
Distributed Protocols for Oblivious Transfer and
Polynomial Evaluation

Aviad Ben Arie[0009−0002−9680−4494] and Tamir Tassa[0000−0001−9681−8824]

The Open University of Israel, Ra’anana, Israel
tamirta@openu.ac.il

Abstract. A secure multiparty computation (MPC) allows several par-
ties to compute a function over their inputs while keeping their inputs
private. In its basic setting, the protocol involves only parties that hold
inputs. In distributed MPC, there are also external servers who perform
a distributed protocol that executes the needed computation, without
learning information on the inputs and outputs. Here we propose dis-
tributed protocols for several fundamental MPC functionalities. We be-
gin with a Distributed Scalar Product (DSP) protocol for computing
scalar products of private vectors. We build upon DSP in designing var-
ious protocols for Oblivious Transfer (OT): k-out-of-N OT, Priced OT,
and Generalized OT. We also use DSP for Oblivious Polynomial Evalua-
tion (OPE) and Oblivious Multivariate Polynomial Evaluation (OMPE).
All those problems involve a sender and a receiver that hold private vec-
tors and they wish to compute their scalar product. However, in each
of these problems the receiver must submit a vector of a specified form.
Hence, a crucial ingredient in our protocols is a sub-protocol for vali-
dating that the receiver’s vector complies with the relevant restrictions,
without learning anything else on that vector. Therefore, while previous
studies presented distributed protocols for 1-out-of-N OT and OPE, our
protocols are the first ones that are secure against malicious receivers.
Our distributed protocols for the other OT variants and for OMPE are
the first ones that handle such problems. Our protocols offer information-
theoretic security, under the assumption that the servers are semi-honest
and have an honest majority, and they are very efficient.

Keywords: Multiparty Computation · Distributed Protocols · Oblivi-
ous Transfer · Oblivious Polynomial Evaluation.

1 Introduction

Secure multiparty computation (MPC) [35] is a central field of study in cryptog-
raphy that aims at designing methods for several parties to jointly compute some
function over their inputs while keeping those inputs private. In the basic setting
of MPC, there are n mutually distrustful parties, P1, . . . , Pn, that hold private
inputs, x1, . . . , xn, and they wish to compute some joint function on their inputs,
f(x1, . . . , xn). (The function can be sometimes multi-valued and issue different
outputs to different designated parties.) No party should gain any information

2 A. Ben Arie and T. Tassa

on other parties’ inputs, beyond what can be inferred from their own input and
the output.

Typically, the only parties that participate in the protocol are those that hold
the inputs or those who need to receive the outputs. However, some studies con-
sidered a model of computation that is called the mediated model [2,3,11,16,29,32,12],
the client-server model, [6,10,18,27], or the distributed model [4,8,9,22,24,25]. Pro-
tocols in that model involve also external servers (or mediators), M1, . . . ,MD,
D ≥ 1, to whom the parties outsource some of the needed computations. The
servers perform the computations while remaining oblivious to the private inputs
and outputs. It turns out that such a distributed model of computation offers sig-
nificant advantages: it may facilitate achieving the needed privacy goals; it does
not require the parties to communicate with each other (a critical advantage in
cases where the parties cannot efficiently communicate among themselves, or do
not even known each other); in some settings it reduces communication costs;
and it allows the parties, that may run on computationally-bounded devices, to
outsource costly computations to dedicated servers [29].

In this work we focus on basic MPC problems that involve two (n = 2)
parties, Alice (the sender) and Bob (the receiver), and propose distributed
MPC protocols for their solution. In each of the studied problems, Alice’s and
Bob’s private inputs may be encoded as vectors in a vector space over a fi-
nite field Zp; specifically, a = (a1, . . . , aN) ∈ ZN

p is Alice’s private vector and
b = (b1, . . . , bN) ∈ ZN

p is Bob’s, for some integer N . Alice and Bob delegate to
a set of D > 2 servers, M1, . . . ,MD, secret shares in their private vectors. Sub-
sequently, the servers perform a multiparty computation on the received secret
shares in order to validate the legality of the inputs, if the problem at hand dic-
tates rules by which the input vectors must abide. If the inputs were validated,
the servers proceed to compute secret shares in the required output and then
they send those shares to Alice and/or Bob who use those shares in order to
reconstruct the required output. The computational burden on Alice and Bob is
thus reduced to secret sharing computations in the initial and final stages.

Our contribution. We begin by discussing the generic problem of scalar
product, in which the required output is the scalar product, a · b, of the two
private input vectors [13,14,34]. We propose a simple protocol in which Alice
and Bob only perform secret sharing computations while the servers perform
only local computations, without needing to communicate among themselves.
Our distributed scalar product protocol is then used in the subsequent problems
that we tackle.

Next, we consider the problem of oblivious transfer (OT) [15,26], which is a
fundamental building block in MPC [19] and in many application scenarios such
as Private Information Retrieval (PIR) [7]. We consider several variants of OT:
1-out-of-N OT [1,20,21,23], k-out-of-N OT [5], Priced OT [1], and Generalized
OT [17,30]. While several previous studies proposed distributed protocols for
1-out-of-N OT, N ≥ 2, ours is the first one that does not rely on Bob’s honesty.
Specifically, while previous distributed 1-out-of-N OT protocols enabled Bob to
learn any single linear combination of Alice’s N secret messages, our protocol

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 3

restricts Bob to learning just a single message, as mandated in OT (see our
discussion in Section 7). As for the other OT variants that we consider, we are
the first to propose distributed protocols for their solution.

Then we deal with the problem of Oblivious Polynomial Evaluation (OPE)
[23,33]. Here, Alice holds a private uni- or multi-variate polynomial f(·) and
Bob holds a private value α. The goal is to let Bob have f(α) so that Alice
learns nothing on α while Bob learns nothing on f beyond what is implied
by α and f(α). Here too, while existing distributed OPE protocols allow Bob
to learn any single linear combination of f ’s coefficients (and thus amount to
protocols of distributed scalar product) ours is the first one that restricts Bob
to learning only point values of f , at a point of his choice. We are also the
first to propose a distributed protocol for OMPE — Oblivibious Multivariate
Polynomial Evaluation.

Our OT and OPE protocols demonstrate the advantages that the distributed
model offers. The delegation of computation to dedicated servers significantly
simplifies computations that are typically more involved when Alice and Bob
are on their own. The bulk of the computation is carried out by the servers,
while Alice and Bob are active only in the initial and final stages, that are
computationally lean. Another prominent advantage of the distributed model is
that it enables carrying out all of the MPC problems that we consider even when
Alice and Bob do not know each other and thus cannot communicate among
themselves. In fact, Alice can complete her part in the protocol well before Bob
starts his. For example, if Alice is a data custodian that holds some database,
her private vector could hold decryption keys for the items in her database. The
other party, Bob, can be any client that wishes to retrieve one of the items in
that database, while keeping Alice oblivious of his choice, which is encoded in his
private vector. Alice and Bob can use our various OT protocols for that purpose.
But as they need to communicate only with the servers, Bob may perform his
retrieval long time after Alice had already uploaded all information relating to
her database. Moreover, in such an application scenario there is a single Alice
but many "Bobs". While other protocols (non-distributed or even distributed)
require Alice to be responsive to each Bob, our protocols allow Alice to act just
once, at the initialization stage, while from that point onward only the servers
deal with each of the future requests of potential clients (Bob). Our distributed
OMPE protocol also offers such advantages.

We assume that the servers are semi-honest and have an honest majority.
Namely, the servers follow the prescribed protocol, but a minority of the servers
may collude among themselves or with Alice or Bob and share their views in
the protocol. Under these assumptions our protocols are information-theoretic
secure and provide unconditional security to both Alice and Bob, even when
some of the parties collude.

Outline of the paper. Section 2 provides the relevant cryptographic prelim-
inaries and assumptions. In Section 3 we describe our distributed scalar product
protocol. Section 4 is devoted to the various distributed OT protocols. In Section
5 we present the OMPE protocol. We report experimental results in Section 6.

4 A. Ben Arie and T. Tassa

In Section 7 we review the prior art on distributed OT and OPE protocols and
compare those protocols to ours. We conclude in Section 8.

2 Preliminaries

Secret sharing. The main idea in our protocols for solving the various MPC
problems discussed herein is to use secret sharing. Alice and Bob distribute
among the D servers, M1, . . . ,MD, shares in each entry of their private vectors,
using t-out-of-D Shamir’s secret sharing scheme [28], with

t = ⌊(D + 1)/2⌋ . (1)

(Hereinafter we shall refer to such sharing as (t,D)-sharing.) Namely, Alice
generates for each entry an, n ∈ [N] := {1, . . . , N}, a polynomial fA

n (x) =

an +
∑t−1

i=1 αix
i, where αi are secret random field elements, and then she sends

to Md the value [an]d := fA
n (d), d ∈ [D] := {1, . . . , D}. Bob acts similarly. The

servers then execute some distributed computation on the received shares in or-
der to arrive at secret shares in the needed output. At the end, they distribute
to Alice and/or Bob shares in the desired output from which Alice and/or Bob
may reconstruct that output. The underlying field Zp is selected so that p is
larger than all values in the underlying computation.

Computing arithmetic expressions in shared secrets. In our protocols we
will need to securely compute arithmetic expressions of shared secrets, where the
expressions are degree two polynomials in the secrets (namely, they are sums of
addends, each involving at most one multiplication of two secrets). We proceed
to describe how we execute such computations.

First, we recall that secret sharing is affine in the following sense: if s1 and
s2 are two secrets that are independently (t,D)-shared among M1, . . . ,MD, and
a, b, c are three public field elements, then the servers can compute shares in
as1 + bs2 + c. Specifically, if [si]d is Md’s share in si, i = 1, 2, d ∈ [D], then
{a[s1]d + b[s2]d + c : d ∈ [D]} is a proper (t,D)-sharing of as1 + bs2 + c.

We turn to discuss the multiplication of shared secrets. Assume that the
servers hold (t,D)-shares in si, i = 1, 2, where Md’s share in si is [si]d. Assume
that each server Md, d ∈ [D], multiplies the two shares that he holds and gets
cd = [s1]d[s2]d. It is easy to see that the set {cd : d ∈ [D]} is a (2t−1, D)-sharing
of s1s2. Therefore, the servers can recover s1s2 by computing cd = [s1]d[s2]d,
then interpolate a polynomial F of degree 2t − 2 based on {c1, . . . , cD}, and
consequently infer that s1s2 = F (0). For simplicity, we will assume hereinafter
that D is odd, in which case 2t − 1 = D. Hence, {cd = [s1]d[s2]d : d ∈ [D]}
constitute a (D,D)-sharing in s1s2.

Scrambling shares. In some cases we shall perform the above described mul-
tiplication procedure when s1 and s2 are related (specifically, when s2 = s1−1).
In such cases, the above described practice is problematic since each server Md

would need to expose to his peers the product of his secret shares [s1]d[s2]d, and
due to the known relation between s1 and s2, that product of shares may reveal

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 5

information on [s1]d and [s2]d, and consequently also information on the value
of s1 and s2.

To avoid such potential information leakage, the servers perform a scrambling
of the shares {c1, . . . , cD}, in the sense that they generate a new random set of
shares {c′1, . . . , c′D} that are also (D,D)-shares in s1s2. They do that in the
following manner. Each server Md, d ∈ [D], generates a random (D,D)-sharing
of 0 and distributes the resulting shares to all servers. Subsequently, each server
adds up the zero shares that he had received from all D servers. As a result,
the mediators will hold (D,D)-shares of 0, denoted {[0]1, . . . , [0]D}, where each
share distributes uniformly in Zp. Finally, each server Md sets c′d = cd + [0]d,
d ∈ [D]. Clearly, {c′1, . . . , c′D} are also (D,D)-shares in s1s2, and their values do
not leak any information on the original shares in s1 and s2.

We note that it is essential to generate a new set of zero shares, [0]d, d ∈ [D],
for each operation of scrambling. However, it is possible to prepare such shares
offline, before running the protocol in which scrambling is needed.

Security assumptions. The servers are assumed to be semi-honest, i.e., they
follow the prescribed protocol, but try to extract from their view in the protocol
information on the private inputs. We also assume them to have an honest ma-
jority, in the sense that if some of them are corrupted by a malicious adversary,
their number is smaller than t = ⌊(D+1)/2⌋ (Eq. (1)). Hence, our protocols are
immune against a coalition of up to t− 1 servers who collude among themselves
or with Alice or Bob.

3 Distributed Scalar Product

Here we deal with the following MPC problem.

Definition 1. (DSP) Assume that Alice has a private vector a = (a1, . . . , aN) ∈
ZN
p , and Bob has a private vector b = (b1, . . . , bN) ∈ ZN

p . They wish to compute
their scalar product a ·b without revealing any other information on their private
vectors.

Protocol 1 solves that problem. In the first loop (Lines 1-3), Alice and Bob
distribute to the servers (t,D)-shares in each entry of their vectors. Then, each
server Md computes a (D,D)-share in an · bn for each n ∈ [N], and subsequently
he computes a (D,D)-share in the scalar product into sd (Line 5). He then sends
that share to Alice and Bob (Line 6). So now Alice and Bob have a full set of
(D,D)-shares in a · b so they can recover the needed scalar product by means
of interpolation (Line 7).

The protocol is correct and secure as we state next.

Theorem 1. Protocol 1 is correct and provides information-theoretic security
to both Alice and Bob when all servers are semi-honest and have an honest
majority. Moreover, a coalition of one of the parties (Alice or Bob) with any
subset of t− 1 servers does not yield any information beyond what is implied by
that party’s input and the output.

6 A. Ben Arie and T. Tassa

Protocol 1: Distributed Scalar Product
Parameters: p - field size, N - the dimension of the vectors, D - number of

servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has a private vector a = (a1, . . . , aN) ∈ ZN

p , Bob has a private
vector b = (b1, . . . , bN) ∈ ZN

p .
1 forall n ∈ [N] do
2 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
4 forall d ∈ [D] do
5 Md computes sd ←

∑
n∈[N] ([an]d · [bn]d).

6 Md sends sd to Alice and Bob.
7 Alice and Bob use {s1, . . . , sD} to reconstruct a · b.

Output: Alice and Bob get a · b.

Due to the page limitation we omit all proofs and will provide them in the
full version of this paper.

4 Distributed Oblivious Transfer

In this section we consider several variants of the Oblivious Transfer (OT) pro-
tocol. We begin with the basic variants of 1-out-of-N and k-out-of-N OT in
Section 4.1. We then discuss Priced OT (Section 4.2). The case of Generalized
OT is introduced in Section 4.3; the detailed discussion is deferred to the full
version of this paper.

4.1 k-out-of-N Oblivious Transfer

The problem that we consider here is the following:

Definition 2. (OTN
k) Assume that Alice has a set of N messages, m1, . . . ,mN ∈

Zp. Bob wishes to learn k of those messages, say mj1 , . . . ,mjk , for some j1, . . . , jk ∈
[N]. A k-out-of-N Oblivious Transfer (OTN

k) protocol allows Bob to learn mj1 , . . . ,mjk ,
and nothing beyond those messages, while preventing Alice from learning any-
thing about Bob’s selection.

We begin by considering the case k = 1 and then we address the general
case. The OTN

1 problem can be reduced to DSP (Section 3) if Alice sets a :=
(m1, . . . ,mN) and Bob sets b := ej (the unit vector that consists of N − 1 zeros
and a single 1 in the jth entry, where j is the index of the message that Bob
wishes to retrieve). However, the DSP protocol cannot be executed naïvely, since
Bob may cheat and send to the servers shares in a vector that is not a unit vector
and, consequently, he may obtain some linear combination of the messages, and
not just a single message as dictated by the OT definition. Such an abuse of the
protocol may enable Bob in some cases to learn more than just one message.
For example, if Bob happens to know that m1 belongs to some one-dimensional

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 7

subspace of ZN
p while m2 belongs to another one-dimensional subspace of ZN

p ,
then by choosing to learn the linear combination m1+m2 he will be able to infer
both m1 and m2. To that end, the DSP protocol can be executed only after the
server apply some preliminary validation protocol:

Definition 3. (DVV) Assume that the servers M1, . . . ,MD hold (t,D)-shares
in a vector v ∈ ZN

p . Let W be a subset of ZN
p . A Distributed Vector Validation

(DVV) protocol is a protocol that the servers may execute on their shares that
outputs 1 if v ∈W and 0 otherwise, and reveals no further information on v in
the case where v ∈W .

In our case W = {ej : j ∈ [N]}. The servers can validate that b ∈ W by
verifying the following two conditions: (1) bn · (bn − 1) = 0 for all n ∈ [N]; and
(2)

∑
n∈[N] bn = 1. Indeed, the first condition implies that all entries in b are

either 0 or 1, while the second condition ascertains that exactly one of the entries
equals 1. Note that if the two conditions are verified, then the servers may infer
that Bob’s vector is legal, but nothing more than that, as desired. Namely, if Bob
is honest then his privacy is fully protected. However, if Bob is dishonest and
distributed shares in a vector b /∈ W , then the above described DVV protocol
will reveal some additional information on b; however, that is acceptable since
by acting dishonestly Bob looses his right for privacy.

Protocol 2 implements those ideas. After Alice and Bob set their vectors and
distribute shares in them to the servers (Lines 1-5), the servers validate Bob’s
vector for compliance with conditions 1 (Lines 6-12) and 2 (Lines 13-17). (The
scrambling operation in Line 8 is as discussed in Section 2.) If Bob’s vector was
validated, they compute (D,D)-shares in the scalar product and send them to
Bob so that he can recover the scalar product that equals his message of choice
(Lines 18-21).

For a general k > 1, it is possible to solve OTN
k by running Protocol 2 k

times, with one exception: Alice needs to distribute shares in her vector only
once (Lines 1 and 4 in Protocol 2). We proceed to describe another solution that
is more efficient in terms of communication complexity.

Protocol 3 multiplies Alice’s vector a := (m1, . . . ,mN) with the vector b =∑k
i=1 eji where 1 ≤ j1 < . . . < jk ≤ m are the indices of the k messages that Bob

wishes to retrieve. But instead of computing their scalar product,
∑N

n=1 anbn,
the protocol computes shares in the products anbn for all n ∈ [N] and sends
them to Bob. Bob then uses the shares of anbn only for n ∈ {j1, . . . , jk} in order
to recover the requested messages.

Here, the DVV sub-protocol consists of verifying two conditions: that bn ·
(bn− 1) = 0 for all n ∈ [N], and that

∑
n∈[N] bn = k. The first condition implies

that all entries in b are either 0 or 1, while the second condition ascertains that
exactly k of the entries equal 1.

After Alice and Bob set their vectors and distribute shares in them to the
servers (Lines 1-5), the servers validate Bob’s vector for compliance with con-
ditions 1 (Lines 6-12) and 2 (Lines 13-17). If Bob’s vector was validated, they
compute (D,D)-shares in each of the N products between the components of the

8 A. Ben Arie and T. Tassa

two vectors and send them to Bob (Lines 18-21) for him to recover the requested
k messages (Lines 22-23).

Protocol 2: 1-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has a selection index j ∈ [N].

1 Alice sets a = (m1, . . . ,mN).
2 Bob sets b = ej .
3 forall n ∈ [N] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets cd = [bn]d · ([bn]d − 1).
8 The servers perform scrambling of (c1, . . . , cD) and compute a new set of

(D,D)-shares in bn · (bn − 1), denoted (c′1, . . . , c
′
D).

9 Each Md, d ∈ [D], broadcasts c′d.
10 The servers use (c′1, . . . , c

′
D) in order to compute ω := bn · (bn − 1).

11 if ω ̸= 0 then
12 Abort
13 forall d ∈ [D] do
14 Md computes cd ←

∑
n∈[N][bn]d.

15 The servers use any t shares out of {c1, . . . , cD} to compute ω :=
∑

n∈[N] bn .
16 if ω > 1 then
17 Abort
18 forall d ∈ [D] do
19 Md computes sd ←

∑
n∈[N] ([an]d · [bn]d).

20 Md sends sd to Bob.
21 Bob uses {s1, . . . , sD} to reconstruct a · b = mj .

Output: Bob gets mj .

Theorem 2. Protocols 2 and 3 are correct and provide information-theoretic
security to both Alice and an honest Bob when all servers are semi-honest and
have an honest majority. Moreover, a coalition of one of the parties (Alice or
Bob) with any subset of t−1 servers does not yield any information beyond what
is implied by that party’s input and the output.

In the full version of this paper we describe an alternative 1-out-of-N Obliv-
ious Transfer protocol that is also based on DSP. In that protocol, the DVV
process is replaced by another mechanism that is based on an idea that was
presented by Naor and Pinkas in [24] for their 1-out-of-2 OT protocol. The ad-
vantage in that protocol is that it does not require the servers to communicate
with each other. However, on the down side, it enforces Alice to be responsive
to any OT request of any client (Bob), as opposed to Protocol 2 in which Alice
finishes her part in the initial phase.

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 9

Protocol 3: k-out-of-N Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}; Bob has selection indices

1 ≤ j1 < . . . < jk ≤ N .
1 Alice sets a = (m1, . . . ,mN).
2 Bob sets b = (b1, . . . , bN), where bn = 1 for n ∈ {j1, . . . , jk} and bn = 0

otherwise.
3 forall n ∈ [N] do
4 Alice sends to Md, d ∈ [D], a (t,D)-share in an, denoted [an]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bn, denoted [bn]d.
6 forall 1 ≤ n ≤ N do
7 Each Md, d ∈ [D], sets cd = [bn]d · ([bn]d − 1).
8 The servers perform scrambling of (c1, . . . , cD) and compute a new set of

(D,D)-shares in bn · (bn − 1), denoted (c′1, . . . , c
′
D).

9 Each Md, d ∈ [D], broadcasts c′d.
10 The servers use (c′1, . . . , c

′
D) in order to compute ω := bn · (bn − 1).

11 if ω ̸= 0 then
12 Abort
13 forall d ∈ [D] do
14 Md computes cd ←

∑
n∈[N][bn]d.

15 The servers use any t shares out of {c1, . . . , cD} to compute ω :=
∑

n∈[N] bn .
16 if ω ̸= k then
17 Abort
18 forall d ∈ [D] do
19 forall n ∈ [N] do
20 Md computes [cn]d ← [an]d · [bn]d.
21 Md sends [cn]d to Bob.
22 forall n ∈ {j1, . . . , jk} do
23 Bob uses {[cn]1, . . . , [cn]D} to reconstruct cn = an · bn = mn.

Output: Bob gets mj1 , . . . ,mjk .

4.2 Priced Oblivious Transfer

Consider a setting of OT in which each of Alice’s messages has a weight and
the retrieval policy allows Bob to learn any subset of messages in which the sum
of weights does not exceed some given threshold. For example, if Alice holds a
database of movies and each movie has a price tag, then if Bob had prepaid
some amount, Alice wishes to guarantee that he retrieves movies of aggregated
cost that does not exceed what he had paid, while Bob wishes to prevent Alice
from knowing what movies he chose to watch.

Definition 4. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
Assume that each massage mn has a weight wn ≥ 0, n ∈ [N], and let T > 0
be some given threshold. Then a Priced OT protocol allows Bob to retrieve any
subset B ⊆ U for which

∑
mn∈B wn ≤ T . Bob cannot learn any information on

the messages in U \B, while Alice has to remain oblivious of Bob’s choice.

10 A. Ben Arie and T. Tassa

We assume that the weights w1, . . . , wN are publicly known, since they rep-
resent information that is supposed to be known to all. The threshold T , on the
other hand, represents the amount that Bob had paid and, therefore, it is private
and should remain so.

Protocol 4 executes Priced OT. It coincides with Protocol 3 except for the
second part of the DVV sub-protocol (Lines 13-17). If in Protocol 3 the servers
obliviously verified in that part that

∑
n∈[N] bn ≤ k, then here it is necessary

to obliviously verify that
∑

mn∈B wn =
∑

n∈[N] wnbn ≤ T . (Recall that in Lines
6-12 in Protocol 3 we have already verified that bn ∈ {0, 1}, for all n ∈ [N].) To
enable that verification, the protocol starts by publishing the vector of weights
(Line 1). Then, both Alice and Bob distribute to the servers (t,D)-shares in T
(Lines 2-3) and then the servers verify that the two underlying thresholds equal,
without recovering that threshold (Lines 4-7). Those steps are necessary in order
to ascertain that Alice and Bob agree on the same value of the threshold, before
using that value in the DVV sub-protocol. (Namely, Bob is ascertained that
Alice did not provide a too low value of T while Alice is ascertained that Bob
did not provide a too high value of T).

The core of the protocol is the execution of the OTN
k protocol - Protocol 3

(Line 8). That protocol is executed as is except for the replacement of Lines 13-17
there with Sub-protocol 5. The sub-protocol begins with the servers computing
(t,D)-shares in the difference e := T −

∑
n∈[N] wnbn (Lines 1-2). Then, any

subset of t servers can recover e (Line 3). Finally, if e ̸= 0 the protocol aborts
(Line 4), while otherwise it proceeds towards completing the transfer.

Note that Bob is allowed to retrieve any subset of messages of aggregated
weight at most T . Sub-protocol 5, however, assumes that Bob had requested a
subset of messages of aggregated weight that equals exactly T . Such an equality
can be guaranteed as we proceed to describe. First, Bob can add to his list of
requested messages additional redundant messages that he will ignore later on.
By adopting such a practice, the difference e = T −

∑
n∈[N] wnbn can be made

a nonnegative number smaller than w := maxn∈[N] wn. Assume that w < 2ℓ,
for some ℓ > 0. Then Alice may add ℓ phantom messages m̂i, 0 ≤ i < ℓ, with
the weights 2i, to her list of messages. Consequently, Bob will add to his list of
requested messages also the subset of phantom messages of which the sum of
weights equals exactly e. That way, the servers will always recover in Line 3 in
Sub-protocol 5 the value 0.

The Case of Secret Weights Even though the weights of messages are typi-
cally public, it is possible to modify the protocol so that also the weights remain
hidden from the servers. To do that, instead of publishing the vector of weights
w (as done in Line 1 of Protocol 4), Alice would distribute to the servers (t,D)-
shares in them. Let [wn]d denote Md’s share in wn, d ∈ [D], n ∈ [N]. Then, in
Sub-protocol 5, Line 2 will be replaced with [e]d ← [T]d −

∑
n∈[N][wn]d[bn]d. As

discussed in Section 2, the set {[e]1, . . . , [e]D} is a set of (D,D)-shares in e. The
servers may use those shares in order to reconstruct e = T −

∑
n∈[N] wnbn. No

further changes are required.

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 11

Protocol 4: Priced Oblivious Transfer
Parameters: p - field size, N - number of messages, D - number of servers,

t = ⌊(D + 1)/2⌋.
Inputs: Alice has U = {m1, . . . ,mN}, and corresponding weights wn ≥ 0,

n ∈ [N]; Bob has a set of selection indices j1, . . . , jk ∈ [N]; Alice and
Bob have T ≥ 0.

1 Alice publishes the vector of weights w = (w1, . . . , wN).
2 Alice sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T]d.
3 Bob sends to Md, d ∈ [D], a (t,D)-share in T , denoted [T ′]d.
4 forall d ∈ [D] do
5 Md computes [e]d ← [T]d − [T ′]d.
6 The servers use any t shares out of {[e]1, . . . , [e]D} to compute e = T − T ′.
7 if e ̸= 0 then Abort.
8 Alice, Bob and the servers execute Protocol 3 in which Lines 13-17 are

replaced with Sub-protocol 5.
Output: Bob gets {mj1 , . . . ,mjk} iff

∑k
i=1 wji ≤ T .

Sub-protocol 5: Priced OT: verifying that
∑k

i=1 wji ≤ T .
1 forall d ∈ [D] do
2 Md computes [e]d ← [T]d −

∑
n∈[N] wn[bn]d.

3 The servers use any t shares out of {[e]1, . . . , [e]D} to compute
e = T −

∑
n∈[N] wnbn.

4 if e ̸= 0 then Abort.

As Protocol 4 coincides with Protocol 3 where only the DVV part is slightly
modified, Theorem 2 applies also to that protocol, in both cases (public or secret
weights).

4.3 Generalized Oblivious Transfer

Ishai and Kushilevitz [17] presented an extension of OT called Generalized Obliv-
ious Transfer (GOT). While in OTN

k Bob was restricted to learn any subset of
at most k out of the N messages that Alice has, in GOT the policy is extended
as described below.

Definition 5. Let U = {m1, . . . ,mN} be the set of messages that Alice has.
An access structure is a collection of subsets of U , A ⊆ 2U , which is monotone
decreasing in the sense that if B ∈ A and B′ ⊂ B then also B′ ∈ A.

Bob is allowed to retrieve any subset of messages B ⊂ U provided that B ∈ A.
As before, Bob cannot learn any information on messages in U \B, while Alice
must remain oblivious of Bob’s selection. The retrieval policy can be determined
by any access structure on the set of messages, e.g. a multipartite access structure
[31], in which the set of messages is partitioned into distinct compartments and

12 A. Ben Arie and T. Tassa

the question of whether Bob may retrieve B ⊂ U is determined only by the
number of messages that B has in each of the compartments.

In the full version of this paper we present a protocol for that purpose that is
based on the GOT protocol that was presented in [30], and it invokes the OTN

k

protocol, Protocol 3.

5 Oblivious Polynomial Evaluation

The oblivious polynomial evaluation problem was presented in [23], and was
extended to the case of multivariate polynomials in [33]. We devise herein a
distributed protocol for the multivariate problem.

We begin by defining multivariate polynomials (Definitions 6 and 7) and then
define the corresponding MPC problem (Definition 8).

Definition 6. (Monomial) Let Zp be a finite field , x = (x1, . . . , xk) be a k-
dimensional vector over Zp and j = (j1, . . . , jk) be a k-dimensional vector of
nonnegative integers. Then the monomial xj is defined as xj :=

∏k
i=1 x

ji
i .

Definition 7. (Multivariate Polynomial) let Zk
+ := {j = (j1, . . . , jk) : ji ∈ Z+ =

{0, 1, 2, . . .} : 1 ≤ i ≤ k} be the set of all k-tuples of nonnegative integers, and
Zk,N
+ be the subset of Zk

+ consisting of all tuples of which the sum of components
is at most N , i.e: Zk,N

+ := {j ∈ Zk
+ : |j| :=

∑k
i=1 ji ≤ N}. An N -degree k-variate

polynomial f(x) over the field Zp, where x = (x1, . . . , xk) ∈ Zk
p, is defined as:

f(x) =
∑

j∈Zk,N
+

aj · x
j , aj ∈ Zp . (2)

Definition 8. (OMPE) Assume that Alice has an N -degree multivariate poly-
nomial f(x) = f(x1, . . . , xk), while Bob has a point α = (α1, . . . ,αk) ∈ Zk

p.
They wish to enable Bob to learn f(α), and nothing else on f , while keeping
Alice oblivious to α.

OMPE can be solved by reducing it to DSP, with the needed prior validations.
The vector that Alice will submit to the protocol consists of the coefficients of
her polynomial, a = (aj : j ∈ Zk,N

+). The vector that Bob will submit to the
protocol is the following:

b = (bj : j ∈ Zk,N
+) , where bj := αj . (3)

It is easy to see that the dimension of these vectors is
(
N+k
k

)
.

First, it is necessary to agree upfront on an ordering of Zk,N
+ so that in the

scalar product between the two vectors, each power of α will be multiplied by
the corresponding polynomial coefficient. We suggest ordering the set Zk,N

+ by
arranging its monomials into N +1 tiers, as follows. The 0th tier would be T0 :=
Zk,0
+ , and then the nth tier, n = 1, . . . , N , would be Tn := Zk,n

+ \Zk,n−1
+ ; namely,

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 13

Protocol 6: Oblivious Multivariate Polynomial Evaluation
Parameters: p - field size, k-number of variables, N - the degree of the secret

polynomial f , D - number of servers, t = ⌊(D + 1)/2⌋.
Inputs: Alice has a secretN -degree k-variate polynomial f(x), Eq. (2); Bob

has a secret point α = (α1, . . . ,αk) ∈ Zk
p.

1 Alice sets a = (aj : j ∈ Zk,N
+), according to the ordering convention.

2 Bob sets b = (bj = αj : j ∈ Zk,N
+), according to the ordering convention.

3 forall j ∈ Zk,N
+ do

4 Alice sends to Md, d ∈ [D], a (t,D)-share in aj, denoted [aj]d.
5 Bob sends to Md, d ∈ [D], a (t,D)-share in bj, denoted [bj]d.
6 forall 2 ≤ n ≤ N do
7 forall j ∈ Tn do
8 Select a monomial h ∈ Tn−1 such that j = h + ei for some 1 ≤ i ≤ k,

where ei is the i-th unit vector.
9 The servers compute ω := bh · bei − bj.

10 if ω ̸= 0 then
11 Abort
12 forall d ∈ [D] do
13 Md computes sd ←

∑
j∈Zk,N

+

(
[aj]d · [bj]d

)
.

14 Md sends sd to Bob.
15 Bob uses {s1, . . . , sD} to reconstruct a · b = f(α).

Output: Bob gets f(α).

the nth tier Tn consists of all monomials of degree exactly n ∈ {0, 1, . . . , N}.
The order within each tier would be lexicographical.

Protocol 6 starts with Alice and Bob setting their input vectors a and b in
accord with the ordering convention (Lines 1-2). Then they distribute to the
servers (t,D)-shares in them (Lines 3-5). Observe that the first entry in b, i.e.
bj for j = (0, . . . , 0), equals 1 (see Eq. (3)). Hence, in Line 5 for j = (0, . . . , 0)

Bob does not generate and distribute shares; instead, each server Md, d ∈ [D],
sets [bj]d = 1.

After completing the distribution of shares, the servers perform the relevant
DVV sub-protocol in order to validate that the secret input vector b is of the
form as in Eq. (3) (Lines 6-11). To that end we state the following lemma.

Lemma 1. The vector b = (bj : j ∈ Zk,N
+), where bj = 1 for j = (0, . . . , 0), is

of the form as in Eq. (3) if and only if ω = 0 in all stages of the validation loop
in Lines 6-11 of Protocol 6.

In the final stage of Protocol 6, the servers compute (D,D)-shares in the
scalar product and send them to Bob (Lines 12-14) who uses them in order to
recover the scalar product (Line 15).

14 A. Ben Arie and T. Tassa

Example. We illustrate the validation process when k = 2 and N = 2. Bob
is expected to submit here vectors of the form

b = (b(0,0), b(1,0), b(0,1), b(2,0), b(1,1), b(0,2)) = (1, α1, α2, α
2
1, α1α2, α

2
2) .

Since the first entry is always 1, and the next two entries can be anything,
validation is applied only on the last three entries — b(2,0), b(1,1), and b(0,2):

– To validate b(2,0), we observe that there is only one way to represent the
multi-index j = (2, 0) as a sum h+ ei, namely, (2, 0) = (1, 0)+ (1, 0). Hence,
the DVV sub-protocol checks whether b(2,0) = b(1,0) · b(1,0). Therefore, vali-
dation of this entry succeeds if and only if b(2,0) = α2

1.
– Similarly, b(0,2) is validated if and only if b(0,2) = α2

2.
– To validate b(1,1), we observe that j = (1, 1) = h + ei with h = (1, 0) and

ei = (0, 1) or with h = (0, 1) and ei = (1, 0). In either case, the DVV
sub-protocol checks whether b(1,1) = b(1,0) · b(0,1) = α1 · α2.

We conclude by noting that the security guarantees of Protocol 6 are as
stated in Theorem 2.

6 Experiments

Implementation details. We implemented our protocols in Java on a Lenovo
Ideapad Gaming 3 laptop, powered by an AMD Ryzen 7 5800H processor and
16GB of RAM. The operating system was Windows 11 64-bit, and the en-
vironment was Eclipse-Workspace. A 64-bit prime number p was chosen at
random for the size of the underlying field Zp. To enable computations mod-
ulo such prime, we used the BigInteger Java class. The code is available at
https://github.com/b1086960/Distributed_OT_OPE.

All experiments were conducted on randomly generated vectors (or sets of
messages or polynomials). Each experiment was repeated ten times and the
average runtimes for Alice, Bob and the servers are reported (where the runtimes
for the servers are averaged over the ten runs as well as over the D servers). The
standard deviation is omitted from the graphical display of our results since it
is barely noticeable.
Results. In the first experiment we tested our basic protocol that solves DSP,
Protocol 1. Figure 1 shows the runtimes for Alice and Bob and the average
runtimes for the servers as a function of N (the dimension of the two vectors).
The runtimes in Figure 1 grow linearly in N . Figure 2 displays those runtimes
as a function of D. The runtimes for Alice and Bob grow quadratically in D
since they need to perform D polynomial evaluations where the polynomial is of
degree t− 1 = O(D). The servers’ runtime, on the other hand, is not affected by
D and only slightly fluctuates randomly between 125 and 150 milliseconds for
all tested values of D.

In the next experiment we tested Protocol 3 that solves the OTN
k problem.

Here we focus only on the servers, since Bob’s computations in that protocol

https://github.com/b1086960/Distributed_OT_OPE

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 15

Fig. 1. Runtimes (milliseconds) for Protocol 1 (DSP), as a function of log10(N), for
D = 7. The left plot shows the runtimes for Alice and Bob; the right plot shows the
average runtimes for the servers. The runtimes are presented on a logarithmic scale.

Fig. 2. Runtimes (milliseconds) for Protocol 1 (DSP), as a function of D, for N = 106.
The left plot shows the runtimes for Alice and Bob; the right plot shows the average
runtimes for the servers. The runtimes are presented on a linear scale.

are the same as in Protocol 1, while Alice’s computations are the same as in
the beginning of Protocol 1. The servers’ runtimes are shown in Figure 3. The
dependence on N is linear. As for D, while in Protocol 1 the servers’ runtimes
do not depend on D, here they do depend on D, linearly, due to the DVV part
of the protocol. Their runtimes are not affected by k.

We turn our attention to Protocol 4 (Priced OT). Like in Protocol 3, we
ignore the runtimes of Alice and Bob and focus on the servers’ average runtime
and demonstrate its linear dependence on N and on D, see Figure 4.

Finally, we consider Protocol 6 (OMPE). We ran that protocol with random
polynomials of degrees N ∈ {5, 10, 20, 30, 40, 50}, where the number of variables
was set to k = 3 — see Figure 5. The shown runtimes grow linearly with

(
N+k
k

)
,

since that is the size of the two vectors in the scalar product.

16 A. Ben Arie and T. Tassa

Fig. 3. Average runtimes (milliseconds) for the servers in Protocol 3 (OTN
k). Left:

runtimes, on a logarithmic scale, as a function of log10(N), for D = 7 and k = 10.
Right: runtimes as a function of D, for N = 1000000 and k = 10.

Fig. 4. Average runtimes (milliseconds) for the servers in Protocol 4 (Priced OT)). Left:
runtimes as a function of N , for T = 100 and D = 7; the runtimes are presented on a
logarithmic scale. Right: runtimes as a function of D, for T = 100 and N = 1000000.

7 Related Work

Naor and Pinkas [24] introduced the first version of a distributed OT. Their
setting is similar to the one that we consider here: (a) apart from the sender
(Alice) and the receiver (Bob) there are external servers that participate in the
computation; (b) Alice sends information only to the servers and her role ends
after doing so; (c) Bob can perform his part in a later time by communicating
solely with the servers.

They considered OT2
1: namely, Alice has m1 and m2, Bob has a selection

index j ∈ {1, 2}, and the goal is to let Bob have mj and nothing else, while
Alice should remain oblivious of j. Their protocols are referred to as ℓ-out-of-D
DOT2

1, meaning that Bob has to communicate with ℓ out of the D servers in
order to receive his message of choice.1.

1 In our discussion of related work we replace the original parameter notations with
the ones that we used in the present work, for consistency and clarity.

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 17

Fig. 5. Runtimes (milliseconds) for Protocol 6 (OMPE), as a function of N , the poly-
nomial degree, for k = 3. Left: runtimes for Bob; right: average runtimes for the servers.

The two protocols that are proposed in [24] are based on secret sharing of
some univariate polynomial. Specifically, Alice chooses a random bivariate poly-
nomial Q(x, y) that encodes m1 and m2, Bob chooses some random univariate
polynomial S(x) that encodes j, and then, by carefully selecting the degrees of
those polynomials, they induce a univariate polynomial R(x) = Q(x, S(x)) of
degree ℓ − 1. The free coefficient in R(x) is mj and, consequently, Bob can get
that value by obtaining the value of R(x) in ℓ points. Bob does that by receiveing
information from ℓ servers.

The first protocol uses a simple bivariate polynomial Q(x, y). It suffers from
two shortcomings: each server learns the difference m2 − m1 and, in addition,
if a single server colludes with Bob, they obtain both of Alice’s messages. The
second protocol uses a more involved bivariate polynomial, that prevents the
above described breach in Alice’s privacy. However, that protocol still allows
Bob to learn any linear combination of the two messages, rather than just m1 or
m2. Later on they outline a manner which enforces Bob to learn just m1 or m2

but not any other linear combination of the two messages. The idea is to perform
the protocol twice: in one execution Alice submits her two messages masked by
random multipliers, c1m1, and c2m2; in the second execution Alice submits the
two multipliers, c1 and c2. They then argue that if m1 ̸= m2, such a course of
action disables Bob from inferring any linear combination of m1 and m2 which
is not one of the two messages.

Blundo et al. [4] generalized the protocols of [24] to distributed OTN
1 . In

their generalization, Alice uses an N -variate polynomial. Q(x, y1, . . . , yN−1) that
encodes her N messages, m1, . . . ,mN . Bob, on the other hand, encodes his index
j by N − 1 univariate polynomials, Z1, . . . , ZN−1. Those polynomials implicitly
induce a univariate polynomial of degree ℓ−1, R(x) = Q(x, Z1(x), . . . , ZN−1(x)),
such that R(0) = mj . As in [24], Bob contacts ℓ servers in order to get ℓ point
values of R that enable him to recover R(0) = mj . They showed that any
coalition of up to ℓ − 1 servers cannot obtain any information on j, and that
any coalition of up to ℓ− 1 servers with Bob cannot obtain any information on
Alice’s messages. However, their protocol has the same vulnerability as that of

18 A. Ben Arie and T. Tassa

[24]: each server learns the differences mn−m1 for all 1 ≤ n ≤ N ; and a coalition
of Bob with a single server enables the recovery of all N messages.

Hence, the protocols of [24] and [4] are vulnerable to a collusion of Bob with
just a single server. Blundo et al. defined the following privacy goal: a coalition of
Bob with any subset of ℓ− 1 servers should not be able to infer any information
on Alice’s messages, beyond the message that Bob had selected. They proved
that such a goal cannot be achieved in a one-round DOT protocol.

Nikov et al. [25] presented an analysis of the ℓ-out-of-D DOTN
1 framework

used in the above described studies. Namely, they considered protocols that
involve a sender (Alice), a receiver (Bob) and D servers, through which Bob can
retrieve a single message out of Alice’s N messages by contacting ℓ of the D
servers. They considered such a scheme to be (t, k)-secure if (a) any coalition of
t− 1 servers cannot infer anything on Bob’s selection index, and (b) a coalition
of Bob with k corrupt servers does not yeild to Bob any further information.
They then showed [25, Corollary 1] that such a scheme can exist iff ℓ ≥ t + k.
They continued to demonstrate a construction of such a scheme with a minimal
threshold of ℓ = t+k. Later on, they considered settings in which not all servers
enjoy the same level of trust and presented a DOTN

1 protocol in which Bob
can recover his message of choice by contacting an authorized subset of servers,
where the authorized subsets are defined by a general access structure.

We note that the protocols of [4,25] enable Bob to learn any single linear
combination of Alice’s messages, and not just a single message; hence, they
implement only a weaker version of OT.

Corniaux and Ghodosi [9] took a different approach in their solution of the
distributed OTN

1 problem. As opposed to the above described works, they allow
the servers to communicate with each other, thus breaching out of the framework
of one-round DOT. Their protocol is similar to our DOTN

1 protocol (Protocol 2):
Alice distributes to the servers secret shares in her vector of messages, while Bob
distributes secret shares in the binary vector that encodes his selection index.
The requested message is the scalar product between those two private vectors.
However, the protocol in [9] lacks the DVV part, which is at the heart of our
Protocol 2 (Lines 6-15). Consequently, Bob can create any selection vector and
hence can recover any linear combination of the messages m1, . . . ,mN . Hence,
the protocol in [9] too does not implement OT but a weaker form of that problem.
(We note that there are other technical differences between our Protocol 2 and
the one in [9], e.g., the fact that we do not need to perform a transformation
from one threshold scheme to another, as they do; we omit further details.)

The problem of OPE (Oblivious Polynomial Evaluation) was introduced by
Naor and Pinkas in [23]. It is closely related to OT: here, too, Alice has a set
of secrets and Bob is allowed to get a single linear combination of those secret
while Alice should remain oblivious of his choice. While in OT the secrets are
messages and the allowed linear combinations are the ones that consist of a single
message, in OPE the secrets are the coefficients of a private polynomial, f(x),
and the allowed linear combinations are those that relate to a point value of that
polynomial, f(α). In the OPE protocol of [23] Alice hides her secret polynomial

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 19

f(x) in some bivariate polynomial while Bob hides his secret point α in some
univariate polynomial. Those two polynomials induce a univariate polynomial
R(x) such that R(0) = f(α). Bob then learns dR+1 point values of R, where dR
is the degree of R, and then proceeds to recover R(0). He does that by invoking
dR + 1 instances of 1-out-of-m OT, where m is a small security parameter.

We are interested here with distributed protocols for OPE. The first such pro-
tocol was introduced by Li et al. [22]. They suggested three protocols for that
matter, which are based on secret sharing and polynomial interpolation. In the
first and simplest method, Alice secret shares each of her polynomial coefficients
among the servers, while Bob distributes secret shares in the corresponding pow-
ers of his selected point. The desired value is then obtained by computing the
scalar product between the two shared vectors. The two subsequent versions of
this basic protocol are designed in order to increase the immunity of the pro-
tocol to collusion between the servers and Bob. The protocols assume that all
parties are semi-honest. Since Bob is also assumed to be semi-honest, Bob can
submit to the protocol secret shares in any vector, not necessarily one of the
form (0, α, α2, . . . , αN) (where N is the degree of Alice’s polynomial f). Hence,
their protocols amount to protocols of distributed scalar product.

Cianciullo and Ghodosi [8] described another DOPE protocol that offers bet-
ter security and complexity than the protocols of Li et al. [22]. Specifically, their
protocol offers security for both Alice and Bob against collusion of up to t − 1
out of the D servers, for some threshold t that can be tuned by the degrees of
the secret sharing polynomials that the protocol uses. Despite the advantages
that their protocol offers with respect to that of Li et al. [22], it too does not
restrict Bob to learning only point values of f(x), as it allows Bob to learn any
linear combination of f ’s coefficients. In addition, it requires Alice to communi-
cate with Bob and generate a new set of secret shares per each request. Protocol
6 that we presented herein allows Alice to act just once and by thus serve an
unlimited number of future queries of "Bobs"; it allows the computation only of
point values of f ; and it is the first protocol that is designed for multi-variate
polynomials.

8 Conclusion

We presented here distributed MPC protocols for three fundamental MPC func-
tionalities: scalar product, oblivious transfer (k-out-of-N , Priced, and General-
ized OT), and oblivious (multivariate) polynomial evaluation (OMPE). While
previous studies offered distributed MPC protocols for 1-out-of-N OT and for
(univariate) OPE, ours are the first ones that consider malicious receivers and
restrict them to receive only the outputs that the MPC problem dictates. To the
best of our knowledge, our study is also the first one that suggests distributed
MPC protocols for k-out-of-N OT, Priced OT, Generalized OT, and OMPE.

Our OT and OMPE protocols demonstrate the advantages that the dis-
tributed model offers: the existence of external servers enables much simpler
and more efficient MPC protocols; it allows the MPC parties (the sender Alice

20 A. Ben Arie and T. Tassa

and the receiver Bob) to delegate the bulk of the computation to the dedicated
servers; and it completely disconnects Alice from Bob so that they do not need
to communicate with each other, or even to know each other or to be active at
the same time. Moreover, in cases where the sender wishes to serve a multitude
of receivers, she can perform her part just once, and from that point onward
only the servers attend to any request of any future receiver.

When the servers are semi-honest and have an honest majority, our protocols
are information-theoretic secure and provide unconditional security to both Alice
and Bob, even when some of the parties collude. An interesting future research
direction would be to strengthen our protocols in order to render them secure
against malicious servers.

While OT and OPE can serve as building blocks for general MPC problems
[19,22], it would be interesting to use the ideas presented here in order to develop
distributed protocols for the following fundamental two-party MPC problems:
• Oblivious Function Evaluation (OFE): Alice has a function that is repre-

sented by a Boolean circuit and Bob has a suitable input binary vector. The goal
is to let Bob learn the output of Alice’s circuit over his input and nothing else,
while Alice remains oblivious of Bob’s input.
• Oblivious Automaton Evaluation (OAE): Alice has a deterministic finite

or pushdown automaton A with an input alphabet Σ; Bob has a word w ∈ Σ∗.
The goal is to let Bob learn whether w is a word that A accepts without learning
any other information on A, while Alice remains oblivious of w.
• Oblivious Turing Machine Evaluation (OTME): Alice has a Turing Machine

M with an input alphabet Σ and Bob has a word w ∈ Σ∗. The goal is to let
Bob know the output M(w) without learning any other information on M , while
Alice remains oblivious of w.

We believe that the distributed model can be most effective in designing
solutions to such fundamental problems of multiparty computation as well as in
practical problems that arise in privacy-preserving distributed computation.

Distributed Protocols for Oblivious Transfer and Polynomial Evaluation 21

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How
to sell digital goods. In EUROCRYPT, pages 119–135, 2001.

2. Joël Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, Abhi Shelat, and
Ivan Visconti. Collusion-free multiparty computation in the mediated model. In
CRYPTO, pages 524–540, 2009.

3. Joël Alwen, Abhi Shelat, and Ivan Visconti. Collusion-free protocols in the medi-
ated model. In CRYPTO, pages 497–514, 2008.

4. Carlo Blundo, Paolo D’Arco, Alfredo De Santis, and Douglas R. Stinson. On
unconditionally secure distributed oblivious transfer. J. Cryptol., 20(3):323–373,
2007.

5. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure
of secrets. In CRYPTO, pages 234–238, 1986.

6. Octavian Catrina and Florian Kerschbaum. Fostering the uptake of secure multi-
party computation in e-commerce. In ARES, pages 693–700, 2008.

7. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private infor-
mation retrieval. J. ACM, 45(6):965–981, 1998.

8. Louis Cianciullo and Hossein Ghodosi. Unconditionally secure oblivious polynomial
evaluation: A survey and new results. J. Comput. Sci. Technol., 37(2):443–458,
2022.

9. Christian L. F. Corniaux and Hossein Ghodosi. Scalar product-based distributed
oblivious transfer. In ICISC, pages 338–354, 2010.

10. Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

11. Lihi Dery, Tamir Tassa, and Avishay Yanai. Fear not, vote truthfully: Secure
multiparty computation of score based rules. Expert Systems with Applications,
168:114434, 2021.

12. Lihi Dery, Tamir Tassa, Avishay. Yanai, and Arthur Zamarin. Demo: A secure
voting system for score based elections. In CCS, pages 2399–2401, 2021.

13. Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative statistical
analysis. In ACSAC, pages 102–110, 2001.

14. Wenliang Du and Justin Zhijun Zhan. A practical approach to solve secure multi-
party computation problems. In NSPW, pages 127–135, 2002.

15. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

16. Alon Ben Horin and Tamir Tassa. Privacy preserving collaborative filtering by
distributed mediation. In RecSys, pages 332–341, 2021.

17. Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with
applications. In ISTCS, pages 174–184, 1997.

18. Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party
computation. IACR Cryptology ePrint Archive, 2011. 272.

19. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

20. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In CCS, pages
818–829, 2016.

21. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In FOCS, pages 364–373,
1997.

22 A. Ben Arie and T. Tassa

22. Hong-Da Li, Xiong Yang, Dengguo Feng, and Bao Li. Distributed oblivious func-
tion evaluation and its applications. J. Comput. Sci. Technol., 19(6):942–947, 2004.

23. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
STOC, pages 245–254, 1999.

24. Moni Naor and Benny Pinkas. Distributed oblivious transfer. In ASIACRYPT,
pages 205–219, 2000.

25. Ventzislav Nikov, Svetla Nikova, Bart Preneel, and Joos Vandewalle. On uncon-
ditionally secure distributed oblivious transfer. In INDOCRYPT, pages 395–408,
2002.

26. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

27. Johannes Schneider. Lean and fast secure multi-party computation: Minimizing
communication and local computation using a helper. In SECRYPT, pages 223–
230, 2016.

28. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
29. Erez Shmueli and Tamir Tassa. Mediated secure multi-party protocols for collabo-

rative filtering. ACM Transactions on Intelligent Systems and Technology, 11:1–25,
2020.

30. Tamir Tassa. Generalized oblivious transfer by secret sharing. Des. Codes Cryp-
togr., 58(1):11–21, 2011.

31. Tamir Tassa and Nira Dyn. Multipartite secret sharing by bivariate interpolation.
In ICALP, pages 288–299, 2006.

32. Tamir Tassa, Tal Grinshpoun, and Avishay Yanai. PC-SyncBB: A privacy preserv-
ing collusion secure DCOP algorithm. Artificial Intelligence, 297:103501, 2021.

33. Tamir Tassa, Ayman Jarrous, and Yonatan Ben-Ya’akov. Oblivious evaluation of
multivariate polynomials. J. Math. Cryptol., 7(1):1–29, 2013.

34. Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. In SIGKDD, pages 639–644, 2002.

35. Andrew C. Yao. Protocols for secure computation. In FOCS, pages 160–164, 1982.

	Distributed Protocols for Oblivious Transfer and Polynomial Evaluation

