
Truth, Justice, and Secrecy: Cake Cutting Under Privacy Constraints

Yaron Salman1*, Tamir Tassa1*, Omer Lev2, Roie Zivan2

1The Open University of Israel
2Ben-Gurion University of the Negev

sayaron8@post.openu.ac.il, tamirta@openu.ac.il, omerlev@bgu.ac.il, zivanr@bgu.ac.il

Abstract

Cake-cutting algorithms, which aim to fairly allocate a con-
tinuous resource based on individual agent preferences, have
seen significant progress over the past two decades. Much
of the research has concentrated on fairness, with compara-
tively less attention given to other important aspects. Chen
et al. (2010) introduced an algorithm that, in addition to
ensuring fairness, was strategyproof—meaning agents had
no incentive to misreport their valuations. However, even
in the absence of strategic incentives to misreport, agents
may still hesitate to reveal their true preferences due to pri-
vacy concerns (e.g., when allocating advertising time be-
tween firms, revealing preferences could inadvertently expose
planned marketing strategies or product launch timelines). In
this work, we extend the strategyproof algorithm of Chen et
al. by introducing a privacy-preserving dimension. To the best
of our knowledge, we present the first private cake-cutting
protocol, and, in addition, this protocol is also envy-free and
strategyproof. Our approach replaces the algorithm’s central-
ized computation with a novel adaptation of cryptographic
techniques, enabling privacy without compromising fairness
or strategyproofness. Thus, our protocol encourages agents
to report their true preferences not only because they are not
incentivized to lie, but also because they are protected from
having their preferences exposed.

1 Introduction
For millennia, people have grappled with the challenge of
dividing resources—whether land, water, loot, or other valu-
able commodities—in a way that is seen as fair. The mod-
ern formalism of this problem—cake-cutting—has existed
for only a little over 80 years, yet it has found wide ap-
plication across domains where multiple agents (human or
otherwise) assign different values to different parts of a di-
visible resource. From scheduling shared computer time to
allocating energy from power sources, such problems are all
instances of cake-cutting, where the goal is to divide the re-
source fairly among the agents involved.

Naturally, the issue of what is “fair” has been widely dis-
cussed, with the most basic concepts being proportionality,
in which each agent gets at least 1

n of the value of the whole

*The first two authors contributed equally to this work.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(assuming n agents overall). A stronger concept is an envy-
free allocation, in which each agent is most satisfied with
its allocation and has no reason to switch and get a differ-
ent agent’s allocation. There have been many further fairness
concepts, and various algorithms have been suggested, aim-
ing for strong guarantees for as wide as possible family of
valuation functions, with as low as possible computational
complexity (Brams and Taylor 1996; Robertson and Webb
1998; Brandt et al. 2016).

Although a major open problem in the field—envy-free
cake-cutting for n > 3 agents—was finally solved in the last
decade (Aziz and Mackenzie 2016), there are many other
dimensions to the problem. As with voting, an algorithm
guaranteeing many properties may be worthless if agents
do not report to the algorithm their true valuations. Envy-
free allocations of misreported valuations might not be, in
practice, envy-free for the genuine, true valuations. Hence,
strategyproof algorithms, in which agents are never hurt by
being truthful, are highly desirable.

Work on strategyproof algorithms began with Chen et al.
(2010, 2013), showing a deterministic algorithm for piece-
wise uniform valuations (e.g., each agent has times when it
can use the computer and times when it cannot), which we
denote in this paper as CC PUV; and a randomized algo-
rithm for piecewise linear valuations. Since that work, there
has been additional work on strategyproof algorithms (Mos-
sel and Tamuz 2010; Maya and Nisan 2012; Menon and Lar-
son 2017; Bei et al. 2017; Bei, Huzhang, and Suksompong
2020). Some work explicitly focused on piecewise uniform,
piecewise constant and piecewise linear valuations, as it be-
came quite clear that a deterministic strategyproof algorithm
may be limited to a subset of these, with a few additional
constraints (Aziz and Ye 2014; Bu, Song, and Tao 2023).

However, while strategyproofness is a desired property, it
does not, in fact, completely solve the issue of convincing
agents to be truthful and thus obtain the algorithm’s guaran-
tees. In many cases, agents do not wish to share with others
their valuations for reasons that can be regulatory (e.g., data
protection laws in healthcare may restrict revealing valua-
tions tied to patient information), personal (e.g., when divid-
ing time to use a game console, one may not wish to reveal
to their employer that they are playing during work hours)
or due to external effects (e.g., telecom companies bidding
on spectrum fear competitors will glean from their bids their

future plans and directions). In such cases, agents may with-
hold their preferences even from a strategyproof algorithm
if its operation exposes those preferences to other agents,
despite this reducing the algorithm’s effectiveness (e.g., in-
validating envy-freeness guarantees).

In this paper, we propose what we believe to be the first
private cake-cutting protocol, named PP CC PUV. This
protocol is a privacy-preserving variant of Chen et al. (2010,
2013)’s algorithm and retains its properties of envy-freeness,
Pareto-optimality, and strategyproofness (for piecewise uni-
form valuations). In fact, this is the first protocol that gen-
uinely allows agents to reveal their true valuations with-
out hesitation. It accomplishes this by using secret sharing
and secure multiparty computation (MPC) techniques. Se-
cret sharing is used to hide information such as the pref-
erences of agents, the interim results of the computation
performed by the algorithm, and the final allocations, while
MPC is used to securely perform the computation of the al-
gorithm without exposing the agents’ private information.

Achieving this private variant is not simply a matter of
inserting standard cryptographic replacements into the orig-
inal algorithm; it requires novel adaptations of cryptographic
techniques. In addition, the algorithm itself had to be restruc-
tured. For example, the algorithm of Chen et al. (2010, 2013)
constructs a different graph in each iteration, computes a
maximum flow in it, and then derives allocations from it.
However, the structure of those graphs in each of the itera-
tions might leak sensitive valuation information. To address
this, our protocol replaces the dynamic graph with a fixed
graph used across all iterations, with edge weights com-
puted cryptographically. Despite this additional complexity,
the private variant incurs onlyO(1) computational overhead
and at most O(n2) additional communication cost.

Beyond privacy, our protocol also allows for the removal
of a central coordinating agent to run the algorithm as the
participating agents can run it for themselves. This flexibil-
ity, requiring no algorithm infrastructure besides the agents,
allows cake-cutting algorithms to run on much wider and
ad-hoc scenarios, from allocating work shifts between em-
ployees (who do not trust the boss to be fair) to computer re-
source allocation without a pre-existing time-allocation dae-
mon running in the background.

While this is the first private cake-cutting algorithm, we
believe that the techniques and ideas it introduces can be
extended to “privatize” a broader range of cake-cutting al-
gorithms. Privacy is important in many settings, and we be-
lieve that incorporating privacy into the suite of desiderata
for resource allocation algorithms is increasingly vital. This
is true even when strategyproofness is unnecessary (e.g., for
non-strategic agents), as agents may still be reluctant to dis-
close their valuations to others. A natural direction for fu-
ture work is to extend these ideas to general-purpose cake-
cutting algorithms, which are applicable to large classes of
valuation functions and stand to benefit significantly from
privacy-preserving adaptations that could expand their prac-
tical usability.

Due to space limitations, additional technical details and
all pseudocode are provided in the full version of this pa-
per (Salman et al. 2025).

2 Cryptographic Background
Here we briefly review the two fundamental cryptographic
techniques underpinning our protocol—secret sharing (Sec-
tion 2.1) and multiparty computation (MPC) over secret
shares (Section 2.2)—and describe the security model and
privacy guarantees (Section 2.3).

2.1 Threshold Secret Sharing
Secret sharing schemes (Shamir 1979) are protocols that en-
able distributing a secret scalar s among a set of parties,
P1, . . . , Pn. Each party, Pi, i ∈ [n]1, gets a random value
[[s]]i, called a share, so that some subsets of those shares
enable the reconstruction of s, while each of the other sub-
sets of shares reveals no information on s. In its most basic
form, called Threshold Secret Sharing, there is a threshold
value t ≤ n, and then a subset of shares enables the recon-
struction of s iff its size is at least t.

Shamir’s t-out-of-n threshold secret sharing scheme
(Shamir 1979) operates over a finite field Fp, where p > n
is a prime sufficiently large so that all possible secrets may
be represented in Fp. It has two procedures—Share and Re-
construct:
• Sharet,n(s). The procedure samples a uniformly ran-

dom polynomial f(·) over Fp, of degree at most t−1, where
the constant term is the secret s. The procedure outputs n
values, [[s]]i = f(i), i ∈ [n], where [[s]]i is the share given
to Pi. The entire set of shares, denoted [[s]] := {[[s]]i : i ∈
[n]}, is called a (t, n)-sharing of s.
• Reconstructt([[s]]). The procedure is given any selec-

tion of t shares out of [[s]]—the (t, n)-sharing of s. It then
interpolates a polynomial f(·) of degree at most t− 1 using
the given points and outputs s = f(0). Any selection of t
shares will yield the secret s, as t points determine a unique
polynomial of degree at most t − 1. On the other hand, any
selection of t − 1 shares or less reveals nothing about the
secret s.

Hereinafter, we set the threshold to be

t := ⌊(n+ 1)/2⌋ . (1)

Namely, to reconstruct the secret, at least half of the par-
ties must collaborate. Hence, if the set of n parties has an
honest majority, in the sense that more than half of them act
honestly, without trying to collude to reconstruct the secret
illicitly, the shared secret will remain fully protected.

2.2 Multiparty Computation Over Secret Shares
Let u and v be two secret values in the field Fp, and as-
sume that P1, . . . , Pn hold (t, n)-sharings of them, denoted
[[u]] = {[[u]]i : i ∈ [n]} and [[v]] = {[[v]]i : i ∈ [n]}.

We are concerned here with performing secure compu-
tations over those shared values in the following sense: if
G(·, ·) is a publicly known function, the goal is to use given
(t, n)-sharings [[u]] and [[v]] in order to compute a (t, n)-
sharing of G(u, v), without learning any information on u,
v, or G(u, v). We consider here basic functions that enable
performing a wide range of more elaborate computations.

1For any integer n we let [n] denote the set {1, . . . , n}.

Affine combinations. Let α, β, γ ∈ Fp be three values
publicly known to all. Then

[[α]] + β[[u]] + γ[[v]] := {α+ β[[u]]i + γ[[v]]i : i ∈ [n]}

is a proper (t, n)-sharing of w := α + βu + γv, thanks to
the affinity of secret sharing. By writing [[w]] ← [[α]] +
β[[u]] + γ[[v]] we mean that each party Pi, i ∈ [n], sets
[[w]]i ← α + β[[u]]i + γ[[v]]i, so that now the parties hold
a (t, n)-sharing of w = α + βu + γv, without needing to
interact or to perform any further polynomial computations.

By choosing β = γ = 0, it follows that for any public
value α in the field, the set {[[α]]i = α : i ∈ [n]} constitutes
a valid (t, n)-secret sharing of α.

Multiplications. A secure multiplication protocol,
[[w]] ← [[u]] · [[v]], takes (t, n)-sharings of u and v and
computes a (t, n)-sharing of w = u · v, without revealing to
the parties any information on u, v, or w = uv. Damgård
and Nielsen (2007) designed such a secure multiplication
protocol, which was later improved by Chida et al. (2018).

Comparisons. Hereinafter, ifP is a predicate then 1P is a
bit that equals 1 if the predicate P holds and equals 0 other-
wise. Then a secure comparison protocol, [[w]] ← [[1u<v]],
takes (t, n)-sharings of u and v and securely computes a
(t, n)-sharing of w = 1u<v . Nishide and Ohta (2007) pro-
posed such a secure comparison protocol.

Equality. A secure equality testing protocol, [[w]] ←
[[1u=0]], takes a (t, n)-sharing of u and securely computes a
(t, n)-sharing of w = 1u=0, see (Kogan, Tassa, and Grinsh-
poun 2023).

Minimum. A secure minimum protocol, [[w]] ←
min([[u]], [[v]]), takes (t, n)-sharings of u and v, and se-
curely computes a (t, n)-sharing of their minimum, w =
min(u, v) = v + 1u<v · (u− v). Maxima can be computed
similarly by the identity max(u, v) = u+ 1u<v · (v − u).

OR. A secure OR protocol, [[w]] ← [[u]] ∨ [[v]], takes
(t, n)-sharings of two secret bits, u and v, and securely com-
putes a (t, n)-sharing of the OR between them, w = u∨v =
u+ v − u · v.

Divisions. A secure division protocol, ⟨[[q]], [[r]]⟩ ←
[[u]]/[[v]], takes (t, n)-sharings of two secret integers, u and
v, and securely computes (t, n)-sharings of the correspond-
ing quotient q = ⌊uv ⌋ and remainder r = u mod v. In
Salman et al. (2025, Appendix A.1) we present such a pro-
tocol.

2.3 Security Model and Privacy Guarantees
Our protocol operates in a standard MPC setting in which
the computation is carried out by several semi-honest
servers, with an honest majority ensuring that any colluding
subset is smaller than half. Agents may attempt to behave
dishonestly, but the protocol incorporates integrity checks
that prevent them from submitting valuation data that devi-
ates from the required piecewise-uniform structure. Privacy
is guaranteed in an information-theoretic sense: no party—
neither agents nor servers—learns anything beyond the out-
puts explicitly revealed by the protocol. In particular, the
agents’ valuation functions, all intermediate values (includ-
ing demands, interval selections, and flow computations),

and the structure of the underlying decision processes re-
main completely hidden. The only information that may be
disclosed is the final allocation, which can be revealed either
in full or only to the corresponding agents, depending on the
chosen visibility mode.

3 Strategyproof Cake Cutting Algorithm
We begin by presenting Chen et al. (2010, 2013)’s cake-
cutting algorithm, which we refer to as CC PUV—the Cake
Cutting algorithm for piecewise uniform valuations.

The cake to be divided is modeled as the interval C =
[0, 1] ⊂ R. The set of agents that seek to divide the cake
between them is A := {Ai : i ∈ [n]}. Agent Ai has a
valuation function vi : C → [0,∞) that is a probability
density function over C; i.e., it is measurable, nonnegative,
and

∫
C
vi(x)dx = 1. Given any piece of the cake, X ⊆ C,

its value to Ai is vi(X) :=
∫
X
vi(x)dx.

CC PUV assumes all valuations are piecewise uniform:

Definition 3.1 A valuation v : C → [0,∞) is called piece-
wise uniform if there exist ℓ ≥ 1 disjoint intervals, {Ij ⊆
C : j ∈ [ℓ]}, such that v(x) = c for all x ∈ B :=

⋃
j∈[ℓ] Ij ,

for c =
(∑

j∈[ℓ] |Ij |
)−1

, while v(x) = 0 for all x ∈ C \B.

0.2 0.5 0.8 1

2

x

v(x)

Figure 1: A piecewise uniform valuation with ℓ = 2 intervals.

Figure 1 illustrates such a function with a support consist-
ing of ℓ = 2 intervals.

The end points of the support intervals in vi(·), over all
i ∈ [n], induce a partition of C = [0, 1] into a set of intervals,
which we denote by W . Given an interval I ∈ W and a
subset S ⊆ A of agents, S desires I if I is included in the
support of the valuation of at least one agent in S. If X ⊆
W then D(S,X) is the subset of all intervals in X that are
desired by S, and avg(S,X) := Len(D(S,X))/|S| is the
average demand of S on X . (If Y is a set of disjoint intervals,
then Len(Y) is the sum of lengths of those intervals.)

The deterministic algorithm of Chen et al. (2010),
CC PUV, operates iteratively. It starts with X = W and
S = A. It then identifies a subset of agents S′ ⊆ S (from
the current agent set S) with the smallest average demand
on the current set of intervals X . The algorithm proceeds
to perform an exact allocation of D(S′, X) among S′, giv-
ing each agent in S′ an equal share of size avg(S′, X) out
of those intervals in X that it desires. The algorithm com-
putes these allocations by solving a maximum-flow problem
on a capacitated directed graph that encodes the desirabil-
ity relationships between the intervals in X and the agents

in S′. A detailed explanation of this computation is provided
in Section 4.6. The procedure then recurses on the remaining
agents and intervals, specifically on S\S′ and X\D(S′, X),
until all agents have been served—that is, until S = ∅.

4 Privacy-Preserving Cake-Cutting Protocol
In this section, we present our privacy-preserving cake-
cutting protocol, which securely implements the cake-
cutting algorithm introduced by Chen et al. (2010, 2013). We
begin with a high-level overview of our privacy-preserving
protocol, PP CC PUV—the Privacy-Preserving variant of
CC PUV (Section 4.1). The subsequent sections describe the
core computational steps of PP CC PUV.

4.1 Overview of PP CC PUV
The main challenge in implementing CC PUV securely
is preserving the privacy of the agents’ valuations. Our
privacy-preserving protocol, Protocol 1 (PP CC PUV), ad-
dresses this challenge by having each agent distribute secret
shares of their piecewise-uniform valuations. It then faith-
fully emulates CC PUV by executing carefully tailored MPC
subprotocols on these secret shares.

PP CC PUV begins with several preparatory steps. First
(line 1), the agents execute a subprotocol called SHARING-
PRIVATEVALUATIONS, which (a) discretizes the private val-
uations in a lossless manner, (b) enforces integrity checks
to prevent dishonest agents from distributing shares that do
not correspond to valid valuations, and (c) distributes secret
shares of the private valuations (Section 4.2).

Next (lines 2–3), the secret-shared valuation functions are
used to partition the cake C = [0, 1] into a collection of
intervals, denoted W , such that each interval lies entirely
within the support of vi or entirely outside it, for every
i ∈ [n]. A subprotocol called INTERVALS establishes secret
shares of various auxiliary data structures, such as indica-
tor bits specifying, for each agent and interval, whether the
agent desires that interval (Sections 4.3 and 4.4).

At this point, PP CC PUV enters its core iterative phase
(lines 5–8). In each iteration, it executes a subprotocol
called ITERATIVEALLOCATION that selects a subset of yet-
unserved agents, according to the same selection criterion
used by CC PUV. The key challenge here is to keep the pro-
tocol oblivious to which agents have already been served
and which intervals remain available (Section 4.5). Once the
appropriate subset is (obliviously) selected, the allocation
of intervals (or partial intervals) to agents is performed by
solving a maximum-flow problem on a graph that encodes
the relationships between the relevant agents and intervals.
Crucially, the subprotocol ASSIGNCAKETOSELECTEDA-
GENTS does this while remaining oblivious to the structure
of the underlying graph (Section 4.6).

Once the iterative process is complete, the subprotocol FI-
NALSERVING scans all intervals and assigns them to the ap-
propriate agents, based on the computation that took place
during the iterative phase (line 9). Depending on the applica-
tion scenario, the protocol can operate under either restricted
visibility, where each agent learns only their own allocated
piece, or full visibility, where the complete allocation is dis-
closed to all agents (Section 4.7).

Protocol 1: PP CC PUV

1 Distribute secret shares of private valuations
2 Split the cake into intervalsW
3 Compute aW-based representation of the valuations
4 S ← [n], X ←W
5 while S ̸= ∅ do
6 Find S′ ⊆ S minimizing avg(S′, X) (the average

demand of agents in S′ over intervals in X)
7 Compute a fair allocation of intervals in

D(S′, X) (the subset of intervals in X desired
by S′) to agents in S′

8 S ← S \ S′, X ← X \D(S′, X)
9 Distribute the intervals inW among the agents

4.2 Secret Sharing the Private Valuation
Functions

Here we describe how the agents secret share their private
valuation functions. Let ℓi denote the number of intervals
in vi’s support, i ∈ [n] and let ℓ = maxi∈[n] ℓi. Then the
support of vi can be described by

supp(vi) =
ℓ⋃

j=1

Ii,j , where Ii,j = [ai,j , bi,j) , j ∈ [ℓ] , and

0 ≤ai,1 ≤ bi,1 ≤ ai,2 ≤ bi,2 ≤ · · · ≤ ai,ℓ ≤ bi,ℓ ≤ 1 . (2)

By invoking a secure maximum computation (see Sec-
tion 2.2), the agents can compute ℓ without disclosing any
additional information about ℓi, i ∈ [n]. Then, if ℓi < ℓ,
agent Ai sets the last ℓ − ℓi intervals in vi’s support to the
empty interval [1, 1). Such an inflated description of the val-
uations guarantees that no information is leaked about the
number of intervals in the valuations’ supports.

The end points of the intervals in those supports, Eq.
(2), will be protected by secret sharing. As secret shar-
ing is applied in some finite field, it is essential to convert
those real values into integers. To do so, the agents jointly
agree upfront on some sufficiently large integer, Q, and then
each agent Ai, i ∈ [n], redefines its end points as follows,
ai,j := ⌊ai,j · Q⌉ and bi,j := ⌊bi,j · Q⌉, where ⌊·⌉ denotes
the closest integer. By taking Q = 10d, where d is the max-
imum number of nonzero decimal digits after the decimal
point among the numbers {ai,j , bi,j}i∈[n],j∈[ℓ], such a dis-
cretization is lossless. Therefore, henceforth the support of
vi will be described by 2ℓ integers

0 ≤ai,1≤ bi,1≤ai,2≤ bi,2≤ · · · ≤ ai,ℓ ≤ bi,ℓ ≤ Q . (3)

Now, the agents proceed to distribute shares of the 2ℓ in-
tegers in Eq. (3), for all i ∈ [n]. Such a procedure must
incorporate a computation of ℓ = maxi∈[n] ℓi and of d (as
described above), as well as mechanisms to detect possible
cheats of dishonest agents.

This is carried out by Subprotocol 4, termed SHARING-
PRIVATEVALUATIONS (see Salman et al. (2025, Appendix
A.2)). After its completion, the agents hold (t, n)-sharings
in ai,j and bi,j for all i ∈ [n] and j ∈ [ℓ].

4.3 Splitting the Cake to Intervals
Consider the multiset V := {ai,j , bi,j : i ∈ [n], j ∈ [ℓ]} ∪
{0, Q}, of size m = 2ℓn+2, consisting of all support bound-
aries of all valuations, as well as the cake’s endpoints. Let
W (1 : m) be an array that holds the values in V sorted,
namely, W (1) ≤ · · · ≤W (m). Then W defines a collection
of m − 1 disjoint intervals (some of which may be empty)
that cover the entire cake:

W :=
{
[W (k),W (k + 1)) : k ∈ [m− 1]

}
. (4)

Note that [W (k),W (k + 1)) ⊂ [0, Q], and that the actual
interval it represents on C = [0, 1] is [W (k)

Q , W (k+1)
Q).

After completing Subprotocol SHARINGPRIVATEVALU-
ATIONS, the agents hold (t, n)-sharings of all values in V .
They can proceed to compute a secret sharing of W (k), for
all k ∈ [m], by applying a suitable secure protocol that com-
putes the k-th element in a secret-shared dataset, without
getting any wiser on the private valuations; in (Salman et al.
2025, Appendix A.3) we describe Subprotocol 5 that per-
forms that computation.

Let IntervalLen(k) = W (k+1)−W (k) denote the length
of the k-th interval, k ∈ [m − 1]. Secret shares in those in-
tervals’ lengths can be computed by [[IntervalLen(k)]] ←
[[W (k+1)]]− [[W (k)]]. In addition, the protocol maintains
secret sharings of the bits IntervalAvailable(k), k ∈ [m−1],
that indicate whether the k-th interval has not yet been
served to any agent. Initially, [[IntervalAvailable(k)]] ←
[[1]]. Once the k-th interval is served, the protocol updates
the shares of IntervalAvailable(k) to reflect the bit update
from 1 to 0, in an oblivious manner, namely, without know-
ing that such an update actually took place and to whom that
interval was served.

4.4 Encoding the Valuations by Binary Vectors
The intervals inW , Eq. (4), can be used to encode the private
valuations by a bit array, IntervalDesired(1 : n, 1 : m − 1),
as follows: IntervalDesired(i, k) = 1 iff the k-th interval in
W is desired by Ai. Such desirability holds iff that interval is
of positive length and it is contained in vi’s support. Hence,

IntervalDesired(i, k) =
(
1− 1IntervalLen(k)=0

)
·
∨
j∈[ℓ]

(
1ai,j≤W (k) · 1W (k+1)≤bi,j

)
, (5)

because [W (k),W (k + 1)) ⊆ supp(vi) iff [W (k),W (k +
1)) ⊆ [ai,j , bi,j) for some j ∈ [ℓ].

The agents may compute secret sharings of
IntervalDesired(i, k) for all i ∈ [n] and k ∈ [m − 1],
from the secret sharings that they already hold in ai,j , bi,j ,
W (k), and IntervalLen(k), using the secure MPC proto-
cols for comparison, multiplication, OR, and equality, as
discussed in Section 2.2.

Subprotocol 6 (INTERVALS) in Salman et al. (2025, Ap-
pendix A.4) summarizes the interval computations as dis-
cussed in Sections 4.3 and 4.4. It computes the secret
sharings of the arrays W , IntervalLen, and IntervalDe-
sired, and initializes the secret sharing of the array In-
tervalAvailable. In addition, it initializes the secret shares

of two additional secret arrays that will be used later on:
AllocationDenominator(1 : n), and IntervalAllocation(1 :
n, 1 : m − 1). Subprotocol INTERVALS initializes their se-
cret shares to zero. They will be kept secret-shared, and only
after all agents have been served they will be used to infer
the portion of each of the intervals that would go to any spe-
cific agent. Specifically, the fraction

Portion(i, k) :=
IntervalAllocation(i, k)

AllocationDenominator(i)
(6)

will equal the portion of the k-th interval allocated to agent
Ai, i ∈ [n], k ∈ [m− 1]. The update of those arrays will be
explained in due time (Section 4.6).

4.5 Selecting a Subset of Agents to Serve
As explained in Section 3, the algorithm CC PUV functions
through an iterative process. It maintains two variables: (1)
a subset S ⊆ [n] that represents the agents that have yet to
be served a piece of cake; and (b) a subset X ⊆ W of cake
intervals that still have not been served to anyone.

Initially, S = [n] and X =W . In each iteration, the algo-
rithm selects S′ ⊆ S that minimizes

avg(S′, X) := Len(S′, X)/|S′| , (7)

where Len(S′, X) is the sum of lengths of all intervals in X
that are desired by at least one agent in S′. As can be readily
verified, it is given by

Len(S′, X) =
∑

k∈[m−1]

IntervalAvailable(k)

·

(∨
i∈S′

IntervalDesired(i, k)

)
· IntervalLen(k)

(8)

For privacy considerations, it is necessary to protect the
identity of agents who are being served in each iteration.
However, at the same time, it is necessary to consider in each
iteration only subsets S′ that consist entirely of agents who
have not yet been served. To achieve this while keeping the
served agents’ identities hidden, we introduce the bit array
AgentsServed(1 : n), in which the i-th bit is initially set to 0
and is updated to 1 once Ai has been served. By keeping that
array (t, n)-secret-shared, the identities of the agents being
served in each iteration remains secret.

Subprotocol 7, termed ITERATIVEALLOCATION (see
Salman et al. (2025, Appendix A.5)), carries out the itera-
tive allocation procedure. In each iteration, it searches for
a subset S′ that minimizes avg(S′, X), and then allocates
to each agent in S′ its portion of the intervals in X that it
desires. We proceed to survey its main features.

In each of its iterations, subprotocol ITERATIVEALLO-
CATION finds a non-empty subset S′ ⊆ [n] that minimizes
avg(S′, X), Eq. (7). In order to force the subprotocol to
identify a minimizing subset only from among the legal sub-
sets S′—those that consist of agents that have not yet been
served—we introduce the marker

h(S′) :=
∑
i∈S′

AgentsServed(i) . (9)

A subset S′ ⊆ [n] is legal iff h(S′) = 0. Define

Len∗(S′, X) := Len(S′, X) · 1h(S′)=0

+n(Q+ 1) · (1− 1h(S′)=0) .
(10)

The value Len∗(S′, X) equals Len(S′, X) for legal subsets
S′, while for illegal subsets it equals n(Q+ 1). Hence,

avg∗(S′, X) := Len∗(S′, X)/|S′| , (11)

equals avg(S′, X) (Eq. (7)) for legal subsets S′, while it
is at least Q + 1 for illegal subsets. Since for all legal
subsets avg(S′, X) is at most Q, any subset S′ that min-
imizes avg∗(S′, X) would be legal. Hence, Subprotocol
ITERATIVEALLOCATION finds a non-empty subset S′ ⊆
[n] that minimizes avg∗(S′, X), using Eqs. (8)–(11) and
the basic secure MPC protocols described in Section 2.2.
Then, it calls subprotocol ASSIGNCAKETOSELECTEDA-
GENTS (which we discuss below) that assigns cake pieces
to the agents in the selected subset S′. Finally, Subproto-
col ITERATIVEALLOCATION updates the secret shares of
AgentsServed, according to the identities of the agents in
S′ who were just served, as well as the secret shares of In-
tervalAvailable, according to the intervals that were served
in this iteration. Those updates are carried out in an oblivi-
ous manner, namely, without revealing the identities of those
agents nor the indices of the intervals that were served to
them.

4.6 Allocating Cake Pieces to the Agents in the
Selected Subset

After identifying a subset of agents S′ that minimizes the
average demand over the available set of intervals X , algo-
rithm CC PUV (Chen et al. 2010) computes a fair allocation
of the desired intervals in X among the agents in S′.

To do so, it constructs a four-layer directed graph
G(S′, X): layer 1 has a source node; layer 2 has a node for
each interval in X; layer 3 has a node for each agent in S′;
and layer 4 has a target node. The graph has an edge from the
source node to each of the nodes in layer 2, with a capacity
that equals the length of the corresponding interval. There
is an edge from each node in layer 2 to each node in layer
3 that corresponds to an agent that desires that cake inter-
val; the capacity of such an edge is the length of the interval
from which it emerges. Finally, it has an edge from each
node in layer 3 to the target node with a capacity that equals
avg(S′, X), Eq. (7). Figure 2 illustrates the graph G(S′, X)
for a set X of 5 intervals and a set S′ of 3 agents, who desire
4 out of the 5 available intervals in X .

Interval1

Interval2

Interval3

Interval4

Interval5

A1

A3

A2
source target

Figure 2: An example of a flow graph G(S′, X)

The graph has a maximum flow of value Len(S′, X). This
flow fully saturates the edges between layers 1 and 2 cor-
responding to intervals in X desired by S′, while all other
edges between these layers carry zero flow. The flow across
the edges from layer 2 to layer 3 determines a fair alloca-
tion of the S′-desired intervals in X among the agents in S′.
Finally, all edges between layers 3 and 4 are saturated, en-
suring that each agent in S′ gets cake pieces of which the
sum of lengths is exactly avg(S′, X) = Len(S′, X)/|S′|.

Subprotocol 9 (ASSIGNCAKETOSELECTEDAGENTS),
see Salman et al. (2025, Appendix A.6), emulates the com-
putation described above while addressing a significant al-
gorithmic challenge: how can one compute a maximum flow
in a graph that must remain secret? The graph G(S′, X) in-
herently reveals the sets S′ and X , as well as the desirability
relationships between them, and therefore cannot be explic-
itly constructed. To resolve this challenge, the subprotocol
operates on a fixed, publicly known four-layer graph, where
layer 2 contains a node for each interval in W and layer 3
contains a node for each agent in A. Although the struc-
ture of this graph is static and public (since |W| = m − 1
and |A| = n), the edge capacities vary across iterations.
These capacities are carefully defined to match those in the
underlying algorithm CC PUV for edges between intervals
in X and agents in S′, while all other capacities are set to
zero. Crucially, the capacities are secret-shared to conceal
the topology of the actual subgraph, thereby preserving the
privacy of S′, X , and the desirability relationships between
agents and intervals.

The maximum flow that Subprotocol ASSIGNCAKE-
TOSELECTEDAGENTS computes determines the alloca-
tion of (a subset of the) intervals to (a subset of the)
agents. Those allocations cannot be disclosed at this
stage. Instead, they must be registered and disclosed to-
gether with all allocations from all iterations only after
the iterative allocation process terminates. To that end,
we use the secret-shared arrays IntervalAllocation(1 :
n, 1 : m − 1) and AllocationDenominator(1 : n), that
were initialized in Subprotocol INTERVALS (see Section
4.4). AllocationDenominator(i) registers the size of the
subset S′ to which Ai belonged when it was served,
while IntervalAllocation(i, k) registers the length of the
part of the k-th interval allocated to Ai, multiplied by
AllocationDenominator(i) (so that, eventually, the portion
of the k-th interval allocated to Ai is the fraction in
Eq. (6)). After Subprotocol ASSIGNCAKETOSELECTEDA-
GENTS finds a maximum flow, it updates the secret shares of
the relevant entries in those two arrays. For a comprehensive
account, see Salman et al. (2025, Appendix A.6).

4.7 Cutting the Cake
Once Subprotocol ITERATIVEALLOCATION terminates, it
is necessary to compute the values Portion(i, k) (Eq. (6))
that specify the fraction of the k-th interval allocated to
agent Ai, for all k ∈ [m − 1] and i ∈ [n]. Specifically, if
Portion(i, k) = α, then Ai receives a subinterval of length
α
Q from the interval [W (k)

Q , W (k+1)
Q) ⊂ [0, 1) (see Eq. (4)

and the accompanying discussion). Subprotocol 11, referred

to as FINALSERVING (see Salman et al. (2025, Appendix
A.7)), performs this post-processing step by cutting the cake
and assigning each agent their corresponding portion.

Let g(k) denote the number of agents that were allocated
some non-empty part of the k-th interval, k ∈ [m − 1]. In-
tervals for which g(k) = 1 are considered exclusive, mean-
ing they are fully assigned to a single agent. Intervals for
which g(k) ̸= 1 are non-exclusive; they are either split
among multiple agents or unassigned altogether. The sub-
protocol records this classification in the secret-shared array,
ExclusiveInterval(1 : m− 1), in which the k-th entry equals
the index of the single agent that was assigned the entire k-th
interval, when g(k) = 1, or 0 otherwise.

After completing the initial loop to determine the type of
each interval, the subprotocol proceeds with a second loop
over all intervals, k ∈ [m − 1], that assigns each interval to
the appropriate agent or agents. The treatment of each of the
intervals, [W (k),W (k + 1)), begins by reconstructing the
bit 10<ExclusiveInterval(k) from its secret shares.

If ExclusiveInterval(k) = 0 (namely, if the interval is to
be split among more than one agent, or if the interval is
assigned to none) the subprotocol proceeds as follows. It
maintains a secret-shared variable Position that stores the
left end point of the next portion of the interval to be as-
signed to an agent; it is initialized to the left end point of the
interval. Then, the subprotocol scans all agents, i ∈ [n]. If
IntervalAllocation(i, k) > 0 the subprotocol computes the
portion of that interval to be assigned to Ai by computing
the fraction in Eq. (6), using the secure MPC division proto-
col. After computing a secret sharing of AllocationSize—the
length of the portion of the k-th interval allocated to Ai—the
subprotocol proceeds to compute secret sharings of the two
end points of that portion. If, however, Ai was not assigned
any portion of that interval, the two end points it would get
are obliviously set to Q (which stands for the right end point
of the cake) so that the portion it gets is empty. At the end, all
agents send their shares of those two values to Ai who pro-
ceeds to reconstruct them and deduce the actual portion on
the interval [0, 1) that it was given. Finally, the secret-shared
value Position is moved forward by AllocationSize.

Next, we discuss the case ExclusiveInterval(k) > 0 in
which the k-th interval is assigned as a whole to a sin-
gle agent, say Ai. Assume that Ai is assigned a sequence
of consecutive whole intervals, say [W (k),W (j)) where
k < j ≤ m. A simple treatment of that case would send
j− k independent messages to Ai, one for each of the inter-
vals [W (h),W (h+1)), k ≤ h < j, that were assigned to it.
However, such an approach is inefficient, as it breaks a sin-
gle portion, [W (k),W (j)), into j − k intervals. Moreover,
if Ai is assigned the entire portion [W (k),W (j)), there is
no need to expose the internal points W (h), k < h < j,
which correspond to private valuations of the agents. Hence,
Subprotocol FINALSERVING is designed to generate a sin-
gle message for Ai for the entire portion [W (k),W (j)).

Note that the subprotocol sends a full set of n messages
to all agents, for each interval (or a block of consecutive
intervals), even though most of those messages are redun-
dant. That way, PP CC PUV maintains restricted visibility:
namely, each agent is notified only of its own allocated por-

tion, but remains oblivious regarding the allocations of its
peers. In settings where a full visibility is desired, Subproto-
col FINALSERVING can be modified so that instead of send-
ing the shares of the two end points only to the designated
agent, it will broadcast those shares, so that all agents get
notified of the portions given to each one of them.

5 Properties
PP CC PUV offers perfect privacy and is strategy-proof. It
preserves CC PUV’s asymptotic runtime complexity and in-
curs only a quadratic increase in communication complexity.
Those properties are stated in Theorems 5.1-5.3. The proofs
are given in Salman et al. (2025, Appendix B).

Theorem 5.1 (Perfect Security) If the set of agents has an
honest majority then Protocol PP CC PUV is perfectly se-
cure.

Theorem 5.2 (Strategyproofness) Protocol PP CC PUV is
strategyproof for agents with piecewise uniform valuations.

Theorem 5.3 (Overheads) The overheads incurred by
PP CC PUV on top of CC PUV increase the overall run-
time by at most a constant multiplicative factor, while the
added communication complexity is at most O(n2).

6 Conclusion
We presented a private, strategyproof, and envy-free cake-
cutting protocol, building on the non-private algorithm of
Chen et al. (2010, 2013). Privacy is a critical consideration in
many real-world allocation scenarios; without it, agents may
withhold or distort their true preferences out of concern for
exposure. By preserving strategyproofness within a privacy-
preserving framework, our protocol enables agents to safely
and truthfully report their valuations. As a result, the algo-
rithm’s envy-freeness holds with respect to the agents’ actual
preferences. In contrast, an envy-free algorithm that does not
guarantee truthful reporting may produce allocations that ap-
pear envy-free based on misreported inputs, but fail to be so
under the agents’ true valuations.

This work represents a first step toward establishing pri-
vacy guarantees for cake-cutting algorithms. We believe
the methodology introduced here can serve as a foundation
for privatizing a broader class of cake-cutting algorithms.
While privacy is particularly powerful when combined with
strategyproofness—addressing both incentive and confiden-
tiality concerns—it also holds value in non-strategyproof
settings. This is especially relevant in environments with
non-strategic agents, such as automated systems that are re-
stricted from misreporting, where the absence of privacy
alone may discourage participation, regardless of strategic
considerations.

References
Aziz, H.; and Mackenzie, S. 2016. A Discrete and Bounded
Envy-Free Cake Cutting Protocol for Any Number of
Agents. In Proceedings of the 2016 IEEE 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), 416–
427. New Brunswick, New Jersey.
Aziz, H.; and Ye, C. 2014. Cake cutting algorithms for
piecewise constant and piecewise uniform valuations. In
Proceedings of the 10th International Conference on Web
and Internet Economics (WINE), 1–14. Beijing, China.
Bei, X.; Chen, N.; Huzhang, G.; Tao, B.; and Wu, J. 2017.
Cake Cutting: Envy and Truth. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 3625–3631. Melbourne, Australia.
Bei, X.; Huzhang, G.; and Suksompong, W. 2020. Truth-
ful fair division without free disposal. Social Choice and
Welfare (SCW), 55: 523–545.
Brams, S. J.; and Taylor, A. D. 1996. Fair Division. From
cake-cutting to dispute resolution. Cambridge University
press.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds. 2016. Handbook of Computational Social
Choice. Cambridge University Press.
Bu, X.; Song, J.; and Tao, B. 2023. On existence of truthful
fair cake cutting mechanisms. Artificial Intelligence (AIJ),
319: 103904.
Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2010. Truth, Justice, and Cake Cutting. In Proceedings
of the 24th National Conference on Artificial Intelligence
(AAAI), 756–761. Atlanta, Georgia.
Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2013. Truth, justice, and cake cutting. Games and Economic
Behavior (GEB), 77: 284–297.
Chida, K.; Genkin, D.; Hamada, K.; Ikarashi, D.; Kikuchi,
R.; Lindell, Y.; and Nof, A. 2018. Fast Large-Scale Honest-
Majority MPC for Malicious Adversaries. In Advances in
Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part III, 34–64.
Damgård, I.; and Nielsen, J. B. 2007. Scalable and Uncon-
ditionally Secure Multiparty Computation. In Menezes, A.,
ed., Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2007, Proceedings, 572–590.
Kogan, P.; Tassa, T.; and Grinshpoun, T. 2023. Privacy pre-
serving solution of DCOPs by mediation. Artificial Intelli-
gence (AIJ), 319: 103916.
Maya, A.; and Nisan, N. 2012. Incentive compatible two
player cake cutting. In Proceedings of the 8th Workshop on
Internet and Network Economics (WINE), 170–183. Liver-
pool, Great Britain.
Menon, V.; and Larson, K. 2017. Deterministic, Strate-
gyproof, and Fair Cake Cutting. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 352–358. Melbourne, Australia.

Mossel, E.; and Tamuz, O. 2010. Truthful Fair Division. In
Proceedings of the 3rd International Symposium on Algo-
rithmic Game Theory (SAGT), 288–299. Athens, Greece.
Nishide, T.; and Ohta, K. 2007. Multiparty Computa-
tion for Interval, Equality, and Comparison Without Bit-
Decomposition Protocol. In Proceedings of 10th Interna-
tional Conference on Practice and Theory in Public-Key
Cryptography (PKC), 343–360.
Robertson, Y. J.; and Webb, W. 1998. Cake-Cutting Algo-
rithms, Be Fair If You Can. A K Peters.
Salman, Y.; Tassa, T.; Lev, O.; and Zivan, R. 2025. Truth,
Justice, and Secrecy: Cake Cutting Under Privacy Con-
straints. arXiv, abs/2511.09882.
Shamir, A. 1979. How to Share a Secret. Communications
of the ACM, 22(11): 612–613.

