
Evaluating Dependency Parsing:
Robust and Heuristics-Free Cross-Annotation Evaluation

Reut Tsarfaty
Uppsala University

Sweden

Joakim Nivre
Uppsala University

Sweden

Evelina Andersson
Uppsala University

Sweden

Abstract

Methods for evaluating dependency parsing
using attachment scores are highly sensitive
to representational variation between depen-
dency treebanks, making cross-experimental
evaluation opaque. This paper develops a ro-
bust procedure for cross-experimental eval-
uation, based on deterministic unification-
based operations for harmonizing different
representations and a refined notion of tree
edit distance for evaluating parse hypothe-
ses relative to multiple gold standards. We
demonstrate that, for different conversions of
the Penn Treebank into dependencies, perfor-
mance trends that are observed for parsing
results in isolation change or dissolve com-
pletely when parse hypotheses are normalized
and brought into the same common ground.

1 Introduction

Data-driven dependency parsing has seen a consid-
erable surge of interest in recent years. Dependency
parsers have been tested on parsing sentences in En-
glish (Yamada and Matsumoto, 2003; Nivre and
Scholz, 2004; McDonald et al., 2005) as well as
many other languages (Nivre et al., 2007a). The
evaluation metric traditionally associated with de-
pendency parsing is based on scoring labeled or
unlabeled attachment decisions, whereby each cor-
rectly identified pair of head-dependent words is
counted towards the success of the parser (Buchholz
and Marsi, 2006). As it turns out, however, such
evaluation procedures are sensitive to the annotation
choices in the data on which the parser was trained.

Different annotation schemes often make differ-
ent assumptions with respect to how linguistic con-
tent is represented in a treebank (Rambow, 2010).
The consequence of such annotation discrepancies is
that when we compare parsing results across differ-
ent experiments, even ones that use the same parser
and the same set of sentences, the gap between re-
sults in different experiments may not reflect a true
gap in performance, but rather a difference in the an-
notation decisions made in the respective treebanks.

Different methods have been proposed for making
dependency parsing results comparable across ex-
periments. These methods include picking a single
gold standard for all experiments to which the parser
output should be converted (Carroll et al., 1998; Cer
et al., 2010), evaluating parsers by comparing their
performance in an embedding task (Miyao et al.,
2008; Buyko and Hahn, 2010), or neutralizing the
arc direction in the native representation of depen-
dency trees (Schwartz et al., 2011).

Each of these methods has its own drawbacks.
Picking a single gold standard skews the results in
favor of parsers which were trained on it. Trans-
forming dependency trees to a set of pre-defined la-
beled dependencies, or into task-based features, re-
quires the use of heuristic rules that run the risk of
distorting correct information and introducing noise
of their own. Neutralizing the direction of arcs is
limited to unlabeled evaluation and local context,
and thus may not cover all possible discrepancies.

This paper proposes a new three-step protocol for
cross-experiment parser evaluation, and in particu-
lar for comparing parsing results across data sets
that adhere to different annotation schemes. In the

first step all structures are brought into a single for-
mal space of events that neutralizes representation
peculiarities (for instance, arc directionality). The
second step formally computes, for each sentence
in the data, the common denominator of the differ-
ent gold standards, containing all and only linguistic
content that is shared between the different schemes.
The last step computes the normalized distance from
this common denominator to parse hypotheses, mi-
nus the cost of distances that reflect mere annotation
idiosyncrasies. The procedure that implements this
protocol is fully deterministic and heuristics-free.

We use the proposed procedure to compare de-
pendency parsing results trained on Penn Treebank
trees converted into dependency trees according to
five different sets of linguistic assumptions. We
show that when starting off with the same set of
sentences and the same parser, training on differ-
ent conversion schemes yields apparently significant
performance gaps. When results across schemes are
normalized and compared against the shared linguis-
tic content, these performance gaps decrease or dis-
solve completely. This effect is robust across parsing
algorithms. We conclude that it is imperative that
cross-experiment parse evaluation be a well thought-
through endeavor, and suggest ways to extend the
protocol to additional evaluation scenarios.

2 The Challenge: Treebank Theories

Dependency treebanks contain information about
the grammatically meaningful elements in the utter-
ance and the grammatical relations between them.
Even if the formal representation in a dependency
treebank is well-defined according to current stan-
dards (Kübler et al., 2009), there are different ways
in which the trees can be used to express syntactic
content (Rambow, 2010). Consider, for instance, al-
gorithms for converting the phrase-structure trees in
the Penn Treebank (Marcus et al., 1993) into depen-
dency structures. Different conversion algorithms
implicitly make different assumptions about how to
represent linguistic content in the data. When mul-
tiple conversion algorithms are applied to the same
data, we end up with different dependency trees for
the same sentences (Johansson and Nugues, 2007;
Choi and Palmer, 2010; de Marneffe et al., 2006).
Some common cases of discrepancies are as follows.

Lexical vs. Functional Head Choice. In linguis-
tics, there is a distinction between lexical heads and
functional heads. A lexical head carries the seman-
tic gist of a phrase while a functional one marks its
relation to other parts of the sentence. The two kinds
of heads may or may not coincide in a single word
form (Zwicky, 1993). Common examples refer to
prepositional phrases, such as the phrase “on Sun-
day”. This phrase has two possible analyses, one se-
lects a lexical head (1a) and the other selects a func-
tional one (1b), as depicted below.

(1a) Sunday

on

(1b) on

Sunday

Similar choices are found in phrases which contain
functional elements such as determiners, coordina-
tion markers, subordinating elements, and so on.

Multi-Headed Constructions. Some phrases are
considered to have multiple lexical heads, for in-
stance, coordinated structures. Since dependency-
based formalisms require us to represent all con-
tent as binary relations, there are different ways we
could represent such constructions. Let us consider
the coordination of nominals below. We can choose
between a functional head (1a) and a lexical head
(2b, 2c). We can further choose between a flat rep-
resentation in which the first conjunct is a single
head (2b), or a nested structure where each con-
junct/marker is the head of the following element
(2c). All three alternatives empirically exist. Exam-
ple (2a) reflects the structures in the CoNLL 2007
shared task data (Nivre et al., 2007a). Johansson
and Nugues (2007) use structures like (2b). Exam-
ple (2c) reflects the analysis of Mel’čuk (1988).

(2a) and

earth wind fire

(2b) earth

wind and fire

(2c) earth

wind

and

fire

Periphrastic Marking. When a phrase includes
periphrastic marking — such as the tense and modal
marking in the phrase “would have worked” below
— there are different ways to consider its division
into phrases. One way to analyze this phrase would
be to choose auxiliaries as heads, as in (3a). Another
alternative would be to choose the final verb as the

prep pobj

conj conj
conj cc

coord

conj

coordconj
conj

Experiment Gold Parse
#1 arrive

on

Sunday

arrive

on

Sunday
#2 arrive

Sunday

on

arrive

Sunday

on

Gold: #1 # 2
Parse
#1 1.0 0.0
#2 0.0 1.0

Figure 1: Calculating cross-experiment LAS results

main head, and let the auxiliaries create a verb chain
with different levels of projection. Each annotation
decision dictates a different direction of the arcs and
imposes its own internal division into phrases.

(3a) would

have

worked

(3b) worked

have

would

In standard settings, an experiment that uses
a data set which adheres to a certain annotation
scheme reports results that are compared against the
annotation standard that the parser was trained on.
But if parsers were trained on different annotation
standards, the empirical results are not comparable
across experiments. Consider, for instance, the ex-
ample in Figure 1. If parse1 and parse2 are com-
pared against gold2 using labeled attachment scores
(LAS), then parse1 results are lower than the results
of parse2, even though both parsers produced lin-
guistically correct and perfectly useful output.

Existing methods for making parsing results com-
parable across experiments include heuristics for
converting outputs into dependency trees of a prede-
fined standard (Briscoe et al., 2002; Cer et al., 2010)
or evaluating the performance of a parser within an
embedding task (Miyao et al., 2008; Buyko and
Hahn, 2010). However, heuristic rules for cross-
annotation conversion are typically hand written and
error prone, and may not cover all possible discrep-
ancies. Task-based evaluation may be sensitive to
the particular implementation of the embedding task
and the procedures that extract specific task-related
features from the different parses. Beyond that,
conversion heuristics and task-based procedures are
currently developed almost exclusively for English.
Other languages typically lack such resources.

A recent study by Schwartz et al. (2011) takes
a different approach towards cross-annotation eval-
uation. They consider different directions of
head-dependent relations (such as on→Sunday
and Sunday→on) and different parent-child and
grandparent-child relations in a chain (such as
arrive→on and arrive→sunday in “arrive on sun-
day”) as equivalent. They then score arcs that fall
within corresponding equivalence sets. Using these
new scores Schwartz et al. (2011) neutralize certain
annotation discrepancies that distort parse compar-
ison. However, their treatment is limited to local
context and does not treat structures larger than two
sequential arcs. Additionally, since arcs in differ-
ent directions are typically labeled differently, this
method only applies for unlabeled dependencies.

What we need is a fully deterministic and for-
mally precise procedure for comparing any set of la-
beled or unlabeled dependency trees, by consolidat-
ing the shared linguistic content of the complete de-
pendency trees in different annotation schemes, and
comparing parse hypotheses through sound metrics
that can take into account multiple gold standards.

3 The Proposal: Cross-Annotation
Evaluation in Three Simple Steps

We propose a new protocol for cross-experiment
parse evaluation, consisting of three fundamental
components: (i) abstracting away from annotation
peculiarities, (ii) generalizing theory-specific struc-
tures into a single linguistically coherent gold stan-
dard that contains all and only consistent informa-
tion from all sources, and (iii) defining a sound met-
ric that takes into account the different gold stan-
dards that are being considered in the experiments.

In this section we first define functional trees as
the common space of formal objects and define a de-
terministic conversion procedure from dependency
trees to functional trees. Next we define a set of for-
mal operations on functional trees that compute, for
every pair of corresponding trees of the same yield, a
single gold tree that resolves inconsistencies among
gold standard alternatives and combines the infor-
mation that they share. Finally, we define scores
based on tree edit distance, refined to consider the
distance from parses to the overall gold tree as well
as the different annotation alternatives.

vg vg

vgvg

tmod

pobj pobj

prepprep

tmod

tmod

tmod

Preliminaries. Let T be a finite set of terminal
symbols and let L be a set of grammatical relation
labels. A dependency graph d is a directed graph
which consists of nodes Vd and arcs Ad ⊆ Vd × Vd.
We assume that all nodes in Vd are labeled by ter-
minal symbols via a function labelV : Vd → T . A
well-formed dependency graph d = (Vd, Ad) for a
sentence S = t1, t2, ..., tn is any dependency graph
that is a directed tree originating out of a node v0
labeled t0 = ROOT , and spans all terminals in
the sentence, that is, for every ti ∈ S there exists
vj ∈ Vd labeled labelV (vj) = ti. For simplicity we
assume that every node vj is indexed according to
the position of the terminal label, i.e., that for each
ti labeling vj , i always equals j. In a labeled de-
pendency tree, arcs in Ad are labeled by elements
of L via a function labelA : Ad → L that encodes
the grammatical relation between the terminals la-
beling the connected nodes. We define two auxiliary
functions on nodes in dependency trees. The func-
tion subtree : Vd → P(Vd) assigns to every node
v ∈ Vd the set of nodes accessible by it through
the reflexive transitive closure of the arc relation Ad.
The function span : Vd → P(T) assigns to every
node v ∈ Vd a set of terminals such that span(v) =
{t ∈ T |t = labelV (u) and u ∈ subtree(v)}.1

Step 1: Functional Representation Our first goal
is to define a representation format that keeps all
functional relationships that are represented in the
dependency trees intact, but remains neutral with
respect to the directionality of the head-dependent
relations. To do so we define functional trees
— linearly-ordered labeled trees which, instead of
head-to-head binary relations, represent the com-
plete functional structure of a sentence. Assuming
the same sets of terminal symbols T and grammat-
ical relation labels L, and assuming extended sets
of nodes V and arcs A ⊆ V × V , a functional tree
π = (V,A) is a directed tree originating from a sin-
gle root v0 ∈ V where all non-terminal nodes in
π are labeled with grammatical relation labels that
signify the grammatical function of the chunk they
dominate inside the tree via labelNT : V → L. All

1If a dependency tree d is projective, than for all v ∈ Vd the
terminals in span(v) form a contiguous segment of S. The cur-
rent discussion assumes that all trees are projective. We com-
ment on non-projective dependencies in Section 4.

terminal nodes in π are labeled with terminal sym-
bols via a labelT : V → T function. The function
span : V → P(V) now picks out the set of ter-
minal labels of the terminal nodes accessible by a
node v ∈ V via A. We obtain functional trees from
dependency trees using the following procedure:

• Initialize the set of nodes and arcs in the tree.

V := Vd

A := Ad

• Label each node v ∈ V with the label of its
incoming arc.

labelNT (v) = labelA(u, v)

• In case |span(v)| > 1 add a new node u as a
daughter designating the lexical head, labeled
with the wildcard symbol *:

V := V ∪ {u}
A := A ∪ {(v, u)}
labelNT (u) = ∗

• For each node v such that |span(v)| = 1, add a
new node u as a daughter, labeled with its own
terminal:

V := V ∪ {u}
A := A ∪ {(v, u)}
if (labelNT (v) �= ∗)

labelT (u) := labelV (v)

else
labelT (u) := labelV (parent(v))

That is to say, we label all nodes with spans
greater than 1 with the grammatical function of their
head, and for each node we add a new daughter u
designating the head word, labeled with its gram-
matical function. Wildcard labels are compatible
with any, more specific, grammatical function of the
word inside the phrase. This gives us a constituency-
like representation of dependency trees labeled with
functional information, which retains the linguis-
tic assumptions reflected in the dependency trees.
When applying this procedure, examples (1)–(3) get
transformed into (4)–(6) respectively.

(4a) ...

prep

on

*

Sunday

(4b) ...

*

on

pobj

Sunday

(5a) ...

conj

earth

conj

wind

*

and

conj

fire
(5b) ...

*

earth

conj

wind

cc

and

conj

fire

(5c) ...

*

earth

coord

*

wind

coord

*

and

conj

fire

(6a) ...

*

would

vg

*

have

vg

worked

(6b) ...

vg

vg

would

*

have

*

worked

Considering the functional trees resulting from
our procedure, it is easy to see that for tree pairs
(4a)–(4b) and (5a)–(5b) the respective functional
trees are identical modulo wildcards, while tree pairs
(5b)–(5c) and (6a)–(6b) end up with different tree
structures that realize different assumptions con-
cerning the internal structure of the tree. In order
to compare, combine or detect inconsistencies in the
information inherent in different functional trees, we
define a set of formal operations that are inspired by
familiar notions from unification-based formalisms
(Shieber (1986) and references therein).

Step 2: Formal Operations on Trees The intu-
ition behind the formal operations we define is sim-
ple. A completely flat tree over a span is the most
general structural description that can be given to it.
The more nodes dominate a span, the more linguis-
tic assumptions are made with respect to its struc-
ture. If an arc structure in one tree merely elaborates
an existing flat span in another tree, the theories un-
derlying the schemes are compatible, and their in-
formation can be combined. Otherwise, there exists
a conflict in the linguistic assumptions, and we need
to relax some of the assumptions, i.e., remove func-
tional nodes, in order to obtain a coherent structure
that contains the information on which they agree.

Let π1, π2 be functional trees over the same yield
t1, .., tn. Let the function span(v) pick out the ter-
minals labeling terminal nodes that are accessible
via a node v ∈ V in the functional tree through the

relation A. We define first the tree subsumption re-
lation for comparing the amount of information in-
herent in the arc-structure of two trees.2

T-Subsumption, denoted �t, is a relation be-
tween trees which indicates that a tree π1 is
consistent with and more general than tree
π2. Formally: π1 �t π2 iff for every node
n ∈ π1 there exists a node m ∈ π2 such
that span(n) = span(m) and label(n) =
label(m).

Looking at the functional trees of (4a)–(4b) we
see that their unlabeled skeletons mutually subsume
each other. In their labeled versions, however, each
tree contains labeling information that is lacking in
the other. In the functional trees (5b)–(5c) a flat
structure over a span in (5b) is more elaborated in
(5c). In order to combine information in trees with
compatible arc structures, we define tree unification.

T-Unification, denoted �t, is the operation that
returns the most general tree structure π3 that
is subsumed by both π1, π2 if such exists, and
fails otherwise. Formally: π1 �t π2 = π3 iff
π1 �t π3 and π2 �t π3, and for all π4 such that
π1 �t π4 and π2 �t π4 it holds that π3 �t π4.

Tree unification collects the information from two
trees into a single result if they are consistent, and
detects an inconsistency otherwise. In case of an
inconsistency, as is the case in the functional trees
(6a) and (6b), we cannot unify the structures due
to a conflict concerning the internal division of an
expression into phrases. However, we still want to
generalize these two trees into one tree that contains
all and only the information that they share. For that
we define the tree generalization operation.

T-Generalization, denoted �t, is the operation
that returns the most specific tree that is more
general than both trees. Formally, π1 �t π2 =
π3 iff π3 �t π1 and π3 �t π2, and for every π4
such that π4 �t π1 and π4 �t π2 it holds that
π4 �t π3.

2Note that the wildcard symbol * is equal to any other sym-
bol. In case the node labels consist of complex feature structures
made of attribute-value lists, we replace label(n) = label(m)
in the subsumption definition with label(n) � label(m) in the
sense of (Shieber, 1986).

Unlike unification, generalization can never fail.
For every pair of trees there exists a tree that is more
general than both: in the extreme case, pick the com-
pletely flat structure over the yield, which is more
general than any other structure. For (6a)–(6b), for
instance, we get that (6a)�t(6b) is a flat tree over
pre-terminals where “would” and “have” are labeled
with ‘vg’ and “worked” is the head, labeled with ‘*’.

The generalization of two functional trees pro-
vides us with one structure that reflects the common
and consistent content of the two trees. These struc-
tures thus provide us with a formally well-defined
gold standard for cross-treebank evaluation.

Step 3: Measuring Distances. Our functional
trees superficially look like constituency-based
trees, so a simple proposal would be to use Parse-
val measures (Black et al., 1991) for comparing the
parsed trees against the new generalized gold trees.
Parseval scores, however, have two significant draw-
backs. First, they are known to be too restrictive
with respect to some errors and too permissive with
respect to others (Carroll et al., 1998; Kübler and
Telljohann, 2002; Roark, 2002; Rehbein and van
Genabith, 2007). Secondly, F1 scores would still
penalize structures that are correct with respect to
the original gold, but are not there in the generalized
structure. Here we propose to adopt measures that
are based on tree edit distance (TED) instead. TED-
based measures are, in fact, an extension of attach-
ment scores for dependency trees. Consider, for in-
stance, the following operations on dependency arcs.

reattach-arc remove arc (u, v) ∈ Ad and add
an arc Ad ∪ {(w, v)}.

relabel-arc relabel arc l1(u, v) as l2(u, v)

Assuming that each operation is assigned a cost,
the attachment score of comparing two dependency
trees is simply the cost of all edit operations that are
required to turn a parse tree into its gold standard,
normalized with respect to the overall size of the de-
pendency tree and subtracted from a unity.3 Here
we apply the idea of defining scores by TED costs
normalized relative to the size of the tree and sub-
stracted from a unity, and extend it from fixed-size
dependency trees to ordered trees of arbitrary size.

3The size of a dependency tree, either parse or gold, is al-
ways fixed by the number of terminals.

Our formalization follows closely the formulation
of the T-Dice measure of Emms (2008), building on
his thorough investigation of the formal and empir-
ical differences between TED-based measures and
Parseval. We first define for any ordered and labeled
tree π the following operations.

relabel-node change the label of node v in π

delete-node delete a non-root node v in π with
parent u, making the children of v the children
of u, inserted in the place of v as a subsequence
in the left-to-right order of the children of u.

insert-node insert a node v as a child of u in
π making it the parent of a consecutive subse-
quence of the children of u.

An edit script ES(π1, π2) = {e0, e1....ek} between
π1 and π2 is a set of edit operations required for turn-
ing π1 into π2. Now, assume that we are given a cost
function defined for each edit operation. The cost of
ES(π1, π2) is the sum of the costs of the operations
in the script. An optimal edit script is an edit script
between π1 and π2 of minimum cost.

ES∗(π1, π2) = argminES(π1,π2)

∑
e∈ES(π1,π2)

cost(e)

The tree edit distance problem is defined to be the
problem of finding the optimal edit script and com-
puting the corresponding distance (Bille, 2005).

A simple way to calculate the error δ of a parse
would be to define it as the edit distance between
the parse hypothesis π1 and the gold standard π2.

δ(π1, π2) = cost(ES∗(π1, π2))

However, in such cases the parser may still get pe-
nalized for recovering nodes that are lacking in the
generalization. To solve this, we refine the distance
between a parse tree and the generalized gold tree
to discard edit operations on nodes that are there in
the native gold tree but are eliminated through gen-
eralization. We compute the intersection of the edit
script turning the parse tree into the generalize gold
with the edit script turning the native gold tree into
the generalized gold, and discard its cost. That is, if
parse1 and parse2 are compared against gold1 and
gold2 respectively, and if we set gold3 to be the re-
sult of gold1�tgold2, then δnew is defined as:

Figure 2: The evaluation pipeline. Different versions of the treebank go into different experiments, resulting in
different parse and gold files. All trees are transformed into functional trees. All gold files enter generalization to
yield a new gold. The different δ arcs represent the different tree distances used for calculating the TED-based scores.

δnew(parse1, gold1,gold3) =
δ(parse1,gold3)
−cost(ES∗(parse1,gold3)∩ES∗(gold1,gold3))

Now, if gold1 and gold3 are identi-
cal, then ES∗(gold1,gold3)=∅ and we fall
back on the simple tree edit distance score
δnew(parse1,gold1,gold3)=δ(parse1, gold3).
When parse1 and gold1 are identical,
i.e., the parser produced perfect out-
put with respect to its own scheme, then
δnew(parse1,gold1,gold3)=δnew(gold1,gold1,gold3)
=δ(gold1,gold3)− cost(ES∗(gold1,gold3))=0, and
the parser does not get penalized for recovering a
correct structure in gold1 that is lacking in gold3.

In order to turn distances into accuracy measures
we have to normalize distances relative to the maxi-
mal number of operations that is conceivable. In the
worst case, we would have to remove all the internal
nodes in the parse tree and add all the internal nodes
of the generalized gold, so our normalization factor
ι is defined as follows, where |π| is the size4 of π.

ι(parse1,gold3) = |parse1|+ |gold3|

We now define the score of parse1 as follows:5

1− δnew(parse1,gold1,gold3)
ι(parse1,gold3)

Figure 2 summarizes the steps in the evalu-
ation procedure we defined so far. We start
off with two versions of the treebank, TB1 and
TB2, which are parsed separately and provide their
own gold standards and parse hypotheses in a la-
beled dependencies format. All dependency trees

4Following common practice, we equate size |π| with the
number of nodes in π, discarding the terminals and root node.

5If the trees have only root and leaves, ι = 0, score := 1.

are then converted into functional trees, and we
compute the generalization of each pair of gold
trees for each sentence in the data. This pro-
vides the generalized gold standard for all exper-
iments, here marked as gold3.6 We finally com-
pute the distances δnew(parse1,gold1,gold3) and
δnew(parse2,gold2,gold3) using the different tree
edit distances that are now available, and we repeat
the procedure for each sentence in the test set.

To normalize the scores for an entire test set of
size n we can take the arithmetic mean of the scores.

∑|test-set|
i=1 score(parse1i,gold1i,gold3i)

|test-set|

Alternatively we can globally average of all edit dis-
tance costs, normalized by the maximally possible
edits on parse trees turned into generalized trees.

1−
∑|test-set|

i=1 δnew(parse1i,gold1i,gold3i)∑|test-set|
i=1 ι(parse1i,gold3i)

The latter score, global averaging over the entire test
set, is the metric we use in our evaluation procedure.

4 Experiments

We demonstrate the application of our procedure to
comparing dependency parsing results on different
versions of the Penn Treebank (Marcus et al., 1993).

The Data We use data from the PTB, converted
into dependency structures using the LTH soft-
ware, a general purpose tool for constituency-to-
dependency conversion (Johansson and Nugues,
2007). We use LTH to implement the five different
annotation standards detailed in Table 3.

6Generalization is an associative and commutative opera-
tion, so it can be extended for n experiments in any order.

TB1 parse1.dep

gold1.dep

parse2.dep

gold2.dep

parse1

gold3
gold1

parse2

gold2TB2

parse

parse

δ (parse1,gold3)
δ (gold1,gold3)

δ (parse2
,gold3

)
δ (gold2,gold3)

parse transform generalizeparse

Train Default Old LTH CoNLL07
Gold

Default UAS 0.9142 0.6077 0.7772
LAS 0.8820 0.4801 0.6454
U-TED 0.9488 0.8926 0.9237
L-TED 0.9241 0.7811 0.8441

Old LTH UAS 0.6053 0.8955 0.6508
LAS 0.4816 0.8644 0.5771
U-TED 0.8931 0.9564 0.9092
L-TED 0.7811 0.9317 0.8197

CoNLL07 UAS 0.7734 0.6474 0.8917
LAS 0.6479 0.5722 0.8736
U-TED 0.9260 0.9097 0.9474
L-TED 0.8480 0.8204 0.9233

Default-OldLTH U-TED 0.9500 0.9543
L-TED 0.9278 0.9324

Default-CoNLL07 U-TED 0.9444† 0.9453†
L-TED 0.9266† 0.9260†

oldLTH-CoNLL07 U-TED 0.9519 0.9490
L-TED 0.9323 0.9283

default-oldLTH-CoNLL U-TED 0.9464† 0.9515 0.9471†
L-TED 0.9281† 0.9336 0.9280†

Train CoNLL07 Functional Lexical
Gold

CoNLL07 UAS 0.8917 0.8054 0.6986
LAS 0.8736 0.7895 0.6831
U-TED 0.9474 0.9357 0.9237
L-TED 0.9233 0.8960 0.8606

Functional UAS 0.8040 0.8970 0.6110
LAS 0.7873 0.8793 0.5977
U-TED 0.9347 0.9466 0.9107
L-TED 0.8948 0.9239 0.8316

Lexical UAS 0.7013 0.6138 0.8823
LAS 0.6875 0.6022 0.8635
U-TED 0.9252 0.9132 0.9500
L-TED 0.8623 0.8345 0.9266

CoNLL07-Functional U-TED 0.9473† 0.9473†
L-TED 0.9233 0.9247

CoNLL07-Lexical U-TED 0.9490† 0.9500†
L-TED 0.9253† 0.9266†

Functional-Lexical U-TED 0.9489† 0.9501†
L-TED 0.9266† 0.9267†

CoNLL07-Functional-Lexical U-TED 0.9489† 0.9489† 0.9501†
L-TED 0.9254† 0.9266† 0.9267†

Table 1: Cross-experiment dependency parsing evaluation for MaltParser trained on multiple schemes. We report stan-
dard LAS scores and TEDEVAL global average metrics. Boldface results outperform the rest of the results reported
in the same row. The † sign marks pairwise results where the difference is not statistically significant.

Train Default Old LTH CoNLL07
Gold

Default UAS 0.9173 0.6085 0.7709
LAS 0.8833 0.4780 0.6414
U-TED 0.9513 0.8903 0.9236
L-TED 0.9249 0.7727 0.8424

Old LTH UAS 0.6078 0.8952 0.6415
LAS 0.4809 0.8471 0.5669
U-TED 0.8960 0.9550 0.9096
L-TED 0.7823 0.9224 0.8170

CoNLL07 UAS 0.7767 0.6517 0.8991
LAS 0.6504 0.5725 0.8709
U-TED 0.9289 0.9087 0.9479
L-TED 0.8502 0.8159 0.9208

Default-oldLTH U-TED 0.9533 0.9515
L-TED 0.9289 0.9224

Default-CoNLL U-TED 0.9474† 0.9460†
L-TED 0.9281 0.9238

OldLTH-CoNLL U-TED 0.9479 0.9493
L-TED 0.9234 0.9258

Default-OldLTH-CoNLL U-TED 0.9492† 0.9461 0.9480†
L-TED 0.9298 0.9241† 0.9258†

Train CoNLL07 Functional Lexical
Gold

CoNLL07 UAS 0.8991 0.8077 0.7018
LAS 0.8709 0.7902 0.6804
U-TED 0.9479 0.9373 0.9221
L-TED 0.9208 0.8955 0.8505

Functional UAS 0.8083 0.8978 0.6150
LAS 0.7895 0.8782 0.5975
U-TED 0.9356 0.9476 0.9092
L-TED 0.8929 0.9226 0.8218

Lexical UAS 0.6997 0.6161 0.8826
LAS 0.6835 0.6034 0.8491
U-TED 0.9259 0.9152 0.9483
L-TED 0.8593 0.8340 0.9160

CoNLL-Functional U-TED 0.9479† 0.9487†
L-TED 0.9209 0.9237

CoNLL-Lexical U-TED 0.9497 0.9483
L-TED 0.9228 0.9161

Functional-Lexical U-TED 0.9504 0.9483
L-TED 0.9258 0.9161

CoNLL-Functional-Lexical U-TED 0.9498 0.9504† 0.9483†
L-TED 0.9229 0.9258 0.9161

Table 2: Cross-experiment dependency parsing evaluation for the MST parser trained on multiple schemes. We
report standard LAS scores and TEDEVAL global average metrics. Boldface results outperform the rest of the results
reported in the same row. The † sign marks pairwise results where the difference is not statistically significant.

ID Description
Default The LTH conversion default settings
OldLTH The conversion used in Johansson and Nugues (2007)
CoNLL07 The conversion used in the CoNLL shared task (Nivre et al., 2007a)
Lexical Same as CoNLL, but selecting only lexical heads when a choice exists
Functional Same as CoNLL, but selecting only functional heads when a choice exists

Table 3: LTH conversion schemes used in the experiments. The LTH conversion settings in terms of the complete
feature-value pairs associated with the LTH parameters in different schemes are detailed in the supplementary material.

The Default, OldLTH and CoNLL schemes
mainly differ in their coordination structure, and the
Functional and Lexical schemes differ in their selec-
tion of a functional and a lexical head, respectively.
All schemes use the same inventory of labels.7 The
LTH parameter settings for the different schemes are
elaborated in the supplementary material.

The Setup We use two different parsers: (i) Malt-
Parser (Nivre et al., 2007b) with the arc eager algo-
rithm as optimized for English in (Nivre et al., 2010)
and (ii) MSTParser with the second-order projec-
tive model of McDonald and Pereira (2006). Both
parsers were trained on the different instances of
sections 2-21 of the PTB obeying the different an-
notation schemes in Table 3. Each trained model
was used to parse section 23. All non-projective de-
pendencies in the training and gold sets were projec-
tivized prior to training and parsing using the algo-
rithm of Nivre and Nilsson (2005). A more princi-
pled treatment of non-projective dependency trees is
an important topic for future research. We evaluated
the parses using labeled and unlabeled attachment
scores, and using our TEDEVAL software package.

Evaluation Our TEDEVAL software package im-
plements the pipeline described in Section 3. We
convert all parse and gold trees into functional
trees using the algorithm defined in Section 3, and
for each pair of parsing experiments we calculate
a shared gold standard using generalization deter-
mined through a chart-based greedy algorithm.8 Our
scoring procedure uses the TED algorithm defined
by Zhang and Shasha (1989).9 The unlabeled score
is obtained by assigning cost(e) = 0 for every e re-
labeling operation. To calculate pairwise statistical
significance we use a shuffling test with 10,000 it-
erations (Cohen, 1995). A sample of all files in the
evaluation pipeline for a subset of 10 PTB sentences
is available in the supplementary materials.10

7In case the labels are not taken from the same inventory,
e.g., subjects in one scheme are marked as SUB and in the other
marked as SBJ, it is possible define a a set of zero-cost operation
types — in such case, to the operation relabel(SUB,SBJ) — in
order not to penalize string label discrepancies.

8Our algorithm has space and runtime complexity of O(n2).
9Available via http://web.science.mq.edu.au/

˜swan/howtos/treedistance/
10The TEDEVAL software package is available via http:

//stp.lingfil.uu.se/˜tsarfaty/unipar

Results Table 1 reports the results for the inter-
and cross-experiment evaluation of parses produced
by MaltParser. The left hand side of the table
presents the parsing results for a set of experiments
in which we compare parsing results trained on the
Default, OldLTH and CoNLL07 schemes. In a sec-
ond set of experiments we compare the CoNLL07,
Lexical and Functional schemes. Table 2 reports the
evaluation of the parses produced by MSTParser for
the same experimental setup. Our goal here is not to
compare the parsers, but to verify that the effects of
switching from LAS to TEDEVAL are robust across
parsing algorithms.

In each of the tables, the top three groups of four
rows compare results of parsed dependency trees
trained on a particular scheme against gold trees of
the same and the other schemes. The next three
groups of two rows report the results for compar-
ing pairwise sets of experiments against a general-
ized gold using our proposed procedure. In the last
group of two rows we compare all parsing results
against a single gold obtained through a three-way
generalization.

As expected, every parser appears to perform at
its best when evaluated against the scheme it was
trained on. This is the case for both LAS and TEDE-
VAL measures and the performance gaps are statis-
tically significant. When moving to pairwise evalu-
ation against a single generalized gold, for instance,
when comparing CoNLL07 to the Default settings,
there is still a gap in performance, e.g., between
OldLTH and CoNLL07, and between OldLTH and
Default. This gap is however a lot smaller and is not
always statistically significant. In fact, when evalu-
ating the effect of linguistically disparate annotation
variations such as Lexical and Functional on the per-
formance of MaltParser, Table 1 shows that when
using TEDEVAL and a generalized gold the perfor-
mance gaps are small and statistically insignificant.

Moreover, observed performance trends when
evaluating individual experiments on their original
training scheme may change when compared against
a generalized gold. The Default scheme, for Malt-
Parser, appears better than OldLTH when both are
evaluated against their training schemes. But look-
ing at the pairwise-evaluated experiments, it is the
other way round (the difference is smaller, but statis-
tically significant). In evaluating against a three-way

generalization, all the results obtained for different
training schemes are on a par with one another, with
minor gaps in performance, rarely statistically sig-
nificant. This suggests that apparent performance
trends between experiments when evaluating with
respect to the training schemes may be misleading.

These observations are robust across parsing algo-
rithms. In each of the tables, results obtained against
the training schemes show significant differences
whereas applying our cross-experimental procedure
shows small to no gaps in performance across dif-
ferent schemes. Annotation variants which seem to
have crucial effects have a relatively small influence
when parsed structures are brought into the same
formal and theoretical common ground for compar-
ison. Of course, it may be the case that one parser is
better trained on one scheme while the other utilizes
better another scheme, but objective performance
gaps can only be observed when they are compared
against shared linguistic content.

5 Discussion and Extensions

This paper addresses the problem of cross-
experiment evaluation. As it turns out, this prob-
lem arises in NLP in different shapes and forms;
when evaluating a parser against different annota-
tion schemes, when evaluating parsing performance
across parsers and different formalisms, and when
comparing parser performance across languages.
We consider our contribution successful if after
reading it the reader develops a healthy suspicion to
blunt comparison of numbers across experiments, or
better yet, across different papers. Cross-experiment
comparison should be a careful and well thought-
through endeavor, in which we retain as much infor-
mation as we can from the parsed structures, avoid
lossy conversions, and focus on an object of evalua-
tion which is agreed upon by all variants.

Our proposal introduces one way of doing so in
a streamlined, efficient and formally worked out
way. While individual components may be further
refined or improved, the proposed setup and imple-
mentation can be straightforwardly applied to cross-
parser and cross-framework evaluation. In the fu-
ture we plan to use this procedure for comparing
constituency and dependency parsers. A conversion
from constituency-based trees into functional trees

is straightforward to define: simply replace the node
labels with the grammatical function of their domi-
nating arc – and the rest of the pipeline follows.

A pre-condition for cross-framework evaluation
is that all representations encode the same set of
grammatical relations by, e.g., annotating arcs in de-
pendency trees or decorating nodes in constituency
trees. For some treebanks this is already the case
(Nivre and Megyesi, 2007; Skut et al., 1997; Hin-
richs et al., 2004) while for others this is still lack-
ing. Recent studies (Briscoe et al., 2002; de Marn-
effe et al., 2006) suggest that evaluation through a
single set of grammatical relations as the common
denominator is a linguistically sound and practically
useful way to go. To guarantee extensions for cross-
framework evaluation it would be fruitful to make
sure that resources use the same set of grammatical
relation labels across different formal representation
types. Moreover, we further aim to inquire whether
we can find a single set of grammatical relation la-
bels that can be used across treebanks for multiple
languages. This would then pave the way for the de-
velopment of cross-language evaluation procedures.

6 Conclusion

We propose an end-to-end procedure for compar-
ing dependency parsing results across experiments
based on three steps: (i) converting dependency trees
to functional trees, (ii) generalizing functional trees
to harmonize information from different sources,
and (iii) using distance-based metrics that take the
different sources into account. When applied to
parsing results of different dependency schemes,
dramatic gaps observed when comparing parsing re-
sults obtained in isolation decrease or dissolve com-
pletely when using our proposed pipeline.

Acknowledgments We thank the developers of
the LTH and TED software who made their code
available for our use. We thank Richard Johansson
for providing us with the LTH parameter settings of
existing dependency schemes. We thank Ari Rap-
poport, Omri Abend, Roy Schwartz and members of
the NLP lab at the Hebrew University of Jerusalem
for stimulating discussion. We finally thank three
anonymous reviewers for useful comments on an
earlier draft. The research reported in the paper was
partially funded by the Swedish Research Council.

References
Philip Bille. 2005. A survey on tree edit distance

and related. problems. Theoretical Computer Science,
337:217–239.

Ezra Black, Steven P. Abney, D. Flickenger, Claudia
Gdaniec, Ralph Grishman, P. Harrison, Donald Hin-
dle, Robert Ingria, Frederick Jelinek, Judith L. Kla-
vans, Mark Liberman, Mitchell P. Marcus, Salim
Roukos, Beatrice Santorini, and Tomek Strzalkowski.
1991. Procedure for quantitatively comparing the syn-
tactic coverage of English grammars. In E. Black, ed-
itor, Proceedings of the workshop on Speech and Nat-
ural Language, HLT, pages 306–311. Association for
Computational Linguistics.

Ted Briscoe, John Carroll, Jonathan Graham, and Ann
Copestake. 2002. Relational evaluation schemes.
In Proceedings of LREC Workshop“Beyond Parseval
– Towards improved evaluation measures for parsing
systems”.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL-X, pages 149–164.

Ekaterina Buyko and Udo Hahn. 2010. Evaluating
the impact of alternative dependency graph encodings
on solving event extraction tasks. In Proceedings of
EMNLP, pages 982–992.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. In
Proceedings of LREC, pages 447–454.

Daniel Cer, Marie-Catherine de Marneffe, Daniel Juraf-
sky, and Christopher D. Manning. 2010. Parsing to
stanford dependencies: Trade-offs between speed and
accuracy. In Proceedings of LREC.

Jinho D. Choi and Martha Palmer. 2010. Robust
constituent-to-dependency conversion for English. In
Proceedings of TLT.

Paul Cohen. 1995. Empirical Methods for Artificial In-
telligence. The MIT Press.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, pages 449–454.

Martin Emms. 2008. Tree-distance and some other vari-
ants of evalb. In Proceedings of LREC.

Erhard Hinrichs, Sandra Kübler, Karin Naumann, Heike
Telljohan, and Julia Trushkina. 2004. Recent develop-
ment in linguistic annotations of the TüBa-D/Z Tree-
bank. In Proceedings of TLT.

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proceedings of NODALIDA.

Sandra Kübler and Heike Telljohann. 2002. Towards
a dependency-oriented evaluation for partial parsing.

In Proceedings of LREC Workshop“Beyond Parseval
– Towards improved evaluation measures for parsing
systems”.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Number 2 in Synthesis
Lectures on Human Language Technologies. Morgan
& Claypool Publishers.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19:313–330.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proceedings of EACL, pages 81–88.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of ACL, pages 91–98.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Yusuke Miyao, Rune Sætre, Kenji Sagae, Takuya Mat-
suzaki, and Jun’ichi Tsujii. 2008. Task-oriented eval-
uation of syntactic parsers and their representations. In
Proceedings of ACL, pages 46–54.

Joakim Nivre and Beata Megyesi. 2007. Bootstrapping
a Swedish Treebank using cross-corpus harmonization
and annotation projection. In Proceedings of TLT.

Joakim Nivre and Jens Nilsson. 2005. Pseudo projective
dependency parsing. In Proceeding of ACL, pages 99–
106.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proceedings of
COLING, pages 64–70.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007a. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 915–932.

Joakim Nivre, Jens Nilsson, Johan Hall, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007b. Maltparser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(1):1–41.

Joakim Nivre, Laura Rimell, Ryan McDonald, and Carlos
Gómez-Rodrı́guez. 2010. Evaluation of dependency
parsers on unbounded dependencies. pages 813–821.

Owen Rambow. 2010. The Simple Truth about Depen-
dency and Phrase Structure Representations: An Opin-
ion Piece. In Proceedings of HLT-ACL, pages 337–
340.

Ines Rehbein and Josef van Genabith. 2007. Why is it so
difficult to compare treebanks? Tiger and TüBa-D/Z
revisited. In Proceedings of TLT, pages 115–126.

Brian Roark. 2002. Evaluating parser accuracy us-
ing edit distance. In Proceedings of LREC Work-
shop“Beyond Parseval – Towards improved evaluation
measures for parsing systems”.

Roy Schwartz, Omri Abend, Roi Reichart, and Ari Rap-
poport. 2011. Neutralizing linguistically problematic
annotations in unsupervised dependency parsing eval-
uation. In Proceedings of ACL, pages 663–672.

Stuart M. Shieber. 1986. An Introduction to Unification-
Based Grammars. Center for the Study of Language
and Information.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for free
word-order languages. In Proceedings of the fifth con-
ference on Applied natural language processing, pages
88–95.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceeding of IWPT, pages 195–206.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast
algorithms for the editing distance between trees and
related problems. In SIAM Journal of Computing, vol-
ume 18, pages 1245–1262.

Arnold M. Zwicky. 1993. Heads, bases, and functors.
In G.G. Corbett, N. Fraser, and S. McGlashan, editors,
Heads in Grammatical Theory, pages 292–315. Cam-
bridge University Press.

