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Recommender systems have become very influential in our everyday decision making, e.g., helping us choose a movie from a content

platform, or offering us suitable products on e-commerce websites. While most vendors who utilize recommender systems rely

exclusively on training data consisting of past transactions that took place through them, the accuracy of recommendations can be

improved if several vendors conjoin their datasets. Alas, such data sharing poses grave privacy concerns for both the vendors and the

users. In this study we present secure multi-party protocols that enable several vendors to share their data, in a privacy-preserving

manner, in order to allowmore accurate Collaborative Filtering (CF). Shmueli and Tassa (RecSys 2017) introduced privacy-preserving CF

protocols that rely on a mediator; namely, a third party that assists in performing the computations. They demonstrated the significant

advantages of mediation in that context. We take here the mediation approach into the next level by using several independent

mediators. Such distributed mediation maintains all of the advantages that were identified by Shmueli and Tassa, and offers additional

ones, in comparison with the single-mediator protocols: stronger security and dramatically shorter runtimes. In addition, while all

prior art assumed limited and unrealistic settings, in which each user can purchase any given item through only one vendor, we

consider here a general and more realistic setting, which encompasses all previously considered settings, where users can choose

between different competing vendors. We demonstrate the appealing performance of our protocols through extensive experimentation.
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1 INTRODUCTION

Collaborative Filtering (CF) is one of the main methods used by recommender systems in order to assist users to navigate

through the dazzling abundance of items (products, services, information) available to them, and find the most suitable

ones for their tastes and needs [10]. In that method, predictions about the interests of a user are based on aggregated

information on preferences of a large set of users. One of the most widely used approaches in CF is to base predictions

on characteristics of items. In this so-called item-based approach, one uses the collaborative data in order to learn a

model of similarity between items; consequently, users are offered items that are similar to previous items that they had

already purchased and liked.

To improve the quality of predictions, larger volumes of training data are needed. Hence, it is in the interest of vendors

to collaborate and conjoin their historical data in order to issue more accurate recommendations [6]. However, such

collaboration may jeopardize the privacy of users, who trust the vendors through whom they purchased or rated items

to keep that information confidential. Additionally, the vendors themselves may wish to keep their historical data for

themselves, as it has commercial value that they would not like to share with potential competitors. Privacy-Preserving

Collaborative Filtering (PPCF) addresses those issues by enabling the use of CF without disclosing private information.
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In this study we propose secure protocols of Multi-Party Computation (MPC) [26] for item-based CF. Our protocols

enable the computation of the similarities between items, and then to issue predictions of two types: how a given user

would rate a given item, and what are the currently top items to be recommended to a given user.

Shmueli and Tassa [21, 22] have presented such protocols in the mediated model. In that model [2], there exists a

mediator that assists in performing intermediate computations, but he is prevented from accessing the actual data due

to privacy concerns. Their protocols rely on a single mediator, to whom the vendors provide the user-item ratings under

homomorphic encryption. Owing to the homomorphic property, the mediator is capable of performing computations

on the encrypted data, but thanks to the encryption he remains oblivious to the plaintext underneath. As explained in

[22, Section 3], mediation is most advantageous for PPCF: it frees the vendors from the need to communicate with each

other, and the need to be constantly online in order to assist other vendors in their recommendation queries; it reduces

communication and computational costs; and it enables an economically-realistic collaboration model between vendors

that differ in their contribution to the CF training data (as each vendor offers a different set of items to a different set of

users), and in their demand from the CF system (in terms of the number and type of queries that they submit).

In this study we also present PPCF protocols in the mediated model. We implement the very same item-based CF

technique as in [22]. However, while the protocols in [22] used a single mediator, ours rely on several independent

mediators. The advantages of distributed mediation are very significant, as we proceed to explain.

First, while the single-mediator protocols relied on homomorphic encryption, the distributed mediation-based

protocols that we present here rely on secret sharing as the cryptographic protection shield. As secret sharing is a

linear operation, while homomorphic encryption requires expensive modular exponentiations, the effects on runtime

costs are overwhelming. Another aspect that contributes to reducing runtime and communication costs is the size of

the underlying arithmetic. Secret sharing can be executed on standard arithmetic (say, 64-bit) because it can be executed

over any field which is large enough to represent all possible secret values. However, homomorphic encryption requires

arithmetic of at least 512 and preferably also 1024 bits.

Second, the protocols in [22] are vulnerable to malicious collusion, in the sense that if the single mediator colludes

with one of the vendors, all private information is revealed to them. In the secret sharing-based protocols that we

present here, a similar privacy collapse occurs only if at least half of the mediators betray the trust vested in them and

collude. In case the group of mediators has an honest majority, the private information remains fully protected.

Another advantage that our protocols offer is that they free the vendors from any need to communicate with each

other. While non-mediated PPCF protocols require a constant communication between the collaborating vendors, and

the single-mediator protocols [22] reduced the communication demands only to the offline (and less frequent) phase,

our protocols free the vendors from any need of communicating with each other, or even being aware of the number or

the identity of other vendors. They only need to communicate with the mediators.

The last contribution that we offer is with regard to the collaborative setting, in the sense of how the user-item

rating data is distributed among the vendors. All existing works on PPCF assumed distribution scenarios in which each

entry in the user-item rating matrix is owned by just one vendor. Such exclusivity can be found only in unrealistic

markets of zero competition: a user who wants to purchase a specific item can do so only through a single vendor. In

reality, however, users usually have a choice between competing vendors. We introduce here a much more realistic

distribution scenario, which generalizes all previously-considered scenarios, that allows such competition.

The outline of the paper is as follows. We begin with an overview of related work in Section 2, and preliminary

discussions and necessary background in Section 3.We present our protocols in Section 4, demonstrate their performance

in Section 5, and conclude in Section 6.
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2 RELATEDWORK

The literature of PPCF may be classified according to the approach that they take towards achieving privacy.

Obfuscation-based methods. In such methods, the user-item data is transformed in some way that prevents

individual users from being identified, while maintaining a close level of accuracy in the generated recommendations.

Polat and Du [18] used randomized perturbation techniques to introduce randomness in the data so that users

could not be identified with certainty. Similarly, Yakut and Polat [25] proposed a privacy preserving implementation of

item-based CF based on the cosine similarity score. They achieve privacy by injecting fake ratings into the distributed

matrix of user-item ratings. As a result of this practice, the predictions that their algorithm issues differ from those

that the underlying CF method would issue. Another example is the study of Weinsberg et al. [24]; they designed

techniques for adding ratings to a user’s profile in order to prevent inference of that user’s properties (e.g., gender),

while having an insignificant effect on the recommendations provided to that user.

Obfuscation-based methods are scalable since the transformations usually only need to be applied to the data at

the point of origin, after which the obfuscated data can be used directly. However, the security of these techniques is

harder to prove since they rely on randomness and anonymity. Also, they issue inaccurate recommendations as those

are computed from obfuscated data.

Clustering-based methods. Such methods rely on grouping the users into clusters and then extracting a represen-

tation of that cluster to be used in the CF process. Such methods provide anonymity for the users within each cluster.

Another advantage of this approach is scalability, since a reduced representation of the data is used. Larger clusters

enable smaller representations, but, on the other hand, they provide less accurate filtering. Examples of studies that

suggest clustering-based PPCF methods are [8, 11, 13, 23].

Cryptography-based methods. In that approach, cryptographic means are used in order to protect the sensitive

data. Typically, such methods use homomorphic encryption, since such encryption allows performing arithmetic

computations on the encrypted values. The study of [22] that we discussed in the Introduction falls under that category.

It delegates all CF computations to a mediator, who receives the user-item rating data under homomorphic encryption,

and then performs the needed CF computations on the encrypted data. Another cryptographic-based PPCF method was

presented by Basu et al. [3]. They proposed a privacy-preserving algorithm that is based on the Slope One predictor

[12]. They base the security of their algorithm on additively homomorphic public-key encryption. Their algorithm has

an offline pre-computation phase, followed by an online prediction phase. When a vendor wishes to get a predicted

rating, all of the vendors must participate in the computation of that prediction.

The studies of [4, 5] present a practical implementation of a PPCF system, based on the Google App Engine for Java

(GAE/J) cloud platform. They designed algorithms that rely on a homomorphic encryption scheme to preserve the

privacy of user data in the cloud.

While cryptography-based techniques provide strong security guarantees, without sacrificing the accuracy of their

results, they do not scale well. As practical systems involve millions of users and items, such techniques may have

impractical runtimes, especially in online settings where a short response time is needed.

Ahmad et al. [1] introduced the notion of distributed trust, which is similar to the distributed mediation model

of computation that underlies our protocols. They aimed at increasing the trust of users in the system: instead of

relying on a single server, they distribute the trust among several servers. They achieve privacy by using a threshold

homomorphic cryptosystem. As we show here, while trust/security is the primary motivation for distributing mediation,

such distribution ushers in an evenmore meaningful advantage: it enables to replace expensive homomorphic encryption
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with much more efficient cryptographic techniques, and thus enable significantly shorter runtimes that could be a key

factor in making PPCF a viable practice.

3 PRELIMINARIES

We begin this section by providing the necessary background on item-based CF (Section 3.1). We proceed to describe

distributed scenarios, one of which is the general distribution scenario that we consider here (Section 3.2). Next, we

describe the setting of distributed mediation (Section 3.3), and conclude with an overview of secret sharing (Section 3.4).

3.1 Item-based collaborative filtering

We provide here a brief introduction to item-based CF [9]. In what follows, we use the following notation agreements:

(1) If 𝑟 is a non-negative integer then 𝜉 (𝑟 ) = 0 if 𝑟 = 0 and 𝜉 (𝑟 ) = 1 otherwise.

(2) If x is a vector and 𝑓 is any scalar function, then 𝑓 (x) is the vector in which 𝑓 (x) (·) = 𝑓 (x(·)).
(3) If x and y are two 𝑁 -dimensional vectors then x ·y is the 𝑁 -dimensional vector in which (x ·y) (𝑛) = x(𝑛) ·y(𝑛),

𝑛 ∈ [𝑁 ] := {1, . . . , 𝑁 }.
(4) Inner products between vectors will be denoted by ⟨·, ·⟩; the induced norm will be denoted by ∥ · ∥.

Let𝑈 = {𝑢1, . . . , 𝑢𝑁 } be a set of users (consumers) and 𝐵 = {𝑏1, . . . , 𝑏𝑀 } be a set of items (products or services). The

user-item rating matrix, 𝑅, is an 𝑁 ×𝑀 matrix where 𝑅(𝑛,𝑚) is either a positive integer which indicates a rating that

𝑢𝑛 had given to 𝑏𝑚 , or zero if 𝑢𝑛 had not rated 𝑏𝑚 . In item-based CF, one uses the rating information, as given in 𝑅, in

order to infer similarities between the items. This similarity model is then used in order to predict how users would

rate items that they still had not purchased, or to determine the potentially most appealing items for a given user.

Let 𝑆 be a symmetric 𝑀 ×𝑀 matrix where 𝑆 (ℓ,𝑚) is the similarity score between items 𝑏ℓ and 𝑏𝑚 , ℓ,𝑚 ∈ [𝑀] :=
{1, 2, . . . , 𝑀}. Then the similarity scores are defined in Definition 1.

Definition 1. Let c𝑚 = (𝑅(𝑛,𝑚) : 𝑛 ∈ [𝑁 ]) denote the𝑚-th column in the user-item rating matrix 𝑅, where𝑚 ∈ [𝑀].
Given indices of two items, ℓ,𝑚 ∈ [𝑀], let cℓ |𝑚 := cℓ · 𝜉 (c𝑚) denote the projection of the ℓ-th column of the user-item

rating matrix 𝑅 on the subset of users that rated both items 𝑏ℓ and 𝑏𝑚 . Then the cosine similarity score is

𝑆 (ℓ,𝑚) = ⟨cℓ , c𝑚⟩
∥cℓ |𝑚 ∥ · ∥c𝑚 |ℓ ∥

, (1)

where if cℓ |𝑚 = 0 or c𝑚 |ℓ = 0, 𝑆 (ℓ,𝑚) is set to zero.

The similarity scores are used to predict 𝑢𝑛 ’s rating of 𝑏𝑚 as follows. Let:

• 𝑞 < 𝑀 be a preset (typically small) integer.

• 𝑁𝑞 (𝑚) be the set of indices of the 𝑞 nearest neighbors of 𝑏𝑚 (those with highest 𝑆 (·,𝑚)).
• 𝑁 +𝑞 (𝑚) := {ℓ ∈ 𝑁𝑞 (𝑚) : 𝑆 (ℓ,𝑚) > 0}.
• s𝑚 be the𝑀-dimensional vector for which s𝑚 (ℓ) = 𝑆 (ℓ,𝑚) if ℓ ∈ 𝑁 +𝑞 (𝑚) and s𝑚 (ℓ) = 0 otherwise.

• 𝑅(𝑏𝑚) =
[∑

𝑛∈[𝑁 ] 𝑅(𝑛,𝑚)
]
/
[∑

𝑛∈[𝑁 ] 𝜉 (𝑅(𝑛,𝑚))
]
be the average rating given to item 𝑏𝑚 .

• r𝑛 be the 𝑛-th row of the user-item rating matrix 𝑅.

• r𝑛 be the vector of 𝑢𝑛 ’s adjusted ratings, i.e. r𝑛 (ℓ) = (𝑅(𝑛, ℓ) −𝑅(𝑏ℓ )) · 𝜉 (𝑅(𝑛, ℓ)), ℓ ∈ [𝑀].
• 𝜉 (r𝑛) be the row vector in which 𝜉 (r𝑛) (𝑚) = 𝜉 (r𝑛 (𝑚)),𝑚 ∈ [𝑀]; namely, it is the binary vector that identifies

all items that 𝑢𝑛 had rated.
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Then the predicted rating 𝑃 (𝑢𝑛, 𝑏𝑚) is the weighted average over the adjusted ratings that 𝑢𝑛 made thus far,

𝑃 (𝑢𝑛, 𝑏𝑚) := 𝑅(𝑏𝑚) +
⟨s𝑚, r𝑛⟩
⟨s𝑚, 𝜉 (r𝑛)⟩

. (2)

The weighted average is taken over at most 𝑞 items, and it is based only on items that have a positive similarity to

𝑏𝑚 . The quotient in Eq. (2) is undefined if the denominator equals zero (i.e., if none of the items that 𝑢𝑛 had rated in

the past is in 𝑁 +𝑞 (𝑚)). In that case, 𝑃 (𝑢𝑛, 𝑏𝑚) is set to 𝑅(𝑏𝑚). (There exist other variants of those similarity scores and

prediction formulas. We focus here on the version that is suggested in [9]. The modification of our protocols to other

variants is straightforward.)

Sometimes, instead of showing to 𝑢𝑛 his predicted rating on some item, the goal is to present to him the ℎ items

which are most likely to appeal to him, without predicted ratings. To that end, one produces a ranking of all items that

𝑢𝑛 had not rated so far in order to extract from it the top ℎ items, for some ℎ ≥ 1. Following the discussion in [9, Section

2.3], we implement herein the following ranking procedure. Let 𝐽 (𝑛) be the subset of indices of items that 𝑢𝑛 already

rated. Define for each𝑚 ∈ [𝑀] \ 𝐽 (𝑛) the score

𝑠 (𝑚) =
∑

ℓ∈𝐽 (𝑛)∩𝑁𝑞 (𝑚)
𝑆 (𝑚, ℓ) . (3)

Namely, 𝑠 (𝑚) is the sum of similarities between 𝑏𝑚 and all those items that 𝑢𝑛 already rated and fall within 𝑁𝑞 (𝑚), the
𝑞-neighborhood of 𝑏𝑚 . Then, the top ℎ items to be recommended to 𝑢𝑛 are those with the highest values of 𝑠 (𝑚).

3.2 Distributed scenarios

We consider distributed scenarios in which there are 𝐾 vendors, 𝑉1, . . . ,𝑉𝐾 , where each one of them offers a subset of

items to some subset of users. Let 𝐼𝑘 ⊆ [𝑁 ] denote the set of indices of users that 𝑉𝑘 serves, 𝐽𝑘 ⊆ [𝑀] denote the set of
indices of the items that 𝑉𝑘 offers, and 𝑁𝑘 := |𝐽𝑘 | and𝑀𝑘 := |𝐼𝑘 | be their corresponding sizes, 𝑘 ∈ [𝐾]. The subsets 𝐼𝑘
and 𝐽𝑘 , 𝑘 ∈ [𝐾], are publicly known.

The study of privacy-preserving collaborative filtering considered one of the following three distributed scenarios:

Horizontal: All vendors offer all items in 𝐵 but they serve disjoint subsets of users from𝑈 . Namely, 𝐽𝑘 = [𝑀] for all
𝑘 ∈ [𝐾], but the sets 𝐼1, . . . , 𝐼𝐾 are all disjoint and their union is [𝑁 ]. In particular, if 𝑅 is the 𝑁 ×𝑀 user-item matrix,

then 𝑉𝑘 owns the subset of 𝑅’s rows that corresponds to 𝐼𝑘 , 𝑘 ∈ [𝐾].
Vertical: All vendors serve all users in𝑈 but they offer disjoint subsets of items from 𝐵. Namely, 𝐼𝑘 = [𝑁 ] for all

𝑘 ∈ [𝐾], but the sets 𝐽1, . . . , 𝐽𝐾 are all disjoint and their union is [𝑀]. Here, 𝑉𝑘 owns the subset of 𝑅’s columns that

corresponds to 𝐽𝑘 , 𝑘 ∈ [𝐾].
Hybrid: In that model, the user-item matrix is distributed in a general manner between the vendors (not necessarily

by rows or columns), so that each entry in the matrix is held by a single vendor.

In this study we consider a general distribution scenario. Like the hybrid scenario, each vendor owns some

sub-matrix, but the sub-matrices could be overlapping. Namely, it is possible that a user 𝑢𝑛 who wishes to purchase

an item 𝑏𝑚 could do so through more than just one vendor, as is the underlying assumption in all above described

scenarios. That is the typical case in real markets – users usually have a choice between different vendors. Hence, the

general distribution scenario is more realistic than those considered so far in prior art, and it includes all of them as

private cases.
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3.3 The mediated setting

We assume 𝐷 > 1 independent mediators,𝑇𝑑 , 𝑑 ∈ [𝐷], that assist the vendors in performing the computations. They are

assumed to be semi-honest, i.e., they follow the prescribed protocols, but try to glean from the messages received during

those protocols information on the user-item rating matrix. We let T := {𝑇1, . . . ,𝑇𝐷 } denote the set of all mediators.

Our working assumption is that of an honest majority: if a subset of T colludes and combines the information that they

got, in order to extract information on private user-item rating data, the subset’s size is less than 𝐷/2.

3.4 Secret Sharing

Secret sharing [20] methods are protocols that enable to distribute a secret among a group of participants, such that each

of them is allocated a piece of information, called a share, so that some subsets of those shares enable the reconstruction

of the secret. In its most basic form, called Threshold Secret Sharing, the secret can be reconstructed only when a

sufficient number of shares are combined together, while smaller sets of shares reveal no information at all on the

secret. In our context, the secret holders will be the vendors, and the group of participants among whom the secrets

will be shared are the mediators. The domain of secrets is known in advance and it will be a finite field Z𝑝 , where 𝑝 is

some sufficiently large prime (in particular, larger than the set of participants as well as the number of possible secrets).

We will use the Shamir threshold secret sharing scheme [20]. It is a 𝐷 ′-out-of-𝐷 scheme in the following sense: if

𝐷 ′ is an integer in the range 1 ≤ 𝐷 ′ < 𝐷 , then the shares that are distributed in that scheme allow the recovery of

the secret 𝑥 from any subset of 𝐷 ′ shares, while any subset of 𝐷 ′ − 1 shares reveals no information on the secret. The

scheme has two procedures: Share and Reconstruct:

• Share𝐷′,𝐷 (𝑥). The procedure samples a uniformly random polynomial 𝑔(·) over Z𝑝 , of degree at most 𝐷 ′ − 1,

where the free coefficient is 𝑥 . That is, 𝑔(𝑡) = 𝑥 + 𝛼1𝑡 + 𝛼2𝑡2 + . . . + 𝛼𝐷′−1𝑡𝐷
′−1

, where 𝛼 𝑗 , 1 ≤ 𝑗 ≤ 𝐷 ′ − 1, are selected
uniformly at random from Z𝑝 . The procedure outputs 𝐷 values – 𝑔(1), . . . , 𝑔(𝐷) – where 𝑥𝑑 = 𝑔(𝑑) is the share given to

𝑇𝑑 , 𝑑 ∈ [𝐷]. It is easy to see that any selection of 𝐷 ′ − 1 shares reveals nothing about the secret 𝑥 , whereas any subset

of 𝐷 ′ shares fully determines 𝑥 , by means of polynomial interpolation, as we describe next.

• Reconstruct𝐷′ (𝑥1, . . . , 𝑥𝐷 ). The procedure is given any selection of 𝐷 ′ shares out of {𝑥1, . . . , 𝑥𝐷 }, and it then

interpolates a polynomial 𝑔(·) of degree at most 𝐷 ′ − 1 using the given points. It then outputs 𝑥 = 𝑔(0).

In what follows we apply secret sharing on secret vectors and matrices. By that we mean that when a vendor wishes

to share a vector, or a matrix, among T, he will compute and distribute shares in each component of the vector or

matrix, independently. Consequently, any sufficiently large subset of the mediators will be able to reconstruct the

shared vector or matrix by reconstructing each component independently. We also use 𝐷 ′-out-of-𝐷 secret sharing with

𝐷 ′ = ⌊(𝐷 + 1)/2⌋. With such threshold, the number of shares needed to reconstruct the secret is at least 𝐷 ′ ≥ 𝐷/2.
Hence, under our assumption of honest majority (in the sense that if a collusion between some of the mediators occurs,

it involves less than half of them), the shared secrets will remain fully protected.

We conclude this section by a note on the selection of the field’s size 𝑝 . Selecting the prime 𝑝 to be a Mersenne prime

(a prime of the form 𝑝 = 2
𝑡 − 1 for some integer 𝑡 > 1) is advantageous since multiplication of two field elements in such

cases can be done without performing an expensive division (in case the multiplication result exceeds the modulus). We

use herein the Mersenne prime 𝑝 := 2
31 − 1 since it is sufficiently large for our purposes, in the sense that whenever we

perform secret sharing, the value of the shared secret is strictly smaller than 𝑝 .
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4 PRIVACY PRESERVING PROTOCOLS

In this section we present our privacy-preserving protocols. In Sections 4.1 we describe the computations and protocols

that are performed in the offline phase and involve all of the vendors 𝑉1, . . . ,𝑉𝐾 , as well as the mediators T. Then, we
describe the online phase in which a given vendor 𝑉𝑘 submits queries to T towards computing the predicted rating of

some user 𝑢𝑛 for an item 𝑏𝑚 , 𝑃 (𝑢𝑛, 𝑏𝑚), Eq. (2) (Section 4.2), or getting the top ℎ items for a given user 𝑢𝑛 (Section 4.3).

The online phase is carried out solely by the relevant vendor, 𝑉𝑘 , and the mediators, T. Namely, the participation of all

vendors is required only in the offline and less frequent phase.

4.1 Offline model construction

Recall that 𝑅 is the global user-item rating matrix; for every 𝑛 ∈ [𝑁 ] and𝑚 ∈ [𝑀], 𝑅(𝑛,𝑚) is the rating that 𝑢𝑛 gave to

𝑏𝑚 , or zero if no such rating was given. Let sq(𝑅) and 𝜉 (𝑅) be matrices of the same dimensions as 𝑅, whose entries are

as follows:

sq(𝑅) (𝑛,𝑚) = (𝑅(𝑛,𝑚))2 , and 𝜉 (𝑅) (𝑛,𝑚) = 𝜉 (𝑅(𝑛,𝑚)) , (𝑛,𝑚) ∈ [𝑁 ] × [𝑀] .

The columns of 𝑅 were denoted by c𝑚 ,𝑚 ∈ [𝑀]. Therefore, the columns of sq(𝑅) and 𝜉 (𝑅) are c2𝑚 and 𝜉 (c𝑚), under
our notation agreements (see Section 3.1). Hence, the similarity score between a given pair of items, say 𝑏ℓ and 𝑏𝑚 ,

ℓ < 𝑚 ∈ [𝑀], is given by 𝑆 (ℓ,𝑚) = 𝑧1/
√
𝑧2𝑧3, where

𝑧1 = ⟨cℓ , c𝑚⟩ , 𝑧2 = ∥cℓ |𝑚 ∥2 = ⟨c2ℓ , 𝜉 (c𝑚)⟩ , 𝑧3 = ∥c𝑚 |ℓ ∥
2 = ⟨𝜉 (cℓ ), c2𝑚⟩ (4)

(see Definition 1).

The user-item matrix in our case is distributed among 𝐾 parties, the vendors. The vendor 𝑉𝑘 , 𝑘 ∈ [𝐾], possesses an
𝑁𝑘 ×𝑀𝑘 user-item rating matrix, denoted 𝑅𝑘 . That matrix holds an entry for each user that 𝑉𝑘 serves and for each

item that 𝑉𝑘 offers. We assume hereinafter that each nonzero entry in 𝑅 occurs in just a single 𝑅𝑘 , 𝑘 ∈ [𝐾]; such an

assumption is natural since if 𝑢𝑛 purchased and rated an item 𝑏𝑚 through one vendor 𝑉𝑘 , he would typically not rate it

again through another vendor.
1
Hence, 𝑅𝑘 is the 𝑁𝑘 ×𝑀𝑘 sub-matrix of the global 𝑁 ×𝑀 matrix 𝑅, which corresponds

to 𝑅’s entries whose indices are in the Cartesian product 𝐼𝑘 × 𝐽𝑘 . Stated differently,

𝑅 =
∑
𝑘∈[𝐾 ]

[[𝑅𝑘 ]] (5)

where [[𝑅𝑘 ]] is the (𝑁 ×𝑀)-“inflation" of 𝑅𝑘 in the sense that

[[𝑅𝑘 ]] (𝑖, 𝑗) =

𝑅𝑘 (𝑖, 𝑗) if (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘
0 if (𝑖, 𝑗) ∈ [𝑁 ] × [𝑀] \ 𝐼𝑘 × 𝐽𝑘

.

Protocol 1 is executed by the vendors and the mediators, T, towards the goal of T learning 𝑆 (ℓ,𝑚) = ⟨cℓ ,c𝑚 ⟩
∥cℓ |𝑚 ∥ · ∥c𝑚 |ℓ ∥ ,

∀(ℓ,𝑚) ∈ [𝑀] × [𝑀], ℓ ≠𝑚 (see Eq. (1)). The input to the protocol is the user-item sub-matrices 𝑅𝑘 , 𝑘 ∈ [𝐾], that are
held by the vendors. The protocol has three phases:

(1) Phase 1: The vendors distribute shares relating to their sub-matrices of user-item ratings.

(2) Phase 2: The mediators compute shares relating to the global user-item matrix.

(3) Phase 3: The mediators compute the similarity scores between every pair of items.

1
We note that even in such unusual cases of repeated ratings, the outputs of our protocols are still justifiable, without needing to modify the protocols.

However, we omit the interesting analysis and discussion of such cases due to space limitation.
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In Phase 1 (Steps 1-5) each vendor, 𝑉𝑘 , 𝑘 ∈ [𝐾], first computes sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ), where

sq(𝑅𝑘 ) (𝑖, 𝑗) = (𝑅𝑘 (𝑖, 𝑗))2 , 𝜉 (𝑅𝑘 ) (𝑖, 𝑗) = 𝜉 (𝑅𝑘 (𝑖, 𝑗)) , (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 . (6)

The vendor 𝑉𝑘 then proceeds to generate 𝐷 ′-out-of-𝐷 shares in each entry of each of those three matrices, with

𝐷 ′ = ⌊(𝐷 + 1)/2⌋, and distributes those shares to the mediators.

In Phase 2 (Steps 6-10) each mediator accumulates the shares received from all vendors. To that end, 𝑇𝑑 (for every

𝑑 ∈ [𝐷]) first initializes three share matrices, denoted 𝑅𝑑 , sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 , to be 𝑁 ×𝑀 zero matrices. Then, whenever

he gets sub-matrices of shares from a vendor, 𝑉𝑘 , he adds those shares to the relevant entries of the matrix (𝑅𝑑 , sq(𝑅)𝑑

or 𝜉 (𝑅)𝑑 ). In view of Eq. (5) and the linearity of secret sharing, in the end of this phase the collection of all 𝐷 shares

{𝑅𝑑 (𝑛,𝑚)}𝑑∈[𝐷 ] are 𝐷 ′-out-of-𝐷 shares in 𝑅(𝑛,𝑚) for every (𝑛,𝑚) ∈ [𝑁 ] × [𝑀]; similarly, the entries of the matrices

sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 , 𝑑 ∈ [𝐷], are 𝐷 ′-out-of-𝐷 shares in the entries of sq(𝑅) and 𝜉 (𝑅), respectively.
Finally, in Phase 3 (Steps 11-22), the mediators use those shares in order to compute the similarity score between

every pair of items, 𝑏ℓ and 𝑏𝑚 , 1 ≤ ℓ < 𝑚 ≤ 𝑀 . As explained earlier, this computation is carried out by computing the

three inner products 𝑧1, 𝑧2 and 𝑧3 in Eq. (4). This is done in Steps 12, 13 and 14 in Protocol 1, by invoking Protocol 2,

which we explain later on. Then, they compute from those three values the final score 𝑆 (ℓ,𝑚), according to Definition 1

(Steps 15-20). Since the similarity scores will be used later on in computations over Z𝑝 , we translate the real-valued

scores, as computed in Step 16, to integral scores by multiplying them by a sufficiently large factor 𝑄 and rounding to

the nearest integer (Step 17). We used in our experiments 𝑄 = 1000 (a choice that preserves an accuracy of three digits

after the decimal point). Finally, as the similarity score matrix 𝑆 is symmetric, the mediators store the similarity score

𝑆 (ℓ,𝑚) which they just computed also in 𝑆 (𝑚, ℓ) (Step 21).

Protocol 2 computes inner products between vectors in Z𝑁𝑝 which are shared by a 𝐷 ′-out-of-𝐷 secret sharing scheme

among the 𝐷 mediators, where 𝐷 ′ = ⌊(𝐷 + 1)/2⌋. It serves as a sub-protocol in Steps 12, 13, 14 in Phase 3 of Protocol 1.

Note that the goal of Phases 1 and 2 in Protocol 1 is to ensure the initial requirement in Protocol 2.

For each 𝑖 ∈ [2] and each 𝑛 ∈ [𝑁 ], the 𝐷 values {v𝑖,𝑑 (𝑛)}𝑑∈[𝐷 ] are 𝐷 ′-out-of-𝐷 shares in v𝑖 (𝑛). The meaning of that

is that there exists a polynomial 𝑓𝑖,𝑛 of degree 𝐷 ′ − 1 over Z𝑝 , such that the share v𝑖,𝑑 (𝑛) that 𝑇𝑑 holds in v𝑖 (𝑛) equals
𝑓𝑖,𝑛 (𝑑), 𝑑 ∈ [𝐷]. Now, consider the polynomial 𝐹 :=

∑𝑁
𝑛=1 𝑓1,𝑛 · 𝑓2,𝑛 . It is a polynomial of degree 2(𝐷 ′ − 1) over Z𝑝 . In

particular, one needs 2𝐷 ′ − 1 point values in 𝐹 in order to reconstruct it. In addition, 𝐹 (0) = ∑𝑁
𝑛=1 𝑓1,𝑛 (0) · 𝑓2,𝑛 (0) =∑𝑁

𝑛=1 v1 (𝑛) · v2 (𝑛) = ⟨v1, v2⟩. The value that each 𝑇𝑑 computes in Step 1 equals 𝑠𝑑 =
∑
𝑛∈[𝑁 ] v1,𝑑 (𝑛) · v2,𝑑 (𝑛) =∑

𝑛∈[𝑁 ] 𝑓1,𝑛 (𝑑) · 𝑓2,𝑛 (𝑑) = 𝐹 (𝑑). Therefore, the set of shares {𝑠𝑑 }𝑑∈[𝐷 ] is a set of (2𝐷 ′ − 1)-out-of-𝐷 shares in the

desired inner product. Our setting of 𝐷 ′ ensures that 2𝐷 ′ − 1 ≤ 𝐷 . (Specifically, if 𝐷 is odd then 2𝐷 ′ − 1 = 𝐷 , while if 𝐷
is even then 2𝐷 ′ − 1 = 𝐷 − 1.) Hence, any selection of 2𝐷 ′ − 1 mediators can use their 𝑠𝑑 -shares that were computed in

Step 1 in order to interpolate 𝐹 (Step 2) and recover ⟨v1, v2⟩ (Step 3).

4.1.1 Privacy. The protocols maintain the privacy of the inputs provided by the vendors as those inputs are communi-

cated to the mediators by𝐷 ′-out-of-𝐷 secret sharing. It means that as long as the set of mediators has an honest majority,

those inputs are fully protected, in the information-theoretic sense, as opposed to the security of encryption-based

protocols that rely on computational assumptions. Note that our protocols are not perfectly secure, in the MPC sense, as

they reveal to the mediators not only the final desired outputs (the similarity scores 𝑆 (ℓ,𝑚)) but also the intermediate

values 𝑧1, 𝑧2, 𝑧3. Hiding even those intermediate values (which do not reveal private information about specific ratings

of individual users) would significantly increase the runtimes of the protocols. The design of such enhancements and

the evaluation of their toll on runtime are left for future research.
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Protocol 1 Computing the similarity matrix

Require: Each 𝑉𝑘 , 𝑘 ∈ [𝐾], holds a matrix {𝑅𝑘 (𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 }.
1: for all 𝑘 ∈ [𝐾] do
2: 𝑉𝑘 computes sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ) (see Eq. (6)).
3: 𝑉𝑘 computes 𝐷 ′-out-of-𝐷 shares in each entry in the matrix 𝑅𝑘 , where 𝐷

′ = ⌊(𝐷 + 1)/2⌋. Denoting those shares

by {𝑅𝑑
𝑘
(𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 }𝑑∈[𝐷 ] , 𝑉𝑘 proceeds to send the 𝑑th set of shares to 𝑇𝑑 , for all 𝑑 ∈ [𝐷].

4: 𝑉𝑘 does similarly with the matrices sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ).
5: end for
6: for all 𝑑 ∈ [𝐷] do
7: 𝑇𝑑 initializes three 𝑁 ×𝑀 matrices, denoted 𝑅𝑑 , sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 , to be the zero matrices.

8: When receiving from 𝑉𝑘 the set of shares {𝑅𝑑
𝑘
(𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 }, 𝑇𝑑 updates the entries of the matrix 𝑅𝑑 as

follows: 𝑅𝑑 (𝑖, 𝑗) ← 𝑅𝑑 (𝑖, 𝑗) + 𝑅𝑑
𝑘
(𝑖, 𝑗) for all (𝑖, 𝑗) ∈ 𝐼𝑘 × 𝐽𝑘 .

9: Similarly, 𝑇𝑑 updates the entries of the matrices sq(𝑅)𝑑 and 𝜉 (𝑅)𝑑 by adding into them the shares received from

𝑉𝑘 in sq(𝑅𝑘 ) and 𝜉 (𝑅𝑘 ).
10: end for
11: for all 1 ≤ ℓ < 𝑚 ≤ 𝑀 do
12: The mediators invoke Protocol 2 to compute 𝑧1 = ⟨cℓ , c𝑚⟩ from the shares that they hold in cℓ and c𝑚 .

13: The mediators invoke Protocol 2 to compute 𝑧2 = ⟨c2ℓ , 𝜉 (c𝑚)⟩ from the shares that they hold in c2
ℓ
and 𝜉 (c𝑚).

14: The mediators invoke Protocol 2 to compute 𝑧3 = ⟨𝜉 (cℓ ), c2𝑚⟩ from the shares that they hold in 𝜉 (cℓ ) and c2𝑚 .

15: if 𝑧2𝑧3 ≠ 0 then
16: The mediators set 𝑆 (ℓ,𝑚) ← 𝑧1/

√
𝑧2𝑧3.

17: The mediators set 𝑆 (ℓ,𝑚) ← ⌊𝑄𝑆 (ℓ,𝑚) + 0.5⌋.
18: else
19: The mediators set 𝑆 (ℓ,𝑚) = 0.

20: end if
21: 𝑆 (𝑚, ℓ) ← 𝑆 (ℓ,𝑚)
22: end for
Ensure: T get 𝑆 (ℓ,𝑚).

Protocol 2 InnerProduct: Computing inner product between shared vectors.

Require: v𝑖 , 𝑖 ∈ [2], are two vectors in Z𝑁𝑝 . Every mediator 𝑇𝑑 in T = {𝑇1, . . . ,𝑇𝐷 } holds 𝐷 ′-out-of-𝐷 vector shares in

them, denoted v𝑖,𝑑 , where 𝐷 ′ = ⌊(𝐷 + 1)/2⌋.
1: Each 𝑇𝑑 , 𝑑 ∈ [𝐷], computes 𝑠𝑑 ←

∑
𝑛∈[𝑁 ] v1,𝑑 (𝑛) · v2,𝑑 (𝑛).

2: Any selection of 2𝐷 ′ − 1 mediators out of T use their 𝑠𝑑 -shares in order to interpolate a polynomial 𝐹 (·) of degree
2𝐷 ′ − 2 that agrees with those 2𝐷 ′ − 1 𝑠𝑑 -shares.

3: The inner product between the two input vectors is ⟨v1, v2⟩ ← 𝐹 (0).
Ensure: T gets ⟨v1, v2⟩.

4.2 Computing predicted ratings

In view of Eq. (2) and the definitions preceding it, the predicted rating is given by

𝑃 (𝑢𝑛, 𝑏𝑚) := 𝑅(𝑏𝑚) +
𝑢𝑛,𝑚 − 𝑣𝑛,𝑚

𝑤𝑛,𝑚
, (7)

where

𝑅(𝑏𝑚) =
∑
𝑛∈[𝑁 ] 𝑅(𝑛,𝑚)∑

𝑛∈[𝑁 ] 𝜉 (𝑅(𝑛,𝑚))
, (8)
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𝑢𝑛,𝑚 :=
∑
ℓ∈[𝑀 ]

s𝑚 (ℓ) · 𝑅(𝑛, ℓ) , (9)

𝑣𝑛,𝑚 :=
∑
ℓ∈[𝑀 ]

s𝑚 (ℓ) · 𝑅(𝑏ℓ ) · 𝜉 (𝑅(𝑛, ℓ)) , (10)

𝑤𝑛,𝑚 :=
∑
ℓ∈[𝑀 ]

s𝑚 (ℓ) · 𝜉 (𝑅(𝑛, ℓ)) , (11)

and s𝑚 ,𝑚 ∈ [𝑀], are as defined in Section 3.1.

Before moving on to explaining how the mediators can compute each of the values in Eq. (7), we observe that the

average ratings are rational numbers. However, the computation of 𝑣𝑛,𝑚 , Eq. (10), must be carried out in the secret

sharing field Z𝑝 , since it involves entries of the matrix 𝜉 (𝑅), in which the mediators hold shares in Z𝑝 . Therefore, we

replace Eq. (10) with the following approximate equation,

𝑣𝑛,𝑚 =
1

𝑄

∑
ℓ∈[𝑀 ]

𝑐ℓ · 𝜉 (𝑅(𝑛, ℓ)) where 𝑐ℓ = ⌊𝑄 · s𝑚 (ℓ) · 𝑅(𝑏ℓ ) + 0.5⌋ . (12)

Here, 𝑄 is a re-scaling factor like the one that we used in Step 17 of Protocol 1 in order to translate the read-valued

similarity scores into integral ones.

4.2.1 Computing linear combinations of secrets. Before we describe the needed computations in the offline phase

(Section 4.2.2) and in the online phase (Section 4.2.3), we observe that the sums in Eqs. (8), (9), (11) and (12) are all linear

combinations of secrets. Namely, they all take the form 𝜎 =
∑
𝑗 𝑠 𝑗𝑟 𝑗 , where 𝑠 𝑗 are known integer coefficients and 𝑟 𝑗

are private values that are shared among the mediators by a 𝐷 ′-out-of-𝐷 secret sharing scheme. The mediators can

compute the sum 𝜎 , without recovering the private values 𝑟 𝑗 , as follows. Letting 𝑟
𝑑
𝑗
denote 𝑇𝑑 ’s share in 𝑟 𝑗 , 𝑑 ∈ [𝐷],

then by the linearity of secret sharing, the values {∑𝑗 𝑠 𝑗𝑟
𝑑
𝑗
: 𝑑 ∈ [𝐷]} are proper 𝐷 ′-out-of-𝐷 shares in 𝜎 =

∑
𝑗 𝑠 𝑗𝑟 𝑗 .

Hence, any subset of 𝐷 ′ mediators can use the latter shares in order to recover the desired sum 𝜎 .

4.2.2 Offline computations. Here we identify all of the values in Eqs. (7)–(12) that do not depend on 𝑛 and, consequently,

can be computed by the mediators already in the offline phase:

(1) Compute the numerator and denominator in Eq. (8) from the shares in 𝑅’s and 𝜉 (𝑅)’s entries, as explained in

Section 4.2.1, and then divide them in order to obtain 𝑅(𝑏𝑚) for all𝑚 ∈ [𝑀].
(2) Compute the vectors s𝑚 ,𝑚 ∈ [𝑀], from the similarity score matrix 𝑆 , according to their definition in Section 3.1.

(3) Given the average item ratings and the vectors s𝑚 , the mediators will proceed to compute the integer coefficients

𝑐ℓ , ℓ ∈ [𝑀], as defined in Eq. (12).

4.2.3 Online computations. Assume that a vendor 𝑉𝑘 had submitted a query in the form (𝑛,𝑚) ∈ 𝐼𝑘 × 𝐽𝑘 . Namely, a

query that asks for a predicted rating that a user 𝑢𝑛 , whom 𝑉𝑘 serves (𝑛 ∈ 𝐼𝑘 ), would give to an item 𝑏𝑚 that 𝑉𝑘 offers

(𝑚 ∈ 𝐽𝑘 ). Upon receiving such a query, the mediators will compute 𝑢𝑛,𝑚 ,𝑤𝑛,𝑚 and 𝑣𝑛,𝑚 from the shares that they got

in 𝑅’s and 𝜉 (𝑅)’s entries, and the known coefficients in the linear combinations in Eqs. (9)+(11)+(12), respectively, as

described in Section 4.2.1. Then, they will compute the predicted rating, 𝑃 (𝑢𝑛, 𝑏𝑚), by plugging into Eq. (7) the values

𝑢𝑛,𝑚 ,𝑤𝑛,𝑚 and 𝑣𝑛,𝑚 which they had just computed, as well as the item average rating 𝑅(𝑏𝑚), which they had already

computed in the offline phase. Finally, they will send the computed predicted rating to 𝑉𝑘 .

Throughout the above described process, the private user-item ratings remain protected against the mediators, under

our assumption of honest majority.
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4.3 Computing the most recommended items

When a vendor 𝑉𝑘 , 𝑘 ∈ [𝐾], wants to recommend to one of his users, 𝑢𝑛 , 𝑛 ∈ 𝐼𝑘 , items that will most likely appeal to

her, 𝑉𝑘 submits a query to the mediators so that they can jointly and privately find the ℎ items from {𝑏𝑚 :𝑚 ∈ 𝐽𝑘 } that
maximize the score 𝑠 (𝑚), Eq. (3), and that 𝑢𝑛 still had not rated. Define for every𝑚 ∈ [𝑀] the vector s′𝑚 as follows:

s′𝑚 (ℓ) = 𝑆 (𝑚, ℓ) if ℓ ∈ 𝑁𝑞 (𝑚) while s′𝑚 (ℓ) = 0 otherwise. Then, by Eq. (3),

𝑠 (𝑚) =
∑
ℓ∈[𝑀 ]

s′𝑚 (ℓ) · 𝜉 (𝑅(𝑛, ℓ)) . (13)

The mediators will compute the vectors s′𝑚 ,𝑚 ∈ [𝑀], once in the offline phase. The vectors s′𝑚 may have negative

entries, since the set of 𝑞 nearest neighbors of 𝑏𝑚 could include items 𝑏ℓ for which 𝑆 (𝑚, ℓ) < 0. We note that 𝑆 (𝑚, ℓ) ∈
[−𝑄,𝑄]. Indeed, the original cosine-score, Eq. (1), is confined to the interval [−1, 1], as implied by the Cauchy-Schwarz

inequality. Hence, after the rescaling by 𝑄 (see Step 17 in Protocol 1), the entries of the matrix 𝑆 are confined to

the interval [−𝑄,𝑄]. Therefore, as the number of nonzero addends in the sum in Eq. (13) is at most 𝑞, we infer that

𝑠 (𝑚) := (𝑞𝑄 + 1) + 𝑠 (𝑚) ≥ 1. As the mapping from 𝑠 to 𝑠 is monotone, we can look for the ℎ items that maximize 𝑠 .

We proceed to present Protocol 3 which privately computes the subset of ℎ items 𝑏𝑚 ,𝑚 ∈ 𝐽𝑘 , with highest 𝑠 (𝑚)
scores. The protocol starts by 𝑉𝑘 submitting a query to the mediators (Step 1). That query includes an index 𝑛 ∈ 𝐼𝑘 of

some user 𝑢𝑛 that 𝑉𝑘 serves. Then (Step 2), the mediators jointly generate a random and secret permutation 𝜋 over 𝐽𝑘 –

the set of indices of items that 𝑉𝑘 offers.

Next, the mediators perform the computations in Steps 3-7. Each mediator 𝑇𝑑 sets a vector of shares x𝑑 which is

initialized to hold in its𝑚th entry,𝑚 ∈ 𝐽𝑘 , the value (𝑞𝑄 + 1) +
∑
ℓ∈[𝑀 ] s′𝑚 (ℓ)𝜉 (𝑅)𝑑 (𝑛, ℓ) (Step 4). In view of Eq. (13)

and our discussion in Section 4.2.1, the set {x𝑑 (𝑚) : 𝑑 ∈ [𝐷]} is a set of 𝐷 ′-out-of-𝐷 shares in 𝑠 (𝑚) = (𝑞𝑄 + 1) + 𝑠 (𝑚).
Next (Step 5), 𝑇𝑑 multiplies each entry in x𝑑 with the corresponding 𝐷 ′-out-of-𝐷 share in 1 − 𝜉 (𝑅) (𝑛,𝑚). The resulting
set {x𝑑 (𝑚) : 𝑑 ∈ [𝐷]} is now a set of (2𝐷 ′ − 1)-out-of-𝐷 shares in 𝑠 (𝑚) · (1− 𝜉 (𝑅) (𝑛,𝑚)) (as it is the same computation

of producing shares in a product of two shared secrets, as we did in Protocol 2). Then (Step 6), 𝑇𝑑 sends to 𝑉𝑘 the vector

y𝑑 which is the result of permuting x𝑑 entries using the secret permutation 𝜋 .

After collecting the responses from all mediators, 𝑉𝑘 selects a subset of 2𝐷 ′ − 1 vectors from {y𝑑 : 𝑑 ∈ [𝐷]} in order

to interpolate their entries for each𝑚 ∈ 𝐽𝑘 and disclose the underlying shared secret, denoted 𝑧𝑚 (Step 8). In view of

the above discussion, 𝑧𝑚 = 𝑠 (𝜋−1 (𝑚)) · (1 − 𝜉 (𝑅) (𝑛, 𝜋−1 (𝑚))). Namely, 𝑧𝑚 equals the 𝑠-score of the item 𝑏𝜋−1 (𝑚) , if

that item had not been rated so far by 𝑢𝑛 , while 𝑧𝑚 equals zero otherwise. Since 𝑠 (𝑚) ≥ 1 for all𝑚, then the indices

𝑖1, . . . , 𝑖ℎ of the largest values in {𝑧𝑚 :𝑚 ∈ 𝐽𝑘 } identify the indices of the ℎ items that were not rated so far by 𝑢𝑛 and

have largest 𝑠-scores. 𝑉𝑘 sends those indices to the mediators who proceed to apply on them the inverse permutation

𝜋−1 and send them back to 𝑉𝑘 (Steps 9-10). Consequently, 𝑉𝑘 now has the indices of the top ℎ items, yet unrated by 𝑢𝑛 ,

which maximize the 𝑠- and 𝑠-scores.

4.3.1 Privacy. The only information that the mediators obtain in the course of Protocol 3 is the indices of the top ℎ items

to recommend to 𝑢𝑛 . In case that such information may be deemed sensitive, it is possible to apply an additional layer of

security as follows. The vendors agree upfront on a random and secret orderings of both the user set 𝑈 = {𝑢1, . . . , 𝑢𝑁 },
and the global set of items, 𝐵 = {𝑏1, . . . , 𝑏𝑀 }. If those random orderings are kept secret from the mediators, then

Protocol 3 reveals no information to the mediators.

As for the vendor 𝑉𝑘 , the protocol does leak to him more information than just the desired output, being the

sought-after ℎ indices. 𝑉𝑘 learns also the set of 𝑠-scores of all items that were still unrated by 𝑢𝑛 . However, owing to
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Protocol 3 Computing for 𝑢𝑛 the top ℎ yet unrated items offered by 𝑉𝑘 .

1: 𝑉𝑘 submits to T a query 𝑛 ∈ 𝐼𝑘 .
2: T jointly generate a secret and random permutation 𝜋 over 𝐽𝑘 .

3: for all 𝑑 ∈ [𝐷] do
4: 𝑇𝑑 defines an𝑀𝑘 -dimensional vector x𝑑 and sets x𝑑 (𝑚) ← (𝑞𝑄 + 1) +

∑
ℓ∈[𝑀 ] s′𝑚 (ℓ)𝜉 (𝑅)𝑑 (𝑛, ℓ), ∀𝑚 ∈ 𝐽𝑘 .

5: 𝑇𝑑 computes x𝑑 (𝑚) ← x𝑑 (𝑚) · (1 − 𝜉 (𝑅)𝑑 (𝑛,𝑚)), ∀𝑚 ∈ 𝐽𝑘 .
6: 𝑇𝑑 sends to 𝑉𝑘 the permuted vector y𝑑 ← 𝜋 (x𝑑 ).
7: end for
8: For every𝑚 ∈ 𝐽𝑘 , 𝑉𝑘 uses 2𝐷 ′ − 1 shares out of the received shares {y𝑑 (𝑚) : 𝑑 ∈ [𝐷]} in order to recover the

underlying shared secret 𝑧𝑚 ,𝑚 ∈ 𝐽𝑘 .
9: 𝑉𝑘 identifies the ℎ values of 𝑧𝑚 ,𝑚 ∈ 𝐽𝑘 , which are largest, and sends their indices, denoted {𝑖1, . . . , 𝑖ℎ}, to T.
10: The mediators send back to 𝑉𝑘 the set {𝜋−1 (𝑖1), . . . , 𝜋−1 (𝑖ℎ)}.
Ensure: 𝑉𝐾 gets the indices in 𝐽𝑘 \ 𝐽 (𝑛) of the top ℎ items to be recommended to 𝑢𝑛 .

the random permutation 𝜋 which is kept secret from him, 𝑉𝑘 is unable to associate any of those scores to any specific

item (beyond the fact that the top ℎ scores relate to the top ℎ items). Such excess information is benign since it does

not disclose private user-item ratings owned by other vendors. (We note that the mediators could perform the entire

computation of the top ℎ items on their own, using secure MPC protocols for multiplying [7] and comparing [16] shared

values. However, the very modest gain in privacy would be accompanied by a significant toll on runtime.)

5 EXPERIMENTS

5.1 overview

Our protocols issue the very same similarity scores, predicted ratings and predicted rankings as described in Section

3.1. Hence, we focus herein on runtime experiments in order to show the dramatic advantage that our protocols offer,

in comparison to [22], in terms of runtimes. We stress that apart from runtime, our protocols offer other significant

advantages of qualitative nature, as discussed in the Introduction.

⊲ Experimental setting. All experiments were run on a virtual machine in the Google Could Platform with the

c2-standard-60 machine (60 vCPUs, 240 GB memory). The algorithms were implemented in C++.

⊲ Datasets. We used four publicly available datasets: MovieLens 100K, MovieLens 1M, MovieLens 10M, and

MovieLens 20M. Those datasets are available online as CSV files at https://grouplens.org/datasets/movielens/X, where

the suffix ’X’ is ’100K’/’1M’/’10M’/’20M’. Table 1 reports the main characteristics of all datasets: number of users 𝑁 ,

number of items𝑀 , number of ratings 𝑛𝑢𝑚𝑅, density (%) 𝐷 := 𝑛𝑢𝑚𝑅
𝑁𝑀

× 100, and the rating scale.

dataset 𝑁 𝑀 𝑛𝑢𝑚𝑅 density scale

MovieLens 100K 943 1682 10
5

6.30% [1,5]

MovieLens 1M 6040 3706 10
6

4.47% [1,5]

MovieLens 10M 71567 10677 10
7

1.30% [1,5]

MovieLens 20M 138493 26744 2 · 107 0.54% [1,5]

Table 1. Dataset characteristics

5.2 The offline phase

5.2.1 Runtimes for the vendors. The runtimes for the vendors are shown in Table 2. We assumed that there exists only

one vendor who holds the entire user-item matrix. In a distributed setting, where the user-item matrix is distributed
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between several vendors (see Section 3.2), one may derive the runtimes for a vendor 𝑉𝑘 by multiplying the runtimes

shown in Table 2 by the proportion of the matrix that is held by𝑉𝑘 , namely, by the fraction
𝑁𝑘𝑀𝑘

𝑁𝑀
. So for example, if the

dataset MovieLens 20M is split evenly between 𝐾 = 5 vendors, then each of the vendors will spend around 70 seconds

in the case 𝐷 = 3 and up to 4.13 minutes in the case 𝐷 = 9. Such overhead is negligible as it occurs very infrequently

(say, once every few days) and can be carried out in idle time.

We proceed to compare those results to the corresponding runtimes of the Single-Mediator Protocols (SMP) of

[22]. We focus here on their protocol for the vertical scenario. In that scenario, each vendor 𝑉𝑘 who possesses 𝑀𝑘

columns out of the𝑀 columns in the matrix, has to perform 2𝑁𝑀𝑘 encryptions. The right side of Table 2 shows the

corresponding runtimes, when the homomorphic cipher is Paillier [17] (as used in [22]) with a modulus of 512 or 1024

bits. As with the runtimes for our distributed mediation protocols, we assumed that there is a single vendor, namely,

the shown runtimes are the times to compute 2𝑁𝑀 encryptions. In a genuine vertical split, those runtimes should be

multiplied by the fraction of columns owned by that vendor (namely, by 𝑀𝑘/𝑀). So for example, when there are 𝐾

vendors and each of them possesses𝑀𝑘 ∼ 𝑀/𝐾 columns, the shown runtimes should be divided by 𝐾 . As can be seen,

the Single-Mediator protocol is not scalable. For example, in a balanced vertical split with 𝐾 = 5, the runtime for each

vendor with MovieLens 10M is roughly 24 hours, when using 512-bit encryptions, and more than a week when using

1024-cryptography. The runtimes forMovieLens 20M are roughly five times worse. However, as we already saw, our

protocol’s runtime on theMovieLens 20M dataset is only 4.13 minutes per vendor in the 𝐾 = 5 vertical split scenario

and 𝐷 = 9 mediators.

dataset 𝐷=3 𝐷=5 𝐷=7 𝐷=9 SMP512 SMP1024

MovieLens 100K 0.095 0.224 0.296 0.415 0.898×103 6.62×103
MovieLens 1M 1.881 3.526 4.567 7.259 1.267×104 9.343×104
MovieLens 10M 72.925 110.062 184.564 220.324 4.327×105 31.894×105
MovieLens 20M 349.326 647.116 904.904 1240.474 2.097×106 15.459×106

Table 2. Runtimes (seconds) for a vendor in the offline phase. Left: our distributed mediated protocol for different values of 𝐷 ; right:
runtimes for the Single-Mediator Protocols (SMP) of [22] with 512- and 1024-bit encryptions, in the vertical distribution scenario. All
runtimes in the table need to be multiplied by the fraction of the user-item matrix entries that are owned by the vendor.

5.2.2 Runtimes for the mediators. The runtimes for the mediators are shown in Table 3, on the left side of each column.

The percentage shown on the right side of each column relates to the time spent in Step 1 of Protocol 2. For example, in

the 20M dataset, when 𝐷 = 9, nearly 54 minutes are spent in Step 1 of Protocol 2, while less than half a minute is spent

on all other offline computations.

dataset 𝐷=3 𝐷=5 𝐷=7 𝐷=9

MovieLens 100K 0.06 86.6% 0.048 79.1% 0.036 72.9% 0.03 67.7%

MovieLens 1M 0.48 67.2% 0.3 54.7% 0.24 46.4% 0.24 39.6%

MovieLens 10M 179 96.9% 178 96.9% 177 96.9% 177 96.9%

MovieLens 20M 3270 99.1% 3257 99.1% 3253 99.1% 3252 99.1%

Table 3. Runtimes (seconds) for a mediator in the offline phase

As can be seen, in the larger datasets, the runtimes for the mediators are much larger than those for the vendors.

However, the lion’s share of those runtimes is spent on computing the scalar products in Step 1 of Protocol 2. That

computation is carried out even in a non-private implementation of that CF method. Hence, the cost of privacy that our

protocols entail is quite insignificant.
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Table 3 does not show the runtime for the mediator in the single-mediator offline protocol of [22]; that is because in

that protocol, all of the computations in the offline phase are done by the vendors. However, when considering the

runtimes for both the vendors and mediators, as shown in Tables 2 and 3, it is evident that the improvement offered by

distributing the mediation and, consequently, of replacing expensive homomorphic encryptions with lightweight secret

sharing computations, is overwhelming. Another advantage of our protocols is that the bulk of the computational

overhead is transferred from the vendors to the mediators.

5.3 The online phase

The runtime for predicting ratings, for all testing configurations, was under 1 msec.
2
Computing the most recommended

items (Protocol 3) is more time-consuming, as it requires computing 𝑀𝑘 inner products of 𝑀-dimensional vectors.

Table 4 shows the runtimes of that computation for each of the datasets, under the assumption that𝑀𝑘 = 𝑀 , for both

our protocols and the single-mediator protocols of [22]. When𝑀𝑘 < 𝑀 , all shown runtimes should be multiplied by

𝑀𝑘/𝑀 . We note that also here, the advantage of distributing the mediation is manifested by a dramatic improvement in

response times to recommendation queries.

dataset Our protocol SMP512 (V) SMP512 (H) SMP1024 (V) SMP1024 (H)

MovieLens 100K <0.001 12.850 0.938 12.850 0.938 73.604 7.018 73.604 7.018

MovieLens 1M <0.001 28.313 2.068 28.313 2.068 162.174 15.465 162.174 15.465

MovieLens 10M 0.044 81.572 5.959 81.572 5.959 467.225 44.555 467.225 44.555

MovieLens 20M 0.310 204.324 14.928 204.324 14.928 1170.317 111.602 1170.317 111.602

Table 4. Runtimes (seconds) for computing the most recommended items. Left: our distributed mediated protocol. Right: runtimes for
the Single-Mediator Protocols of [22] with 512- and 1024-bit encryptions, in the vertical (V) and horizontal (H) distribution scenarios,
for the mediator (left value within each column) and for the vendor (right value). All runtimes in the table need to be multiplied by
𝑀𝑘/𝑀 – the fraction of items offered by the corresponding vendor.

6 CONCLUSIONS

We presented herein secure multi-party protocols for performing item-based PPCF over distributed datasets for a

general distribution scenario. Our protocols utilize mediation, in similarity to the protocols of [22], who showed the

significant advantages of mediation in the context of PPCF. While their protocols used a single mediator, our protocols

assume several independent mediators. That assumption enabled us to design protocols that are based on lightweight

secret sharing computations rather than costly homomorphic encryption. Distributed mediation maintains all of the

advantages of mediation that were identified in [22], and more: the distributed-mediator protocols offer stronger security

and overwhelmingly shorter runtimes, in comparison to the single-mediator protocols. In addition, we considered a

general distribution scenario that encompasses all previously considered distribution scenarios and extends them to a

more realistic scenario, in which users have a choice between several competing vendors.

In summary, distributed mediation offers many attractive advantages in the context of PPCF: scalability; enhanced

privacy; freeing the vendors from the need to communicate with each other, or the need to be online constantly;

and enabling an economically-realistic collaboration model between the vendors. Hence, we intend to examine the

applicability of distributed mediation to other CF algorithms, such as matrix factorization-based algorithms, e.g. [19],

and compare their performance to that of existing privacy-preserving implementations of such algorithms, e.g. [14, 15].

2
In all of our experiments in the online phase, we used 𝑞 = 80 (see Section 3.1), as in [22].
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