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Abstract Recommendation and personalization are

useful technologies which influence more and more our

daily decisions. However, as we show empirically in this

paper, the bias that exists in the real world and which

is reflected in the training data, can be modeled and

amplified by recommender systems, and in the end re-

turned as biased recommendations to the users. This

feedback process creates a self-perpetuating loop which

progressively strengthens the filter bubbles we live in.

Biased recommendations can also reinforce stereotypes

such as those based on gender or ethnicity, possibly re-

sulting in disparate impact.

In this paper we address the problem of algorithmic

bias in recommender systems. In particular, we high-

light the connection between predictability of sensitive

features and bias in the results of recommendations and

we then offer a theoretically founded bound on recom-

mendation bias based on that connection. We continue

to formalize a fairness constraint and the price that

one has to pay, in terms of alterations in the recom-

mendation matrix, in order to achieve fair recommen-
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dations. Finally, we propose FaiRecSys – an algorithm

that mitigates algorithmic bias by post-processing the

recommendation matrix with minimum impact on the

utility of recommendations provided to the end-users.
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1 Introduction

Recommender systems are nowadays a pervasive tech-

nology influencing our daily lives and strengthening the

filter bubbles in which we all live: the media we con-

sume, the stories we read, the people we connect to,

the places we visit, the jobs we apply to, and the ads

we see on the Web. It is therefore of societal and eth-
ical importance to ask whether collaborative filtering

algorithms, used for recommendation and personaliza-

tion, might be involuntarily perpetuating existing bias

towards some specific demographic groups. It turns out

that the answer is positive: for instance, recent stud-

ies have shown that Google’s online advertising system

displays ads for high-income jobs to men much more

often than it does to women [4]; and ads related to ar-

rest records are significantly more likely to show up on

searches for distinctively black names or a historically

black fraternity [32].

Note that this algorithmic bias [11] exists even when

there is no discrimination intention in the developer of

the algorithm, and even when the recommender system

does not take as input any demographic information:

nevertheless, by carefully exploiting items’ and users’

similarities, the algorithm might end up recommending

an item to a very homogeneous set of users. For in-

stance, the algorithm would be considered biased if the

set of users to which it offers a book entitled “How to
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be a leader in the hi-tech industry” would include too

few women, or if a movie about black gangs in west LA

will be offered mainly to black users. Even when rec-

ommendations are of high quality, they might be not

well perceived by the user that might find them “too

accurate” and discriminatory.

Methods for removing statistical bias or modeling

such bias in order to improve the performance of rec-

ommender systems is an important topic in the area.

Many methods have been proposed to leverage algorith-

mic bias to improve recommendation accuracy, some-

times amplifying the bias already present in the data.

The ability to identify systematic tendencies for users

to give higher ratings than others, or users that change

their baseline ratings over time, has a big impact on

the performance of recommender systems [22]. Some

of these statistical biases (e.g. temporal bias) are part

of the dynamics of interest in recommended items and

must be modeled accordingly.

In this paper we address the problem of algorith-

mic bias that might lead to discriminatory behavior in

recommender systems. The methods presented in this

work go in the opposite direction to that of other meth-

ods, such as the ones presented in [22]. While our pro-

posed methods are not intended to increase the perfor-

mance of recommender systems, we show how to reduce

the bias, and how to do that in a manner that minimizes

the inevitable resulting reduction in performance.

Before presenting our contributions, we provide a

motivating empirical example on real-world data.

1.1 Motivating empirical example

The effects of algorithmic bias can be better under-

stood through real-world examples. For this, we built

a recommender system using data collected from the

Reddit website1. (In Section 5 we provide more details

about the dataset collection.) Reddit is an entertain-

ment, social networking, and news website where regis-

tered members can submit stories (either as text posts

or links), making it essentially an online bulletin board

system. Registered users can then vote submissions up

or down to determine their position on the site’s pages.

Content entries are organised by areas of interest called

“subreddits”. Subreddit topics include news, politics,

gaming, movies, music, books, and many others. Users

can also comment the submissions, and respond back

and forth in a conversation-tree of comments. Gender

attributes are not supported by the Reddit platform.

However, in some subreddits users can report their gen-

der as part of the subreddit rules. We selected a set

1 https://www.reddit.com/

U of users that reported their gender and submitted

comments in a set I of subreddits. In this exercise, a

user commenting in a subreddit is interpreted as an im-

plicit positive feedback. We then built a binary matrix

R = (ru,i : u ∈ U, i ∈ I) where ru,i is set to 1 if user u

posted a comment in subreddit i, and 0 otherwise. We

then used R to train a weighted regularized matrix fac-

torization (WRMF) recommendation model [16], which

is appropriate for implicit feedbacks. The model param-

eters were selected using 10-fold cross-validation. The

output is a binary matrix C = (cu,i : u ∈ U, i ∈ I)

with the top-10 recommendations given by the system;

specifically, cu,i is set to 1 if subreddit i is among the

top-10 subreddits recommended to user u, and u had

not posted thus far a comment in that subreddit.

The effects of algorithmic bias can be seen in the

resulting recommendation matrix C. For example, the

subreddit “MakeupAddiction” is very popular among fe-

males - in the Reddit dataset (the matrix R), 90% of

the users who submitted a comment to this subred-

dit were females. When producing recommendations,

the generated model reinforces the imbalance between

males and females, by assigning 97% of this subreddit

recommendations to females. Another example is the

subreddit “cscareerquestions”, where users discuss Com-

puter Science careers. This subreddit is more popular

among males than among females: 84% of the users who

posted comments in this subreddit were males, and only

16% were females. We found that the WRMF model re-

inforces this bias, producing 90% of this item’s recom-

mendations to males, and only 10% to females. In fact,

although gender is never seen by the algorithm, latent

variables that are related to gender might be produced

by combining the entries of the matrix R, and the gener-

ated model reinforces the imbalance between males and

females. In our example, we found that 95% of subred-

dits that are popular among females show imbalance

reinforcement, while 87% of subreddits popular among

males have imbalance reinforced towards males.

The above bias reinforcement effect might be spe-

cific to the model produced in this example, but the

methodology presented in this work can help to mit-

igate the biases in an effective way regardless of the

model being used. Our goal is to reassign recommended

items to users by minimizing the predictability of their

gender (or any other sensitive attribute) from the rec-

ommendations while preserving the utility of recom-

mendations as high as possible. This should help in re-

ducing the imbalance between males and females, but

it should also usher in more desirable outcomes by en-

couraging female users to participate in discussions that

are typically dominated by male users, and vice-versa.

https://www.reddit.com/
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1.2 Paper contributions and roadmap

As we have shown in the above example, the bias ex-

isting in the real world (and thus in the training data),

can be strengthened by recommender systems, in a self-

perpetuating loop [11] if not treated appropriately. The

problem of algorithmic bias and the possibility that de-

cisions informed by data mining algorithms may have

discriminatory effects, even in the absence of discrim-

inatory intent, have received recently a great deal of

attention.2 However, most of the technical efforts thus

far in addressing those issues focused on predictive tasks

(literature is surveyed later in Section 2).

In this paper we address the problem of algorithmic

bias in recommender systems. Consider the user-item

recommendation matrix that the recommendation al-

gorithm outputs; there is a direct connection between

bias in the recommendation matrix, based on some sen-

sitive attribute (say, gender), and the predictability of

that sensitive attribute from the recommendation ma-

trix. Stated differently, if by simply looking at the rows

of the recommendation matrix (which hold the recom-

mendations for each user) it is possible to predict the

user’s gender with high accuracy, such predictability

indicates a high gender-based bias in the recommenda-

tions. Hence, in order to mitigate such a bias, our goal is

to limit the predictability of sensitive features from the

recommendation matrix. A recommendation matrix is

then considered to be ε-fair, if it is impossible to pre-

dict from it the users’ sensitive attributes to within an

average class-conditioned error smaller than ε. (We fo-

cus in this study on binary sensitive attributes, and use

the term gender as our running example for the sake of

simplicity and clarity.)

In order to achieve ε-fairness with respect to a given

sensitive attribute, for some preset value of ε, it is

needed to modify the entries of the recommendation

matrix. The price of ε-fairness is then defined as the

distance between the original recommendation matrix

C and the closest matrix C ′ which complies with the

ε-fairness constraint. That price indicates the minimal

number of alterations that must be introduced in C un-

til it becomes ε-fair. Finally, we propose FaiRecSys –

an algorithm that mitigates algorithmic bias with re-

spect to a given sensitive attribute, by post-processing

a recommendation matrix with minimum impact on the

utility of recommendations provided to the end-users.

It should be noted that incorporating this fairness

constraint introduces a tradeoff, as the fairness con-

2 “Big Data: Seizing Opportunities, Preserving Val-
ues.” US Executive Office of the President, May 2014.
https://obamawhitehouse.archives.gov/sites/default/

files/docs/big_data_privacy_report_may_1_2014.pdf

straint is essentially contradicting utility. It is worth

noticing that this situation essentially exists in any pre-

diction task, where anti-discrimination, privacy or fair-

ness constraints contradict accuracy. This is also typical

in all privacy-preserving techniques. Higher protection

of privacy can be achieved only by higher deteriorations

of utility. Hence, the usual practice is to determine the

desired level of privacy-preservation and then find a so-

lution which meets that privacy goal while maintaining

the highest possible utility. For example, in the con-

text of k-anonymity, given an input table T , and an

anonymity threshold k, the goal is to find another table

T ′ = A(T ) (where A is the anonymization algorithm)

where T ′ is k-anonymous and the distance between T

and T ′ is minimal. The problem that we consider here

is similar: given a recommendation matrix C and a fair-

ness threshold ε, we wish to compute C ′ that is ε-fair

and has a minimal distance to the original C. The ma-

trix C ′ is not “bias-free” or “balanced”. But, depending

on the input ε, it is less biased than C.

The rest of the paper is organized as follow. In the

next section we briefly survey related literature. In Sec-

tion 3 we formalize the problem studied while in the

following section we provide a characterization of the

fairness property that we wish to achieve, leading to

the proposed algorithm. Finally, Section 5 presents our

experimental analysis.

For the sake of readability, the proofs of all our

mathematical claims are given in Appendix A.

2 Related work

The problem of algorithmic bias and discrimination has

received recently a lot of attention in the data min-

ing community [11]: some effort has been devoted to

the problem of detecting and measuring existing dis-

crimination in the data [29,28,31,25,26,30]; while other

proposals [19,18,12,13,14,5,33] aimed at ensuring that

data mining models do not lead to discriminatory de-

cisions even if the training dataset is inherently biased.

The bulk of this literature focuses on the classification

task. While our work also lies in the area of bias pre-

vention, it focuses on recommender systems.

Bias prevention approaches can be classified accord-

ing to the phase of the data mining process in which

they operate: pre-processing, in-processing and post-

processing methods [11]. Pre-processing methods aim

to control distortion of the training set. In particu-

lar, they transform the training dataset in such a way

that the discriminatory biases contained in the dataset

are smoothed, hampering the mining of unfair deci-

sion models from the transformed data. In-processing

methods modify recommendation algorithms in such a

https://obamawhitehouse.archives.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf
https://obamawhitehouse.archives.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf
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way that the resulting models do not entail unfair de-

cisions. Lastly, post-processing methods act on the ex-

tracted data mining model results, instead of acting

on the training data or on the algorithm. The method

presented in this work focuses on the post-processing

phase, correcting potential biases in the output of the

recommendation algorithm.

A large number of studies focused on fairness in clas-

sification, e.g., preventing discrimination against indi-

viduals based on their membership in some group, or

fairness in prediction of sensitive attributes in order

to avoid issuing decisions based on those attributes.

Many works involving post-processing methods [28,3,

17,5] also focused on prediction tasks. Feldman et al.

[7] defined the notion of fairness based on predictability

of sensitive attributes. We used a similar notion of fair-

ness, but applied it in the context of recommendation

systems. Another difference between the present work

and [7] is that we offer post-processing methods while

[7] focused on pre-processing methods.

In the literature that includes recommender sys-

tems, Kamishima et al. [20] defined the notion of “rec-

ommendation independence” which imposes statisti-

cal independence between recommendation results and

sensitive attributes. They proposed an in-processing

method that injects a regularization term into the ob-

jective function of matrix factorization in order to en-

hance independence between recommendation results

and sensitive attributes. This statistical independence

can be enhanced by probabilistic generative models [21]

and can be useful to prevent bias, but it does not of-

fer a theoretical bound for the bias in recommenda-

tion results. E.g., in a more practical setting, it might

be a problem for a company to argue that their rec-

ommendations are not biased using measures based on

statistical independence, whilst our approach offers a

theoretically founded bound on recommendation bias

based on predictability of sensitive attributes. More-

over, such in-processing methods are not suitable for

use after the recommendations have been generated,

whereas our proposed method acts in a post-processing

phase and can correct bias after recommendations have

been produced by the recommendation algorithm.

Recently, Ekstrand et al. [6] show that recommender

systems suffer of what is known as “sample size bias”,

exactly as it is the case for supervised machine learn-

ing. This is to say that recommender systems perform

better for the dominant subgroup, even when the sub-

group feature is not used. In particular, Ekstrand et

al. show empirically that popular recommendation al-

gorithms work better for males since the majority of

the users in the dataset are males.

Burke [2] presents a taxonomy of classes for fair

recommendation systems. He mentions 3 sides: users,

providers and platform. He argues that different rec-

ommendation settings should have different fairness

requirements such as “fairness for only users”, “fair-

ness for only providers” and “fairness for both users

and providers”. Considering that taxonomy, our work

falls into “fairness for only users” category where there

are only users and system in the setting. No concrete

method is proposed.

3 Problem statement

Let U = {u1, . . . , uN} be the set of users to whom rec-

ommendations are issued, and let I = {i1, . . . , iM} be

the set of items. The output of recommendation sys-

tems is typically a matrix as follows:

Definition 1 A recommendation matrix is an N ×M
binary matrix C ∈ {0, 1}U×I . Namely, it is a matrix

that associates a binary value to any pairing of a user

u ∈ U and an item i ∈ I. Specifically, C(u, i) = 1 means

that item i is recommended to user u, and C(u, i) = 0

means that it is not.

Specifically, we will be interested in recommenda-

tion matrices in which each user is recommended the

same number of items k:

Definition 2 Let k be a fixed integer 0 < k �M ; then

C is called k-weighted if for all u ∈ U ,
∑
i∈I C(u, i) = k

(namely, if every user is recommended k items).

Assume that each user has a (binary) sensitive at-

tribute and let b = (b(u) : u ∈ U) ∈ {0, 1}U be the

vector where b(u) is u’s sensitive attribute. The recom-

mendation matrix C could be used to predict the users’

sensitive attributes.

Definition 3 Let f : {0, 1}I → {0, 1} be a function

that, given C(u, ·), predicts b(u), u ∈ U . Then f is

called a predictor for b, and f = f(C) := (f(C(u, ·)) :

u ∈ U) is a prediction of b.

Given a predictor, we proceed to define its predic-

tion error.

Definition 4 Let f be a predictor for b and f be the

corresponding prediction. Given p 6= q ∈ {0, 1}, we let

Pr[f = p|b = q] =
|{u ∈ U : f(C(u, ·)) = p ∧ b(u) = q}|

|{u ∈ U : b(u) = q}|

denote the relative number of users for which the sensi-

tive value equals q but the prediction wrongly predicted
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it to be p 6= q. Then f ’s Balanced Error Rate (BER) is

f ’s average class-conditioned error:

BER(f ,b) =
Pr[f = 1|b = 0] + Pr[f = 0|b = 1]

2
. (1)

Those definitions give rise to the notions of pre-

dictability and fairness.

Definition 5 b is said to be ε-predictable by C if there

exists a predictor f for which BER(f ,b) ≤ ε. A recom-

mendation matrix C is said to be ε-fair with respect to

b if b is not ε-predictable from C.

Note that a constant predictor, f ≡ 0 or f ≡ 1,

has a BER of 1/2. Therefore, every sensitive vector b

is ε-predictable for every ε ≥ 1/2. Consequently, a rec-

ommendation matrix C can be ε-fair only if ε < 1/2.

Next, we formalize our problem. Given a fairness

threshold ε ∈ (0, 1/2), a recommendation matrix C,

and a sensitive vector b, we wish to find an alternative

recommendation matrix C ′ ∈ {0, 1}U×I which is ε-fair

and minimizes some distance dist(C,C ′) from the orig-

inal C. Let µ be a metric on the space of recommenda-

tion vectors {0, 1}I , and let

dist(C,C ′) :=
∑
u∈U

µ(C(u, ·), C ′(u, ·)) . (2)

be the induced distance function on the set {0, 1}U×I
of recommendation matrices over U and I. Then the

price of fairness is defined as follows.

Definition 6 For a k-weighted recommendation ma-

trix C ∈ {0, 1}U×I , b ∈ {0, 1}U , and ε < 1/2, let ΓC,b,ε
be the set of all k-weighted matrices C ′ ∈ {0, 1}U×I
that are ε-fair with respect to b. Then the price of ε-

fairness for C is minC′∈Γ dist(C,C ′).

Namely, given a definition of distance between ma-

trices, the price of ε-fairness for C is defined as the

distance between C and the closest matrix C ′ which is

ε-fair with respect to b. We are now ready to define the

relevant computational problem in this context:

Problem 1 (Problem FRM – Fair Recommenda-

tion Matrix) Given C ∈ {0, 1}U×I , b ∈ {0, 1}U , and

ε < 1/2, find C ′ ∈ ΓC,b,ε that minimizes dist(C,C ′).

We consider two metrics on {0, 1}I :

1. µ1(y, z) :=

{
0 y = z

1 y 6= z
;

such a metric induces a distance function between

matrices that counts the number of users that are

affected (in any way) by replacing C with C ′; and

2. µ2(y, z) = 1
2 · ‖y − z‖1; such a metric induces a

distance function between matrices that counts the

number of item recommendations that are changed

when switching from C to C ′.

4 Analysis and algorithms

4.1 Characterizing ε-fairness

Here we offer a simple characterization of ε-fair matri-

ces. For the sake of convenience, we refer hereinafter to

users for whom b(u) = 0 as “men” and users for whom

b(u) = 1 as “women”, and denote their numbers by b0
and b1 = N − b0 respectively.

Definition 7 Let Y = {y ∈ {0, 1}I : ∃u ∈
U, such that C(u, ·) = y}. Then the corresponding

contingency table H is a matrix of 2 rows and |Y |
columns where for each x ∈ {0, 1} and y ∈ Y , H(x,y)

equals the number of users u ∈ U for which b(u) = x

and C(u, ·) = y.

Any contingency table H induces a predictor as we

define next.

Definition 8 H induces a predictor fH : Y → {0, 1}
where, for each y ∈ Y , fH(y) = 0 if H(0,y)

b0
≥ H(1,y)

b1
and fH(y) = 1 otherwise; fH is called the Memory-

Based Predictor (MBP).

Namely, given a vector of recommendations y ∈
{0, 1}I , the MBP fH returns the “gender” in which that

recommendation vector has a larger relative frequency

(where in case of a tie, fH favors the gender “male”).

The next theorem spells out the property of fH that

grants it a special place in our discussion.

Theorem 1 Let fH be the MBP and f ∈ Π be any

other predictor. Denote by fH = (fH(C(u, ·)) : u ∈
U) and f = (f(C(u, ·)) : u ∈ U) the corresponding

prediction vectors. Then BER(fH ,b) ≤ BER(f ,b).

(The reader is reminded that, for the sake of read-

ability, all proofs are given in Appendix A.)

Theorem 1 implies that C is ε-fair with respect to b

iff BER(fH ,b) > ε. Namely, in order to test ε-fairness

it suffices to examine a single predictor only — the

MBP.

We are now ready to spell out an explicit algebraic

condition of ε-fairness, which can be easily verified by

examining the contingency table.

Theorem 2 Define

βH :=

∑
y:

H(0,y)
b0

<
H(1,y)

b1

H(0,y)

b0
+

∑
y:

H(0,y)
b0
≥H(1,y)

b1

H(1,y)

b1
.

(3)

Then BER(fH ,b) = βH

2 ≤
1
2 , where equality holds iff

fH is constant. Hence, C is ε-fair iff βH > 2ε.

Given the above theoretical preliminaries we now

turn our attention to devising algorithms for solving

Problem FRM.
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4.2 Improving fairness

The algorithms that we propose are greedy. In each

step, they will select a user who will be moved from

one column of the contingency table to another (in the

sense that his or her recommendation vector will be

changed) so that the increase in BER will be maximal.

Formally, a move is a triplet of the form (u,y, z)

where u ∈ U is a user, y = C(u, ·) is the recommenda-

tion vector assigned by C to u, and z ∈ {0, 1}I \ {y} is

another recommendation vector. Each move represents

a single action on the matrix C: applying the move

(u,y, z) on C results with another matrix C ′ in which

all rows are the same as in C, but the row corresponding

to u is changed from y to z. A move is called fairness-

improving if the BER of the MBP that corresponds to

C ′ is greater than the BER of the MBP corresponding

to C.

Given a sequence of fairness-improving moves,

where each user u ∈ U appears in the sequence at most

once, the matrix C ′ that the sequence induces is the

matrix that is obtained from C after applying on it all

moves in the sequence. Namely, C ′(u, ·) = z for any

move (u,y, z) in the sequence, while for all users who

are not included in the sequence C ′(u, ·) = C(u, ·).
A solution to problem FRM is a sequence of fairness-

improving moves for which the induced matrix C ′ is

ε-fair.

We proceed to analyze the effect of single moves on

the BER of the corresponding MBP, namely, on the

fairness threshold of the recommendation matrix. Let

Y0 := f−1H (0) be the subset of all recommendation vec-

tors y ∈ Y (where Y is as in Definition 7) that fH maps

to 0, and Y1 := f−1H (1) be the complement subset. In

the example in Table 1, there are M = |I| = 2 items

and hence the recommendation matrix C has (at most)

4 types of rows, taken from {0, 1}I . In that example,

Y0 = {(0, 0), (1, 1)} (namely, those are the recommen-

dation vectors for which the MBP predicts “man”) and

Y1 = {(0, 1), (1, 0)}. So, we can read from H that the

number of men for whom the vector (0, 1) was recom-

mended is 5, while the number of women for whom that

vector was recommended is 8.

H (0, 0) (0, 1) (1, 0) (1, 1)
b = 0 6 5 4 8
b = 1 3 8 5 8

Table 1: A contingency table H

Let us denote, for i ∈ {0, 1}, xi :=
∑

y∈Y0
H(i,y)

and yi :=
∑

y∈Y1
H(i,y). That is, xi is the number of

users of gender i for whom the MBP predicts ”man”,

while yi is the number of users of gender i for whom

the MBP predicts ”woman”. Then, by Definition 4,

BER := BER(fH ,b) =
1

2
·
[
y0
b0

+
x1
b1

]
. (4)

Assume that BER < ε and that we aim to increase it

by at least d := ε− BER so that it becomes ≥ ε. One

way of doing that is to select a man for whom the rec-

ommendation vector was from Y0 and change the latter

to a vector of recommendations from Y1; namely, to

take a man for whom the MBP predicted correctly his

gender, and change his recommendation vector to an-

other vector on which the MBP predicts ”woman”, in

order to increase the prediction error (and thus increase

fairness towards our target threshold ε). The other op-

tion is to select a woman for whom the recommendation

vector was from Y1 and change the latter to a vector of

recommendations from Y0.

Next, we analyze the effects of moving a man from

some y0 ∈ Y0 to some y1 ∈ Y1. To this end we split the

columns of the contingency table H that correspond to

vectors in Y0 into two subgroups; we perform a similar

split for the Y1-columns.

Definition 9 A vector y ∈ Y0 is called stable under re-

moval of a man if H(0,y)−1
b0

≥ H(1,y)
b1

and unstable oth-

erwise. A vector y ∈ Y1 is called stable under addition

of a man if H(0,y)+1
b0

< H(1,y)
b1

and unstable otherwise.

We proceed the explain the meaning of stability as

defined above. If y ∈ Y0 it means that fH(y) = 0 and

that happens iff H(0,y)
b0
≥ H(1,y)

b1
. The vector y is called

stable under removal of a man if after removing from it

one man, an action that will update the entry H(0,y)

to H(0,y)− 1, it holds that H(0,y)−1
b0

≥ H(1,y)
b1

. In such

a case, fH(y) still equals zero also after the move, hence

the term “stable”. However, if H(0,y)−1
b0

< H(1,y)
b1

, then

the value of fH(y) changes to 1 in wake of that move;

namely, the value of fH on y flips, hence the term “un-

stable” for such columns.

The next lemma spells out the effects of moves of a

single man.

Lemma 1 (1) A move of a man from a stable y0 ∈ Y0
(under removal of a man) to a stable y1 ∈ Y1 (under

addition of a man) increases BER by 1
2b0

.

(2) A move of a man from a stable y0 ∈ Y0
to an unstable y1 ∈ Y1 increases BER by 1

2 ·(
H(1,y1)
b1

− H(0,y1)
b0

)
∈ (0, 1

2b0
].

(3) A move of a man from an unstable y0 ∈
Y0 to a stable y1 ∈ Y1 increases BER by 1

2 ·(
H(0,y0)
b0

− H(1,y0)
b1

)
∈ [0, 1

2b0
).



FaiRecSys: Mitigating Algorithmic Bias in Recommender Systems 7

(4) A move of a man from an unstable y0 ∈
Y0 to an unstable y1 ∈ Y1 adds to BER 1

2 ·(
H(0,y0)−1

b0
− H(1,y0)

b1

)
− 1

2 ·
(
H(0,y1)
b0

− H(1,y1)
b1

)
= η

2b0
,

where −1 < η < 1.

The next definition and lemma are the equivalent of

Definition 9 and Lemma 1 for movings of women.

Definition 10 A vector y ∈ Y1 is called stable under

removal of a woman if H(0,y)
b0

< H(1,y)−1
b1

and unstable

otherwise. A vector y ∈ Y0 is called stable under ad-

dition of a woman if H(0,y)
b0

≥ H(1,y)+1
b1

and unstable

otherwise.

Lemma 2 (1) A move of a woman from a stable y1 ∈
Y1 (under removal of a woman) to a stable y0 ∈ Y0
(under addition of a woman) increases BER by 1

2b1
.

(2) A move of a woman from a stable y1 ∈
Y1 to an unstable y0 ∈ Y0 increases BER by 1

2 ·(
H(0,y0)
b0

− H(1,y0)
b1

)
∈ [0, 1

2b1
).

(3) A move of a woman from an unstable y1 ∈
Y1 to a stable y0 ∈ Y0 increases BER by 1

2 ·(
H(1,y1)
b1

− H(0,y1)
b0

)
∈ (0, 1

2b1
].

(4) A move of a woman from an unstable y1 ∈ Y1
to an unstable y0 ∈ Y0 adds to BER η

2b1
, where −1 <

η < 1.

Lemmas 1 and 2 imply the following summary of

the effect of single moves on the BER:

Theorem 3 For each y ∈ Y define s(y) := H(0,y)
b0
−

H(1,y)
b1

. Let y0 ∈ Y0 and y1 ∈ Y1. Then a move of a

man from y0 to y1 increases BER by

∆m :=
1

2
·
{

min(s(y0),
1

b0
)−max(s(y1),− 1

b0
)− 1

b0

}
,

while a move of a woman from y1 to y0 increases BER

by

∆w :=
1

2
·
{

min(s(y0),
1

b1
)−max(s(y1),− 1

b1
)− 1

b1

}
.

4.3 An optimal MBP-respecting solution with respect

to µ1

In order to achieve fairness to some level ε, it is needed

to change the recommendation vectors to some users.

Theorem 4 asserts that it is possible to achieve this

goal by changing users’ recommendation vectors only

to other recommendation vectors that existed in the

original recommendation matrix.

Theorem 4 There exists an optimal solution matrix

C ′ to Problem FRM with µ1 where Y ′ := {C ′(u, ·) :

u ∈ U} ⊆ Y := {C(u, ·) : u ∈ U}.

All the algorithms that we present produce moves

and solutions that do not alter the MBP of the recom-

mendation matrix. We refer to such moves and solutions

as MBP-respecting, as defined next.

Definition 11 Assume that y, z ∈ Y and that u ∈ U
is a user for whom C(u, ·) = y. Let C ′ be the recom-

mendation matrix that is obtained from C by the move

(u,y, z), and let Y ′ = {C ′(u, ·) : u ∈ U}. Finally, let

fH : Y → {0, 1} and f ′H : Y ′ → {0, 1} be the MBPs

corresponding to C and C ′, respectively. Then the move

is called MBP-respecting if fH agrees with f ′H on Y ′. A

solution is called MBP-respecting if it consists only of

MBP-respecting moves.

Two comments are in order before we proceed. First,

it should be noted that either Y ′ = Y , or Y ′ = Y \{y};
the latter equality holds iff u was the only user for

whom C(u, ·) = y. A move is MBP-respecting if the

MBP remains the same over the a-posteriori domain of

definition, Y ′. Second, in typical cases, where the ex-

act same recommendation vector is not offered to more

than one user, the subset of MBP-respecting solutions

constitutes a sufficiently large playground (see Section

4.5).

Lemmas 1 and 2 imply that a fairness-improving

and MBP-respecting move increases BER by either

1/2b0 (if u is a man) or 1/2b1 (if u is a woman). Assume,

without loss of generality, that b0 ≥ b1. In such a set-

ting, if we wish to increase the BER to beyond a given

threshold ε < 1/2, while affecting the least number of

users, it is clear that it is needed to move first only

women, and only after exhausting all possible women

moves, if still necessary, start moving men.

Lemma 3 The maximal number of women that can be

moved without changing the MBP is

min

∑
y∈Y0

bb1s(y)c,
∑
y∈Y1

d−b1s(y)− 1e

 . (5)

The maximal number of men that can be moved without

changing the MBP is

min

∑
y∈Y0

bb0s(y)c,
∑
y∈Y1

d−b0s(y)− 1e

 . (6)

We are now ready to present Algorithm FaiRecSys

(Algorithm 1) for solving Problem FRM with respect

to µ1. Let C ∈ {0, 1}U×I be a recommendation matrix,

b ∈ {0, 1}U be a binary sensitive attribute vector, and

ε < 1
2 be a required fairness level. Algorithm FaiRec-

Sys computes a recommendation matrix C ′ that is ε-

fair, or a matrix C ′ that is δ-fair for a value of δ as
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high as possible to achieve by means of MBP-respecting

moves only.

For the sake of simplicity we assume that b0 ≥ b1.

First, the algorithm calls the procedure MoveGender

with the input parameters C, b, and ε, and the gen-

der indicator 1, since under the assumption b0 ≥ b1 one

starts with moving women (users of gender i = 1). That

procedure performs the exact number of gender i moves

which are MBP-respecting (i.e., from a stable column

to another stable column) towards getting a BER of

at least ε. It returns the modified C and the resulting

BER value, δ. If the BER target is met, the algorithm

stops. Otherwise, it performs a similar procedure with

the gender indicator 0. At the end it returns the result-

ing recommendation matrix C and the achieved BER

δ. If δ ≥ ε, then the output C is an optimal solution to

the problem. Otherwise, C is the matrix that induces

the same MBP as the original one, while maximizing

the fairness level to as close as possible to ε.

Procedure MoveGender starts with initial compu-

tations (Steps 1-4). Then, it computes the required in-

crease in BER into d (Step 5). If the current BER is al-

ready greater than or equal to ε, the procedure returns

C and δ (Steps 5-7). It then computes the capacities of

all vectors y; specifically, in case i = 1 it computes for

each y ∈ Y0 the maximal number p(y) of women that

this column can intake (Step 8), and for each y ∈ Y1
the maximal number q(y) of women it can lose, without

affecting the MBP. (When i = 0 then p and q denote

the maximal number of men that y could lose or intake,

respectively, while leaving the MBP unchanged.) Next,

it computes from those capacities the overall number t

of possible MBP-respecting moves of users of gender i,

as implied by Lemma 3 (Step 10). It then computes the

number ` of actual moves, as the minimum between t

and the number of moves that are needed in order to

increase BER by d (Step 11). It then moves ` users of

gender i from vectors in Yi to vectors in Y1−i in com-

pliance with the computed capacities; namely, it moves

` users of gender i so that each vector y ∈ Yi loses no

more than the number of users that it can lose without

altering the MBP, and each vector y ∈ Y1−i intakes no

more than the number of users that it can take in with-

out altering the MBP (Step 12). Finally, δ is updated

to reflect the increase in BER that was caused by those

moves and the algorithm returns C and δ (Steps 13-14).

Theorem 5 Let M(C) denote the set of all matri-

ces that can be obtained from C by means of MBP-

respecting moves only. Let M(C, ε) denote the subset

of M(C) including all matrices that are ε-fair. Let C ′

be the matrix that Algorithm FaiRecSys outputs and δ

be the BER of the corresponding MBP. Then if δ ≥ ε,

C ′ is a matrix in M(C, ε) which minimizes dist(C,C ′),

Algorithm 1 FaiRecSys: Solving Problem FRM with

µ1

Input: C, b, ε. (Assumption: b0 ≥ b1)
Output: A solution to Problem FRM with µ1.
1: MoveGender(C,b, ε, 1, δ).
2: if δ ≥ ε then
3: stop

4: end if

5: MoveGender(C,b, ε, 0, δ).
6: Output C, δ

Algorithm 2 Procedure MoveGender

Input: C (the initial matrix), b, ε (the target BER), i (the
gender to move)

Output: C (the resulting matrix), δ (the a-posteriori BER)
1: Compute the set of recommendation vectors Y and the

contingency table H.

2: Compute s(y) = H(0,y)
b0

− H(1,y)
b1

for all y ∈ Y .

3: Set Y0 := {y : s(y) ≥ 0} and Y1 := {y : s(y) < 0}.
4: Compute δ := 1

2
·
(∑

y∈Y0
H(1,y)

b1
+

∑
y∈Y1

H(0,y)

b0

)
.

5: if d := ε− δ ≤ 0 then

6: return C and δ
7: end if

8: For each y ∈ Y0 compute p(y) := bbis(y)c.
9: For each y ∈ Y1 compute q(y) := d−bis(y)− 1e.

10: t := min
{∑

y∈Y0
p(y),

∑
y∈Y1

q(y)
}

.

11: ` := min{d2bide, t}.
12: Move ` users of gender i from Yi to Y1−i
13: δ = δ + `

2bi
.

14: return C and δ

Eq. (2), with µ = µ1. If δ < ε, then M(C, ε) = ∅ and

C ′ is a matrix inM(C) for which the BER is maximal.

We finally discuss the complexity of Algorithm

FaiRecSys. That algorithm only invokes procedure

MoveGender, either once or twice. The complexity of

procedure MoveGender is dominated by the complex-

ity of the first step in it, which is O(NM) (recall that N

is the number of users while M is the number of items).

The complexity of all subsequent steps in MoveGender

is O(N), since the number of distinct vectors in Y is

bounded by N .

4.4 Extending the algorithm for a general metric

Algorithm FaiRecSys was guided by the binary met-

ric µ1, where µ1(y, z) = 1 whenever y 6= z. Here, we

discuss its extension to more sensitive metrics, like µ2.

Such metrics require a more careful execution of Step

12 in procedure MoveGender, towards minimizing the

induced distance between the a-priori and a-posteriori

recommendation matrices. We proceed to discuss the

implementation of Step 12 for such metrics. The rest of

the algorithm remains the same.
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First, for each y ∈ Y0 and z ∈ Y1 we compute

µ2(y, z). Then, Step 12 raises the need to solve the

following optimization problem. We focus on the case

i = 1, where it is needed to move women. In that case,

each y ∈ Y1 has a number q(y) (Step 9) that indi-

cates the number of women that were assigned y and

for whom we need to change the recommendation vector

to some vector in Y0. For each z ∈ Y0 we have a number

p(z) (Step 8) that indicates the number of times that

it can be used in such replacements. The goal is to find

` pairs, L := {(yj ∈ Y1, zj ∈ Y0) : 1 ≤ j ≤ `}, where `

is as computed in Step 11, so that: (a) no y ∈ Y1 ap-

pears in L more than q(y) times; (b) no z ∈ Y0 appears

in L more than p(z) times; and (c)
∑`
j=1 µ2(yj , zj) is

minimal. This min-cost `-flow problem can be solved

optimally as follows.

Let V0 be a set that holds p(y) copies of each vec-

tor y ∈ Y0 and V1 be a set that holds q(z) copies for

each vector z ∈ Y1. (Note that min{|V0|, |V1|} = t for t

as defined in Step 10.) Consider the complete directed

bipartite graph over V0 and V1 where for each node

y ∈ V0 and z ∈ V1, the directed edge (y, z) has cost

µ2(y, z). Let xs be an external source node, where for

each y ∈ V0 there is a directed edge (xs,y) of cost

0. Similarly, let xt be an external sink node with 0-

cost directed edges (z,xt) for all z ∈ V1. Then we may

invoke an algorithm for finding an integral `-flow in

that graph with minimal cost. Such an `-flow dictates `

moves of women to be implemented in Step 12 in pro-

cedure MoveGender.

4.5 The case of unique recommendations

One may view the recommendation matrix C as a map-

ping from U to the subset of {0, 1}I consisting of all k-

weighted vectors. Since the size of the target set is very

large,
(
M
k

)
, then usually C is one-to-one. Namely, no

two users are offered the same recommendation vector.

In such cases, |Y | = N , and the contingency table H

consists of b0 columns that equal (1, 0)T (corresponding

to recommendation vectors that were offered to a single

man) and b1 columns that equal (0, 1)T . The MBP in

this case predicts b perfectly; Yi is then the collection

of bi vectors offered to users of gender i ∈ {0, 1}.

Lemma 4 Assume that b0 ≥ b1 and let r := b0
mod b1. Then by considering only MBP-improving and

respecting moves, it is possible to reach a BER of
1
2 ·

b0−r
b0

. Furthermore, the latter value is always > 1/4.

Recall that the maximal possible BER of the MBP

is 1/2, which is the BER of a näıve constant predictor

(Theorem 2). Lemma 4 shows that by restricting our

attention to MBP-respecting moves only, we are still

able to meet the ε-fairness for ε ≤ 1
2 ·

b0−r
b0

(assuming

that b0 ≥ b1). In some cases, the latter upper bound

is close to 1/2 (for example, if b0 and b1 are large and

b0 ≈ b1, or if b0 � b1). But, in any case, it is always

possible to achieve ε-fairness for any ε ≤ 1/4.

5 Experiments

This section reports the experimental evaluation of the

effects of Algorithm FaiRecSys on the quality/utility

of recommendations, as well as of the achieved bias re-

duction.

5.1 Experimental setup

We describe herein our experimental setup: datasets,

preprocessing methodology, fairness characteristics of

the datasets, and implementation details.

For our experiments, we used two real-world

datasets, MovieLens and Reddit: MovieLens from

the Grouplens research team3 [15] is a well known

dataset, which typically used in recommender system

literature. It consists of 1M ratings in the range [1, 5].

Some demographics such as gender, age and occupa-

tion are also provided for each user. We adopted the

convention in previous studies that ratings above 3 are

considered as positive feedbacks [24]. After removing

the ratings below 3, |U | = 6040 users (4331 male and

1709 female) and |I| = 3534 items remained in the

dataset. The Reddit4 dataset was described in Sec-

tion 1.1. We used Reddit’s open API5 to retrieve all

934,015,622 comments from years 2013 and 2014 sub-

mitted at 166,742 subreddits from 8,668,780 users. We

selected |U | = 32, 148 users that reported their gender

in some subreddits that support gender self-reporting.

They correspond to 20,371 males and 11,777 females

who submitted 30,150,270 comments in |I| = 24, 112

subreddits.

Since gender information is available in both

datasets, we used the gender as the sensitive attribute.

Nevertheless, our approach can be applied to any bi-

nary sensitive attribute. For both datasets we generated

a binary matrix R = (ru,i : u ∈ U, i ∈ I) with implicit

feedback entries, where ru,i = 1 if user u posted a com-

ment in subreddit i (in Reddit) or if user u rated the

movie i above 3 (in MovieLens), and 0 otherwise.

Let I(u) := {i ∈ I : R(u, i) = 1} be the set of

items for which user u showed positive preference. The

3 http://grouplens.org/datasets/movielens/
4 http://www.reddit.com
5 https://www.reddit.com/dev/api/
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training set Itrain(u) for user u was set to be a random

subset of I(u) of size |I(u)|/2. The remaining prefer-

ences, Itest(u) := I(u) \ Itrain(u), constituted the test

set. The training set is used to fit a weighted regu-

larized matrix factorization (WRMF) recommendation

model [16], which is appropriate for implicit feedbacks.

The model parameters were selected using 10-fold cross-

validation. After training, we generated for each user u

prediction scores for all items outside Itrain(u). Finally,

the k items with the highest prediction scores were rec-

ommended to user u, and C = (cu,i : u ∈ U, i ∈ I) was

built as in Definitions 1-2 for different values of k.

Next, we discuss the manner in which we estimated

the bias in the matrices C and C ′. As discussed in

Section 3, BER(f(C),b) measures the level of bias. In

view of Theorem 1, the MBP, fH , is the most accurate

predictor as no predictor attains a BER smaller than

BER(fH ,b). Namely, by measuring BER(fH ,b) we get

an upper bound for the bias in C. Since the MBP is a

theoretical predictor, we also considered a realistic pre-

dictor, Random Forest Predictor [1](RFP), to predict b

from C. A Random Forest Predictor g : {0, 1}I → [0, 1]

is an ensemble of decisions trees. For a given test point

C(u, ·), it outputs the average predicted probabilities

P [b = 1|C(u, ·)] of all the trees in the ensemble. C

and b are split into 60% for (Ctrain,btrain), 10% for

(Cval,bval) and 30% for (Ctest,btest). A model was

trained using (Ctrain,btrain), and then applied on Cval
in order to produce the probabilities of bval being 0

or 1. Different thresholds were applied to the prob-

abilities to produce BER(g(C)val,bval). The thresh-

old that produces the minimum BER was selected, bi-

nary predictions were produced for Ctest, and finally

BER(g(Ctest),btest) is reported.

We used the implementation of WRMF provided by

mrec recommender system library6 [23]. For the solu-

tion of the min-cost flow problems (see Section 4.4),

we used Google Optimization Tools library7 [10,8,9].

Scikit-learn8 [27] machine learning library was used for

the Random Forest Predictor. Our proposed algorithm

and evaluation metrics were implemented in Python9.

Finally, in the experiments that are based on the dis-

tance metric µ1, Algorithm FaiRecSys chose vectors

for replacement in a random manner. We repeated those

experiments 10 times and reported averaged results.

We recall that if the inputs to Algorithm FaiRec-

Sys are C and ε, then the outputs are a modified rec-

ommendation matrix C ′ and a parameter δ that equals

BER(fH(C ′),b). Ideally, δ ≥ ε. However, it is possible

6 http://mendeley.github.io/mrec/
7 https://developers.google.com/optimization
8 http://scikit-learn.org/
9 https://www.python.org

MovieLens Reddit
k = 10 k = 20 k = 50 k = 10 k = 20 k = 50

BER(fH(C),b) 0 0 0 0.0001 0 0
BER(g(Ctest),btest) 0.32 0.31 0.29 0.17 0.12 0.09

Table 2: BER values for the original datasets.

that δ < ε. The latter case occurs when it is not pos-

sible to increase the MBP-BER as high as ε, and then

δ is the maximum value of MBP-BER which can be

achieved by our approach. In all of our experiments, we

had δ ≥ ε (namely, we were able to reach the desired

level of fairness). Therefore, we use all over ε to denote

the MBP-BER of the output matrix C ′.

5.2 Preliminary results

Table 2 presents the BER values that were computed

from the original recommendation matrices of both

datasets, for different values of k and both MBP and

RFP. For all pairs (dataset, k), each user has a unique

recommendation vectors, except (Reddit, k = 10)

where more than 99% of users have a unique recom-

mendation vector. Thus, as discussed in Section 4.5,

when each user has a unique recommendation vector,

the BER of the MBP(MBP-BER) is 0. In agreement

with Theorem 1, the BER values of the MBP are al-

ways smaller than those of the RFP. We also note

that the Reddit dataset has smaller values of BER for

RFP(RFP-BER) compared to MovieLens, suggesting

that Reddit is more biased than MovieLens.

The maximum value of MBP-BER that we can

get in Algorithm FaiRecSys’s output recommenda-

tion matrix is given in Lemma 4. For MovieLens,

as b0 = 4331 and b1 = 1709, we have q = 2 and,

hence, r = 4331 − 2 · 1709 = 913. By Lemma 4,

the maximum possible value of MBP-BER is therefore

(0.5 · 4331−9134331 ) = 0.3946. For Reddit, the maximum

value of MBP-BER is 0.2891, except for the case where

k = 10 in which not all recommendation vectors are

unique; in that case, the maximum value of MBP-BER

is 0.2892.

5.3 Measuring utility

The first objective of our experimental evaluation is

to show the effects of our transformations on the qual-

ity/utility of the aposteriori recommendations, C ′, com-

pared to the original ones, C. In order to compare the

quality of original recommendation matrix C with the

transformed (and less biased) matrix C ′, we computed

the utility measures precision and recall from C and



FaiRecSys: Mitigating Algorithmic Bias in Recommender Systems 11

0.2

0.3

0.4

p
re

ci
si

on
(C

′ )

k= 10
precision(C ) µ1 µ2

k= 20 k= 50

0.0 0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

re
ca

ll
(C

′ )

recall(C ) µ1 µ2

0.0 0.1 0.2 0.3 0.4

ε=BER(fH(C ′ ), b)
0.0 0.1 0.2 0.3 0.4

(a) MovieLens

0.2

0.3

0.4

p
re

ci
si

on
(C

′ )

k= 10
precision(C ) µ1 µ2

k= 20 k= 50

0.0 0.1 0.2 0.3

0.2

0.3

0.4

re
ca

ll
(C

′ )

recall(C ) µ1 µ2

0.0 0.1 0.2 0.3

ε=BER(fH(C ′ ), b)
0.0 0.1 0.2 0.3

(b) Reddit

Fig. 1: precision(C ′) and recall(C ′) for different values

of ε and k for MovieLens and Reddit datasets.

from C ′, for varying values of k and ε. Letting Irec(u)

denote the subset of items that are recommended to

user u based on the training set, then precision is de-

fined as 1
|U |
∑
u∈U

|Irec(u)∩Itest(u)|
|Irec(u)| , while recall is defined

as 1
|U |
∑
u∈U

|Irec(u)∩Itest(u)|
|Itest(u)| .

Figure 1 shows the precision and recall values, as

obtained from C ′, for different values of ε and k, using

both µ1, µ2. The red dashed lines show the upper bound

for precision and recall, as calculated from the original

recommendation matrix C. As expected, the values of

precision and recall decrease for increasing values of ε,

since larger values of ε imply higher fairness and, con-

sequently, higher prices of fairness. Moreover, generat-

ing the recommendation matrices C ′ with µ2 leads to

higher precision and recall than with µ1. This trend is

observed in both datasets.

5.4 Measuring bias

Herein we evaluate the level of bias which is achieved

by our algorithm for different values of ε and k,

when the guiding metric is either µ1 or µ2. We

computed BER(fH(C ′),b) (the a-posteriori MBP-

BER) and compared it with BER(fH(C),b) (the

original MBP-BER). We repeat those evaluations

with the BER achieved by the Random Forest Pre-

dictor (RFP). Figure 2 shows the correlation be-

tween RFP-BER, BER(g(C ′test),btest)), and MBP-

BER, BER(fH(C ′),b). The RFP results are important

in order to understand the effects of applying our fair-

ness algorithm in a realistic scenario. While the use of

MBP is important in developing a theoretical frame-

work, it might be less relevant for evaluating bias in a

realistic scenario. Therefore, the use of RFP, alongside

the MBP, sheds light on the relation between theory

and practice.

For the Reddit dataset, both BER values increase

when the input parameter ε is increased. Also, it can

be observed that using the metric µ2 brings about

lower BER(g(C ′test),btest) values than the correspond-

ing ones for µ1. On the other hand, for the MovieLens

dataset we observed that BER(g(C ′test),btest) = 0.5

when µ = µ1 and BER(fH(C ′),b) > 0.15. For µ2,

only when BER(fH(C ′),b) > 0.3 BER(g(C ′test),btest)

reaches the upper limit of 0.5. These findings show two

things:

(1) There is a trade-off between the two metrics µ1

and µ2. While the loss in recommendation quality is

higher when using µ1 (as shown in Figure 1), using µ1

yields less biased recommendations (Figure 2).

(2) The bias in Reddit is stronger than that in

MovieLens, since both BER curves for MovieLens

reach the upper limit of 0.5 after introducing less

changes in the recommendation matrix, in comparison

to Reddit (Figure 2).

As another way to measure the bias achieved by

FaiRecSys, we also computed the item-wise bias, de-

noted diffi., Eq. (7): diffi equals the difference between

the fraction of men for whom item i was recommended

and the corresponding fraction of women. Optimal fair-

ness for item i occurs when diffi = 0.

diffi =
|{u ∈ U : C(u, i) = 1 ∧ b(u) = 0}|

|{u ∈ U : b(u) = 0}|
−

|{u ∈ U : C(u, i) = 1 ∧ b(u) = 1}|
|{u ∈ U : b(u) = 1}|

(7)

Figure 3 shows the distribution of the item-wise bias

metric diffi for k = 20 and ε = BER(fH(C ′),b) = 0.3.
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Fig. 2: Effects of Algorithm FaiRecSys on the achieved

level of bias, measured by MBP and RFP.
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Fig. 3: Effect of Algorithm FaiRecSys on item-wise

bias metric diffi

(Other settings of (k, ε) yield similar trends.) We com-

pared the distributions of diffi generated from the orig-

inal matrix C, C ′ using µ = µ1 and C ′ using µ = µ2.

We observed that the former distribution is more con-

centrated around 0, what reflect the smaller biases con-

veyed by (C ′, µ = µ1) and (C ′, µ = µ2) in comparison

to C . For MovieLens dataset, we observe that diffi
values for (C ′, µ = µ1) are more concentrated around

0 than diffi values for (C ′, µ = µ2); namely, in this

dataset (C ′, µ = µ1) carries less item-wise bias. In case

of the Reddit dataset, we observe smaller differences

between µ1 and µ2. Moreover, when we compare Figure

3(a) and Figure 3(b), we also confirm that the Red-

dit dataset carries higher biases than the MovieLens

dataset, since the distribution of diffi is more concen-

trated around 0 for MovieLens.

6 Conclusions

The problem of algorithmic bias and the possibility

that decisions informed by data mining algorithms may

strengthen and perpetuate the bias existing in the train-

ing data, is nowadays recognized as one of the key prob-

lems for our community.

In this paper, motivated by empirical examples,

we address the problem of algorithmic bias in recom-

mender systems. We formulate a fairness constraint

based on the notion of predictability of sensitive fea-

tures (such as gender or ethnicity) and bias in the re-

sults of recommendations. We then propose FaiRecSys

– an algorithm that mitigates algorithmic bias by post-

processing the recommendation matrix with minimum

impact on the utility of recommendations provided to

the end-users.

In the future extended version of this work we are

going to generalize the discussion from a binary sen-

sitive attribute to sensitive attributes with larger fi-

nite domains (such as ethnicity or religion). Another

extension, which is much more intricate, is to achieve

simultaneous fairness with respect to several sensitive

attributes (of any cardinalities). This extension is most

essential, since users whose preferences are conveyed

through the recommendation matrix may belong to

possibly-discriminated groups based on more than one

sensitive attribute. Clearly, achieving simultaneous fair-

ness with respect to a given set of sensitive attributes

may be impossible. Hence, an important first step in

addressing this multi-dimensional challenge is to care-

fully formalize the inputs and desired outputs of the

corresponding computational problem.
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A Proofs

A.1 Proof of Theorem 1

Fix f ∈ Π and let Yf be the subset of all vectors y ∈ {0, 1}I for

which f(y) 6= fH(y). Let us define Y0 = f−1
H (0)\Yf and Y1 =

f−1
H (1)\Yf . Therefore, Y0 is the subset of all recommendation

vectors y ∈ {0, 1}I that both fH and f map to 0, Y1 is the
subset of all recommendation vectors y ∈ {0, 1}I that both fH
and f map to 1, and Yf is the complementing subset, where
fH and f disagree.

Given the partition of columns into the above mentioned
three subsets, {0, 1}I = Y0

⋃
Y1
⋃
Yf , we denote the summa-

tion of cells of row number i = 0, 1 in the contingency table
H in each of those subsets as follows:

ri :=
∑
y∈Y0

H(i,y) ,

si :=
∑
y∈Y1

H(i,y) ,

ti :=
∑
y∈Yf

H(i,y) .

Recall that b0 and b1 denote the number of men and women,
respectively, and therefore r0 +s0 + t0 = b0 and r1 +s1 + t1 =
b1.

Let us assume first that Yf includes just one vector y.
There are two possible cases regarding the value that fH and
f assign to y: If t0

b0
≥ t1

b1
then fH(y) = 0 and, hence, f(y) = 1.

Therefore,

2BER(fH ,b) = Pr[fH = 1|b = 0] + Pr[fH = 0|b = 1] =

s0

b0
+
r1 + t1

b1
,
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while

2BER(f ,b) = Pr[f = 1|b = 0] + Pr[f = 0|b = 1] =

s0 + t0

b0
+
r1

b1
.

Comparing the last two equalities we infer that BER(f ,b) ≥
BER(fH ,b) in this case. If, on the other hand, t0

b0
< t1

b1
then

fH(y) = 1 and, hence, f(y) = 0. Therefore,

2BER(fH ,b) = Pr[fH = 1|b = 0] + Pr[fH = 0|b = 1] =

s0 + t0

b0
+
r1

b1
,

while

2BER(f ,b) = Pr[f = 1|b = 0] + Pr[f = 0|b = 1] =

s0

b0
+
r1 + t1

b1
.

Comparing the last two equalities we infer that BER(f ,b) ≥
BER(fH ,b) in this case as well.

This concludes the proof that BER(fH ,y) ≤ BER(f ,y)
when |Yf | = 1. The proof for |Yf | > 1 goes along the same
lines. �

A.2 Proof of Theorem 2

It is easy to see that the first addend on the right hand side
of Eq. (3) equals Pr[fH = 1|b = 0], since the denominator in
that fraction equals b0 — the total number of men (b(u) = 0),
while the numerator equals the total number of men for whom
fH(u) = 1. Similarly, the second addend on the right hand
side of Eq. (3) equals Pr[fH = 0|b = 1]. Hence, by Eq. (1),

BER(fH ,b) = βH
2

.

In order to prove the upper bound of 1
2

, we introduce the
following notations for i = 0, 1:

ri :=
∑

y∈f−1

H
(0)

H(i,y) , si :=
∑

y∈f−1

H
(1)

H(i,y) .

Namely, r0 is the total number of men that fH predicted
to be men while r1 is the total number of women that fH
predicted to be men. Similarly, s0 is the total number of men
that fH predicted to be women while s1 is the total number of
women that fH predicted to be women. With these notations,
we infer from our discussion above that

BER(fH ,b) =
1

2
·
[

s0

r0 + s0
+

r1

r1 + s1

]
.

As, by the definition of fH , s0
b0
≤ s1

b1
, where b0 = r0 + s0

and b1 = r1 + s1 are the total numbers of men and women,
respectively, we infer that

BER(fH ,b) =
1

2
·
[
s0

b0
+
r1

b1

]
≤

1

2
·
[
s1

b1
+
r1

b1

]
=

1

2
·
b1

b1
=

1

2
.

(8)

It is easy to see that the inequality in Eq. (8) holds in the
strict sense unless fH ≡ 0 (in which case s0 = s1 = 0) or
fH ≡ 1 (in which case r0 = r1 = 0).

Finally, the last claim that C is ε-fair iff βH > 2ε follows
directly from Theorem 1 and the equality BER(fH ,b) = βH

2
which we just proved. That concludes the proof. �

A.3 Proof of Lemma 1

The first case is trivial since here fH does not change, so BER
will increase by 1

2b0
since the move will make fH wrong for

the man that was moved (whereas before fH was right for
that man).

To prove the second claim we look at the contingency
table before and after the move, H and H′ respectively, in a
summarized manner as shown in Tables 3 and 4.

The notation # is used in all tables in this proof which
show the contingency table in a summarized manner in order
to mark the entries that contribute to the BER. So

2BERH =
y0 + v0

b0
+
u1 + x1

b1

while

2BERH′ =
v0

b0
+
u1 + x1 + y1

b1
.

We infer that

BERH′ −BERH =
1

2
·
(
y1

b1
−
y0

b0

)
as claimed. That difference is indeed positive since, from
the fact that y1 ∈ Y1 (prior to the move) we know that
fH(y1) = 1, namely, that y1

b1
> y0

b0
. On the other hand, since

y1 is unstable under addition of a man, we know that after the

move y0+1
b0
≥ y1

b1
. But this implies that 1

2
·
(
y1
b1
− y0

b0

)
≤ 1

2b0
,

in accord with our claim.
The proof of the third case is similar. Here the contin-

gency table H′ is as given in Table 5. So now

2BERH′ =
x0 + y0 + v0

b0
+
u1

b1
,

and, therefore,

BERH′ −BERH =
1

2
·
(
x0

b0
−
x1

b1

)
≥ 0 .

That difference is strictly smaller than 1
2b0

since y0 is unstable

under removal of a man.
We now turn to prove the fourth case. Here, H′ is as given

in Table 6. So now

2BERH′ =
x0 − 1 + v0

b0
+
u1 + y1

b1
,

and, therefore,

2(BERH′ −BERH) =
x0 − 1− y0

b0
+
y1 − x1
b1

.

It is easy to see that the instability of y0 and y1 (i.e., the value
of fH flipped on both of those vectors due to the move of a
single man from the former to the latter) implies that x0 =
b0x1

b1
+δ+1 while y0 = b0y1

b1
+θ, for some δ, θ ∈ [−1, 0). Plugging

this in the last equation reveals that 2(BERH′−BERH) = η
b0

where η = δ − θ can take values in the interval (−1, 1). �

A.4 Proof of Lemma 2

The proof of Lemma 2 is similar to that of Lemma 1 and thus
omitted.
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H Y −0 := Y0 \ {y0} y0 y1 Y −1 := Y1 \ {y1}
b = 0 u0 :=

∑
y∈Y−0

H(0,y) x0 := H(0,y0) y0 := H(0,y1)# v0 :=
∑

y∈Y−1
H(0,y)#

b = 1 u1 :=
∑

y∈Y−0
H(1,y)# x1 := H(1,y0)# y1 := H(1,y1) v1 :=

∑
y∈Y−1

H(1,y)

Table 3: The a-priori contingency table H

H′ Y −0 := Y0 \ {y0} y0 y1 Y −1 := Y1 \ {y1}
b = 0 u0 x0 − 1 y0 + 1 v0#
b = 1 u1# x1# y1# v1

Table 4: The a-posteriori contingency table H ′ in Case 2

H′ Y −0 := Y0 \ {y0} y0 y1 Y −1 := Y1 \ {y1}
b = 0 u0 x0 − 1# y0 + 1# v0#
b = 1 u1# x1 y1 v1

Table 5: The a-posteriori contingency table H ′ in Case 3

H′ Y −0 := Y0 \ {y0} y0 y1 Y −1 := Y1 \ {y1}
b = 0 u0 x0 − 1# y0 + 1 v0#
b = 1 u1# x1 y1# v1

Table 6: The a-posteriori contingency table H ′ in Case 4

A.5 Proof of Theorem 3

The first claim in the theorem follows directly from Lemma 1
(by considering each of the four possible cases in the lemma),
while the second one follows similarly from Lemma 2. To see
that, observe that a vector y0 is stable with respect to man-
removals if s(y0) ≥ 1/b0 and stable with respect to woman-
additions if s(y0) ≥ 1/b1; similarly, the vector y1 is stable
with respect to man-additions if s(y1) < −1/b0 and stable
with respect to woman-removals if s(y1) < −1/b1. �

A.6 Proof of Theorem 4

Let H (H′) be the a-priori (a-posteriori) contingency table
corresponding to C (C′). Let fH and fH′ be the corresponding
MBPs. Denote by Y0 = f−1

H (0) and Y1 = f−1
H (1) the sets of

vectors in Y that are mapped by the MBP fH to 0 and 1,
respectively. We assume that Y0, Y1 6= ∅, since otherwise fH
would have been constant and then, by Theorem 2, already
the initial BER would have equaled the maximal possible
value of 1/2 and then C is the optimal solution (in which
case Y ′ = Y ).

Assume that there exists a vector z ∈ Y ′ \ Y . Assume,
without loss of generality, that fH′(z) = 0. Let y be any
vector in Y0. We proceed to prove that if we replace in C′ all
rows that equal z with the row y, we will get a matrix C′′ for
which (a) the induced BER is the same as that of C′, and (b)
dist(C,C′′) ≤ dist(C,C′). Since C′′ is an optimal solution, it
implies that dist(C,C′′) = dist(C,C′). Therefore, C′′ is also
an optimal solution and it does not include the row z. By
repeating the same argument for all rows in C′′ which do not
exist in the original C, we will arrive at an optimal solution
matrix C∗ in which the set of rows is included in the set of
rows in C. That will conclude the proof.

We now prove claims (a) and (b) above. Denote

ri = H′(i,y) , si = H′(i, z) .

Since C′ is an MBP-respecting solution and y ∈ Y0, then
r0
b0
≥ r1

b1
. Also, since fH′(z) = 0, we have s0

b0
≥ s1

b1
. The overall

contribution of those two columns to BER(fH′ ,b) is r1+s1
2b1

.

In H′′ (the contingency table of C′′), those two columns will
be merged into y and it is then clear that the contribution
of the merged column to BER(fH′′ ,b) (where fH′′ is the cor-
responding MBP) would be still r1+s1

2b1
, while the contribu-

tion of all other columns would remain unchanged. Hence,
BER(fH′′ ,b) = BER(fH′ ,b). That proves claim (a). Next,
since the recommendation vector z does not exist as a row in
C, its contribution to dist(C,C′) is s0 + s1. In the transition
from C′ to C′′ we replace the recommendation vector of all
s0 + s1 users that were offered z to y. Since the latter vector
does exist in C, we infer that its contribution to dist(C,C′′)
is at most s0 + s1. Therefore, dist(C,C′′) ≤ dist(C,C′). Claim
(b) is thus proved too. �

A.7 Proof of Lemma 3

By Theorem 3 and its proof we infer that: (a) for any y ∈ Y0,
bb1s(y)c is the largest number of women whose recommen-
dation vector can be changed from some vector in Y1 to y,
without changing the value of fH on y; and (b) for any y ∈ Y1,
d−b1s(y) − 1e is the largest number of women whose recom-
mendation vector can be changed from y to some vector in
Y0, without changing the value of fH on y.

Therefore, since any BER-increasing and MBP-respecting
woman-move is of the form (u,y, z) where u is a woman, y ∈
Y1 is her original recommendation vector and z ∈ Y0 is her
new recommendation vector, then the maximal number of
such moves that are possible (while maintaining the MBP) is
the minimum between the total number of women that the Y0
vectors can “take in” and the total number of women that the
Y1 vectors can “loose” without affecting the MBP, as given
in Eq. (5).

The proof of the corresponding claim for man-moves goes
along the same lines. �
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A.8 Proof of Theorem 5

Each matrix in M(C) is obtained from C by a sequence of
moves which are MBP-respecting. Hence, as implied by The-
orem 3, each such move increases the BER of the underlying
MBP either by 1/2b0 (if the move is of a man) or by 1/2b1
(woman). Moreover, the order of moves in that sequence does
not matter, since none of those moves changes the MBP and,
consequently, none of those moves has an effect on the utility
(in terms of the increase in the BER) of moves that are made
later on. Hence, we may encode any solution inM(C) by two
integers: n0 (the number of man-moves) and n1 (the num-
ber of woman-moves). We would like to stress that the pair
(n0, n1) does not characterize the solution (since, for such a
characterization it is needed to spell out the identity of the
n0 + n1 affected users and their modified recommendation
vectors). However, in the context of this proof, that pair is
sufficient since it determines the final BER and also the re-
sulting µ1-distance. Indeed, if C∗ ∈M(C) is characterized by
(n0, n1) then

BER∗ = BER+
n0

2b0
+

n1

2b1

(where BER and BER∗ are the a-priori and a-posteriori BER
values of the MBP) and

dist(C,C∗) = n0 + n1 . (9)

Next, M(C, ε) consists of all matrices in M(C) for which

n0

2b0
+

n1

2b1
≥ ε−BER . (10)

If that set is not empty then it is clear that an optimal so-
lution is one in which n1 is maximized (if b0 ≥ b1) since an
optimal solution minimizes the distance in Eq. (9) while still
meeting the condition in Eq. (10). The solution issued by
Algorithm FaiRecSys is indeed a solution that uses the max-
imal possible n1 woman-moves. Hence, it is an optimal solu-
tion within the class M(C). If, on the other hand, the upper
limits on n0 and n1, as dictated by Lemma 3, do not allow
meeting the condition in Eq. (10), then it is clear that the
practice implemented in Algorithm FaiRecSys of exhausting
first all possible woman-moves results in the highest possible
a-posteriori BER, δ. �

A.9 Proof of Lemma 4

Under our assumption that b0 ≥ b1, the only MBP-improving
and respecting moves are (u,y, z) where u is a man, y ∈ Y0 is
his original recommendation vector, and z ∈ Y1 is an existing
recommendation vector for a woman. Let q ≥ 1 be the integer
such that b0 = qb1 + r, r ∈ [0, b1). Then each column z ∈ Y1
can take at most q men without flipping the MBP’s value on
y. Since |Y1| = b1 we may perform up to b1q MBP-improving
and respecting man-moves. As each such move yields a BER
increase of 1

2b1
, then after completing all of those moves the

BER will increase from 0 to b1q
2b0

= 1
2
· b0−r
b0

= 1
2
· qb1
qb1+r

. Since

r ≤ b1 − 1 and q ≥ 1 we infer that we may increase BER to

1

2
·

qb1

qb1 + r
≥

1

2
·

qb1

qb1 + b1 − 1
≥

1

2
·

b1

b1 + b1 − 1
>

1

4
.
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