of that task is 13 rounds of

communication and 93ℓ + 1 multiplications.

2.6 Secure testing of equality to zero
Let 𝑥 be an integer in the range [−𝑁, 𝑁 ]. Assume that 𝑇1, . . . ,𝑇𝐷
hold 𝐷 ′

-out-of-𝐷 shares in 𝑥 , where the underlying field is Z𝑝 , and
𝑝 > 2𝑁 . Our goal here is to design an MPC protocol that will issue

to 𝑇1, . . . ,𝑇𝐷 𝐷 ′
-out-of-𝐷 shares in the bit 1𝑥=0, without learning

any further information on 𝑥 . It is possible to solve that problem by

implementing the MPC positivity testing that we described above

in Section 2.5, once for 𝑥 and once for −𝑥 . Clearly, 𝑥 = 0 iff both

of those tests fail. However, we can solve that problem in a much

more efficient manner, as we proceed to describe.

Fermat’s little theorem states that if 𝑥 ∈ Z𝑝 \ {0} then 𝑥𝑝−1 = 1

mod 𝑝 . Hence, 1𝑥≠0 =
(
𝑥𝑝−1 mod 𝑝

)
. Therefore, shares in the bit

1𝑥≠0 can be obtained by computing 𝑥𝑝−1 mod 𝑝 . The latter compu-

tation can be carried out by the square-and-multiply algorithmwith

up to 2ℓ consecutive multiplications, where, as before, ℓ = log𝑝 .

Finally, as 1𝑥=0 = 1 − 1𝑥≠0, then shares in 1𝑥≠0 can be readily

translated into shares in 1𝑥=0. The cost of the above described com-

putation is significantly smaller than the cost of the alternative

approach that performs positivity testing of both 𝑥 and −𝑥 .

3 A SECURE ORDER BASED VOTING
PROTOCOL

In this section, we describe our method for securely computing the

winners in two order-based voting rules, Copeland and Maximin.

We begin with formal definitions in Section 3.1. Then, in Section

3.2, we characterize legal ballot matrices for each of the two rules.

Such a characterization is an essential part of our method since the

talliers need to verify, in an oblivious manner, that each cast ballot

is indeed legal, and does not hide a malicious attempt to cheat or

sabotage the elections. In other words, the talliers need to verify the

legality of each cast ballot only through its secret shares, without

recovering the actual ballot. The characterization that we describe

in Section 3.2 will be used later on to perform such an oblivious

validation.

Then, in Section 3.3 we introduce our secure voting protocol.

That protocol description includes a sub-protocol for validating

the cast ballots and sub-protocols for computing the final election

results from all legal ballots. The validation sub-protocols are de-

scribed in Sections 3.4 and 3.5. The sub-protocols for computing the

election results are described in Sections 3.6 and 3.7 for Copeland

and Maximin rules, respectively.

We conclude this section with a discussion of the overall security

of our protocol (Section 3.8) and its implementation in an end-to-

end voting system (Section 3.9).

3.1 Formal definitions
We consider a setting in which there are𝑁 voters,V = {𝑉1, . . . ,𝑉𝑁 },
that wish to hold an election over𝑀 candidates, C = {𝐶1, . . . ,𝐶𝑀 },
and select 1 ≤ 𝐾 < 𝑀 out of them. We proceed to define the two

order-based rules for which we devise a secure MPC protocol in

this section.

Copeland. Define for each 𝑉𝑛 a ballot matrix 𝑃𝑛 = (𝑃𝑛 (𝑚,𝑚′) :
𝑚,𝑚′ ∈ [𝑀]), where 𝑃𝑛 (𝑚,𝑚′) = 1 if𝐶𝑚 is ranked higher than𝐶𝑚′

in 𝑉𝑛 ’s ranking, 𝑃𝑛 (𝑚,𝑚′) = −1 if 𝐶𝑚 is ranked lower than 𝐶𝑚′ ,

and all diagonal entries are 0. Then the aggregated ballot matrix,

𝑃 =

𝑁∑
𝑛=1

𝑃𝑛 , (3)

induces the following score for each candidate:

w(𝑚) := |{𝑚′ ≠𝑚 : 𝑃 (𝑚,𝑚′) > 0}| +𝛼 |{𝑚′ ≠𝑚 : 𝑃 (𝑚,𝑚′) = 0}| .
(4)

Namely,w(𝑚) equals the number of candidates𝐶𝑚′ that a majority

of the voters ranked lower than 𝐶𝑚 , plus 𝛼 times the number of

candidates 𝐶𝑚′ who broke even with 𝐶𝑚 . The parameter 𝛼 can be

set to any rational number between 0 and 1. The most common

setting is 𝛼 = 1

2
; the Copeland rule with this setting of 𝛼 is known

as Copeland

1

2 [22].

Maximin. Define the matrices 𝑃𝑛 so that 𝑃𝑛 (𝑚,𝑚′) = 1 if 𝐶𝑚
is ranked higher than 𝐶𝑚′ in 𝑉𝑛 ’s ranking, while 𝑃𝑛 (𝑚,𝑚′) = 0

otherwise. As in Copeland rule, we let 𝑃 denote the sum of all

ballot matrices, see Eq. (3). Then 𝑃 (𝑚,𝑚′) is the number of voters

who preferred 𝐶𝑚 over 𝐶𝑚′ . The final score of 𝐶𝑚 , 𝑚 ∈ [𝑀], is
then set to w(𝑚) := min𝑚′≠𝑚 𝑃 (𝑚,𝑚′).
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3.2 Characterization of legal ballot matrices in
the Copeland andMaximin rules

Here, we characterize the ballot matrices in each of the two order-

based rules that we consider. Such a characterization will be used

later on in the secure voting protocol.

Theorem 3. An 𝑀 × 𝑀 matrix 𝑄 is a valid ballot under the
Copeland rule iff it satisfies the following conditions:

(1) 𝑄 (𝑚,𝑚′) ∈ {−1, 1} for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(2) 𝑄 (𝑚,𝑚) = 0 for all𝑚 ∈ [𝑀];
(3) 𝑄 (𝑚′,𝑚) +𝑄 (𝑚,𝑚′) = 0 for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(4) The set {𝑄𝑚 :=

∑
𝑚′∈[𝑀 ] 𝑄 (𝑚′,𝑚)}𝑚∈[𝑀 ] consists of𝑀 dis-

tinct values.

Theorem 4. An𝑀 ×𝑀 matrix 𝑄 is a valid ballot under theMax-

imin rule iff it satisfies the following conditions:

(1) 𝑄 (𝑚,𝑚′) ∈ {0, 1} for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(2) 𝑄 (𝑚,𝑚) = 0 for all𝑚 ∈ [𝑀];
(3) 𝑄 (𝑚′,𝑚) +𝑄 (𝑚,𝑚′) = 1 for all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;
(4) The set {𝑄𝑚 :=

∑
𝑚′∈[𝑀 ] 𝑄 (𝑚′,𝑚)}𝑚∈[𝑀 ] consists of𝑀 dis-

tinct values.

We conclude this section with the following observation. Let us

define a projection mapping Γ : Z𝑀×𝑀
𝑝 ↦→ Z𝑀 (𝑀−1)/2

𝑝 , which takes

an𝑀 ×𝑀 matrix 𝑄 ∈ Z𝑀×𝑀
𝑝 and outputs its upper triangle,

Γ(𝑄) := (𝑄 (𝑚,𝑚′) : 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀) .

Conditions 2 and 3 in Theorems 3 and 4 imply that every ballot

matrix, 𝑃𝑛 , is fully determined by its upper triangle, Γ(𝑃𝑛), in either

of the two voting rules that we consider.

3.3 A secure voting protocol
Here we present Protocol 1, a privacy-preserving implementation

of the Copeland and Maximin order-based rules. The protocol

computes, in a privacy-preserving manner, the winners in elections

that are governed by those rules. It has two phases.

Phase 1 (Lines 1-8) is the voting phase. Here, each voter 𝑉𝑛 , 𝑛 ∈
[𝑁 ] := {1, . . . , 𝑁 }, constructs his ballot matrix, 𝑃𝑛 (Line 2). He then

samples a random share-generating polynomial of degree 𝐷 ′−1 for

each of the𝑀 (𝑀 − 1)/2 entries in Γ(𝑃𝑛), where Γ is the projection

mapping defined in Section 3.2 (Lines 3-5). Finally, he sends to

each tallier his relevant share in each of those entries, namely,

the value of the corresponding share-generating polynomial at

𝑥 = 𝑑 , 𝑑 ∈ [𝐷] (Lines 6-7). Following that, the talliers engage in

an MPC sub-protocol to verify the legality of 𝑉𝑛 ’s ballot, without

actually recovering that ballot (Line 8). We describe the validation

sub-protocol in Section 3.4. Ballots that are found to be illegal are

discarded.

Phase 2 of the protocol (Lines 9-11) is carried out after the voting

phase had ended. First (Lines 9-10), each of the talliers, 𝑇𝑑 , 𝑑 ∈
[𝐷], computes his 𝐷 ′

-out-of-𝐷 share, denoted 𝐺𝑑 (𝑚,𝑚′), in the

(𝑚,𝑚′)th entry of the aggregated ballot matrix 𝑃 , see Eq. (3), for

all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 . The heart of the protocol is in Line 11: here,

the talliers engage in an MPC sub-protocol in order to find the

indices of the 𝐾 winning candidates. We describe the details of

those computations in Sections 3.6 and 3.7.

Protocol 1: A basic protocol for secure order-based voting

Input: A set of𝑀 candidates C; 𝐾 ∈ [𝑀]; a set of voters V.
1 forall 𝑉𝑛 , 𝑛 ∈ [𝑁 ], do
2 Construct the ballot matrix, 𝑃𝑛 , according to the

selected indexing of candidates and the voting rule;

3 forall 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 do
4 Select uniformly at random 𝑎𝑛,𝑚,𝑚′, 𝑗 ∈ Z𝑝 ,

1 ≤ 𝑗 ≤ 𝐷 ′ − 1;

5 Set 𝑔𝑛,𝑚,𝑚′ (𝑥) = 𝑃𝑛 (𝑚,𝑚′) + ∑𝐷′−1
𝑗=1 𝑎𝑛,𝑚,𝑚′, 𝑗𝑥

𝑗
;

6 forall 𝑑 ∈ [𝐷] do
7 Send to 𝑇𝑑 the set

{𝑛,𝑚,𝑚′, 𝑔𝑛,𝑚,𝑚′ (𝑑) : 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀};
8 After all talliers receive their shares in 𝑉𝑛 ’s ballot, they

engage in an MPC sub-protocol to check its legality;

9 forall 𝑇𝑑 , 𝑑 ∈ [𝐷] do
10 Set 𝐺𝑑 (𝑚,𝑚′) = ∑

𝑛∈[𝑁 ] 𝑔𝑛,𝑚,𝑚′ (𝑑), for all
1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 ;

11 𝑇1, . . . ,𝑇𝐷 find the indices of the 𝐾 winners and publish

them;

Output :The 𝐾 winning candidates from C.

3.4 Verifying the legality of the cast ballots
Voters may attempt to cheat by submitting illegal ballots in order

to help their preferred candidate, or in order to sabotage the proper

aggregation of the ballots. In real-life electronic elections, where

voters typically cast their ballots on certified computers in voting

centers, the chances of hacking such computers and tampering

with the software are small. However, for full-proof security and

as a countermeasure against dishonest voters that might manage

to hack the voting system, we proceed to describe an MPC sub-

protocol that enables the talliers to verify the legality of each ballot,

even though those ballots remain hidden from them.

We note that in case a ballot is found to be illegal, it is possible

to notify the voter that his ballot was rejected and allow him to

resubmit it once again. If the resubmitted ballot is still illegal, the

talliers may reconstruct it (by means of interpolation from the

shares of 𝐷 ′
talliers) and use the recovered ballot as proof of the

voter’s dishonesty. The ability to construct such proofs, which could

be used in legal actions against dishonest voters, might deter voters

from attempting to cheat in the first place.

We proceed to explain how the talliers can verify the legality of

the cast ballots in each of the two order-based rules. That validation

is based on the characterizations of legal ballots as provided in

Theorems 3 and 4 for Copeland and Maximin, respectively. Note

that the talliers need only to verify conditions 1 and 4; condition 2

needs no verification since the voters do not distribute shares in

the diagonal entries, as those entries are known to be zero; and

condition 3 needs no verification since the voters distribute shares

only in the upper triangle and then the talliers use condition 3 in

order to infer the lower triangle from the shared upper triangle.

Verifying condition 1. Consider the shares that a voter dis-

tributed in Γ(𝑄), where 𝑄 is his ballot matrix. The talliers need

to verify that each entry in the shared Γ(𝑄) is either 1 or −1 in

Copeland, or either 1 or 0 in Maximin. The verification is per-

formed independently on each of the 𝑀 (𝑀 − 1)/2 entries of the
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shared upper triangle. A shared scalar 𝑥 is in {−1, 1} (resp. in {0, 1})
iff (𝑥 + 1) · (𝑥 − 1) = 0 (resp. 𝑥 · (𝑥 − 1) = 0). Hence, the talliers

use their shares in 𝑥 to compute the product (𝑥 + 1) · (𝑥 − 1) for
Copeland or 𝑥 · (𝑥 − 1) for Maximin, as described in Section 2.3.

If the computed product is zero for each of the𝑀 (𝑀 − 1)/2 entries
of Γ(𝑄), then Γ(𝑄) satisfies condition 1 in Theorem 3 (Copeland)

or in Theorem 4 (Maximin). If, on the other hand, some of the

multiplication gates issue a nonzero output, then the ballot will be

rejected.

Verifying condition 4. First, we make the following observa-

tion. Let 𝑥,𝑦 ∈ Z𝑝 be two values that are shared among the talliers.

Denote by 𝑥𝑑 and 𝑦𝑑 the 𝐷 ′
-out-of-𝐷 shares that 𝑇𝑑 has in 𝑥 and

𝑦, respectively. Then if 𝑎, 𝑏 ∈ Z𝑝 are two publicly known field ele-

ments, it is easy to see that 𝑎𝑥𝑑 +𝑏𝑦𝑑 is a proper 𝐷 ′
-out-of-𝐷 share

in 𝑎𝑥 + 𝑏𝑦, 𝑑 ∈ [𝐷]. Also 𝑎 + 𝑥𝑑 is a proper 𝐷 ′
-out-of-𝐷 share in

𝑎 + 𝑥 .
Using the above observation regarding the linearity of secret

sharing, then once the talliers receive 𝐷 ′
-out-of-𝐷 shares in each

entry in Γ(𝑄), they can proceed to compute 𝐷 ′
-out-of-𝐷 shares in

the corresponding column sums, 𝑄𝑚 ,𝑚 ∈ [𝑀], as we proceed to

show.

In Copeland, conditions 2 and 3 in Theorem 3 imply that

𝑄𝑚 =
∑

𝑚′∈[𝑀 ]
𝑄 (𝑚′,𝑚) =

∑
𝑚′<𝑚

𝑄 (𝑚′,𝑚) −
∑
𝑚<𝑚′

𝑄 (𝑚,𝑚′) . (5)

Since the talliers hold shares in 𝑄 (𝑚′,𝑚) for all 1 ≤ 𝑚′ < 𝑚 ≤ 𝑀 ,

they can use Eq. (5) and the linearity of secret sharing to compute

shares in 𝑄𝑚 ,𝑚 ∈ [𝑀]. In Maximin, on the other hand, conditions

2 and 3 in Theorem 4 imply that

𝑄𝑚 =
∑
𝑚′<𝑚

𝑄 (𝑚′,𝑚) −
∑
𝑚<𝑚′

𝑄 (𝑚,𝑚′) + (𝑀 −𝑚) . (6)

Here too, the linearity of sharing and the relation in Eq. (6) enable

the talliers to compute shares in 𝑄𝑚 ,𝑚 ∈ [𝑀], also in the case of

Maximin.

Now, it is necessary to verify that all𝑀 values𝑄𝑚 ,𝑚 ∈ [𝑀], are
distinct. That condition can be verified by computing the product

𝐹 (𝑄) :=
( ∏
1≤𝑚′<𝑚≤𝑀

(𝑄𝑚 −𝑄𝑚′)
)
2

. (7)

Condition 4, in both rules, holds iff 𝐹 (𝑄) ≠ 0. Hence, the talliers,

who hold shares in 𝑄𝑚 , 𝑚 ∈ [𝑀], may compute 𝐹 (𝑄) and then

accept the ballot iff 𝐹 (𝑄) ≠ 0.

Privacy of the verification sub-protocol. A natural question

that arises is whether the above described validation process poses

a risk to the privacy of the voters. In other words, a voter that casts

a legal ballot wants to be ascertained that the validation process

only reveals that the ballot is legal, while all other information is

kept hidden from the talliers. We proceed to examine that question.

The procedure for verifying condition 1 in Theorems 3 and 4

offers perfect privacy for honest voters. If the ballot 𝑄 is legal then

all multiplication gates will issue a zero output. Hence, apart from

the legality of the ballot, the talliers will not learn anything about

the content of the ballot.

The procedure for verifying condition 4 in Theorems 3 and 4 also

offers perfect privacy, as we proceed to argue. If𝑄 is a valid ballot in

Copeland, then the ordered tuple (𝑄1, . . . , 𝑄𝑀 ) is a permutation of

the ordered tuple (−𝑀 +1,−𝑀 +3, . . . , 𝑀 −3, 𝑀 −1). This statement

follows from the proof of condition 4 in Theorem 3. Hence, as can

be readily verified,∏
1≤𝑚′<𝑚≤𝑀

(𝑄𝑚 −𝑄𝑚′) = ±2(
𝑀
2
) ·

∏
1≤𝑚′<𝑚≤𝑀

(𝑚 −𝑚′) , (8)

where the sign of the product in Eq. (8) is determined by the signa-

ture of (𝑄1, . . . , 𝑄𝑀 ) when viewed as a permutation of the ordered

tuple (−𝑀 + 1,−𝑀 + 3, . . . , 𝑀 − 3, 𝑀 − 1). Hence, as the talliers com-

pute 𝐹 (𝑄), Eq. (7), which equals the square of the product on the

left hand side of Eq. (8), then for any legal ballot they will always

recover the same value, which is

𝐹 (𝑄) =
(
2
(𝑀
2
) ·

∏
1≤𝑚′<𝑚≤𝑀

(𝑚 −𝑚′)
)
2

.

Similarly, the procedure for verifying condition 4 in Theorem

4, for Maximin, is also privacy-preserving in the same manner.

Indeed, in the case of Maximin, (𝑄1, . . . , 𝑄𝑀 ) is a permutation of

the ordered tuple (0, 1, . . . , 𝑀 − 2, 𝑀 − 1), and, therefore,

𝐹 (𝑄) =
( ∏
1≤𝑚′<𝑚≤𝑀

(𝑚 −𝑚′)
)
2

.

Computational cost. Verifying condition 1 can be performed

in parallel for all 𝑀 (𝑀 − 1)/2 entries in a given ballot, and also

for several different ballots. Hence, in order to perform a batch

validation of 𝐵 ballots, the talliers need to compute 𝐵𝑀 (𝑀 − 1)/2
simultaneous multiplication gates.

The verification of condition 4 over a single ballot requires per-

forming a sequence of𝑀 (𝑀 − 1)/2 multiplications. Hence, in order

to perform a batch validation of 𝐵 ballots, the talliers need to go

through𝑀 (𝑀 − 1)/2 rounds, where in each round they compute 𝐵

simultaneous multiplication gates.

3.5 Verifying the legality of the secret sharing
A malicious voter 𝑉 may attempt to sabotage the election by dis-

tributing to the 𝐷 talliers shares that do not correspond to a poly-

nomial of degree 𝐷 ′ − 1. Namely, if {𝑠1, . . . , 𝑠𝐷 } are the shares that
𝑉 distributed to 𝑇1, . . . ,𝑇𝐷 in one of the entries in his ballot matrix,

it is possible that there is no polynomial 𝑔 of degree (up to) 𝐷 ′ − 1

such that 𝑔(𝑑) = 𝑠𝑑 for all 𝑑 ∈ [𝐷]. By carefully selecting those

shares, they may still pass the verification tests as described in

Section 3.4 with some non-negligible probability, and then they

would be integrated in the final computation of the winners. Since

such shares do not correspond to a legal vote, they may sabotage

the final computation of the winners (as we describe later on in

Sections 3.6 and 3.7). To prevent such an attack, we explain herein

how the talliers may detect it without learning anything on the

submitted ballot (beyond the mere legality of the secret sharing

that was applied to it). To that end the talliers proceed as follows:

(1) Each tallier 𝑇𝑑 , 𝑑 ∈ [𝐷], produces a random number 𝑟𝑑 and

distributes to all talliers 𝐷 ′
-out-of-𝐷 shares in it, denoted

{𝑟𝑑,1, . . . , 𝑟𝑑,𝐷 }.
(2) Each 𝑇𝑑 , 𝑑 ∈ [𝐷], computes 𝑠𝑑 = 𝑠𝑑 + ∑

𝑗 ∈[𝐷 ] 𝑟 𝑗,𝑑 . Namely,

𝑇𝑑 adds to the share that he had received from𝑉 in the secret

entry in𝑉 ’s ballot matrix the shares received from all talliers

in the random numbers that they had produced.
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(3) Each 𝑇𝑑 , 𝑑 ∈ [𝐷], broadcasts 𝑠𝑑 .
(4) All talliers compute a polynomial 𝑓 of degree up to 𝐷 − 1

such that 𝑓 (𝑑) = 𝑠𝑑 , 𝑑 ∈ [𝐷].
(5) If deg 𝑓 ≤ 𝐷 ′ − 1 then the set of shares {𝑠1, . . . , 𝑠𝐷 } that 𝑉

had distributed is a legal 𝐷 ′
-out-of-𝐷 sharing of some scalar

in the field.

(6) Otherwise, the ballot is rejected.

Lemma 5. The above procedure is correct and fully preserves the
voter’s privacy.

We note that the first step can be executed even before the

election period starts. Namely, once the number of registered voters,

𝑁 , and the number of candidates, 𝑀 , are determined, the talliers

can produce 𝑁𝑀 (𝑀 − 1)/2 random values and distribute shares

in them to be used later on in masking the𝑀 (𝑀 − 1)/2 entries in
each voter’s ballot matrix.

3.6 Computing the winners in Copeland rule
The parameter 𝛼 in Eq. (4) is always a rational number; typical

settings of 𝛼 are 0, 1, or
1

2
[22]. Assume that 𝛼 = 𝑠

𝑡 for some

integers 𝑠 and 𝑡 . Then

𝑡 ·w(𝑚) = 𝑡 ·
∑
𝑚′≠𝑚

1𝑃 (𝑚,𝑚′)>0 + 𝑠 ·
∑
𝑚′≠𝑚

1𝑃 (𝑚,𝑚′)=0 . (9)

The expression in Eq. (9) involves all entries in 𝑃 outside the di-

agonal. However, the talliers hold 𝐷 ′
-out-of-𝐷 shares, denoted

𝐺𝑑 (𝑚,𝑚′), 𝑑 ∈ [𝐷], in 𝑃 (𝑚,𝑚′) only for entries above the diag-

onal, 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 (see Lines 9-10 in Protocol 1). Hence, we

first translate Eq. (9) into an equivalent expression that involves

only entries in 𝑃 above the diagonal. Condition 3 in Theorem 3,

together with Eq. (3), imply that 𝑃 (𝑚′,𝑚) = −𝑃 (𝑚,𝑚′). Hence,
for all𝑚′ < 𝑚, we can replace 1𝑃 (𝑚,𝑚′)=0 with 1𝑃 (𝑚′,𝑚)=0, while
1𝑃 (𝑚,𝑚′)>0 can be replaced with 1−𝑃 (𝑚′,𝑚)>0. Hence,

𝑡 ·w(𝑚) =𝑡 ·
{ ∑
𝑚′>𝑚

1𝑃 (𝑚,𝑚′)>0 +
∑
𝑚′<𝑚

1−𝑃 (𝑚′,𝑚)>0

}
+

𝑠 ·
{ ∑
𝑚′>𝑚

1𝑃 (𝑚,𝑚′)=0 +
∑
𝑚′<𝑚

1𝑃 (𝑚′,𝑚)=0

} (10)

Eq. (10) expresses the score of candidate 𝐶𝑚 , re-scaled by a factor

of 𝑡 , only by entries in 𝑃 above the diagonal, in which the talliers

hold 𝐷 ′
-out-of-𝐷 secret shares.

In view of the above, the talliers may begin by computing secret

shares in the bits of positivity in the first sum on the right-hand

side of Eq. (10), by using the MPC sub-protocol described in Section

2.5. As for the bits of equality to zero in the second sum on the

right-hand side of Eq. (10), the talliers can compute secret shares in

them using the MPC sub-protocol described in Section 2.6. As the

value of 𝑡 ·w(𝑚) is a linear combination of those bits, the talliers

can then use the secret shares in those bits and Eq. (10) in order

to get secret shares in 𝑡 · w(𝑚), for each of the candidates, 𝐶𝑚 ,

𝑚 ∈ [𝑀].
Next, they perform secure comparisons among the values 𝑡w(𝑚),

𝑚 ∈ [𝑀], in order to find the 𝐾 candidates with the highest scores.

To do that, they need to perform 𝑀 − 1 secure comparisons (as

described in Section 2.4) in order to find the candidate with the

highest score,𝑀 − 2 additional comparisons to find the next one,

and so forth down to𝑀 − 𝐾 comparisons in order to find the 𝐾th

winning candidate. Namely, the overall number of comparisons in

this final stage is

∑𝑀−1
𝑚=𝑀−𝐾 𝑚 = 𝐾 ·

(
𝑀 − 𝐾+1

2

)
, which is bounded

by 𝑀 (𝑀 − 1)/2 for all 𝐾 < 𝑀 . Once this computational task is

concluded, the talliers publish the indices of the 𝐾 winners (Line

11 in Protocol 1).

We summarize the above described computation in Sub-protocol

2, which is an implementation of Line 11 in Protocol 1. It assumes

that the talliers hold 𝐷 ′
-out-of-𝐷 secret shares in 𝑃 (𝑚,𝑚′) for all

1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 . Indeed, that computation has already taken place

in Lines 9-10 of Protocol 1. Sub-protocol 2 starts with a computation

of 𝐷 ′
-out-of-𝐷 shares in all of the positivity bits and equality to

zero bits that relate to the entries above the diagonal in 𝑃 (Lines 1-4).

Then, in Lines 5-7, the talliers use those shares in order to obtain𝐷 ′
-

out-of-𝐷 shares in 𝑡 ·w(𝑚) for each of the candidates, using Eq. (10);
the 𝐷 ′

-out-of-𝐷 shares in 𝑡 ·w(𝑚) are denoted {𝑤𝑑 (𝑚) : 𝑑 ∈ [𝐷]}.
Finally, using the secure comparison sub-protocol, they find the 𝐾

winners (Lines 8-10).

Sub-Protocol 2: Computing the winners in Copeland rule

Input: 𝑇𝑑 , 𝑑 ∈ [𝐷], has 𝐺𝑑 (𝑚,𝑚′) (a share in 𝑃 (𝑚,𝑚′)) for
all 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 .

1 forall 1 ≤ 𝑚 < 𝑚′ ≤ 𝑀 do
2 The talliers apply the positivity sub-protocol to translate

{𝐺𝑑 (𝑚,𝑚′) : 𝑑 ∈ [𝐷]} into shares

{𝜎+
𝑑
(𝑚,𝑚′) : 𝑑 ∈ [𝐷]} in 1𝑃 (𝑚,𝑚′)>0;

3 The talliers apply the positivity sub-protocol to translate

{𝐺𝑑 (𝑚,𝑚′) : 𝑑 ∈ [𝐷]} into shares

{𝜎−
𝑑
(𝑚,𝑚′) : 𝑑 ∈ [𝐷]} in 1−𝑃 (𝑚,𝑚′)>0;

4 The talliers apply the equality to zero sub-protocol to

translate {𝐺𝑑 (𝑚,𝑚′) : 𝑑 ∈ [𝐷]} into shares

{𝜎0
𝑑
(𝑚,𝑚′) : 𝑑 ∈ [𝐷]} in 1𝑃 (𝑚,𝑚′)=0;

5 forall 𝑑 ∈ [𝐷] do
6 forall𝑚 ∈ [𝑀] do
7 𝑇𝑑 computes𝑤𝑑 (𝑚) =

𝑡 ·
{∑

𝑚′>𝑚 𝜎
+
𝑑
(𝑚,𝑚′) + ∑

𝑚′<𝑚 𝜎
−
𝑑
(𝑚′,𝑚)

}
+

𝑠 ·
{∑

𝑚′>𝑚 𝜎
0

𝑑
(𝑚,𝑚′) + ∑

𝑚′<𝑚 𝜎
0

𝑑
(𝑚′,𝑚)

}
;

8 forall 𝑘 ∈ [𝐾] := {1, . . . , 𝐾} do
9 The talliers perform𝑀 − 𝑘 invocations of the secure

comparison sub-protocol over the𝑀 − 𝑘 + 1 candidates

in C in order to find the 𝑘th elected candidate;

10 The talliers output the candidate that was found and

remove him from C;
Output :The 𝐾 winning candidates from C.

3.7 Coputing the winners inMaximin rule
Fixing 𝑚 ∈ [𝑀], the talliers need first to find the index 𝑚′ ≠ 𝑚

whichminimizes 𝑃 (𝑚,𝑚′); once𝑚′
is found thenw(𝑚) = 𝑃 (𝑚,𝑚′).

To do that (finding aminimum among𝑀−1 values), the talliers need
to perform𝑀−2 secure comparisons. That means an overall number

of𝑀 (𝑀 − 2) secure comparisons for the first stage in the talliers’

computation of the final results (namely, the computation of the

scores for all candidates under the Maximin rule). The second stage
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is just like in Copeland — finding the indices of the 𝐾 candidates

with the highestw scores. As analyzed earlier, that task requires an

invocation of the secure comparison sub-protocol at most𝑀 (𝑀 −
1)/2 times. Namely, the determination of the winners in the case

of Maximin requires performing the comparison sub-protocol less

than 1.5𝑀2
times.

3.8 The protocol’s security
The talliers hold 𝐷 ′

-out-of-𝐷 shares in each of the ballot matrices,

𝑃𝑛 , 𝑛 ∈ [𝑁 ], as well as in the aggregated ballot matrix 𝑃 . Under

our assumption of honest majority, and our setting of 𝐷 ′
, Eq. (1),

the talliers cannot infer any information on any entry in any of the

ballot matrices nor in the aggregated ballot matrix. They then use

those shares in the following sub-protocols:

(a) validating the legality of secret sharing (Section 3.5),

(b) validating the legality of the ballots (Section 3.4), and

(c) computing the final election results (Sub-protocol 2).

All of those sub-protocols are perfectly secure, as we proceed to

explain. The protocol for validating the legality of secret sharing

preserves perfect privacy, as shown in Lemma 5. The validation

protocols of Section 3.4 are based on the arithmetic circuit con-

struction of [19] and [14], which was shown there to be secure.

Finally, Sub-protocol 2 invokes the positivity testing sub-protocol

(Lines 2-3), the sub-protocol that tests equality to zero (Line 4), and

the secure comparison sub-protocol (Line 9), that we described in

Sections 2.4–2.6. The secure comparison sub-protocol is perfectly

secure, as was shown in [35]. The positivity testing sub-protocol

that we presented here is just an implementation of one component

from the secure comparison sub-protocol, hence it is also perfectly

secure. Finally, the testing of equality to zero invokes the arithmetic

circuit construction of [19] and [14], which was shown there to be

secure.

In summary, Protocol 1 invokes five MPC sub-protocols, each

of which is perfectly secure under the assumption of an honest

majority. In view of the Modular Composition Theorem [10], we

arrive at the following conclusion.

Theorem 6. Under the assumption that the talliers are all semi-
honest and that they have an honest majority, Protocol 1 is secure
against malicious voters, it outputs the correct election results, and it
fully preserves the voters’ privacy.

We observe that in performing the secure comparisons, the tal-

liers may learn information which exceeds the desired election

results. Specifically, at the end of the protocol the talliers learn,

for some pairs of candidates, the ranking between them (or even

the full ranking of all candidates). However, they output to the

voters only the desired results, being the identity of the 𝐾 winners,

with or without the internal ranking between them. It is possible

to enhance our protocols so that also the talliers, and not just the

voters, learn only the desired output without additional ranking

information, using techniques as presented recently in [45].

3.9 End-to-end system
We would like to stress that our protocols focus on securing the

computation of the election results. Needless to say that those

protocols must be integrated into a comprehensive system that

takes care of other aspects of voting systems. For example, it is

essential to guarantee that only registered voters can vote and that

each one can vote just once. It is possible to ensure such conditions

by standard means, outside our MPC protocols.

Another requirement is the need to prevent attacks from ma-

licious adversaries. In the context of our protocols, an adversary

may eavesdrop on the communication link between some voter 𝑉𝑛
and at least 𝐷 ′

of the talliers and intercept the messages that 𝑉𝑛
sends to them (in Protocol 1’s Line 7) to recover 𝑉𝑛 ’s ballot. That

adversary may also replace 𝑉𝑛 ’s original messages to all 𝐷 talliers

with other messages (say, ones that carry shares of a ballot that

reflects the adversary’s preferences). Such attacks can be easily

thwarted by requiring each party (a voter or a tallier) to have a

certified public key, encrypt each message that he sends out using

the receiver’s public key and then sign it using his own private key;

also, when receiving messages, each party must first verify them

using the public key of the sender and then send a suitable message

of confirmation to the receiver. Namely, each message that a voter

𝑉𝑛 sends to a tallier 𝑇𝑑 in Line 7 of Protocol 1 should be signed

with 𝑉𝑛 ’s private key and then encrypted by 𝑇𝑑 ’s public key; and

𝑇𝑑 must acknowledge its receipt and verification.

Lastly, an important aspect of every voting system is verifiability.
This property can be achieved by applying techniques such as the

ones presented by Huber et al. [28]. Those techniques do not depend

on the underlying voting rule, and they can be applied on top of

our MPC protocols for computing the election results in a secure

manner. We note, however, that Huber et al. [28] point out a trade-

off between full privacy and verifiability; specifically, for a system

to be verifiable, the talliers must learn at least the aggregated votes.

4 EVALUATION: COMPUTATIONAL COSTS
Our goal herein is to establish the practicality of our protocol.

Our protocol relies on expensive cryptographic sub-protocols —

secure comparisons and secure multiplications. All other operations

that the voters and talliers do (random number generation, and

standard/non-secure additions and multiplications) have negligible

costs in comparison to those of the cryptographic computations.

In this section, we provide upper bounds for the overall cost of

the cryptographic computations, in various election settings, in

order to show that our protocol is viable and can be implemented

in practical elections with very light overhead.

4.1 Parameters
Four parameters affect the performance of our protocol:

(a) The size 𝑝 of the underlying field. We chose the prime

𝑝 = 2
31 − 1 as the size of the underlying field, which is sufficiently

large for our purposes. Moreover, that specific setting of 𝑝 serves

us well also due to another reason: 𝑝 = 2
31 − 1 is a Mersenne prime

(namely, a prime of the form 2
𝑡 − 1 for some integer 𝑡 ). Choosing

such primes is advantageous, from a computational point of view,

since multiplying two elements in such fields can be done without

performing an expensive division (in case the multiplication result

exceeds the modulus).

(b) The number 𝐷 of talliers. We set that number to be 𝐷 ∈
{3, 5, 7, 9}.

(c) The number 𝑀 of candidates. Order-based rules require

each voter to provide a full ordering of the entire set of candidates.
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#layers #multiplication gates

per layer

𝐷 = 3 𝐷 = 5 𝐷 = 7 𝐷 = 9

20 50000 826 844 1058 1311

100 10000 842 989 1154 1410

1000 1000 1340 1704 1851 2243

Table 1: Runtimes (milliseconds) for computing 106 multipli-
cation gates, spread evenly over 20, 100, and 1000 layers, as a
function of the number 𝐷 of talliers. The first two columns
show the number of layers and the number of multiplica-
tion gates per layer in each setting.

Pairwise comparison is a common method for eliciting voter pref-

erences when a full order is required. A sequence of comparative

questions in the form of “Which of the following two candidates do

you prefer?" are easier for the voter than a request for a complete

order, see [20]. Whether the voters are required to submit a full

ranking of the set of𝑀 candidates, or they need to compare pairs of

candidates (in which case roughly log
2
(𝑀!) questions are needed

in order to determine a full ordering of the𝑀 candidates), it is clear

that such order-based rules are relevant only for a small number of

candidates. In our evaluation, we considered𝑀 ∈ {5, 10, 20}.
(d) The number 𝑁 of voters. That number affects only the

time for validating the cast ballots. We provide here runtimes for

validating batches of 𝐵 ballots, for 𝐵 ∈ {500, 5000, 25000}. Those
runtimes should be multiplied by 𝑁 /𝐵 in order to get the overall

time for validating all incoming ballots.

4.2 The cost of batch validation of ballots
As discussed in Section 3.4, the batch validation of 𝐵 ballots in-

volves 𝐵𝑀 (𝑀 − 1)/2 simultaneous multiplications (for verifying

condition 1) and𝑀 (𝑀 − 1)/2 consecutive rounds with 𝐵 simulta-

neous multiplications in each (for verifying condition 4). We can

perform the verification of both conditions in parallel by spread-

ing the 𝐵𝑀 (𝑀 − 1)/2 simultaneous multiplications for verifying

condition 1 over𝑀 (𝑀 − 1)/2 consecutive rounds with 𝐵 simulta-

neous multiplications in each. Hence, the total workload would be

𝑀 (𝑀 − 1)/2 rounds with 2𝐵 simultaneous multiplications in each

round.

Chida et al. [14] report runtimes for performing secure multipli-

cations. Their experimentswere carried onAmazonAWSm5.4xlarge
machines at N. Virginia over a network with bandwidth 9.6Gbps.

They experimented over a larger field of size 𝑝 ′ = 2
61 − 1 (which is

also a Mersenne prime). Clearly, runtimes for our smaller prime,

𝑝 = 2
31 − 1, would be shorter; but since we are interested only in

upper-bounding the computational overhead of our protocol, in

order to establish its practicality, those numbers will suffice for our

needs. They experimented with a circuit that consists of one million

multiplication gates that are evenly spread over {20, 100, 1000} lay-
ers; hence, in each layer there are {5 · 104, 104, 103} multiplication

gates, respectively. The reported runtimes as a function of 𝐷 , the

number of talliers, are shown in Table 1.

We begin by computing the needed runtimes for performing

batch validations when𝑀 = 20. We exemplify the computation in

two cases: one in which the batch size is 𝐵 = 500 and another in

which the batch size is increased 50-fold, i.e., 𝐵 = 25000.

𝐵 = 500 𝐵 = 5000 𝐵 = 25000

𝑀 = 5 27/34/37/45 17/20/23/28 16/17/21/26

𝑀 = 10 121/153/167/202 76/89/104/127 74/76/95/118

𝑀 = 20 510/648/704/852 320/376/439/536 314/321/402/498

Table 2: Runtimes (seconds) for validating 1 million ballots
in order-based rules, as a function of the number of candi-
dates 𝑀 , the batch size 𝐵, and the number of talliers 𝐷 . The
table’s entry relating to 𝑀 and 𝐵 shows the validation run-
times for 𝐷 = 3/5/7/9.

To validate 𝐵 = 500 ballots when 𝑀 = 20 it is necessary to

perform 𝑀 (𝑀 − 1)/2 = 190 rounds of 2𝐵 = 1000 simultaneous

multiplications in each. The runtimes for such a computation can

be inferred from the third row in Table 1, if wemultiply the runtimes

shown there by a factor of
190

1000
. That is, the batch validation of

𝐵 = 500 ballots would take 255/324/352/426 mili-seconds when

𝐷 = 3/5/7/9. Therefore, to validate a million ballots, it would take

510/648/704/852 seconds.
Those runtimes may be improved by enlarging the batch size.

The time to validate a batch of 𝐵 = 25000 ballots, when 𝑀 = 20,

can be inferred from the first row in Table 1, if we multiply the

runtimes shown there by a factor of
190

20
. That is, the batch validation

of 𝐵 = 25000 ballots would take 7.847/8.018/10.051/12.454 seconds
when 𝐷 = 3/5/7/9. Therefore, validating a million ballots, would

take 314/321/402/498 seconds.
In general, it is not hard to see that the runtimes for validat-

ing one million ballots in batches of size 𝐵 = 500/5000/25000 can
be read from Table 1 by multiplying the times reported there in

the third/second/first row by a factor of 𝑀 (𝑀 − 1). Table 2 in-

cludes runtimes for validating 1 million ballots in batches of 𝐵 ∈
{500, 5000, 25000} ballots when𝑀 ∈ {5, 10, 20}, for 𝐷 = 3/5/7/9.

Elections usually span a long time (typically at least 1 day) and

the batch validation of ballots can take place along that period

whenever a number of 𝐵 new ballots were received. Hence, the

above analysis shows that the runtimes for validating incoming

ballots are very realistic and are not expected to slow down the

election process.

4.3 The cost of computing final election results
Sub-protocol 2 computes the final election results in the Copeland

rule. It requires𝑀 (𝑀 − 1) invocations of the secure positivity test

(Section 2.5),𝑀 (𝑀 − 1)/2 invocations of the equality to zero test

(Section 2.6), and finally 𝐾 ·
(
𝑀 − 𝐾+1

2

)
≤ 𝑀 (𝑀 − 1)/2 secure

comparisons (Section 2.4). As discussed in Sections 2.5 and 2.6, the

costs of the MPC computations to determine positivity and equality

to zero are upper bounded by the cost of a secure comparison. Hence,

the cost of Sub-protocol 2 can be upper bounded by 4𝑀 (𝑀 − 1)
secure comparisons.

To evaluate the runtime of performing the secure comparison

sub-protocol we ran it on Amazon AWS m5.4xlarge machines at N.

Virginia over a network with bandwidth 9.6Gbps. We performed

our evaluation with 𝐷 ∈ {3, 5, 7, 9} talliers. The measured runtimes

are given in Table 3.

As can be seen, the implied runtimes are negligible. For example,

when 𝑀 = 5, the runtime of this stage is upper bounded by 1.2
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Number of talliers 𝐷 = 3 𝐷 = 5 𝐷 = 7 𝐷 = 9

Time (msecs) to compute

a secure comparison

9.07 9.54 9.64 15.0

Table 3: Runtimes (milliseconds) for a secure comparison
sub-protocol with a varying number of talliers.

seconds, when using the highest number of talliers, 𝐷 = 9, while

for 𝑀 = 20 it is upper bounded by 22.8 seconds. The runtimes in

the case of Maximin are even smaller, since then the number of

secure comparisons is bounded only by 1.5 ·𝑀2
(see Section 3.7).

In summary, it is possible to achieve perfect ballot secrecy, as our

protocol offers, at a very small computational price.

5 RELATEDWORK
Secure e-voting can be approached using various cryptographic

techniques. The earliest suggestion is that of Chaum [12], who

suggested using a mix network (mixnet). The idea is to treat the

ballots as ciphertexts. Voters encrypt their ballots and agents collect

and shuffle these messages and thus anonymity of the ballots is

preserved. Other studies followed and improved this model, e.g. [1,

5, 29, 32, 34, 38]. However, while such systems preserve anonymity,

the talliers are exposed to the actual ballots. The mere anonymity

of the ballots might not provide sufficient security and this may

encourage voters to abstain or vote untruthfully [21].

One of the approaches towards achieving tally-hiding privacy,

and not just anonymity, is by employing homomorphic encryption.

The most common ciphers of that class are additively homomorphic,

in the sense that the product of several ciphertexts is the encryption

of the sum of the corresponding plaintexts. Such encryptions are

suitable for secure voting, as was first suggested by Benaloh [3]. The

main idea is to encrypt the ballots using a public-key homomorphic

cipher. An agent aggregates the encrypted ballots and then sends

an aggregated encrypted value to the tallier. The tallier decrypts the

received ciphertexts and recovers the aggregation of the ballots, but

is never exposed to the ballots themselves. Secure voting protocols

that are based on homomorphic encryption were presented in e.g.

[17, 18, 23, 27, 36, 37, 46].

While most studies on secure voting offered protocols for se-

curing the voting process, some studies considered the question

of private execution of the computation that the underlying vot-

ing rule dictates. We begin our survey with works that considered

score-based voting rules. Canard et al. [9] considered the Majority

Judgment (MJ) voting rule [2]. They first translated the complex

control flow and branching instructions that the MJ rule entails

into a branchless algorithm; then they devised a privacy-preserving

implementation of it using homomorphic encryption, distributed

decryption schemes, distributed evaluation of Boolean gates, and

distributed comparisons. Nair et al. [33] suggested to use secret

sharing for the tallying process in Plurality voting [6]. Their

protocol provides anonymity but does not provide perfect secrecy

as it reveals the final aggregated score of each candidate. In addi-

tion, their protocol is vulnerable to cheating attacks, as it does not

include means for detecting illegal votes. Küsters et al. [31] intro-

duced a secure end-to-end verifiable tally-hiding e-voting system,

called Ordinos, that implements the Plurality rule and outputs

the 𝐾 candidates that received the highest number of votes, or

those with number votes that is greater than some threshold. Dery

et al. [21] offered a solution based on MPC in order to securely

determine the winners in elections governed by score-based voting

rules, including Plurality, Approval, Veto, Range and Borda.

Their protocols offer perfect privacy and very attractive runtimes.

Recently, few researchers began looking at order-based voting

rules. Haines et al. [25] proposed a solution for the order-based

Schulze’s rule [39]. Their solution does not preserve the privacy

of voters who are indifferent between some pairs of candidates. In

addition, their solution is not scalable to large election campaigns,

as they report a runtime of 25 hours for an election with 10,000

voters. Hertel et al. [26] proposed solutions for Copeland, Maximin

and Schulze voting rules. The evaluation of the Schulze method

took 135 minutes for 5 candidates and 9 days, 10 hours, and 27

minutes for 20 candidates. Finally, Cortier et al. [16] considered the

Single Transferable Vote (STV) rule, which is a multi-stage rule,

as well as Schulze’s rule. Even though their method is much more

efficient than the one in [26] for the Schulze rule, it is still not

scalable to large election settings, as it took 8 hours and 50 minutes

for 𝑁 = 1024 voters and𝑀 = 20 candidates.

Our study is the first one that proposes protocols for order-based

rules that are both fully private and lightweight so they offer a

feasible solution even for very large democracies. For example, our

protocols can handle Copeland rule computations over 1 million

voters and 20 candidates with a runtime of roughly 500 seconds (see

Table 2). This is achieved mainly by our novel idea of distributed

tallying. However, applying distributed tallying for tackling more

complex rules such as Schulze’s rule requires further research and

is left for future work.

6 CONCLUSION
We presented a protocol for the secure computation of order-based

voting rules. Securing the voting process is an essential step toward

a fully online voting process. Secure voting systems that rely on

fully trusted talliers (that is, talliers who receive the actual ballots

from the voters) assume that the talliers do not misuse the ballot

information and that they keep it secret. In contrast, our protocol

significantly reduces the trust vested in the talliers, as it denies

the talliers access to the actual ballots and utilizes MPC techniques

in order to compute the desired output. Such a reduction of trust

in the talliers is essential to increase the confidence of the voters

in the voting system so that they would be further motivated to

exercise their right to vote and, moreover, vote according to their

true preferences, without fearing that their private vote will be

disclosed to anyone.

Our protocol offers perfect ballot secrecy. The design of a mech-

anism that offers perfect ballot secrecy must be tailored to the

specific voting rule that governs the elections. We demonstrated

our solution on Copeland and Maximin. Ours is the first study

that offers a fully private solution for order-based voting rules that

is lightweight and practical for elections in real-life democracies of

any size.
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